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Instructions

The recognition of playing cards from a video is a challenging task that has gained 

significant attention in recent years. This thesis aims to provide an in-depth analysis of 

the current state-of-the-art methods for the automatic recognition of playing cards in 

video streams.

The focus will be on developing and evaluating an algorithm that can effectively and 

efficiently recognize the playing cards in real-time video. The main objectives of the 

thesis are to explore the use of computer vision techniques, machine learning 

algorithms, and deep learning models to accurately detect and recognize playing cards 

in the video. The results of this research will have important implications for a wide 

range of applications, including gaming, security and surveillance, and others.

1) survey the topic and existing solutions

2) create the camera apparatus for scanning the cards

3) based on the previous survey, design a solution of automatic playing card recognition 

using computer vision, and implement it. Therefore, the solution shall be able to locate a 

playing card in the image or the video feed and recognize the card's color (red, black), 

suit (hearts, spades, clubs, diamonds) and the rank of the card (A, 2, 3 ... K).

4) in case of using a machine learning model as a part of the solution create a training 

dataset 

5) implement the solution in the python programming language, and use the jupyter 

notebook environment

6) design and perform experiments when conditions are not ideal for the recognition of 
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playing cards, such as poor lighting, occlusions, or camera angles. 

Choose an appropriate metric for evaluating these experiments.

7) discuss the results of these experiments

8) publish the solution along with the created dataset
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Abstract

This thesis presents a playing card recognition system that uses two approaches. The first
approach is based on computer vision techniques to classify playing cards in a controlled envi-
ronment. The second approach involves creating a comprehensive dataset with augmentation
and training a deep-learning model. The first approach uses image processing techniques to
detect the rank, suit, and color of a single playing card in the image with multiple methods.
The best method achieves an accuracy of 100% for rank and suit identification and 78.16% for
color identification on a dataset of 728 playing cards. The second approach involves creating
a comprehensive dataset of playing cards with augmentation techniques. Initially, the dataset
contains 30,000 images of playing cards labeled with their rank and suit, and these images are
subjected to slight augmentations. The YOLOv8 model is pre-trained on this initial dataset in
the first phase of the training process. In the second phase, the model is fine-tuned on a larger
dataset of 80,000 images, which includes multiple cards in each image and more closely resembles
real-world conditions, such as different points of view and varying lighting conditions. The model
is also validated during the fine-tuning process to ensure optimal performance. Once the model
is trained, it is tested on a set of 30,000 images that maintain the diversity and complexity found
in real-world environments. The YOLOv8 model achieves an accuracy of 99.98% on this test set,
demonstrating its effectiveness in recognizing playing cards in a wide range of environments.

Keywords playing card recognition, computer vision, data augmentation, image processing,
canny edge detection, template matching, convolutional neural network, YOLOv8 deep learning
model
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Abstrakt

Tato práce popisuje systém rozpoznávání hracích karet, který využívá dvou přístupů. První
přístup využívá počítačového vidění pro klasifikaci hracích karet v kontrolovaném prostředí, za-
tímco druhý přístup zahrnuje vytvoření komplexní datové sady s různými vizuálními úpravami
a trénink modelu hlubokého učení. První přístup využívá technik zpracování obrazu ke rozpoznání
líce karty a jeho barvy (červená-černá) na jednom obrázku s použitím několika metod. Ne-
jlepší metoda dosahuje přesnosti 100% pro identifikaci líce karty a 78,16% pro identifikaci barvy
v souboru dat obsahujícím 728 hracích karet. Druhý přístup spočívá v tvorbě komplexní sady dat
hracích karet s použitím vizuálních úprav a technik. Soubor dat obsahuje původně 30 000 obrázků
hracích karet, které jsou označeny svým lícem a barvou a mírně upraveny. Model YOLOv8 je
nejprve natrénován na této počáteční sadě dat a poté je vyladěn na větší sadě obsahující 80 000
obrázků, které se více podobají reálným podmínkám, jako jsou různé úhly pohledu a světelné
podmínky. Během trénování je model validován, aby byla zajištěna optimální výkonnost. Jak-
mile je model natrénován, je testován na sadě 30 000 snímků, které zachovávají rozmanitost
a složitost prostředí v reálném světě. Model YOLOv8 dosahuje na této testovací sadě přesnosti
99,98%, což dokazuje jeho účinnost při rozpoznávání hracích karet v různých prostředích.

Klíčová slova rozpoznávání hracích karet, počítačové vidění, augmentace dat, zpracování
obrazu, Cannyho hranový detektor, porovnávání šablon, konvoluční neuronová síť, model hlubokého
učení YOLOv8
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Introduction

Card games have long been a component of human culture and enjoyment, extending back
to ancient civilizations such as China, Persia, and Egypt. They have evolved through time
to include a broad range of rules and forms, reflecting players’ different cultural origins and
tastes worldwide. In recent years, technological improvements have opened up new avenues for
improving the gaming experience, making it more immersive, engaging, and accessible to a wider
variety of players, including those with visual impairments.

Rapid advancements in domains such as computer vision, artificial intelligence, and machine
learning have paved the way for creating novel card game applications. The development of an
efficient and accurate real-time playing card identification system is one such application that
has the potential to transform the way card games are played, studied, and enjoyed by players
of all skill levels and talents. This system can find numerous applications in various contexts,
including real-time analytics for card game enthusiasts like poker and blackjack. It helps them
study gameplay, identify weaknesses, and analyze strategies to improve performance.

Another application is digital assistance for visually impaired players, enabling them to par-
ticipate in card games, facilitate social interaction with other players, and receive audio feedback
on the game’s current state. Additionally, card game simulators can benefit from integrating
a real-time playing card recognition system, providing a seamless and engaging gaming experi-
ence and closely replicating a traditional tabletop environment.

In conclusion, the main reasons behind the motivation for creating this thesis are that de-
veloping an efficient and accurate real-time playing card recognition system can transform how
card games are played and analyzed. Furthermore, it makes these games more accessible and
enjoyable for a diverse range of players, regardless of their abilities or background.
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Objectives

The main objective of this thesis is to develop a robust, fast, and accurate real-time recognition
system for playing cards, identified by their rank, suit, and color, using two different approaches.
The objectives can be further divided into the following subsections:

Introduction to playing card recognition system (Chapter 1): Introduce the recognition sys-
tem components, their functions, and potential use cases.

Prior solutions (Chapter 1): Research and analyze existing playing card recognition systems
available in the market, discussing their strengths and weaknesses.

Establishing a theoretical foundation (Chapter 2): Review and present the underlying theo-
retical concepts, algorithms, and methods that will be utilized in developing the recognition
system.

Analysis (Chapter 3): Design a specialized camera setup tailored to the needs of the playing
card recognition system, including selecting the appropriate camera, lighting, and mounting
equipment to ensure optimal image capture and processing.

Designing and testing a robust recognition algorithm (Chapter 4): Develop a computer vision
algorithm capable of efficiently extracting and accurately recognizing playing cards based on
their rank, suit, and color in controlled conditions, employing multiple methods for card
classification and testing them on the obtained images.

Developing a training dataset (Chapter 4): Use the computer vision algorithm to collect,
extract, and correctly classify playing cards, creating a diverse and representative dataset of
playing card images with varying sizes, conditions, and orientations for training and validating
the second recognition algorithm based on a convolutional neural network model.

Training, validation, and testing of the recognition model (Chapter 4): Train the recognition
algorithm using the training dataset, fine-tune its parameters for optimal performance, and
validate the model with a separate dataset to ensure accuracy and generalizability.Perform
comprehensive testing of the recognition system in various environments and conditions,
simulate real-world use cases, and evaluate its performance using appropriate metrics to
ensure it meets expectations.

Discussion (Chapter 5): Discuss both approaches, and provide an overview, interpretation,
implications, limitations, and recommendations for each approach to gain a comprehensive
understanding of their potential impact and effectiveness.
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Chapter 1

Survey

This chapter provides a brief overview of the existing solutions and techniques utilized in playing
card recognition systems. It explores the strengths and weaknesses of different approaches and
highlights the key innovations and challenges faced by researchers in the domain.

1.1 Playing Card Recognition system
A playing card recognition system is designed to identify and classify playing cards from images.
There are two common approaches to building such a system: traditional computer vision tech-
niques and deep learning models based on convolutional neural networks (CNNs) [1, 2]. The
whole process can be divided into several steps:

Image Acquisition: The first step is to acquire the image containing the playing cards.
This could be done using a camera or any other image-capturing device [3].

Preprocessing: The acquired image is preprocessed to enhance the features of interest
and suppress the noise. This step may include resizing, grayscale conversion, histogram
equalization, and noise removal [4, 5].

Card Detection: Detecting the cards in the image is usually the next step. This could
be done using techniques like contour detection, edge detection, or more advanced object
detection models [6, 7].

Card Segmentation (Computer Vision Approach): Once the cards are detected, the
regions of interest (which typically are the card corners, as they contain the suit and rank
information) need to be segmented. This can be done using image segmentation techniques
[4, 8].

Feature Extraction and Classification (Computer Vision Approach): From the
segmented regions, features are extracted to help identify the card’s rank and suit. This
could include color histograms, texture features, or other hand-crafted features. The final
step is to classify the card based on the extracted features [9, 10].

Card Classification (Deep Learning Approach): Alternatively, a deep learning model
based on convolutional neural networks (CNNs) can be trained on a dataset of labeled playing
card images to classify the cards directly [1, 2, 11, 12, 13]. In this approach, the model auto-
matically learns the features and classification without the need for explicit feature extraction
and segmentation.

5
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1.2 Current Solutions
This section reviews various methods and surveys on playing card recognition. This literature
review aims to identify the most effective approaches, algorithms, and techniques for developing
a robust playing card recognition system.

The paper by [14] focuses on recognizing playing cards using their faces as identification
targets, converting captured color images into grayscale and then binary images. The contour
shape matching technique employs the Hu invariant moment, unaffected by card rotation [15],
to compare card suits and ranks with pre-obtained templates.

The study investigates the region of interest in playing cards, extracting it using the zero-
order moment of binary images [4]. Card suits and ranks are identified through image recognition
algorithms such as graying, Gaussian filtering, binarization, and contour shape matching [16].
Hu invariant moments are used for recognizing large objects with simple textures in images [17].
Contour shape matching (using Hu moment invariants) is the primary identification method for
the distinct shapes of card suits and ranks [18]. The outline of a card is compared to all shape
templates, with the best match having the smallest value [19].

The study’s results show that the recognition process is relatively fast but prone to errors. It
can be significantly affected by environmental factors and the shooting angle of the playing card.

Figure 1.1 The whole process of card recognition [14].
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In [20], a recent study, a novel poker recognition scheme was developed that utilizes artificial
intelligence to identify poker cards under various conditions effectively. The scheme incorporates
three main strategies:

Employing the Hotelling transform [21] for accurate object positioning.

Utilizing weighted compacted energy (WCE) as a primary feature derived from the image’s
DWT [22] and DCT [23].

Implementing four orientation connectivity run-length values (FOCRLV) to differentiate be-
tween card images.

This research contributes to the field by introducing FOCRLV as a unique feature to enhance
image recognition and using an image’s compact energy band as another distinguishing feature.
The proposed scheme was rigorously tested under multiple conditions, including 40% noise and
intensity level changes of ±40%. The results demonstrated that the scheme could accurately
identify ranks and suits of poker cards 100% of the time, showcasing its effectiveness and potential
applicability in AI-powered poker systems.

Figure 1.2 The algorithm of the poker card image recognition [20].

Figure 1.3 The flow chart of the poker card extracting [20].
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A notable study by [24] addresses the increasing issues of card counting and dealer errors in
Blackjack. The researchers developed an innovative computer vision system for monitoring casino
games using an overhead stereo camera1. This system offers a cost-effective and user-friendly
alternative to existing solutions, which often require specialized hardware and are financially
inaccessible for all but the largest casinos.

The proposed system utilizes several techniques to ensure accurate card recognition and real-
time player bet tracking:

Contour analysis [18] for detecting and analyzing the shapes and boundaries of objects within
images.

Template matching [25] for comparing and matching card images with predefined templates,
aiding in card identification.

The SIFT algorithm [26] to detect and describe local features in images, further enhancing
card recognition accuracy.

The system can identify potential card counters by analyzing the correlation between player
bets and card count [27]. Additionally, the system employs stereo imaging to measure chip stack
heights, allowing for bet size monitoring [28].

