
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Named entity recognition for poetic texts

Ondřej Černý

Ing. Karel Klouda, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

This work is part of a cooperation with the Institute of Czech Literature (ICL), which

involves processing more than 1,300 digitized poetry collections from the 19th and early

20th centuries. The aim is to identify named entities in these poetic texts using NLP

techniques.

1) Explore the data of the Corpus of Czech Verse [1].

2) Explore and survey NLP techniques for named entity recognition (NER).

3) Find or create a suitable dataset for training a NER model: at least entities

representing a person or a location should be reliably labeled and distinguished in the

dataset.

4) Apply the selected method to the data from the corpus, and evaluate the results.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 14 February 2023 in Prague.

Bachelor’s thesis

NAMED ENTITY
RECOGNITION FOR
POETIC TEXTS

Ondřej Černý

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Karel Klouda, Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Ondřej Černý. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Černý Ondřej. Named entity recognition for poetic texts. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Named Entity Recognition 3
1.1 NER in Czech poetry . 3

1.1.1 Entities in Czech poetry . 4
1.2 Ways to solve NER . 4

1.2.1 Maximum Entropy Markov Model (MMEM) for NER 4
1.2.2 BERT for NER . 5

1.3 Usage of NER . 5
1.3.1 Usage of NER on Czech Poetry . 5

1.4 Entity labeling . 5
1.4.1 BIO tagging . 6

2 Corpus of Czech Verse 7
2.1 Corpus Scheme . 7

2.1.1 Poem Schema . 7
2.1.2 Line Schema . 7

2.2 Prague positional system . 8

3 Entity selection 11
3.1 Metrics used for evaluation of the rule-based approach 11
3.2 Capital words . 12
3.3 Single-word entities . 12

3.3.1 Capital lemmas x Capital tokens . 12
3.3.2 Using Morphollogy . 12
3.3.3 Forbidden Lemmas . 13
3.3.4 Final version . 13

3.4 Multi-word entities . 13
3.4.1 Czech grammar on multi-word entities . 13
3.4.2 Position of words in entity . 14

3.5 Final version of rule-based approach . 14
3.5.1 Selecting potential entities . 17

3.6 Result of entity selection . 18

iii

iv Contents

4 Categorization of Entities 21
4.1 Categories description . 21
4.2 Implementation of categorization . 21

4.2.1 Wikipedia page layout . 22
4.2.2 Categorizing entities using its Wikipedia page 22
4.2.3 Wikidata layout . 24
4.2.4 Selecting entities using Wikidata . 24
4.2.5 Categorizing entities of category Other . 25

4.3 Result of categorization . 26

5 Theoretical description of our model 27
5.1 Recurrent neural network (RNN) . 27
5.2 BiLSTM-CRF . 28

5.2.1 Long Short-Term Memory networks (LSTM) 28
5.2.2 Biderectional LSTM Network (BiLSTM) 29
5.2.3 Conditional Random Fields (CRF) . 30
5.2.4 BiLSTM-CRF . 30
5.2.5 Theory of training BiLSTM-CRF network 31

6 Implementation of our model 33
6.1 Training data . 33

6.1.1 Stanzas vs. Poems dataset . 34
6.1.2 Removing stanzas with potentially unmarked entities 35
6.1.3 Train, Dev and Test split . 35
6.1.4 Input format for training data . 35

6.2 Metrics used for evaluation . 36
6.3 Removing Real Person as an entity category . 36
6.4 Hyperparameter testing/tuning . 39

6.4.1 Word embeddings . 39
6.4.2 Input features . 41
6.4.3 Embedding dimension size for morphological tag 42
6.4.4 Hyperparameter tuning . 44

6.5 Final model . 45
6.5.1 Results of final model . 47
6.5.2 Saving and visualizing results . 47

7 Conclusion 51
7.1 Room for improvement . 51

Source code 55

List of Figures

1.1 Example of NER [2] . 3
1.2 BIO tagging [8] . 6

2.1 Poem Schema [12] . 9
2.2 Example of morphological tag from CCV dataset (16 positions) 10
2.3 Tag Structure as found in [13] (15 positions) . 10

4.1 Top of Wikipedia page . 22
4.2 Bottom of Wikipedia page . 23
4.3 Search in token format . 23
4.4 Search in lemma format . 23
4.5 Keywords used for categorization with Wikipedia page categories 24
4.6 Wikipedia category example . 24
4.7 Wikidata page layout . 25
4.8 Keywords used for categorization with Wikidata 25
4.9 Ratios of categorized entities . 26

5.1 RNN example [23] . 28
5.2 Memory cell [23] . 29
5.3 LSTM network example [23] . 29
5.4 BiLSTM network example [23] . 30
5.5 CRF network example [23] . 30
5.6 BiLSTM-CRF network example [23] . 31
5.7 Detailed BiLSTM-CRF network example [20] . 32
5.8 BiLSTM-CRF network: Training procedure [23] 32

6.1 Poems vs. Stanzas dataset: Entity ratios . 34
6.2 Example of input text format . 36
6.3 Comparison between models with or without Real Person category 37
6.4 Lemma vs. Token embedding . 40
6.5 Input features (zoomed y axis so the difference between F1 scores can be seen

better) . 42
6.6 Different morphological tag sizes of embedding (zoomed y axis so the difference

between F1 scores can be seen better) . 44
6.7 Final model F1 score (Dev and Test datasets) . 46
6.8 Entity categories distribution . 47
6.9 Resulting schema example . 48
6.10 Visualization example . 49

v

List of Tables

3.1 Entity selection overview . 18

6.1 Set of valid stanzas: Number of stanzas for this set out of the total number of
stanzas in the CCV dataset . 33

6.2 Poems vs. Stanzas dataset: Number of entities 34
6.3 Confusion matrix example . 36
6.4 Confusion matrix model without Real Person entity 38
6.5 Confusion matrix model with Real Person entity 38
6.6 Confusion matrix for the model with lemma embedding 40
6.7 Confusion matrix for the model with token embedding 41
6.8 Confusion matrix for the model with pre-trained lemma embedding and morpho-

logical tag feature . 43
6.9 Confusion matrix for the model with pre-trained lemma and token embedding and

morphological tag feature . 43
6.10 Best hyperparameter values . 45
6.11 Confusion matrix for the final model created on test dataset 46
6.12 Number of entities in the whole CCV . 47

List of code listings

3.1 Selecting potential entities . 19

vi

Firstly, I would like to sincerely thank my supervisor, Ing. Karel
Klouda, Ph.D., for good guidance and great advice and for making
the writing of this thesis fun and enjoyable. I am also grateful for
the support from my family and friends not only in my studies but
also generally in life. And lastly, I am much obliged to the Fac-
ulty of Information Technology at CTU and also to the Czech Ski
and Snowboard Federation for allowing me to combine the life of a
professional athlete with the life of a university student.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023 .

viii

Abstract

The result of this work is a program that uses Natural Language Processing (NLP) techniques to
identify named entities in the Corpus of Czech Verse (CCV). It is part of a cooperation with the
Institute of Czech Literature (ICL). Since CCV is not even partially labeled for entity recognition,
we first create a set of rules, and using those, we select entities from the poems. These entities are
later on categorized into different entity categories using data from Wikipedia. After that, these
categorized entities are used as training data for a BiLSTM-CRF neural network that is trained
and fine-tuned for NER on the CCV. The resulting model can find and distinguish entities of
Place, Person, Mystic Person, and Other. Since the text in the CCV is not labeled for NER, we
cannot know the exact accuracy of the final BiLSTM-CRF model. If we would consider the data
that are used for training of this model to be 100% accurate, then the final model would have
achieved an accuracy of 0.99904 and an F1 score of 0.9532.

Keywords BiLSTM-CRF, Corpus of Czech Verse, Lemmatization, Morphology, Natural lan-
guage processing, Recurrent neural network, Named entity recognition, Word2Vec

Abstrakt

Výsledkem této práce je program, který využ́ıvá techniky Zpracováńı přirozeného jazyka k iden-
tifikaci pojmenovaných entit v Korpusu českého verše (KČV). Jedná se o součást spolupráce s
Ústavem pro českou literaturu. Jelikož KČV neńı ani z části označen pro rozpoznáváńı poj-
menovaných entit (RPE), muśıme zprvu vytvořit množinu pravidel, se kterými najdeme entity
v textu. Tyto entity jsou následně kategorizovány s pomoćı dat z Wikipedie. Poté jsou tyto
kategorizované entity využity jakožto trénovaćı data pro BiLSTM-CRF neuronovou śıt’, která je
následně trénována a vyladěna pro RPE na KČV. Výsledný model je schopen nalézt a rozlǐsit
entity mı́sta, osob, mystických osob and jiné. Jelikož text v KČV neńı označen pro RPE nejsme
schopni udat skutečnou přesnost finálńıho BiLSTM-CRF modelu. Pokud bychom poč́ıtali s t́ım,
že trénovaćı data použita na natrénovańı tohoto modelu jsou 100% přesná, pak by výsledný
model dosáhl přesnosti 0.99904 a F1 skóre 0.9532.

Kĺıčová slova BiLSTM-CRF, Korpus českého verše, Lemmatizace, Morfologie, Rekurentńı
neuronová śıt’, Rozpoznáváńı pojmenovaných entit, Word2Vec, Zpracováńı přirozeného jazyka

ix

List of abbreviations

BERT Bidirectional Encoder Representations from Transformers
BIO Beginning, Inside and Outside

BiLSTM Bidirectional LSTM
BiLSTM-CRF Bidirectional LSTM network with CRF layer

CNN Convolutional neural network
CRF Conditional random fields

LSTM Long short-term memory
MEMM Maximum-entropy Markov model

NER Named entity recognition
NLP Natural language processing
POS Part of speech
RNN Recurrent neural network

x

Introduction

Named Entity Recognition (NER) is a natural language processing task that involves identifying
and extracting entities from text. In the context of poetry, NER can be used to identify and
extract entities such as people and places from poems. By performing NER on poetry, we can
gain insights into the themes, settings, and characters present in the poem. Even though there
are currently many available models that can solve NER, not many of them are trained on the
Czech language, and even fewer (if any) are trained on Czech poetry.

A model trained on poetry can differ from a NER model trained on plain text in a few ways.
The language used in poetry can be more complex and stylized than everyday language since the
poets often use words in a more creative and unusual way than we do in our daily lives. This
can make it challenging for a NER model trained on plain text to accurately recognize named
entities in poetry. Additionally, poetry often employs non-standard syntax and grammar, which
can further complicate the task of entity recognition.

NER typically requires supervised learning. This means that a labeled dataset is used to train
the NER model. Since the dataset (Corpus of Czech Verse [1]) that this thesis will be working
with is not labeled in this manner, there is a need to label at least part of it to create training data
for the model. Due to the lack of time and human resources (one student and one supervisor),
the labeling cannot be done manually. Therefore, a rule-based approach will be created to label
at least some of the data. So as a whole, this method of solving NER will not be supervised or
unsupervised but rather something in between.

Motivation

The result of this thesis is supposed to be used by the Institute of Czech Literature by adding
another layer of context to their Corpus of Czech Verse [1]. Furthermore, this work will produce
one of the few (if not the only) NER model (BiLSTM-CRF model, to be exact) trained and
explicitly fine-tuned for Czech poetry.

Thesis structure

This thesis begins with the theory surrounding NER in general and some possible ways how to
solve it (Chapter 1). Then it describes the Corpus of Czech Verse (Chapter 2) and its structure.
After that, it carries on with the creation of training data for the BiLSTM-CRF model (Chapter

1

2 Introduction

3 and 4). Then it carries on with a theoretical description of the model used in this thesis
(Chapter 5) and, after that, with implementation and training of said model (Chapter 6). Then
the thesis finishes with a presentation of the results and a conclusion (Chapter 7).

