ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STROJNÍ

DIPLOMOVÁ PRÁCE

2023

ALBERT VOCEL

Osobní číslo: 482416

Příjmení:

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Vocel

Fakulta/ústav: Fakulta strojní Zadávající katedra/ústav: Ústav energetiky Studijní program: Energetika a procesní inženýrství Specializace: Energetika II. ÚDAJE K DIPLOMOVÉ PRÁCI Název diplomové práce: Základní návrh a bilance binární geotermální elektrárny pro tekutiny s nadkritickými parametry Název diplomové práce anglicky: Basic Design and Balance of a Binary Geothermal Power Plant for Geofluids at Supercritical Conditions Pokyny pro vypracování: Cílem práce je variantní základní návrh řazení technologie elektrárny pro indirektní využití geotermální tekutiny s danými superkritickými parametry a provedení bilančního porovnání navržených variant z pohledu měrného svorkového výkonu a účinnosti využití geotermálního zdroje. Práce bude obsahovat: - rešerši problematiky geotermálních zdrojů se superkritickými parametry, - základní návrh tepelného schématu binární geotermální elektrárny ve 2 variantách – jednotlakové a dvoutlakové, - bilanční výpočet navržených variant pro následující parametry geotermální tekutiny na výstupu z produkčního vrtu, resp. vstupu do technologie elektrárny: p = 25 MPa; t = 400 °C; složení – H2O; jednotkový průtok m = 1 kg/s, porovnání navržených variant a výběr varianty pro další analýzy, - ověření vlivu nekondenzujících plynů v geotekutině na měrný výkon zařízení, - informativní stanovení tlakových ztrát ve výměnících tepla a účinnosti turbíny pro zpřesnění bilančního výpočtu, zde dle potřeby uvažovat vyšší průtok geotermální tekutiny až do mMAX = 50 kg/s, - zjednodušené parametrické porovnání vlivu pinch-pointu a délky trubkových svazků na hmotnost výměníků tepla a sledované základní parametry u vybrané varianty, - závěrečný souhrn poznatků a doporučení. Další zadané hodnoty: teplota kondenzace tk = 40 °C; maximální přípustná vlhkost páry expandující v turbínách vMAX=0.12. Seznam doporučené literatury: DiPippo, R.: Geothermal Power Plants (4th Edition), ISBN 9780081002902/9780081008799 a dále dle doporučení VP. Jméno a pracoviště vedoucí(ho) diplomové práce: prof. Ing. Michal Kolovratník, CSc. ústav energetiky FS Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce: Datum zadání diplomové práce: 17.04.2023 Termín odevzdání diplomové práce: 02.06.2023 Platnost zadání diplomové práce: 31.12.2024 prof. Ing. Michal Kolovratník, CSc. podpis vedoucí(ho) ústavu/katedry doc. Ing. Miroslav Španiel, CSc. podpis vedoucí(ho) práce podpis děkana(ky)

Jméno: Albert

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání

Podpis studenta

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 1. 6. 2023

Albert Vocel

Anotační list

Jméno autora:	Bc. Albert Vocel			
Název DP:	Základní návrh a bilance binární geotermální elektrárny pro tekutiny s nadkritickými parametry			
Anglický název:	Basic Design and Balance of a Binary Geothermal Power Plant for Geofluids at Supercritical Conditions			
Akademický rok:	2022/2023			
Ústav:	Ústav energetiky 12115			
Vedoucí DP:	prof. Ing. Michal Kolovratník, CSc.			
Bibliografické údaje:	Počet stran: 104			
	Počet obrázků: 52			
	Počet tabulek: 52			
	Počet příloh: 0			
Klíčová slova:	Geotermální elektrárna, superkritické parametry, dvoutlaký systém, výměník tepla, tlakové ztráty, parní turbína, nakroucené lopatky, pevnostní výpočet, ČSN 69 0010			
Keywords:	Geothermal power plant, supercritical conditions, <i>SC GT</i> , Binary power plant, dual-pressure heat recovery, heat exchanger, pressure drop, steam turbine, twisted blade			
Anotace:	Předmětem této diplomové práce je variantní návrh a bilance binární geotermální elektrárny využívající geotermální médium s danými nadkritickými parametry. Je provedená optimalizace navržených konverzních systémů pomocí výpočtových modelů sestavených v prostředí MS Excel s využitím knihoven látkových vlastností CoolProp. Získané parametry navržených konverzních systémů jsou porovnány navzájem a rovněž s parametry konverzních systémů využívajících zdrojové médium direktním způsobem. Je ověřen vliv příměsi nekondenzujících plynů ve zdrojovém médiu na dosažitelný měrný čistý výkon a utilizační účinnost konverzních systémů. Posouzen je i vliv dalších vstupních parametrů, jejichž zpřesněné hodnoty jsou získány ze základního návrhu vybraných komponent v tepelném schématu jednotlivých konverzních systémů.			
Abstract:	The main goal of this thesis is to design and balance Binary geothermal power plant suitable for geofluid at given supercritical conditions. Optimisation of considered conversion systems is performed using computational models created in MS Excel interface with CoolProp fluid properties. Designed Binary conversion systems are compared with systems utilising the supercritical geofluid directly based on net power. Impact of non-condensable gases content in geofluid on net power and utilisation efficiency is estimated. In order to get more accurate input data, basic design of selected apparatuses is performed. Afterwards, their impact on net power, as well as utilisation efficiency, is evaluated.			

Poděkování

Tímto bych rád poděkoval vedoucímu své diplomové práce, panu prof. Ing. Michalu Kolovratníkovi, CSc., za cenné rady, podnětné připomínky, ochotu a čas, který mi věnoval. Mé díky patří také panu prof. Ing. Tomáši Dlouhému, CSc. za poskytnuté odborné konzultace. Děkuji i všem, kteří mě v průběhu studia podporovali.

Obsah

1	Reš	eršní část	11
	1.1	Vývoj využití geotermální energie ve světě	11
	1.2	Konvenční geotermální elektrárny – základní přehled	12
	1.2.1	Dry steam	12
	1.2.2	Flash steam	12
	1.2.3	Binary cycle	13
	1.3	Aktuální výzkum	14
	1.3.1	Projekt IDDP	14
	1.3.2	Projekt DEEPEN	14
	1.3.3	Japonský výzkum	14
	1.3.4	Vývoj nekonvenčního vrtného systému	16
	1.4	Konverzní technologie pro využití superkritické geotermální tekutiny	16
2	Shri	nutí postupu výpočtu	20
3	Náv	rhová část	21
	3.1	Přehled vstupních parametrů	21
	3.2	Modely s uvažováním výchozích hodnot parametrů	22
	3.2.1	Varianta A – dvoutlaký systém s přihříváním páry	22
	3.2.1.1	. Schéma a popis zapojení dané varianty	22
	3.2.1.2	2. Modelování a parametry v tepelném schématu	23
	3.2.1.3	3. Hmotnostní a energetické bilance, výkon a účinnost	24
	3.2.1.4	l. Výsledky optimalizace	27
	3.2.1.5	5. Závislost výkonu na množství odloučené kapaliny v SEP	29
	3.2.2	Varianta B – jednotlaký systém s přihříváním páry	30
	3.2.2.1	. Schéma a popis zapojení dané varianty	30
	3.2.2.2	2. Modelování a parametry v tepelném schématu	30
	3.2.2.3	3. Hmotnostní a energetické bilance, výkon a účinnost	31
	3.2.2.4	l. Výsledky optimalizace	31
	3.2.2.5	5. Závislost výkonu na množství odloučené kapaliny v SEP	33
	3.2.3	Porovnání variant s direktním a indirektním využitím GT tekutiny	34
	3.3	Ověření vlivu nekondenzujících plynů na měrný výkon variant	35
	3.3.1	Vstupní data pro řešení tepelného schématu	35
	3.3.2	Tepelný výpočet	36
	3.3.3	Varianta A – výsledky optimalizace	36
	3.3.4	Varianta B – výsledky optimalizace	39

	3.3.5	Souhrnné porovnání variant	41
	3.4	Určení tlakové ztráty a jejího vlivu na čistý výkon	42
	3.4.1	Návrh výměníků tepla	42
	3.4.1.1.	Přestup tepla při proudění uvnitř trubek	45
	3.4.1.2.	Přestup tepla při podélném obtékání trubek	45
	3.4.1.3.	Přestup tepla při varu ve velkém objemu	46
	3.4.1.4.	Přestup tepla při podélném obtékání trubek mokrou parou	46
	3.4.2	Určení tlakových ztrát	47
	3.4.2.1.	Tlakové ztráty – médium v trubkách	47
	3.4.2.2.	Tlakové ztráty – médium v mezitrubkovém prostoru	48
	3.4.3	Varianta A – přehled navržených VT a vliv Δ p na čistý výkon	49
	3.4.4	Varianta B – přehled navržených VT a vliv Δ p na čistý výkon	55
	3.4.5	Souhrnné porovnání variant, volba varianty pro další analýzy	59
	3.4.6	Varianta B – přehled navržených VT pro $k_{PT} \cdot m_{GT1} = 50 \text{ kg/s}$	61
	3.5	Určení vnitřní účinnosti turbíny a dosažitelného čistého výkonu	64
	3.5.1	Postup návrhu HP a LP dílu turbíny	64
	3.5.2	Parametry navržené turbíny	72
	3.5.3	Vliv vnitřní účinnosti dílů turbíny na dosažitelný měrný čistý výkon	81
	3.6	Vliv velikosti <i>PP</i> a délky trubkových svazků na sledované parametry	84
	3.6.1	Postup pevnostního výpočtu výměníků tepla	84
	3.6.2	Výpočet přibližné hmotnosti výměníků tepla	91
	3.6.3	Přehled parametrů pro jednotlivé varianty	92
4	Závě	rečný souhrn poznatků a doporučení	97
5	Refe	rence	101

Seznam symbolů, indexů a zkratek

Symboly

a a A b B	součinitel poměrná rozteč trubek součinitel plocha (průřezu) šířka rozměrová charakteristika	(1) (1) (m²) (mm) (mm)	s S t t š u v	tloušťka stěny plocha teplota rozteč šroubů unášivá rychlost rychlost (proudění)	(mm) (m²) (°C) (mm) (m/s) (m/s)
c_p	měrná tepelná kapacita při stálém tlaku	(kJ/kg⋅K)	v	měrný objem	(m³/kg)
c C d D	absolutní rychlost součinitel (pevnostní výpočet) průměr průměr	(m/s) (1) (m) (m)	w w w _t x	hmotnostní zlomek relativní rychlost měrná technická práce suchost páry	(1) (m/s) (kJ/kg) (1)
е	velikost částečného ostřiku	(1)	x _{st}	součinitel bezpečnosti při vzpěru	(1)
е	rozměrová charakteristika	(mm)	у	vlhkost páry	(1)
е	součinitel (exponent)	(1)	Ζ	ztráta (měrná ztrátová energie)	(kJ/kg)
Ε	Youngův modul	(GPa)	Ζ	počet segmentů částečného ostřiku	(1)
F Fr g	síla Froudeho číslo rozměrová charakteristika	(N) (1) (mm)	$lpha \ lpha \ lpha \ lpha \ lpha \ eta \ e$	součinitel přestupu tepla úhel absolutní rychlosti Baumannův součinitel	(W/m²·K) (°) (1)
h	měrná entalpie	(kJ/kg)	α_t	Součinitel teplotní délkové roztažnosti	(1/K)
H J k l m M	entalpický spád kvadratický moment průřezu součinitel součinitel prostupu tepla délka hmotnostní tok moment	(kJ/kg) (mm⁴) (1) (W/m²⋅K) (m) (kg/s) (N⋅m)	$egin{array}{c} lpha_{ts} & \ eta &$	součinitel (pevnostní výpočet) součinitel (pevnostní výpočet) úhel relativní rychlosti součinitel (pevnostní výpočet) rozdíl tlakový poměr účinnost	(1) (1) (°) (1) (1) (1)
n	počet	(1)	$\eta_{\check{\mathrm{s}}}$	opravný součinitel na rozteč šroubů	(1)
Nu p P Pp PP Pr q	Nusseltovo číslo tlak měrný výkon měrný příkon pinch-point Prandtlovo číslo měrné teplo	(1) (MPa) (kW) (kW) (K) (1) (kJ/kg)	κ λ μ μ ξ ξ ξ	Poissonova konstanta součinitel tepelné vodivosti dynamická viskozita průtokový součinitel součinitel (pevnostní výp.) ztrátový součinitel přídavná (energetická) ztráta	(1) (W/m·K) (Pa·s) (1) (1) (1) (1) (1)
q_{ts}	napětí ve spoji trubky a trubkovnice	(MPa)	π	Ludolfovo číslo	(1)
ġ Ż R	hustota tepelného toku tepelný tok reakce	(W/m ²) (W) (1)	ρ σ φ	hustota napětí svarový součinitel rychlostní součinitel (rozváděcí	(kg/m ³) (MPa) (1)
R	poloměr	(m)	φ	kolo)	(1)
Re	Reynoldsovo číslo	(Re)	Φ	součinitel (pevnostní výpočet)	(1)
RF	reheat factor	(1)	ψ	kolo)	(1)
S	měrná entropie	(kJ/kg⋅K)	Ω	součinitel zeslabení trubkovnice	(1)

Indexy

1, 2, 3	(označení uzlu)	min	minimální
L1, L2	(označení uzlu)	0	oběžné kolo
H1, H2	(označení uzlu)	0	okrajová (ztráta)
GT1, GT2	(označení uzlu)	net	čistý (výkon)
0	minimální (tloušťka …)	opt	optimální
1	jednoho (např. dílčího VT)	ot	otáčky
1	(síla) od tlaku	otvor	díra (pro šroub)
2	(síla) těsnící	out	výstupní
0	vstup do rozváděcí lopatky	0	okolí
1	vstup do oběžné lopatky	р	čerpadlo
2	výstup z oběžné lopatky	р	pata
LP EKO1,	(příslušný VT, PT)	p	tlaková ztráta (v případě k_p)
ad	adiabatický	, předb	předběžný
baffle	přepážka	P	provozní
cond	kondenzát	PT	parní turbína
CO2	oxid uhličitý	r	rozváděcí kolo
čo	částečný ostřik	real	skutečný
D	dovolený	REG	regulační
е	vnější	RZ	rychlozávěrný
е	emisní	shell	plášť, v plášti
EM	elektromotor	S	střed
f	příruba	SV	svorkový (výkon)
FM	frekvenční měnič	SČ	stupňová část
gasket	těsnění	SH	přehřátá pára
G	generátor	š	špička
GT	geotermální (médium)	š	šroub
head	hlava (VT)	t	těsnění
HP	vysokotlaký	tb	trubkový svazek
H2O	voda	tř	třecí
LN	logaritmický (teplotní spád)	ts	trubkovnice
LP	nízkotlaký	tube	trubka, v trubkách
i, j	(index pořadí)	u	obvodová (účinnost)
i	vnitřní	ut	utilizační
in	vstupní	U	utahovací
k	kondenzační	U-tube	U-trubky
k	krk	V	výstupní rychlost
krit	kritický	V	vějířová (ztráta)
Κ	(ventilační ztráta) kotouče	VT	výměník tepla
1	(ventilační ztráta) neostříknutých	Win	výpočtový
L	lopatek	νур	уростоу
т	místní	W	na stěně
М	mechanický	WF	pracovní médium
max	maximální	Ζ	zaválcování
Zkra	atky		
חס	bakalářská práco		New Energy and Industrial Technology
		NEDU	Development Organization

BP		NEDO	Development Organization
COND	kondenzátor	NN	napájecí nádrž
EKO	ekonomizér	ORC	organický Rankinův cyklus
EV	výparník	PP	pinch-point
GT	geotermální	REG	regulační stupeň
HP	vysokotlaký	RH	přihřívák
HRSG	kotel na odpadní teplo	SC	nadkritický, superkritický
IDDP	Iceland Deep Drilling Project	SEP	separátor
LP	nízkotlaký	SH	přehřívák
MIT 3E	koncepce navržená MIT	VT	výměník tepla
NCG	nekondenzující plyny	WF	pracovní médium

1 Rešeršní část

Tato práce navazuje na bakalářskou práci (*BP*) autora [1] zaměřenou rovněž na problematiku využití superkritických (*SC*) geotermálních zdrojů. Proto je dále uvedena pouze stručnější rešerše, do které bylo zařazeno pouze shrnutí aktuálního využití geotermální energie a stručný přehled používaných technologií geotermálních elektráren. Pozornost byla věnována i nadkritickým zdrojům, především aktuálnímu vývoji v oblasti jejich výzkumu a technologiím pro jejich využití.

1.1 Vývoj využití geotermální energie ve světě

Podle zprávy IRENA [2] byl v roce 2021 celosvětový instalovaný výkon geotermálních elektráren 15,96 GWe. To představuje meziroční nárust přibližně o 10,5 %. V posledních letech rostla i výroba elektrické energie v těchto elektrárnách, přičemž v roce 2020 se jednalo o 94,9 TWh, což představuje 0,35 % světové produkce elektřiny. Z toho nejvíce připadá na USA (18,8 GWh), Indonésii (15,6 GWh) a Filipíny (10,8 GWh).

Graf vývoje instalovaného výkonu a výroby založený na datech z [2] je na Obr. 1.

Obr. 1: Vývoj využití GT energie v letech 2015-2021

Rostoucí trend lze pozorovat i u vývoje využití tepla, resp. chladu z geotermálních zdrojů. Zde jsou při zahrnutí tepelných čerpadel předními hráči Čína (40,6 GWth), USA (20,7 GWth) a Švédsko (6,7 GWth). [3] Na Obr. 2 lze sledovat vývoj celosvětového instalovaného tepelného výkonu (vpravo) i využité energie (vlevo) v letech 1995-2020 včetně sektorů jejího využití.

Obr. 2: Vývoj instalovaného tepelného výkonu a využité GT energie [3]

1.2 Konvenční geotermální elektrárny – základní přehled

Geotermální elektrárny běžně používané pro konverzi geotermální energie na energii elektrickou lze podle užitého zapojení rozdělit na tři základní typy: Dry steam, Flash steam a Binary cycle. Každý z uvedených typů je vhodný pro různé složení (fázové i chemické) geotermální (*GT*) tekutiny a volba technologie se řídí také teplotou *GT* tekutiny.

1.2.1 Dry steam

Pokud *GT* zdroj poskytuje sytou nebo přehřátou páru, je nasazována technologie Dry steam. Velké zdroje takového média jsou vzácné – k jejich využívání dochází například v oblastech Lardarello (Itálie) a The Geysers (USA) [4].

Zapojení této technologie je relativně jednoduché. Pára z vrtu je zbavena pevných příměsí a kapalné fáze. Následně expanduje v turbíně a kondenzuje. Dané zapojení je na Obr. 3.

Obr. 3: Zapojení technologie Dry steam [4]

1.2.2 Flash steam

Tato technologie je nasazována, pokud v médiu poskytovaném zdrojem převažuje kapalná fáze. Snížením tlaku média vzroste jeho suchost. K poklesu tlaku média může docházet ještě v *GT* rezervoáru, ve vrtu, v přívodním potrubí nebo ve ventilu. V separátoru dochází k odloučení plynné fáze od kapalné. Plynná fáze expanduje v turbíně. [4]

Podle počtu škrcení média lze rozlišit Single-flash, Double-flash a Triple-flash technologie. V případě Double-flash je druhé škrcení zařazeno za první separátor, přičemž škrcena je odloučená kapalná složka. Po následné separaci může být pára zavedena do turbíny, kde dojde ke smíšení obou proudů. Další možností je její expanze v odděleném tělese turbíny. Řazení případného třetího škrcení je analogické. [4]

Užitím Double-flash steam technologie lze ze stejného zdroje získat až o 15-25 % vyšší elektrický výkon oproti technologii Single-flash. [4] Technologie Double-flash je také nasazována pro vyšší tlaky *GT* média. Schéma zapojení technologie Double-flash je na Obr. 4.

Obr. 4: Schéma zapojení Double-flash technologie [4]

Stavy *GT* média a jejich změny, ke kterým dochází při užití technologie Double-flash jsou zakresleny v *T-s* diagramu na Obr. 5.

Obr. 5: T-s diagram – Double-flash steam [4]

1.2.3 Binary cycle

Pro nízké teploty *GT* média nebo pro média s velkým množstvím rozpuštěných příměsí je nasazována technologie Binary cycle. V tomto případě slouží *GT* médium pouze jako zdroj tepla pro sekundární tepelný oběh. Jako takový může být použit například organický Rankinův cyklus (*ORC*) nebo Kalinův cyklus. Volba použitého pracovního média se odvíjí mimo jiné od parametrů *GT* zdroje. Omezení volby plynou ale i z vlivu pracovních médií na lidské zdraví a životní prostředí. [4]

Schéma jednoduchého zapojení této technologie je na Obr. 6.

Obr. 6: Schéma zapojení technologie Binary cycle [4]

1.3 Aktuální výzkum

Některé projekty zmiňované v [1] již skončily. V roce 2020 byl například ukončen projekt GEMex. V rámci něj byly sestaveny modely dvou oblastí nacházejících se v Mexiku. Byly charakterizovány tamní rezervoáry a identifikovány typy technologií pro jejich využití. [5] V rámci projektu DESCRAMBLE ukončeného o dva roky dříve byly získávány poznatky při hloubení vrtu v extrémních podmínkách, byly ověřeny přístroje pro měření vysokých teplot (nad 500 °C), ale bylo prováděno i modelování rezervoáru a proudění ve vrtu. [6]

Výzkum v oblasti nadkritických *GT* zdrojů však stále probíhá a téma je aktuální. Některé aktuální směry, kterými je vyvíjeno úsilí, jsou zmíněny níže.

1.3.1 Projekt IDDP

Na Islandu v rámci projektu Iceland Deep Drilling Project (*IDDP*) pokračuje výzkum na vrtu IDDP-2 hlubokém 4,6 km dokončeném v roce 2017. Došlo však k poškození pažení vrtu a část je nepřístupná. [7] Je prováděn mimo jiné geologický výzkum nebo analýza složení *GT* tekutiny a její interakce s horninami. Článek [8] dále uvádí současnou teplotu média v hloubce 4,5 km přibližně 550-600°C a odhaduje, že v budoucnu bude v oblasti Reykjanes možné energetické využití vrtů poskytujících tekutinu o teplotě 600 °C.

V budoucnu (dle [9] v horizontu 5 let) je plánováno hloubení vrtu IDDP-3 v oblasti Hengill severovýchodně od vrtu IDDP-2. [7] Příslibem do budoucna je i uvedení materiálu TIMETAL 475 na trh. Jde o titanovou slitinu vhodnou pro pažení velmi horkých *GT* vrtů. [9]

1.3.2 Projekt DEEPEN

V roce 2021 byl spuštěn projekt DEEPEN. Projekt si za cíl klade snížení rizika spojeného s průzkumem magmatických geotermálních zdrojů, které zabraňuje rozvoji využití *GT* energie. Stanoveného cíle chce dosáhnout vylepšením výzkumných metod a vytvořením metodiky pro interpretaci získaných dat. Metodika má zajistit větší pravděpodobnost objevení *GT* zdroje s vysokou teplotou, který je zároveň schopný poskytovat dostatečný hmotnostní tok média. Nová metodika má být uplatněna právě v oblasti Hengill (Island) a také v oblasti Newberry volcano (USA). [10]

1.3.3 Japonský výzkum

Potenciál nadkritických *GT* zdrojů v Japonsku je značný a i tyto zdroje by mu mohly dopomoci k tamní energetické bezpečnosti a redukci emisí skleníkových plynů. Proto

Obr. 7: Teplotní profily ve stávajících a nově vyhloubeném vrtu [12]

tímto směrem upřela japonská vláda v roce 2017 pozornost a od roku 2018 začaly probíhat projekty financované tamní agenturou NEDO (*New Energy and Industrial Technology Development Organization*). [11]

Na ostrově Hokkaido v provincii Shiribeshi nacházející se v jeho západní části probíhal průzkum, jehož výsledkem bylo vytipování lokality v pohoří Niseko s možným výskytem *GT* zdroje s vysokou teplotou. V lokalitě se nachází skupina hor vulkanického původu (Niseko volcanic group), ve které jsou vrty běžně využívány k získávání horké vody pro lázně. Kromě těchto vrtů byl ve vyšší nadmořské výšce vyhlouben vrt NS61-1. Naměřené teplotní profily z těchto vrtů jsou na Obr. 7. Po provedení extrapolace naměřených hodnot (Obr. 8) byla v centrální oblasti pod horou Iwaonupuri identifikována oblast vysokých teplot (>380 °C) v hloubce 2-3 km. [12]

Obr. 8: Teplotní profily v jednotlivých vrtech – extrapolováno [12]

Na základě získaných dat byl sestaven model oblasti s předpokládaným rozložením teplot, viz Obr. 9.

Obr. 9: Model zkoumané oblasti [12]

1.3.4 Vývoj nekonvenčního vrtného systému

Průlom ve způsobu realizace vrtů slibuje americká společnost Quaise vyvíjející zařízení hloubící vrt pomocí mikrovln s velkou energií. Generátorem vln přitom má být gyrotron umístěný na povrchu a vlny mají být do vrtu vedeny vlnovodem. Takový systém by řešil problém konvenčních technologií s opotřebením nástroje a tedy jeho častou výměnou. Také prakticky nemá teplotní omezení. [13] Schéma vyvíjeného systému je na Obr. 10.

Obr. 10: Princip činnosti vyvíjeného systému [13]

V porovnání se stávajícími postupy by užití tohoto řešení mělo znamenat: [13]

- Možnost realizace hlubších vrtů až 30 km
- Zvýšení rychlosti vrtání (až 4 m/h)
- Vyšší podíl "produktivního" času (více než 80 %)
- Možnost vrtání za vyšších teplot
- Růst ceny vrtu (pouze) lineárně s jeho hloubkou

Časový plán zveřejněný společností Quaise se zdá ambiciózní a je následující: [14]

- 2024 nasazení hybridního systému kombinujícího konvenční systém se systémem využívajícím mikrovlny
- 2026 spuštění první elektrárny využívající velmi horké *GT* médium s výkonem na úrovni 100 MWe
- 2028 Repowering první fosilní elektrárny s pomocí GT zdroje

1.4 Konverzní technologie pro využití superkritické geotermální tekutiny Žádný konverzní systém využívající *SC GT* zdroj zatím nebyl realizován. Návrh povrchových konverzních systémů však byl identifikován jako jeden z dalších nutných kroků pro energetické využití *SC GT* tekutin. [15] Způsob využití zdrojového média lze rozdělit na direktní, kdy *GT* tekutina přímo expanduje v turbíně, a indirektní, kdy *GT* tekutina slouží pouze jako zdroj tepla.

Pro případ direktního využití *SC GT* tekutiny zdroje [16] a [17] navrhují technologii využívající prvky technologie Flash-steam. Je pracováno se třemi expanzemi *GT* média. Za první expanzí dochází k odloučení kapalného podílu, který je následně seškrcen. Takto získaná plynná fáze je po odloučení od kapalné v separátoru zavedena do turbíny, viz Obr. 11.

Obr. 11: Schéma zapojená technologie "Triple-expansion" [16]

Problém pro toto zapojení může představovat příliš vysoká vlhkost média expandujícího v turbíně. To lze řešit přihřátím média mezi expanzemi částí *GT* média. [17] Zmíněný problém je patrný z *T-s* diagramu na Obr. 12.

Obr. 12: T-s diagram pro technologii "Triple-expansion" [16]

S rostoucí teplotou zdrojového média přestává emisní vlhkost představovat problém a technologie se může zjednodušit, neboť při vhodných parametrech zdroje lze expanzi realizovat ve dvou krocích, nebo dokonce v jednom, jak je patrné z Obr. 13. [17]

Obr. 13: T-s diagram : realizace expanze ve dvou (vlevo) a v jednom kroku (vpravo) při vhodných parametrech zdroje [17]

S indirektním využitím superkritického *GT* média počítal již projekt *IDDP* [18] nebo pozdější novozélandský projekt [19]. Uvedené zdroje hovoří o ochlazení zdrojové tekutiny ve výměníku a její reinjektáži, konkrétní zapojení tepelného oběhu na sekundární straně však neuvádí. Žádný určitý návrh konverzní technologie s indirektním využitím *SC GT* tekutiny se nepodařilo dohledat ani v jiných zdrojích. Takové využití *SC GT* média je však v zásadě shodné s výše zmíněnou technologií Binary cycle, která se v praxi nasazuje. V [4] je mezi inovativními Binary cycles prezentován dvoutlaký oběh s organickým médiem pro podkritické *GT* zdroje.

Obr. 14: Dvoutlaký systém Binary cycle [4]

Výhřevné plochy jsou řazeny sério-paralelně, viz Obr. 14. Takovým uspořádáním je v porovnání s jednotlakou variantou dosaženo menších teplotních rozdílů mezi topným a ohřívaným médiem a je předáno více tepla. Tím pádem je i přes nižší účinnost oběhu dosaženo vyšší výsledné utilizační účinnosti. Utilizační účinnost a účinnost oběhu byly pro jedno- a dvoutlaký systém pracující s isopentanem pro různé teploty zdrojového média porovnány v Tab. 1. [4]

Tab. 1	: Porovnání j	iednotlakých a	dvoutlakých i	řešení z pohledu	termické a	utilizační i	účinnosti [4]
--------	---------------	----------------	---------------	------------------	------------	--------------	---------------

Toplata (T mádia (°C)	Účinnost cy	klu (%)	Utilizační účinnost (%)		
Teplota 07 media (C)	1-tlak	2-tlak	1-tlak	2-tlak	
93	5,2	4,2	31,9	39,7	
149	9,8	8,8	44,6	51,5	
204	13,7	13,1	57,7	61,2	

Pro návrh vícetlaké technologie využívající zdroj poskytující médium s vyššími parametry, než výše uvedený systém, byla jako pracovní látka zvolena voda. Další odlišností je využití přehříváků.

Zapojení bilancované dále v kapitole 3 této práce vychází z koncepce třítlakého kotle na odpadní teplo (*HRSG*) navrženého pro spaliny o vstupní teplotě 600 °C. Paralelní řazení výhřevných ploch použité v [20] bylo zachováno, došlo však ke snížení počtu tlakových hladin, na kterých je pracovnímu médiu dodáváno teplo. Schéma zapojení třítlakého *HRSG* je na Obr. 15.

Obr. 15: Třítlaký HRSG navržený pro využití tepla spalin [20]

2 Shrnutí postupu výpočtu

V návrhové části (kapitola 3) jsou sledovány dvě varianty zapojení konverzní technologie pro indirektní využití *GT* média zadaných parametrů:

- Varianta A: Parní oběh s dodáváním tepla na dvou tlakových úrovních, přihřátím odseparované páry za vysokotlakým dílem turbíny a zavedením páry z nízkotlaké větve do nízkotlakého dílu turbíny, přičemž jsou teplosměnné plochy řazeny sérioparalelně (viz dále Obr. 16).
- Varianta B: Parní oběh odvozený od varianty A vynecháním nízkého tlaku, jehož schéma zapojení je na Obr. 20.

Varianta A byla zvolena, neboť poskytovala z řady výchozích uvažovaných variant zapojení nejvyšší (čistý) výkon. Varianta B proto, že oproti výše jmenované představuje značné zjednodušení systému, snížení počtu potřebných výměníků, resp. zmenšení velikosti teplosměnné plochy, přičemž logický pokles výkonu je relativně nízký.

Pro oba uvedené konverzní systémy byl sestaven detailní výpočtový model v prostředí MS Excel využívající knihoven látkových vlastností CoolProp. Řešené varianty byly optimalizovány z pohledu čistého výkonu.

V první fázi prací byly vstupní parametry shodné s hodnotami použitými v bakalářské práci autora [1], která řešila direktní využití *GT* média. Nově získaná data byla porovnána s daty z *BP* a s "direktní" variantou z jiného pracoviště prezentovanou ve studii [16] přepočtenou pro zajištění porovnatelnosti na shodný kondenzační tlak a čistý výkon.