Impressively, the system achieves over 99% accuracy in card recognition and has successfully
detected card counters and dealer errors among a diverse user group, including professional
dealers and novice players.

This study contributes to the broader understanding of computer vision applications in the
gaming industry. It emphasizes the potential for more efficient and cost-effective solutions to
address card counting and dealer error concerns, leveraging advanced image processing techniques
to improve game monitoring and security.

Figure 1.4 (a) Who’s Counting? system (b) schematic of the software [24].
1https://www.flir.com/support-center/iis/machine-vision/application-note/stereo-vision-introduction-and-

applications/
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Figure 1.5 (a) Example of image differencing (b) Binary edge images showing edge pixels (c) Binary
edge image of a nine and a four of hearts shows valid suit blocks (d) image and disparity map of chip
stacks 1, 5, and 10 chips high [24].

In a recent study by [29], the researchers present a neural network to detect playing cards in
real poker scenes through a camera, where the playing card area represents only 0.7% of the shot
table area. In the acquired images, the suits of cards are fuzzy and difficult to identify, even to
the naked eye [30]. Because of the relatively few pixels corresponding to the cards, traditional
image processing and pattern recognition methods struggle to detect them [14]. Therefore, the
authors employ deep learning methods, which have shown to be easy to use, faster, and more
accurate in a broad range of computer vision applications over the years [2, 11].

Inspired by the sandglass block, the researchers improved the current state-of-the-art neural
network architecture for object detection, EfficientDet [31], to retain more features. Experiments
have been conducted to evaluate the performance of the improved EfficientDet model, showing
that it achieved considerable performance improvement compared with other deep learning mod-
els [32, 7, 33].
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Figure 1.6 The whole process of finding and classifying small images of cards [29].

This study contributes to developing more accurate and efficient card detection systems in
real-world poker scenes using deep learning techniques. By enhancing the EfficientDet architec-
ture, the authors demonstrate the potential of neural networks in detecting small objects with
fuzzy and difficult-to-identify features.
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Theoretical background

2.1 Color Spaces
Color Spaces refer to the mathematical models that describe how colors can be represented
as tuples of numbers, typically as three or four values or color components [34]. Some of the
commonly used color spaces in image processing include:

Grayscale: This color space represents an image in different shades of gray. The colors
in a grayscale image range from black to white, with various shades of gray in between.
Grayscale is often used in methods where color does not provide essential information or
when converting an image to grayscale can simplify the analysis [4].

RGB (Red, Green, Blue): This is one of the most common color spaces. In RGB, each
color appears as a combination of red, green, and blue. The color space is based on the
human perception of colors as light mixtures [4].

CMYK (Cyan, Magenta, Yellow, Black): Used mainly in printing, the CMYK color
space is a subtractive color model based on the color absorption properties of paints and inks.
The primary colors are cyan, magenta, and yellow, and a fourth color, black, is often added
to produce deeper blacks [34].

HSV (Hue, Saturation, Value): The HSV color space separates the chromatic information
(hue, saturation) from the lighting information (value), making it useful for many applications
in computer vision, such as object tracking and image segmentation [5].

YCbCr: The YCbCr color space is used mainly in video systems. It separates the brightness
information (Y) from the chroma or color information (Cb and Cr). This is useful because the
human visual system perceives brightness information more powerfully than color information
[35].

Lab: The Lab color space, also known as CIELAB, includes all perceivable colors, which
makes it device-independent – a given color is the same regardless of the device that represents
it [34].

11
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Color Space Conversions:

RGB to Grayscale: The luminance model is commonly used to convert RGB values to
grayscale. It takes into account the fact that human eyes are more sensitive to certain colors
than others. The conversion is given by:

Y = 0.299R+ 0.587G+ 0.114B (2.1)

where Y is the grayscale value, and R, G, and B are the red, green, and blue values, respec-
tively [4].

RGB to CMYK: The conversion from RGB to CMYK involves two steps. First, RGB
is converted to CMY (Cyan, Magenta, Yellow):

C = 1−R (2.2)
M = 1−G (2.3)
Y = 1−B (2.4)

Then, the black component (K) is calculated, and the color values are adjusted accordingly:

K = min(C,M, Y ) (2.5)
C ′ = (C −K)/(1−K) (2.6)

M ′ = (M −K)/(1−K) (2.7)
Y ′ = (Y −K)/(1−K) (2.8)

where C ′, M ′, and Y ′ are the adjusted CMY values [34].

RGB to HSV: The conversion from RGB to HSV can be computed using the following
equations:

H =


60(G−B)
M−m if M = R and G ≥ B

60(G−B)
M−m + 360 if M = R and G < B

60(B−R)
M−m + 120 if M = G

60(R−G)
M−m + 240 if M = B

(2.9)

S =

{
0 if M = 0
M−m
M otherwise

(2.10)

V = M (2.11)

Where H, S, and V are the hue, saturation, and value components, respectively; M and m
are the maximum and minimum values of the input RGB components, respectively.
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RGB to Lab: The conversion from RGB to Lab involves several steps. First, the RGB
values are transformed to the XYZ color space using a linear transformation matrix:

XY
Z

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

RG
B

 (2.12)

Then, the XYZ values are normalized with respect to the white point of the color space and
the non-linear transformation is applied:

L∗ = 116f(Y/Yn)− 16 (2.13)
a∗ = 500(f(X/Xn)− f(Y/Yn)) (2.14)
b∗ = 200(f(Y/Yn)− f(Z/Zn)) (2.15)

where f(t) =

{
t1/3 if t > ( 6

29 )
3

1
3 (

29
6 )2t+ 4

29 otherwise
, and Xn, Yn, and Zn are the reference white point

values for the color space [34].

Choosing the appropriate color space for a specific task can significantly impact the perfor-
mance of image processing algorithms [36].

Figure 2.1 Conversion chart of different color spaces [37].
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Figure 2.2 Image in different color spaces [38].
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2.2 Image Formats
Image formats refer to how image data is stored and represented in the digital form [4]. These
formats are usually distinguished by their file extensions and can be broadly categorized into
lossless and lossy formats [39]. Each format has its characteristics and is suited for specific use
cases.

Format Type Description
BMP Lossless Bitmap format, simple and uncompressed
PNG Lossless Portable Network Graphics, supports transparency
GIF Lossless Graphics Interchange Format, supports animation
JPEG Lossy Joint Photographic Experts Group, suitable for photographs
TIFF Lossless Tagged Image File Format, high-quality images
WebP Both Developed by Google, supports both lossless and lossy compression
Table 2.1 Overview of common image formats.

Lossless formats, such as BMP, PNG, GIF, and TIFF, preserve all the original image data
without any loss of information. These formats are suitable for tasks requiring high-quality
images, such as scientific and medical imaging [4].

Lossy formats, such as JPEG, involve a degree of information loss due to compression. These
formats are helpful when a trade-off between image quality and file size is acceptable, such as in
web applications and digital photography [40].

Some formats, like WebP, support lossless and lossy compression methods, providing a balance
between image quality and file size [41].

Compression Ratio =
Uncompressed Image Size

Compressed Image Size
(2.16)

The choice of image format depends on the specific requirements of the application and the
trade-offs between image quality, compression, and file size [39].

2.3 Image Filtering
Image filtering is a fundamental process in image processing and computer vision used to modify
or enhance an image by emphasizing certain features or removing others. This is usually accom-
plished by convolving the image with a filter or a mask, which can be designed to have specific
properties [4].

Different types of image filters are used for different purposes. For example:

Low-pass filters: These filters allow low-frequency content while attenuating high-frequency
content. They are often used for noise reduction and image blurring. An example of a low-
pass filter is the Gaussian filter [42].

High-pass filters: These filters allow high-frequency content while attenuating low-frequency
content. They are often used for edge detection or image sharpening. The Laplacian filter
is an example of a high-pass filter [4].

Median filters: These non-linear filters replace each pixel’s value with the median value of
its neighborhood. They are particularly effective at removing ’salt and pepper’ noise while
preserving edges [43].

Bilateral filters: This edge-preserving and noise-reducing smoothing filter combines the
domain filter and the range filter to perform smoothing while preserving edges [44].
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Mathematically, the convolution operation of an image f(x, y) with a filter h(x, y) is defined
as:

g(x, y) =

∫∫
f(x− x′, y − y′)h(x′, y′) dx′ dy′ (2.17)

where g(x, y) is the filtered image.

2.3.1 Gaussian Filter
A Gaussian filter, also known as a Gaussian blur or Gaussian smoothing, is an image processing
technique commonly used to reduce noise and detail in an image [4]. The filter works by con-
volving the image with a Gaussian function, which can be considered a weighted average where
the weights decrease as the distance from the center pixel increases.

The Gaussian filter is characterized by its bell-shaped curve, where the values in the middle
are higher and decrease symmetrically towards the ends. The shape of this curve is defined by
the standard deviation (σ), which controls the amount of blurring. Larger values of σ produce
a more comprehensive (and therefore more blurry) kernel.

The 2D Gaussian function is defined as:

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(2.18)

Where:

x, y are the distances from the origin in the horizontal and vertical directions, respectively.

σ is the standard deviation of the Gaussian distribution.

Gaussian filters are handy because they are isotropic, meaning they have the same effect in
all directions. This is a desirable property in many image processing tasks as it ensures that no
artificial directionality is introduced into the processed image.

Gaussian filters are used in various applications, such as edge detection [6], image denoising
[44], and feature extraction [26], among others.

Figure 2.3 Gaussian filter results with different sigma parameter [45].
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2.3.2 Bilateral Filter
A bilateral filter is a non-linear, edge-preserving, and noise-reducing smoothing filter for images.
Unlike the Gaussian filter, which is solely a function of Euclidean distance, the bilateral filter
also considers the intensity difference, ensuring that it preserves sharp edges while still reducing
noise [44].

The bilateral filter is defined by two Gaussian distributions: the range Gaussian (dependent
on the intensity difference) and the spatial Gaussian (dependent on the Euclidean distance).
Combining these two allows the filter to consider pixels for smoothing that are not only nearby
but also have similar intensity values.

The bilateral filter can be formally defined as:

BF [I](x) =
1

Wp

∑
xi∈Ω

Gσs
(∥x− xi∥)Gσr

(∥I(x)− I(xi)∥)I(xi) (2.19)

Where:

x is the coordinate of the center pixel,

xi is the coordinate of the neighboring pixels,

Ω is the spatial neighborhood of the center pixel,

Gσs
is the spatial Gaussian that considers the spatial closeness of pixels,

Gσr is the range Gaussian that considers the similarity of pixel intensities,

I(x) and I(xi) are the center pixel and neighboring pixel intensities, respectively,

Wp is the normalization term.

The bilateral filter has been used in a variety of image processing applications, including
HDR tone mapping [46], texture editing [47], and detail enhancement [48].

Figure 2.4 The bilateral filter converts any input image (a) to a smoothed version (b). It removes
most texture, noise, and fine details but preserves large sharp edges without blurring [44].
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2.4 Image Processing
Image processing is a method to convert an image into digital form and perform operations on it
to get an enhanced image or to extract some useful information from it [4]. It is a type of signal
processing in which the input is an image, like a photo or video frame. The output of image
processing may be either an image or a set of characteristics or parameters related to the image.

There are two types of image processing, Analog, and Digital Image Processing. Digital
image processing focuses on two major tasks: improving visual information for human interpre-
tation and processing of image data for storage, transmission, and representation for autonomous
machine perception [4, 3].

The general phases of image processing include importation of the image with an optical
scanner or by digital photography, manipulation of the image as required (which may consist
of image enhancement, image restoration, and feature extraction), and output (which can be
altered image or report that is based on image analysis) [4, 49].

Various techniques are used in image processing, including convolution, Fourier transform,
edge detection, segmentation, morphological operations, and others. These techniques are used
in various applications, including medical imaging, facial recognition, autonomous vehicles, and
many more [49].

2.4.1 Gamma Correction
Gamma correction, or often gamma, is a nonlinear operation used to encode and decode lumi-
nance or tristimulus values in video or still image systems [50]. Gamma correction increases the
perceptual impression of contrast in a low-intensity range, which is generally beneficial because
human eyes are more sensitive to changes in dark tones than in bright tones [51].