Objectives

The objective of this thesis is to create a model that can identify named entities in the CCV. To
do that, a training dataset will be created using a rule-based approach. Then this training data
will be used to train BiLSTM-CRF neural network, which will be trained to achieve the best
result possible. All of these steps and how they are implemented will be explained to the reader,
including some theoretical background behind them.

Chapter 1

Named Entity Recognition

This chapter familiarizes the reader with named entity recognition (NER), its uses, and ways
how to solve it.

In natural language processing (NLP), named entity recognition (NER) is the problem of recog-
nizing and extracting specific types of entities in text, such as people or place names. In fact,
any concrete “thing” that has a name at any level of specificity. [2] As an example, we can look
at Figure 1.1.

Figure 1.1 Example of NER [2]

1.1 NER in Czech poetry

NER in and of itself is quite a well-known problem in the NLP realm. There are lots of free-to-
use models that can do NER. The problem is that most of these models are trained on English
text, which is dominant on the Internet (Wikipedia, for example). Our dataset is not only

3

4 Named Entity Recognition

not in English but in Czech, which is not even in the same branch of languages as English
(lexicographically speaking). There is also another problem, which is the fact that poetry is
usually written in quite a specific way which is hard to come by in any other writing form. For
example, the word order in poetry can sometimes be quite different from the word order used in
regular text. This is usually due to the fact that poetry aims more than any other form of text
to sound phonetically pleasing to the reader (use of rhymes, lots of metaphors, etc.).

1.1.1 Entities in Czech poetry

In poetry, the entities that we will encounter the most are usually entities of place and people.
Especially in the dataset that is being used here (more about the dataset in Chapter 2), it is
extremely rare to find, for example, names of companies as entities.

The entities that we decided to consider for our dataset are Person, Place, Real Person, Mystic
Person, and Other. The reason is that any other entities did not seem to appear in the dataset
in large enough quantities to create a category for them.

1.2 Ways to solve NER

Named Entity Recognition (NER) can be solved using various approaches, including dictionary-
based, rule-based, and machine-learning methods.

One of the simplest ones is a dictionary-based approach. We have a dictionary of values for every
entity type to be recognized. To recognize and extract the entities, we simply scan the text and
find hits in the various dictionaries. A hit also reveals the entity type, as we know the dictionary
that was hit. [2]

A rule-based approach involves defining a set of rules that can identify named entities. “In this
method, a predefined set of rules for information extraction is used which are pattern-based and
context-based. Pattern-based rule uses the morphological pattern of the words while context-
based uses the context of the word given in the text document.” [3]

Unlike the previous two approaches, many machine learning models for solving NER require
labeled training data (they are supervised models). We could separate these approaches into two
further categories, and those are statistical-based (MEMM, CRF, etc.) and deep learning-based
(LSTM, BERT, etc.) models.

In our approach, we will be using sort of a hybrid approach, where we will first apply the rule-
based approach to our dataset (Chapter 2) and then use the result we get from that approach
as training data for a Bidirectional Long Short Term Memory neural network (BiLSTM) that
works together with CRF (more about those models later in Chapter 5).

1.2.1 Maximum Entropy Markov Model (MMEM) for NER

MMEM algorithm is based on a probabilistic model that takes into account the previous words
in a sentence in order to predict the next word. The MEMM algorithm is trained on a corpus of
text that has been annotated with named entities. This annotated data is used to build a model
that can then be used to predict named entities in a new text. [4]

One of the advantages is that it can be easily adapted to different languages and domains.
Additionally, this algorithm is relatively fast and can be run on large corpora of text. It simply

Usage of NER 5

scans through a text document and looks for strings of capitalized words. These strings are then
classified as named entities. [4]

1.2.2 BERT for NER

BERT, or Bidirectional Encoder Representations from Transformers, is a pre-trained language
model that can be fine-tuned for a variety of downstream tasks such as classification, Question
Answering, and NER. [5] BERT can be used for NER by fine-tuning the pre-trained model on a
labeled dataset of text that contains named entities.

The Transformer is a neural network architecture that dispenses with recurrence, entirely relying
only on the attention mechanism to draw global dependencies between input and output. Since
Transformers do not rely on sequential processing, they can process an input sequence of words
all at once, allowing for much more parallelization and requiring significantly less time to train
compared to Bi-LSTM-based models [6] (which will be described later on in Chapter 5).

1.3 Usage of NER

NER, in general, can have many uses apart from just locating and labeling entities in text. It
can improve the speed and relevance of search results and recommendations by summarizing
descriptive text, reviews, and discussions. [7] For building a structured database by recognizing
entities of the desired type from a collection of texts. For example, we might build a database of
medical disease names by scraping the web and recognizing entities of this type. [2] NER is also
useful for content classification by surfacing content more easily and gaining insights into trends
by identifying the subjects and themes of blog posts and news articles. [7] Basically, anywhere
where it is useful to extract and/or to categorize some data that is in a text form, NER can be
useful.

1.3.1 Usage of NER on Czech Poetry

Almost all the cases mentioned above can be applied to our dataset of Czech poetry. Whether
it is to classify poems based on which entities occur in them or to help create a potential search
that would search for poems based on a query. Or any other use case that would benefit from
the added context of knowing what entities of which category each poem has.

1.4 Entity labeling

There is also a need to effectively represent entities in the text so we know which words are
entities and which are not. NER can also be viewed as a sequential prediction problem in which
we aim to assign the correct label for each token. There are more ways in which we can encode
the information about the token into the label. The most popular ones are called BIO and
BILOU. [8] Since the model that was trained for the purpose of this thesis is made for the use
of BIO tagging, it will be the type of tagging that we will use here. Even though there is a case
to be made for using BILOU since it was found to outperform BIO. [9]

6 Named Entity Recognition

1.4.1 BIO tagging

BIO stands for Beginning, Inside, and Outside (of a text segment). In a system that recognizes
entity boundaries only, only three labels are used: B, I, and O. [8] In Figure 1.2 is an example
of a BIO scheme with entity categories.

Figure 1.2 BIO tagging [8]

Chapter 2

Corpus of Czech Verse

This chapter describes the Corpus of Czech Verse (CCV) which is a corpus this thesis will be
working with.

“The Corpus of Czech Verse (CCV) is a lemmatized, phonetically, morphologically, metrically,
and strophically annotated corpus of Czech poetry of the 19th century and the beginning of
the 20th century. Each lexical unit in the corpus is provided with information concerning its
basic entry form (lemma), phonetic transcription, and grammar categories; each line is provided
with the indication of its metre (iamb, trochee,...), length (n-meter), ending type (masculine,
feminine,...) and the metrical formula.” [1]

2.1 Corpus Scheme

CCV is divided into multiple books in JSON file format, where each book contains a number of
poems. Each poem then includes a number of lines (verses) and is made up of multiple words.
Books, poems, lines, and words all contain metadata about themselves. Like the title, year,
author, etc., for books. Or text, words, metre, rhyme, etc., for lines.

2.1.1 Poem Schema

Each poem contains a lot of metadata, mainly about the book in which the poem was published.
Information about the author of the book, but also about the author of the poem itself, plus
information like the number of pages, publisher, etc. For NER purposes, the most valuable
information is stored in the body tag. This tag contains a list of stanzas, and each stanza
contains a list of lines. The poem schema can be seen in Figure 2.1.

2.1.2 Line Schema

Every line contains the text of said line in UTF-8 encoding, the type of rhyme used in this line, a
dictionary with information about the punctuation in the given line, and a list of words that are
used in this line. Each word is saved as a dictionary with keys like phoebe [10] or xsampa [11]

7

8 Corpus of Czech Verse

(both used for phonetic expression of the word). But also token (word in the format as it appears
in the text), token lc (same as a token but lowercased), lemma, and morph (morphological tag
using the Prague positional system).

2.2 Prague positional system

The CCV is using Prague positional system for morphological tagging. We were, unfortunately,
unable to find any text that would have described or even mentioned Prague positional system.
All we know is that morphological tags used in the dataset are 16 characters long. Most sources
for the description of Czech morphology we found use 15 characters or less. The good thing is
that the morphological categories we will be interested in are Part of Speech and Case. All of the
sources we looked at put these categories in positions 1 and 5. Also from looking at our dataset,
these categories seem to be in positions 1 and 5. There may be some differences between the
tagging used by our dataset and the ones used in Figure 2.3 but these differences are mostly
in categories in further positions. In Figure 2.2 we can see an example of a morphological tag
used in the CCV and in Figure 2.3 we can see how potentially (with subtle differences) the tag
structure could look like.

“Every tag is represented as a string of 15 symbols. Each position in the string corresponds to
one morphological category according to a more or less traditional system of formal morphology.”
[13] A value in each category is represented as a single symbol, mostly an uppercase letter of the
English alphabet (for example, P for plural), sometimes also another symbol (f for an infinitive)
or a number (4 for fourth case). [13]

Prague positional system 9

Figure 2.1 Poem Schema [12]

10 Corpus of Czech Verse

Figure 2.2 Example of morphological tag from CCV dataset (16 positions)

Figure 2.3 Tag Structure as found in [13] (15 positions)

Chapter 3

Entity selection

This chapter explains how entities are selected using our rule-based approach.

Since NER usually needs a supervised machine learning model, we need to create a training
dataset on which a model can be trained later on. We could theoretically go through a large
enough number of poems and label each and every word with its entity category by hand. This
is, however, not really feasible given the time constraint and the amount of manpower we have
at our disposal. Therefore we need to create a set of rules which define whether or not a given
word is an entity, and in case it is, we categorize this entity using another set of rules. Then
we select a set of stanzas that have all of its entities reliably categorized and use this set as our
training data on which we will train a model later on. In other words, we are solving NER as
something in between a supervised and an unsupervised task.

But before we can start categorizing our entities, we need to find them in the text. To do this,
we need to create a set of rules and use those rules to select our entities.

3.1 Metrics used for evaluation of the rule-based approach

As said before, in the CCV, it is not marked which words are entities and which are not. Therefore
it is pretty difficult to create accurate metrics that would measure how well our set of rules selects
entities. So whenever we created a new set of rules, we simply tested it by trial and error. We ran
the set of rules on the CCV dataset and looked at the results. Looked into the errors the program
made trying to find some patterns and created a new set of rules that sorted the problems we
found. We did this until we found the rules that selected words/sequences of words that were
almost certainly entities.

It is important to note here that we only reviewed which words were selected as entities. We
were not looking at the whole text and searching for entities that were left behind (that would
be extremely time-consuming). Because our main goal was to create as clean a set of entities as
possible (that can be used for model training later), therefore we were trying to minimize the
number of false positives even at the expense of increasing the number of false negatives. But
we tried to have the set of entities as big and diverse as possible as well (the bigger and more
diverse the training dataset, the better the model usually).

11

12 Entity selection

3.2 Capital words

Since the entities that we are focusing on are entities of either Person or Place (or some variations
of these), we focused a lot on the fact if a word starts with a capital letter or not. This is because
the rules of the Czech language dictate that people’s and place’s names have to begin with a
capital letter, at least in the first word. We have 1,271,237 words whose tokens start with a
capital letter in our dataset which makes quite a decent amount of words that could potentially
be entities.

3.3 Single-word entities

At first, let us focus on entities that have a length of only one word (like Václav, B̊uh, Třeb́ıč,
etc.) and not entities like Jan Ámos Komenský, Bı́lá Hora, etc.

3.3.1 Capital lemmas x Capital tokens

We tried to select single-word entities by selecting words with capital first letters in their lemma
format. The lemma formats in the CCV dataset were created using the MorphoDiTa program
[14]. We do not know how MorphoDiTa’s model creates lemmas from tokens and decides which
ones to capitalize and which ones to leave lower-cased. But the words with capital first letters
in their lemma format seem to look more often entity-like.