Dále byl ověřen vliv nekondenzujících plynů na dosažitelný čistý výkon obou variant. Pro modelování směsi byl zvolen zjednodušený přístup, kdy směs byla modelována pouze jako dvousložková H₂O-CO₂. V *t-Q* diagramu byly porovnány křivky ochlazování *GT* média pro různé hmotnostní zlomky CO₂ ve směsi. Křivka pro vybranou koncentraci byla pro potřeby výpočtu tepelného schématu aproximována polynomem a byl vyhodnocen vliv *NCG* na dosažitelný čistý výkon obou variant a utilizační účinnost. V dalších úvahách byl použit opět zjednodušený přístup nahrazující *GT* médium vodou.

V druhé fázi prací byly upřesněny hodnoty některých vstupních parametrů. Za tím účelem proběhl návrh dílčích komponent. Pro hmotnostní tok *GT* média 10 kg/s byly navrženy *VT*, z čehož vyplynula jejich tlaková ztráta, která byla zohledněna ve výpočtu tepelného schématu a byl stanoven její vliv na dosažitelný čistý výkon. Na základě tohoto návrhu byla rovněž vybrána jednotlaká varianta B jako varianta pro další analýzu.

Za účelem zpřesnění hodnoty vnitřní účinnosti turbíny byl pro zvolenou variantu B proveden její základní návrh pro hmotnostní tok *GT* média 50 kg/s. K uvedenému dalšímu zvýšení hmotnostního toku bylo přistoupeno s cílem dosažení akceptovatelné geometrie lopatkové části turbíny (především s ohledem na nedostatečnou délku lopatek regulačního stupně při nižších hmotnostních tocích). Byla uvažována turbína s přetlakovými stupni. *HP* díl je vybaven regulačním stupněm s částečným ostřikem. Některé stupně v *LP* dílu byly navrženy jako stupně s nakroucenou lopatkou. Pro získané hodnoty vnitřních účinností jednotlivých dílů bylo tepelné schéma opět přepočteno.

Pro zvýšený hmotnostní tok *GT* média byl znovu proveden návrh *VT* vystupujících v zapojení jednotlakého systému.

Pro posouzení vlivu velikosti *PP* na hmotnost *VT* byl proveden jejich pevnostní výpočet. Byly identifikovány nevyhovující *VT* z pohledu nadměrného tlakového napětí v trubkách způsobeného rozdílnými teplotními dilatacemi trubek a pláště. Tyto *VT* byly pro potřeby této analýzy navrženy jako *VT* s U-trubkami. V rámci variantního porovnání byl sledován i vliv maximální uvažované délky trubek ve *VT*.

3 Návrhová část

Aby bylo možné porovnání jednotlivých koncepčních řešení, jsou výchozí vstupní parametry shodné s parametry uvažovanými při řešení bakalářské práce autora [1], ve které bylo uvažováno direktní využití geotermální tekutiny. Bylo však doplněno zásadní omezení – geotermální médium je možné použít pouze indirektně jako zdroj tepla.

Hodnoty některých vstupních parametrů byly následně upřesněny návrhovým výpočtem dílčích komponent. Pro zpřesněné hodnoty byl proveden přepočet modelů jednotlivých variant s cílem přiblížit se reálným podmínkám. Z návrhu vyplynulo rovněž několik omezujících podmínek, které byly následně v tepelných výpočtech zohledněny. Byl rovněž posouzen vliv velikosti *PP* a délky trubek ve *VT* na velikost teplosměnné plochy a dalších parametrů.

3.1 Přehled vstupních parametrů

Výchozí hodnoty vstupních parametrů jsou shrnuty v tabulce Tab. 2:

Parametr	Označení	Hodr	iota
Hmotnostní tok média na výstupu z produkčního vrtu	\dot{m}_{GT1}	1	kg/s
Teplota média na výstupu z produkčního vrtu	t_{GT1}	400	°C
Tlak média na výstupu z produkčního vrtu	p_{GT1}	25	MPa
Hmotnostní zlomek vody v geotermálním médiu	$W_{H20,GT1}$	1	1
Vnitřní účinnost turbín a čerpadel	η_i	0,8	1
Mechanická účinnost	η_M	0,99	1
Účinnost generátoru	η_G	0,96	1
Účinnost elektromotorů pro pohon čerpadel	η_{EM}	0,95	1
Účinnost frekvenčního měniče	η_{FM}	0,98	1
Maximální přípustná vlhkost média expandujícího v turbíně	y_{max}	0,12	1
Kondenzační teplota	t_k	40	°C
Podchlazení kondenzátu	Δt_{cond}	0	К
Minimální teplotní rozdíl ve VT (Pinch-Point)	PP	15	°C
Tlakové ztráty	Δp_i	0	Ра

Tab. 2: Výchozí vstupní parametry

3.2 Modely s uvažováním výchozích hodnot parametrů

3.2.1 Varianta A – dvoutlaký systém s přihříváním páry

3.2.1.1. Schéma a popis zapojení dané varianty

Schéma zapojení této varianty je na Obr. 16. Na něm jsou označeny důležité uzly a jednotlivé komponenty (tučným písmem).

Obr. 16: Schéma zapojení varianty A

Geotermální médium proudící produkčního vrtu (*PV*) je nejprve rozděleno do více větví a prochází paralelně řazeným vysokotlakým přehřívákem (*HP SH*), výstupní částí nízkotlakého přehříváku (*LP SH3*) a přihříváku (*RH2*). Následně celý hmotnostní tok *GT* média prochází vysokotlakým výparníkem (*HP EV*), za nímž je opět rozdělen a vstupuje do výstupní části vysokotlakého ekonomizéru (*HP EKO3*), střední části nízkotlakého přehříváku (*LP SH2*) a první části příhříváku (*RH1*). Další paralelně řazené plochy jsou již pouze dvě – prostřední část vysokotlakého ekonomizéru (*HP EKO2*) a první díl nízkotlakého přehříváku (*LP SH1*). Poté je hmotnostní tok topného média opět spojen a prochází nízkotlakým výparníkem (*LP EV*). Za ním jsou paralelně řazeny vstupní části vysokotlakého (*HP EKO1*) ekonomizéru a ekonomizér nízkotlaký (*LP EKO*). Posledním výměníkem, kterým *GT* médium prochází, je ekonomizér předřazený napájecí nádrži (*SPOL EKO*).

Pracovní médium ve vysokotlaké (*HP*) větvi je z *HP SH* vedeno do *HP* dílu turbíny, v němž expanduje. Část kapalné fáze je následně odloučena v separátoru (*SEP*) a po stlačení čerpadlem P_{SEP} je zavedena do *HP* větve. Zbývající část páry prochází dvoudílným přihřívákem a následně expanduje v *LP* dílu turbíny. Do tohoto dílu turbíny je rovněž zaústěna pára z *LP* větve.

Po výstupu z *LP* dílu turbíny pára kondenzuje v kondenzátoru (*COND*). Kondenzát je po stlačení kondenzátním čerpadlem (P_{COND}) odplyněn v napájecí nádrži (*NN*) topené parou z odběru *LP* dílu turbíny. Odběrová pára je na tlaku nižším než médium v *LP* větvi. Pracovní médium je za *NN* rozděleno do *LP* a *HP* větve a stlačeno na příslušné tlaky čerpadlem nízkotlakým (P_{LP}) a vysokotlakým (P_{HP}). Následně prochází sérií výměníků.

3.2.1.2. Modelování a parametry v tepelném schématu

Výše popsané tepelné schéma bylo řešeno v prostředí MS Excel s využitím knihoven látkových vlastností CoolProp. Byl sestaven model obsahující všechny níže popsané parametry a vazby mezi nimi. Byla provedena optimalizace z pohledu čistého výkonu s užitím doplňku Solver v rozsahu parametrů uvedeném níže.

Kromě vstupních parametrů, viz 3.1, vystupují v modelu optimalizované (nezávislé), volené a závislé parametry vyjádřené z bilančních rovnic a níže uvedených předpokladů.

Optimalizované parametry jsou shrnuty v Tab. 3 včetně rozsahů, v nichž optimalizace probíhala.

Parametr	Označení	Rozsah	
Hmotnostní tok média v HP větvi – na vstupu do turbíny	\dot{m}_{HP}	> 0	kg/s
Hmotnostní tok média v LP větvi – na vstupu do turbíny	\dot{m}_{LP}	> 0	kg/s
Tlak média v HP větvi – na vstupu do turbíny	p_{H6}	$p_{L6} \div 20$	MPa
Tlak média v LP větvi – na vstupu do turbíny	p_{L6}	$p_5 \div p_{H6}$	MPa
Tlak média při přihřivání – na vstupu do turbíny	p_{H9}	$p_{L6} \div p_{H6}$	MPa
Teplota na výstupu z <i>NN</i>	t_5	105 ÷ 160	°C
Vlhkost přihřívané páry na výstupu ze SEP	y_{H7V}	$0 \div y_{H7}$	1

Tab. 3: Přehled optimalizovaných parametrů s jejich rozsahy

V Tab. 4 je zobrazen přehled zvolených vstupních hodnot, které určují stavové veličiny v jednotlivých uzlech, viz (3.2.1.2.1) - (3.2.1.2.4).

Tab. 4: Přehled předpokladů

Parametr	Označení	Hodnota	
Ohřátí pracovního média v NN	Δt_{NN}	15	К
Minimální ohřátí pracovního média v LP EKO	$\Delta t_{LP \ EKO,min}$	15	К
Teplota na výstupu z <i>LP SH3, HP SH</i> a <i>RH2</i>	t_{L6}, t_{H6}, t_{H9}	$t_{GT1} - PP$	К
Vlhkost páry (kapaliny) odloučené v SEP	y_{H7L}	1	1

$t_4 = t_5 - \Delta t_{NN}$	(3.2.1.2.1)
+ 5 NN	(0.2.1.2.1)

$$t_{L2} \ge t_{L1} + \Delta t_{LP \ EKO,min} \tag{3.2.1.2.2}$$

$$t_2 = t_1 \tag{3.2.1.2.3}$$

$$t_{L6} = t_{H6} = t_{H9} = t_{GT1} - PP \tag{3.2.1.2.4}$$

Dále je předpokládána shodná teplota *GT* média na vstupu a výstupu z paralelně řazených výměníku tepla (*VT*). Tomu odpovídá rozdělení hmotnostního toku *GT* média do paralelních větví. Rovněž teplota ohřívaných médií na vstupu a výstupu z paralelních *VT* je shodná. Výjimkou jsou pouze teploty v uzlech za čerpadly (dáno rozdílnými tlaky na výtlaku) a teplota média ve vysokotlaké větvi po smísení (t_{H3M}) lišící se od odpovídající teploty v nízkotlaké větvi (t_{L4}). Tím jsou minimalizovány teplotní rozdíly a exergetická ztráta.

3.2.1.3. Hmotnostní a energetické bilance, výkon a účinnost Závislé parametry byly určeny z bilančních rovnic. Jelikož jsou tlakové úrovně v systému známé (optimalizované), stačí pro každý uzel určit jednu další nezávislou stavovou veličinu.

Pro paralelně řazené VT byla vždy sestavena souhrnná energetická bilance dle rovnice (3.2.1.3.1). Z té byla nejprve vyjádřena měrná entalpie GT média na výstupu a z ní i jeho teplota. Uvažované parametry na vstupu a výstupu z VT jsou znázorněny na Obr. 17, přičemž index "WF" označuje ohřívané pracovní médium na nízkém, nebo vysokém tlaku, případně tlaku přihřívacím.

Obr. 17: Rozložení parametrů ve VT

Následně byla provedena kontrola dodržení minimálního teplotního rozdílu mezi topným a ohřívaným médiem. Byly předpokládány protiproudé *VT*, a tedy probíhala kontrola podle rovnic (3.2.1.3.2) a (3.2.1.3.3). Teplotní rozdíly byly ověřeny ještě v *t*-*Q* diagramu. Uvažované parametry na vstupu a výstupu z *VT* jsou znázorněny na Obr. 17.

$$t_{GT,in} - t_{WF,out} \ge PP \tag{3.2.1.3.2}$$

$$t_{GT,out} - t_{WF,in} \ge PP \tag{3.2.1.3.3}$$

Obdobná energetická bilance byla sestavena i pro *NN*, ze které byl iterativním výpočtem určen potřebný hmotnostní tok odběrové páry. Její tlak je roven tlaku v *NN*. Na výstupu z *NN* je předpokládána sytá kapalina ($y_5 = 1$).

$$\dot{m}_{out} = \sum \dot{m}_{in} \tag{3.2.1.3.4}$$

Z energetických bilancí dle rovnice (3.2.1.3.1) jsou po doplnění hmotnostní bilance dle (3.2.1.3.4) určeny rovněž měrná entalpie v uzlech po smísení a to:

- Měrná entalpie proudu ve vysokotlaké větvi za *HP EKO2* po smísení se stlačenou kapalinou odloučenou v SEP (určení h_{H3M})
- Měrná entalpie média expandujícího v LP části turbíny po zavedení média z LP větve do turbíny (určení h_{H10M})

Hmotnostní tok kapalné fáze odloučené v SEP je určen s pomocí rovnice (3.2.1.3.5) a rovnice (3.2.1.3.6) vycházejících z rovnosti hmotnostních toků plynné fáze v parovodní směsi před a za SEP za předpokladu odloučení syté kapaliny ($y_{H7L} = 1$).

$$\dot{m}_{H7L} = \dot{m}_{H7} - \dot{m}_{H7V} \tag{3.2.1.3.5}$$

$$(1 - y_{H7V}) \cdot \dot{m}_{H7V} = (1 - y_{H7}) \cdot \dot{m}_{H7} \rightarrow \dot{m}_{H7V} = \frac{1 - y_{H7}}{1 - y_{H7V}} \dot{m}_{H7} \qquad (3.2.1.3.6)$$

Poslední zbývající neznámé stavy (1, 3, L1, H1, H7, H10 a H11) lze určit ze stavů na počátku expanze, resp. komprese při znalosti její účinnosti. Měrná entalpie ve stavech po expanzi, resp. kompresi je vyjádřena dle rovnice (3.2.1.3.7), resp. (3.2.1.3.8). Přičemž $h_{out,ad}$ označuje měrnou entalpii média ve stavu po izoentropické expanzi, resp. kompresi z výchozího stavu na shodný tlak.

$$h_{out} = h_{in} - (h_{in} - h_{out,ad}) \cdot \eta_i$$
 (3.2.1.3.7)

$$h_{out} = h_{in} + (h_{out,ad} - h_{in}) \cdot \frac{1}{\eta_i}$$
(3.2.1.3.8)

Měrná technická práce vykonaná médiem v části turbíny je pak definována pomocí měrné entalpie na jejím vstupu a výstupu dle (3.2.1.3.9). Pro měrnou práci čerpadla platí (3.2.1.3.10).

$$w_{t_i} = h_{in} - h_{out} \tag{3.2.1.3.9}$$

$$w_{tp_i} = h_{out} - h_{in} \tag{3.2.1.3.10}$$

Měrný svorkový výkon turbosoustrojí P_{sv} je pak určen dle (3.2.1.3.11), měrný příkon potřebný pro pohon uvažovaných čerpadel P_p dle (3.2.1.3.12). Jejich rozdíl pak určuje měrný čistý výkon P_{net} , viz rovnice (3.2.1.3.13). V dalších kapitolách této práce budou z důvodu dosažení reálných rozměrů výměníků tepla a parní turbíny uvažovány i vyšší hmotnostní toky *GT* média než jednotkový. Aby bylo možné dosažené svorkové výkony porovnávat, je v uvedených rovnicích uvažován součinitel k vyjadřující poměr v daném výpočtu uvažovaného a jednotkového hmotnostní toku *GT* média. Uvedené měrné výkony P_{sv} , P_p a P_{net} jsou tedy v celé práci (prostřednictvím k) vztahovány na jednotkový hmotnostní tok *GT* média.

$$P_{sv} = \frac{1}{k} \left(\sum \dot{m}_i \cdot w_{t_i} \right) \cdot \eta_M \cdot \eta_G \tag{3.2.1.3.11}$$

$$P_p = \frac{1}{k} \left(\sum \dot{m}_i \cdot w_{tp_i} \right) \cdot \frac{1}{\eta_{EM} \cdot \eta_{FM}}$$
(3.2.1.3.12)

$$P_{net} = P_{sv} - P_p \tag{3.2.1.3.13}$$

Z vlastní spotřeby bilancované elektrárny byl v této práci uvažován pouze příkon potřebný pro pohon čerpadel vyznačených na schématu zapojení (Obr. 16). Příkon potřebný pro provoz podpůrných systémů (chladící okruh, …) nebyl předmětem hlubších analýz. V důsledku tohoto zjednodušení byl měrný čistý výkon P_{net} určen dle rovnice uvedené výše.

Utilizační (exergetická) účinnost elektrárny je dle [4] určena pomocí rovnice (3.2.1.3.14) za předpokladu, že $T_0 = 20$ °C, $h_0 = h(T_0; 0, 1 MPa)$ a $s_0 = s(T_0; 0, 1 MPa)$.

$$\eta_{ut} = \frac{P_{net}}{\dot{m}_{GT1} \cdot (h_{GT1} - h_0 - T_0 \cdot (s_{GT1} - s_0))}$$
(3.2.1.3.14)

3.2.1.4. Výsledky optimalizace

Po provedení optimalizace byl nejvyšší čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v tabulce Tab. 5.

Uzel	t (°C)	p (MPa)	h (kJ/kg)	s (kJ/kg⋅K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2578,6	5,14		1,000
GT2	387,8	25,000	2322,9	4,76		1,000
GT3	354,8	25,000	1658,4	3,74		1,000
GT4	200,4	25,000	864,3	2,30		1,000
GT5	160,4	25,000	692,0	1,92		1,000
GT6	135,0	25,000	584,3	1,66		1,000
GT7	126,5	25,000	548,6	1,57		1,000
GT8	95,0	25,000	417,3	1,23		1,000
1	40,0	0,007	2478,3	7,95	0,960	0,627
2	40,0	0,007	167,5	0,57	0,000	0,627
3	40,0	0,121	167,7	0,57		0,627
4	90,0	0,121	377,1	1,19		0,627
5	105,0	0,121	440,3	1,36	0,000	0,644
L1	105,0	0,199	440,4	1,36		0,049
L2	120,0	0,199	503,8	1,53	0,000	0,049
L3	120,0	0,199	2705,9	7,13	1,000	0,049
L4	185,2	0,199	2840,9	7,45		0,049
L5	339,8	0,199	3153,1	8,03		0,049
L6	385,0	0,199	3246,0	8,18		0,049
H1	106,9	14,563	459,1	1,37		0,595
H2	120,0	14,563	514,0	1,52		0,595
НЗ	185,2	14,563	792,6	2,17		0,595
НЗМ	185,4	14,563	793,6	2,17		0,645
H4	339,8	14,563	1593,1	3,66	0,000	0,645
H5	339,8	14,563	2622,9	5,34	1,000	0,645
Н6	385,0	14,563	2923,1	5,81		0,645
H7	185,2	1,128	2542,1	6,02	0,880	0,645
H7V	185,2	1,128	2691,8	6,35	0,955	0,595
H7L	185,2	1,128	785,9	2,19	0,000	0,051
H7P	188,0	14,563	804,9	2,20		0,051
H8	339,8	1,128	3133,8	7,21		0,595
Н9	385,0	1,128	3230,4	7,36		0,595
H10	208,5	0,199	2887,9	7,55		0,595
H10M	222,1	0,199	2915,1	7,60		0,644
H11	177,7	0,121	2830,2	7,65		0,017

Tab. 5: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu se svorkovým a čistým výkonem lze nalézt v Tab. 6.

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	mˈ;(kg/s)	P _i (kW)
HP díl turbíny	H6→H7	381,0	0,645	245,9
	H9→H10	342,5	0,595	203,6
<i>LP</i> díl turbíny	H10M→H11	84,9	0,644	54,7
	H11→1	351,9	0,627	220,6
			Σ	724,8
			P _{sv}	688,8
P _{COND}	2→3	0,1	0,627	0,1
P _{LP}	5→L1	0,1	0,049	0,005
P _{HP}	5→H1	18,8	0,595	11,2
P _{SEP}	H7L→H7P	19,0	0,051	1,0
			Σ	12,3
			P_{p}	13,2
			P _{net}	675,7

Tab. 6: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Expanzní čára byla zakreslena do h-s diagramu, viz Obr. 18.

Obr. 18: Expanzní čára pro HP i LP díl turbíny

Na Obr. 19 je do *t-Q* diagramu zakresleno ochlazování *GT* tekutiny. Teplotní profily paralelně ohřívaných médií na různých tlakových úrovních často splývají. V takovém případě je plnou čarou znázorněn profil *HP* média a profily médií v *LP* větvi a v přihřívácích jsou méně patrné, neboť jsou zakresleny přerušovanými čarami. Předané teplo v diagramu je vnímáno z pohledu *GT* média, proto není *NN* v diagramu zobrazena. V diagramu by se nacházela v místě nespojitosti křivky ohřívaného média.

Obr. 19: t-Q diagram ochlazování GT média

Minimální teplotní rozdíl (*PP*) je v případě tohoto zapojení dosažen na čtyřech místech současně. Jednotkový průtok *GT* média předává tepelnému oběhu 2161 kW a je dochlazen na teplotu 95 °C.

Vlivem prohnutí zdrojové křivky ($c_p \neq konst.$) v okolí kritické teploty je průtok *HP* větví dominantní (cca 13x větší) oproti průtoku *LP* větví. S výhodou je v této části umístěn *HP EV* a teplotní rozdíly jsou velmi malé. V případě zdojové tekutiny s $c_p = konst.$ by hmotnostní toky v obou větvích byly srovnatelnější a teplotní rozdíly by vzrostly, což by mělo negativní vliv na utilizační účinnost.

Čistý výkon 675,7 kW představuje utilizační účinnost 62,9 %.

3.2.1.5. Závislost výkonu na množství odloučené kapaliny v SEP Jedním z optimalizovaných parametrů je i vlhkost páry na vstupu do přihříváku (y_{H7V}). Kromě dvou limitních stavů, které představuje jednak nepřítomnost separátoru ($y_{H7V} = y_{H7}$) a jednak separátor se 100% účinností separace ($y_{H7V} = 0$), jsou vyšetřovány i hodnoty vlhkosti mezi těmito krajními případy. S rostoucím množstvím odseparované kapaliny sice klesá množství tepla potřebné pro přehřátí páry na danou teplotu, klesá však i hmotnostní tok *LP* dílem turbíny. Pro dané vstupní parametry vychází optimální vlhkost na výstupu ze separátoru $y_{H7V} = 0,045$, což představuje účinnost separátoru necelých 66 %.

V Tab. 7 jsou porovnány tři zmiňované případy. V případě nepřítomnosti *SEP* v zapojení klesne dosažený čistý výkon přibližně o 1,52 % oproti optimu, v případě uvažování *SEP* se 100% účinností separace je pokles cca o 0,89 %.

Varianta	100% účinnost SEP	Optimální y _{H7V}	Bez SEP
у _{н7V} (1)	0,000	0,045	0,106
<i>m_{H7V}</i> (kg/s)	0,568	0,595	0,602
<i>q_{н7V-н9}</i> (kJ/kg)	448,7	538,6	655,3
P _{net} (kW)	669,6	675,7	665,4
ΔP_{net} (%)	-0,89	_	-1,52

Tah	7· \//i/	Vlhkosti	náry z	a conarátorom	na	čistý výkon
I a D.	7. VIIV	VIIIKUSU	pary z	a separatorem	Пa	CISLY VYKOII

3.2.2 Varianta B – jednotlaký systém s přihříváním páry

3.2.2.1. Schéma a popis zapojení dané varianty

Schéma zapojení této varianty je na Obr. 20. Na něm jsou označeny důležité uzly a jednotlivé komponenty (tučným písmem).

Obr. 20: Schéma zapojení varianty B

Schéma zapojení je analogické se zapojením varianty A. Výměníky jsou řazeny rovněž sério-paralelně. Je však vypuštěna nízkotlaká větev, čímž je celý systém zjednodušen.

3.2.2.2. Modelování a parametry v tepelném schématu

Proces tvorby modelu i následné optimalizace byl stejný jako v případě varianty A.

Optimalizované parametry jsou shrnuty v Tab. 8.

Parametr	Označení	Rozsah	
Hmotnostní tok média na vstupu do HP dílu turbíny	\dot{m}_{10}	> 0	kg/s
Tlak média na vstupu do <i>HP</i> dílu turbíny	p_{10}	$p_{13} \div 20$	MPa
Tlak média při přihřivání – na vstupu do LP dílu turbíny	p_{13}	$p_{14} \div p_{10}$	MPa
Teplota média na výstupu z <i>NN</i>	t_5	105 ÷ 160	°C
Vlhkost přihřívané páry na výstupu ze SEP	<i>y</i> _{11<i>V</i>}	$0 \div y_{11}$	1

Tab. 8: Přehled optimalizovaných parametrů s rozsahy

Některé parametry (viz Tab. 9) byly voleny. Z nich vyplývají stavové veličiny v tepelném schématu analogicky s variantou A.

Parametr	Označení	Hodnota
Ohřátí pracovního média v NN	Δt_{NN}	15 K
Teplota na výstupu z <i>LP SH3, HP SH</i> a <i>RH2</i>	t_{10}, t_{13}	$t_{GT1} - PP \mid K$
Vlhkost páry (kapaliny) odloučené v SEP	y_{11L}	1 1

Tab. 9: Volené parametry ve variantě B

Platí i rovnost teplot před a za paralelními VT zmíněná v kapitole 3.2.1.2.

3.2.2.3. Hmotnostní a energetické bilance, výkon a účinnost Princip určování závislých parametrů i definice měrných prací, výkonů a účinností odpovídá popisu v kapitole 3.2.1.3. Energetické bilance se zjednodušily, neboť se snížil počet paralelní *VT*.

3.2.2.4. Výsledky optimalizace

Po provedení optimalizace byl nejvyšší čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v Tab. 10.

Tab. 10: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Uzel	t (°C)	р (MPa)	h (kJ/kg)	s (kJ/kg·K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2578,6	5,14		1,000
GT2	387,5	25,000	2310,7	4,74		1,000
GT3	342,3	25,000	1572,1	3,60		1,000
GT4	161,1	25,000	694,8	1,93		1,000
GT5	137,6	25,000	595,4	1,69		1,000
GT6	108,4	25,000	473,1	1,38		1,000
1	53,1	0,007	2598,7	8,33		0,584
2	40,0	0,007	167,5	0,57	0,000	0,584
3	40,0	0,121	167,7	0,57		0,584
4	90,0	0,121	377,1	1,19		0,584
5	105,0	0,121	440,3	1,36	0,000	0,598
6	106,7	12,413	456,3	1,37		0,598
7	146,0	12,413	622,6	1,79		0,598
7M	146,1	12,413	623,0	1,79		0,632
8	327,3	12,413	1508,1	3,52	0,000	0,632
9	327,3	12,413	2676,3	5,47	1,000	0,632
10	385,0	12,413	2986,8	5,97		0,632
11	146,0	0,427	2485,9	6,26	0,880	0,632
11V	146,0	0,427	2591,7	6,52	0,930	0,598
11L	146,0	0,427	615,0	1,80	0,000	0,034
11P	148,0	12,413	631,2	1,81		0,034
12	327,3	0,427	3122,6	7,63		0,598
13	385,0	0,427	3242,2	7,82		0,598
14	251,7	0,121	2977,3	7,95		0,015

Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu se svorkovým a čistým výkonem lze nalézt v Tab. 11.

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	<i>m</i> i(kg/s)	P _i (kW)
HP díl turbíny	10→11	500,9	0,632	316,7
1D díl turbíov	13→14	264,9	0,598	158,5
	14→1	378,6	0,584	221,1
			Σ	696,3
			P _{sv}	661,8
P _{COND}	2→3	0,1	0,584	0,1
P _{FW}	5→6	16,1	0,598	9,6
P _{SEP}	11L→11P	16,2	0,034	0,5
			Σ	10,2
			Pp	11,0
			P _{net}	650,8

Tab. 11: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Expanzní čára byla zakreslena do *h-s* diagramu, viz Obr. 21.

Obr. 21: Expanzní čára pro HP i LP díl turbíny

Do *t-Q* diagramu bylo zakresleno ochlazování *GT* média, viz Obr. 22. V oblasti, kde se překrývají křivky přihřívání a přehřívání pracovní látky, je přihřívání zakresleno přerušovanou čarou. *NN* do diagramu není zakreslena. Minimální teplotní rozdíl je dosažen na třech místech. Jednotkový průtok *GT* média předává pracovnímu médiu 2105,6 kW a je dochlazen na teplotu 108,4 °C.

Obr. 22: t-Q diagram ochlazování GT média

Čistý výkon 650,8 kW představuje utilizační účinnost 60,5 %.

3.2.2.5. Závislost výkonu na množství odloučené kapaliny v SEP Situace je obdobná jako u varianty A a i v tomto případě má na dosažený čistý výkon vliv vlhkost páry za separátorem. Porovnání tří variant popsaných v kapitole 3.2.1.5 je provedeno v Tab. 12. Maximálního výkonu bylo dosaženo při $y_{11V} = 0,07$, což představuje 44,5% účinnost separátoru. V případě nepřítomnosti SEP v zapojení klesne čistý výkon přibližně o 3,41 % oproti optimu, v případě uvažování SEP se 100% účinností separace je pokles cca 1,50%.

Varianta	100% účinnost SEP	Optimální y _{11v}	Bez SEP
$y_{11V}(1)$	0,000	0,070	0,119
<i>m</i> _{11V} (kg/s)	0,559	0,598	0,604
q _{11V-13} (kJ/kg)	500,7	650,4	752,4
P _{net} (kW)	628,6	650,8	641,0
ΔP_{net} (%)	-3,41	_	-1,50

Tab. 12: Vliv vlhkosti páry za separátorem na čistý výkon

3.2.3 Porovnání variant s direktním a indirektním využitím *GT* tekutiny Výše uvedené varianty A a B jsou porovnány s variantami navrženými v bakalářské práci autora [1] využívající *GT* médium direktně a s koncepcí "Triple-expansion" (*MIT 3E*) zmíněnou v kapitole 1.4 aplikovanou na shodné parametry zdroje. Pro účely porovnání byly hodnoty z [16] přepočítány na stejný kondenzační tlak. Získaná hodnota výkonu byla ještě korigována na čistý výkon systému.

Pro přehlednost je na Obr. 23 zobrazeno schéma zapojení technologie navržené v rámci bakalářské práce [1] využívající separátor (*BP SEP*). Druhé porovnávané zapojení (*BP bez SEP*) převzaté z [1] se od něj liší pouze vynecháním separátoru (na Obr. 23 označen *S*).

Obr. 23: Schéma zapojení z BP využívající separátor [1]

Měrné čisté výkony jednotlivých variant spolu s utilizační účinností a maximální vlhkostí páry expandující v turbíně jsou porovnány v Tab. 13. Zároveň je v dané tabulce uveden relativní pokles čistého výkonu (ΔP_{net}) oproti variantě s jeho nejvyšší hodnotou (*BP SEP*).

	r				
Varianta	Direktní			Indirektní	
Varianta	<i>MIT 3E</i> [16]	BP bez SEP [1]	BP SEP [1]	Var A – 2-tlak	Var B – 1-tlak
$y_{max}(1)$	0,302	0,120	0,120	0,120	0,120
P_{net} (kW)	722,1	722,6	731,4	675,7	650,8
ΔP_{net} (%)	-1,27	-1,20	_	-7,62	-11,03
n _{ut} (%)	67.2%	67.2%	68.1%	62.9%	60.5%

	Tab.	13:	Porovn	ání jed	notlivých	variant
--	------	-----	--------	---------	-----------	---------

Z těchto hodnot je patrný pokles utilizační účinnosti spojený s nevratnostmi při sdílení tepla při indirektivním využití *GT* tekutiny. Čistý výkon dvoutlaké varianty oproti variantě *BP SEP* poklesl přibližně o 7,6 %, v případě jednotlaké varianty je pak pokles 11%. Zároveň lze na uvedených hodnotách ilustrovat zmiňovaný nedostatek technologie "Triple-expansion" – vysoká hodnota vlhkosti emisní páry dosahující cca 30 %.

3.3 Ověření vlivu nekondenzujících plynů na měrný výkon variant Reálná geotermální média obsahují příměsi. Z pohledu jejich energetického obsahu hraje největší roli podíl nekondenzujících plynů (*NCG*). Pro potřeby modelování systému byl zvolen zjednodušený přístup a obsah *NCG* nahrazen obsahem CO₂, který obvykle tvoří největší část *NCG*. Pro jednu z křivek ohlazování zdrojového média zobrazených v *t-Q* diagramu byla pro oba uvažované systémy provedena optimalizace měrného čistého výkonu.