A gamma correction function can be formulated as follows:
Iout = A · Iγin (2.20)

Where:
Iin is the input intensity,

Iout is the output intensity,

A is a constant, and

γ is the gamma value.
In practice, the value of gamma is often set to 2.2 for displays following the sRGB standard

[52]. Gamma correction ensures the correct brightness and color balance when images are dis-
played on different devices [53]. As the value of γ increases above 1.0, the image becomes darker,
and as the value of γ decreases below 1.0, the image becomes lighter.

Figure 2.5 Pixel value change with different gamma values [54].
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2.4.2 Contour and Edge Detection
Contour detection, a fundamental task in image processing and computer vision, is identifying
the boundaries or outlines of objects within an image [4]. Contours provide critical visual cues
about objects’ shape and sometimes their depth and three-dimensional structure.

The most common approach to contour detection involves edge detection followed by edge
linking. Edge detection operators, such as the Sobel, Prewitt, or Canny operators, are used to
identify points in an image where the intensity changes sharply [6]. Then, edge-linking methods
connect these points into meaningful object boundaries.

Convolutional operators, also known as convolutional kernels, perform convolution operations
in edge detection. For example, the Sobel operator uses two 3x3 kernels:

Gx =

1 0 −1
2 0 −2
1 0 −1

 , Gy =

 1 2 1
0 0 0
−1 −2 −1


The Prewitt operator also uses two 3x3 kernels:

Gx =

1 0 −1
1 0 −1
1 0 −1

 , Gy =

 1 1 1
0 0 0
−1 −1 −1


The Laplacian operator uses a single 3x3 kernel:

L =

0 1 0
1 −4 1
0 1 0


These operators are convolved with the image to detect edges.
An essential aspect of contour detection is dealing with noise since noise can create spurious

edges and affect the accuracy of contour detection. Techniques like Gaussian smoothing are often
used before edge detection to reduce noise [6].

More recently, more sophisticated methods for contour detection have been developed. These
methods are often based on machine learning algorithms trained to detect contours, often by
using convolutional neural networks (CNNs) [55].

Figure 2.6 Comparison of multiple edge detection filters: Top left: (Original). Top middle: (Sobel).
Top right: (Sobel RGB). Bottom left: (Prewitt). Bottom middle: (Laplacian). Bottom right: (Canny)
[56].
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2.4.3 Canny Edge Detection
The Canny edge detection algorithm, developed by John Canny in 1986, is a multi-stage process
used for detecting a wide range of image edges. It is considered one of the standard edge-detection
algorithms in the field of computer vision [6].

The Canny edge detection algorithm involves the following steps:

1. Noise Reduction: As edge detection is susceptible to noise in an image, the first step is to
remove the noise in the image with a 5x5 Gaussian filter.

2. Gradient Calculation: The edges should be marked where the gradients of the image have
large magnitudes. So, the Gradient calculation of the image is obtained.

3. Non-maximum Suppression: Ideally, the final image should have thin edges. Thus, we
must perform non-maximum suppression to thin the edges.

4. Double Thresholding: Potential edges are determined by thresholding.

5. Edge Tracking by Hysteresis: Final edges are determined by suppressing all edges that
are not connected to a very specific (strong) edge.

Figure 2.7 Canny edge detection process [57].
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2.4.4 Contour Shape Analysis
In computer vision and image processing, determining the shape of contours in an image is often
crucial. Shape analysis of contours can be performed using different techniques, such as contour
approximation, aspect ratio calculation, and area measurement. These methods help identify,
track, and segment objects based on their shapes [4, 5].

Contour Approximation: Contour approximation is a method that represents a contour
using a reduced number of points. The Ramer-Douglas-Peucker algorithm is a popular con-
tour approximation algorithm that recursively removes unnecessary points for describing the
contour’s general shape [58, 59]. This process reduces the complexity of the contour while
preserving its essential features. Given a contour with n points, C = {P1, P2, . . . , Pn}, the
algorithm aims to find a reduced set of points, C ′ = {P ′

1, P
′
2, . . . , P

′
m}, where m < n, that

approximates the original contour within a specified tolerance, ϵ.

Aspect Ratio: The aspect ratio of a contour is the ratio between the width and height of
its bounding rectangle. This measurement can provide useful information about the shape
and orientation of an object. For instance, an aspect ratio close to 1 indicates a square or
circular shape, whereas a high or low aspect ratio suggests a more elongated shape [4]. The
aspect ratio, AR, can be calculated as:

AR =
w

h
(2.21)

where w is the width, and h is the height of the bounding rectangle.

Area Measurement: Area measurement involves calculating the total number of pixels
inside a contour. This can be useful for filtering and distinguishing between objects of different
sizes. In addition, the area of a contour can be normalized by dividing it by the area of the
contour’s bounding rectangle, providing a scale-invariant measure of the contour’s complexity
[5]. The normalized area, NA, can be calculated as:

NA =
A

w × h
(2.22)

where A is the area of the contour.

These techniques can be combined to analyze and classify contours based on their shapes,
enabling various computer vision applications such as object recognition, tracking, and segmen-
tation.
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Figure 2.8 Visualization of the Ramer-Douglas-Peucker algorithm [60].
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2.4.5 Recognizing Basic Shapes
Using contour approximation and shape properties, we can recognize basic shapes such as rect-
angles, circles, and triangles. The process involves analyzing the number of vertices and other
attributes of the approximated contour to determine the shape of the object [4, 5].

Rectangle: A rectangle can be recognized by the number of vertices in its approximated
contour. The object is likely a rectangle if the contour has four vertices and the angles
between consecutive edges are close to 90 degrees. To calculate the angle between two edges,
we can use the dot product formula:

cos θ =
u⃗ · v⃗

||u⃗|| × ||v⃗||
(2.23)

where u⃗ and v⃗ are the consecutive edge vectors, and θ is the angle between them.

Circle: To recognize a circle, we can use the aspect ratio and the normalized contour area.
If the aspect ratio is close to 1 and the normalized area is close to π/4, the object is likely
a circle. The normalized area of a circle, NAcircle, can be calculated as:

NAcircle =
πr2

(2r)× (2r)
=

π

4
(2.24)

where r is the radius of the circle.

Triangle: A triangle can be recognized by the number of vertices in its approximated contour.
If the contour has three vertices, the object is likely a triangle.

2.4.5.1 Hough Transform
The Hough Transform is a popular technique for detecting shapes and lines in an image [61]. It
is advantageous when the image contains incomplete or noisy shape information. The main idea
behind the Hough Transform is to represent image features in a parameter space that makes it
easier to detect the presence of specific shapes.

For line detection, the Hough Transform maps each point in the image space to a curve in
the parameter space, defined by the line equation:

ρ = x cos θ + y sin θ (2.25)

Where ρ is the perpendicular distance from the origin to the line, and θ is the angle between
the ρ line and the x-axis. Points belonging to the same line will generate curves that intersect
at a common point in the parameter space. The more points that belong to the same line, the
higher the accumulation at the intersection point.

For circle detection, the Hough Transform maps each point in the image space to a sphere in
the parameter space, defined by the circle equation:

(x− a)2 + (y − b)2 = r2 (2.26)

where (a, b) is the center of the circle, and r is the radius. Points belonging to the same circle
will generate spheres that intersect at a common point in the parameter space, indicating the
presence of a circle with a specific center and radius.
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2.4.6 Thresholding
Thresholding is a simple yet effective method for image segmentation, often used to separate an
object in an image from the background [49]. The idea of thresholding is to replace each pixel
in an image with a black pixel if the image intensity I is less than some fixed constant T (that
is, I < T ) or a white pixel if the image intensity is more significant than that constant.

The simplest form of thresholding is global thresholding, which is defined by the equation:

g(x, y) =

{
1 if f(x, y) > T,

0 otherwise,
(2.27)

Where:

f(x, y) is the input image,

g(x, y) is the output (thresholded) image,

T is the threshold value.

In many cases, the image’s background and foreground intensities may not be distinct, making
it challenging to select a suitable threshold. In such cases, an adaptive thresholding method might
be used, where each pixel’s threshold value is determined based on a statistical measure of its
surrounding region [62].

Otsu’s method is a popular adaptive thresholding method that assumes the image contains
two classes of pixels (e.g., foreground and background), then calculates the optimum threshold
separating the two classes so that their combined spread (intra-class variance) is minimal, or
equivalently (because the total variance is constant) so that their inter-class variance is maximal
[63].

Thresholding has wide applications in various image processing domains, including medical
imaging [64], object tracking [65], and computer vision.

Figure 2.9 Otsu’s method for thresholding the image [66].
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2.4.7 Morphological Operations

Morphological operations are a set of image processing techniques used to process and analyze
the geometric structures within an image, typically binary or grayscale images [67]. The two
fundamental morphological operations are dilation and erosion, which can be combined to form
more complex operations such as opening, closing, and morphological gradient [4].

Dilation expands the boundaries of the objects in an image and is defined as:

(A⊕B)(x, y) = max
(s,t)∈B

A(x− s, y − t) (2.28)

Erosion shrinks the objects in an image and is defined as:

(A⊖B)(x, y) = min
(s,t)∈B

A(x+ s, y + t) (2.29)

Where:

A is the input image,

B is the structuring element,

(x, y) are the coordinates of the image,

(s, t) are the coordinates of the structuring element.

Opening is an operation that smooths the contours, breaks narrow isthmuses, and eliminates
thin protrusions. It is defined as the erosion of A by B, followed by dilation:

A ◦B = (A⊖B)⊕B (2.30)

Closing is an operation that fuses narrow breaks and long, thin gulfs, eliminates small holes,
and fills gaps. It is defined as the dilation of A by B, followed by erosion:

A •B = (A⊕B)⊖B (2.31)

Morphological Gradient is an operation that computes the difference between the dilation
and erosion of an image, highlighting the regions of rapid intensity change:

∇MA = (A⊕B)− (A⊖B) (2.32)
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Figure 2.10 Two-dimensional gray scale image dilation, erosion, close, and open on a printed circuit
board image [68].



Image Similarity 27

2.5 Image Similarity
Image similarity is a fundamental concept in image processing and computer vision, referring to
the quantification of how much two images resemble each other [69]. Depending on the specific
application, many measures can be used to compute image similarity. Here are some commonly
used methods:

Mean Squared Error (MSE): This computes the average of the squared differences be-
tween corresponding pixels in two images. The MSE is given by:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.33)

where I(i, j) and K(i, j) are the pixel intensities at location (i, j) in the two images, and m
and n are the dimensions of the images [4].

Squared Difference: This is a simple measure that calculates the total square difference
between two images. It is given by:

SD =

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.34)

where I(i, j) and K(i, j) are the pixel intensities at location (i, j) in the two images, and m
and n are the dimensions of the images [4].

Correlation Coefficient: The correlation coefficient measures the linear correlation between
two datasets. In the context of image similarity, it can be used to measure how closely related
two sets of pixel intensities are. It is given by:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.35)

where xi and yi are the pixel intensities in the two images, x̄ and ȳ are the mean pixel
intensities, and n is the number of pixels [4].

Pearson Correlation Coefficient: This is a case of the correlation coefficient when the
data is normalized to have zero mean and unit variance. It is given by the same equation
as above, with the understanding that the pixel intensities have been normalized [4].
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Hu Moments: Hu Moments are a set of seven numbers calculated from the image moments
and used for image comparison. They are invariant to image transformations such as scaling,
rotation, and translation. The Hu moments are given by:

ϕ1 = η20 + η02,

ϕ2 = (η20 − η02)
2 + 4η211,

ϕ3 = (η30 − 3η12)
2 + (3η21 − η03)

2,

ϕ4 = (η30 + η12)
2 + (η21 + η03)

2,

ϕ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2],

ϕ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+ 4η11(η30 + η12)(η21 + η03),

ϕ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2],

(2.36)

where ηpq are the normalized central moments of the image [70].

Structural Similarity Index (SSIM): SSIM compares local patterns of pixel intensities
normalized for luminance and contrast. SSIM is designed to improve traditional methods like
MSE by considering changes in structural information, luminance, and contrast [69].

Features from Convolutional Neural Networks (CNNs): In the context of deep learn-
ing, features extracted from pre-trained CNNs are often used to compute image similarity.
These features capture high-level semantic information about the images, allowing for more
robust and flexible similarity comparisons [71].

Image similarity has a wide range of applications, including image retrieval [72], image regis-
tration [73], and object recognition [74]. Other applications involve image stitching [75], change
detection [76], and remote sensing [77].
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2.6 Image Augmentation
Image Augmentation is a strategy used to significantly increase the diversity of images avail-
able for training models without collecting new images. This provides a way to add variability
and reduce overfitting in the model, making it possible to improve the performance of deep
learning models [78, 79].