Then we also tried to select words with a capital first letter in their token format and that are
not at the beginning of a sentence. Word is marked as being at the beginning of a sentence when
it is either the first word of a poem’s line or when it is right after punctuation that marks the end
of a sentence ([”.”, ”!”, ”?”, ”:”, ”...”, ”””]). The number of potential entities if we use capital
tokens, is 209,654. If we use lemmas, it is 210,755 words. So there is not much difference here in
the number of potential entities.

However, there is quite a big difference in which words get chosen. The set created by the
lemma rule has 70,938 words that are not chosen using the token rule. On the other hand, the
set created by the token rule has 115,232 words that are not chosen by the lemma rule. After
inspecting which words were chosen using capital lemmas and which using capital tokens, we
found out that neither of these rules works perfectly. Maybe using capital lemmas seems the
more accurate solution, but it’s also not the ideal way. On the other hand, the problem with
using capital tokens is that we are only picking words that are not at the beginning of a sentence
(if we also picked words that are at the beginning of a sentence, we would have too many words
that are not entities and are just the first words in a sentence). So later on, when we want to
use these words as our training data, our model could potentially pick up on this pattern and
miss a lot of entities that are at the beginning of a sentence.

Later on (as seen in Subsection 3.3.4), we decided to implement both rules. So words that are
potential entities have to have a capital first letter in their lemma and token format.

3.3.2 Using Morphollogy

If we would select words that are capitalized in their lemma and token format, we can still see a
lot of words that are clearly not an entity (II., Hlucho, Osud, Hurrá, etc.). Most of these words
are morphologically something other than nouns. Therefore we tried to select only those words

Multi-word entities 13

that have capital lemma but also are nouns. This seemed to work quite well, but the problem
is that we may miss a lot of potential entities this way. Because in the Czech language, we can
also find entities that are not nouns, a good example would be surnames since a lot of them
are actually adjectives (Veselá, Smutný, Černý, etc.). Another problem is that some words do
not have an assigned morphology since their POS (part of speech) is marked as being unknown.
If we look closely at morphologically unknown words, we can see some of them being entities
(Vatikanu, Douamont, Bastilla, etc.).

3.3.3 Forbidden Lemmas

After closer inspection of our potential entities, we also found out that there are some words that
do have the capital first letter in their lemma format, and yet they are clearly not entities. Some
of these words were quite commonly recurring in our set of potential entities. Therefore, we
decided to create a list of forbidden lemmas. If we encounter a word that has its lemma format
in this list, we do not count this word as an entity. These words are [”Ty´s”, ”Toba”, ”Tvoj́ım”,
”Ont’”, ”Mińı”, ”Huja”, ”Cos”, ”Jakoby”, ”Celá”, ”Ton”, ”Jež”, ”Jaj”, ”Tyt’”, ”Mńı”, ”Jakby”,
”Ant’”, ”Bouř”].

3.3.4 Final version

Word is marked as being an entity if it complies with the following rules:

Its lemma format starts with a capital letter.

Its token format starts with a capital letter.

If the morphology of the word is unknown, the word cannot be at the beginning of a sentence
or line

If its lemma is not in the list of forbidden lemmas.

If the length of its lemma is longer than 3. There are barely any entity names in the Czech
language that would be smaller than 3, and there were quite a few lemmas that had a capital
first letter, and their length was smaller than 3 (usually Roman numbers, some connectors,
and adverbs).

3.4 Multi-word entities

As said above, not all entities contain just one word. There are quite a few entities that span
across two or more words. These could be names (Josef Slaný, Petra Dlouhá) or places (Bı́lá
Hora, Nové Město na Moravě).

3.4.1 Czech grammar on multi-word entities

Since the entities that we are interested in often contain at least one word with a capital first
letter, we focused on how capital letters are used in multi-word names in the Czech language.
Czech multi-word proper names are written with a capital letter in the first word in principle (Bı́lá
hora, Krušné hory, Nová řeka, Národńı divadlo). Provided that a proper name is a component
of another multi-word proper name, it is written with a capital letter as well (Tichá Orlice,

14 Entity selection

Studená Vltava, Moravskoslezské Beskydy). Further supplementary rules hold for geographical
names. [15]

In multi-word proper names of residential objects (in officially used denotations of towns, their
parts and districts, villages and hamlets), all words except prepositions are written with capital
initials (Karlovy Vary, Klenč́ı pod Čerchovem, Nové Město pod Smrkem, etc.). [15]

There are even more supplementary rules regarding geographical names, which can be found in
(Boháč, 2007) [15].

For a person’s name, the Czech language follows the same convention as anywhere else in the
world. Which is that all parts of someone’s name begin with a capital letter (Jan Hus, Jan Ámos
Komenský, etc.).

3.4.2 Position of words in entity

If one entity covers multiple words, these words usually sit right beside each other, and their
first letters are capitalized. There are also exceptions to this rule, for example, Nové Město na
Moravě or Jiř́ı z Poděbrad and many more. We, however, decided not to focus on this specific
subset of entities (we only focused on multi-word entities whose words are right beside each other
and have capital first letters). This is mainly because creating a simple and effective set of rules
to include entities like Jǐŕı z Poděbrad but also at the same time not include just some random
multi-word phrases proved to be quite difficult. Another reason is that most of these entities are
included nonetheless, just not as one entity but, for example, as two or more (Jiř́ı z Poděbrad
will be separated into entity Jiř́ı (Person) and Poděbrad (Place) instead of one Person entity).

3.5 Final version of rule-based approach

After trying out different rules on how to select all entities (single-word and multi-word as well).
We have arrived at a final approach that is described in this Section.

The rules can be described in 9 steps. For each book in the CCV dataset, all of these steps
are applied one by one to extract entities from the dataset. After a description of each step,
an example of words that are currently selected as entities is shown (by currently meaning after
that step).

1. Firstly, we create a set of word sequences that could potentially be entities, and let us call it
ents mw (detailed description of rules for creating this set is in Subsection 3.5.1). This set
consists of sequences of words (even of a length one) with capital first letters in their token
format. Morphologically allowed parts of speech are only nouns, adjectives, numbers, and
morphologically unknown words. However, the sequence of words can only start with a noun,
an adjective, or a morphologically unknown word.

▶ Example 3.1.
Example description:
Example set = {
”Entity in lemma form” (”Morphological tag”) [”Line from the book in which this entity
occurs for the first time”, ”Line from the book in which this entity occurs for the second
time”],
”Another entity in lemma form”, (”another morphological tag”) [”use case”],
...
}

Final version of rule-based approach 15

▶ Example 3.2.
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha Otce, Boha Syna”],
Petr (NNM-2———–) [”Bez Petra neńı zábavy”],
Konstanci (NNFS6—–A—–) Husa (NNMS4—–A—–) — [’co v Konstanci Husa upálili.’],
Ctnost (NNFS1—–A—–) Plutarchovská (X24————-) [’Ctnost Plutarchovská ve tmách
dneška plane,’]
}

2. Secondly, we remove from ents mw all entities that contain at least one word that is mor-
phologically unknown. We have to remove the whole potential entity, not just the word that
is morphologically unknown, because then we could have been left with a word that by itself
is not an entity. The number of these potential entities containing morphologically unknown
word(s) can be later on seen in Table 3.1.

▶ Example 3.3.
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha Otce, Boha Syna”],
Petr (NNM-2———–) [”Bez Petra neńı zábavy”],
Konstanci (NNFS6—–A—–) Husa (NNMS4—–A—–) [’co v Konstanci Husa upálili.’]
}

3. In ents mw all words in one entity have to be in the same case (morphological case). This
applies only to words that are a noun or an adjective (not numbers). This is done to prevent
word sequences like Kostnici Husa in the sentence co v Konstanci Husa upálili. from being
marked as one entity. In the Czech language, if we talk about something as one whole entity,
we tend to put all of the words of this whole entity into the same case. An example could be
the name Josef Slaný (the cases for this name would be: 1. Josef Slaný, 2. Josefa Slaného,
3. Josefu Slanému, etc.), as we can see if we decline the entity as one whole entity, all of the
words of this entity are put in the same case. If we find entities whose words are not in the
same case, we split them so we are only left with entities that have all of their words in the
same case.

▶ Example 3.4.
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha Otce, Boha Syna”],
Petr (NNM-2———–) [”Bez Petra neńı zábavy”],
Konstanci (NNFS6—–A—–) [’co v Konstanci Husa upálili.’],
Husa (NNMS4—–A—–) [’co v Konstanci Husa upálili.’]
}

4. Remove from ents mw entities that only contain one word.

▶ Example 3.5.
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha Otce, Boha Syna”]
}

16 Entity selection

5. Get single-word entities using the rules from Subsection 3.3.4. Let us call the set of single-
word entities ents sw.

▶ Example 3.6.
ents sw = {
Bůh (NNM-1———–) [””Jménem Boha Otce, Boha Syna”, ”Bůh se o to postará”, ”Bez
požehnáńı Boha neudělá krok”],
Petr (NNM-2———–) [”Bez Petra neńı zábavy”],
Karel (NNFS1—–A—–) [”Karla Dvanáctého, krále Švéd̊u”],
Konstanci (NNFS6—–A—–) [’co v Konstanci Husa upálili.’],
Husa (NNMS4—–A—–) [’co v Konstanci Husa upálili.’]
}
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha Otce, Boha Syna”]
}

6. Add a unique ID to every word in a book. Do this in all books (therefore IDs are only unique
in the context of one book). This is necessary for the following step.

▶ Example 3.7.
ents sw = {
Bůh (NNM-1———–) [””Jménem(ID: 1) Boha(ID: 2) Otce(ID: 3), Boha(ID: 4) Syna(ID: 5)”,
”Bůh(ID: 45) se(ID: 46) o to postará”, ”Bez požehnáńı Boha(ID: 72) neudělá krok”],
Petr (NNM-2———–) [”Bez Petra(ID: 22) neńı zábavy”],
Karel (NNFS1—–A—–) [”Karla(ID: 37) Dvanáctého, krále Švéd̊u”],
Konstanci (NNFS6—–A—–) [’co v Konstanci(ID: 52) Husa(ID: 53) upálili.’],
Husa (NNMS4—–A—–) [’co v Konstanci(ID: 52) Husa(ID: 53) upálili.’]
}
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla(ID: 37) Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha(ID: 2) Otce,
Boha(ID: 4) Syna”]
}

7. If an entity from ents sw is part of an entity in ents mw remove it from ents sw. To know if
a single-word entity is part of a multi-word entity, we check their word IDs. If the word ID
of a single-word entity matches with at least one of the words ID of a multi-word entity, we
remove this entity from ents sw. It is important to note that if a single-word entity occurs
on multiple positions in the text, the IDs must match in all of these occurrences in order for
the entity to be removed from ents sw.

▶ Example 3.8.
ents sw = {
Bůh (NNM-1———–) [””Jménem Boha(ID: 2) Otce, Boha(ID: 4) Syna”, ”Bůh(ID: 45) se o
to postará”, ”Bez požehnáńı Boha(ID: 72) neudělá krok”],
Petr (NNM-2———–) [”Bez Petra(ID: 22) neńı zábavy”],
Konstanci (NNFS6—–A—–) [’co v Konstanci(ID: 52) Husa(ID: 53) upálili.’],
Husa (NNMS4—–A—–) [’co v Konstanci(ID: 52) Husa(ID: 53) upálili.’]
}

Final version of rule-based approach 17

ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla(ID: 37) Dvanáctého, krále Švéd̊u”],
Bůh (NNMS2—–A—–) otec (NNMS2—–A—–) [””Jménem Boha(ID: 2) Otce,
Boha(ID: 4) Syna”],
}

8. If a word in an entity from ents mw, is in ents sw, then remove this entity from ents mw. If
a lemma format of a word that is part of an entity in ents mw is the same as a lemma format
of any word in ents sw, then remove the entity containing this word from ents mw. This is
done so we can be sure that ents mw truly contains only multi-word entities. Without this
rule, there would be a possibility that we can have something marked as a multi-word entity,
but it’s just two single-word entities next to each other. This way, ents mw only has entities
containing words that by themselves are not entities in the same book.