3.3.1 Vstupní data pro řešení tepelného schématu Látkové vlastnosti směsi vody s CO₂ byly získány pomocí knihoven látkových vlastností REFPROP version 10.0. V *t*-*Q* diagramu byly vytvořeny křivky izobarického ochlazování jednotkového průtoku média z teploty 400 °C při tlaku 25 MPa. Bylo vytvořeno více křivek pro směsi H₂O-CO₂ s hmotnostním zlomkem CO₂ v intervalu **(0; 20)** *wt*%.

Zmíněný t-Q diagram je na Obr. 24.

Obr. 24: t-Q diagram ochlazování směsi vody s různým obsahem CO₂

Posouzení vlivu obsahu CO₂ na výkon systému byl proveden pro $w_{CO_2} = 10 \text{ wt\%}$. Příslušná křivka byla proložena polynomem šestého stupně, čímž byla získána závislost (poklesu) teploty (°C) na předaném tepelném toku (kW), viz rovnice (3.3.1.1), přičemž konkrétní hodnoty koeficientů jsou uvedeny v Tab. 14.

$$t = \sum_{i=0}^{6} a_i \cdot 10^{e_i} \cdot Q^i \tag{3.3.1.1}$$

i	ai	ei
6	-3,89208	-18
5	-8,89340	-15
4	1,62760	-10
3	-4,49113	-7
2	3,90330	-4
1	-1,61671	-1
0	4,00000	2

Tab. 14: Koeficienty vystupujici v rovnic	Tab.	14: Koeficienty	vystupující v	rovnici
---	------	-----------------	---------------	---------

3.3.2 Tepelný výpočet

Schéma zapojení i postup řešení tepelného schématu je v případě jedno- i dvoutlaké varianty shodný s kapitolou 3.2.1, resp. 3.2.2. Rozdílná je pouze vazba mezi měrnou entalpií *GT* média, získanou z bilanční rovnice, a jeho teplotou. Teplota v tomto případě nebyla získána z knihoven látkových vlastností CoolProp, ale s pomocí rovnice (3.3.1.1).

3.3.3 Varianta A – výsledky optimalizace

Po provedení optimalizace byl nejvyšší čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v Tab. 15.

Tab. 15: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Uzel	t (°C)	р (MPa)	h (kJ/kg)	s (kJ/kg⋅K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2498,6			1,000
GT2	377,3	25,000	2240,4			1,000
GT3	337,8	25,000	1558,5			1,000
GT4	196,9	25,000	846,1			1,000
GT5	164,8	25,000	708,2			1,000
GT6	135,0	25,000	580,5			1,000
GT7	126,6	25,000	545,1			1,000
GT8	96,0	25,000	418,5			1,000
1	40,0	0,007	2509,6	8,05	0,973	0,605
2	40,0	0,007	167,5	0,57	0,000	0,605
3	40,0	0,121	167,7	0,57		0,605
4	90,0	0,121	377,1	1,19		0,605
5	105,0	0,121	440,3	1,36	0,000	0,620
L1	105,0	0,199	440,4	1,36		0,058
L2	120,0	0,199	503,8	1,53	0,000	0,058
L3	120,0	0,199	2705,9	7,13	1,000	0,058
L4	174,7	0,199	2819,6	7,40		0,058
L5	322,8	0,199	3118,4	7,98		0,058
L6	385,0	0,199	3246,0	8,18		0,058
H1	106,6	11,710	455,4	1,37		0,562
H2	120,0	11,710	511,9	1,52		0,562
НЗ	174,7	11,710	745,4	2,07		0,562
НЗМ	174,7	11,710	745,4	2,07		0,562
H4	322,8	11,710	1479,7	3,48	0,000	0,562
H5	322,8	11,710	2691,7	5,51	1,000	0,562
H6	385,0	11,710	3006,0	6,02		0,562
H7	174,7	0,886	2600,4	6,24	0,915	0,562
H7V	174,7	0,886	2600,4	6,24	0,915	0,562
H7L	174,7	0,886	739,6	2,09	0,000	0,000
H7P	176,8	11,710	754,7	2,09		0,000
H8	322,8	0,886	3103,0	7,27		0,562
Н9	385,0	0,886	3234,5	7,48		0,562
H10	229,8	0,199	2930,8	7,63	1,000	0,562
H10M	244,5	0,199	2960,2	7,69	1,000	0,620
H11	198,4	0,121	2871,3	7,74		0,016
Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu se svorkovým a čistým výkonem lze naleznout v Tab. 16.

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	<i>mi</i> (kg/s)	P_i (kW)
HP díl turbíny	H6→H7	405,6	0,562	228,1
	H9→H10	303,7	0,562	170,8
LP díl turbíny	H10M→H11	89,0	0,620	55,2
	H11→1	361,6	0,605	218,6
	Σ	672,7		
			P _{sv}	639,3
P _{COND}	2→3	0,1	0,605	0,1
P_{LP}	5→L1	0,1	0,058	0,01
P _{HP}	5→H1	15,1	0,562	8,5
P _{SEP}	H7L→H7P	15,1	0,000	0,0
			Σ	8,6
			Pp	9,2
			P _{net}	630,1

Tab. 16: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Expanzní čára byla zakreslena do *h-s* diagramu, viz Obr. 25.

Na Obr. 26 je do *t-Q* diagramu zakresleno ochlazování *GT* tekutiny. Plnou čarou je opět znázorněn profil *HP* média. Profily médií v *LP* větvi a v přihřívácích jsou méně patrné, neboť jsou zakresleny přerušovanými čarami. *NN* v diagramu nebyla zobrazena.

Obr. 26: t-Q diagram ochlazování GT média

Minimální teplotní rozdíl (*PP*) je pro výše zmíněné parametry dosažen na třech místech současně – na teplém konci *HP SH*, na studeném konci *HP EV* a na studeném konci *LP EV*. Jednotkový průtok *GT* média přivádí do tepelného oběhu 2080 kW a je dochlazen na teplotu 96 °C.

Hmotnostní průtok nízkotlakou větví je v tomto případě vyšší než v kapitole 3.2.1. To souvisí se strmějším poklesem zdrojové křivky v *t-Q* diagramu v oblasti vysokých teplot, než v případě ochlazování vody bez příměsi CO₂. Teplotní rozdíly ve *VT* rovněž narostly. Klesl naopak optimální tlak média v *HP* větvi i tlak při přihřívání. Čistý výkon systému klesl na 630,1 kW. To představuje 6,75% pokles oproti dvoutlaké variantě využívající jako zdroj vodu. Utilizační účinnost klesla na 60,4 %. Její pokles je však nižší než pokles výkonu, neboť měrná exergie modelované směsi na vstupu do technologie je nižší než měrná exergie vody v příslušném stavu.

V tomto případě se jeví jako optimální vynechání *SEP* ze zapojení technologie. Při zařazení *SEP* se 100% účinností separace klesne maximální čistý výkon na 621,9 kW.

3.3.4 Varianta B – výsledky optimalizace

Po provedení optimalizace byl nejvyšší čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v Tab. 17.

Uzel	t (°C)	р (MPa)	h (kJ/kg)	s (kJ/kg⋅K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2498,6			1,000
GT2	376,9	25,000	2230,8			1,000
GT3	328,3	25,000	1489,9			1,000
GT4	137,6	25,000	592,1			1,000
GT5	131,3	25,000	565,1			1,000
GT6	103,3	25,000	448,4			1,000
1	105,5	0,007	2698,3	8,62	1,000	0,558
2	40,0	0,007	167,5	0,57	0,000	0,558
3	40,0	0,121	167,7	0,57		0,558
4	90,0	0,121	377,1	1,19		0,558
5	105,0	0,121	440,3	1,36	0,000	0,571
6	106,4	10,313	453,6	1,37		0,571
7	117,5	10,313	500,5	1,49		0,571
7M	117,5	10,313	500,5	1,49		0,571
8	313,3	10,313	1421,5	3,38	0,000	0,571
9	313,3	10,313	2719,7	5,60	1,000	0,571
10	385,0	10,313	3042,0	6,12		0,571
11	117,5	0,184	2446,3	6,50	0,884	0,571
11V	117,5	0,184	2446,3	6,50	0,884	0,571
11L	117,5	0,184	493,3	1,50	0,000	0,000
11P	119,0	10,313	506,7	1,51		0,000
12	313,3	0,184	3099,4	7,98		0,571
13	385,0	0,184	3246,2	8,22		0,571
14	337,3	0,121	3149,6	8,26		0,013

Tab. 17: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu se svorkovým a čistým výkonem lze nalézt v Tab. 18.

Tab. 18: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	mi _i (kg/s)	P_i (kW)
HP díl turbíny	10→11	597,8	0,571	341,2
	13→14	92,4	0,571	52,7
	14→1	453,3	0,558	252,8
	Σ	646,7		
			P _{sv}	614,7
P _{COND}	2→3	0,1	0,558	0,1
P _{FW}	5→6	13,3	0,571	7,6
P _{SEP}	11L→11P	13,3	0,000	0,0
			Σ	7,7
			P_{p}	8,2
			P _{net}	606,4

Expanzní čára byla zakreslena do *h-s* diagramu, viz Obr. 27.

Do *t-Q* diagramu bylo zakresleno ochlazování *GT* média, viz Obr. 28. V oblastech překrytí jednotlivých profilů je zachována logika vykreslování uvedená výše.

Obr. 28: t-Q diagram ochlazování GT média

Minimální teplotní rozdíl je dosažen na dvou místech – na teplém konci přehříváku a na studeném konci výparníku. Jednotkový průtok *GT* média předává pracovnímu médiu 2051 kW a je dochlazen na teplotu 103 °C.

Oproti variantě uvažující jako zdrojové médium vodu bez příměsi CO₂ klesl optimální admisní tlak i tlak přihřívací. Čistý výkon systému klesl na 606,4 kW. To představuje 6,81% pokles v porovnání se zmíněnou variantou. Utilizační účinnost klesla na 58,2 %.

l v tomto případě se jeví jako optimální vynechání *SEP* ze zapojení technologie. Při zařazení *SEP* se 100% účinností separace klesne maximální čistý výkon dokonce na 581,8 kW.

3.3.5 Souhrnné porovnání variant

V Tab. 19 jsou z pohledu čistého výkonu souhrnně srovnány jednak shodné varianty pro různá složení zdrojového média (ΔP_{net1}) a jednak jednotlivé varianty pro shodné složení zdrojového média (ΔP_{net2}).

Složoní CT módia	P _{net} (
Siozenii ur media	2-tlak	1-tlak	ΔP_{net2} (%)
$w_{CO2} = 0,0$	675,7	650,8	-3,69
$w_{CO2} = 0,1$	630,1	606,4	-3,76
ΔP_{net1} (%)	-6,75	-6,82	

Tab. 19: Porovnání dosažitelného čistého výkonu jednotlivých variant

Ze získaných hodnot je patrné, že větší vliv na výkon má složení *GT* tekutiny v případě jednotlaké varianty, vliv na systém dvoutlaký je však srovnatelný – pokles dosažitelného čistého výkonu je na úrovni 7 %.

Nárůst výkonu při volbě dvoutlakého řešení je při rostoucím hmotnostním zlomku CO₂ oproti jednotlaké variantě vyšší, opět však řádově srovnatelný.

V Tab. 20 jsou dané varianty porovnány z pohledu utilizační účinnosti.

Tab. 20: Porovnání utilizačních účinností jednotlivých variant

	η_{ut} (%)		
Slozeni G7 media	2-tlak	1-tlak	
$w_{CO2} = 0 wt\%$	62,9	60,5	
$w_{CO2} = 10 wt\%$	60,4	58,2	

S rostoucím hmotnostním zlomkem klesá utilizační účinnost obou zkoumaných systémů. V případě dvoutlaké varianty se (při porovnání utilizační účinnosti pro $w_{co2} = 0 wt\%$ a $w_{co} = 10 wt\%$) jedná o pokles o 2,5 procentních bodů, v případě jednotlaké varianty jde o pokles o 2,3 procentních bodů.

Ve zbývající části práce byl znovu použit zjednodušený přístup a *GT* médium bylo modelováno jako voda.

3.4 Určení velikosti tlakové ztráty a jejího vlivu na dosažitelný čistý výkon Pro účely úvodního porovnání direktních a indirektních variant využití *GT* média (viz kapitola 3.2.3) byly tlakové ztráty zanedbány. Následným krokem bylo určení jejich velikosti a vlivu na dosažitelný měrný čistý výkon systémů. Byly uvažovány pouze tlakové ztráty výměníků tepla geotermální médium-pracovní médium, tlakové ztráty potrubí, armatur a *SEP* nebyly pro zjednodušení uvažovány. Pro určení tlaková ztráty *VT* byl proveden jejich návrh. Z tepelných schémat jsou známy všechny teploty na vstupech a výstupech z *VT* spolu se všemi hmotnostními toky a tlakovými hladinami jednotlivých médií. Z těchto dat vycházel návrh *VT*. Při návrhu byly některé tlakové úrovně upraveny viz dále. To se promítlo i do tepelných schémat a výsledků optimalizace čistého výkonu.

3.4.1 Návrh výměníků tepla

Použitým typem VT je plášťový trubkový (Shell and tube) VT. Zdroj [4] prezentuje případové studie vybraných elektráren. U některých podkritických binárních elektráren uvádí i typy použitých výměníků. Zvolený typ VT je nasazen například v elektrárnách Miravalles 5 (Kostarika), Heber 2 (USA) nebo Magmamax (USA). Návrh byl proveden pro průtok *GT* média 10 kg/s. Při uvažování jednotkového průtoku by byly složitě řešitelné zejména VT v *LP* větvi. Hmotnostní tok v jednotlivých uzlech tepelného schématu jsou tedy pro účely návrhu VT násobeny součinitelem $k_{VT} = 10$. Následná optimalizace z pohledu čistého výkonu však byla pro umožnění porovnání řešena pro jednotkový hmotnostní tok *GT* média \rightarrow byl určen dosažitelný měrný čistý výkon.

Přestože se složení *GT* tekutin navzájem značně liší a je stále předmětem výzkumu, mezi časté příměsi kromě *NCG* patří i soli, které mohou ve *VT* na teplosměnných plochách tvořit nánosy. Tyto nánosy představují vřazený tepelný odpor a snižují tepelný výkon *VT*. Z toho důvodu byla volena co možná nejjednodušší geometrie navrhovaných *VT* s dobrou čistitelností a *GT* médium bylo umístěno do trubek, což přispívá i příznivějšímu namáhání trubek vnitřním přetlakem. V opačném případě by byly trubky namáhány vnějším přetlakem a plášť větším vnitřním přetlakem. Byla předpokládána modulární koncepce *VT*, kdy výměníky stejného typu na stejném tlaku mají shodnou geometrii a jsou zaměnitelné. Pokud by navíc realizace obsahovala více "sad" výměníků, bylo by možné některé regenerovat (čistit) bez nutnosti odstávky zařízení a provoz by mohl být flexibilní.

V tepelném schématu jsou uvažovány protiproudé VT. S ohledem na malé teplotní spády vyplývající z t-Q diagramu a hledisko popsané výše byla zvolena koncepce protiproudého 1-1 výměníku tepla. Takové uspořádání může být použito ve fosilních elektrárnách pro převod tepla z přehřáté páry do přihřáté páry (tzv. *Biflux*). Trubky byly uspořádány do trojúhelníku.

Této koncepci se vymykají pouze výparníky. Ty jsou řešeny jako horizontální parogenerátory, přičemž *GT* médium je rovněž umístěno v trubkách. Trubky jsou zaplaveny pracovním médiem a nezaplňují celý prostor pláště – jsou umístěny v dolní části pláště viz schéma v kapitole 3.4.3. Ve volném prostoru nad hladinou vroucího pracovního média bylo uvažováno umístění děrovaného stropního štítu separujícího z vyráběné páry kapalnou fázi. V tomto případě byly zvoleny U-trubky pro zvýšení objemu vroucího pracovního média v mezitrubkovém prostoru. Protiproudost tím ale není narušena, jelikož v mezitrubkovém prostoru dochází k varu média při konstantní teplotě.

Byla navržena dvě uspořádání vestaveb VT: protiproudé VT bez přepážek a také VT s uvažováním příčných jednosegmentových přepážek. Na příkladu SPOL EKO jsou v Tab. 21 obě koncepce porovnány. Při použití přepážek je v plášti intenzifikován přestup

tepla, součinitel přestupu tepla je vyšší téměř o 64 %. Z toho vyplývá i vyšší součinitel prostupu tepla přibližně o 43 %. Tlaková ztráta však narůstá na osminásobek. Z toho důvodu byla vybrána koncepce bez přepážek, přičemž postup jejího návrhu je popsán v dalších kapitolách. Návrh *VT* s přepážkami probíhal podle [21].

Varianta	Bez přepážek	Přepážky	Rozdíl (%)
α_{shell} (W/m ² K)	3061,1	5020,1	64,0
k (W/m ² K)	1559,2	2232,9	43,2
Δp_{shell} (kPa)	3,4	27,1	700,3

Tab. 21: Porovnání VT s přepážkami a bez nich

Nejprve byla navržena geometrie VT. Z ní byla po určení součinitele prostupu tepla vyjádřena velikost teplosměnné plochy a potřebná délka trubek.

Vnější průměr trubek byl vybrán 25 mm z nabídky [22]. Minimální tloušťka stěny byla určena podle EN 13445 [23] (rovnice (3.4.1.1)). Tato rovnice byla použita pro výpočet minimální tloušťky stěny všech válcových součástí zatížených vnitřním přetlakem. V případě trubek byla skutečná tloušťka jejich stěny následně vybrána z řady rozměrů nabízených [22] s uvažováním korozního přídavku 1 mm.

$$s_0 = \frac{p_{v\circ p} \cdot D_i}{2\sigma_D \cdot \varphi - p_{v\circ p}}$$
(3.4.1.1)

V celém návrhu byly uvažovány hodnoty z Tab. 22.

Předběžný počet trubek byl určen podle rovnice (3.4.1.2). Předběžná rychlost *GT* média byla pod kritickou teplotou volena 1 m/s, pro nadkritické teploty vyšší.

$$n_{tube,p\check{r}edb} = \frac{\dot{m}_{GT} \cdot v_{GT,p\check{r}edb}}{\rho_{GT}} \cdot \frac{4}{\pi \cdot D_{i,tube}^2}$$
(3.4.1.2)

Byl načrtnut trubkový plán s dobrým vyplněním pláště trubkami a až z něj určen skutečný počet trubek. Zároveň byl při zvolené poměrné rozteči trubek určen vnitřní průměr pláště. Zpětně byla ze znalosti průtočných průřezů určena skutečná rychlost média v trubkách i mezitrubkovém prostoru.

Parametr	Označení	Hodnota	
Dovolené napětí materiálu	σ_D	120	MPa
Součinitel hodnoty svarového spoje	φ	1	1
Vnější průměr trubek	D _{e,tube}	25	mm
Výpočtový vnitřní přetlak	$p_{ u ec y p}$	$p_{in} - p_{out}$	MPa
Součinitel tepelné vodivosti – nerezová ocel	λ	15	W/mK
Poměrná rozteč trubek	а	1,2 ÷ 2,4	1

Tab. 22: Parametry uvažované při návrhu VT

Poměrná rozteč trubek byla měněna v závislosti na měrném objemu média ohřívaného v mezitrubkovém prostoru za účelem dosažení jeho přijatelné rychlosti. Poměrná rozteč však byla limitována intervalem hodnot uvedeným v Tab. 22. Nastávaly zpravidla dva scénáře:

- Měrný objem ohřívané kapaliny v ekonomizérech byl malý, jeho rychlost tedy malá (<1 m/s). Pro intenzifikaci přestupu tepla byla poměrná rozteč zmenšována k hodnotě 1,2. Tuto hodnotu rozteče zdola omezuje technologické hledisko.
- Měrný objem ohřívané páry na nízkých tlakových hladinách (*LP, RH*) byl velký, velká rychlost způsobovala velké tlakové ztráty. Za účelem dosažení přijatelné hodnoty tlakové ztráty (a rychlosti) tedy byla zvětšována poměrná rozteč a spolu s ní i tlak, na kterém je ohřev realizován.

Předběžná délka trubek byla stanovena dle rovnice (3.4.1.3) z velikosti teplosměnné plochy (S_{VT}) určené z rovnice (3.4.1.4). Pro stanovení S_{VT} je třeba určit střední hodnotu k a $\Delta \bar{t}$ viz níže.

$$l_{tube} = \frac{S_{VT}}{n_{tube} \cdot \pi \cdot \frac{D_{i,tube} + D_{e,tube}}{2}}$$
(3.4.1.3)

$$S_{VT} = \frac{\dot{Q}}{k \cdot \Delta \bar{t}} \tag{3.4.1.4}$$

Některé z VT zobrazených ve schématech zapojení (Obr. 16 a Obr. 20) byly pro svou velkou předběžnou délku l_{tube} rozděleny do sériově zapojených VT (sériově z pohledu GT i pracovního média). Tímto dělením vzniklé výměníky tepla jsou dále označovány jako "dílčí". Parametry dílčích VT jsou odlišeny indexem "1" (např. jejich délka: l_{VT} , 1). V případě potřeby více dílčích výparníků by řazení probíhalo sériově z pohledu GT média a paralelně z pohledu pracovního média. Skutečná délka trubek ($l_{real} > l_{tube}$) byla určena až z návrhu konfigurace VT (počet a délka dílčích VT).

Způsob rozdělení VT vycházel ze snahy o modularitu systému. Výměníky, v nichž probíhá ohřev pracovního média při shodném tlaku a ve shodné fázi (např. HP EKO1, HP EKO2, HP EKO3), byly rozděleny na různý počet dílčích VT shodné délky, které zároveň mají shodný trubkový plán. Tím pádem by byly vzájemně zaměnitelné, což by mohlo být příznivé pro provoz systému. Maximální přípustná délka trubek dílčích výměníků byla v tomto případě uvažována 8 m.

Pro určení teplosměnné plochy bylo nutné zjistit součinitel prostupu tepla k a střední teplotní spád $\Delta \bar{t}$. Tepelný výkon VT \dot{Q} byl známý z tepelného schématu. Výpočet součinitele prostupu tepla probíhal zjednodušeně podle rovnice (3.4.1.5) platící pro rovinnou stěnu. Střední teplotní spád byl pro protiproudé VT určen jako logaritmický teplotní spád podle rovnice (3.4.1.6).

$$k = \frac{1}{\frac{1}{\alpha_{tube}} + \frac{s_{tube}}{\lambda} + \frac{1}{\alpha_{shell}}}$$
(3.4.1.5)
$$\Delta \bar{t} = \Delta t_{LN} = \frac{(t_{GT,in} - t_{WF,out}) - (t_{GT,out} - t_{WF,in})}{\ln \frac{t_{GT,in} - t_{WF,out}}{t_{GT,out} - t_{WF,in}}}$$
(3.4.1.6)

Dalším krokem tedy bylo určení součinitelů přestupu tepla v trubkách α_{tube} a v mezitrubkovém prostoru α_{shell} . Postup jejich určení je shrnut v následujících kapitolách věnujících se detailněji jednotlivým případům sdílení tepla.

3.4.1.1. Přestup tepla při proudění uvnitř trubek

Pro určení součinitele přestupu tepla uvnitř trubek α_{tube} je ve všech VT užito Gnielinského korelace dle [21] pro turbulentní proudění. Korelace je uvedena jako rovnice (3.4.1.1.1). Vystupuje v ní součinitel třecích ztrát ξ určený podle (3.4.1.1.2) získaný rovněž v [21].

$$Nu = \frac{\frac{\xi}{8} \cdot Re \cdot Pr}{1 + 12.7 \cdot \sqrt{\frac{\xi}{8}} \cdot \left(Pr^{\frac{2}{3}} - 1\right)} \left(1 + \left(\frac{D_{i,tube}}{l_{tube}}\right)^{\frac{2}{3}}\right) \quad (3.4.1.1.1)$$
$$\xi = (1.8 \log_{10} Re - 1.5)^{-2} \quad (3.4.1.1.2)$$

Reynoldsovo číslo Re je definováno dle (3.4.1.1.3), Prandtlovo číslo Pr dle (3.4.1.1.4) a součinitel přestupu tepla je z Nusseltova čísla Nu vyjádřen dle (3.4.1.1.5).

$$Re = \frac{D_{i,tube} \cdot v_{tube} \cdot \rho}{\mu} \tag{3.4.1.1.3}$$

$$Pr = \frac{c_p \cdot \mu}{\lambda} \tag{3.4.1.1.4}$$

$$\alpha_{tube} = \frac{Nu \cdot \lambda}{D_{i,tube}} \tag{3.4.1.1.5}$$

Zdroj [24] pro podélné obtékání trubkového svazku uvádí čtyři korelace, které jsou navzájem porovnány na příkladu ekonomizéru v Tab. 23. $Re \ a \ Pr$ bylo určeno analogicky s rovnicemi (3.4.1.1.3) a (3.4.1.1.4). Do výpočtu Re byl jako charakteristický rozměr (namísto $D_{i,tube}$) dosazován hydraulický průměr.

Tab. 23: Porovnání jednotlivých korelací pro případ podélného obtékání trubek

Korelace	Michejev	TsKTI-VTI '57	Weisman	Petuchov
Nu (1)	0,021 <i>Re</i> ^{0,8} <i>Pr</i> ^{0,43} <i>A</i>	0,023 <i>Re</i> ^{0,8} <i>Pr</i> ^{0,4} <i>A</i>	$c \cdot Re^{0,8} Pr^{\frac{1}{3}}$	$\frac{0,125\xi RePrA}{4,5\sqrt{\xi}\left(Pr^{\frac{2}{3}}-1\right)+1,07}$
Parametr	$A = \left(\frac{Pr}{Pr_w}\right)^{0,25}$	<i>A</i> = 0,7	$c = 0,026 \cdot a - 0,006$	$A = \left(\frac{Pr}{Pr_w}\right)^{0,11}$ $\xi = (1,82 \log Re - 1,64)^{-2}$
α_{shell} (W/m ² k)	3754,8	2789,9	4056,7	3960,0
$\Delta \alpha_{shell}$ (%)	_	-25,7	8,0	5,5

Pro návrh VT byla vybrána Michejevova korelace, neboť z porovnávaných dává přibližně střední hodnoty součinitele přestupu tepla. Petuchovova a Weismanova korelace je spíše optimističtější, zatímco výpočet podle sovětské normy vydané v roce 1957 vede spíše na pesimističtější hodnoty.

3.4.1.3. Přestup tepla při varu ve velkém objemu

Zdroj [25] pro výpočet součinitele přestupu tepla při varu uvádí vztah (3.4.1.3.1). Přitom pro var ve velkém objemu byl součin $k \cdot p_{shell}^n$ odečítán ze závislosti na Obr. 29.

Obr. 29: Závislost součinu k.p_{shell}ⁿ na tlaku p_{shell} [25]

Protože ve vztahu (3.4.1.3.1) vystupuje hustota tepelného toku \dot{q} , vede tento postup na iterativní výpočet. Zdroj dále uvádí, že v případě parogenerátorů nelze pracovat se zjednodušeným vyjádřením součinitele prostupu tepla, ale je nutné ho vyjádřit dle rovnice (3.4.1.3.2), přičemž k je vztaženo na vnitřní průměr trubek.

$$k = \frac{1}{\frac{1}{\frac{1}{\alpha_{tube}} + \frac{D_{i,tube}}{2\lambda}2,3 \cdot \ln \frac{D_{e,tube}}{D_{i,tube}} + \frac{1}{\alpha_{shell}}\frac{D_{i,tube}}{D_{e,tube}}}}$$
(3.4.1.3.2)

3.4.1.4. Přestup tepla při podélném obtékání trubek mokrou parou Pokud v separátoru není odloučena veškerá kapalná fáze, proudí zprvu v mezitrubkovém prostoru výměníku *RH1* mokrá pára. Dodáváním tepla roste její suchost.

Postup určení α_{shell} byl proveden dle [21]. Postupně bylo určeno Froudeho číslo (*Fr*) a kritická suchost páry v horní a spodní části teplosměnné plochy. Byl vybrán odpovídající postup (pro $x > x_{cr,low}$). Podle něj bylo postupně určeno *Re* dvoufázové směsi, *Nu* a α_{shell} .

(3.4.1.3.1)

3.4.2 Určení tlakových ztrát

Pro navržené VT byly určeny tlakové ztráty třením i místními odpory. Uvažované místní ztráty se lišily pro médium v trubkách a v mezitrubkovém prostoru. Postup určení ztrátových součinitelů a tlakových ztrát je popsán níže.

3.4.2.1. Tlakové ztráty – médium v trubkách

Součinitel třecích ztrát byl určován podle rovnice (3.4.2.1.1) převzaté z [21] platné pro turbulentní proudění v trubce.

$$\xi_{t\check{r}} = 0,0054 + \frac{0,3964}{Re^{0,3}} \tag{3.4.2.1.1}$$

Uvažované místní ztráty včetně postupu jejich výpočtu jsou uvedeny v Tab. 24. Zatímco třecí ztráty nejsou závislé na počtu dílčích *VT*, na které je navržený *VT* rozdělen, výsledný součet místních ztrát je jejich počtu přímo úměrný.

Tlaková ztráta	Určení ξ_{m_j}	Zdroj
Náhlým rozšířením – vstup do hlavy	$\xi_{m_j} = \left(1 - \frac{A_{p \mathring{u} vodn i}}{A_{roz \mathring{s} (\mathring{r} en \acute{y})}}\right)^2$	[21]
Náhlým zúžením – vstup do trubek	diagram viz Obr. 30	[21]
Změnou směru proudu – U-trubky	diagram viz Obr. 31	[21]
Náhlým rozšířením – výstup z trubek	$\xi_{m_j} = \left(1 - \frac{A_{p \mathring{u} vodn i}}{A_{roz \mathring{s} (\mathring{r} en \acute{y})}}\right)^2$	[21]
Náhlým zúžením – výstup z hlavy	diagram viz Obr. 32	[21]

Tab. 24: Uvažované místní ztráty média v trubkách včetně způsobu jejich určení

Byl uvažován "ostrý" vstup do trubek.

Obr. 30: Závislost součinitele místních ztrát při vstupu do trubek na poměru S/D_i

Obr. 31: Závislost součinitele místních ztrát při změně směru proudu na poměru vnitřního průměru trubky a poloměru oblouku

Místní tlaková ztráta změnou směru proudu byla uvažována pouze v případě užití U-trubek.

Obr. 32: Závislost součinitele místních ztrát při náhlém zúžení na poměru průtočných průřezů za a před zúžením

Výsledná tlaková ztráta celého navrženého VT (na straně GT média) Δp_{tube} byla určena podle rovnice (3.4.2.1.2). Místní ztráty v dílčích VT jsou uvažovány shodné. Proto v rovnici vystupuje počet dílčích VT (n_{VT}).

$$\Delta p_{tube} = \Delta p_{t\check{r}} + \sum \Delta p_{m_j} = \xi_{t\check{r}} \cdot \frac{v^2}{2} \frac{l_{real}}{D_{i,tube}} \rho + n_{VT} \cdot \sum \xi_{m_j} \cdot \frac{v_j^2}{2} \rho_j \qquad (3.4.2.1.2)$$

3.4.2.2. Tlakové ztráty – médium v mezitrubkovém prostoru Pro určení součinitele třecích ztrát byla uvažována rovnice analogická s rovnicí (3.4.2.1.1). Uvažované místní ztráty včetně postupu jejich výpočtu jsou uvedeny v Tab. 25. Tlaková ztráta stropního štítu je uvažována pouze ve výparnících. Tlaková ztráta stropního štítu a výstupem z mezitrubkového prostoru výparníku přitom byla pro účely tepelného výpočtu zahrnuta do tlakové ztráty první části přehříváku.

Tlaková ztráta	Určení ξ_{m_i}	Zdroj
Vstupem do mezitrubkového prostoru	$\xi_{m_j} = 1$	[26]
Výstupem z mezitrubkového prostoru	$\xi_{m_j} = 0,5$	[26]
Stropního štítu	$\xi_{m_j} = 1.5$ $v_{j,HP} = 8 m/s$ $v_{i,LP} = 20 m/s$	[25]

Tab. 25: Uvažované místní ztráty média v trubkách včetně způsobu jejich určení

Způsob určení výsledné tlakové ztráty celého navrženého VT (na straně pracovního média) Δp_{shell} je analogický se způsobem uvedeným výše (rovnice (3.4.2.1.2)).