There are numerous techniques of image augmentation used in practice. Some of the most
common ones include:

Affine Transformations:

Identity: The identity matrix is a square matrix with ones on the diagonal and zeros
elsewhere. It represents no transformation when applied to an image or a point. The 3x3
identity matrix is as follows:

I =

1 0 0
0 1 0
0 0 1

 (2.37)

Rotation: The image is rotated by angles α, β, and γ around the x, y, and z axes,
respectively. First, the rotation matrices for each axis are calculated:

Rx =

1 0 0
0 cosα − sinα
0 sinα cosα

 , Ry =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , Rz =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1


(2.38)

The combined rotation matrix is obtained by multiplying the individual rotation matrices:

R = Rz ·Ry ·Rx. (2.39)

Translation: The image is translated (moved) by tx horizontally and ty vertically. The
translation matrix is constructed to center the image around the origin and move it to the
new position in the output space:

T =

1 0 tx
0 1 ty
0 0 1

 (2.40)

Scaling: The image is scaled by factors sx and sy. The scaling matrix is applied to scale
the image by these factors:

S =

sx 0 0
0 sy 0
0 0 1

 (2.41)

Shear: The image is distorted such that the lines parallel to the x-axis or y-axis are
mapped to lines that remain parallel but are tilted by shearing angles α, β, and γ along
the x, y, and z axes, respectively. The shearing operation can be represented with separate
matrices for each axis:

SHx =

1 α 0
0 1 0
0 0 1

 , SHy =

1 0 0
β 1 0
0 0 1

 , SHz =

1 0 γ
0 1 0
0 0 1

 (2.42)
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The combined shear matrix is obtained by multiplying the individual shear matrices:

SH = SHz · SHy · SHx. (2.43)

Noise Injection: Random noise is added to the image. The noise is often Gaussian dis-
tributed and is added to the pixel values of the image:

I ′ = I +N (0, σ), (2.44)

where I is the original image, I ′ is the image after noise injection, N (0, σ) represents Gaussian
noise with mean 0 and standard deviation σ.

Blurring/Sharpening: Blurring is achieved by convolving the image with a low-pass filter,
whereas sharpening is achieved with a high-pass filter.

Contrast adjustment: Contrast of an image can be altered by changing the range of
intensity values. The new pixel value I ′ is calculated from the original pixel value I as follows:

I ′ = α · (I − Ī) + Ī , (2.45)

where α > 1 increases contrast and α < 1 decreases contrast.

Brightness adjustment: Brightness of an image can be increased or decreased by adding
or subtracting a constant value to all pixels:

I ′ = I + β, (2.46)

where β > 0 increases brightness and β < 0 decreases brightness.

Saturation adjustment: Saturation refers to the intensity of color in the image. Adjusting
the saturation involves converting the image to the HSV color space and modifying the
S channel.

Elastic Deformation: Elastic deformation involves simulating a non-linear deformation of
the image.

MixUp: MixUp is an augmentation strategy where two images and their corresponding
labels are linearly interpolated with a random mix ratio.

Image augmentation is a powerful technique to improve the performance of deep learning
models, especially when dealing with limited data.
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2.7 Clustering Algorithms
Clustering is an unsupervised machine-learning technique that groups similar data points based
on their features. Various clustering algorithms have been developed, each with its unique
approach to creating clusters. In this section, we will discuss some popular clustering algorithms
and the concept of metrics used in these algorithms.

Metric: A metric is a function that measures the distance between data points in the feature
space. Euclidean distance is a widely used metric in clustering algorithms, as it corresponds
to the ordinary distance between points in Euclidean space. The Euclidean distance between
two points x and y in d-dimensional space is defined as:

d(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (2.47)

K-means++: K-means++ is an extension of the k-means clustering algorithm that improves
the initialization of cluster centers [80]. The algorithm aims to minimize the within-cluster
sum of squares, which can be defined as:

k∑
i=1

∑
x∈Ci

||x− µi||2 (2.48)

where k is the number of clusters, Ci is the set of data points in cluster i, and µi is the
mean of the data points in cluster i. The k-means++ initialization procedure consists of the
following steps:

1. Choose the first cluster center uniformly randomly from the data points.
2. For each data point x, compute the distance D(x)2 between x and the nearest cluster

center that has already been chosen.
3. Choose the next cluster center from the data points with probability proportional to D(x)2.
4. Repeat steps 2-3 until k cluster centers have been selected.

Mean Shift: Mean shift is a nonparametric, iterative clustering algorithm that finds dense
regions of data points by shifting points towards the mean of their local neighborhood [81].
The algorithm is robust to noise and can identify clusters with different shapes and sizes.
The mean shift update formula is given by:

xi ← xi +m(xi) (2.49)

where m(xi) is the mean shift vector, computed as the weighted mean of the data points in
the local neighborhood of xi.
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Spectral Clustering: Spectral clustering algorithms use eigenvectors of the Laplacian ma-
trix derived from a similarity graph to cluster data points [82]. The main steps involve
constructing the similarity graph, computing the Laplacian matrix, and applying k-means
clustering to the first k eigenvectors.

Agglomerative Clustering: Agglomerative clustering is a hierarchical clustering algorithm
that successively merges the closest pairs of clusters until a single cluster or a specified
number of clusters is obtained [83]. The algorithm can produce a dendrogram representing
the hierarchical structure of the data. Agglomerative clustering can be performed using
different linkage criteria, such as single, complete, and average. The distance between two
clusters, Ci and Cj , can be defined as:

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (2.50)

where d(x, y) is the distance between data points x and y.

Affinity Propagation: Affinity propagation is an iterative clustering algorithm that treats
all data points as potential cluster centers, or exemplars, and iteratively refines the cluster
membership [84]. The algorithm updates responsibility and availability messages between
data points based on their similarity and does not require specifying the number of clusters
beforehand.

OPTICS: OPTICS (Ordering Points To Identify the Clustering Structure) is a density-
based clustering algorithm similar to DBSCAN, but it addresses some of the limitations
of DBSCAN, such as the need to choose a global density threshold [85]. OPTICS creates
an augmented cluster ordering of the dataset that represents its density-based clustering
structure, allowing for easier identification of clusters with varying densities.
The algorithm calculates a reachability distance for each data point and orders the points
according to their reachability distances. The reachability distance of a point p from another
point o is defined as the smaller value between the core distance of point o and the Euclidean
distance between o and p:

reachability − distance(o, p) = max(core− distance(o), ||o− p||), (2.51)

where core − distance(o) is the smallest distance such that o is a core point, and ||o − p||
is the Euclidean distance between o and p. The OPTICS algorithm processes the data points
in the order specified by the reachability distances, forming clusters as it goes along.
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Figure 2.11 Different results from clustering algorithms performed on the same data.
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2.8 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a class of deep learning models that have shown
exceptional performance in various computer vision tasks, such as image classification, object
detection, and segmentation [2, 11]. CNNs consist of multiple layers, including convolutional
layers, activation layers, pooling layers, and fully connected layers, to learn hierarchical feature
representations from input images.

Figure 2.12 Neural network with many convolutional layers [86].

2.8.1 Convolutional Layers with Strides and Padding
The convolutional layer is the core building block of a CNN. It applies a set of learnable filters
to the input image, allowing the network to learn local features from the input data. Each filter
is convolved across the input image, computing the dot product between the filter’s weights
and the input data at each position. The convolution output is a feature map representing the
presence of a specific feature at different locations in the input image [1]. To control the output
size and the amount of information processed, strides and padding can be used.

A stride is a parameter that determines the step size to move the filter during the convolution
process. A larger stride results in a smaller output size, reducing the computational complexity.
Padding, on the other hand, is the process of adding extra pixels around the input image, which
can help maintain the spatial dimensions of the output feature map and improve the performance
of the CNN.

Mathematically, the convolution operation with strides and padding can be defined as:

(F ∗ I)(x, y) =
∞∑

i=−∞

∞∑
j=−∞

F (i, j) · Ip(x · sx − i, y · sy − j) (2.52)

where F is the filter, Ip is the padded input image, ∗ denotes the convolution operation,
(sx, sy) are the strides in the x and y directions, respectively. The padded input image, Ip, can
be defined as:

Ip(x, y) =

{
I(x− px, y − py) if 0 ≤ x− px < wI and 0 ≤ y − py < hI 0

otherwise
(2.53)

where (px, py) are the padding sizes in the x and y directions, respectively, and (wI , hI) are
the width and height of the input image.
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Figure 2.13 Convolution operation [86].

2.8.2 Activation Layers
Activation layers introduce nonlinearity into the network, allowing the model to learn complex,
non-linear relationships between the input data and the output. Commonly used activation
functions include the Rectified Linear Unit (ReLU), the sigmoid function, and the hyperbolic
tangent (tanh) function [1]. The ReLU activation function is defined as:

ReLU(x) = max(0, x) (2.54)

Figure 2.14 ReLU activation function [86].
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2.8.3 Pooling Layers
Pooling layers reduce the spatial dimensions of the feature maps, making the network more
computationally efficient and invariant to small translations in the input data. The most common
pooling operation is max-pooling, which selects the maximum value from a local neighborhood
of the input data [1]. The max-pooling operation can be defined as:

MaxPooling(x, y) = max
i∈{0,...,k−1}

max
j∈{0,...,k−1}

xx+i,y+j (2.55)

where k is the size of the pooling kernel.

Figure 2.15 Max pooling [86].

2.8.4 Fully Connected Layers
Fully connected layers, also known as dense layers, combine the local features learned by the
previous layers and produce the final output of the network. Each neuron in a fully connected
layer receives input from all the neurons in the previous layer, allowing the network to learn
global relationships between the input data and the output [2]. In a typical CNN architecture,
the last fully connected layer is followed by a softmax activation function, which produces the
probabilities for the output classes.

When combined in a deep architecture, these layers allow CNNs to learn hierarchical feature
representations from input images, resulting in high performance on various computer vision
tasks.

Figure 2.16 Fully connected layer [86].
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2.8.5 Training CNNs
Training a CNN involves optimizing the weights of the filters and the neurons in the fully con-
nected layers to minimize a loss function, which measures the difference between the predicted
output and the ground truth labels. The optimization process is usually performed using stochas-
tic gradient descent (SGD) or one of its variants, such as Adam [87].

During training, the gradients of the loss function concerning the network parameters are
computed using the backpropagation algorithm [88]. The gradients are then used to update the
network weights in a direction that minimizes the loss function. The learning rate, a hyperparam-
eter that controls the step size of the weight updates, is crucial in determining the convergence
and performance of the training process.

2.8.6 Regularization Techniques
Various regularization techniques are employed during training to prevent overfitting and improve
the generalization of CNNs. Some standard regularization techniques include dropout, weight
decay, and data augmentation [89, 1, 78].

Dropout: Dropout is a regularization technique that randomly drops neurons from the
network during training with a certain probability, preventing the network from relying too
heavily on any single neuron. This leads to a more robust model that can generalize better
to unseen data [89].

Weight Decay: Weight decay, also known as L2 regularization, adds a penalty term to the
loss function proportional to the squared Euclidean norm of the weights. This encourages
the network to learn smaller weights, leading to a simpler and more stable model [1].

Data Augmentation: Data augmentation involves applying random transformations to
the input images, such as rotation, scaling, and flipping, to create new training samples.
This increases the diversity of the training data, helping the network learn more robust and
invariant features [78].

By employing these regularization techniques, CNNs can be trained to achieve high perfor-
mance on various computer vision tasks while maintaining good generalization to unseen data.

2.8.7 Transfer Learning
Transfer learning is a technique that leverages the knowledge acquired by a pre-trained model
on a large dataset to improve the performance of a new model on a related but smaller dataset
[90, 91]. In the context of CNNs, this is often done by using the learned weights of a pre-trained
model as the initial weights for a new model, which is then fine-tuned on the target task using
the smaller dataset.

The underlying assumption of transfer learning is that the features learned by the pre-trained
model on the large dataset are general and can help solve the new task. This is particularly
effective for CNNs, as the early layers of the network learn low-level features such as edges and
textures, which are common across many visual tasks [90].

To fine-tune the pre-trained model, the following steps are typically performed:

1. Replace the last layer(s) of the pre-trained model with new layers specific to the target task.

2. Freeze the weights of the early layers in the network, preventing them from being updated
during training.

3. Train the new model on the target task for a few epochs, updating only the weights of the
newly added layers.
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4. Optionally, unfreeze some or all of the early layers and continue training the entire network
with a lower learning rate.