▶ Example 3.9.
ents sw = {
Bůh (NNM-1———–) [””Jménem Boha Otce, Boha Syna”, ”Bůh se o to postará”, ”Bez
požehnáńı Boha neudělá krok”],
Petr (NNM-2———–) [”Bez Petra neńı zábavy”],
Konstanci (NNFS6—–A—–) [’co v Konstanci Husa upálili.’],
Husa (NNMS4—–A—–) [’co v Konstanci Husa upálili.’]
}
ents mw = {
Karel (NNFS1—–A—–) dvanáctý (CrMS2———–) [”Karla Dvanáctého, krále Švéd̊u”]
}

9. Join ents sw and ents mw into one set.

3.5.1 Selecting potential entities

This subsection explains in detail how the first step in the final version of entity selection works
(the previous Section 3.5). The goal is to select all word sequences (even of a lenght one) that
could potentially be entities. To do that, the function seen in Code listing 3.1 is used. It works
by iterating over each line of a poem in a book. For each line, it then iterates over each word.
Conditions are created in a way that each word sequence (potential entity) has to meet these
rules:

The first word of the sequence has to meet these conditions (all of the conditions below have
to be met):

Its token form starts with a capital first letter.

The word is either a noun, an adjective, or a morphologically unknown word.

If the word is at the beginning of a line or a sentence, then its lemma form also has to
have a capital first letter.

18 Entity selection

Every other following word of the sequence has to meet these rules in order to be a part of
the same potential entity as the word before:

Have in its token form a capital first letter.

Be either a noun, an adjective, a preposition, a number, or a morphologically
unknown word.

Punctuations cannot be a part of an entity. Therefore, if any punctuation occurs, the
sequence of words that make up one potential entity is stopped.

3.6 Result of entity selection

After applying the rules from Section 3.5, We have found 163,100 potential entities. But in these
163,100 entities, we only found 24,655 unique entities (unique in the sense that we counted every
unique lemma form of an entity only once), which is about 15%. This means that there are a
lot of entities that repeat themselves in the text, which could be a good thing for us because it
means we do not have to categorize that many of them.

If we look at Table 3.1 we can see that most of our selected entities are single-word entities,
with only a few entities being multi-word. We can also see how many other potential entities
we might have missed by removing morphologically unknown words (rule from step number 2 in
Section 3.5).

Table 3.1 Entity selection overview

Set of words Count
All entities (non-unique) 163,100
Unique entities 24,655
Single-word entities (non-unique) 160,469
Multi-word entities (non-unique) 2,631
Potential entities containing a morphologically unknown word(s) (non-unique) 2,572
Words that are morphologically unknown (non-unique) 358,575
Capital words (non-unique) 1,271,237

Result of entity selection 19

Code listing 3.1 Selecting potential entities

def ents_select_possible (book: Book) -> list:
possible_entities = list ()

for line in book. get_lines ():

Create empty Entity class (entity not containing any words)
entity = Entity ([])

For each word and its position (index) on the line
for index , word in enumerate (line.words):

If the entity is NOT empty and
the word is NOT one of the following :
noun , adjective or unknown
if not entity and\
not allowed_morphs (word , constants . ALLOWED_MORPH_START):

continue

If the word is at the beginning of a line or
at the beginning of a new sentence
i.e. is right after ["." , "!", "?", ":", "..." , ",,"]
and its lemma form does NOT have a capital first letter
then save the entity into all possible entities
if (index == 0 or\
end_sentence (punct_on_pos (line , index))) and\
not word. is_capital_lemma ():

possible_entities . append (entity)
entity = Entity ([])
continue

If the word is NOT one of the following :
noun , preposition , adjective , number or unknown
if not allowed_morphs (word , constants . ALLOWED_MORPH_2):

possible_entities . append (entity)
entity = Entity ([])
continue

If there is punctuation right in front of this word
if punct_on_pos (line , index):

possible_entities . append (entity)
entity = Entity ([])
continue

If the word in its token form does
NOT have a capital first letter
if not word. is_capital_token ():

possible_entities . append (entity)
entity = Entity ([])
continue

If none of the conditions in front was true
then add/push the word as a part of the entity
entity .push(word)

If the entity is not empty after the end of a line
then save the entity into all possible entities
if entity :

possible_entities . append (entity)

return possible_entities

20 Entity selection

Chapter 4

Categorization of Entities

This chapter explains how entities are categorized using our rule-based approach.

After we have managed to select which words are entities, we now have to categorize them. After
inspecting the selected entities, we have decided to categorize them into five different categories.
Those categories are Real Person, Mystic Person, Person, Place, and Other. The reason for these
entity categories is the same as already mentioned in Subsection 1.1.1, and that is that any other
entities of similar meaning do not seem to appear in the dataset in large enough quantities to
create a category for them.

4.1 Categories description

The category of a Real Person contains historical personas, dead or alive, that have actually
lived (for example, Karel IV.). Mystic Person includes characters used in mythologies (Medúsa)
or a well-known fictional character (Drákula), or a form of deity (B̊uh). In the Person category,
we find any other person that is not a Real or Mystic Person. Usually, first names like Jan, Petr
or Pavla or general surnames like Novák, Blažková or Škvarenina are in this category. Lastly,
the category of Other describes the rest of the entities (for example, abstract entities like Láska
or Štest́ı).

4.2 Implementation of categorization

Czech Wikipedia and Wikidata help us to categorize the entities. Program in Python is imple-
mented to go through all of the entities we found and search for each and every one on the Czech
Wikipedia page. If a Wikipedia page for this entity is found, it is then scraped to find out what
type of entity it represents. If the Wikipedia page for this entity is not found, we try to search
for it on Wikidata and scrape the answers we get there.

21

22 Categorization of Entities

4.2.1 Wikipedia page layout

If we look into Figure 4.1 and 4.2, the highlighted sections with numbers are the parts of the
Wikipedia page that are scraped for information so we can identify the correct category for a
given entity. In Figure 4.1 oval 1, we can see the geographical location. This location is only
shown if the Wikipedia page is about a place. In rectangle number 2, we can see what is called
the summary of the Wikipedia page. In this summary, we can find some keywords that help us
identify what type of entity the article might talk about. In rectangle number 3, we can find
what is called an infobox of a Wikipedia page. This infobox is also used to get some information
that might be valuable to us. And lastly, in Figure 4.2, we can see the bottom of the same
Wikipedia page. At the bottom of each page, we can find categories to which this page belongs.

Figure 4.1 Top of Wikipedia page

4.2.2 Categorizing entities using its Wikipedia page

The categorization of entities using their Wikipedia pages is going to be described as a step-
by-step process. It is important to note here that once the entity has been categorized, the
categorization process ends. For example, if an entity called Nepomuk gets categorized as an
entity of Place in step 2, the categorization process will not continue to step 3 to check whether
or not entity Nepomuk cannot also be an entity of a Real Person.

1. Firstly, we try to find a Czech Wikipedia page about a given entity by searching for this
entity in the Wikipedia search. The term we search for is the entity name in a lemma format.
This seems to be more effective at finding Wikipedia pages than searching in token format.

Implementation of categorization 23

Figure 4.2 Bottom of Wikipedia page

Figure 4.3 Search in token format Figure 4.4 Search in lemma format

This way of searching is quite effective for single-word entities. But as we can see in the
example in Figure 4.3 and 4.4, neither of these approaches is ideal for multi-word entities
(since the actual entity name that we are trying to search for is called Bı́lá Hora). For
searching multi-word entities in the Czech language, the ideal approach would probably be
to transform the token format found in the text into the first (nominative) case and search
in this format (i.e. switching from Bı́lou Horou to Bı́lá Hora). Unfortunately, our CCV does
not contain the first (nominative) case format for each word. We failed to find any API that
would convert words into their nominative forms, and creating an API that would reliably
work was not feasible.

Therefore, if the Wikipedia page is found using the entities lemma format, we carry on trying
to categorize it (we move to step 2). If the Wikipedia page is not found, we try to categorize
the entity using Wikidata (Subsection 4.2.4).

2. Second step is to find out if a given Wikipedia page is about the entity of Place. This is done
by trying to find the geolocation tag (number 1 in Figure 4.1) on this Wikipedia page. If the
geolocation tag is found, we classify the entity as an entity of Place.

3. If a given entity does not have a geolocation tag, we try to find out if it is a Real Person.
This is done by searching for either the word Narozeńı or Datum narozeńı in the infobox
(number 3 in Figure 4.1 of the Wikipedia page. If either of these phrases is found, this entity
is marked as an entity of a Real Person.

4. Fourth step is checking whether or not a given entity is a Mystic Person. This is done by
searching for the word postava in the summary of the Wikipedia page (rectangle number 2
in Figure 4.1). The reason is that Mystic Person represents not only entities of diety but
also well-known fictional characters (Drákula, for instance). And looking at Wikipedia pages
of some well-known fictional characters (from mythological stories or fairytales), the word
postava seemed to appear in their summary quite often. So, if the word postava is found in
the summary, the entity is marked as Mystic Person.

5. Fifth step is to look through the categories into which this Wikipedia page belongs. By
Wikipedia’s own definition, “Categories are used in Wikipedia to link articles under a common
topic and are found at the bottom of the article page” [16]. We can see where we can find

24 Categorization of Entities

Wikipedia categories in Figure 4.2. Articles are categorized by the authors or the editors
of the Wikipedia articles themselves, so it is not an automated process. [17] Therefore, we
had to find commonly occurring categories under Wikipedia pages about entities of Person,
Place, etc. These commonly occurring Wikipedia categories are saved as keywords which the
categorization program looks for when it is presented with a Wikipedia page.

Figure 4.5 Keywords used for categorization with Wikipedia page categories

Figure 4.6 Wikipedia category example

We can see all of the keywords listed with their corresponding entity category in Figure
4.5. If any of these keywords are found in the categories of a Wikipedia page, the entity
is categorized accordingly. As an example, let us look at Figure 4.6, where we can see the
categories for a Wikipedia page about entity Petr. Since the keyword jmén is a part of the
Wikipedia category Mužská jména, we can identify the entity Petr as an entity of a Person.

6. If none of these steps are able to categorize the entity, we try to categorize the entity using
Wikidata (Subsection 4.2.3 and 4.2.4).

4.2.3 Wikidata layout

To describe how to categorize entities by scaping Wikidata, we first need to describe the Wikidata
page itself.

If we look at Figure 4.7, we can see the Wikidata page layout. In red rectangle number 1, we can
see the search box of the Wikidata page. Into this search box, we enter the entity we are trying
to categorize. In rectangle number 2, we can see the search results we get. Rectangle Number
3 highlights one individual search result. And lastly, rectangle number 4 highlights the search
result description. Information in the search description is used to categorize the entity itself.

4.2.4 Selecting entities using Wikidata

We scrape the description of all search results that the Wikidata search gives us and search for
certain keywords to categorize a given entity. We check the search result descriptions (number 4
in Figure 4.7) one by one to try to categorize the entity using the top search results first.

Again, the keywords were selected the same way as keywords for Wikipedia page categories.
That means we simply looked at the search results of many entities and then added/removed
keywords by trial and error.