3.4.3 Varianta A – přehled navržených VT a vliv Δp na čistý výkon Tlakové ztráty jednotlivých VT ovlivňovaly veličiny v tepelném schématu optimalizované pro maximální čistý výkon. Změna těchto parametrů měla zpětný vliv na velikost tlakové ztráty. Bylo tedy provedeno několik iterací, dokud nebyl relativní rozdíl tlakových ztrát v LP větvi mezi poslední a předposlední iterací menší než 2 %. V LP větvi data konvergovala nejpomaleji. V HP větvi byl rozdíl hodnot mezi jednotlivými iteracemi řádově nižší. V rámci iterací nebyla měněna geometrie výměníků tepla.

Jak bylo již výše zmíněno, pro zmenšení tlakové ztráty byly snižovány rychlosti *LP* a *RH* páry ve *VT*. Při zvýšení tlaku v *LP* a *RH* větvi vzrostla hustota dané páry, klesl její objemový tok, a při neměnné geometrii i její rychlost. Pro udržení rychlosti proudící páry pod zvolenou hranicí 30 m/s byla určena omezení: $p_{L6} > 0,4$ *MPa* a $p_{H9} > 1,7$ *MPa*. Přistoupení k těmto omezením by v praxi znamenalo i snížení dimenze parovodů. Po tomto omezení klesl maximální výkon výchozí varianty bez uvažování tlakových ztrát (viz kapitola 3.2) pouze o 0,7 %.

V Tab. 26 rozdělené pro svou velikost do tří částí jsou shrnuty parametry navržených *VT* spolu s náčrty jejich trubkových plánů.

Trubkový plán						
Výměni	ík	SPOL EKO	HP EKO1	HP EKO2	HP EKO3	HP EV
	n _{tube} (1)	30	30	30	30	94
	D _{i,tube} (mm)	18,6	21	21	21	21
	<i>s_{tube}</i> (mm)	3,2	2	2	2	2
Trubky	a (1)	1,2	1,2	1,2	1,2	1,2
	v _{tube} (m/s)	1,30	0,94	1,06	0,85	1,54
	α_{tube} (W/m ² K)	10304	8158	8929	7295	19916
	Δp_{tube} (kPa)	12,25	2,22	7,90	20,76	8,21
	D _{i,shell} (mm)	196	196	196	196	373
Plášť	v _{shell} (m/s)	0,42	0,41	0,43	0,56	-
i last	α_{shell} (W/m ² K)	3269	3754	4137	5157	62516
	<i>∆p_{shell}</i> (kPa)	3,74	1,51	4,79	16,82	6,00
	<i>Q</i> (kW)	2094	317	1756	4755	6070
	I _{tube} (m)	12,61	4,48	15,04	67,90	9,17
	<i>n</i> _{VT} (1)	2	1	3	14	2
	$I_{VT,1}$ (m)	6,5	5,1	5,1	5,1	5
	I _{real} (m)	13	5,1	15,3	71,4	10
	<i>S_{VT}</i> (m ²)	25,90	9,71	32,60	147,18	56,89
	k (W/m ² K)	1623	<u> 1915</u>	2053	2154	3561

Tab. 26: Parametry jednotlivých VT (1/3)

Trubkový plán				
Výmění	k	HP SH	LP EKO	LP EV
	$n_{tube}(1)$	118	3	94
	D _{i,tube} (mm)	21	18,6	18,6
	s _{tube} (mm)	2	3,2	3,2
Trubky	a (1)	1,2	1,2	1,2
	v _{tube} (m/s)	1,01	1,30	0,86
	α_{tube} (W/m ² K)	4846	10774	8297
	Δp_{tube} (kPa)	0,97	5,61	2,96
	D _{i,shell} (mm)	373	66	373
DIŚČť	v _{shell} (m/s)	1,48	0,30	_
FIASL	α_{shell} (W/m ² K)	1431	2999	7829
	Δp_{shell} (kPa)	3,20	0,80	0,83
	<i>Q</i> ['] (kW)	1937	34	113
	I _{tube} (m)	9,26	5,89	3,35
	n _{vt} (1)	2	1	1
	I _{VT,1} (m)	5	6	3,5
	I _{real} (m)	10	6	3,5
	S_{VT} (m ²)	78,95	1,21	18,39
	k (W/m ² K)	963	1563	2370

Tab. 26: Parametry jednotlivých VT (2/3)

Způsob zohlednění získaných tlakových ztrát v tepelném výpočtu je ilustrován na příkladu výměníku *HP SH*. Daný výměník byl pro přehlednost zobrazen na Obr. 33.

Obr. 33: Schéma HP SH se znázorněnými tlaky

Ze znalosti tlakové ztráty byl určen tlak v uzlu *H5* pomocí rovnice (3.4.3.1), tlak v uzlu *GT2* pomocí rovnice (3.4.3.2). V případě paralelního řazení *VT* je v modelu systému jako tlaková ztráta na straně *GT* média uvažována nejvyšší z hodnot tlakových ztrát získaných pro jednotlivé paralelní *VT*.

$$p_{H5} = p_{H6} + \Delta p_{shell,HP\,SH} \tag{3.4.3.1}$$

$$p_{GT2} = p_{GT1} - \Delta p_{tube,HPSH} \tag{3.4.3.2}$$

Trubkový plán							
Výměn	ík	LP SH1	LP SH2	LP SH3	<i>RH1 –</i> odpar	<i>RH1 –</i> přehřátí	RH2
	$n_{tube}(1)$	3	3	3		30	30
	D _{i,tube} (mm)	18,6	18,6	18,6	1	8,6	18,6
	s _{tube} (mm)	3,2	3,2	3,2		3,2	3,2
Trubky	a (1)	2,4	2,4	2,4	1,7		1,7
	v _{tube} (m/s)	0,61	0,33	1,07	0,47	0,54	1,28
	α_{tube} (W/m ² K)	5963	3620	5200	4829 5236		6019
	Δp_{tube} (kPa)	22,90	19,64	6,87	12,45		3,55
	D _{i,shell} (mm)	138	138	138	257		257
DIŚČť	v _{shell} (m/s)	17,60	22,48	28,54	14,59	17,80	21,86
FIASL	α_{shell} (W/m ² K)	156	160	169	676	619	608
	∆p _{shell} (kPa)	12,87	39,92	8,28	6	7,96	31,39
	<i>Q</i> ['] (kW)	79	146	41	320	1970	491
	I _{tube} (m)	99,74	314,83	49,74	11,99	79,19	19,01
	$n_{VT}(1)$	16	49	8		13	3
	I _{VT,1} (m)	6,5	6,5	6,5		7	7
	I _{real} (m)	104	318,5	52		91	21
	S_{VT} (m ²)	20,49	64,69	10,22	18	37,34	39,07
	$k(W/m^2K)$	147	149	158	527	495	494

Tab. 26: Parametry jednotlivých VT (3/3)

Při uvažování těchto ztrát byl nejvyšší čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v Tab. 28.

Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu se svorkovým a čistým výkonem lze nalézt v Tab. 27.

Tab. 27: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	<i>m</i> _i (kg/s)	P_i (kW)
HP díl turbíny	H6→H7	295,9	0,659	195,0
	H9→H10	322,2	0,597	192,4
LP díl turbíny	H1OM→H11	49,4	0,651	32,1
	H11→1	469,1	0,633	296,9
			Σ	716,4
			P _{sv}	680,9
P _{COND}	2→3	0,4	0,633	0,1
P_{LP}	5→L1	0,2	0,054	0,005
P _{HP}	5→H1	21,2	0,597	11,2
P _{SEP}	H7L→H7P	20,6	0,062	1,0
			Σ	14,2
			P_{ρ}	15,2
			P _{net}	665,6

Uzel	t (°C)	p (MPa)	h (kJ/kg)	s (kJ/kg·K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2578,6	5,14		1,000
GT2	388,0	24,993	2331,1	4,77		1,000
GT3	363,0	24,985	1723,9	3,84		1,000
GT4	231,6	24,964	1003,3	2,58		1,000
GT5	190,1	24,942	819,6	2,20		1,000
GT6	163,8	24,939	706,2	1,95		1,000
GT7	155,5	24,933	671,1	1,87		1,000
GT8	105,7	24,921	461,7	1,35		1,000
1	40,0	0,007	2402,4	7,71	0,929	0,633
2	40,0	0,007	167,5	0,57	0,000	0,633
3	40,0	0,306	167,9	0,57		0,633
4	118,8	0,302	498,7	1,51		0,633
5	133,8	0,302	562,5	1,67	0,000	0,651
L1	133,8	0,462	562,8	1,67		0,054
L2	148,8	0,461	626,9	1,83	0,000	0,054
L3	148,8	0,461	2744,5	6,85	1,000	0,054
L4	216,3	0,447	2892,9	7,19		0,054
L5	348,0	0,408	3165,8	7,72		0,054
L6	385,0	0,400	3242,6	7,85		0,054
H1	136,3	16,155	583,7	1,68		0,597
H2	148,8	16,153	636,8	1,81		0,597
НЗ	216,3	16,149	931,2	2,46		0,597
НЗМ	216,6	16,149	932,7	2,46		0,659
H4	348,0	16,132	1654,9	3,75	0,000	0,659
H5	348,0	16,132	2576,6	5,24	1,000	0,659
Н6	385,0	16,123	2870,9	5,70		0,659
H7	216,3	2,160	2575,0	5,85	0,880	0,659
H7V	216,3	2,160	2745,9	6,20	0,971	0,597
H7L	216,3	2,160	926,5	2,48	0,000	0,062
H7P	219,8	16,149	947,1	2,49		0,062
H8	348,0	2,090	3131,3	6,93		0,597
Н9	385,0	2,058	3214,3	7,07		0,597
H10	214,9	0,400	2892,0	7,24		0,597
H10M	228,8	0,400	2920,9	7,30		0,651
H11	202,8	0,302	2871,5	7,32		0,017

Tab. 28: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Expanzní čára byla zakreslena do *h-s* diagramu, viz Obr. 34.

Na Obr. 35 je do *t-Q* diagramu zakresleno ochlazování *GT* tekutiny. Plnou čarou je opět znázorněn profil *HP* média. Profily médií v *LP* větvi a v přihřívácích jsou méně patrné, neboť jsou zakresleny přerušovanými čarami. *NN* v diagramu nebyla zobrazena.

Obr. 35: t-Q diagram ochlazování GT média

PP je pro výše zmíněné parametry dosažen na čtyřech místech současně. Jednotkový průtok *GT* média přivádí do tepelného oběhu 2117 kW tepla a je dochlazen na teplotu 106 °C.

Hmotnostní průtok nízkotlakou větví je v tomto případě vyšší než v kapitole 3.2.1. Vzrostl i optimální tlak média v *HP* větvi a tlak při přihřívání. Optimální teplota *RH* tlaku je vyšší než stanovená dolní mez na rozdíl od tlak v *LP* větvi. Dosažitelný měrný čistý výkon systému klesl na 665,6 kW, což představuje utilizační účinnost 61,9 %. Pokles výkonu oproti shodné variantě neuvažující tlakové ztráty, avšak uvažující omezení tlakových hladin, byl 0,8%.

Na Obr. 36 je znázorněn vliv velikosti tlakové ztráty na maximální měrný čistý výkon systému. Pro potřeby této vizualizace byl zaveden pomocný součinitel k_p vyjadřující poměr tlakové ztráty uvažované v tepelném výpočtu (modelu tepelného oběhu) a tlakové ztráty získané z návrhu VT. Hodnota $k_p = 0$ odpovídá prvotní variantě zanedbávající tlakové ztráty, hodnota $k_p = 1$ pak odpovídá uvažování přímo tlakové ztráty získané z návrhu VT. Pomocný součinitel k_p je definovaný podle (3.4.3.3).

$$k_p = \frac{\Delta p_{tepeln\acute{y}} v\acute{y}po\check{c}et}{\Delta p_{n\acute{a}vrh} VT}$$
(3.4.3.3)

Na zmíněném obrázku je rovněž zobrazena závislost příkonu čerpadel na pomocném součiniteli. Obě závislosti byly proloženy přímkami, která je poměrně přesně aproximují.

Obr. 36: Závislost maximálního čistého výkonu a příkonu čerpadel na součiniteli k_p

3.4.4 Varianta B – přehled navržených VT a vliv Δ p na čistý výkon Iterativní postup určení tlakové ztráty byl shodný s postupem popsaným v předcházející kapitole. Byl shodně zdola omezen tlak přihřívané páry ($p_{13} > 1,7 MPa$). Dosažitelný čistý výkon výchozí varianty neuvažující tlakové ztráty (viz kapitola 3.2.2) při uvažování tohoto omezení klesl o 1,66 %.

V Tab. 29 rozdělené do dvou částí jsou shrnuty parametry navržených *VT* spolu s náčrty jejich trubkových plánů.

Trubkový plán					
Výměni	ík	EKO1	EKO2	ЕКОЗ	EV
	$n_{tube}(1)$	30	30	30	94
	D _{i,tube} (mm)	18,6	21	21	21
	s _{tube} (mm)	3,2	2	2	2
Trubky	a (1)	1,2	1,2	1,2	1,2
	v _{tube} (m/s)	1,32	1,08	0,84	1,51
	α_{tube} (W/m ² K)	10813	9055	7222	19415
	Δp_{tube} (kPa)	4,62	10,22	19,67	8,04
	D _{i,shell} (mm)	196	196	196	373
Pláčť	v _{shell} (m/s)	0,39	0,43	0,55	_
Thase	α_{shell} (W/m ² K)	3365	3976	5109	57885
	∆p _{shell} (kPa)	1,45	5,14	14,81	5,76
	<i>Q</i> ['] (kW)	1231	2579	4908	6282
	I _{tube} (m)	4,37	18,89	70,58	9,03
	$n_{VT}(1)$	1	3	11	2
$I_{VT,1}$ (m)		4,5	6,5	6,5	4,6
	I _{real} (m)	4,5	19,5	71,5	9,2
	<i>S_{VT}</i> (m ²)	8,98	40,94	152,99	55,99
	k (W/m ² K)	1658	2019	2139	3561

Tab. 29: Parametry jednotlivých VT (1/2)

Metodika zohlednění takto stanovených tlakových ztrát *VT* ve výpočtu tepelného schématu je popsána v kapitole 3.4.3.

Trubkový plán					
Výměn	ík	SH	<i>RH1 –</i> odpar	<i>RH1 –</i> přehřátí	RH2
	$n_{tube}(1)$	118		30	30
Trubky	D _{i,tube} (mm)	21	1	8,6	18,6
	s _{tube} (mm)	2		3,2	
	a (1)	1,2		1,7	
	v _{tube} (m/s)	1,02	0,50	0,57	1,37
	α_{tube} (W/m ² K)	4875	5036	5491	6344
	Δp_{tube} (kPa)	1,01	14	1,03	4,07
	D _{i,shell} (mm)	373	2	.57	257
DIŚČť	v _{shell} (m/s)	1,55	17,75	21,89	27,01
FIASL	α_{shell} (W/m ² K)	1372	646	608	605
	∆p _{shell} (kPa)	1,62	5	7,36	23,79
	<i>Q</i> ['] (kW)	1943	487	2034	522
	I _{tube} (m)	9,22	16,52	72,33	19,48
	n _{vt} (1)	2		14	3
	I _{VT,1} (m)	4,7	(ô,5	6,5
	I _{real} (m)	9,4		91	19,5
	S_{VT} (m ²)	78,62	18	2,56	40,01
	$k(W/m^2K)$	937	510	490	494

Tab. 29: Parametry jednotlivých VT (2/2)

Při uvažování těchto ztrát byl nejvyšší čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v Tab. 31.

Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu se svorkovým a čistým výkonem lze nalézt v Tab. 30.

Tab. 30: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	mi _i (kg/s)	P_i (kW)
HP díl turbíny	10→11	321,5	0,657	211,3
ID díl turbíny	13→14	470,5	0,604	284,1
	14→1	321,5	0,588	189,0
			Σ	684,5
			P _{sv}	650,6
P _{COND}	2→3	0,1	0,588	0,1
P _{FW}	5→6	20,3	0,604	12,3
P _{SEP}	11L→11P	20,2	0,053	1,1
			Σ	13,4
			Pp	14,4
			P _{net}	636,1

Uzel	t (°C)	p (MPa)	h (kJ/kg)	s (kJ∕kg·K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2578,6	5,14		1,000
GT2	388,0	24,996	2331,6	4,77		1,000
GT3	360,6	24,988	1703,4	3,81		1,000
GT4	221,9	24,968	959,3	2,50		1,000
GT5	162,7	24,958	701,4	1,94		1,000
GT6	133,6	24,953	578,3	1,65		1,000
1	40,0	0,007	2428,6	7,79	0,940	0,588
2	40,0	0,007	167,5	0,57	0,000	0,588
3	40,0	0,122	167,7	0,57		0,588
4	90,0	0,121	377,1	1,19		0,588
5	105,0	0,121	440,3	1,36	0,000	0,604
6	107,1	15,672	460,6	1,37		0,604
7	206,6	15,667	887,5	2,37		0,604
7M	206,9	15,667	888,7	2,37		0,657
8	345,6	15,652	1635,9	3,72	0,000	0,657
9	345,6	15,652	2591,5	5,27	1,000	0,657
10	385,0	15,645	2887,5	5,74		0,657
11	206,6	1,781	2566,0	5,90	0,880	0,657
11V	206,6	1,781	2715,0	6,21	0,958	0,604
11L	206,6	1,781	882,1	2,39	0,000	0,053
11P	209,9	15,667	902,3	2,40		0,053
12	345,6	1,724	3133,7	7,02		0,604
13	385,0	1,700	3220,5	7,16		0,604
14	137,5	0,121	2750,1	7,46		0,016

Tab. 31: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Expanzní čára byla zakreslena do *h-s* diagramu, viz Obr. 37.

Obr. 37: Expanzní čára pro HP i LP díl turbíny

Do *t-Q* diagramu bylo zakresleno ochlazování *GT* média, viz Obr. 38. V oblastech překrytí jednotlivých profilů je zachována logika vykreslování uvedená výše.

PP je pro výše zmíněné parametry dosažen na třech místech současně. Jednotkový průtok *GT* média přivádí do tepelného oběhu 2000 kW tepla a je dochlazen na teplotu 134 °C.

Optimální admisní tlak je vyšší než v případě varianty bez uvažování tlakových ztrát (viz kapitola 3.2.2). Optimální hodnota *RH* tlaku je rovna stanovené dolní hranici. Dosažitelný měrný čistý výkon systému je 636,1 kW, což představuje utilizační účinnost 59,2 %. Pokles výkonu oproti variantě neuvažující tlakové ztráty, ale uvažující omezení *RH* tlaku, je 0,6%.

Stejně jako v kapitole 3.4.3 byla zkoumána citlivost systému na velikost tlakové ztráty vyjádřené bezrozměrným pomocným součinitelem k_p . Závislost dosažitelného čistého výkonu a příkonu čerpadel je na Obr. 39. Zobrazené závislosti lze i v tomto případě poměrně přesně lineárně aproximovat.

Obr. 39: Závislost maximálního čistého výkonu a příkonu čerpadel na součiniteli k_p

3.4.5 Souhrnné porovnání variant, volba varianty pro další analýzy V Tab. 32 jsou pro jednotlaký a dvoutlaký systém vzájemně porovnány následující varianty:

- Varianta neuvažující tlakové ztráty bez omezení tlakových hladin
- Varianta neuvažující tlakové ztráty s omezením tlakových hladin
- Varianta uvažující tlakové ztráty (s omezením tlakových hladin)

		2-tlak		1-tlak			
Varianta	$\varDelta p = 0$	$\begin{array}{l} \Delta p = 0;\\ p_{H9} \geq 1,7 \; MPa;\\ p_{L6} \geq 0,4 \; MPa \end{array}$	$\begin{array}{l} \Delta p \neq 0;\\ p_{H9} \geq 1,7 \; MPa;\\ p_{L6} \geq 0,4 \; MPa \end{array}$	$\Delta p = 0$	$ \Delta p = 0; \\ p_{13} \ge 1,7 MPa $	$\begin{array}{l} \Delta p \neq 0;\\ p_{13} \geq 1,7 \; MPa \end{array}$	
$p_{H6}, p_9({\sf MPa})$	14,56	15,7	16,12	12,41	15,53	15,65	
$p_{H9}, p_{13}~({\sf MPa})$	1,13	1,82	2,06	0,427	1,7	1,7	
$p_{L6}\left(MPa ight)$	0,20	0,40	0,40	_	—	—	
P_p (kW)	13,2	14,7	15,2	11,0	14,3	14,4	
P_{sv} (kW)	688,8	685,7	680,9	661,8	654,3	650,6	
P_{net} (kW)	675,7	671,0	665,6	650,8	640,0	636,1	
ΔP_{net} (%)	_	-0,70	-1,49	_	-1,66	-2,26	

Tab. 32: Porovnání sledovaných variant pro 2-tlaký i 1-tlaký systém

Na hodnotách v tabulce uvedené výše lze pozorovat vliv tlakové ztráty na analyzované systémy. Dosažitelný měrný čistý výkon je při uvažování tlakové ztráty nižší z důvodu zvýšeného příkonu čerpadel, ale i sníženého svorkového výkonu turbíny z důvodu zmenšení tlakového spádu zpracovávaného díly turbíny. Relativní změna měrného čistého výkonu ΔP_{net} je vztažena vždy k variantě daného systému, která dosahuje nejvyššího měrného čistého výkonu.

V Tab. 33 jsou porovnány jednotlaká a dvoutlaká varianta uvažující tlakové ztráty. Porovnání je provedeno z pohledu velikosti celkové teplosměnné plochy *VT*, celkové skutečné délky trubek ve *VT* a dosažitelného měrného čistého výkonu. Porovnány jsou i průměrné hustoty tepelného toku v jednotlivých větvích zkoumaných technologií. Celková teplosměnná plocha *VT* je v případě 2-tlakého systému o 23,7 % větší než v případě systému 1-tlakého. Celková délka *VT* je pak větší o 220,9 %. Přitom je, v případě uvažování tlakové ztráty a omezení tlakových hladin uvedených výše, dosažitelný měrný čistý výkon dvoutlaké varianty vyšší pouze o 4,6 %. I přes nízký tepelný výkon *VT* v nízkotlaké větvi dvoutlakého systému vycházejí z důvodu nízké hustoty tepelného toku teplosměnné plochy značné. Nízká hodnota tepelného toku je dána malými teplotními spády a nízkými hodnotami součinitele prostupu tepla, neboť většina tepla je předávána v přehřívácích.

Varianta	2-tlak	1-tlak
$\Sigma S_{VT,i}$ (m ²)	692,66	560,09
$\Sigma l_{real.i}$ (m)	720,8	224,6
$\bar{\dot{q}}_{HP}, \bar{\dot{q}}_{admise}$ (kW/m ²)	45,61	50,20
\bar{q}_{RH} (kW/m ²)	12,28	13,67
$\bar{\dot{q}}_{LP}$ (kW/m ²)	3,61	_
$P_{net,\Delta p}$ (kW)	665,6	636,1

Tab. 33: Porovnání jednotlivých variant

V případě praktické realizace by volba preferované varianty byla podložena technoekonomickou analýzou zohledňující a kvantifikující rozdíly v měrném svorkovém výkonu, velikosti teplosměnné plochy i např. spolehlivosti systémů. Z analýzy by muselo vyplynout, zda potenciálně vyšší příjmy plynoucí z vyššího čistého výkonu dvoutlaké varianty vyváží její vyšší investiční náročnost spojenou s větší teplosměnnou plochou *VT*. V rámci této práce byla pro další analýzy vybrána jednotlaká varianta B z důvodu značného zjednodušení systému a poklesu měrného čistého výkonu menšího než 5 % oproti variantě dvoutlaké. 3.4.6 Varianta B – přehled navržených VT pro $k_{PT} \cdot \dot{m}_{GT1} = 50 \text{ kg/s}$

Prvotní návrh VT uvažoval hmotnostní tok GT média 10 kg/s ($k_{VT} = 10$). Ke zvýšení této hodnoty na 50 kg/s (maximum ze zadání práce) bylo přistoupeno v rámci návrhu parní turbíny, protože pro původní hmotnostní tok vycházely příliš krátké lopatky regulačního stupně jejího HP dílu. Hmotnostní toky v jednotlivých uzlech tepelného schématu jsou tedy pro účely návrhu parní turbíny násobeny součinitelem $k_{PT} = 50$.

Pro nově zvolený hmotnostní tok *GT* média ($k_{PT} = 50$) byl znovu proveden návrh *VT*. Tento návrh proběhl pouze pro variantu B, která byla ze dvou uvažovaných zvolena, viz výše. Postup návrhu byl shodný s výše popsaným postupem.

V Tab. 34 rozdělené do dvou částí je přehled navržených VT včetně jejich trubkových plánů.

Trubkový plán					
Výměn	k	EKO1	EKO2	ЕКОЗ	EV
	$n_{tube}(1)$	124	124	124	398
	D _{i,tube} (mm)	18,6	21	21	21
	s _{tube} (mm)	3,2	2	2	2
Trubky	a (1)	1,2	1,2	1,2	1,2
	v _{tube} (m/s)	1,59	1,31	1,01	1,79
	α_{tube} (W/m ² K)	12552	10524	8391	22169
	Δp_{tube} (kPa)	6,43	14,04	27,64	12,89
	D _{i,shell} (mm)	378	378	378	726
DIŚČť	v _{shell} (m/s)	0,58	0,64	0,83	-
1 1051	α_{shell} (W/m ² K)	4759	5622	7223	61170
	∆p _{shell} (kPa)	1,63	5,98	29,05	6,36
	<i>Q</i> ['] (kW)	6156	12886	24547	31402
	I _{tube} (m)	4,41	18,73	71,40	10,69
	n _{vT} (1)	1	3	11	2
	I _{VT,1} (m)	4,5	6,5	6,5	5,5
	I _{real} (m)	4,5	19,5	71,5	11
	<i>S_{VT}</i> (m ²)	37,47	167,83	639,77	280,62
	k (W/m ² K)	1988	2462	2558	3562

Tab. 34: Parametry jednotlivých VT (1/2)

Trubkový plán					
Výměn	ík	SH	RH1 – odpar	RH1 – přehřátí	RH2
ļ	$n_{tube}(1)$	408	1	80	180
Trubky	D _{i,tube} (mm)	21	1	18,6	
	<i>s_{tube}</i> (mm)	2	3,2		3,2
	a (1)	1,2	1,7		1,7
	v _{tube} (m/s)	1,47	0,41	0,47	1,14
	α_{tube} (W/m ² K)	6595	4374	4774	5465
	Δp_{tube} (kPa)	2,12	9,51		2,84
	D _{i,shell} (mm)	663	6	520	620
DIŚČť	v _{shell} (m/s)	2,74	15,46	19,06	23,49
1 1050	α_{shell} (W/m ² K)	2232	563	530	528
	∆p _{shell} (kPa)	6,65	54	4,70	23,86
	<i>Q</i> ['] (kW)	9714	2444	10175	2609
	I _{tube} (m)	9,16	15,61	68,11	18,36
<i>n_{VT}</i> (1) <i>I_{VT,1}</i> (m)		2		13	3
		4,7	6	5,5	6,5
	I _{real} (m)	9,4	8	4,5	19,5
	S_{VT} (m ²)	269,92	103	32,06	226,37
	$k(W/m^2K)$	1364	451	433	437

Tab. 34: Parametry jednotlivých VT (2/2)

Navržené *VT* pro různé hmotnostní toky *GT* média jsou porovnány z pohledu tlakových ztrát a svých délek, resp. délek trubek, v Tab. 35. Rozdílné hodnoty tlakových ztrát jsou dány drobnými rozdíly v rychlostech proudících médií. Jelikož se součinitele prostupu tepla v odpovídajících si *VT* téměř neliší, jsou rozdílné délky trubek dány především jejich rozdílným počtem.

Tab. 35: Porovnání tlakových ztrát pro různé hmotnostní toky GT média

VT		SPOL EKO	HP EKO1	HP EKO2	HP EV	HP SH	RH1	RH2
ha	I _{real} (m)	4,5	19,5	71,5	9,2	9,4	91,0	19,5
$k_{VT} \cdot \dot{m}_{GT1} = 10 \frac{\kappa g}{c}$	Δp_{tube} (kPa)	4,62	10,22	19,67	8,04	1,01	14,03	4,07
S	Δp_{shell} (kPa)	1,45	5,14	14,81	5,76	1,62	57,36	23,79
,	I _{real} (m)	4,5	19,5	71,5	11	9,4	84,5	19,5
$k_{PT} \cdot \dot{m}_{GT1} = 50 \frac{\kappa g}{c}$	Δp_{tube} (kPa)	6,43	14,04	27,64	12,89	2,12	9,51	2,84
S	Δp_{shell} (kPa)	1,63	5,98	29,05	6,36	6,65	54,70	23,86

V Tab. 36 jsou pro různé hmotnostní toky porovnány parametry v důležitých uzlech a dosažitelný měrný čistý výkon varianty B. Uvedené hmotnostní toky jsou, stejně jako dosažitelný měrný čistý výkon, vztaženy na jednotkový hmotnostní tok *GT* média.

Parametr	Vstup do <i>HP</i> dílu				Vstup do <i>LP</i> dílu			Odběr z LP dílu		
	m ₁₀ (kg/s)	р ₁₀ (MPa)	t ₁₀ (°C)	р ₁₁ (MPa)	<i>m</i> i₁₃ (kg/s)	р ₁₃ (MPa)	t ₁₃ (°C)	mi ₁₄ (kg/s)	р ₁₄ (MPa)	P _{net} (kW)
$k_{VT} = 10$	0,6574	15,645	385	1,781	0,6040	1,700	385	0,0160	0,121	636,14
$k_{PT} = 50$	0,6573	15,642	385	1,779	0,6040	1,700	385	0,0160	0,121	636,21

Tab. 36: Porovnání parametrů v uzlech tepelného schématu pro různé hmotnostní toky GT média

Protože se sledované parametry pro zvýšený hmotnostní tok téměř neliší od těch uvedených v kapitole 3.4.4, neobsahuje tato kapitola tabulku parametrů ani příslušné diagramy. Shodnost parametrů lze ilustrovat na parametrech v Tab. 36.

Parametry pro $k_{PT} = 50$ jsou zároveň vstupními parametry pro návrh parní turbíny.

3.5 Určení vnitřní účinnosti turbíny a dosažitelného čistého výkonu Dalším parametrem v tepelném schématu, který byl ve smyslu zadání práce upřesněn návrhem komponent, byla vnitřní účinnosti *HP* a *LP* dílu turbíny. Návrh proběhl pro turbínu ve schématu jednotlakého systému, který byl zvolen pro další analýzy. Pro tyto zpřesněné hodnoty vnitřní účinnosti byla provedena optimalizace z pohledu měrného čistého výkonu a porovnání s variantou uvažující její výchozí hodnotu.

3.5.1 Postup návrhu HP a LP dílu turbíny

Základní návrh parní turbíny proběhl pro hmotnostní tok *GT* média 50 kg/s ($k_{PT} = 50$). Hodnoty parametrů z tepelného schématu vstupující do návrhu jsou shrnuty v Tab. 36. Při návrhu turbíny byly, na rozdíl od kapitoly 3.4, uvažovány tlakové ztráty ve ventilech – v rychlozávěrném, regulačním (*HP* díl) a záchytném (*LP* díl), jak je popsáno dále.

Stupně v *HP* dílu turbíny jsou řešeny jako přetlakové. Stupňové části je předřazen rovnotlaký regulační stupeň (*REG*) s částečným ostřikem. Velikost částečného ostřiku byla optimalizována. První stupně *LP* dílu turbíny jsou řešeny rovněž jako přetlakové.

Stupně *LP* dílu turbíny, jejichž poměr $\frac{D_2}{l_2} < 12$, byly navrženy jako stupně s nakroucenou lopatkou podle zákona zborcení $\alpha_1 = konst$.