Transfer learning allows for faster convergence and improved performance compared to train-
ing a model from scratch, especially when the target dataset is small or the task is closely related
to the one the pre-trained model was initially trained on.

2.8.8 Popular CNN Architectures
Over the years, numerous CNN architectures have been proposed for various computer vision
tasks, such as image classification, object detection, and semantic segmentation. These architec-
tures have significantly advanced the state of the art in the field. In this section, we discuss some
popular CNN architectures and their contributions to image classification and object detection.

2.8.8.1 Image Classification
For image classification tasks, several influential CNN architectures have emerged, including:

LeNet [92]: An early convolutional neural network that demonstrated the effectiveness of
CNNs for handwritten digit recognition.

AlexNet [11]: A deeper and wider CNN that won the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) in 2012, significantly outperforming traditional computer vision
methods.

VGG [93]: Known for its simplicity and uniform architecture, VGG demonstrated the ben-
efits of increasing network depth for improved performance.

ResNet [12]: Introduced the concept of residual connections, enabling the training of very
deep networks and achieving state-of-the-art performance on various benchmarks.

EfficientNet [94]: A family of CNNs that leverages a systematic approach to model scaling,
achieving state-of-the-art accuracy while maintaining computational efficiency.

2.8.8.2 Object Detection
In the realm of object detection, the following architectures have been particularly influential:

R-CNN [95]: A pioneering approach that combines region proposals with CNNs for object
detection, providing a significant boost in performance compared to previous methods.

Fast R-CNN [96]: An improvement over R-CNN that significantly speeds up the detection
process by sharing computation across region proposals.

YOLO (You Only Look Once) [7]: A real-time object detection system that uses a sin-
gle CNN to simultaneously predict multiple bounding boxes and class probabilities for those
boxes, fundamentally differing from region proposal-based methods like R-CNN. YOLO di-
vides the input image into a grid and predicts bounding boxes and class probabilities for
each grid cell. The final object detections are obtained by thresholding and non-maximum
suppression of the predicted boxes.

YOLO, in particular, has been improved through several versions. These improvements have
enhanced accuracy and efficiency, making YOLO one of the most popular choices for real-time
object detection tasks.
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Version Date Anchor Framework Backbone
AP (%)
YOLO 2015 No Darknet Darknet24
63.4
YOLOv2 2016 Yes Darknet Darknet24
63.4
YOLOv3 2018 Yes Darknet Darknet53
36.2
YOLOv4 2020 Yes Darknet CSPDarknet53
43.5
YOLOv5 2020 Yes Pytorch Modified CSP v7
55.8
PP-YOLO 2020 Yes PaddlePaddle ResNet50-vd
45.9
Scaled-YOLOv4 2021 Yes Pytorch CSPDarknet
56.0
PP-YOLOv2 2021 Yes PaddlePaddle ResNet101-vd
50.3
YOLOR 2021 Yes Pytorch CSPDarknet
55.4
YOLOX 2021 No Pytorch Modified CSP v5
51.2
PP-YOLOE 2022 No PaddlePaddle CSPRepResNet
54.7
YOLOv6 2022 No Pytorch EfficientRep
52.5
YOLOv7 2022 No Pytorch RepConvN
56.8
DAMO-YOLO 2022 No Pytorch MAE-NAS
50.0
YOLOv8 2023 No Pytorch YOLO v8
53.9

Table 2.2 Comparison of various YOLO versions and their performance [97].

Figure 2.17 Performance of YOLOv8 against older versions [98].
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Figure 2.18 YOLOv8 is an anchor-free model. This means it predicts directly the center of an object
instead of the offset from a known anchor box [99].

2.9 Measuring Model Performance
Evaluating the performance of a machine learning model is crucial for understanding its effective-
ness and comparing it with other models. Several metrics can be used to measure the performance
of classification models, such as accuracy, precision, recall, F1 score, confusion matrix, mAP, and
AP [100, 101]. In this section, we will discuss these metrics and their corresponding equations.

2.9.1 Accuracy
Accuracy is the most straightforward metric for classification tasks. It measures the proportion
of correct predictions made by the model out of the total number of predictions. The accuracy
is defined as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions =

TP + TN

TP + TN + FP + FN
(2.56)

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false neg-
atives, respectively.

2.9.2 Precision and Recall
Precision and recall are two important metrics that focus on the model’s performance concern-
ing positive class predictions. Precision, also known as a positive predictive value, measures
the proportion of true positive predictions out of all positive predictions. Recall, also known
as sensitivity or true positive rate, measures the proportion of true positive predictions out of all
actual positive instances.

Precision =
TP

TP + FP
(2.57)

Recall = TP

TP + FN
(2.58)



Measuring Model Performance 41

2.9.3 F1 Score
The F1 score is the harmonic mean of precision and recall. It is a commonly used metric for
binary classification problems, as it balances the trade-off between precision and recall. The F1
score is defined as:

F1 Score = 2 · Precision · Recall
Precision + Recall =

2TP

2TP + FP + FN
(2.59)

2.9.4 Confusion Matrix
A confusion matrix is a table that summarizes the performance of a classification model by
presenting the actual class values and predicting class values. The matrix is organized as follows:

True Positives (TP): The number of positive instances correctly predicted as positive.

True Negatives (TN): The number of negative instances correctly predicted as negative.

False Positives (FP): The number of negative instances incorrectly predicted as positive.

False Negatives (FN): The number of positive instances incorrectly predicted as negative.

For multiclass classification, the confusion matrix is extended to include multiple rows and
columns representing each class. The diagonal elements of the matrix represent the correct
predictions for each class, while the off-diagonal elements represent the misclassifications.

2.9.5 Mean Average Precision and Average Precision
Mean Average Precision (mAP) is a widely used metric for measuring the performance of object
detection and segmentation models, especially in multiclass classification tasks. mAP calculates
the average precision (AP) for each class and takes the mean of all class AP values. AP is the area
under the Precision-Recall curve, which is a plot of precision and recall at different classification
thresholds.

The mAP is calculated as follows:

mAP =
1

N

N∑
i=1

APi (2.60)

where N is the number of classes and APi is the average precision for class i. The AP
for each class is calculated by integrating the Precision-Recall curve or by using the following
approximation:

AP =

n∑
k=1

(Rk −Rk−1)Pk (2.61)

where n is the number of recall values, Rk is the recall at rank k, Rk−1 is the recall at rank
k − 1, and Pk is the precision at rank k.
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Chapter 3

Analysis

This chapter discusses the crucial aspects of choosing the right playing cards, camera apparatus,
and development environment.

3.1 Physical Deck of Cards
To begin with, we will require an actual deck of cards. For this purpose, we will use the Rider
Back design with the Bicycle Playing Cards1. Bicycle playing cards are a well-known brand
extensively used in various card games, such as poker, bridge, and blackjack [102]. These cards
are manufactured by the United States Playing Card Company (USPCC), the world’s largest
playing card producer [103, 104]. For our dataset creation, we will use these cards as they are
a popular choice among players and can provide us with a diverse range of card images [105].

3.1.1 Cards Design and Dimensions
Bicycle cards adhere to the French deck pattern, containing 52 cards (13 in each of two red and
two black suits) and excluding the two jokers to train the dataset [102]. The Bicycle trademark
appears on the Ace of Spades, and the current decks contain two information/instruction cards.
The most popular design for Bicycle playing cards is the Rider Back design, available in various
formats.

These cards come in standard indexes:

poker-size (3.5 by 2.5 inches [8.9 cm × 6.4 cm])

bridge-size (3.5 by 2.25 inches [8.9 cm × 5.7 cm])

pinochle decks, as well as ”Jumbo Index” poker decks

low vision cards designed for the visually impaired

Manufacturers also produce other cards with varying backs, sizes, colors, and custom designs
for magic tricks, novelty purposes, and collectors’ items [104]. For our purposes, we will be
utilizing the standard poker-size deck.

1https://bicyclecards.com/
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Figure 3.1 Exact measurements with a caliper of the chosen playing card.

3.2 Camera Apparatus

Having acquired the physical deck of cards, the subsequent step entails developing a functional
capturing device to take images of the cards. This crucial process component requires con-
structing a custom box with a mobile phone holder explicitly designed for image capture [5].
In addition, the box will be covered with the green screen fabric, a choice to facilitate easy
background removal and post-processing of the images [106].

Furthermore, the box is equipped with LED lighting inside, ensuring the cards receive uniform
illumination, which is critical for accurate feature extraction and analysis [107]. Finally, a vital
apparatus component will be a mobile phone tripod with a ring light. This ring light will
help capture clear, sharp images of the cards, significantly improving the overall quality of the
captured images [69].

By creating an optimized environment for capturing card images, we can guarantee that the
computer vision algorithms will have the best possible input data to work with [3]. This attention
to detail in the capturing process will increase the accuracy of the playing card recognition system
and ensure its effectiveness and reliability across various card designs and lighting conditions.
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Figure 3.2 Manufactured camera apparatus.

3.3 Chosen Camera and Software

We captured playing cards using a mobile phone camera after finding other webcams and IP cam-
eras unsuitable for our needs due to limited settings and image quality [5]. We opted for a mobile
phone with the IP webcam app 2, which provided high-quality images and more flexibility in
adjusting camera settings [108].

Industrial-type cameras were deemed unnecessary for our project, as playing cards are small
and easily captured using a mobile phone camera [3]. Industrial cameras can be costly and
require specialized equipment, making them impractical for our purposes.

Using the IP webcam app, we captured high-resolution images of playing cards with minimal
noise and distortion [4]. The mobile phone was positioned above the cards, and the app was
configured for low-latency streaming and high-quality resolution [69]. This approach was simple,
cost-effective, and met our image quality requirements [34].

2https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en_US

https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en_US
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Figure 3.3 IP webcam interface3.

Filter Image Filter Image

-30% exposure -20% exposure

-10% exposure 0% exposure

+10% exposure +20% exposure

+30% exposure Incandescent lighting

Fluorescent lighting Warm fluorescent lighting

Daylight Cloudy daylight

Twilight Shade
Table 3.1 Filters used in the IP webcam app with corresponding images of the white texture of the

card.

3http://192.168.31.250:8080 (local address based on server settings)
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3.4 Working Environment and Libraries
We created our playing card recognition dataset using the Jupyter Notebook4 environment and
a Python5 3.9 kernel with Anaconda6 interpreter.

Library Description URL
OpenCV Computer vision library for image

processing and object recognition.
https://opencv.org

NumPy Numerical computing library for ar-
ray and matrix manipulation.

https://numpy.org

Matplotlib Data visualization library for creat-
ing graphs and charts.

https://matplotlib.org

tqdm Fast progress bar library for loops
and iterable objects.

https://github.com/tqdm/
tqdm

PIL Image processing library for open-
ing, manipulating, and saving im-
ages.

https://pillow.
readthedocs.io/en/
stable/

pickle Module for serializing and de-
serializing Python objects.

https://docs.python.org/
3/library/pickle.html

sklearn Machine learning library for data
mining and analysis.

https://scikit-learn.org

concurrent.futures Module for asynchronous execution
of callables using thread or process
pools.

https://docs.python.org/
3/library/concurrent.
futures.html

threading Module for creating and managing
threads for concurrent task execu-
tion.

https://docs.python.org/
3/library/threading.html

requests Library for making HTTP requests
and working with RESTful APIs.

https://docs.
python-requests.org

BeautifulSoup Library for parsing HTML/XML
documents and extracting data from
web pages.

https://www.crummy.com/
software/BeautifulSoup/

skimage Image processing library for image
manipulation and analysis.

https://scikit-image.org

Ultralytics YOLO Real-time object detection and clas-
sification library (YOLO system).

https://github.com/
ultralytics/ultralytics

Table 3.2 List of used libraries, their descriptions, and URLs.

4https://jupyter.org/
5https://www.python.org/
6https://www.anaconda.com/

https://opencv.org
https://numpy.org
https://matplotlib.org
https://github.com/tqdm/tqdm
https://github.com/tqdm/tqdm
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://scikit-learn.org
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python-requests.org
https://docs.python-requests.org
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://scikit-image.org
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
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Chapter 4

Realization

This chapter outlines our process for developing a robust playing card detection and recognition
system with two different approaches.