Implementation of categorization 25

Figure 4.7 Wikidata page layout

Figure 4.8 Keywords used for categorization with Wikidata

As an example of how categorization with Wikidata works, we can use Figure 4.7. The entity
Lavigerie was not successfully categorized using a Wikipedia page (its page was not found/ didn’t
exist). Therefore, we decided to search for the term Lavigerie in Wikidata. After searching for
this term, we get the page as in Figure 4.7. At first, we try to categorize Lavigerie by the first
search result description. This description says: “commune in Cantal, France”. We now try to
find our keywords (seen in Figure 4.8) in this description. Since the word commune is a keyword
representing an entity of a Place, we categorize the entity Lavigerie as a Place. If we weren’t
able to categorize the entity by the first result description, we would move on to the next one
until we reached the last search result description.

If even the last search result description did not help us categorize the entity, we would mark
the entity as Not Exists.

4.2.5 Categorizing entities of category Other

An entity is categorized as an entity of the category Other if we successfully find a Wikipedia
page for this entity. But, on this Wikipedia page and also in Wikidata search results, we cannot
find anything that would identify the entity as an entity of Place, Person, Mystic Person, or a
Real Person.

Now, to distinguish the entity of Other from Nont Exists. For the entity to be categorized as
Not Exists, a Wikipedia page for this entity cannot be found. Also, it is not possible for the
entity to be categorized by Wikidata search. Whereas for the entity category Other, the entity
is also not categorizable using the Wikidata search, but its Wikipedia page exists.

26 Categorization of Entities

4.3 Result of categorization

We managed to categorize slightly above 50% of all the unique entities selected in Chapter 3,
that is, 12,748 out of 24,665 unique entities. In Figure 4.9, we can see how much percent of all
the unique entities each entity category covers and also the percentage of entities that we failed
to identify (Not Exists) using the Wikipedia and Wikidata approach. Of the entities we managed
to categorize, the most prevalent one is the entity of Person, followed closely by the entity of
Place. On the other hand, the entities of Real Person (630 out of 24,665), Mystic Person (540
out of 24,655), or Other (137 out of 24,655) are not present in the data that much.

Figure 4.9 Ratios of categorized entities

Chapter 5

Theoretical description of our
model

Theory of how BiLSTM-CRF neural network works.

In previous Chapters 3 and 4, we selected and categorized entities using a rule-based approach.
However, as seen in Figure 4.9, we didn’t manage to categorize all of the entities by using this
approach. Therefore, we use the entities that we managed to categorize as training data for a
machine-learning model. The model that is used for solving NER in this thesis is called BiLSTM-
CRF neural network. The reason we picked this model is because it has a free and relatively
easy-to-use implementation available at GitHub [18] created specifically for NLP tasks. This
model also achieves state-of-the-art performance in many NLP tasks, as reviewed by Reimers
et al. (2017). [19] This implementation is also modifiable and has the possibility of fine-tuning
multiple hyperparameters (with a white paper [20] attached to it about which hyperparameters to
tune for NER or other NLP tasks). More about the implementation itself and the hyperparameter
fine-tuning in Chapter 6.

Since the BiLSTM part of the BiLSTM-CRF neural network is a type of recurrent neural network,
let us start with describing those.

5.1 Recurrent neural network (RNN)

Recurrent Neural Networks (RNNs) are a class of neural networks particularly suited for process-
ing sequential data. Unlike feedforward neural networks, which process inputs in a fixed order
and do not have any memory of previous inputs, RNNs can take into account the entire history
of a sequence of inputs. [21]

At a high level, an RNN processes a sequence of inputs one at a time, and at each time step, it
updates its hidden state based on the current input and the previous hidden state. The hidden
state serves as a memory for the network, allowing it to maintain information about the previous
inputs that have been processed. [22]

We can see Figure 5.1 below as a graphical demonstration. Here we can see that the input layer
(states) is represented by x, the hidden layer by h, and the output layer by y.

27

28 Theoretical description of our model

We can also see, for example, if we want to determine what entity the word German is, we have
to consider not only the word itself but also the input from the previous hidden state.

Figure 5.1 RNN example [23]

5.2 BiLSTM-CRF

Before we jump straight into explaining BiLSTM-CRF, let us first explain how LSTM neural
networks work. After that, how BiLSTM neural networks work. Thenceforth, what is a CRF,
and finally how BiLSTM-CRF combines these neural networks together.

5.2.1 Long Short-Term Memory networks (LSTM)

“Long Short-Term Memory networks are the same as RNNs, except that the hidden layer updates
are replaced by purpose-built memory cells. As a result, they may be better at finding and
exploiting long-range dependencies in the data.” [23] As we can see in Figure 5.2 below, the
memory cell is composed of 4 main components: input gate, output gate, forget gate, and the
cell itself.

At time t the following equations are computed in one memory cell [23]:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (5.1)
ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf) (5.2)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (5.3)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (5.4)

ht = ot tanh(ct). (5.5)

where σ is the logistic sigmoid function, and i, f , o, and c are the input gate, forget gate, output
gate, and cell vectors, all of which are the same size as the hidden vector h. W represents the
weight matrices. The subscripts bellow the W have a meaning as the name suggests. [23] “For
example, Whi is the hidden-input gate matrix, Wxo is the input-output gate matrix etc. The
weight matrices from the cell to gate vectors (e.g. Wci) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.” [23]

In Figure 5.3, we can see a graphical representation of an LSTM network. Each shaded square
in the figure represents one memory cell.

BiLSTM-CRF 29

Figure 5.2 Memory cell [23]

Figure 5.3 LSTM network example [23]

5.2.2 Biderectional LSTM Network (BiLSTM)

In a sequence tagging task, we have access to both past and future input features for a given
time so we can implement a network in a way that makes use of both. Such implementation
is, for example, the BiLSTM network. It consists of two LSTM networks. One processes input
features using a forward pass (from left to right), and another processes input features by using
a backward pass (from right to left). At one point, we need to reset the hidden states (we cannot
keep the context of previous/following inputs forever). Since the implementation used in this
thesis is based on Huang et al. (2015) [23], we will do forward and backward for whole sentences
and only reset the hidden states to 0 at the beginning of each sentence. [23]

In Figure 5.4, we can see a graphical representation of a BilSTM network.

30 Theoretical description of our model

Figure 5.4 BiLSTM network example [23]

5.2.3 Conditional Random Fields (CRF)

Instead of focusing on solving NER only one position at a time (evaluating one word at a time,
like in BiLSTM), we can try to solve the whole sequence of text at once. That is what CRF
focuses on, and it is trying to find optimal tagging for the sequence as one whole. “Note that
the inputs and outputs are directly connected, as opposed to LSTM and bidirectional LSTM
networks where memory cells/recurrent components are employed.” [23] For more information
about CRF, see Lafferty et al. (2001) [24].

Figure 5.5 CRF network example [23]

5.2.4 BiLSTM-CRF

We combine the BiLSTM network with the CRF network to create BiLSTM-CRF. This network
can efficiently use past and future input features via the BiLSTM layer and sentence-level tag
information via the CRF layer. [23] In Figure 5.4, we can see an example of BiLSTM-CRF where
a CRF layer is represented by lines that connect consecutive output layers and the BiLSTM layer
is represented by shaded squares connected by arrows.

If we look at a more detailed graphical description of the BiLSTM-CRF network (Figure 5.7),
we can see that firstly each word of a sentence is mapped to a (pre-trained) word embedding. As
word embeddings are usually only provided for lower-cased words, we add a capitalization feature

BiLSTM-CRF 31

Figure 5.6 BiLSTM-CRF network example [23]

that captures the original casing of the word. There is also an option to derive a fixed-size dense
representation based on the characters of the word (using either Convolutional neural network
(CNN) or LSTM).

The word embedding, the capitalization feature, and the character-based representation are then
concatenated and passed into the BiLSTM encoder (where one LSTM network runs from the
beginning of the sentence to the end while the other runs in reverse). The output of both LSTM
networks is concatenated and is used as input for a CRF classifier. The input is then mapped
with a dense layer and a linear activation function to the number of tags. Then, a linear-chain
CRF maximizes the tag probability of the complete sentence. [20]

For an even more detailed description, see Huang et al. (2015) [23] or Reimers et al. (2017) [20]
since both of these sources are linked with the implementation used in this thesis.

5.2.5 Theory of training BiLSTM-CRF network

We can see the training procedure illustrated in Figure 5.8. During training, multiple epochs are
done. “In each epoch, we divide the whole training data to batches and process one batch at
a time. Each batch contains a list of sentences which is determined by the parameter of batch
size. In our experiments, we use a batch size of 100 which means to include sentences whose
total length is no greater than 100. For each batch, we first run a bidirectional LSTM-CRF
model forward pass which includes the forward pass for both the forward state and backward
state of LSTM. As a result, we get the output score fθ[x]T1 for all tags at all positions. We then
run CRF layer forward and backward pass to compute gradients for network output and state
transition edges. After that, we can back propagate the errors from the output to the input,
which includes the backward pass for both forward and backward states of LSTM. Finally, we
update the network parameters which include the state transition matrix [A]i,j∀i, j, and the
original bidirectional LSTM parameters θ.” [23]

32 Theoretical description of our model

Figure 5.7 Detailed BiLSTM-CRF network example [20]

for each epoch do
for each batch do

bidirectional LSTM-CRF model forward pass:
forward pass for forward state LSTM
forward pass for backward state LSTM

CRF layer forward and backward pass
bidirectional LSTM-CRF model backward pass:

backward pass for forward state LSTM
backward pass for backward state LSTM

update parameters
end for

end for

Figure 5.8 BiLSTM-CRF network: Training procedure [23]

Chapter 6

Implementation of our model

This chapter describes this thesis’s specific BiLSTM-CRF implementation and fine-tuning.

The implementation of BiLSTM-CRF that was used in this thesis is publicly available on GitHub
[18]. This implementation was created in 2017 and lastly updated in 2018 [18]. It is written in
Python and requires Python 3.6 to run (newer versions are incompatible). This older version of
Python and older versions of many packages (for example, it uses Keras 2.2.0 and Tensorflow
1.8.0) make it slightly tricky to set up and make it work properly. For example, newer versions
of pip (package manager for Python) cannot find some of the package versions mentioned in the
requirements.txt file. Hence, we had to download some of these packages manually.

6.1 Training data

To create the training data used for training this model, we started by using the categorized
entities from the rule-based approach described in Chapters 3 and 4. Thanks to the rule-based
approach, we have categorized some of the entities in the CCV dataset (roughly 50% of them).

Now for the training data itself, we used tagged text (every word has a BIO tag with its entity
category attached to it) of all stanzas with 100% of the entities found in them categorized. In
other words, we used as training data only those stanzas in which all (100%) the entities we found
there using the rules from Chapter 3 we were able to categorize using the rules from Chapter 4.
So, there should not be a single entity in the stanzas used for training that is not categorized.

In Table 6.1, we can see the number of stanzas with 100% of the entities found in them categorized
(let us call them valid stanzas for short). Even though only 50% of the entities were categorized,
94% of the stanzas in the whole CCV dataset can be used for training our model. Even though
94% seems like a big number, as we can also see from Table 6.1, 76% of stanzas do not have any
entities in them (and these stanzas are also viewed as valid).

Table 6.1 Set of valid stanzas: Number of stanzas for this set out of the total number of stanzas in
the CCV dataset

Number of all valid stanzas 351,434 out of 374,537 that is 93.83%
Number of valid stanzas that do not contain any entity 286,488 out of 374,537 that is 76.49%

33

34 Implementation of our model

6.1.1 Stanzas vs. Poems dataset

At first, however, we didn’t use this stanzas dataset and instead, we used all the poems with
100% of the entities found in them categorized (same way of selection, just whole poems instead
of whole stanzas). Let us call it the poems dataset. The reasoning behind it was that if we use
whole poems instead of just stanzas, we have more context for the model. Later on, however, we
found out that the model uses only context within one sentence because the hidden states are
reset to 0 at the beginning of each sentence. [23]

Another reason why we abandoned the poems dataset was that if we were using only whole
poems, with all of their entities categorized, we would lose a lot of potential training data. For
example, if a poem only has one entity that is not categorized, we cannot use the whole poem
in the training dataset.