Volené parametry jsou shrnuty v Tab. 37. V návrhu turbíny indexy *O*, *1*, *2* neoznačují uzly v tepelném schématu, ale stavy na vstupu do rozváděcího kola, resp. vstupu do oběžného kola, resp. výstupu z oběžného kola.

Stupeň	REG	Stupně <i>HP</i> dílu	Stupně <i>LP</i> dílu	Nakroucené lopatky (LP díl)				
<i>n</i> _{ot} (1/min)	4500							
R (1)	0	0,5	0,5					
α_1 (°)	13	14	18	16÷20				
β_2 (°)		14	18					
φ(1)	0,98	0,98	0,98	0,98				
$\mu_{1}(1)$	0,97	0,97	0,97	0,97				
ψ(1)	0,97	0,98	0,98	0,98				
$\mu_2(1)$	0,95	0,97	0,97	0,97				
$\alpha_B(1)$	0,5	0,5	0,5	0,5				

Tab. 37: Volené vstupní parametry pro návrh turbíny

Úhel α_1 je ve stupňové části *HP* dílu volen nižší než v *LP* dílu za účelem prodloužení lopatek stupňů, v nichž expanduje vysokotlaká pára s velkou hustotou a tedy malým objemovým tokem. Tím je zmenšena velikost okrajové ztráty.

Rychlosti a úhly použité v postupu uvedeném dále byly zavedeny v souladu s Obr. 40. Konkrétní rychlostní trojúhelníky byly pro všechny stupně znázorněny, viz kapitola 3.5.2.

Obr. 40: Uvažované rychlosti a úhly

Postup návrhu regulačního stupně byl následující:

• Určení tlaku na vstupu do rozváděcího kola *REG* dle rovnice (3.5.1.1) – zohlednění tlakové ztráty rychlozávěrného a regulačního ventilu $\xi_{RZ} + \xi_{REG} = 0.04$

$$p_0 = p_{10} \cdot \left(1 - \left(\xi_{RZ} + \xi_{REG} \right) \right) \tag{3.5.1.1}$$

- Určení měrné entropie na vstupu do rozváděcího kola REG: $s_0 = s(h_0 = h_{10}; p_0)$
- Volba $\frac{u}{c_{ad}} < \left(\frac{u}{c_{ad}}\right)_{opt}$, přičemž $\left(\frac{u}{c_{ad}}\right)_{opt}$ je určeno dle rovnice (3.5.1.2). $\left(\frac{u}{c_{ad}}\right)_{opt} = \frac{1}{2}\varphi\cos\alpha_1$ (3.5.1.2)
- Výpočet obvodové a absolutní rychlosti na vstupu do oběžného kola dle rovnic (3.5.1.3) a (3.5.1.4).

$$u_1 = \pi \cdot D_1 \cdot \frac{n_{ot}}{60} \tag{3.5.1.3}$$

$$c_{1} = \varphi c_{1ad} = \varphi \frac{u_{1}}{\frac{u}{c_{ad}}}$$
(3.5.1.4)

• Určení adiabatického spádu dle rovnice (3.5.1.5), přičemž u REG: $c_0 = 0 m/s$

$$H_{ad} = \frac{c_{1ad}^2 - c_0^2}{2} \frac{1}{1 - R}$$
(3.5.1.5)

- Určení tlaku na výstupu z rozváděcí lopatky: $h_{1a} = h_0 (1 R)H_{ad} \rightarrow p_1 = p(s_0; h_{1ad})$
- Určení tlaku na výstupu z oběžné lopatky: $p_2 = p(s_0; h_0 H_{ad})$
- Určení předběžné délky rozváděcí lopatky l'_1 z rovnice kontinuity pro výstup z rozváděcí lopatky (rovnice (3.5.1.6)); zvoleno: $D_1 = 0.6 m$; určeno: $\rho_1 = \rho(p_1; h_{1ad})$

$$\dot{m}_{10} \cdot k_{PT} = \mu_1 \pi D_1 l_1' c_{1ad} \sin \alpha_1 \rho_1 \tag{3.5.1.6}$$

• Určení skutečné délky rozváděcí lopatky l_1 dle rovnice (3.5.1.7) a délky oběžné lopatky z předpokladu překrytí 3 mm (rovnice (3.5.1.8)). Velikost částečného ostřiku e je předmětem optimalizace.

$$l_1 = \frac{l_1'}{e} \tag{3.5.1.7}$$

$$l_2 = l_1 + 3 mm \tag{3.5.1.8}$$

 Určení relativní rychlosti w₁ na vstupu do oběžného kola z rychlostního trojúhelníku dle rovnice (3.5.1.9).

$$w_1 = \sqrt{c_1^2 + u_1^2 - 2c_1 u_1 \cos \alpha_1} \tag{3.5.1.9}$$

• Určení relativní rychlosti w_2 na výstupu z oběžného kola dle rovnice (3.5.1.10).

$$w_2 = \psi w_{2ad} = \psi \sqrt{w_1^2 + 2RH_{ad}}$$
(3.5.1.10)

• Určení úhlu β_2 z rovnice kontinuity pro výstup z oběžné lopatky (rovnice (3.5.1.11)), přičemž $D_2 = D_1 a \rho_2 = \rho(p_2; h_0 - H_{AD})$

 $\dot{m}_{10} \cdot k_{PT} = \mu_2 \pi D_2 l_2 w_{2ad} \sin \beta_2 \,\rho_2 \tag{3.5.1.11}$

• Určení absolutní rychlosti c_2 na výstupu z oběžného kola z rychlostního trojúhelníku dle rovnice (3.5.1.12). Přitom $D_2 = D_1 \rightarrow u_2 = u_1$.

$$c_2 = \sqrt{w_2^2 + u_2^2 - 2w_2u_2\cos\beta_2}$$
(3.5.1.12)

• Určení třecí ztráty v rozváděcím kole dle rovnice (3.5.1.13).

$$z_r = \frac{1}{2}c_{1ad}^2(1-\varphi^2) \tag{3.5.1.13}$$

• Určení třecí ztráty v oběžném kole dle rovnice (3.5.1.14).

$$z_o = \frac{1}{2} w_{2ad}^2 (1 - \psi^2) \tag{3.5.1.14}$$

• Určení ztráty výstupní rychlostí dle rovnice (3.5.1.15).

$$z_{\nu} = \frac{1}{2}c_2^2 \tag{3.5.1.15}$$

• Určení obvodové účinnosti dle rovnice (3.5.1.16).

$$\eta_u = \frac{H_{ad} - z_r - z_o - z_v}{H_{ad}^{\mathsf{x}}} = \frac{H_{ad} - z_r - z_o - z_v}{\frac{1}{2}c_{1ad}^2}$$
(3.5.1.16)

 Určení přídavných ztrát – S ohledem na to, že výpočtové vztahy pro určení přídavných ztrát odpovídající současné úrovni poznání nejsou volně dostupné, byly pro potřeby základního návrhu použity vztahy podle [27] doplněné o informace z přednášek předmětu 2151128: Parní a plynové turbíny:

Ztráta okrajová ξ_o dle rovnice (3.5.1.17).

Ztráta částečným ostřikem ξ_{co} dle rovnice (3.5.1.18), přičemž je pro zjednodušení předpokládána délka tětivy lopatky $b_2 = l_2$ a počet segmentů částečného ostřiku z = 4.

Ztráta ventilační neostříknutých lopatek ξ_L dle rovnice (3.5.1.19).

- Ztráta ventilační kotouče ξ_K dle rovnice (3.5.1.20), přičemž K = 0,0001.
- Ztráta vějířová ξ_v dle rovnice (3.5.1.21).

Vnitřní účinnost $\eta_{i,SH}$ stupně pracujícího s přehřátou párou je určena dle rovnice (3.5.1.22)

Ztráta vlhkostí páry je zohledněna ve výsledné vnitřní účinnosti η_i stupně korigováním $\eta_{i,SH}$ pomocí Baumannova součinitele α_B dle rovnice (3.5.1.23).

$$\xi_o = \frac{9.9 \cdot \left(\frac{u}{c_{ad}}\right)^2}{l_1} \tag{3.5.1.17}$$

$$\xi_{\check{c}o} = \frac{0,25 \cdot b_2 \cdot l_2}{\pi \cdot D_1 \cdot l_1 \cdot e \cdot \sin \alpha_1} \cdot \frac{u}{c_{ad}} \cdot \eta_u \cdot z \tag{3.5.1.18}$$

$$\xi_L = \left(0,04+0,5\cdot\frac{l_1}{D}\right) \cdot \frac{1-e}{e\cdot\sin\alpha_1} \cdot \left(\frac{u}{c_{ad}}\right)^3 \tag{3.5.1.19}$$

$$\xi_K = K \cdot \frac{(D - l_2)^2}{\pi \cdot D_1 \cdot l_1 \cdot e \cdot \sin \alpha_1} \cdot \left(\frac{u}{c_{ad}}\right)^3$$
(3.5.1.20)

$$\xi_{\nu} = 0.77 \cdot \left(\frac{l_2}{D_2}\right)^2 \tag{3.5.1.21}$$

$$\eta_{i,SH} = \eta_u - \sum \xi_i \tag{3.5.1.22}$$

$$\eta_i = \eta_{i,SH} \left(1 - \alpha_B \cdot \frac{(y_0 + y_2)}{2} \right)$$
(3.5.1.23)

• Při známé vnitřní účinnosti *REG* lze určit měrnou entalpii média na výstupu z něj dle rovnice (3.5.1.24).

$$h_2 = \left(h_0 + \frac{1}{2}c_0^2\right) - \eta_i \cdot H_{AD}^{\rm x}$$
(3.5.1.24)

Obr. 41: Závislost vnitřní účinnosti stupně na velikosti částečného ostřiku a délce rozváděcí lopatky

Velikost částečného ostřiku *e* byla optimalizována z pohledu vnitřní účinnosti regulačního stupně η_i . Zároveň bylo přijato omezení (minimální) délky lopatky: $l_1 \ge 15 mm$. Závislost vnitřní účinnosti *REG* na délce rozváděcí lopatky a částečném ostřiku je na Obr. 41. Délka lopatky l_1 byla zvolena 15 mm.

Vstupní parametry do stupňové části byly určeny následujícím způsobem:

- Hmotnostní tok je ve stupňové části shodný s hmotnostním tokem v REG.
- Vstupní tlak je shodný s výstupním tlakem z REG.
- Vstupní měrná entalpie je shodná s výstupním měrnou entalpií z REG.

Není využitá výstupní rychlost z $REG \rightarrow c_0 = 0 \ m/s$

Návrh stupňů ve stupňové části *HP* dílu turbíny byl obdobný s návrhem *REG*. Odlišnosti jsou následující:

Pozn.: Indexy i a j označující pořadí stupně, resp. elementárního stupně (viz dále), jsou užity např. v případech, kdy v uvedeném vztahu vystupují parametry více stupňů. Pokud zmíněné indexy použity nejsou, jedná se o parametry příslušející vyšetřovanému stupni.

• Pro přetlakový stupeň bylo $\left(\frac{u}{c_{ad}}\right)_{ont}$ určeno podle rovnice (3.5.1.25).

$$\left(\frac{u}{c_{ad}}\right)_{opt} = \varphi \cos \alpha_1 \tag{3.5.1.25}$$

- Délka rozváděcí lopatky l_1 je rovna předběžné délce rozváděcí lopatky l_1'
- Pro úhel β_2 platí: $\beta_2 = \alpha_1 \rightarrow z$ rovnice kontinuity (3.5.1.11) je určena délka oběžné lopatky l_2 .
- Z přídavných ztrát je uvažována pouze:

Ztráta okrajová ξ_o určená dle rovnice (3.5.1.26).

$$\xi_o = \frac{1.5}{\sin(\alpha_1)} \cdot \frac{0.25 + 0.85 \cdot \frac{D_1}{1000}}{l_1}$$
(3.5.1.26)

Ztráta vějířová ξ_v určená dle rovnice (3.5.1.21).

Ztráta vlhkostí páry, která je zohledněna ve výsledné vnitřní účinnosti η_i shodně s návrhem *REG* (rovnice (3.5.1.23)).

- Střední průměr rozváděcích lopatek prvního D_1^1 a posledního stupně $D_1^{n_{sc}}$ byl volen. Z tohoto pohledu bylo navrženo několik variant, přičemž byla sledována hodnota vnitřní účinnosti *HP* dílu turbíny, délky lopatek jednotlivých stupňů, počet stupňů a poměr $\frac{D_2^{n_{sc}}}{l_2^{n_{sc}}}$. Z navržených variant byla vybrána ta s nejvyšší vnitřní účinností dílu, která zároveň vykazovala ve všech ostatních sledovaných ohledech přijatelné hodnoty parametrů. Byl tedy zvolen průměr rozváděcích lopatek prvního stupně $D_1^1 = 0.35 m$ a posledního stupně $D_1^{n_{sc}} = 0.6 m$. V tomto rozsahu byl zvolen lineární růst středních průměrů rozváděcích lopatek jednotlivých stupňů.
- S užitím postupu uvedeného výše byl určen adiabatický entalpický spád těchto dvou stupňů. Z nich byl určen průměrný adiabatický spád na jeden stupeň \overline{H}_{ad} .
- Ze znalosti tlaku a měrné entropie na vstupu a tlaku na výstupu ze stupňové části byl určen adiabatický entalpický spád stupňové části $H_{ad,s\tilde{c}}$. Z něj byl určen předběžný počet stupňů stupňové části dle rovnice (3.5.1.27), přičemž byla pro prvotní odhad uvažována hodnota reheat factoru RF = 0,03.

$$n_{S\check{C},p\check{r}edb} = \frac{H_{ad,S\check{C}}}{\overline{H}_{ad}} (1 + RF)$$
(3.5.1.27)

- Skutečný počet stupňů n_{SC} byl získán korekcí předběžného počtu v závislosti na tlaku na výstupu z oběžného kola posledního ($(n_{SC,predb})$ -tého) stupně. Pro dosažení zadaného emisního tlaku z *HP* dílu turbíny byla měněna hodnota $\left(\frac{u}{c_{ad}}\right)$ a reakce *R* několika posledních stupňů.
- Vstupní parametry do *i*-tého stupně byly určovány následovně:
 - Tlak na vstupu do rozváděcího kola p_0^i je rovný tlaku na výstupu z oběžného kola předchozího stupně p_2^{i-1}
 - S výjimkou prvního stupně bylo uvažováno plné využití výstupní rychlosti ze stupně předcházejícího, tj. $c_0^i=c_2^{i-1}$

Z předchozího předpokladu pro měrnou entalpii vyplývá: $h_0^i = h_2^{i-1} - \frac{1}{2}(c_0^i)^2$

Měrná entropie s_0^i byla určena jako: $s_0^i = s(p_0^i; h_0^i)$

Výsledná vnitřní účinnost *HP* dílu turbíny byla získána podle rovnice (3.5.1.28). Adiabatický entalpický spád *HP* dílu turbíny $H_{ad,HP}$ byl určen jako rozdíl měrné entalpie na vstupu do *HP* dílu h_{10} a měrné entalpie po adiabatické expanzi ze zmíněného stavu na známý protitlak: $h_{11,ad} = h(p_{11}; s_{10})$.

$$\eta_{i,HP} = \frac{H_{HP}}{H_{ad,HP}} = \frac{h_{10} - h_2^{n_{S\tilde{c}}}}{h_{10} - h_{11,ad}}$$
(3.5.1.28)

Návrh prvních stupňů *LP* dílu probíhal analogicky s návrhem stupňové části *HP* dílu. Střední průměr prvního stupně byl zvolen $D_1^1 = 800 mm$ a průměry dalších stupňů byly odstupňovány po 25 mm: $D_1^i = D_1^{i-1} + 25 mm$. Byla zohledněna tlaková ztráta záchytného ventilu ($\xi_Z = 0,02$) a tlak na vstupu do rozváděcího kola prvního stupně *LP* dílu byl určen dle rovnice (3.5.1.29).

$$p_0^1 = p_{13} \cdot \left(1 - \xi_Z\right) \tag{3.5.1.29}$$

S klesající hustotou expandující páry se postupně snižoval poměr $\frac{D_2}{l_2}$ u jednotlivých stupňů. Při dosažení poměru $\frac{D_2}{l_2} < 12$ bylo přistoupeno k návrhu stupňů jako stupňů s nakroucenou lopatkou. Stupně byly navrženy podle zákona zborcení $\alpha_1 = konst.$ Odběr páry pro *NN* byl uvažován v mezeře mezi dvěma stupni na tlaku nejbližším vyšším, než je tlak v *NN* určený z výpočtu tepelného schématu. Hmotnostní tok páry posledními stupni za odběrem je určen jako $k_{PT} \cdot (\dot{m}_{13} - \dot{m}_{14})$.

Bylo navrženo 7 stupňů s nakroucenou lopatkou. Pro všechny zmíněné stupně byl postup jejich návrhu shodný. Návrh *i*-tého stupně probíhal následujícím způsobem (i = 1d, 2d ...):

- Střední průměr (rozváděcí D_1^i i oběžné D_2^i) lopatky byl zvolen.
- Délka lopatky (rozváděcí i oběžné) $l_1^i = l_2^i$ byla předběžně odhadnuta.
- Velikost úhlu α_1^i byla volena. U prvních stupňů s nakroucenou lopatkou byla za účelem snížení okrajové ztráty volena hodnota $\alpha_1 = 16^\circ$. U posledního stupně (7d) bylo zvoleno $\alpha_1 = 20^\circ$ za účelem zkrácení délky lopatky a dosažení $\frac{D_2}{l_2} > 2,5$. Tato limitující hodnota byla zvolena s ohledem na vyrobitelnost lopatky. Pro ostatní stupně platilo: $\alpha_1 = 18^\circ$.
- Lopatka (rozváděcí i oběžná) byla rovnoměrně rozdělena na 5 elementárních stupňů shodné délky $l_{1,i}^i = l_{2,i}^i$.
- Byla provedena iterace, kde délka lopatky vystupuje jako proměnný parametr. Cílem iterace bylo dosažení rovnosti skutečného hmotnostního toku páry stupněm \dot{m}^i a součtu hmotnostních toků páry elementárními stupni $\sum_j \dot{m}^i_j$, přičemž hmotnostní tok elementárním stupněm \dot{m}^i_j byl určen z rovnice analogické k rovnici (3.5.1.6).
- Adiabatický entalpický spád každého stupně H_{ad}^i je předmětem optimalizace z pohledu maximální vnitřní účinnosti stupně a je proměnným parametrem.
- Byla zvolena reakce na patním průměru lopatky $R_p = R(D_p)$. Hodnota reakce byla volena $R_p = 0$ s výjimkou posledního stupně, kde $R_p > 0,2$.
- Byl určen průběh reakce po délce lopatky podle rovnice (3.5.1.30).

$$R(d) = 1 - (1 - R_p) \left(\frac{d}{D_p}\right)^{-2\varphi^2 \cos^2 \alpha_1}$$
(3.5.1.30)

• Pro *j*-tý elementární stupeň s $D_{1,j} = D_{2,j}$ byly určeny rychlostní trojúhelníky:

Unášivé rychlosti $u_{1,j}$ a $u_{2,j}$ jsou určeny analogicky s rovnicí (3.5.1.3). Absolutní rychlost $c_{1ad,j}^i$ byla určena analogicky s rovnicí (3.5.1.5). Přičemž je uvažováno plné využití výstupní rychlosti z (i - 1)-tého stupně, takže

rychlost
$$c_{0,j}^i = c_0^i$$
 je vyjádřena jako: $c_0^i = c_2^{i-1} = \sqrt{\frac{\Sigma(c_{2,j}^{i-1})^2 \cdot \dot{m}_j^{i-1}}{\Sigma \dot{m}_j^{i-1}}}.$

Absolutní rychlost $c_{1,j}$ byla vyjádřena jako $c_{1,j} = \varphi c_{1a_{-j}}$.

Relativní rychlost $w_{1,j}$ byla určena analogicky s rovnicí (3.5.1.9).

Relativní rychlost $w_{2,j}$ byla určena analogicky s rovnicí (3.5.1.10).

Absolutní rychlost $c_{2,j}$ byla určena analogicky s rovnicí (3.5.1.12). Pro její určení byla stanovena hodnota úhlu $\beta_{2,j}$ z rovnice kontinuity analogické s rovnicí (3.5.1.11).

• Byla ověřena podkritičnost proudění v mezilopatkových kanálech statorové i rotorové mříže. Pro stupně pracující se suchou parou byla pomocí knihoven látkových vlastností získána rychlost zvuku. Následně bylo ověřeno, že je tato hodnota vyšší než hodnoty rychlostí c_1 a w_2 . Pro mokrou páru proběhlo ověření podkritičnosti proudění porovnáním tlakových poměrů $\frac{p_1}{p_0}$ a $\frac{p_2}{p_1}$ s kritickým tlakovým poměrem ε_{krit} určeným dle rovnice (3.5.1.31). Pro dodržení předpokladu musely být splněny podmínky $\frac{p_{1,j}}{p_0} > \varepsilon_{krit}$ a $\frac{p_2}{p_{1,j}} > \varepsilon_{krit}$. Poissonova konstanta κ byla pro mokrou páru určena dle rovnice (3.5.1.32).

$$\varepsilon_{krit} = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}}$$
(3.5.1.31)
$$\kappa = 1.035 \pm 0.1\kappa.$$
(3.5.1.32)

$$k = 1,055 \pm 0,1x_0 \tag{3.5.1.32}$$

• Obvodová účinnost elementárního stupně $\eta_{u,j}$ byla určena dle rovnice (3.5.1.33), přičemž obvodová složka absolutní rychlosti je určena dle rovnic (3.5.1.34) a (3.5.1.35). Výsledná obvodová účinnost stupně η_u byla určena dle rovnice (3.5.1.36).

$$\eta_{u,j} = \frac{u_{1,j}c_{1u,j} - u_{2,j}c_{2u,j}}{H_{ad}}$$
(3.5.1.33)

$$c_{1u,j} = c_{1,j} \cdot \cos \alpha_1 \tag{3.5.1.34}$$

$$c_{2u,j} = c_{2,j} \cdot \cos(\pi - \alpha_{2,j}) \tag{3.5.1.35}$$

$$\eta_u = \frac{\sum \dot{m}_j \cdot \eta_{u,j}}{\sum \dot{m}_j} \tag{3.5.1.36}$$

- Z přídavných ztrát je uvažována pouze ztráta okrajová a ztráta vlhkostí páry. Okrajová ztráta je určena podle rovnice (3.5.1.17), zatímco ztráta vlhkostí páry je zohledněna dle rovnice (3.5.1.23). Vějířová ztráta je eliminována použitím nakroucených lopatek.
- Vnitřní účinnost *i*-tého stupně η_i^i je určena shodně s postupem popsaným výše.

• Měrná entalpie na vstupu do *i*-tého stupně je určena jako: $h_0^i = h_2^{i-1} - \frac{1}{2}(c_0^i)^2$, přičemž měrná entalpie na výstupu z (i - 1)-tého stupně h_2^{i-1} je určena dle rovnice (3.5.1.37):

$$h_2^{i-1} = h_0^{i-1} - \left(H_{ad}^{i-1} + \frac{1}{2}(c_0^{i-1})^2\right)\eta_i^{i-1}$$
(3.5.1.37)

• Pro účely stanovení vnitřní účinnosti byl *LP* díl turbíny rozdělen do dvou částí a pro každý byla stanovena vnitřní účinnost. Toto rozdělení bylo provedeno z důvodu rozdílných hmotnostních toků páry dílem turbíny před a za jejím odběrem páry. Odběr páry byl realizován za druhým stupněm s nakroucenou lopatkou (*2d*). Část *LP* dílu turbíny před odběrem páry byla označena *LP I* a její vnitřní účinnost $\eta_{i,LP I}$ určena podle rovnice (3.5.1.38). Měrná entalpie po adiabatické expanzi ze stavu 13 (na vstupu do *LP* dílu turbíny) na tlak mezi stupni, mezi kterými je realizován odběr páry, byla určena jako $h_{2,ad}^{2d} = h(p_2^{2d}; s_{13})$. Část *LP* dílu turbíny za odběrem páry byla označena *LP II* a její vnitřní účinnost $\eta_{i,LP II}$ určena podle rovnice (3.5.1.39). Měrná stagnační entalpie stavu na počátku expanze páry v této části *LP* dílu turbíny byla vyjádřena jako $h_0^{3d} + \frac{1}{2}c_0^{3d} = h_2^{2d}$. Měrná entalpie páry po adiabatické expanzi na kondenzační tlak $p_k = p_{sat}(t_k)$ byla určena jako $h_{e,ad} = h(p_k; s_0^{3d})$.

$$\eta_{i,LPI} = \frac{h_{13} - h_2^{2d}}{h_{13} - h_{2,ad}^{2d}}$$
(3.5.1.38)

$$\eta_{i,LP\,II} = \frac{h_2^{2d} - h_2^{7d}}{h_2^{2d} - h_{e,ad}} \tag{3.5.1.39}$$

3.5.2 Parametry navržené turbíny

Parametry navržených stupňů *HP* dílu turbíny jsou v Tab. 38 rozdělené pro svou velikost do tří částí.

Stupeň	REG	1	2	3	4	5	6	7
$D_1 = D_2(m)$	0,600	0,350	0,361	0,373	0,384	0,395	0,407	0,418
$D_2/I_2 (m/m)$	33,3	13,5	14,0	14,8	15,6	16,3	17,0	17,5
$u_1 = u_2 (m/s)$	141,4	82,5	85,1	87,8	90,5	93,2	95,9	98,5
$(u/C_{ad})_{opt}(1)$	0,48	0,95	0,95	0,95	0,95	0,95	0,95	0,95
$u/c_{ad}(1)$	0,40	0,90	0,90	0,90	0,90	0,90	0,90	0,90
<i>c</i> _{1ad} (m/s)	353,4	91,6	94,6	97,6	100,6	103,5	106,5	109,5
<i>c</i> ₁ (m/s)	346,4	89,8	92,7	95,6	98,5	101,5	104,4	107,3
h_0 (kJ/kg)	2887,6	2845,8	2838,8	2832,0	2824,7	2817,1	2809,0	2800,5
H _{ad} (kJ/kg)	62,5	8,4	8,4	9,0	9,5	10,1	10,7	11,3
h _{2,ad} (kJ/kg)	2825,1	2837,4	2830,4	2823,0	2815,2	2806,9	2798,3	2789,2
h_2 (kJ/kg)	2845,8	2839,1	2832,3	2825,0	2817,4	2809,3	2800,8	2791,9
<i>p</i> ₂ (MPa)	11,13	10,68	10,25	9,80	9,35	8,89	8,42	7,95
s_0 (kJ/kg·K)	5,75	5,78	5,78	5,79	5,79	5,79	5,80	5,80
<i>R</i> (1)	0,00	0,50	0,50	0,50	0,50	0,50	0,50	0,50
v _{1ad} (m ³ /kg)	0,0181	0,0188	0,0195	0,0202	0,0210	0,0219	0,0229	0,0240
<i>v_{2ad}</i> (m ³ /kg)	0,0181	0,0192	0,0198	0,0206	0,0214	0,0223	0,0234	0,0245
<i>c</i> ₀ (m/s)	0,0	0,0	23,5	22,9	23,7	24,4	25,2	25,9
w₁ (m/s)	211,0	22,2	22,9	23,7	24,4	25,1	25,8	26,5
<i>w_{2ad}</i> (m/s)	211,0	94,3	94,5	97,8	100,7	103,7	106,7	109,6
w ₂ (m/s)	204,7	92,4	92,6	95,8	98,7	101,6	104,5	107,4
<i>c</i> ₂ (m/s)	84,0	23,5	22,9	23,7	24,4	25,2	25,9	26,6
I _{1predb} (mm)	4,1	26,2	25,4	24,8	24,2	23,8	23,5	23,3
<i>I</i> ₁ (mm)	15,0	26,2	25,4	24,8	24,2	23,8	23,5	23,3
<i>I</i> ₂ (mm)	18,0	25,9	25,9	25,2	24,7	24,3	24,0	23,8
β_2 (°)	18,7	14,0	14,0	14,0	14,0	14,0	14,0	14,0
z _r (kJ/kg)	2,473	0,166	0,177	0,189	0,200	0,212	0,225	0,237
z₀(kJ/kg)	1,316	0,176	0,177	0,189	0,201	0,213	0,225	0,238
z_v (kJ/kg)	3,532	0,276	0,262	0,282	0,299	0,317	0,335	0,354
η _u (1)	0,883	0,926	0,929	0,929	0,929	0,929	0,929	0,929
$\xi_o(1)$	0,106	0,130	0,136	0,142	0,147	0,153	0,157	0,161
$\xi_{co}(1)$	0,066	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$\xi_{L}(1)$	0,040	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$\xi_k(1)$	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$\xi_{v}(1)$	0,001	0,004	0,004	0,004	0,003	0,003	0,003	0,003
$\eta_{i_SH}(1)$	0,670	0,793	0,789	0,783	0,778	0,773	0,769	0,765
$y_0(1)$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$y_2(1)$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$\eta_i(1)$	0,670	0,793	0,789	0,783	0,778	0,773	0,769	0,765

Tab. 38: Parametry jednotlivých stupňů HP dílu turbíny (1/3)
			10		10	10		15
Stupen	8	9	10		12	13	14	15
$D_1 = D_2$ (m)	0,430	0,441	0,452	0,464	0,475	0,486	0,498	0,509
$D_2/I_2 (m/m)$	18,0	18,4	18,6	18,7	18,7	18,6	18,4	18,1
$u_1 = u_2 (m/s)$	101,2	103,9	106,6	109,2	111,9	114,6	117,3	120,0
$(U/C_{ad})_{opt}(1)$	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95
$U/C_{ad}(1)$	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90
C_{1ad} (m/s)	112,5	115,4	118,4	121,4	124,4	127,3	130,3	133,3
$c_1 (m/s)$	110,2	113,1	116,0	119,0	121,9	124,8	127,7	130,6
h_0 (kJ/kg)	2/91,6	2782,2	2//2,3	2762,0	2/51,2	2739,9	2728,0	2/15,6
H _{ad} (kJ/kg)	11,9	12,6	13,2	13,9	14,6	15,3	16,0	16,8
h _{2,ad} (kJ/kg)	2779,6	2769,6	2759,1	2748,1	2736,6	2724,6	2712,0	2698,9
h_2 (kJ/kg)	2782,5	2772,7	2762,4	2751,6	2740,3	2728,5	2716,1	2703,2
<u>р₂(МРа)</u>	7,47	7,00	6,53	6,07	5,62	5,19	4,76	4,36
<i>s</i> ₀(kJ/kg·K)	5,80	5,81	5,81	5,82	5,83	5,83	5,84	5,84
R(1)	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
v _{1ad} (m ³ /kg)	0,0252	0,0266	0,0283	0,0303	0,0325	0,0351	0,0379	0,0412
<i>v_{2ad}</i> (m ³ /kg)	0,0258	0,0273	0,0292	0,0313	0,0337	0,0364	0,0395	0,0429
<i>c</i> ₀(m/s)	26,6	27,3	28,1	28,8	29,5	30,2	30,9	31,7
<i>w</i> ₁ (m/s)	27,3	28,0	28,7	29,4	30,2	30,9	31,6	32,3
<i>w_{2ad}</i> (m/s)	112,6	115,6	118,6	121,5	124,5	127,5	130,5	133,4
<i>w</i> ₂ (m/s)	110,4	113,3	116,2	119,1	122,0	124,9	127,9	130,8
<i>c</i> ₂ (m/s)	27,3	28,1	28,8	29,5	30,2	30,9	31,7	32,4
I _{1predb} (mm)	23,3	23,3	23,5	24,0	24,6	25,2	26,1	27,1
<i>I</i> ₁ (mm)	23,3	23,3	23,5	24,0	24,6	25,2	26,1	27,1
<i>I</i> ₂ (mm)	23,8	23,9	24,3	24,8	25,4	26,2	27,1	28,2
β_2 (°)	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
z _r (kJ/kg)	0,250	0,264	0,278	0,292	0,306	0,321	0,336	0,352
<i>z_o</i> (kJ/kg)	0,251	0,265	0,278	0,292	0,307	0,322	0,337	0,353
z_v (kJ/kg)	0,374	0,394	0,414	0,435	0,457	0,479	0,501	0,524
η _u (1)	0,929	0,929	0,929	0,929	0,929	0,929	0,929	0,929
<i>ξ</i> ₀(1)	0,164	0,166	0,167	0,166	0,165	0,163	0,160	0,156
ξ _{čo} (1)								
$\xi_{L}(1)$								
$\xi_k(1)$								
$\xi_{v}(1)$	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
<u> η_{i_sн} (1)</u>	0,762	0,760	0,760	0,760	0,762	0,764	0,767	0,770
$y_0(1)$	0,000	0,000	0,002	0,013	0,023	0,033	0,042	0,051
(1)	0,000	0,002	0,013	0,023	0,033	0,042	0,051	0,059
<i>Y</i> ₂ (1)		0700		0753	0751	07/0	07/0	07/0