4.1 Computer Vision Approach

4.1.1 Data
A total of 728 images (14 sets of 52 cards) of playing cards have been successfully captured in
a controlled environment with a highly contrasted background and various filters. The playing
cards were captured in both Full HD (1920 x 1080) and 2K (2560 x 1440) resolutions, ensuring
a high level of detail and clarity in each image.

Figure 4.1 Captured image of the card.
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4.1.2 Card Extraction
The card extraction process involves several steps:

1. Preprocessing: First, the input image is loaded from a file (in *.jpg format) and then
converted to grayscale from RGB space, simplifying the image for more efficient processing.

Figure 4.2 Grayscale image of the card.

2. Gamma correction: Additionally, uniform gamma correction is applied to the image to
achieve consistent lighting. This is the most crucial step in the preprocessing stage since it
allows to extraction of the cards in too-light or too-dark images. For these purposes universal
gamma correction method was created:

Figure 4.3 Gamma corrected image of the card.
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3. Edge smoothing: The next step is to apply the bilateral filter to the grayscale image. This
step helps to smooth the edges, preserving the overall structure and reducing noise.

Figure 4.4 Applied bilateral filter.

4. Edge detection: The Canny edge detection algorithm is applied to the smoothed image.
This step highlights the edges in the image, which are essential for identifying card boundaries.

Figure 4.5 Canny edge detection.
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5. Contour approximation: Contours in the Canny image are detected and approximated
with 4 points, which aids in identifying rectangular shapes representing the cards. It is impor-
tant to note that the points were approximated using the Ramer–Douglas–Peucker algorithm.

Figure 4.6 Found contours.

Figure 4.7 Approximated contours with four points.
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6. Filtering contours: Contours are filtered based on area, rectangularity, and aspect ratio.
This step ensures that only contours representing cards are retained, discarding unrelated
shapes.

Figure 4.8 Filtered contours based on rectangularity and aspect ratio.

7. Highlighting contours: The largest contour representing a card is highlighted in the input
image, providing visual feedback on the card detection process.

Figure 4.9 Largest contour displayed.



54 Realization

8. Cropping and resizing: The original image is cropped and resized based on the card box
points and the specified card width and height. This step extracts the card from the image,
preparing it for further analysis or recognition.

Figure 4.10 Extracted card.

9. Card clipping: Finally, the extracted card is clipped with a defined mask for discarding
any unwanted edges from the original image such that the extracted card resembles a real-
world appearance with rounded corners. Also, the background of the extracted card is made
transparent with an alpha layer.

Figure 4.11 Clipped card with transparent background.
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4.1.3 Classification Preparations

A set of reference templates has been created for each card rank and suit to enable rank and suit
identification. Typically, the rank and suit are extracted from a set of reference cards, and image
processing techniques are used to isolate the rank and suit (ROI) in each reference image. The
isolated rank and suit images are then saved as grayscale templates for further use. A customized
deck1, an already-created deck of cards with the required card ranks and suits in SVG format,
is utilized for this purpose.

Figure 4.12 Process of creating the reference templates.

1https://www.me.uk/cards/makeadeck.cgi
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Figure 4.13 Created rank templates.

Figure 4.14 Created suit templates.
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Another preparation step is to prepare lookup tables (LUT) for color identification. We can
divide this process into a couple of procedures:

1. The process began with the ISCC/NBS2, a system for color names based on a set of 12
basic color terms and a small set of adjectives. The RGB color values from this system were
then converted to the CIE Lab and HSV color spaces. The CIE Lab color space provides
a more perceptually uniform representation of colors, which is crucial for accurate distance
calculations between colors. The HSV color space, on the other hand, is helpful for color-based
feature extraction in image analysis due to its closer alignment with how humans perceive
color. The exact conversions were also applied to the defined classification colors.

Table 4.1 Colors examples from ISCC/NBS and their different color space values

Color Name RGB Value HSV Value CIE Lab Value
Color Sample
Dark Gray (85, 85, 85) (0, 0, 33) (36.15, 0.00, 0.00)

Deep Pink (228, 113, 122) (355, 50, 89) (61.90, 46.17, 17.15)

Deep Purple (96, 47, 107) (289, 56, 42) (28.20, 30.25, -25.77)

Vivid Reddish Orange (226, 88, 34) (17, 85, 89) (56.10, 53.05, 56.98)

Vivid Blue (0, 161, 194) (190, 100 ,76) (59.71, -35.19, -12.17)

Vivid Yellow (243, 195, 0) (48, 100, 95) (81.33, 7.59, 81.86)

Deep Yellowish Green (0, 98, 45) (148, 100, 38) (35.82, -35.94, 22.65)

Deep Reddish Orange (170, 56, 30) (11, 82, 67) (40.99, 46.52, 41.65)

Strong Green (0, 121, 89) (164, 100, 47) (44.68, -36.50, 9.09)

Vivid Orange (243, 132, 0) (33, 100, 95) (66.89, 38.91, 73.23)

Table 4.2 Defined classification colors and their different color space values

Color Name RGB Value HSV Value CIE Lab Value
Color Sample
Red (85, 85, 85) (0, 100, 100) (54.29, 80.81, 69.89)

Black (0, 0, 0) (0, 0, 0) (0.00, 0.00, 0.00)

2https://www.w3schools.com/colors/colors_nbs.asp

https://www.w3schools.com/colors/colors_nbs.asp
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2. The next idea involves mapping the ISCC/NBS colors to the classification colors in the RGB,
HSV, and CIE Lab color spaces. This is achieved by employing multiple clustering and
nearest-neighbor methods:

a. KMeans++: The KMeans++ algorithm partitions the colors into clusters, using the clas-
sification colors as initial cluster centroids. This ensures that the ISCC/NBS colors are
grouped based on their proximity to the classification colors. The algorithm iteratively
updates the centroids and assigns each color to the nearest centroid until convergence.

b. MeanShift: MeanShift, a non-parametric algorithm, clusters colors based on their density
in the color space. It does not require specifying the number of clusters in advance. After
applying MeanShift, each color is mapped to the nearest user-defined color.

c. Spectral Clustering: The Spectral Clustering algorithm employs graph partitioning to
cluster colors. Treating each color as a graph node, the algorithm creates edges between
nodes based on their similarity. After partitioning the graph, each color is assigned to the
nearest user-defined color.

d. Agglomerative Clustering: Agglomerative Clustering begins by treating each color as a sep-
arate cluster and then iteratively merges the closest pair of clusters. This process continues
until the desired number of clusters remains. The colors are then assigned to the nearest
user-defined color.

e. Affinity Propagation: Affinity Propagation, a clustering algorithm, sends messages between
pairs of colors until convergence. A set of ”exemplars,” the most representative of other
colors, is chosen. It doesn’t require specifying the number of clusters in advance. After
applying Affinity Propagation, each color is mapped to the nearest user-defined color.

f. OPTICS: The OPTICS (Ordering Points To Identify the Clustering Structure) algorithm
groups the ISCC/NBS colors. As a density-based clustering algorithm, it identifies clusters
of varying density and noise points. It creates an ordering of the data points based on
their reachability and core distances. After clustering, the closest classification color to
each cluster is assigned.

3. The final step in the process involves creating lookup tables (LUTs) for each color space
and clustering method. For each color space (RGB, HSV, and CIE Lab) and each clustering
method, a separate LUT is created. The LUTs store the color representation of the ISCC/NBS
colors in the respective color space and map each color to the nearest user-defined color
according to the specific clustering method. This comprehensive set of LUTs allows for
accurate and versatile color mappings across multiple color spaces using various clustering
techniques.
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Figure 4.15 Clustering results 1.
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Figure 4.16 Clustering results 2.
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4.1.4 Rank and Suit Identification
The process of identifying the rank and suit of the card is very similar to the previous step,
where templates were prepared. First, the region of interest (ROI) containing the rank and suit
symbols is extracted from the card image and converted to grayscale. Then, the contours of the
rank and suit symbols are detected with prior preprocessing and resized to fixed dimensions (the
exact dimensions as the templates).

Figure 4.17 Process of extracting the rank and suit.
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The next step is to find the best match for the rank and suit symbols in the ROI based on
their similarity to the reference images. We have exploited five different methods for measuring
the similarity between two images.

Figure 4.18 Process of classification of the rank and suit.

Method Function Best result
Sum of Squared Differences cv2.matchTemplate(...,

cv2.TM_SQDIFF_NORMED)
min(...)

Cross-Correlation cv2.matchTemplate(...,
cv2.TM_CCORR_NORMED)

max(...)

Pearson Correlation Coefficient cv2.matchTemplate(...,
cv2.TM_CCOEFF_NORMED)

min(...)

Hu Moments (I1) cv2.matchShapes(...,
cv2.CONTOURS_MATCH_I1,
0)

min(...)

Hu Moments (I2) cv2.matchShapes(...,
cv2.CONTOURS_MATCH_I2,
0)

min(...)

Hu Moments (I3) cv2.matchShapes(...,
cv2.CONTOURS_MATCH_I3,
0)

min(...)

Structural Similarity Index Measure structural_similarity(...,
full=True,
multichannel=True)

max(...)

Table 4.3 Summary of similarity methods for rank and suit classification
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4.1.5 Color Identification
To accurately classify the card’s color, it is necessary to determine which card element will decide
the color. Usually, the playing card’s color in the chosen deck is determined by the color of the
suit and rank. However, since rank is represented by a letter, there would be a small area of
pixels to obtain the color information. For this reason, the suit of the playing card is used as the
main area to detect the color.

Information obtained from the suit classification is utilized to extract the suit from the cap-
tured card. The suit’s location is determined using the suit contour and the corresponding
minimal area rectangle. The area is then extracted and resized to 60 x 60 pixels. Due to inad-
equate initial conditions, multiple preprocessing steps are implemented to ensure the best color
representation. Image segmentation with K-Means clustering with two centroids is used to seg-
ment the picture into a two-colored image, with the first color representing the background and
the other representing the suit color. The average pixel value is calculated using mode, taking
into account that the pixels of the contour also consist of background pixels. This solution proves
more effective than using a morphological operation such as erosion.

Figure 4.19 Process of color extraction.
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To classify the color, prepared color mappings are relied upon. The averaged pixel value of
the suit contour is used as input, and the color in the mappings closest to this value is selected
according to the Euclidean distance, which is then classified as red or black. This approach allows
for accurate color classification that considers perceptual differences between colors in different
color spaces (RGB, HSV, and CIE Lab) and is robust to variations in color representation.

4.1.6 Performace Assessment
In this performance assessment, various methods were applied for color, rank, and suit identifi-
cation in playing cards. Based on the results presented in Tables 4.4, 4.5, and 4.6, it is evident
that different methods and color spaces perform better for specific identification tasks.

Three color spaces were investigated for color identification: LAB, RGB, and HSV. In each
color space, six different clustering methods were used: k-means++, mean shift, spectral clus-
tering, agglomerative clustering, affinity propagation, and OPTICS.

For color identification, the HSV color space with the k-means++ method achieved the high-
est accuracy at 78.16%. However, the performance differences between LAB, RGB, and HSV
color spaces were relatively small. This suggests that selecting the appropriate color space and
clustering method is crucial for optimal performance in color identification tasks.

In the case of rank and suit identification, template matching methods such as SSD, CC,
and PCC demonstrated exceptional performance, achieving 100.0% accuracy. This indicates
that these methods are highly reliable and effective for identifying the rank and suit of playing
cards. SSIM also showed a strong performance with 99.86% accuracy for rank identification and
100.0% accuracy for suit identification, making it a suitable alternative to the template matching
methods.

On the other hand, Hu moments (I1, I2, and I3) showed significantly lower accuracy rates for
both rank and suit identification tasks. This suggests that these methods may not be well-suited
for playing card identification, at least in their current configuration.

In conclusion, the optimal method for identifying the color, rank, and suit of playing cards
largely depends on the specific task and the chosen color space. Template matching methods,
particularly SSD, CC, and PCC, appear to be the most reliable and accurate methods for rank
and suit identification. For color identification, the choice of color space and clustering algorithm
plays a significant role, with the HSV color space and k-means++ method providing the best
results in this study.
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Table 4.4 Color identification results.

Colorspace Method Accuracy (%)
lab kmeans++ 75.00

meanshift 73.21
spectral 25.00
agglomerative 75.00
affinity 73.21
optics 73.21

rgb kmeans++ 75.00
meanshift 75.00
spectral 25.00
agglomerative 25.00
affinity 75.00
optics 75.00

hsv kmeans++ 78.16
meanshift 75.00
spectral 25.00
agglomerative 25.00
affinity 75.00
optics 75.00

Table 4.5 Rank identification results.