To see the difference in size between the poems and the stanzas dataset, we can look at Table 6.2
and Figure 6.1. We can see that by using the stanzas dataset, we increase the size of our training
dataset a lot (we double the total number of words and triple the total number of entities). But
we can also see that the ratios between entity categories stay the same.

Table 6.2 Poems vs. Stanzas dataset: Number of entities

Number of words in the stanzas dataset 12,402,291
Number of entities in the stanzas dataset 90,941

The ratio of entities to words in the stanzas dataset 0.7333%
Number of words in the poems dataset 6,789,907

Number of entities in the poems dataset 30,205
The ratio of entities to words in the poems dataset 0.4449%

Figure 6.1 Poems vs. Stanzas dataset: Entity ratios

Training data 35

6.1.2 Removing stanzas with potentially unmarked enti-
ties

Part of the training dataset is not only stanzas that do have some entities but also stanzas that
do not contain any entities. At least they should not contain any entities based on our entity
selection in the rules-based approach (Chapter 3). But there are some rules that might have left
some potential entities behind, meaning that in the training dataset, we may have words that
are currently marked as not being an entity even though they are one.

The most concerning rule that could have caused this is the one removing all words/phrases which
contain morphologically unknown words (Subsection 3.5 rule 2). Another rule that can cause
a similar problem is the one saying that morphologically unknown words that have a capital
lemma can be marked as entities only if they are at the beginning of a sentence (Subsection
3.3.4). Therefore, we removed all stanzas containing a word(s) with a capital lemma and are
currently marked as not being an entity (regardless of their morphology).

The number of entities in Table 6.2 and the ratios in Figure 6.1 are calculated after this cleaning
(the cleaning was done on both datasets).

6.1.3 Train, Dev and Test split

The training data are split into three subsets (datasets): train, dev (validation), and test dataset.
However, as we can see from Table 6.1, many of the stanzas we use for training do not have any
entities.

So to ensure all three subsets (train, dev, test) have the same ratio of stanzas with and without
entities, we first decided to split our whole training dataset into two sets. One of these sets
contains stanzas that do have at least one entity in them, and the second one contains stanzas
that do not have any entities in them. Both of these sets were split into three subsets using the
same ratios. The ratio for dev data is 15% of the total dataset (15% from the set containing
only empty stanzas + 15% from the set containing only stanzas with entities). Then 15% of the
remaining data (15% from the remains of the set containing only empty stanzas + 15% from the
remains of the set containing only stanzas with entities) is used as test data, and the rest of the
data as train data.

6.1.4 Input format for training data

The model requires a certain way of formatting the train, dev, and test data. Firstly, all of these
datasets have to be in 3 separate .txt files. In each file, the format should be as in Figure 6.2.
The input requires every word to be on a new line and every sentence (stanza being a “sentence”
in our case) to be separated by an empty line. The required input feature is only a word token
(or any form of a word on which a word embedding can be applied (in our case, it will be a word
lemma)). Additional features, however, can be added as well. In the case seen in Figure 6.2, the
word lemma and morphological tag is added. Lastly, the BIO label needs to be added so that
the model can know which entity the word represents.

36 Implementation of our model

Figure 6.2 Example of input text format

6.2 Metrics used for evaluation

For evaluation of the model and for hyperparameter tuning, an F1 score and occasionally also
accuracy and a confusion matrix are used. F1 score is implemented by default in the model that
we are using. Unfortunately, we didn’t find anywhere in the documentation a description of an
implementation of this F1 score.

Therefore, we also decided to include an accuracy measurement as well. Three types of accuracies
are being measured:

Overall total accuracy: # Words with correctly predicted BIO tag / # All words

Accuracy of predicting whether or not a given word is an entity (regardless of entity category):
Words correctly predicted if being an entity or not / # All words

Accuracy of predicting correct entity category. We select only those words which have both
the predicted label and the correct label marked as an entity: # Entities with correctly
predicted entity category / # All entities

The confusion matrix is a typical confusion matrix implemented using a sklearn library. Real
values are displayed in rows, and predicted values are in columns. As an example of a confusion
matrix, we can see Table 6.3. If we look, for example, at the cell in row B-PERSON and column
B-PLACE, we can deduce that the model labeled 154 words as an entity of Place even though
they should have been labeled as an entity of Person.

Table 6.3 Confusion matrix example (real values are in rows and predicted values are in columns

- O B-OTHER B-PLACE B-PERSON
O 1531693 0 12 69

B-OTHER 3 54 8 9
B-PLACE 22 2 3487 246

B-PERSON 19 6 154 6154

6.3 Removing Real Person as an entity category

Using our rule-based approach (Chapter 3 and 4), we separated entities into five different cate-
gories (Place, Person, Real Person, Mystic Person, and Other). However, the category of Real
Person is hard to separate from the category of Person just based on the context found in the

Removing Real Person as an entity category 37

text of the stanza itself (people who lived in real life and fictional characters are being addressed
in the text the same way most of the time). To separate them, we need some sort of outside
knowledge (like Wikipedia was used, for instance, in Chapter 4). Therefore, we have decided to
try to remove the entities of Real Persons by labeling them just as Person entities. Theoretically,
the entity category of Real Person can be later added back by using the Wikipedia approach.
Plus, we believe if we have one category of a Person entity less, the model may be more effective
in differentiating the rest of the entity categories.

To test the potential improvement, we trained two models, one with Real Persons and one
without. The train, dev, and test datasets are the same for both models. The only difference
is that the datasets used for training the model without Real Persons are now changed, so the
entities that were marked as Real Persons are now marked just as Persons. Also, all of the
hyperparameter values for both models are the same.

Figure 6.3 Comparison between models with or without Real Person category

Accuracy of the model without Real Person entities (measured as explained in Section 6.2):

Overall total accuracy: 0.99948

Accuracy of predicting whether or not a given word is an entity (regardless of entity category):
0.99984

Accuracy of predicting correct entity category. We select only those words which have both
the predicted label and the correct label marked as an entity: 0.94597

Accuracy of predicting correct entity category (Entities Person and Real Person viewed as
the same category this time, so we can compare with the model which does not have Real
Person entity): 0.94632

Accuracy of the model with Real Person entities (measured as explained in Section 6.2):

Overall total accuracy: 0.99950

Accuracy of predicting whether or not a given word is an entity (regardless of entity category):
0.99983

Accuracy of predicting correct entity category. We select only those words which have both
the predicted label and the correct label marked as an entity: 0.94746

38 Implementation of our model

Table 6.4 Confusion matrix model without Real Person entity (predicted values are in columns and
real values are in rows)

- O B-OTHER B-PLACE B-PERSON
B-MYSTIC
PERSON

O 1531700 1 11 46 24

B-OTHER 3 58 6 7 0

B-PLACE 15 7 3458 265 13

B-PERSON 44 0 137 6912 21

B-MYSTIC
PERSON 2 0 12 47 404

Table 6.5 Confusion matrix model with Real Person entity (predicted values are in columns and
real values are in rows)

- O
B-

OTHER B-PLACE
B-

PERSON
B-

MYSTIC
PERSON

B-REAL
PERSON

O 1531678 1 16 54 10 17

B-
OTHER 1 59 7 6 1 0

B-PLACE 11 3 3488 239 12 7

B-
PERSON 24 4 128 6156 7 9

B-
MYSTIC
PERSON

3 0 19 38 405 0

B-REAL
PERSON 4 1 8 63 4 702

Hyperparameter testing/tuning 39

As we can see in Figure 6.3, the model without Real Persons outperforms the model with Real
Persons across all epochs even though just by a little bit (the best F1 score for the model without
Real Persons is 0.9467 and for the other model it is 0.9439). From confusion matrices in Tables
6.5 and 6.4, it is hard to tell which model performs better (it almost seems that model with Real
Person entities performs slightly better). The accuracy of predicting correct entity categories is
slightly higher if we do not use the Real Person entities, but the difference is again minuscule.
In the end, we decided to remove the category of a Real Person from the training of our model,
mainly because of the reasons already mentioned above (hard to differentiate Real Persons from
Persons just based on context found in a text).

6.4 Hyperparameter testing/tuning

This implementation of BiLSTM-CRF is highly configurable and has many hyperparameters that
can be tuned so that the final model can be as accurate as possible. However, due to the lack
of computing power (personal laptop with CPU and no dedicated GPU used), the training time
for a single model (25 epochs) took around 12 hours (depending on hyperparameters).

Therefore, not all hyperparameters were tested, and the ones that were, were not always tested
thoroughly. A greedy-like approach was used, which means we optimized one hyperparameter at
a time since tuning multiple at once would create too many combinations of hyperparameters for
me to train. Starting with tuning the hyperparameters that should have a higher impact on the
final score and moving on to the lower impactful ones. Thanks to the Reimers et al. (2016) paper
[20], we know which hyperparameters have a higher impact on the final F1 score (tested for NER
on CoNLL 2003 (Reuters) dataset). We also know what hyperparameter values were optimal
for the CoNLL 2003 (Reuters) dataset regarding NER. However, our dataset is in a different
language, and it is a dataset of poems and not plain texts, which makes it a bit different.

6.4.1 Word embeddings

The idea of word embedding is to transform a word from a sequence of characters into a vector.
There are many types of word embeddings. The word embedding type used for our model is
called word2vec. It was chosen thanks to its free, trainable, and easy-to-use API implementation
done by Gensim.

Although, according to Dařena et al. (2020), the best word embedding for NER would be
fastText, it was still followed closely by word2vec in many of their tests, and word2vec still
performed better than GloVe in their work. [25] Similar findings were made by Hořeňovká
(2019) since, in the conclusion of her work, she stated: “GloVe model using the default parameter
settings does not seem to work well on Czech, that CBOW architecture of Word2Vec/fastText
generally outperforms the Skip-gram architecture (unlike on English) and that LexVec performs
fairly well in our experiments.” [26]

The trickier question was whether to train and use word embeddings on the token format of the
words or the lemma format of the words. Hořeňovká (2019) finding recommends training models
on lemmatized corpus for NLP tasks done in the Czech language. [26]

Therefore, we decided to train two embeddings, one on tokens and one on lemmas. The embed-
dings were trained on the Corpus of the Czech Verse (Chapter 2). Then both of these embeddings
were used as inputs to train a model. One model was trained on word tokens (using token em-
bedding) and another on word lemmas (using lemma embedding). The results are seen in Figure
6.4 and in Tables 6.6 and 6.7.

40 Implementation of our model

Figure 6.4 Lemma vs. Token embedding

Table 6.6 Confusion matrix for the model with lemma embedding (predicted values are in columns
and real values are in rows)

- O B-OTHER B-PLACE B-PERSON
B-MYSTIC
PERSON

O 1531684 1 18 51 24

B-OTHER 2 59 2 11 0

B-PLACE 18 4 3404 327 6

B-PERSON 38 0 127 6934 10

B-MYSTIC
PERSON 2 0 10 58 395

Hyperparameter testing/tuning 41

Table 6.7 Confusion matrix for the model with token embedding (predicted values are in columns
and real values are in rows)

- O B-OTHER B-PLACE B-PERSON
B-MYSTIC
PERSON

O 1484315 540 17799 27895 1205

B-OTHER 6 33 9 24 0

B-PLACE 192 5 2739 803 7

B-PERSON 197 13 914 5925 40

B-MYSTIC
PERSON 36 0 73 114 241

Figure 6.4 shows that the model trained on lemma embeddings outperformed the one trained
on token embeddings, although only by 0.0064 in the best F1 Score. The confusion matrices
also tell us that the model trained on lemma embedding seems to be superior of those two. The
question is, what if we used both embeddings? This question is tested in the next subsection
(Subsection 6.4.2).