Tab. 38 Parametry jednotlivých stupňů HP dílu turbíny (2/3)

Reg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Stupeň

Stupeň	16	17	18	19	20	21	22	23
$D_1 = D_2(m)$	0,520	0,532	0,543	0,555	0,566	0,577	0,589	0,600
$D_2/I_2(m/m)$	17,7	17,2	16,6	16,0	15,3	14,5	13,7	12,9
$u_1 = u_2 (m/s)$	122,6	125,3	128,0	130,7	133,3	136,0	138,7	141,4
$(u/c_{ad})_{opt}(1)$	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95
$u/c_{ad}(1)$	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90
<i>c</i> _{1ad} (m/s)	136,3	139,2	142,2	145,2	148,2	151,1	154,1	157,6
<i>c</i> ₁ (m/s)	133,5	136,4	139,4	142,3	145,2	148,1	151,0	154,5
h₀(kJ/kg)	2702,7	2689,1	2675,0	2660,1	2644,6	2628,4	2611,5	2593,7
H _{ad} (kJ/kg)	17,5	18,3	19,1	19,9	20,7	21,5	22,4	23,4
h _{2,ad} (kJ/kg)	2685,2	2670,9	2655,9	2640,3	2623,9	2606,9	2589,1	2570,3
$h_2(kJ/kg)$	2689,7	2675,5	2660,7	2645,2	2629,1	2612,1	2594,4	2575,9
p_2 (MPa)	3,97	3,60	3,24	2,91	2,60	2,30	2,03	1,78
$s_0(kJ/kg\cdot K)$	5,85	5,86	5,87	5,88	5,88	5,89	5,90	5,91
R(1)	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
v _{1ad} (m ³ /kg)	0,0449	0,0492	0,0540	0,0596	0,0661	0,0737	0,0825	0,0929
<i>v_{2ad}</i> (m ³ /kg)	0,0469	0,0514	0,0566	0,0627	0,0696	0,0778	0,0873	0,0986
<i>c</i> ₀(m/s)	32,4	33,1	33,8	34,6	35,3	36,0	36,7	37,4
w1 (m/s)	33,0	33,8	34,5	35,2	35,9	36,6	37,4	38,3
<i>w_{2ad}</i> (m/s)	136,4	139,4	142,4	145,3	148,3	151,3	154,3	157,8
<i>w</i> ₂ (m/s)	133,7	136,6	139,5	142,4	145,3	148,3	151,2	154,7
<i>c</i> ₂ (m/s)	33,1	33,8	34,6	35,3	36,0	36,7	37,4	38,4
I _{1predb} (mm)	28,2	29,6	31,2	33,0	35,2	37,7	40,5	43,8
<i>I</i> ₁ (mm)	28,2	29,6	31,2	33,0	35,2	37,7	40,5	43,8
<i>I</i> ₂ (mm)	29,4	30,9	32,7	34,7	37,0	39,7	42,9	46,4
β ₂ (°)	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
z _r (kJ/kg)	0,368	0,384	0,400	0,417	0,435	0,452	0,470	0,492
z₀(kJ/kg)	0,368	0,385	0,401	0,418	0,436	0,453	0,471	0,493
z_v (kJ/kg)	0,548	0,572	0,597	0,622	0,648	0,674	0,701	0,738
η _u (1)	0,929	0,929	0,929	0,929	0,929	0,929	0,929	0,929
<i>ξ</i> _o (1)	0,152	0,147	0,142	0,135	0,129	0,122	0,115	0,108
ξ _{čo} (1)								
$\xi_{L}(1)$								
$\xi_{k}(1)$								
$\xi_{v}(1)$	0,002	0,003	0,003	0,003	0,003	0,004	0,004	0,005
η _{i_SH} (1)	0,774	0,779	0,785	0,790	0,797	0,803	0,810	0,816
<i>y</i> ₀ (1)	0,059	0,067	0,075	0,083	0,090	0,097	0,104	0,111
<i>y</i> ₂ (1)	0,067	0,075	0,083	0,090	0,097	0,104	0,111	0,118
$\eta_i(1)$	0,750	0,751	0,753	0,756	0,759	0,763	0,766	0,770

Tab. 38: Parametry jednotlivých stupňů HP dílu turbíny (3/3)

Lopatkový plán je zobrazen na Obr. 42. Na daném obrázku je schematicky zobrazen rotor s oběžnými lopatkami, přičemž osa x představuje osu rotace. Stupňová část *HP* dílu turbíny sestává z 23 přetlakových stupňů.

Rychlostní trojúhelníky pro jednotlivé stupně jsou znázorněny na Obr. 43.

Výsledná účinnost *HP* dílu turbíny je $\eta_{i,HP} = 78,8$ %. Tlak na výstupu z *HP* dílu turbíny získaný z jejího návrhu se od příslušného tlaku získaného z optimalizace měrného čistého výkonu (viz kapitola 3.4.6) liší o 0,004 %.

Obr. 43: Rychlostní trojúhelníky – HP díl turbíny

Parametry navržených stupňů LP dílu turbíny s prizmatickou lopatkou jsou v Tab. 39.

Stupeň	1	2	3	4	5	6	7
$D_1 = D_2(m)$	0,800	0,825	0,850	0,875	0,900	0,925	0,950
$D_2/I_2(m/m)$	22,8	20,8	19,7	18,2	16,6	14,8	12,9
$u_1 = u_2 (m/s)$	188,5	194,4	200,3	206,2	212,1	217,9	223,8
$(u/c_{ad})_{opt}(1)$	0,93	0,93	0,93	0,93	0,93	0,93	0,93
$u/c_{ad}(1)$	0,85	0,85	0,85	0,85	0,85	0,85	0,85
<i>c</i> _{1ad} (m/s)	221,8	228,7	235,6	242,5	249,5	256,4	263,3
<i>c</i> ₁ (m/s)	217,3	224,1	230,9	237,7	244,5	251,3	258,1
$h_0(kJ/kg)$	3220,5	3179,9	3141,7	3099,7	3055,0	3007,1	2955,9
H _{ad} (kJ/kg)	49,2	46,6	50,5	53,3	56,4	59,6	62,8
h _{2,ad} (kJ/kg)	3171,4	3133,4	3091,2	3046,5	2998,6	2947,5	2893,1
$h_2(kJ/kg)$	3182,8	3144,2	3102,5	3057,9	3010,2	2959,2	2904,7
<i>p</i> ₂ (MPa)	1,40	1,19	0,99	0,81	0,65	0,50	0,38
s_0 (kJ/kg·K)	7,17	7,18	7,20	7,21	7,23	7,24	7,26
<i>R</i> (1)	0,50	0,50	0,50	0,50	0,50	0,50	0,50
v _{1ad} (m ³ /kg)	0,190	0,218	0,251	0,294	0,349	0,421	0,519
<i>v_{2ad}</i> (m ³ /kg)	0,203	0,232	0,270	0,318	0,381	0,464	0,577
<i>c</i> ₀(m/s)	0,0	75,8	71,1	74,4	76,4	78,6	80,8
<i>w</i> ₁ (m/s)	69,6	71,8	73,9	76,1	78,3	80,4	82,6
<i>w_{2ad}</i> (m/s)	232,4	227,4	236,5	243,1	250,1	257,0	263,9
<i>w</i> ₂ (m/s)	227,8	222,8	231,8	238,2	245,1	251,8	258,6
<i>c</i> ₂ (m/s)	75,8	71,1	74,4	76,4	78,6	80,8	82,9
I _{1predb} (mm)	34,4	37,0	40,2	44,4	49,8	57,0	66,5
<i>I</i> ₁ (mm)	34,4	37,0	40,2	44,4	49,8	57,0	66,5
<i>I</i> ₂ (mm)	35,0	39,7	43,1	48,0	54,2	62,6	73,9
β_2 (°)	18,0	18,0	18,0	18,0	18,0	18,0	18,0
z _r (kJ/kg)	0,974	1,036	1,099	1,165	1,232	1,302	1,373
z₀(kJ/kg)	1,070	1,024	1,107	1,170	1,238	1,308	1,379
z_v (kJ/kg)	2,873	2,525	2,768	2,917	3,088	3,261	3,439
$\eta_{u}(1)$	0,900	0,907	0,906	0,906	0,906	0,906	0,906
<i>ξ</i> _o (1)	0,131	0,125	0,117	0,109	0,099	0,088	0,077
$\xi_{v}(1)$	0,001	0,002	0,002	0,002	0,003	0,004	0,005
$\eta_{i_{SH}}(1)$	0,767	0,781	0,787	0,795	0,805	0,815	0,824
$y_0(1)$	0,000	0,000	0,000	0,000	0,000	0,000	0,000
<i>y</i> ₂ (1)	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$n_{i}(1)$	0767	0 781	0787	0795	0.805	0.815	0.824

Tab. 39: Parametry jednotlivých stupňů LP dílu turbíny s prizmatickou lopatkou

Obr. 44: Lopatkový plán LP dílu turbíny

Lopatkový plán *LP* dílu turbíny je zobrazen na Obr. 44. Na daném obrázku je schematicky zobrazen rotor s oběžnými lopatkami, přičemž osa *x* představuje osu rotace. *LP* díl turbíny je složen ze 7 přetlakových stupňů s prizmatickou lopatkou (zobrazené modrou barvou) a 7 stupňů s nakroucenou lopatkou (zobrazené zelenou barvou).

Rychlostní trojúhelníky pro jednotlivé prizmatické stupně jsou znázorněny na Obr. 45.

Obr. 45: Rychlostní trojúhelníky pro stupně LP dílu s prizmatickou lopatkou

Parametry navržených stupňů LP dílu turbíny s nakroucenou lopatkou jsou v Tab. 40.

Tab. 40: Parametry jednotlivých stupňů LP dílu turbíny s nakroucenou lopati	kou
---	-----

Stupeň	1d	2d	3d	4d	5d	6d	7d
$D_1 = D_2(m)$	0,95	0,99	1,04	1,1	1,23	1,43	1,75
$D_2/I_2 (m/m)$	12,8	9,91	7,50	5,78	4,24	3,12	2,51
h₀(kJ/kg)	2901,2	2824,5	2744,6	2662,9	2577,3	2489,1	2399,9
<i>c</i> ₀(m/s)	82,9	114,0	116,8	119,3	137,3	144,2	150,7
H _{ad} (kJ/kg)	88,4	90,2	90,7	94,1	97,4	99,1	84,6
h _{2,ad} (kJ/kg)	2812,8	2734,2	2653,9	2568,8	2479,9	2390,0	2315,3
$h_2(kJ/kg)$	2831,0	2751,4	2670,0	2586,8	2499,5	2411,2	2336,2
<i>c</i> ₂ (m/s)	114,0	116,8	119,2	137,3	144,2	150,6	149,7
<i>p</i> ₂ (MPa)	0,25	0,16	0,095	0,053	0,028	0,0139	0,0074
<i>s</i> ₀(kJ/kg·K)	7,28	7,30	7,33	7,35	7,37	7,40	7,43
$R_{\rho}(1)$	0	0	0	0	0	0	0,25
$I_1 = I_2 (mm)$	72,5	97,9	136,7	188,4	288,0	456,8	695,0
α_1 (°)	16	16	16	18	18	18	20
$\eta_u(1)$	0,882	0,883	0,882	0,862	0,859	0,853	0,832
ξ _o (1)	0,079	0,061	0,045	0,031	0,022	0,016	0,011
$\eta_{i_SH}(1)$	0,803	0,822	0,837	0,832	0,837	0,837	0,821
$y_0(1)$	0,000	0,000	0,000	0,008	0,034	0,061	0,087
$y_2(1)$	0,000	0,000	0,008	0,034	0,061	0,087	0,107
$\eta_i(1)$	0,803	0,822	0,835	0,823	0,817	0,806	0,782

Parametry elementárních stupňů tvořících stupně s nakroucenou lopatkou jsou uvedeny v Tab. 41 rozdělené pro svou velikost do dvou částí.

Stupeň		1d	2d	3d	4d	5d	6d	7d
	$D_{2,j}$ (mm)	892,0	911,7	930,6	949,3	999,6	1064,6	1194,0
	<i>m</i> _j (kg/s)	5,8	5,7	5,3	5,1	4,8	4,5	4,4
	$R_{j}(1)$	0,03	0,04	0,05	0,07	0,10	0,14	0,39
	<i>р</i> 1, (МРа)	0,26	0,16	0,10	0,055	0,030	0,015	0,0095
	<i>u_{2,j}</i> (m/s)	210,2	214,8	219,3	223,7	235,5	250,8	281,3
<i>j</i> =1	c _{1,j} (m/s)	414,1	423,4	422,3	426,8	432,3	427,5	347,3
	<i>w_{1,i}</i> (m/s)	219,9	224,8	220,0	224,9	220,6	204,2	127,0
	<i>w_{2,j}</i> (m/s)	226,5	234,7	235,5	246,7	255,1	259,9	281,4
	c _{2,j} (m/s)	116,2	119,0	120,4	137,9	143,4	149,2	155,3
	$\eta_{u,j}(1)$	0,876	0,877	0,876	0,857	0,855	0,851	0,831
	$\beta_{2,j}$ (°)	30,6	30,3	30,4	33,6	33,7	33,9	32,0
	<i>D_{2,j}</i> (mm)	921,0	950,9	985,3	1024,7	1114,8	1247,3	1472,0
	<i>mi_j</i> (kg/s)	5,9	5,9	5,6	5,5	5,4	5,3	5,2
	$R_{j}(1)$	0,08	0,11	0,14	0,18	0,25	0,35	0,57
	<i>р</i> _{1,j} (МРа)	0,26	0,17	0,10	0,059	0,033	0,018	0,0107
	<i>u_{2,i}</i> (m/s)	217,0	224,0	232,2	241,4	262,7	293,9	346,8
j=2	<i>c</i> _{1,j} (m/s)	403,0	409,0	403,0	401,5	397,1	378,9	301,8
	<i>w_{1,j}</i> (m/s)	203,4	203,2	190,9	187,4	168,2	134,7	121,1
	<i>w_{2,j}</i> (m/s)	231,7	241,3	244,7	258,7	273,2	289,9	327,6
	c _{2,j} (m/s)	115,2	118,0	120,3	138,4	145,4	152,9	153,3
	$\eta_{u,j}(1)$	0,879	0,880	0,879	0,859	0,856	0,850	0,835
	β_{2j} (°)	29,5	29,1	29,1	31,9	31,4	30,4	26,1
	<i>D_{2,i}</i> (mm)	950,0	990,0	1040,0	1100,0	1230,0	1430,0	1750,0
	<i>m</i> _j (kg/s)	6,0	6,1	5,9	5,9	5,9	6,0	6,0
	$R_{j}(1)$	0,13	0,17	0,22	0,28	0,37	0,49	0,68
	<i>р_{1,j}</i> (МРа)	0,27	0,17	0,11	0,063	0,036	0,020	0,0114
	<i>u_{2,j}</i> (m/s)	223,8	233,3	245,0	259,2	289,8	336,9	412,3
j=3	<i>c_{1,j}</i> (m/s)	392,5	395,7	385,7	379,6	368,5	342,7	271,0
	<i>w_{1,j}</i> (m/s)	187,8	183,1	164,6	155,3	129,0	106,5	182,9
	<i>w_{2,j}</i> (m/s)	237,0	247,9	254,1	271,1	292,2	322,0	378,1
	c _{2,j} (m/s)	114,1	117,0	119,7	138,0	145,4	152,6	150,0
	$\eta_{u,i}(1)$	0,882	0,883	0,881	0,862	0,858	0,852	0,836
	$\beta_{2j}(^{\circ})$	28,5	27,9	27,7	30,0	28,9	26,7	21,3
	$D_{2,j}$ (mm)	979,0	1029,1	1094,7	1175,3	1345,2	1612,7	2028,0
	mi _j (kg/s)	6,2	6,2	6,2	6,3	6,4	6,6	6,6
	$R_{j}(1)$	0,18	0,22	0,29	0,36	0,46	0,58	0,75
	р _{1,j} (МРа)	0,27	0,18	0,11	0,066	0,038	0,021	0,0119
	u _{2,j} (m/s)	230,7	242,5	257,9	276,9	317,0	380,0	477,8
J=4	$c_{1,j}$ (m/s)	382,6	383,4	3/0,1	360,4	344,7	314,8	249,0
	$W_{1,j}$ (m/s)	1/3,0	164,5	141,3	129,4	107,1	126,3	258,3
	<u>W_{2,j} (m/s)</u>	242,3	254,6	263,7	283,9	312,0	355,6	431,6
	$c_{2,i}(m/s)$	112,9	115,8	118,8	136,9	144,3	150,6	147,4
	$\eta_{u,j}(1)$	0,885	0,886	0,884	0,865	0,861	0,854	0,833
	β_{2j} (°)	27,5	26,8	26,3	28,2	26,5	23,3	17,7

Tab. 41: Parametry jednotlivých elementárních stupňů (1/2)

Stupeř		1d	2d	3d	4d	5d	6d	7d
	$D_{2,j}$ (mm)	1008,0	1068,3	1149,4	1250,7	1460,4	1795,4	2306,0
	<i>m</i> i _j (kg/s)	6,3	6,4	6,4	6,6	6,8	7,1	7,2
	$R_{j}(1)$	0,22	0,27	0,35	0,42	0,53	0,65	0,80
	р _{1,j} (МРа)	0,28	0,18	0,11	0,068	0,040	0,022	0,0123
	<i>u_{2,j}</i> (m/s)	237,5	251,7	270,8	294,7	344,1	423,0	543,3
j=5	<i>c_{1,i}</i> (m/s)	373,3	372,0	356,0	343,5	324,7	292,6	232,7
	<i>w</i> _{1,j} (m/s)	159,1	147,4	121,3	110,9	106,4	170,7	334,3
	<i>w_{2,j}</i> (m/s)	247,7	261,3	273,4	297,0	332,6	390,6	487,3
	<i>c_{2,j}</i> (m/s)	111,7	114,6	117,3	135,5	142,6	148,2	145,6
	$\eta_{u,j}(1)$	0,887	0,888	0,887	0,867	0,863	0,855	0,827
	$\beta_{2,j}$ (°)	26,5	25,7	24,9	26,5	24,3	20,5	15,0

Tab. 41: Parametry jednotlivých elementárních stupňů (2/2)

Rychlostní trojúhelníky byly pro každý stupeň s nakroucenou lopatkou sestrojeny pro 3 elementární stupně, pro které platí:

- *j*=1: elementární stupeň obsahující patu oběžné lopatky (označení *p*)
- *j*=3: elementární stupeň obsahující střed oběžné lopatky (označení *s*)
- j=5: elementární stupeň obsahující špičku oběžné lopatky (označení \check{s})

Rychlostní trojúhelníky pro stupně s nakroucenou lopatkou (ve zmíněných řezech) jsou na Obr. 46 rozděleném pro svou velikost na dvě části.

Obr. 46: Rychlostní trojúhelníky pro stupně s nakroucenou lopatkou (1/2)

Obr. 46: Rychlostní trojúhelníky pro stupně s nakroucenou lopatkou (2/2)

Vnitřní účinnost jednotlivých částí *LP* dílu turbíny je $\eta_{i,LPI} = 87,2$ %, resp. $\eta_{i,LPII} = 88,5$ %. Tlak na výstupu z *LP* dílu turbíny získaný z jejího návrhu se od zadaného kondenzačního tlaku liší o 0,2 %.

Parametry použité při řešení tepelného schématu v následující kapitole, které byly získané ze základního návrhu parní turbíny, jsou shrnuty v Tab. 42. Optimalizace probíhala s upřesněnými hodnotami vnitřní účinnosti jednotlivých dílů turbíny při uvažování tlakových ztrát získaných z návrhu VT viz výše.

Tab. 42: Shrnutí z návrhu turbíny získaných parametrů

Díl turbíny	HP	LP I (část před odběrem)	<i>LP II</i> (část za odběrem)
η_i (%)	78,8	87,2	88,5

3.5.3 Vliv vnitřní účinnosti dílů turbíny na dosažitelný měrný čistý výkon Zatímco v předchozích kapitolách byla emisní měrná entalpie h_1 určována z měrné entalpie na vstupu do *LP* dílu turbíny h_{13} , po stanovení vnitřní účinnosti části *LP* dílu turbíny za odběrem páry $\eta_{i,LP II}$ byl její způsob určení pozměněn. Zmíněná měrná entalpie byla určena z měrné entalpie odběrové páry h_{14} podle rovnice (3.5.3.1). Měrná entalpie $h_{1,ad}$ byla určena jako měrná entalpie po adiabatické expanzi ze stavu 14 na tlak p_k .

$$h_1 = h_{14} - \left(h_{14} - h_{1,ad}\right) \cdot \eta_{i,LP\,II} \tag{3.5.3.1}$$

Po provedení optimalizace byl nejvyšší měrný čistý výkon dosažen pro parametry v jednotlivých uzlech uvedené v Tab. 43.

Uzel	t (°C)	р (MPa)	h (kJ/kg)	s (kJ∕kg·K)	x = 1 - y(1)	m (kg/s)
GT1	400,0	25,000	2578,6	5,14		1,000
GT2	388,1	24,997	2332,3	4,77		1,000
GT3	361,3	24,984	1709,4	3,82		1,000
GT4	221,8	24,956	959,0	2,49		1,000
GT5	162,5	24,942	700,9	1,94		1,000
GT6	133,4	24,936	577,6	1,65		1,000
1	40,0	0,007	2340,4	7,51	0,903	0,589
2	40,0	0,007	167,5	0,57	0,000	0,589
3	40,0	0,123	167,7	0,57		0,589
4	90,0	0,121	377,1	1,19		0,589
5	105,0	0,121	440,3	1,36	0,000	0,605
6	107,1	15,829	460,8	1,37		0,605
7	206,5	15,823	887,3	2,37		0,605
7M	206,8	15,823	888,5	2,37		0,659
8	346,3	15,794	1641,5	3,73	0,000	0,659
9	346,3	15,794	2587,2	5,26	1,000	0,659
10	385,0	15,781	2882,8	5,73		0,659
11	206,5	1,779	2566,0	5,90	0,880	0,659
11V	206,5	1,779	2715,0	6,21	0,958	0,605
11L	206,5	1,779	881,8	2,39	0,000	0,054
11P	209,9	15,823	902,2	2,40		0,054
12	346,3	1,724	3135,3	7,02		0,605
13	385,0	1,700	3220,5	7,16		0,605
14	116,7	0,121	2707,7	7,36		0,016

Tab. 43: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon

Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel spolu s měrným svorkovým a měrným čistým výkonem lze nalézt v Tab. 44.

Turbína/čerpadlo	Změna stavu	w _{ti} (kJ/kg)	mi _i (kg/s)	P_i (kW)
HP díl turbíny	10→11	316,9	0,659	208,7
ID díl turbíny	13→14	512,8	0,605	310,3
	14→1	367,4	0,589	216,3
			Σ	735,4
			P _{sv}	698,9
P _{COND}	2→3	0,1	0,589	0,1
P _{FW}	5→6	20,5	0,605	12,4
P _{SEP}	11L→11P	20,4	0,054	1,1
			Σ	13,6
			Pp	14,6
			P _{net}	684,3

Tab. 44: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel

Expanzní čára byla zakreslena do *h-s* diagramu, viz Obr. 47.

Obr. 47: Expanzní čára pro HP i LP díl turbíny

Do *t-Q* diagramu bylo zakresleno ochlazování *GT* média, viz Obr. 48. V oblasti, kde se překrývají křivky přihřívání a přehřívání pracovní látky, je přihřívání zakresleno přerušovanou čarou. *NN* do diagramu není zakreslena. Minimální teplotní rozdíl je dosažen na třech místech. Jednotkový průtok *GT* média předává pracovnímu médiu 2001,0 kW a je dochlazen na teplotu 133,4 °C.

Obr. 48: t-Q diagram ochlazování GT média

Měrný čistý výkon 684,3 kW představuje utilizační účinnost 63,7 %.

 $\underline{\eta_{ut}}\left(\%\right)$

 $P_{net,\Delta p}$ (kW)

 $\Delta P_{net,\Delta p}$ (%)

V Tab. 45 je z pohledu dosažitelného měrného čistého výkonu porovnána varianta s upřesněnými hodnotami vnitřních účinností jednotlivých dílů turbíny s variantou výchozí. Přitom obě zde porovnávané varianty uvažují tlakové ztráty výměníků tepla. Při uvažování hodnot vnitřních účinností získaných z návrhu turbíny vzrostl dosažitelný měrný výkon o 7,6%. Nárůst byl zapříčiněn vyšší vnitřní účinností *LP* dílu turbíny.

		1-tlak
Varianta	$\eta_i = 0.8$	$\eta_{i,HP} = 78,8 \%$ $\eta_{i,LPI} = 87,2 \%$ $\eta_{i,LPII} = 88,5 \%$

_

59,2

636,2

63,7

684,3

7,6

Tab. 45: Porovnání dosažitelných měrných čistých výkonů jednotlivých variant

3.6 Vliv velikosti PP a délky trubkových svazků na sledované parametry Pro posouzení vlivu velikosti PP a délky trubkových svazků na hmotnost uvažovaných VT, dosažitelný měrný čistý výkon a příkon čerpadel byl proveden pevnostní výpočet VT uvažovaných v tepelném schématu vybraného jednotlakého systému. Pro dvě sledovaná hlediska byly navrženy a porovnány dvě varianty:

• Velikost PP:

$$PP_1 = 15 K$$

$$PP_2 = 30 K$$

Maximální přípustná délka trubkových svazků

$$l_{max,a} = 6 m$$
$$l_{max,b} = 12 m$$

Takto vznikly čtyři kombinace parametrů v dalších úvahách označené jako varianty 1a, 1b, 2a, 2b (viz Tab. 46).

Varianta		Max. délka trubkových svazků l_{max}				
vana	สกเล	6 m	12 m			
מת	15 K	1a	1b			
PP	30 K	2a	2b			

Tab. 46: Souhrn porovnávaných variant

Parametry získané z návrhu VT provedeného v kapitole 3.4.6 byly doplněny parametry z jejich pevnostního výpočtu viz dále. Z těchto parametrů vyplynula hmotnost uvažovaných VT. Další sledované parametry, jako dosažitelný měrný čistý výkon nebo příkon čerpadel, vyplynuly z výpočtu tepelného schématu. Získané parametry byly pro čtyři výše uvedené varianty porovnány.

3.6.1 Postup pevnostního výpočtu výměníků tepla

V rámci pevnostního výpočtu byla pro každý dílčí VT určena: tloušťka stěny pláště, tloušťka stěny hlav (resp. hlavy a dna), tloušťka trubkovnic a rozměry přírub. U VT se dvěma pevnými trubkovnicemi byla navíc provedena kontrola pevnosti výměníku podle Doplňku 1 normy ČSN 69 0010 [28].

- Návrh minimální tloušťky stěny pláště probíhal podle rovnice (3.4.1.1). Skutečná tloušťka pláště s_{shell} vznikla jejím zvětšením o korozní přídavek 1 mm a výběrem rozměru z řady rozměrů vyráběných tlouštěk plechů. Tloušťka pláště byla z důvodu dostatečné tuhosti volena $s_{shell} \geq 10 \ mm$.
- Byly uvažovány půlkulové hlavy VT. Jejich minimální tloušťka stěny byla určena jako tloušťka půlkulového dna podle ČSN 69 0010 [28] (rovnice (3.6.1.1)). Bylo předpokládáno $D_{i,head} = D_{i,shell}$. Velikost součinitele β byla určena z diagramu závislosti $\beta = f\left(\frac{R_{hea}}{D_{e,head}}\right)$, přičemž R_{head} je vnější poloměr klenutí dna (hlavy). Pro půlkulová dna platí $\beta = 1,1$. Skutečná tloušťka stěny s_{head} byla opět získána z řady vyráběných rozměrů při uvažování korozního přídavku. Výpočtový vnitřní přetlak byl v tomto případě určen jako $p_{výp} = p_{head} 0,1 MPa$, přičemž p_{hea} značí tlak média v dané hlavě VT. V případě uvažování VT s U-trubkami byla určena tloušťka jeho dna shodným způsobem.

$$s_{0,head} = \frac{D_{e,head} \cdot p_{v\circ p} \cdot \beta}{4\sigma_D}$$
(3.6.1.1)

 Příruby spojující plášť VT s jeho hlavami byly navrženy jako krkové podle normy ČSN 69 0010 [28], která používá označení rozměrů zobrazené na Obr. 49:

Obr. 49: Krková příruba dle ČSN 69 0010 [28]

Dovolené namáhání šroubů bylo uvažováno $\sigma_{D,š} = 350 MPa$. Bylo uvažováno hřebenové těsnění z nerezu. Skutečná tloušťka těsnění b_t byla zvolena a z ní byla určena výpočtová šířka těsnění $b_{výp}$ z diagramu závislosti $b_{výp} = f(b_t)$. Výpočtový průměr těsnění D_t byl určen jako $D_t = D_{e,gasket} - 2b_{výp}$.

uvažováno: m = 4,25. Utahovací síla F_U je určena podle rovnice (3.6.1.5), přičemž q_t je

Síla od tlaku F_1 byla určena podle rovnice (3.6.1.2) a síla těsnící F_2 podle rovnice (3.6.1.3). Provozní síla F_P pak podle rovnice (3.6.1.4), přičemž m je součinitel těsnění určený z tabulky podle daného typu těsněni. Pro nerezové hřebenové těsnění, které bylo

parametr charakterizující daný typ těsnění získaný z příslušné tabulky. Pro nerezové hřebenové těsnění $q_t = 91 MPa$.

$$F_1 = \frac{1}{4}\pi D_t^2 p_{tube} \tag{3.6.1.2}$$

$$F_2 = 2\pi \cdot D_t \cdot b_{v \circ p} \cdot m \cdot p_{tube} \tag{3.6.1.3}$$

$$F_P = F_1 + F_2 \tag{3.6.1.4}$$

$$F_U = \pi \cdot D_t \cdot b_{\nu \circ p} \cdot q_t \tag{3.6.1.5}$$

Těsnění bylo kontrolováno na měrný tlak (rovnice (3.6.1.6)):

$$\frac{F_P}{\pi D_t b_t} \le q_t \tag{3.6.1.6}$$

Tloušťka krku s_2 byla určena jako $s_2 = \alpha_f \cdot s_{shell}$, přičemž α_f bylo získáno z diagramu závislosti $\alpha_f = f(s_{shell})$.

Délka krku l_k byla určena $l_k = \beta_f \sqrt{D_{i,shell} \cdot s_{shell}}$ a β_f bylo získáno z diagramu závislosti $\beta_f = f(s_{shell})$.

Celková potřebná plocha šroubů byla určena jako $S_{\check{s}} = \frac{F_P}{\sigma_{D,\check{s}}}$. Následně byl zvolen rozměr šroubů $d_{\check{s}}$ a počet šroubů $n_{\check{s}}$ tak, aby celková plocha nosných průřezů šroubů byla větší než hodnota $S_{\check{s}}$.

Průměr roztečné kružnice D_2 byl určen podle rovnice (3.6.1.7), přičemž Δ , e a g jsou charakteristiky použitých šroubů získané z příslušné tabulky pro daný $d_{\tilde{s}}$.

$$D_2 = D_{i,shell} + 2s_2 + 2\Delta + e \tag{3.6.1.7}$$

Vnější průměr listu (příruby) D_1 byl určen jako $D_1 = D_2 + e + g$

Opravný součinitel na rozteč šroubů $\eta_{\tilde{s}}$ byl určen dle rovnice (3.6.1.8). Přitom $t_{\tilde{s}}$ bylo určeno dle rovnice (3.6.1.9)

$$\eta_{\check{s}} = \sqrt[3]{\frac{t_{\check{s}}}{4d_{\check{s}}}} \tag{3.6.1.8}$$

$$t_{\rm s} = \frac{\pi D_2}{n_{\rm s}} \tag{3.6.1.9}$$

Rameno síly F_1 bylo určeno jako $a_1 = \frac{1}{2} (D_2 - D_{i,shell} - s_2)$. Rameno síly F_2 bylo určeno jako $a_2 = \frac{1}{2} (D_2 - D_t)$.