Method Identification Accuracy (%)
SSD Rank 100.0
CC Rank 100.0
PCC Rank 100.0
HuMoments_I1 Rank 32.97
HuMoments_I2 Rank 33.93
HuMoments_I3 Rank 56.18
SSIM Rank 99.86

Table 4.6 Suit identification results.

Method Identification Accuracy (%)
SSD Suit 100.0
CC Suit 100.0
PCC Suit 100.0
HuMoments_I1 Suit 52.20
HuMoments_I2 Suit 25.27
HuMoments_I3 Suit 50.27
SSIM Suit 100.0
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4.2 Convolution Neural Network Approach
This approach was based on a synthetic playing card dataset, which had been automatically
created to represent various conditions with different backgrounds, number of playing cards, an-
gles, card sizes, and other augmentations. The dataset was generated using a custom script that
combined two smaller datasets: one containing individual playing cards and another containing
various backgrounds. The individual playing cards dataset was created from scratch, while the
background dataset was derived from an existing source.

Creating this robust and diverse dataset allowed for better control over the distribution of
cards and the ability to generate different variations to suit specific needs. This method provided
a more cost-effective alternative to using real-world datasets, which could be expensive and time-
consuming to acquire and process.

With this synthetic playing card dataset in hand, a YOLOv8 model was trained for object
detection. This machine learning model was designed explicitly for accurately identifying and
classifying objects, such as playing cards in this case.

4.2.1 Sole Cards Dataset
A computer vision approach was initially used to extract and classify playing cards from 728
captured images. However, color classification was left out because the approach did not correctly
classify the color in all cases. Instead, Spades and Clubs were identified as black, while Diamonds
and Hearts were identified as red.

The next step involved annotating specific areas of each card image containing the suit and
rank symbols. This process included converting the card images to grayscale, preprocessing,
thresholding, extracting contours from the top and bottom regions of the card image, calculating
convex hulls for the extracted contours, and adjusting the coordinates of these convex hulls to
the original image scale.

A pivotal aspect of this approach, playing card augmentation, was implemented to generate
a diverse and robust set of playing card images. An advanced pixel augmentation function was
created that involved applying various pixel transformations to the images of playing cards, such
as adding random noise, random brightness, random contrast, random saturation, random Gaus-
sian blurring, and random sharpening. This function was used to generate additional augmented
cards from the original image.
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Code listing 4.1 Advanced Pixel Augmentation Function
def advanced_pixel_augmentation(image: Image.Image,

noise_stddev=0.1,
brightness_range=(0.5, 1.5),
contrast_range=(0.5, 1.5),
saturation_range=(0.8, 1.2),
gaussian_blur_chance=0.5,
sharpen_chance=0.1):

# Convert PIL Image to OpenCV format (BGR format)
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

# Add random noise
noise = np.random.normal(0, noise_stddev , image.shape)
image = np.clip(image + noise * 255, 0, 255).astype(np.uint8)

# Random brightness
image = cv2.convertScaleAbs(image,

alpha=random.uniform(*brightness_range))

# Random contrast
img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
img_yuv[:,:,0] = cv2.convertScaleAbs(img_yuv[:,:,0],

alpha=random.uniform(*contrast_range))
image = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)

# Random saturation
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = hsv[:,:,1] * random.uniform(*saturation_range)
image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

# Random Gaussian blurring
if random.random() < gaussian_blur_chance:

image = cv2.GaussianBlur(image, (5, 5), 0)

# Random sharpening
if random.random() < sharpen_chance:

kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
image = cv2.filter2D(image, -1, kernel)

# Clip the values to be in the correct range
image = np.clip(image, 0, 255).astype(np.uint8)

# Convert OpenCV image (in BGR format) to PIL format (in RGB format)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

return np.array(image)
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Figure 4.20 Three randomly generated augmented cards from the original image.

Following the application of all the aforementioned steps, a total of 10000 pickle files were gen-
erated, each containing an image in numpy format, annotation areas (represented as contours),
rank, suit, and color information. The dataset was then randomly split into train, validation,
and test sets, with a split percentage of 60%, 20%, and 20%, respectively.

Figure 4.21 Representation of three pickle files contents.

4.2.2 Background Dataset
Another essential step in our approach was to gather a background dataset. To accomplish
this, we utilized the Describable Textures Dataset (DTD) [109], a collection of textural images
annotated with human-centric attributes inspired by the perceptual properties of textures.

The DTD contains 5640 images organized into 47 categories, with 120 images for each cate-
gory. The background dataset was split into three parts using a custom script, with 60% of the
images allocated to training, 20% to validation, and the remaining 20% to testing. Each split
was done with equal probability across all categories of images. Lastly, all background images
were randomly reshuffled at the end.

Overall, the DTD provided a valuable background dataset for our approach and allowed
us to incorporate a diverse range of textures and patterns into our synthetic dataset generation
process.
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Figure 4.22 Different backgrounds from testing, training, and validation.

4.2.3 Synthetic Dataset Generation

To generate the dataset, three cycles were employed. In the first cycle, the number of cards to
place on the background was selected sequentially, ranging from a minimum of 1 card to a max-
imum of n cards. In the second cycle, the percentage value representing how much background
the cards would cover was chosen sequentially, starting from a lower limit and incrementing up
to an upper limit. In the third cycle, a point of view (POV) was randomly selected for each
background image, determining the angle at which the cards were viewed. For a portion of
the images, a top-down perspective (0, 0, 0) POV was chosen, while for the remaining portion,
a random angle within a specified range in the x, y, and z axes was selected. This approach
created a more diverse dataset with varying angles of card placements.

For each combination of the number of cards, percentage value, and POV, a background
image was randomly selected from the available training, validation, and testing backgrounds.
If the chosen number of cards exceeded the number of available card images, the set of available
card images was reset, and the selection process started from the beginning.

All card images used in the dataset were chosen randomly from the generated set of card
images. Similarly, all backgrounds used in the dataset were randomly selected from the available
training, validation, and testing backgrounds. This ensured that the dataset represented the
complete set of card images and backgrounds and that the model could generalize to new card
images and backgrounds.

4.2.3.1 Card Superimposition on Background

Once the background and the cards were obtained, the cards were scaled to occupy the desired
percentage of the background. The cards were then randomly rotated and resized in the z-axis
to add variation to the dataset, with the annotating areas recalculated accordingly.

Subsequently, the cards were placed randomly (x, y coordinates) to ensure that both anno-
tating areas were always within the background. If another card was placed on top of an already-
placed card, the overlap percentage of the placed card and the area beneath it was calculated.
If there was more than 20% overlap, the overlapping area was erased to avoid inconsistency.
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Figure 4.23 Top-down and side view with (20,20,20) angles of the placed cards into the background
with overlapping and 20% scaling.

After placing all the cards and recalculating the annotating areas, the entire image was
transformed to appear as if it was viewed from the selected POV. However, this transformation
often created black bars or triangles around the image. To address this issue, an inpainting
method was employed to change these black pixels to pixels resembling the background.

Figure 4.24 Display of the contours and annotating areas.
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Finally, corresponding labels in COCO format were accompanied by the generated images,
which were subsequently converted to YOLO format. The YOLO-format labels included object
class information (rank, suit, and color of the card) and the bounding box coordinates relative
to the image size. The images and labels were then saved in the form of a text file, where each
line represented an object in the image and contained the following information: class (class
number) and YOLO-format coordinates of the bounding box. It’s worth noting that a naming
convention was adopted that labeled the image name and text file the same because that format
was required for the YOLOv8 model.

Figure 4.25 Final structure of the created dataset.
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4.2.4 Model Training and Validation
This section explains the training and validation process of the YOLOv8 model for the specific
use case of detecting multiple classes of playing cards in images. As the dataset had already been
prepared, the pre-trained models provided by the YOLOv8 developers were leveraged. These
models had been trained on the COCO dataset, a large-scale object detection, segmentation,
and captioning dataset containing over 200,000 labeled images with 80 object categories.

The YOLOv8 model is available in different versions, supporting various tasks. The supported
tasks and their corresponding pre-trained weights are listed below:

YOLOv8 (Detection):

yolov8(n, s, m, l, x).pt

YOLOv8-seg (Instance Segmentation):

yolov8(n, s, m, l, x)-seg.pt

YOLOv8-pose (Pose/Keypoints):

yolov8(n, s, m, l, x)-pose.pt

YOLOv8-cls (Classification):

yolov8(n, s, m, l, x)-cls.pt

Different sizes of pre-trained weights were designed to offer a trade-off between accuracy and
performance:

n - Nano: Fast but not very accurate.

s - Small: Faster with a slight compromise in accuracy.

m - Medium: Balanced performance and accuracy.

l - Large: Slower but more accurate.

x - Extra Large: Slowest but offering the highest accuracy.

The YOLOv8 model designed for detection tasks was chosen to detect multiple classes of play-
ing cards in images. The medium-sized neural network, YOLOv8m, was selected for its balance
between performance and accuracy, using its corresponding pre-trained weights (yolov8m.pt).

4.2.4.1 Fine-tuning the YOLOv8 Model
The YOLOv8m model was fine-tuned using the custom playing cards dataset. The fine-tuning
process consisted of the following steps:

1. The pre-trained yolov8m.pt weights were downloaded.

2. Configuration files for the custom dataset were set up, including the number of classes, class
names, and paths to the training and validation data.

3. The desired hyperparameters for the training were set, such as learning rate, batch size, and
the number of epochs.

4. The fine-tuning process was initialized using the YOLOv8m pre-trained weights and the
custom dataset.
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5. The training progress was monitored, and the model’s performance on the validation dataset
was validated throughout the training.

6. The resulting model weights were saved upon completion of the training for use in the detec-
tion phase.

By leveraging the pre-trained YOLOv8m model, the training time and computational re-
sources required to achieve good results were significantly reduced, as the model had already
learned many general features from the COCO dataset. The custom-trained YOLOv8m model
was thus capable of detecting multiple classes of playing cards in images with a reasonable balance
between performance and accuracy.

4.2.4.2 Pretraining with Initial Dataset
In the initial pretraining phase, the following steps were performed:

1. The training dataset comprising 30,000 images (larger and higher number of cards) with
multiple augmentations provided by YOLOv8 (such as changes in hue, rotations, flipping,
mixup, etc.), and the validation dataset containing 10,000 images was utilized. It is important
to note that during this phase, the model was not trained to recognize the color of the cards,
as color augmentations were applied.

2. The YOLOv8m model was pretrained for 150 epochs using the following parameters:

Batch size (16): Determines the number of images processed simultaneously during
training, which affects memory usage and training stability.
Image size (640): The input image size for the model. Higher values improve accuracy
but increase computational requirements.
Optimizer (SGD): The optimization algorithm is used to update the model’s weights.
Stochastic Gradient Descent (SGD) is a popular choice for training deep learning models.
Learning rate (0.01): Controls the step size during weight updates. A smaller value
results in slower convergence but may yield better accuracy.
Weight decay (0.0005): A regularization technique to prevent overfitting by adding
a penalty term to the loss function, which encourages smaller weights in the model.

3. The model’s performance on the initial validation dataset was assessed.

4.2.4.3 Fine-tuning with Augmented Dataset
After the initial pretraining, the model was further fine-tuned on a new augmented dataset. This
stage involved the following steps:

1. The training dataset comprising 80,000 images (smaller cards and larger angles) with no
YOLOv8 augmentations and a new validation dataset containing 30,000 images were utilized.

2. The YOLOv8m model was retrained for 50 epochs using the best weights obtained from the
initial pretraining phase.

The crucial parameters used for the second training phase were the same except for the
augmentations, such as changes in hue, rotations, flipping, mix-up, etc.
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This two-stage fine-tuning process ensured that the custom-trained YOLOv8m model could
detect multiple classes of playing cards in images with various card sizes and orientations. By
first pretraining the model on a dataset with larger cards and standard augmentations, the
model learned to recognize the basic features of playing cards. The subsequent fine-tuning with
a dataset containing greater augmentations, including smaller cards and larger angles, enhanced
the model’s robustness to variations in playing card size and orientation.

In summary, the YOLOv8m model was trained in two phases using the described parameters
and dataset configurations. Each training phase was completed in approximately 20 hours on an
NVIDIA RTX 3080 GPU.