6.4.2 Input features

Until now, the models presented in this thesis have been trained only using the lemmas (or
tokens) of each word as an input feature. The BiLSTM model that we use allows for the usage
of multiple input features. Therefore, we tried to add word tokens and morphological tags as
input features.

By default, any other extra feature, apart from lemmas that have their own pre-trained embed-
ding (created by us), has embeddings created by a class called Embedding from a package called
keras.layer. Unfortunately, we could not figure out from the Keras documentation how exactly
these extra features are being converted to embeddings. Especially since the Keras documen-
tation for this Embedding class does not contain some of the arguments that are used in the
Embedding class of the implementation of BiLSTM-CRF that we are using (Embeddings class in
our model, for example, uses argument weights which is not present in the Keras documentation).

Even though we do not know the exact detail of how the initialization of some of these extra
features works, we can still add them as input features. So the model does not only take the
lemma of a word as an input but also its morphological tag and the token form of the word
as an input. These extra features (morphological tag and token in this case) need a dimension
size for their embeddings as a hyperparameter. We started with size 40 and optimized the
size of the dimension later on (Subsection 6.4.3). It is good to note that the dimension size of
the extra feature inputs has to be the same for all of these features (restriction of the model
implementation).

42 Implementation of our model

We could also add the token format of words as a pre-trained embedding (adding it the same
way as lemma formats of words are added). So both lemma and token pre-trained embeddings
(pre-trained in the way as said in Subsection 6.4.1) are used in one of the tested models. However,
to use two pre-trained embeddings, the model needed a slight change in its code since the model
was created for the usage of only one pre-trained embedding.

So overall, to test different feature inputs, four models were trained. One with pre-trained
lemma embedding and morphological tag with dimensional size 40. One with pre-trained lemma
embedding and also pre-trained token embedding and morphological tag with dimensional size
40. The third one is with pre-trained lemma embedding and both word token and morphological
tag as input features that are embedded using the Keras Embedding class (with size 40 for both).
And last one is a model trained on pre-trained lemma embedding only as a control (since lemma
embedding was shown to outperform token embedding in Subsection 6.4.1).

Figure 6.5 Input features (zoomed y axis so the difference between F1 scores can be seen better)

As we can see from Figure 6.5, the F1 scores for the model with pre-trained lemma embedding
and morphological tag perform very similarly to the model with pre-trained lemma and token
embedding and morphological tag. The difference in their best F1 scores was only 0.0001, which
is minuscule.

However, if we look at the confusion matrices for these two models (Table 6.8 and 6.9), we can
see that the model containing pre-trained token embedding as well as the lemma embedding
predicts better entities of place and, on the other hand, the model with pre-trained lemma
embedding only, predicts entities of a person better. Since the results are both very similar,
we have decided to carry on tuning the model with lemma embedding and morphological tag
only since it is simpler, so it takes less time to train it. Therefore, we can tune more additional
hyperparameters on it.

6.4.3 Embedding dimension size for morphological tag

So far, the best model we found uses the morphological tag of a word as an extra input feature.
Our model allows us to tune the size of the dimension for the embedding, into which the mor-
phological tag is transformed. We tested four different sizes of dimensions: 10, 20, 40, and 80
(for reference, our pre-trained lemma embedding uses a size of 100).

Hyperparameter testing/tuning 43

Table 6.8 Confusion matrix for the model with lemma embedding and morphological tag feature
(predicted values are in columns and real values are in rows)

- O B-OTHER B-PLACE B-PERSON
B-MYSTIC
PERSON

O 1531726 0 15 40 9

B-OTHER 2 62 3 7 0

B-PLACE 12 5 3473 263 8

B-PERSON 32 1 124 6942 8

B-MYSTIC
PERSON 2 0 11 54 398

Table 6.9 Confusion matrix for the model with pre-trained lemma and token embedding and mor-
phological tag feature (predicted values are in columns and real values are in rows)

- O B-OTHER B-PLACE B-PERSON
B-MYSTIC
PERSON

O 1531764 0 11 30 5

B-OTHER 2 59 4 8 1

B-PLACE 18 4 3493 229 13

B-PERSON 19 2 173 6905 15

B-MYSTIC
PERSON 2 0 11 43 409

44 Implementation of our model

Figure 6.6 Different morphological tag sizes of embedding (zoomed y axis so the difference between
F1 scores can be seen better)

As we can see from Figure 6.6, the differences are quite minor, but the best F1 score was achieved
with a dimensional size of 10 for the embedding of the morphological tag.

6.4.4 Hyperparameter tuning

The model has many hyperparameters that can be tuned. Based on the recommendation of
Reimers et al. (2017), who are the authors of this model, the hyperparameters that have the
highest effect on the overall F1 score in NER are: word embeddings (already tuned in Subsection
6.4.1), optimizer, gradient normalization, classifier, and dropout. Apart from these “high” impact
hyperparameters, as they are called in Reimers et al. (2017), we also tuned #LSTM layers which
is said to have “medium” impact. [20] The remaining model hyperparameters that we did not
tune are: character representation, gradient clipping, tagging scheme, recurrent units, mini-batch
size, and backend. Impact on the F1 score by all of these remaining hyperparameters is said to
be “medium” or “low” by Reimers et al. (2017) [20], so due to time constraints, we did not tune
these hyperparameters.

The hyperparameter values that are seen in Table 6.10 were tuned. It is important to note that
we only tuned one hyperparameter at a time while the rest of the hyperparameters were set to
their default values by the model (the default values are the ones that were found to give the
best result for NER in Reimers et al. (2017) [20]).

So, as we can see from Table 6.10, we could not find better hyperparameters than the ones set
by default. The closest F1 score to the one set by the default hyperparameters was formed by a
model using Adam optimizer instead of Nadam (difference of 0.0013 in F1 score).

1Variational dropout is a kind of dropout applied to both the output and recurrent units of the LSTM networks.
[20] In the brackets in Table 6.10, the first number corresponds to the output dropout and the second number to
the recurrent dropout. [18]

Final model 45

Table 6.10 Best hyperparameter values

Hyperparameter name Tested hyperparameter values Best hyperparameter
value (F1 score rated)

Optimizer Nadam (default), Adam, RMSProp Nadam
Gradient Normalization 1 (default), 5 1

Classifier CRF (default), Softmax CRF
Dropout Variational (0.25, 0.25) (default),

Variational (0.15, 0.15), Variational
(0.05, 0.05)1

Variational (0.25, 0.25)

#LSTM Layers 2 (default), 3 2

6.5 Final model

The best model we found (best F1 score and accuracy) is trained on all stanzas in the CCV
dataset, which had all their entities fully categorized. The data were split into train(72.25%),
dev(15%), and test(12.75%) datasets. Real Person entities were converted into Person entities,
and word2vec word embedding trained on word lemmas is used instead of embedding trained on
tokens. The input features chosen for this model are word lemmas (using our pre-trained lemma
embedding) and morphological tags (embedded using the Embedding class from Keras with a
dimensional size of 10). The hyperparameters for this model are mentioned in Table 6.10.

The F1 score of this model for the test dataset is 0.9532, and its development across all epochs
can be seen in Figure 6.7. The confusion matrix of this model for the test dataset can be seen
in Table 6.11. And the accuracies of this model measured on the test dataset are the following
(measured as explained in Section 6.2):

Overall total accuracy: 0.99904

Total words: 1,810,983

Correctly predicted words: 1,809,244

Accuracy of predicting whether or not a given word is an entity (regardless of entity category):
0.99983

Total words: 1,810,983

Correctly predicted words: 1,810,677

Accuracy of predicting correct entity category. We select only those words which have both
the predicted label and the correct label marked as an entity: 0.88870

Total entities: 13,720

Correctly predicted entities: 12,193

It is important to note that the so-called real values that the F1 score, accuracy, and confusion
matrix use are actually values created by our rule-based approach. Therefore, these values contain
some flows since no rule-based system can be 100% accurate for selecting entities (although we
hope that the number of mistakes in the training dataset is minimal).

46 Implementation of our model

Figure 6.7 Final model F1 score (Dev and Test datasets)

Table 6.11 Confusion matrix for the final model created on test dataset (predicted values are in
columns and real values are in rows)

- O B-OTHER B-PLACE B-PERSON
B-MYSTIC
PERSON

O 1531726 0 15 40 9

B-OTHER 2 62 3 7 0

B-PLACE 12 5 3473 263 8

B-PERSON 32 1 124 6942 8

B-MYSTIC
PERSON 2 0 11 54 398

Final model 47

6.5.1 Results of final model

After creating the final model (Section 6.5), we ran it on all of the books from the CCV. In Table
6.12, we can see how many entities of each kind and how many in total we found in the CCV,
and in Figure 6.8, we can better see the proportion of each entity category in the CCV dataset.
So the most common entities in the CCV are those of a Person followed by entities of a Place,
with only a small amount of entities being either entities of a Mystic Person or Other.

Table 6.12 Number of entities in the whole CCV

Entity category Number of entities
Person 130,589
Place 61,860

Mystic Person 7,017
Other 1,190

Total number of entities 200,656
Total number of words 15,773,641

Figure 6.8 Entity categories distribution

6.5.2 Saving and visualizing results

The result of running the final model on the CCV was saved into json files (one file for each
book in the CCV) with the same scheme in each file as it was in the CCV dataset (seen in
Picture 2.1). The only difference is that we added a key called ’entity’ into the ’word’ dictionary.
So each word in the resulting dataset will now hold information about its entity category. For
labeling which entity each word holds, BIO tagging is used (Subsection 1.4.1). An example of
the resulting dataset can be seen in Figure 6.9.

48 Implementation of our model

Figure 6.9 Resulting schema example

Final model 49

For easier visualization, a set of html templates was also created. Each template contains text
from one book from the CCV and has colorfully marked entities (each color for a different
category). An example of this html template can be seen in Figure 6.10.

Figure 6.10 Visualization example

50 Implementation of our model

Chapter 7

Conclusion

Conclusion of this bachelor thesis.

We have created a program that recognizes and finds entities of Person, Mystic Person, Place,
and Other in the CCV (CCV description in Chapter 2). Firstly we created a training dataset
using a rule-based approach (Chapters 3 and 4) and then used this training dataset to train a
BiLSTM-CRF neural network (Chapters 5 and 6).

Since the training data were not created by labeling words as entities by hand, there are already
a few mistakes in the training dataset. Therefore it is hard to estimate the exact accuracy of the
prediction of named entities. The accuracies, F1 scores, and confusion matrices in this thesis are
created under the assumption that the training dataset was 100% accurate.

7.1 Room for improvement

Ways to improve the final result could be some changes in the rule-based approach used for
selecting training data. For example, in the rule-based approach, when selecting entities (Chapter
3), we rely on the capitalization of the word lemmas. But the model made by Morphodita [14],
which lemmatized the CCV, was probably not tested much on the fact of whether or not a given
word lemma should be capitalized but rather on the fact if the word lemma is in the correct
form. So instead, we maybe should have focused on word tokens more instead (even though
the rule-based approach using them seemed to produce worse results at first, as discussed in
Subsection 3.3.1).

In the rule-based approach, when categorizing entities using Wikipedia (Chapter 4), we could
have been more restrictive (categorize entities only if we are more certain about the category it
represents). The problem with being too restrictive was that we would probably not have cate-
gorized enough entities to create a large enough training dataset. But in the end, we categorized
enough entities to use 94% of the total number of stanzas in the CCV as our training data. So
in retrospect, we could have been more restrictive.

Lastly, we could have also tried to use other models than just BiLSTM-CRF, but this was not
done due to time constraints.

51

52 Conclusion

Bibliography

1. Corpus of Czech Verse [online]. 2023. [visited on 2023-03-29]. Available from: https://
versologie.cz/v2/web_content/corpus.php?lang=en.