Provozní moment M_P byl určen podle rovnice (3.6.1.10). Výpočtový moment M_f je jemu rovný.

$$M_f = M_P = F_1 a_1 + F_2 a_2 \tag{3.6.1.10}$$

Pomocné hodnoty *A*, *B*, *Z* jsou určeny podle rovnic (3.6.1.11) až (3.6.1.13). Součinitel *K*_š se pro šrouby větší než M30 volí *K*_š = 1. Průměr díry pro šroub $D_{otvor,š}$ byl určen z tabulky pro daný rozměr šroubu. κ_{ocel} bylo určeno z tabulky jako $\kappa_{ocel} = 1$.

$$A = (D_{i,shell} + s_2) \cdot (s_2^2 - 0.25s_1^2)$$
(3.6.1.11)

$$B = D_1 - D_{i,shell} - K_{\check{s}} \cdot D_{otvor,\check{s}}$$
(3.6.1.12)

$$Z = 1,275 \cdot \frac{M_f}{\sigma_D} \kappa_{ocel} \tag{3.6.1.13}$$

Tloušťka listu příruby s_f byla získána z předběžné hodnoty $s_{0,f}$ určené podle rovnice (3.6.1.14).

$$s_{0,f} = \eta_{\breve{s}} \sqrt{\frac{Z - A}{B}}$$
 (3.6.1.14)

• U VT s pevnými trubkovnicemi byla uvažována trubkovnice vevařená do příruby a přenášející okrajový moment. Trubky byly do trubkovnice zaválcovány. Je předpokládáno společné působení tlaku GT a pracovního média. Tloušťka trubkovnice s_{ts} byla kontrolována dle ČSN 69 0010 [28], a tedy musela vyhovět následujícím podmínkám (kontrolám), přičemž $p_{výp} = p_{tube} - p_{shell}$:

Kontrola neotrubkované plochy byla provedena podle rovnice (3.6.1.15), přičemž C = 0,5. Kontrolovány byly plochy mezi trubkami, kde $D_v = a \cdot D_{e,tube} \frac{2\sqrt{3}}{3}$, a místa, kde trubky nesahají až k plášti.

$$s_{ts} > C \cdot D_v \sqrt{\frac{p_{v \circ p}}{\sigma_D}}$$
(3.6.1.15)

Kontrola na technologické hledisko pro ocel při rozválcování trubek byla provedena podle rovnice (3.6.1.16).

$$s_{ts} > \frac{4,35D_{e,tube} + 15}{a \cdot D_{e,tube} - D_{otvor,tube}} > 10 \, mm \tag{3.6.1.16}$$

Přitom je uvažován průměr otvoru pro trubku: $D_{otvor,tube} = D_{e,tube} + 0,2 mm$.

Kontrola trubek na vytažení byla provedena podle rovnice (3.6.1.17), přičemž pro zaválcování do jedné drážky je uvažováno napětí ve spoji trubky a trubkovnice $q_{ts} = 220 MPa$. Maximální délka zaválcování trubky byla uvažována $l_z = s_{ts} - 5 mm$. Průměr D_t byl určen, viz návrh příruby.

$$F_{tube} < 0.1 D_{e,tube} l_z q_{ts} \tag{3.6.1.17}$$

Kontrola pevnosti trubky na osovou sílu byla provedena podle rovnice (3.6.1.18):

$$\frac{F_{tube}}{\pi (D_{e,tube} - s_{tube}) s_{tube}} \le \frac{\sigma_D}{2}$$
(3.6.1.18)

Síla v trubkách F_{tube} přitom byla určena ze silové rovnováhy trubkovnice, na kterou působí síla v trubkách, v plášti a přetlak v hlavě VT (rovnice (3.6.1.19). Tato rovnice byla doplněna deformační podmínkou vycházející z rozdílných teplotních dilatací trubkového svazku a pláště (rovnice (3.6.1.22)).

$$F_{tube}n_{tube} = p_{výp} \left(\frac{\pi}{4}D_t^2 - n_{tube}\frac{\pi}{4}D_{e,tube}^2\right) + F_{shell}$$
(3.6.1.19)

$$F_{tube} = \frac{E \cdot \frac{n}{4} \left(D_{e,tube}^2 - D_{i,tube}^2 \right)}{l_{real}} \Delta l_{tube}$$
 3.6.1.20)

$$F_{shell} = \frac{E \cdot \frac{n}{4} \left(D_{e,shell}^2 - D_{i,shell}^2 \right)}{l_{real}} \Delta l_{shell}$$
 3.6.1.21)

$$\Delta l_{shell} + \Delta l_{tube} = \alpha_t l_{real} (\Delta t_{tube} - \Delta t_{shell})$$
(3.6.1.22)

$$\Delta t_{tube} = t_{tube} - 20 \,^{\circ}C \tag{3.6.1.23}$$

$$\Delta t_{shell} = t_{shell} - 20 \,^{\circ}C \tag{3.6.1.24}$$

Střední teplota trubky t_{tube} byla určena ze znalosti (středních) teplot médií proudících uvnitř i vně trubek, součinitele prostupu tepla k a součinitelů přestupu tepla α_{tube} a α_{shell} . Teplota pláště t_{shell} byla uvažována shodná se střední teplotou média proudící v mezitrubkovém prostoru (předpoklad: teplo není sdíleno s okolím). Youngův modul byl uvažován $E = 207 \, GPa$. Součinitel teplotní roztažnosti byl uvažován $\alpha_t = 1,3 \cdot 10^{-5} \, K^{-1}$.

Kontrola pevnosti trubky – součinitel bezpečnosti při vzpěru byl určen podle rovnice (3.6.1.25).

$$x_{st} = 3.9E \frac{\left(D_{e,tube} - s_{tube}\right)^3 s_{tube}}{F_{tube} \cdot l_{baffle}^2} \wedge x_{st} \ge 3$$
(3.6.1.25)

Z kontroly trubek na vzpěr vyplynula nutnost doplnění do VT příčných přepážek zkracujících vzpěrnou délku trubek. Rozteč těchto přepážek l_{baffle} byla určena z rovnice (3.6.1.26). Jelikož l_{baffle} vycházela velká (zpravidla >1 m) a počet přepážek tedy malý, byly v rámci zjednodušení zanedbány jejich hmotnost, tlaková ztráta i vliv na velikost součinitele prostupu.

$$l_{baffle} < \sqrt{4 \cdot \pi^2 \frac{E \cdot J_{tube}}{x_{st} \cdot F_{tube}}}$$
(3.6.1.26)

Trubkovnice je rovněž předmětem kontroly v rámci kontroly pevnosti výměníku s pevnými trubkovnicemi viz dále.

• U VT s U-trubkami musela trubkovnice vyhovět následujícím podmínkám dle ČSN 69 0010 [28], přičemž $p_{výp} = p_{tube} - p_{shell}$:

Minimální tloušťky trubkovnice byla navržena podle rovnice (3.6.1.27). Bylo uvažováno současné působení tlaků na obou stranách trubkovnice. Hodnota součinitele C_V byla určena podle rovnice (3.6.1.28), hodnota $C_3 = 0,45$.

$$s_{0,ts} = C_3 C_V D_t \sqrt{\frac{p_{v \circ p}}{\sigma_D}}$$

$$C_V = \frac{1}{\sqrt{1 - n_{tube} \left(\frac{D_{otvor}}{D_t}\right)^2}}$$
(3.6.1.27)
(3.6.1.28)

Podmínka plynoucí z okrajového momentu byla provedena podle rovnice (3.6.1.29), přičemž C_4 je odečteno z diagramu závislosti $C_4 = f\left(\frac{D_2}{D_t}\right)$. Utahovací síla F_u byla určena podle rovnice (3.6.1.5).

$$s_{ts} > 1,18 \cdot C_4 \sqrt{\frac{F_u}{\sigma_D \cdot 1,5}}$$
 (3.6.1.29)

Kontrola na technologické hledisko je shodná s kontrolou prováděnou pro VT s pevnými trubkovnicemi.

Kontrola trubek na vytažení je shodná s kontrolou prováděnou pro VT s pevnými trubkovnicemi. Rozdílný je pouze výpočet síly v trubce, jelikož jsou zde rozdílné teplotní dilatace pláště a trubkového svazku kompenzovány. Síla F_{U-t} je určena podle rovnice (3.6.1.30).

$$F_{U-tube} = \frac{\pi}{4} D_{e,tube}^2 p_{v \circ p}$$
(3.6.1.30)

Kontrola pevnosti trubky na osovou sílu je shodná s kontrolou prováděnou pro VT s pevnými trubkovnicemi. Síla v trubce F_{U-t} byla určena dle rovnice (3.6.1.30). Kontrola na vzpěr vzhledem k $p_{tube} > p_{shell}$ nebyla provedena.

 Pro výměníky s pevnými trubkovnicemi byla provedena kontrola pevnosti podle ČSN 69 0010 Doplněk 1 [28]:

Byl určen součinitel zeslabení trubkovnice podle rovnice (3.6.1.31).

$$\Omega = \frac{\frac{\pi}{4} \cdot \left(\left(D_{i,shell} + s_2 \right)^2 - n_{tube} \cdot D_{e,tube}^2 \right)}{\frac{\pi}{4} \cdot \left(D_{i,shell} + s_2 \right)^2} = \frac{S_2}{S_1}$$
(3.6.1.31)

Střední tloušťka pláště byla určena dle (3.6.1.32).

$$\bar{s}_{shell} = \frac{2l_k s_2 + l_{VT,1} s_{shell}}{l_{VT,1}}$$
(3.6.1.32)

Poměr tuhosti pláště a trubek A_t byl určen podle rovnice (3.6.1.33).

$$A_{t} = \frac{2 \cdot \pi \cdot (D_{i,shell} + s_{2})\bar{s}_{shell}}{S_{t}}$$
(3.6.1.33)

$$S_t = n_{tube} \cdot \pi \cdot (D_{i.tube} + s_{tube}) \cdot s_{tube}$$
(3.6.1.34)

Fiktivní tlak \bar{p} byl určen podle rovnice (3.6.1.35), redukovaný tlak \bar{q} podle rovnice (3.6.1.38), okrajový moment M_o podle rovnice (3.6.1.39).

$$\bar{p} = p_{shell} - p_{tube} \left(\frac{S_2 + S_t}{S_2} + \frac{1}{A_t \Omega} \right) + \left[(\alpha_t \Delta t_{tube} E - \alpha_t \Delta t_{shell} E) + 0.3 \frac{p_{shell} \cdot (D_{i,shell} + s_2)}{\overline{s}_{shell}} + 0.3 \frac{(p_{shell} - p_{tube})D_{e,tube}}{2 \cdot s_{tube}} \right] \frac{S_t}{S_2}$$

$$\Delta t_{tube} = t_{tube} - 20 \,^{\circ}C \qquad (3.6.1.36)$$

$$\Delta t_{shell} = t_{shell} - 20 \,^{\circ}C \qquad (3.6.1.37)$$

$$\bar{q} = p_{shell} \cdot \Omega - p_{tube} \left(\Omega + \frac{S_1}{S_2} \right)$$
(3.6.1.38)

$$M_o = \frac{p_{tube}}{D_1} \left(\frac{1}{4} D_t^2 a_1 + 2D_t b_{v \circ p} m \cdot a_2 \right)$$
(3.6.1.39)

Poloměr trubkovnice v měrných délkách α_{ts} byl určen z rovnice (3.6.1.40). Přitom pro ocel $e_{ts} = 1$ a μ_{ts} bylo odečteno z diagramu závislosti $\mu_{ts} = f\left(\frac{l_{VT,1}}{s_{ts}}\right)$. Na základě hodnoty parametru α_{ts} bylo rozhodnuto o dalším postupu výpočtu.

$$\alpha_{ts} = \frac{D_{i,shell} + s_2}{s_{ts} \cdot \mu_{ts} \cdot e_{ts}} \tag{3.6.1.40}$$

Pro všechny uvažované VT bylo $\alpha_{ts} < 4$. Napětí na okraji trubkovnice tedy bylo určeno podle rovnice (3.6.1.41), napětí v trubkách podle rovnice (3.6.1.42) a napětí v plášti podle rovnice (3.6.1.43). Přitom Φ_2 bylo určeno z diagramu závislosti $\Phi_2 = f(\Omega)$.

$$\sigma_a = \frac{6M_o}{s_{ts}^2\Omega} \tag{3.6.1.41}$$

$$\sigma_t = \frac{S_1}{S_t} (\bar{q} - \bar{p}\Omega\Phi_2) \tag{3.6.1.42}$$

$$\sigma_p = \frac{D_{i,shell} + s_2}{2 \cdot s_{shell}} \cdot (\overline{p}\Omega \Phi_2 + p_{tube})$$
(3.6.1.43)

Aby daný *VT* vyhověl prováděné kontrole, musel splnit podmínky (3.6.1.44) až (3.6.1.48).

$$|\sigma_a| \le \sigma_D \cdot 1,5 \tag{3.6.1.44}$$

$$|\sigma_t| \le \sigma_D \tag{3.6.1.45}$$

$$|\sigma_t| \le \frac{l_z}{s_{tube}} 0,065q_{ts} \tag{3.6.1.46}$$

$$|\sigma_t| \le E \frac{(D_{e,tube} - s_{tube})^2}{l_{baffle}^2}$$
(3.6.1.47)

$$\sigma_p \le \sigma_D \tag{3.6.1.48}$$

Kontrolovány byly všechny VT. V rámci daného VT byla kontrola provedena vždy pro nejnepříznivěji namáhaný dílčí VT, tedy dílčí výměník s největším Δt_{LN} . Trubky dílčích VT s velkým Δt_{LN} byly namáhány velkými tlakovými silami plynoucími z rozdílných teplotních dilatací svazku trubek a pláště. V případě, že dílčí VT výše zmíněným podmínkám (kontrolám) nevyhověl, byl celý VT navržen jako VT skládající se z dílčích VT s U-trubkami kompenzujícími rozdílné teplotní dilatace. V rámci přibližného výpočtu byl znovu proveden pouze pevnostní výpočet VT (tepelný výpočet znovu proveden nebyl za přijetí zjednodušujících předpokladů, viz dále). V rámci něj byl původně předpokládaný dílčí protiproudý 1-1 VT nahrazen dvěma (z pohledu média v plášti i trubkách) paralelně řazenými dílčími VT s U-trubkami s podélnou přepážkou v plášti se shodným trubkovým plánem (geometrií). Tím byly přibližně zachovány rychlosti obou médií (v porovnání s výměníky typu 1-1). V rámci přibližného řešení byly pro VT s U-trubkami předpokládány shodné hodnoty součinitelů přestupu tepla (a tím i potřebné teplosměnné plochy, resp. délky trubek) a tlakových ztrát. Délka trubek dílčích VT byla pro oba typy VT uvažována shodná, délka dílčího výměníku s U-trubkami je tím pádem přibližně poloviční. Zmíněné varianty zapojení dílčích VT (resp. nahrazení 1-1 VT pomocí VT s U-trubkami) jsou zobrazeny na Obr. 50. Výsledný zvolený typ výměníku je pro každý z navržených VT uvedený dále v souhrnné tabulce pro danou variantu, viz Tab. 47 až Tab. 50.

Obr. 50: Schéma nahrazení dílčího 1-1 výměníku tepla dvěma VT s U-trubkami

3.6.2 Výpočet přibližné hmotnosti výměníků tepla

Výměníky tepla byly navrženy podle postupu popsaného v kapitole 3.4.1. Pro potřeby výpočtu jejich přibližné hmotnosti byly tyto parametry doplněny parametry získanými z pevnostního výpočtu *VT* provedeného podle postupu uvedeného v kapitole 3.6.1.

Přibližná hmotnost dílčího výměníku tepla $m_{VT,1,i}$ byla zjednodušeně určena podle rovnice (3.6.2.2) jako součet hmotností jeho pláště $m_{shell,i}$, trubkového svazku $m_{tb,i}$, hmotnosti hlav VT $m_{head,i}$ (resp. hlavy a dna v případě dílčího VT s U-trubkami), hmotnosti trubkovnic $m_{ts,i}$ a hmotnosti přírub spojujících hlavy VT s jeho pláštěm $m_{f,i}$.

Celková hmotnost uvažovaných VT m_{VT} pak byla určena jako součet hmotností dílčích VT podle rovnice (3.6.2.1). Přitom i = EKO1, EKO2, EKO3, ...

$$m_{VT} = \sum_{i} m_{VT,i} = \sum_{i} n_{VT,i} \cdot m_{VT,1,i}$$
(3.6.2.1)

 $m_{VT,1,i} = m_{shell,i} + m_{tb,i} + m_{head,i} + m_{ts,i} + m_{f,i}$ (3.6.2.2)

Hustota nerezové oceli byla uvažována $\rho_{Fe} = 7900 \ kg/m^3$.

Součet hmotnosti trubkového svazku a pláště dílčího VT byl určen podle rovnice (3.6.2.3). Hodnota součinitele $k_{L,i}$ zohledňujícího poměr délky trubek $l_{VT,1,i}$ a pláště $l_{shell,i} = k_{L,i} \cdot l_{VT,1,i}$ byla uvažována pro VT s pevnými trubkovnicemi $k_{L,i} = 1$ a pro VT s U-trubkami $k_{L,i} = \frac{1}{2}$.

$$m_{shell,i} + m_{tb,i} = \rho_{Fe} \cdot l_{VT,1,i} \cdot \frac{\pi}{4} \left(k_{L,i} \cdot (D_e^2 - D_i^2)_{shell,i} + n_{tube,i} (D_e^2 - D_i^2)_{tube,i} \right) \quad (3.6.2.3)$$

Celková hmotnost půlkulových hlav dílčího VT (resp. hlavy a dna) byla určena podle rovnice (3.6.2.4). Výměníky s dvěma pevnými trubkovnicemi mají tloušťky stěn obou hlav $(s'_{head,i} a s''_{head,i})$ shodné. U VT s U-trubkami se tloušťka stěny hlavy (s'_{hea}, i) a dna $(s''_{head,i})$ liší, neboť jsou namáhány jinou velikostí vnitřního přetlaku.

$$m_{head,i} = \rho_{Fe} \cdot \frac{1}{2} \cdot \pi \left(s'_{head,i} (D_{i,shell,i} + s'_{head,i})^2 + s''_{head,i} (D_{i,shell,i} + s''_{head,i})^2 \right) \quad (3.6.2.4)$$

Celková hmotnost trubkovnic dílčího VT $m_{ts,i}$ byla určena podle rovnice (3.6.2.5). Počet trubkovnic $n_{ts,i}$ se liší v závislosti na typu uvažovaného výměníku. Pro výměníky s pevnými trubkovnicemi $n_{ts,i} = 2$, pro výměníky s U-trubkami $n_{ts,i} = 1$.

$$m_{ts,i} = n_{ts,i} \cdot \rho_{Fe} \cdot s_{ts,i} \cdot \left(\frac{\pi}{4} D_{i,shell,i}^2 - n_{tube,i} \cdot \frac{\pi}{4} D_{e,tube,i}^2\right)$$
(3.6.2.5)

Celková hmotnost uvažovaných přírub dílčího VT $m_{f,i}$ byla určena podle rovnice (3.6.2.6). Počet přírub $n_{f,i}$ se liší v závislosti na typu užitého výměníku. Pro výměníky s pevnými trubkovnicemi $n_{f,i} = 4$, pro výměníky s U-trubkami $n_{f,i} = 2$. V rámci zjednodušení je vliv zaoblení hran na výslednou hmotnost příruby zanedbán. Hmotnost příruby tedy byla určena jako součet hmotnosti jejího listu a krku. $D_{1,i}$ v tomto případě značí vnější průměr listu příruby, viz Obr. 49.

$$m_{f,i} = n_{f,i} \cdot \rho_{Fe} \cdot \left(s_{f,i} \cdot \frac{\pi}{4} (D_{1,i}^2 - D_{i,shell,i}^2 - n_{\xi,i} d_{\xi,i}^2) + l_{k,i} \\ \cdot \frac{\pi}{4} ((D_{i,shell,i} + 2s_{shell,i})^2 - D_{i,shell,i}^2 \\ + \frac{1}{2} ((D_{i,shell,i} + 2s_{2,i})^2 - (D_{i,shell,i} + 2s_{shell,i})^2)) \right)$$
(3.6.2.6)

3.6.3 Přehled parametrů pro jednotlivé varianty

V Tab. 47 byly shrnuty parametry dílčích VT spolu s celkovou hmotností navržených VT pro variantu 1a ($PP_1 = 15 K$; $l_{max,a} = 6 m$). Zmíněná tabulka obsahuje rovněž přehled parametrů získaných z pevnostního výpočtu VT. U každého VT bylo uvedeno, zda byl navržen jako 1-1 VT s pevnými trubkovnicemi (1-1), nebo musel být z pevnostních důvodů navržen jako výměník s U-trubkami (*U-trubky*).

Varianta <i>1a</i>								
Výměník <i>i</i>	EKO1	EKO2	ЕКОЗ	EV	SH	RH1	RH2	
Typ VT	U-trubky	1-1	1-1	U-trubky	1-1	U-trubky	U-trubky	
$D_{i,tube,i}$ (mm)	18,6	21	21	21	21	18,6	18,6	
$n_{tube,i}$ (1)	62	124	124	199	408	90	90	
<i>s_{tube,i}</i> (mm)	3,2	2	2	2	2	3,2	3,2	
D _{i,shell,i} (mm)	378	378	378	726	663	620	620	
<i>s_{shell,i}</i> (mm)	10	30	30	55	50	10	10	
$l_{VT,1,i}$ (m)	4,50	6,00	6,00	5,50	4,70	5,70	5,70	
$m_{shell,i} + m_{tb,i} (\mathrm{kg})$	699,7	2 672,1	2 672,1	4 181,3	6 347,7	1 333,8	1 333,8	
s' _{head,i} (mm)	30	30	30	50	45	45	45	
$s_{head,i}^{\prime\prime}$ (mm)	10	30	30	35	45	10	10	
$m_{head,i}(\mathrm{kg})$	74,7	123,9	123,9	643,4	567,8	270,9	270,9	
$s_{f,i}$ (mm)	110	105	105	185	180	160	160	
$m_{f,i}$ (kg)	402,9	738,3	738,3	1 694,7	2 803,7	673,1	673,1	
$s_{ts,i}$ (mm)	150	120	120	170	190	190	190	
$m_{ts,i}$ (kg)	60,9	97,4	97,4	293,6	435,2	320,5	320,5	
$m_{VT,1,i}(\mathrm{kg})$	1 238,2	3 631,7	3 631,7	6 812,9	10 154,3	2 598,3	2 598,3	
$n_{VT,i}(1)$	2	4	12	4	2	30	8	
$\overline{m_{VT,i}}$ (kg)	2 476,4	14 526,8	43 580,5	27 251,6	20 308,7	77 948,5	20 786,3	

Tab. 47: Přehled parametrů VT pro variantu 1a

Celková hmotnost všech uvažovaných VT v tomto případě činila 206 879 kg. Dosažitelný měrný čistý výkon této varianty při uvažování tlakových ztrát a vnitřní účinnosti dílů turbíny získané z jejího návrhu byl 683,9 kW. *t-Q* diagram a expanzní čára pro varianty 1a a 1b jsou prakticky totožné s těmi uvedenými v kapitole 3.5.3, a proto v této části nebyly znovu prezentovány.

V Tab. 48 byly shrnuty parametry dílčích VT spolu s celkovou hmotností navržených VT pro variantu 1b ($PP_1 = 15 K$; $l_{max,b} = 12 m$). Zmíněná tabulka obsahuje rovněž přehled parametrů získaných z pevnostního výpočtu VT. U každého výměníku tepla byl rovněž uveden jeho typ (1-1 nebo U-trubky).

Celková hmotnost všech uvažovaných VT v tomto případě činila 165 650 kg. Pokles celkové hmotnosti v porovnání s variantou 1a (o 19,9 %) byl způsoben větší dovolenou délkou trubkového svazku (tedy nižším počtem VT), z níž plyne vyšší hodnota poměru $\frac{\sum m_{shell,i} + m_{tb,i}}{m_{VT}}$ – při srovnatelné hmotnosti pláště a trubkového svazku ($\sum m_{shell,i} + m_{tb,i}$) byla výsledná hmotnost VT (m_{VT}) nižší.

Varianta 1b								
Výměník <i>i</i>	EKO1	EKO2	ЕКОЗ	EV	SH	RH1	RH2	
Typ VT	U-trubky	1-1	1-1	U-trubky	1-1	U-trubky	U-trubky	
D _{i,tube,i} (mm)	18,6	21	21	21	21	18,6	18,6	
$n_{tube,i}$ (1)	62	124	124	199	408	90	90	
<i>s_{tube,i}</i> (mm)	3,2	2	2	2	2	3,2	3,2	
D _{i,shell,i} (mm)	378	378	378	726	663	620	620	
<i>s_{shell,i}</i> (mm)	10	30	30	55	50	10	10	
$l_{VT,1,i}$ (m)	4,50	10,30	10,30	11,00	9,30	10,60	10,60	
$m_{shell,i} + m_{tb,i} (\mathrm{kg})$	699,7	4 587,0	4 587,0	8 362,5	12 560,4	2 480,4	2 480,4	
$s'_{head,i}$ (mm)	30	30	30	50	45	45	45	
$s_{head,i}^{\prime\prime}$ (mm)	10	30	30	35	45	10	10	
$m_{head,i}({ m kg})$	74,7	123,9	123,9	643,4	567,8	270,9	270,9	
<i>s_{f,i}</i> (mm)	110	105	105	185	180	160	160	
$m_{f,i}$ (kg)	402,9	738,3	738,3	1 694,7	2 803,7	673,1	673,1	
$s_{ts,i}$ (mm)	150	120	120	170	190	190	190	
$m_{ts,i}~(\mathrm{kg})$	60,9	97,4	97,4	293,6	435,2	320,5	320,5	
$m_{VT,1,i}$ (kg)	1 238,2	5 546,7	5 546,7	10 994,2	16 367,0	3 744,9	3 744,9	
$n_{VT,i}(1)$	2	2	7	2	1	16	4	
$m_{VT,i}$ (kg)	2 476,4	11 093,4	38 826,8	21 988,3	16 367,0	59 918,1	14 979,5	

Tab. 48: Přehled parametrů VT pro variantu 1b

Dosažitelný měrný čistý výkon této varianty za předpokladů shodných s variantou 1*a* byl 685,0 kW. Drobný nárůst této hodnoty (přibližně o 0,2 %) v porovnání s variantou 1*a* byl způsoben nižšími hodnotami (místních) tlakových ztrát plynoucími rovněž z nižšího počtu dílčích *VT*.

V Tab. 49 byly shrnuty parametry dílčích VT spolu s celkovou hmotností navržených VT pro variantu 2a ($PP_2 = 30 K$; $l_{max,b} = 6 m$). Zmíněná tabulka obsahuje rovněž přehled parametrů získaných z pevnostního výpočtu VT. U každého VT byl opět uveden jeho typ.

Celková hmotnost všech uvažovaných VT v tomto případě činila 118 454 kg. Pokles celkové hmotnosti v porovnání s variantou 1*a* (o 42,7 %) byl způsoben menší potřebnou teplosměnnou plochou plynoucí z vyššího Δt_{LN} spolu s nižším admisním tlakem, ze kterého u některých VT plynula nižší potřebná tloušťka pláště, resp. dna.

Dosažitelný měrný čistý výkon této varianty za předpokladů shodných s variantou 1*a* byl 645,1 kW. To představuje pokles o 5,7 % v porovnání s variantou 1*a*. Tento pokles je zapříčiněn dvojnásobnou hodnotou *PP* uvažovanou v tomto případě (v porovnání s 1*a*), v důsledku níž jednotkový průtok *GT* média do oběhu předává pouze 1932 kW tepla (pokles o přibližně 3,4 % oproti 1*a*), jak je patrné z t-Q diagramu na Obr. 51. Expanzní čára pro variantu 2*a* byla zobrazena v h-s diagramu na Obr. 52.

Varianta <i>2a</i>								
Výměník i	EKO1	EKO2	ЕКОЗ	EV	SH	RH1	RH2	
Typ VT	U-trubky	U-trubky	1-1	U-trubky	1-1	U-trubky	U-trubky	
$D_{i,tube,i}$ (mm)	18,6	21	21	21	21	18,6	18,6	
$n_{tube,i}$ (1)	62	62	124	199	408	90	90	
<i>s_{tube,i}</i> (mm)	3,2	2	2	2	2	3,2	3,2	
D _{i,shell,i} (mm)	378	378	378	726	663	620	620	
<i>s_{shell,i}</i> (mm)	10	25	25	50	45	10	10	
$l_{VT,1,i}$ (m)	3,70	6,00	6,00	4,00	4,80	6,00	6,00	
$m_{shell,i} + m_{tb,i} (\mathrm{kg})$	575,3	1 1 7 4,8	2 349,7	2 834,7	6 031,3	1 404,0	1 404,0	
$s'_{head,i}$ (mm)	30	30	30	50	45	45	45	
$s_{head,i}^{\prime\prime}$ (mm)	10	15	30	35	45	10	10	
$m_{head,i}({ m kg})$	74,7	90,7	120,9	635,2	559,8	270,9	270,9	
$s_{f,i}$ (mm)	110	105	105	185	180	160	160	
$m_{f,i}$ (kg)	402,9	340,0	669,4	1 694,7	2 636,7	673,1	673,1	
$s_{ts,i}$ (mm)	150	110	120	170	190	190	190	
$m_{ts,i}~(\mathrm{kg})$	60,9	44,6	97,4	293,6	435,2	320,5	320,5	
$m_{VT,1,i}$ (kg)	1 113,8	1 650,1	3 237,4	5 458,1	9 663,0	2 668,5	2 668,5	
$n_{VT,i}(1)$	2	4	6	4	1	18	4	
$m_{VT,i}$ (kg)	2 227,6	6 600,5	19 424,2	21 832,4	9 663,0	48 032,7	10 673,9	

Tab. 49: Přehled parametrů VT pro variantu 2a

Obr. 51: t-Q diagram ochlazování GT média (varianta 2a)

V Tab. 50 byly shrnuty parametry dílčích VT spolu s celkovou hmotností navržených VT pro variantu 2b ($PP_2 = 30 K$; $l_{max,b} = 12 m$). Zmíněná tabulka obsahuje rovněž přehled parametrů získaných z pevnostního výpočtu VT. U každého VT byl uveden jeho typ.

Celková hmotnost všech uvažovaných VT v tomto případě činila 96 387 kg. Pokles celkové hmotnosti v porovnání s variantou 2a (o 18,6 %) byl způsoben opět vyšší hodnotou poměru $\frac{\sum m_{shell,i}+m_{tb,i}}{m_{vT}}$.

Obr. 52: Expanzní čára pro HP i LP díl turbíny (varianta 2a)

Dosažitelný měrný čistý výkon této varianty za předpokladů shodných s variantou 1*a* byl 645,7 kW. Drobný nárůst výkonu oproti 2*a* byl způsoben opět menšími hodnotami místních ztrát (viz varianta 1*b*). *t*-*Q* diagram a expanzní čára pro variantu 2*b* jsou prakticky totožné s těmi příslušejícími variantě 2*a*, a proto v této části nebyly prezentovány.