Figure 4.26 Results of different metrics accumulated during the first training phase where the x-axis
is epoch number, and the y-axis is the corresponding score.
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Figure 4.27 Example of validation data in the first training phase on the best weights.

Figure 4.28 Example of predicting validation data in the first training phase on the best weights with
a corresponding probability of classified class.
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Figure 4.29 Results of different metrics accumulated during the second training phase where the
x-axis is epoch number, and the y-axis is the corresponding score.
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Figure 4.30 Example of validation data in the second phase on the best weights.

Figure 4.31 Example of predicting validation data in the second training phase on the best weights
with a corresponding probability of classified class.
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4.2.4.4 Analysis of the First Training Phase at Epoch 150
At the end of the first training phase at epoch 150, the following observations can be made:

1. The training losses - box loss (0.45555), class loss (0.20735), and deep feature loss (0.83111)
- show that the model has successfully learned to identify the bounding boxes, classes and
in-depth features of the playing cards in the initial dataset.

2. The high precision (0.99615) and recall (0.99573) values for the training dataset (B) demon-
strate the model’s ability to accurately detect and correctly classify the playing cards in the
dataset, even though it was not trained to recognize card colors due to color augmentations.

3. The high mAP50 (0.99467) and mAP50-95 (0.91282) values for the training dataset (B)
indicate that the model performs well in terms of both localization and classification of the
playing cards across different levels of Intersection over Union (IoU) thresholds.

4. The validation losses - box loss (0.49685), class loss (0.18212), and deep feature loss (0.83945)
- suggest that the model generalizes well on the initial validation dataset, with similar per-
formance to the training dataset.

5. The learning rate values for the three-parameter groups (pg0, pg1, pg2) are all at 0.000232,
indicating consistent weight updates across all model layers.

4.2.4.5 Analysis of the Second Training Phase at Epoch 50
From the data provided for the second training phase at the 50th epoch, the following observa-
tions can be made:

1. The training losses - box loss (0.35566), class loss (0.18586), and deep feature loss (0.79199) -
indicate that the model has further refined its ability to identify the bounding boxes, classes,
and in-depth features of the playing cards in the augmented training dataset.

2. The high precision (0.99373) and recall (0.99065) values for the training dataset (B) demon-
strate that the model continues to accurately detect and correctly classify the playing cards,
even with the additional augmentations and variations in the dataset.

3. The high mAP50 (0.99455) and mAP50-95 (0.91977) values for the training dataset (B)
indicate that the model performs well in terms of both localization and classification of the
playing cards across different levels of Intersection over Union (IoU) thresholds.

4. The validation losses - box loss (0.42031), class loss (0.17662), and deep feature loss (0.79041)
- suggest that the model generalizes well on the new validation dataset, with similar perfor-
mance to the training dataset.

5. The learning rate values for the three-parameter groups (pg0, pg1, pg2) are all at 0.000496,
which means that the model’s weights are being updated consistently across all layers.

In summary, the YOLOv8m model underwent two training phases with different dataset
configurations. The first phase focused on training the model to recognize the basic features
of playing cards without considering card colors. The second phase further refined the model’s
ability to detect and classify multiple classes of playing cards in images with increased augmen-
tations and variations. The results from both training phases demonstrate high performance
and good generalization on both the training and validation datasets, indicating that the model
is robust and capable of handling variations in playing card size, orientation, and color.
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4.2.5 Model Testing
To evaluate the performance of the custom-trained YOLOv8m model, it is tested on a previously
unseen dataset containing 30,000 images. The results from the final validation on this dataset
are as follows:

Precision: 0.9914

Recall: 0.9839

mAP50: 0.9939

mAP50-95: 0.9202

Fitness: 0.9275

The model demonstrates a high level of accuracy in detecting and classifying multiple classes
of playing cards, as indicated by the high values for precision, recall, and mAP. The balanced
performance and accuracy of the model are evident in the consistent results across these metrics.

Additionally, the speed metrics for the model are as follows:

Preprocessing time (0.1891 seconds): The time taken to preprocess the input images
before feeding them to the model. Preprocessing typically includes resizing, normalization,
and other necessary image transformations.

Inference time (7.8510 seconds): The time taken by the model to perform predictions
on the input images. Inference time is an important factor in determining the real-time
applicability of a model.

Loss computation time (0.0006 seconds): The time taken to compute the loss val-
ues during model evaluation. This metric reflects the model’s efficiency in calculating the
differences between predictions and ground truth values.

Postprocessing time (0.7788 seconds): The time taken to process the model’s output,
which may include tasks such as non-maximum suppression, confidence thresholding, and
converting the output to a more interpretable format.

The speed metrics indicate that the model processes images efficiently, with reasonable pre-
processing, inference, and postprocessing times. The overall performance of the custom-trained
YOLOv8m model demonstrates its suitability for real-world applications requiring accurate and
robust playing card detection and classification.
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Chapter 5

Discussion

In this chapter, we will discuss both designed approaches for playing card recognition, their
implications, and their limitations.

5.1 Convolutional Neural Network Approach

5.1.1 Overview
The custom-trained YOLOv8m model was developed to detect and classify multiple classes
of playing cards in images. The model was pretrained and fine-tuned in a two-stage process
using two different datasets, with training phases taking approximately 20 hours each on an
NVIDIA RTX 3080 GPU. The final model demonstrated high accuracy and robust performance
in detecting and classifying playing cards, as evidenced by the high precision, recall, and mAP
values during testing on a dataset of 30,000 unseen images. The speed metrics also indicate
efficient image processing, making the model suitable for real-world applications.

5.1.2 Interpretations
The results indicate that the two-stage fine-tuning process effectively taught the model to rec-
ognize various card sizes and orientations and the color of the playing cards. The model’s high
precision and recall values suggest that it can accurately identify and localize playing cards in
images. The mAP values further confirm the model’s consistent performance across a range of
evaluation criteria.

5.1.3 Implications
The custom-trained YOLOv8m model can be a valuable tool for applications that require play-
ing card detection and classification, such as card game analysis, computer vision-assisted card
games, and security systems in casinos. The model’s efficient processing times make it suitable
for real-time applications, while its high accuracy ensures reliable and robust performance.
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5.1.4 Limitations
Although the model demonstrates high accuracy and robust performance, there are some limi-
tations to consider:

The model was trained and tested on a limited set of playing card images, which may not
cover all possible variations in card design, lighting conditions, and background clutter.

The model may not perform as well in scenarios with significantly different card sizes, orien-
tations, or image resolutions than those in the training and testing datasets.

The model’s performance may be affected by choice of hyperparameters and the specific
YOLOv8 architecture used, which may not be optimal for all use cases.

5.1.5 Recommendations
Based on the limitations and the achieved results, the following recommendations are suggested
for future research:

Expand the training and testing datasets to include a wider variety of playing card designs,
lighting conditions, and background clutter to improve the model’s generalizability.

Explore alternative model architectures or hyperparameter configurations further to optimize
the model’s performance for specific use cases.

Investigate the potential of incorporating additional features or modalities, such as depth
information or card texture, to improve the model’s robustness in challenging conditions.

Evaluate the model’s performance further in real-world scenarios to better understand its
applicability and limitations.

5.2 Computer Vision Approach

5.2.1 Overview
The computer vision-based approach for playing card detection and classification involved cap-
turing 728 high-resolution images (14 sets of 52 cards) in a controlled environment, taking images
from a top-down view, and performing a series of image processing steps for card extraction, clas-
sification preparations, rank and suit identification, and color identification. This approach was
initially used to extract cards for the CNN approach. The process leveraged various techniques
and algorithms, including gamma correction, edge detection, contour approximation, clustering,
and template matching.

5.2.2 Interpretations
The computer vision approach demonstrates that it is possible to detect and classify playing
cards in images by employing traditional image processing and computer vision techniques. The
process requires careful calibration of preprocessing steps and extracting relevant card features,
such as rank, suit, and color. The variety of algorithms and techniques used for various tasks in
this approach highlights the complexity and challenges of playing card detection and classification
in real-world scenarios.
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5.2.3 Implications
The computer vision approach offers an alternative to deep learning methods for detecting and
classifying playing cards in images. This method can be advantageous in situations with limited
computational resources or where it is necessary to have a more in-depth understanding of the
underlying algorithms and techniques used in the detection process. However, the complexity of
the approach and the need for manual calibration of various parameters may limit its applicability
in some scenarios.

5.2.4 Limitations
The computer vision approach has several limitations:

The method relies on a controlled environment with high-contrast backgrounds and consistent
lighting conditions, which may not represent real-world scenarios.

The approach requires manual calibration of various parameters, such as the gamma correc-
tion and edge detection thresholds, which can be time-consuming and error-prone.

The method’s performance may be sensitive to changes in card design, lighting conditions,
and image resolution, which could limit its generalizability.

The process involves numerous steps and algorithms, which can be computationally expensive
and may not be suitable for real-time applications.

5.2.5 Recommendations
To address the limitations and improve the performance of the computer vision approach, the
following recommendations are suggested for future research:

Investigate ways to make the approach more robust to variations in lighting conditions, back-
ground clutter, and card design by incorporating additional preprocessing steps or adaptive
algorithms.

Explore methods for automatically calibrating the various parameters used in the approach,
such as machine learning techniques or optimization algorithms.

Evaluate the method’s performance on a larger and more diverse dataset of playing card im-
ages, including images captured in uncontrolled environments and with various card designs.

Investigate ways to reduce the computational complexity of the approach, such as by using
more efficient algorithms or parallel processing techniques.

Incorporate the results from the 728 images, which show the accuracies of different methods
for color identification, rank identification, and suit identification, to refine the approach and
further improve the overall performance.
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Chapter 6

Summary

In this thesis, a playing card recognition system is presented that leverages two distinct ap-
proaches to identify playing cards in various environments. The first approach focuses on com-
puter vision techniques to classify cards in a controlled setting, while the second approach em-
phasizes the creation of a comprehensive dataset with augmentation and the training of a deep
learning model.

The first approach utilizes a combination of image processing techniques to detect the rank,
suit, and color of a single playing card in an image. This approach involves a series of steps that
include image preprocessing, edge detection, contour extraction, and feature extraction. In the
preprocessing stage, the image is converted to grayscale, and noise is reduced using Gaussian
blurring. This step prepares the image for the subsequent edge detection process. Edge detec-
tion is performed using the Canny edge detection algorithm, which helps identify the boundaries
of the playing card in the image. The detected edges are then used to extract contours that
represent the card’s outline. The extracted contour information is utilized to segment the play-
ing card from the image, allowing for further processing and analysis. Once the playing card
has been segmented, the next step involves feature extraction, where the card’s rank, suit, and
color are determined. To achieve this, template matching and pattern recognition techniques are
employed. A set of predefined templates for each rank and suit is used to compare against the
segmented card. The highest correlation between the templates and the card image indicates the
correct rank and suit. Color identification is performed by analyzing the segmented card’s color
distribution. The dominant color is determined, and based on predefined color mappings, the
playing card’s color is identified as either red or black. The first approach tests multiple methods
for each step of the process, and the best method achieves an accuracy of 100.00% for rank and
suit identification and 78.16% for color identification on a dataset of 728 playing cards. This ap-
proach demonstrates the potential of computer vision techniques for playing card recognition in
controlled environments, although it may face challenges in more complex real-world conditions.
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The second approach is centered around the creation of a comprehensive dataset containing
30,000 images of playing cards, labeled with their respective rank and suit. The images undergo
slight augmentations, such as rotation, scaling, and flipping, to diversify the dataset and im-
prove model robustness. This dataset is used to pre-train a YOLOv8 model in the first phase
of a two-step training process. In the second phase, an additional 80,000 images, more closely
resembling real-world conditions, are utilized to fine-tune the model. These images were created
to represent various angles, distances, and lighting conditions, ensuring the model’s adaptability
to a wide range of environments. The model is validated during the training process to moni-
tor performance and prevent overfitting. After completing the two-phase training process, the
YOLOv8 model is evaluated on a test set of 30,000 images. The model demonstrates exceptional
performance, achieving an accuracy of 99.98%.

In summary, the proposed playing card recognition system offers a highly accurate and ef-
ficient solution for detecting playing cards in diverse environments. The system has potential
applications across multiple domains, such as gaming, security, and education. Future work will
focus on improving the system’s performance and precision, addressing the limitations of the
computer vision approach, and exploring methods for automatic calibration of various parame-
ters.
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