2. JAGOTA, Arun. Named entity recognition in NLP [online]. Towards Data Science, 2020-
10 [visited on 2023-03-15]. Available from: https://towardsdatascience.com/named-
entity-recognition-in-nlp-be09139fa7b8.

3. A Comprehensive Guide to Named Entity Recognition (NER) [online]. Turing [visited on
2023-04-20]. Available from: https://www.turing.com/kb/a-comprehensive-guide-to-
named-entity-recognition.

4. Uncover hidden insights: Advanced named entity recognition [online]. 2023-03. [visited on
2023-04-20]. Available from: https : / / www . expressanalytics . com / blog / what - is -
named-entity-recognition-ner-benefits-use-cases-algorithms/.

5. KEVIN, Vu. BERT Transformers: How Do They Work? [online]. DZone, 2021-04 [visited
on 2023-04-20]. Available from: https://dzone.com/articles/bert-transformers-how-
do-they-work.

6. CARIELLO, Maria Carmela; LENCI, Alessandro; MITKOV, Ruslan. A comparison be-
tween named entity recognition models in the biomedical domain. Proceedings of the Trans-
lation and Interpreting Technology Online Conference TRITON 2021 [online]. 2021, pp. 76–
84 [visited on 2023-04-20]. Available from doi: 10.26615/978-954-452-071-7_009.

7. MARSHALL, Christopher. What is named entity recognition (NER) and how can I use
it? super.AI, 2020-06. Available also from: https://medium.com/mysuperai/what-is-
named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d.

8. Named entity recognition [online]. 2021. [visited on 2023-03-15]. Available from: https:
//natural-language-understanding.fandom.com/wiki/Named_entity_recognition#
cite_ref-Ratinov_2009_1-0.

9. RATINOV, Lev; ROTH, Dan. Design Challenges and Misconceptions in Named Entity
Recognition. In: Proceedings of the Thirteenth Conference on Computational Natural Lan-
guage Learning (CoNLL-2009). Boulder, Colorado: Association for Computational Linguis-
tics, 2009, pp. 147–155. Available also from: https://aclanthology.org/W09-1119.

10. Corpus of Czech Verse, PHoEBE phonetic transcription [online]. 2022. [visited on 2023-04-
20]. Available from: https://versologie.cz/v2/web_content/phoebe.php.

11. SAMPA / X-SAMPA Transcription of Czech [online]. 2015. [visited on 2023-04-20]. Avail-
able from: https://fonetika.ff.cuni.cz/o- fonetice/foneticka- transkripce/
czech-sampa/.

12. PLECHÁČ, Petr; ZOUHAR, Vilém. Versotym/Corpusczechverse [online]. GitHub, 2021
[visited on 2023-03-29]. Available from: https://github.com/versotym/corpusCzechVerse.

53

https://versologie.cz/v2/web_content/corpus.php?lang=en
https://versologie.cz/v2/web_content/corpus.php?lang=en
https://towardsdatascience.com/named-entity-recognition-in-nlp-be09139fa7b8
https://towardsdatascience.com/named-entity-recognition-in-nlp-be09139fa7b8
https://www.turing.com/kb/a-comprehensive-guide-to-named-entity-recognition
https://www.turing.com/kb/a-comprehensive-guide-to-named-entity-recognition
https://www.expressanalytics.com/blog/what-is-named-entity-recognition-ner-benefits-use-cases-algorithms/
https://www.expressanalytics.com/blog/what-is-named-entity-recognition-ner-benefits-use-cases-algorithms/
https://dzone.com/articles/bert-transformers-how-do-they-work
https://dzone.com/articles/bert-transformers-how-do-they-work
https://doi.org/10.26615/978-954-452-071-7_009
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#cite_ref-Ratinov_2009_1-0
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#cite_ref-Ratinov_2009_1-0
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#cite_ref-Ratinov_2009_1-0
https://aclanthology.org/W09-1119
https://versologie.cz/v2/web_content/phoebe.php
https://fonetika.ff.cuni.cz/o-fonetice/foneticka-transkripce/czech-sampa/
https://fonetika.ff.cuni.cz/o-fonetice/foneticka-transkripce/czech-sampa/
https://github.com/versotym/corpusCzechVerse

54 Bibliography

13. MIKULOVÁ, Marie; HAJIČ, Jan; HANA, Jǐŕı; HANOVÁ, Hana; HLAVÁČOVÁ, Jaroslava;
JEŘÁBEK, Emil; ŠTĚPÁNKOVÁ, Barbora; HLADKÁ, Barbora Vidová; ZEMAN, Daniel.
Manual for Morphological Annotation. Revision for Prague Dependency Treebank – Con-
solidated 2020 release. In: Manual for Morphological Annotation Revision for Prague De-
pendency Treebank – Consolidated 2020 release. Malostranské nám. 25, CZ-11800 Prague
1, Czechia: Institute of Formal and Applied Linguistics (ÚFAL MFF UK), 2020. Available
also from: https://ufal.mff.cuni.cz/techrep/tr64.pdf.

14. STRAKOVÁ, Jana; STRAKA, Milan; HAJIČ, Jan. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In: Proceedings of 52nd An-
nual Meeting of the Association for Computational Linguistics: System Demonstrations.
Baltimore, Maryland: Association for Computational Linguistics, 2014, pp. 13–18. Avail-
able also from: http://www.aclweb.org/anthology/P/P14/P14-5003.pdf.

15. BOHÁČ, Pavel; HARVALÍK, Milan. Toponymic Guidelines of the Czech Republic. CZ-182
11 Praha 8, Pod śıdlǐstěm 9: Český úřad zeměměřický a katastrálńı, 2004. isbn 80-902321-
0-8. Available also from: https://www.cuzk.cz/Zivotni-situace/Poradci-a-poradni-
organy/Nazvoslovna-komise-CUZK/Geograficke-nazvoslovne-seznamy/Toponymic_
guidelines_of_the_Czech_republic.aspx.

16. Help:Categories - Wikipedia [online]. Wikimedia Foundation, 2021 [visited on 2023-04-15].
Available from: https://en.wikipedia.org/wiki/Help:Categories.

17. Help:Categorization - Wikipedia [online]. Wikimedia Foundation, 2021 [visited on 2023-04-
15]. Available from: https://en.wikipedia.org/wiki/Wikipedia:Categorization.

18. UKPLAB. emnlp2017-bilstm-cnn-crf: BiLSTM-CNN-CRF architecture for sequence tagging
[online]. GitHub, 2018 [visited on 2023-05-01]. Available from: https : / / github . com /
UKPLab/emnlp2017-bilstm-cnn-crf.

19. REIMERS, Nils; GUREVYCH, Iryna. Reporting Score Distributions Makes a Difference:
Performance Study of LSTM-networks for Sequence Tagging [online]. 2017. [visited on 2023-
05-09]. Available from arXiv: 1707.09861 [cs.CL].

20. REIMERS, Nils; GUREVYCH, Iryna. Optimal Hyperparameters for Deep LSTM-Networks
for Sequence Labeling Tasks. CoRR. 2017, vol. abs/1707.06799. Available from arXiv: 1707.
06799.

21. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. Cambridge,
MA: MIT Press, 2016. isbn 978-0262035613.

22. LIPTON, Zachary C.; BERKOWITZ, John; ELKAN, Charles. A Critical Review of Re-
current Neural Networks for Sequence Learning. 2015. Available from arXiv: 1506.00019
[cs.LG].

23. HUANG, Zhiheng; XU, Wei; YU, Kai. Bidirectional LSTM-CRF Models for Sequence Tag-
ging. 2015. Available from doi: 10.48550/ARXIV.1508.01991.

24. LAFFERTY, John D.; MCCALLUM, Andrew; PEREIRA, Fernando C. N. Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In:
Proceedings of the Eighteenth International Conference on Machine Learning. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289. ICML ’01. isbn
1558607781.

25. DAŘENA, Frantǐsek; SÜSS, Michael. Quality of Word Vectors and its Impact on Named
Entity Recognition in Czech. European Journal of Business Science and Technology. 2020,
vol. 6, pp. 154–169.

26. HOŘEŇOVSKÁ, Karoĺına. An evaluation of Czech word embeddings. In: Proceedings of
the 22nd Nordic Conference on Computational Linguistics. Turku, Finland: Linköping Uni-
versity Electronic Press, 2019, pp. 65–75. Available also from: https://aclanthology.
org/W19-6107.

https://ufal.mff.cuni.cz/techrep/tr64.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
https://www.cuzk.cz/Zivotni-situace/Poradci-a-poradni-organy/Nazvoslovna-komise-CUZK/Geograficke-nazvoslovne-seznamy/Toponymic_guidelines_of_the_Czech_republic.aspx
https://www.cuzk.cz/Zivotni-situace/Poradci-a-poradni-organy/Nazvoslovna-komise-CUZK/Geograficke-nazvoslovne-seznamy/Toponymic_guidelines_of_the_Czech_republic.aspx
https://www.cuzk.cz/Zivotni-situace/Poradci-a-poradni-organy/Nazvoslovna-komise-CUZK/Geograficke-nazvoslovne-seznamy/Toponymic_guidelines_of_the_Czech_republic.aspx
https://en.wikipedia.org/wiki/Help:Categories
https://en.wikipedia.org/wiki/Wikipedia:Categorization
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://arxiv.org/abs/1707.09861
https://arxiv.org/abs/1707.06799
https://arxiv.org/abs/1707.06799
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019
https://doi.org/10.48550/ARXIV.1508.01991
https://aclanthology.org/W19-6107
https://aclanthology.org/W19-6107

Source code

The source code can be found on the GitLab repository called NER poezie cernyo14 (https:
//gitlab.fit.cvut.cz/cernyo14/ner_poezie_cernyo14).

55

https://gitlab.fit.cvut.cz/cernyo14/ner_poezie_cernyo14
https://gitlab.fit.cvut.cz/cernyo14/ner_poezie_cernyo14

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Named Entity Recognition
	NER in Czech poetry
	Entities in Czech poetry

	Ways to solve NER
	Maximum Entropy Markov Model (MMEM) for NER
	BERT for NER

	Usage of NER
	Usage of NER on Czech Poetry

	Entity labeling
	BIO tagging

	Corpus of Czech Verse
	Corpus Scheme
	Poem Schema
	Line Schema

	Prague positional system

	Entity selection
	Metrics used for evaluation of the rule-based approach
	Capital words
	Single-word entities
	Capital lemmas x Capital tokens
	Using Morphollogy
	Forbidden Lemmas
	Final version

	Multi-word entities
	Czech grammar on multi-word entities
	Position of words in entity

	Final version of rule-based approach
	Selecting potential entities

	Result of entity selection

	Categorization of Entities
	Categories description
	Implementation of categorization
	Wikipedia page layout
	Categorizing entities using its Wikipedia page
	Wikidata layout
	Selecting entities using Wikidata
	Categorizing entities of category Other

	Result of categorization

	Theoretical description of our model
	Recurrent neural network (RNN)
	BiLSTM-CRF
	Long Short-Term Memory networks (LSTM)
	Biderectional LSTM Network (BiLSTM)
	Conditional Random Fields (CRF)
	BiLSTM-CRF
	Theory of training BiLSTM-CRF network

	Implementation of our model
	Training data
	Stanzas vs. Poems dataset
	Removing stanzas with potentially unmarked entities
	Train, Dev and Test split
	Input format for training data

	Metrics used for evaluation
	Removing Real Person as an entity category
	Hyperparameter testing/tuning
	Word embeddings
	Input features
	Embedding dimension size for morphological tag
	Hyperparameter tuning

	Final model
	Results of final model
	Saving and visualizing results

	Conclusion
	Room for improvement

	Source code