Varianta 2b								
Výměník i	EKO1	EKO2	ЕКОЗ	EV	SH	RH1	RH2	
Typ VT	U-trubky	U-trubky	1-1	U-trubky	1-1	U-trubky	U-trubky	
D _{i,tube,i} (mm)	18,6	21	21	21	21	18,6	18,6	
$n_{tube,i}$ (1)	62	62	124	199	408	90	90	
<i>s_{tube,i}</i> (mm)	3,2	2	2	2	2	3,2	3,2	
D _{i,shell,i} (mm)	378	378	378	726	663	620	620	
<i>s_{shell,i}</i> (mm)	10	25	25	50	45	10	10	
$l_{VT,1,i}$ (m)	3,70	12,00	12,00	8,00	4,80	10,80	10,80	
$m_{shell,i} + m_{tb,i} (\mathrm{kg})$	575,3	2 349,7	4 699,3	5 669,4	6 031,3	2 527,2	2 527,2	
<i>s'_{head,i}</i> (mm)	30	30	30	50	45	45	45	
<i>s''_{head,i}</i> (mm)	10	15	30	35	45	10	10	
$m_{head,i}({ m kg})$	74,7	90,7	120,9	635,2	559,8	270,9	270,9	
<i>s_{f,i}</i> (mm)	110	105	105	185	180	160	160	
$m_{f,i}$ (kg)	402,9	340,0	669,4	1 694,7	2 636,7	673,1	673,1	
$s_{ts,i}$ (mm)	150	110	120	170	190	190	190	
$m_{ts,i}$ (kg)	60,9	44,6	97,4	293,6	435,2	320,5	320,5	
$m_{VT,1,i}(\mathrm{kg})$	1 113,8	2 825,0	5 587,0	8 292,8	9 663,0	3 791,7	3 791,7	
$n_{VT,i}(1)$	2	2	3	2	1	10	2	
$m_{VT,i}$ (kg)	2 227,6	5 649,9	16 761,1	16 585,5	9 663,0	37 916,8	7 583,4	

- ,				· / -			~ '
Tab.	50:	Prehled	parametru	VI	pro	variantu	2b

Uvažované varianty byly souhrnně porovnány z pohledu celkové hmotnosti uvažovaných VT, poměru hmotnosti trubkového svazku a pláště $\left(\frac{\sum m_{shell,i} + m_{tb,i}}{m_{VT}}\right)$, dosažitelného měrného svorkového výkonu a příkonu čerpadel v Tab. 51. Relativní změna měrného čistého výkonu (ΔP_{net}), resp. hmotnosti uvažovaných VT (Δm_{VT}), byly vztaženy k příslušným hodnotám charakterizujícím variantu 1*a*.

Ze získaných hodnot je patrné, že uvažováním vyšší hodnoty *PP* lze dosáhnout značného snížení hmotnosti navrhovaných *VT*. Spolu s hmotností však klesá i dosažitelný měrný výkon. Při uvažování $PP_2 = 30 K$ namísto $PP_1 = 15 K$ klesnul dosažitelný měrný výkon o přibližně 6 %. Celková hmotnost uvažovaných *VT* však poklesla o více než 40 %. Dalšího snížení hmotnosti lze dosáhnout použitím delších trubek. Použitím dvojnásobné délky trubek při uvažování stejné hodnoty *PP* bylo dosaženo poklesu celkové hmotnosti uvažovaných *VT* na úrovni 20 %. Spolu s hmotností klesla i tlaková ztráta. Hodnoty relativní změny dosažitelného měrného čistého výkonu ΔP_{net} , resp. hmotnosti *VT* Δm_{VT} , jsou vztaženy k hodnotě daného parametru příslušící variantě 1*a*.

Varianta	1a	1b	2a	2b
<i>PP</i> (K)	15	15	30	30
l_{max} (m)	6	12	6	12
m_{VT} (kg)	206 879	165 650	118 454	96 387
$\frac{\sum m_{shell,i} + m_{tb,i}}{m_{VT}} (kg/kg)$	0,601	0,734	0,576	0,702
P_p (kW)	14,6	14,6	11,6	11,6
P_{net} (kW)	683,9	685,0	645,1	645,7
η_{ut} (%)	63,6	63,7	60,0	60,1
ΔP_{net} (%)	_	0,2	-5,7	-5,6
Δm_{VT} (%)	_	-19,9	-42,7	-53,4

Tab. 51: Souhrnné porovnání jednotlivých variant

4 Závěrečný souhrn poznatků a doporučení

V rešeršní části této práce bylo stručně shrnuto využití *GT* energie a v současnosti využívané konverzní technologie spolu s technologiemi navrhovanými pro budoucí využití nadkritických geotermálních zdrojů. Pozornost byla věnována i některým z projektů věnujících se výzkumu, ověření možností a reálnosti dosažení těchto *GT* zdrojů.

V rámci návrhové části této práce byly pro zadané parametry *SC GT* zdroje navrženy a bilancovány dva konverzní binární systémy – 1-tlaký a 2-tlaký. Byla provedena optimalizace jejich parametrů z pohledu měrného čistého výkonu. Hodnoty parametrů vstupujících do řešení tepelných schémat byly v první fázi záměrně voleny shodně s hodnotami použitými v autorově *BP* [1]. Ověřen byl i vliv obsahu *NCG* v *GT* médiu na dosažitelný měrný čistý výkon, při čemž byly možné směsi *NCG* s ohledem na nedostatek informací o jejich konkrétním složení a v rámci zjednodušení nahrazeny CO₂. Pro obě uvažované varianty byly určeny tlakové ztráty *VT* a jejich vliv na dosažitelný měrný čistý výkon. Velikost tlakových ztrát vyplynula z provedeného základního návrhu *VT*. Na základě něj byla pro další postup vybrán 1-tlaký konverzní binární systém – varianta B, pro níž byly upřesněny hodnoty vnitřní účinnosti jednotlivých dílů turbíny. Tyto hodnoty vyplynuly ze základního návrhu turbíny. Pro tuto variantu byl rovněž proveden variantní pevnostní výpočet *VT*, který umožnil získat základní informace o vlivu velikosti *PP* a délky trubkových svazků např. na dosažitelný čistý výkon a celkovou hmotnost uvažovaných *VT*.

V Tab. 52 byly pro snadnější porovnání shrnuty některé parametry vybraných dílčích variant bilancovaných v práci.

Varianta	MIT 3E	BP SEP	Var A	Var B	Var A	Var B	Var A	Var B	Var B	Var B	Var B
Využití	Dire	ektní	2-tlak	1-tlak	2-tlak	1-tlak	2-tlak	1-tlak	1-tlak	1-tlak	1-tlak
<i>PP</i> (K)	-	15	15	15	15	15	15	15	15	15	30
$w_{CO2}(1)$	0	0	0	0	0,1	0,1	0	0	0	0	0
Δp_i (Pa)	0	0	0	0	0	0	>0	>0	>0	>0	>0
l_{max} (m)	-	-	-	-	-	-	8	8	8	6	6
$\eta_{i,HP}$									0,788	0,788	0,788
$\eta_{i,LPI}$ (1)	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,872	0,872	0,872
$\eta_{i,LP\ II}$									0,885	0,885	0,885
$p_{LP}~({\sf MPa})$	-	-	0,20	-	0,20	_	0,40	_	_	_	_
$p_{\scriptscriptstyle RH}$ (MPa)	-	-	1,13	0,43	0,89	0,18	2,06	1,7	1,7	1,7	1,7
$p_{HP}~({\sf MPa})$	-	-	14,56	12,41	11,71	10,31	16,12	15,65	15,78	15,76	13,84
S_{VT} (m ²)	-	Ι	_	_	_	_	692,7	560,1	_	_	_
m_{VT} (t)	-	-	-	_	_	_	_	_	_	206,8	118,5
P_{net} (kW)	722,1	731,4	675,7	650,8	630,1	606,4	665,6	636,1	684,3	683,9	645,1
η_{ut} (%)	67,2	68,1	62,9	60,5	60,4	58,2	61,9	59,2	63,7	63,6	60,0

Tab. 52: Souhrn parametrů vybraných variant

Z hodnot získaných v rámci řešení této práce při uvažování uvedených předpokladů byly vyvozeny následující poznatky:

- Využití *GT* média se zadanými *SC* parametry pro konverzi na elektrickou energii je technologicky možné.
- Direktním využitím GT média (v principu modifikovaným systémem Dry steam) lze dosáhnout vyššího měrného čistého výkonu – přibližně 731,4 kW. Pokud taková možnost využití nebude prakticky možná (např. s ohledem na příměsi GT média), lze za daných podmínek při indirektním využití GT tekutiny očekávat pokles

dosažitelného čistého výkonu na úrovni 7,6 % pro 2-tlaký systém, resp. 11,0 % pro 1tlaký systém. Při indirektním využití *GT* média byl dosažitelný čistý výkon 1-tlakého systému při uvažování výchozích hodnot vstupních parametrů oproti dosažitelnému čistému výkonu 2-tlakého systému nižší o 3,7 %. Hodnoty dosažitelných měrných čistých výkonů jsou uvedeny v Tab. 52.

- GT médium opouští navržené technologie na poměrně vysoké teplotě v závislosti na konkrétní variantě jde přibližně o rozmezí teplot 90 °C až 130 °C. GT tekutina by se tedy dala ještě dále energeticky využít a před reinjektáží dochladit na nižší teplotu. Toto teplo by mohlo být využito přímo pro potřeby KVET, nebo pro produkci další elektrické energie, např. pomocí bottoming ORC oběhu. Při uvažování využití ORC oběhu by dosažitelný měrný výkon systému vzrostl přibližně o 5 až 15 kW v závislosti na konkrétní řešené variantě. Tyto hodnoty představují nárůst dosažitelného měrného čistého výkonu přibližně o 1 % až 2 %). Konkrétní využití zbytkového tepla GT média však nebylo v této práci řešeno.
- S rostoucím hmotnostním zlomkem *NCG* (v rámci výpočtu nahrazených v práci pouze CO₂) v *GT* médiu klesá dosažitelný měrný čistý výkon systému. Při uvažování $w_{CO2} = 0,1$ klesl, oproti variantě uvažující $w_{CO2} = 0$, dosažitelný měrný čistý výkon 2-tlakého systému o 6,75 %. V případě systému 1-tlakého byl pokles 6,82%, tj. prakticky obdobný. S rostoucím w_{CO2} zároveň mírně roste i rozdíl dosažitelného měrného čistého výkonu jedno- a dvoutlakého systému. Při uvažování $w_{CO} = 0$ je rozdíl 3,69 %, při uvažování $w_{CO2} = 0,1$ pak 3,76 %. Tento rozdíl je způsobený strmějším poklesem zdrojové křivky v *t*-*Q* diagramu pro vyšší hmotnostní zlomky w_{CO2} . Obsah *NCG* je tedy důležitým faktorem ovlivňujícím hodnotu dosažitelného čistého výkonu pro konkrétní aplikaci a bude hrát i důležitou roli při výběru vhodné varianty konverzního systému.
- V první fázi byly VT navrženy jako čistě protiproudé 1-1. Přímé trubky byly zvoleny s předpokladem, že mají potenciál snadnější regenerace (čistitelnosti povrchových úsad příměsí na straně GT média) oproti U-trubkám. Zároveň byla uvažována modulární koncepce VT zajišťující jejich částečnou vzájemnou zaměnitelnost (podrobněji popsáno v kapitole 3.4.1). Na základě následně provedeného pevnostního výpočtu však musely být některé VT navrženy jako VT s U-trubkami, neboť osové napětí v trubkách způsobené teplotními dilatacemi nevyhovělo kontrole. Takto vyvstala otázka, zda u VT preferovat jejich lepší čistitelnost a navrhnout jako VT s U-trubkami pouze ten pevnostně nevyhovující, nebo preferovat modularitu VT a navrhnout např. všechny ekonomizéry shodně jako VT s U-trubkami, přestože pevnostně nevyhověl třeba i jediný (např. pro varianty 1a a 1b výměník EKO1). Finální odpověď na tuto otázku by pravděpodobně vzešla ze znalosti složení zdrojové GT tekutiny (resp. množství a složení příměsí) spoluurčující rychlost zanášení teplosměnných ploch, popřípadě až z provozních zkušeností s danými typy výměníků. V rámci této práce byly jako VT s U-trubkami navrženy pouze VT nevyhovující pevnostně jako 1-1 VT.
- Vliv tlakových ztrát ve VT na dosažitelný čistý výkon není značný. Z návrhu VT však kromě velikosti tlakových ztrát vyplynula i omezení tlakových hladin v LP a RH větvích zajišťující přijatelné rychlosti proudění jednotlivých médií. Z těchto omezení plyne přibližně srovnatelný pokles dosažitelného výkonu jako ze samotných tlakových ztrát. Pokles dosažitelného měrného čistého výkonu 2-tlakého systému

při uvažování tlakových ztrát a omezení tlakových hladin byl oproti dosažitelnému výkonu varianty uvažující výchozí předpoklady na úrovni 1,5 %. Pokles dosažitelného výkonu pouze s uvažováním omezení tlakových hladin ($\Delta p = 0$) byl přitom 0,7%. V případě systému 1-tlakého šlo při porovnání obdobných variant o vyšší hodnoty: 2,26 %, resp. 1,66 %. V případě uvažování (neměnného) omezení tlakových hladin byl pro oba navržené systémy pokles dosažitelného čistého výkonu závislý na velikosti tlakové ztráty přibližně lineárně.

- Volba dále analyzovaného konverzního systému (varianta B) byla v rámci této práce provedena na základě porovnání dosažitelného měrného čistého výkonu a potřebné teplosměnné plochy VT jedno- a dvoutlakého systému. 2-tlaký systém dosahoval o 4,6 % vyššího měrného čistého výkonu. Zároveň ale narostla potřebná teplosměnná plocha VT o 23,7 %. Z důvodu velkého podílu tepla předaného v přehřívácích byla v LP větvi průměrná hustota tepelného toku nízká – více než 12x menší než v HP větvi a více než 3x menší než v RH větvi. Z důvodu malého hmotnostního toku LP větví (pro zvolený hmotnostní tok GT média) navíc vycházely 1-1 VT subtilní a jejich délka enormní – celková délka uvažovaných VT dvoutlakého systému byla více než 3x větší než délka VT systému jednotlakého. Z těchto důvodů byl v rámci této práce preferován 1-tlaký systém. V případě skutečné realizace bude finální výběr konverzního systému podložen detailní technoekonomickou analýzou a optimalizací, ze které vyplyne, zda zvýšené výnosy pramenící z vyššího dosažitelného čistého výkonu 2-tlaké varianty pokryjí zvýšené investiční náklady, plynoucí z větší potřebné teplosměnné plochy, a provozní náklady, které plynou z potřeby údržby značně většího počtu dílčích VT. Komplikovanější 2-tlaký systém by ze shodných důvodů pravděpodobně také vykazoval nižší spolehlivost, která by mohla vyústit v nižší koeficient ročního využití instalovaného výkonu, což by zpětně negativně ovlivnilo výnosy.
- Základní návrh turbíny proběhl pro průtok GT média 50 kg/s. Z něj vyplynulo, že u LP dílu turbíny lze dosahovat vnitřní účinnosti vyšší než 87 %, tj. výrazně vyšší, než bylo původně předpokládaných 80 %. Hodnota vnitřní účinnosti HP dílu 79 % vyplývající z jejího návrhu přibližně odpovídala původně předpokládané hodnotě. V důsledku uvažování těchto upřesněných hodnot narostl dosažitelný měrný čistý výkon vybrané 1-tlaké varianty o 7,6 %.
- V rámci pevnostního výpočtu VT byly identifikovány ty, které z důvodu velké hodnoty osového napětí v trubkách (> σ_D) způsobeného velkým Δt_{LN} nelze navrhnout jako čistě protiproudé 1-1 VT. Jednalo se o přihříváky a některé ekonomizéry. V případě ekonomizéru před NN (*EKO1*) a přihříváků měla na osové napětí v trubkách vliv kromě teplotních dilatací i vyšší hodnota rozdílu tlaků *GT* a pracovního média. Zmíněné VT tedy byly navrženy jako VT s U-trubkami. Návrh probíhal pro posouzení vlivu *PP* a délky trubkových svazků na sledované parametry variantně. Při uvažování dvojnásobného *PP* (30 K oproti 15 K) poklesl v důsledků menší hodnoty předaného tepla a nižší účinnosti oběhu dosažitelný čistý výkon asi o 5,7 %. Pokles hmotnosti uvažovaných VT v důsledku vyšších hodnot Δt_{LN} přitom byl značnější větší než 42 %. Při uvažování dvojnásobné o snížení celkových místních tlakových ztrát dosažitelný čistý výkon jen nepatrně (přibližně o 0,2 %). Celková hmotnosti uvažovaných VT naopak v důsledku nárůstu hodnoty poměru hmotnosti pláště a

trubkového svazku ku celkové hmotnosti $VT\left(\frac{\sum m_{shell,i}+m_{tb,i}}{m_{VT}}\right)$ klesla přibližně o pětinu. Využití delších trubkových svazků by však znamenalo větší konstrukční a výrobní náročnost. Rovněž by z větší délky trubkových svazků, a tedy vyšší hmotnosti dílčích VT, při uvažování provozu s periodickou výměnnou/regenerací zanesených VT plynula složitější manipulace s nimi. I v tomto případě by pro volbu konkrétní realizované varianty bylo nutné provést detailní techno-ekonomické posouzení uvažovaných variant.

Na základě získaných poznatků lze pro další postup doporučit:

- Pokračovat v úsilí vedoucím k získání více informací o konkrétních parametrech *GT* zdroje a jím poskytovaného média včetně množství a složení příměsí.
- Na základě těchto informací učinit rozhodnutí, zda lze konkrétní médium využít direktně, nebo je nezbytné jeho indirektní využití. V případě indirektního využití volit vhodný konverzní systém na základě detailní techno-ekonomické analýzy vyhodnocující relaci mezi zvýšenými investičními náklady 2-tlaké varianty spojenými s větší potřebnou teplosměnnou plochou, vyššími výnosy, plynoucími z vyššího dosažitelného měrného čistého výkonu této varianty, a její pravděpodobné nižší spolehlivosti vycházející z vyšší komplikovanosti daného systému. *Pozn.:* Optimálnost výběru 1-tlaké varianty učiněného v rámci této práce se nemusí po provedení ekonomického zhodnocení potvrdit. Jako nejvhodnější se finálně může ukázat i zapojení (technologie) jiné, v této práci nebilancované.
- V rámci návrhu technologie rozhodnout o využití zbývajícího tepelného obsahu GT média za navrženou technologií, před jeho reinjektáží, ve vazbě na možnosti uplatnění tepla jako procesního nebo pro vytápění. V případě aplikace ORC cyklu provést jeho návrh a optimalizaci.
- Detailně řešit komponenty v tepelném schématu. Rozhodnout o preferované geometrii použitých VT. V případě přítomnosti NCG v GT médiu konstrukčně ošetřit zabránění jejich hromadění ve výměnících na straně GT média, což v rámci této práce řešeno nebylo. Navrhnout konkrétní způsob provozu technologie včetně případné regenerace zanesených VT a tuto skutečnost zohlednit při návrhu VT i projektování stavebního objektu tak, aby byla umožněna snadná manipulace s VT.

5 Reference

Literatura

- [1] A. Vocel, "Základní návrh a bilance technologie geotermální elektrárny pro tekutiny s nadkritickými parametry," ČVUT v Praze, Praha, 2021.
- [2] IRENA, "RENEWABLE ENERGY STATISTICS 2022 About IRENA," 2022. Accessed: Apr. 06, 2023. [Online]. Available: www.irena.org.
- [3] IRENA, "Global geothermal market and technology assessment," 2023. Accessed: Apr. 06, 2023. [Online]. Available: www.irena.org.
- [4] R. DiPippo, Geothermal power plants: Principles, applications, case studies and environmental impact. Elsevier, 2012.
- [5] "Europe-Mexico collaboration tackles unconventional geothermal systems." https://cordis.europa.eu/article/id/415522-europe-mexico-collaboration-tacklesunconventional-geothermal-systems (accessed Apr. 20, 2023).
- [6] E. Manzella, E. Trumpy, and R. Bertani, "DESCRAMBLE: FINAL PROJECT FACT SHEET," 2018. [Online]. Available: http://www.descramble-h2020.eu.
- [7] G. Gunnarsson, "IDDP-3: Reaching into resource below," Ultra Hot/Supercritical Geothermal Symposium Series, Feb. 16, 2022. https://drive.google.com/file/d/10qv5nudJRTzjTNCuy_pahSDV9-zCCW4R/view (accessed Apr. 07, 2023).
- [8] R. A. Zierenberg, G. Friðleifsson, W. A. Elders, P. Schiffman, and A. P. G. Fowler, "Active Basalt Alteration at Supercritical Conditions in a Seawater-Recharged Hydrothermal System: IDDP-2 Drill Hole, Reykjanes, Iceland," *Geochemistry, Geophys. Geosystems*, vol. 22, no. 11, p. e2021GC009747, Nov. 2021, doi: 10.1029/2021GC009747.
- [9] G. O. Friedleifsson, "The IDDP succes story lessons learned and next steps to commercialization," Ultra Hot/Supercritical Geothermal Symposium Series, Feb. 16, 2022. https://drive.google.com/file/d/1MWjUYcniZHh7Qlcczfv6hzHDhfMOoelp/view (accessed Apr. 07, 2023).
- [10] DEEPEN, "Derisking Exploration for geothermal Plays in magmatic Evironments." https://www.or.is/en/about-or/innovation/deepen/project-description/ (accessed Apr. 07, 2023).
- [11] H. Asanuma et al., "Japanese Supercritical Geothermal Project for Drastic Increase of Geothermal Power Generation in 2050," Proc. World Geotherm. Congr., no. 2014, pp. 1–5, 2020, Accessed: Apr. 07, 2023. [Online]. Available: http://www.geothermalenergy.org/pdf/WGC/papers/WGC/2020/37002.pdf.
- [12] D. Oka et al., "Conceptual model of supercritical geothermal system in Shiribeshi Region, Hokkaido, Japan," *Geothermics*, vol. 108, p. 102617, Feb. 2023, doi: 10.1016/J.GEOTHERMICS.2022.102617.
- [13] S. Rassenfoss, "Microwave Drilling Sounds Like Science Fiction, but So Does Drilling Down to the Hottest Rock," J. Pet. Technol., vol. 75, no. 01, pp. 18–23, 2023, doi: 10.2118/0123-0018-jpt.

- [14] Quaise Energy, "Quaise Energy," *https://www.quaise.energy/*, 2022. https://www.quaise.energy/ (accessed Mar. 29, 2023).
- [15] T. Reinsch, P. Dobson, H. Asanuma, E. Huenges, F. Poletto, and B. Sanjuan, "Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities," *Geothermal Energy*, vol. 5, no. 1. SpringerOpen, pp. 1–25, Dec. 01, 2017, doi: 10.1186/s40517-017-0075-y.
- [16] MIT, *The Future of Geothermal Energy*, no. November. 2006.
- [17] M. Li and N. Lior, "Comparative analysis of power plant options for enhanced geothermal systems (EGS)," *Energies*, vol. 7, no. 12, pp. 8427–8445, 2014, doi: 10.3390/en7128427.
- [18] A. Albertsson, J. Ö. Bjarnason, T. Gunarsson, and C. Ballzus, "The Iceland Deep Drilling Project: Fluid Handling, Evaluation, and Utilization," no. January, 2003, [Online]. Available: https://www.researchgate.net/publication/268432520_The_Iceland_Deep_Dri Iling_Project_Fluid_Handling_Evaluation_and_Utilization.
- [19] B. Carey *et al.*, "NEW ZEALAND'S PATHWAY TO SUPERCRITICAL GEOTHERMAL ENERGY USE: MOVING FORWARD TO EXPLORATION DRILLING."
- [20] G. Lozza, "Steam cycles for large-size high-gas-temperature combined cycles.," in the 7 th Congress & Exposition on Gas Turbines in Cogeneration and Utility Industrial and Independent Power Generation, Bournemouth, Engl, 09/21-23/93, 1993, pp. 435–444.
- [21] VDI, Heat Atlas, 2nd ed. Berlin, Germany: Springer, 2010.
- [22] "Za studena tažené výměníkové trubky Železiarne Podbrezová." https://www.bezesve-trubky.cz/rozmerove-tabulky/za-studena-tazenevymenikove-trubky/ (accessed Mar. 19, 2023).
- [23] BS EN 13445, Unfired pressure vessels. British Standard Institution, 2009.
- [24] A. Y. Inayatov, "Heat transfer for transitional, longitudinal flow over a tube bundle," *J. Eng. Phys.*, vol. 18, no. 2, pp. 263–266, 1970, doi: 10.1007/BF00828025.
- [25] B. Janeba, Kotelní agregáty a parogenerátory, 1. vyd. Vydavatelství ČVUT, 1975.
- [26] R. W. Serth, *Process heat transfer: Principles, applications and rules of thumb.* Elsevier, 2007.
- [27] J. Ambrož, Parní turbíny a kondenzace. ČVUT, 1984.
- [28] ČSN 69 0010, *Tlakové nádoby stabilní*. Praha: Vydavatelství Úřadu pro normalizaci a měření, 1975.

Seznam obrázků

Obr. 1: Vývoj využití GT energie v letech 2015-2021	11
Obr. 2: Vývoj instalovaného tepelného výkonu a využité GT energie [3]	11
Obr. 3: Zapojení technologie Dry steam [4]	12
Obr. 4: Schéma zapojení Double-flash technologie [4]	12
Obr. 5: T-s diagram – Double-flash steam [4]	13
Obr. 6: Schéma zapojení technologie Binary cycle [4]	13
Obr. 7: Teplotní profily ve stávajících a nově vyhloubeném vrtu [12]	14
Obr. 8: Teplotní profily v jednotlivých vrtech – extrapolováno [12]	15
Obr. 9: Model zkoumané oblasti [12]	15
Obr. 10: Princip činnosti vyvíjeného systému [13]	16
Obr. 11: Schéma zapojená technologie. Triple-expansion" [16]	17
Obr. 12: T-s diagram pro technologii. Triple-expansion" [16]	17
Obr. 12: T-s diagram : realizace expanse ve dvou (vlevo) a v jednom kroku (vpravo) při vhodných paramy	atrach
zdroio [17]	17
ZUIOJE [17]	1/
	10
Obr. 15: Tritlaky HKSG navrzeny pro vyuziti tepia spalin [20]	19
Obr. 16: Schema zapojeni varianty A	22
Obr. 17: Rozložení parametrů ve VI	24
Obr. 18: Expanzní čára pro HP i LP díl turbíny	28
Obr. 19: t-Q diagram ochlazování GT média	29
Obr. 20: Schéma zapojení varianty B	30
Obr. 21: Expanzní čára pro HP i LP díl turbíny	32
Obr. 22: t-Q diagram ochlazování GT média	33
Obr. 23: Schéma zapojení z BP využívající separátor [1]	34
Obr. 24: t-Q diagram ochlazování směsi vody s různým obsahem CO ₂	35
Obr. 25: Expanzní čára pro HP i LP díl turbíny	37
Obr. 26. t-O diagram ochlazování GT média	.38
Obr. 27: Expanzní čára pro HP i I P díl turbíny	40
Obr. 27: Experiencente promi religinari dan terbiriy	40
Obr. 20. 7 & diagram ochiazovani of media	
Obr. 20: Závislost součinitala míctních ztrát při vstupu do trubak po poměru S/D.	
Obr. 30. Zavislost součinitele mistnich ztrát při vstupu do trubek na poměru vnitřního průměru tr	
obi. ST. zavisiost souchitele mistrich zuat pri zmene smeru proudu na pomeru vnichniho prumeru ut	
	48
Obr. 32: Zavisiost soucinitele mistnich ztrat pri naniem zuzeni na pomeru prutochych prurezu za a) prea
	48
Obr. 33: Schema HP SH se znazornénymi tlaky	50
Obr. 34: Expanzni čára pro HP i LP díl turbiny	53
Obr. 35: t-Q diagram ochlazování GT média	53
Obr. 36: Závislost maximálního čistého výkonu a příkonu čerpadel na součiniteli k _p	54
Obr. 37: Expanzní čára pro HP i LP díl turbíny	57
Obr. 38: t-Q diagram ochlazování GT média	58
Obr. 39: Závislost maximálního čistého výkonu a příkonu čerpadel na součiniteli k _p	58
Obr. 40: Uvažované rychlosti a úhly	64
Obr. 41: Závislost vnitřní účinnosti stupně na velikosti částečného ostřiku a délce rozváděcí lopatky	67
Obr. 42: Lopatkový plán HP dílu	73
Obr. 43: Rychlostní trojúhelníky – HP díl turbíny	75
Obr. 44: Lopatkový plán LP dílu turbíny	76
Obr. 45: Rychlostní trojúhelníky pro stupně LP dílu s prizmatickou lopatkou	
Obr. 46: Rychlostní trojúhelníky pro stupně s nakroucenou lonatkou (1/2)	79
Obr. 47: Evpanzzí čára pro HD i LD díl turbíny	ຊາ
Obr. 47. Expanzin cara pro fir f Er un turbiny	 دە
Obr. 40. K-ková přímko dla ČCN 60.0010 [20]	03
UDI. 49. KIKUVA PIIFUDA DIE USIV 09 UUTU [28]	85
Upr. 50: Schema nanrazeni dilcino 1-1 vymeniku tepia dvema VI s U-trubkami	
Ubr. 51: t-Q diagram ochlazovani GT média (varianta 2a)	94
Ubr. 52: Expanzní čára pro HP i LP díl turbíny (varianta 2a)	95

Seznam tabulek

Tab. 1: Porovnání jednotlakých a dvoutlakých řešení z pohledu termické a utilizační účinnosti [4]	
Tab. 2: Výchozí vstupní parametry	21
Tab. 3: Přehled optimalizovaných parametrů s jejich rozsahy	23
Tab. 4: Přehled předpokladů	23
Tab. 5: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	27
Tab. 6: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	
Tab. 7: Vliv vlhkosti páry za separátorem na čistý výkon	
Tab. 8: Přehled optimalizovaných parametrů s rozsahy	
Tab. 9: Volené parametry ve variantě B	31
Tab. 10: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	
Tab. 11: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	
Tab. 12: Vliv vlhkosti páry za separátorem na čistý výkon	
Tab. 13: Porovnání jednotlivých variant	34
Tab. 14: Koeficienty vystupující v rovnici	35
Tab. 15: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	
Tab. 16: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	37
Tab. 17: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	
Tab. 18: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	
Tab. 19: Porovnání dosažitelného čistého výkonu jednotlivých variant	41
Tab. 20: Porovnání utilizačních účinností jednotlivých variant	41
Tab. 21: Porovnání VT s přepážkami a bez nich	
Tab. 22: Parametry uvažované při návrhu VT	
Tab. 23: Porovnání jednotlivých korelací pro případ podélného obtékání trubek	45
Tab. 24: Uvažované místní ztráty média v trubkách včetně způsobu jejich určení	
Tab. 25: Uvažované místní ztráty média v trubkách včetně způsobu jejich určení	
Tab. 26: Parametry jednotlivých VT (1/3)	
Tab. 27: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	51
Tab. 28: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	52
Tab. 29: Parametry jednotlivých VT (1/2)	55
Tab. 30: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	56
Tab. 31: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	57
Tab. 32: Porovnání sledovaných variant pro 2-tlaký i 1-tlaký systém	59
Tab. 33: Porovnání jednotlivých variant	59
Tab. 34: Parametry jednotlivých VT (1/2)	61
Tab. 35: Porovnání tlakových ztrát pro různé hmotnostní toky GT média	62
Tab. 36: Porovnání parametrů v uzlech tepelného schématu pro různé hmotnostní toky GT média	63
Tab. 37: Volené vstupní parametry pro návrh turbíny	64
Tab. 38: Parametry jednotlivých stupňů HP dílu turbíny (1/3)	72
Tab. 39: Parametry jednotlivých stupňů LP dílu turbíny s prizmatickou lopatkou	76
Tab. 40: Parametry jednotlivých stupňů LP dílu turbíny s nakroucenou lopatkou	77
Tab. 41: Parametry jednotlivých elementárních stupňů (1/2)	
Tab. 42: Shrnutí z návrhu turbíny získaných parametrů	80
Tab. 43: Parametry v jednotlivých uzlech tepelného schématu pro maximální čistý výkon	
Tab. 44: Přehled měrných prací, hmotnostních toků a výkonů jednotlivých dílů turbíny a čerpadel	
Tab. 45: Porovnání dosažitelných měrných čistých výkonů jednotlivých variant	
Tab. 46: Souhrn porovnávaných variant	
Tab. 47: Přehled parametrů VT pro variantu 1a	
Tab. 48: Přehled parametrů VT pro variantu 1b	
Tab. 49: Přehled parametrů VT pro variantu 2a	
Tab. 50: Přehled parametrů VT pro variantu 2b	
Tab. 51: Souhrnné porovnání jednotlivých variant	
Tab. 52: Souhrn parametrů vybraných variant	