FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of bachelor’s thesis

Title: A Heuristic for Automatic Distribution Selection in Open Source
H20 AutoML

Student: Vojtéch Miller

Supervisor: Ing. Tom4ds Fryda

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Instructions

Describe the Automated Machine Learning (AutoML). Focus on algorithms supporting
attribute "distribution”.

1. Explain why a proper selection of this attribute is essential for prediction
performance.

2.Select atleast one appropriate heuristic to choose distribution and implementitinto
the H20 AutoML.

3.Benchmark yourimplementation with suitable datasets, and discuss the difference in
prediction performance.

Electronically approved by Ing. Karel Klouda, Ph.D. on 10 July 2022 in Prague.

Bachelor’s thesis

A HEURISTIC FOR
AUTOMATIC
DISTRIBUTION
SELECTION IN OPEN
SOURCE H20 AUTOML

Vojtéch Miiller

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Tomas Fryda

May 11, 2023

Czech Technical University in Prague

Faculty of Information Technology

© 2023 Vojtéch Miiller. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Miller Vojtéch. A Heuristic for Automatic Distribution Selection in Open Source
H20 AutoML. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2023.

Contents

Acknowledgments vii
Declaration viii
Abstract ix
Introduction 1
1 Statistical distributions and metrics 3
1.1 Evaluation metrics e e 3
1.1.1 Mean Absolute Error (MAE) 3

1.1.2 Mean Squared Error (MSE) L 3

1.1.3 Root Mean Squared Error (RMSE) 4

1.1.4 Root Mean Squared Logarithmic Error (RMSLE) 4

1.1.5 Mean Residual Deviance 4

1.2 Statistical distributions 4
1.21 Gaussian e e e e e 5

1.2.2 PoiSson 5

1.23 Gamma e e 5

1.2.4 Negative binomial o o oo 6

1.2.5 Laplace e e 6

1.2.6 Tweedie e e e e e e 6

1.2.7 Cauchy e 7

1.2.8 Distributions summary Lo oL 7

2 Automated machine learning 9
2.1 Motivation 9
2.2 Available AutoML frameworks. 10
2.3 AutoML frameworks benchmark 11
2.4 OpenML e 11
2.5 Meta-learning L e e e e e 12
H20 AutoML 13
3.1 H20 AutoML e e e 13
3.1.1 H20 AutoML models e 13

3.1.2 Distribution hyperparameter L. 14

3.1.3 Distribution & Loss function 15

3.1.4 Distribution & GLM e 16

3.2 H20 AutoML process o v vt e 16
3.3 H20 AutoML example e 17

iii

iv

4 Data generation

4.1 Introduction
4.2 Generating artificial data o0 0oL
421 Trainset
4.2.2 Explained variable
423 Noise e e
424 DModality oo
4.2.5 Link functions
4.2.6 Distributions Lo
4.2.7 Random variates
428 Example. e
4.3 Conclusion e

5 Heuristic creation

5.1 Introduction.,
5.2 Meta-features
5.2.1 Chosen features
5.2.2 Other tested features
5.3 Dataset creation and heuristic evaluation
5.4 HI1 — The first heuristic
5.4.1 HI1 — Meta-dataset creation
5.4.2 H1-Conclusion
5.5 H2 — The second heuristic
5.5.1 H2 — Meta-dataset creation
5.5.2 H2 — Decision tree
5.5.3 H2 — Benchmarks on H20 AutoML
5.5.4 H2 — Additional experiments
5.6 H3 — The final heuristic
5.6.1 H3 — Meta-dataset creation
5.6.2 H3 — Decision tree
5.6.3 H3 — Results on the H20 AutoML
5.6.4 Ruleextraction
5.6.5 Conclusion,

6 Implementation to H20 AutoML

6.1 Implementation L.,
6.2 Testing
Conclusion

List of files in attachment

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2

3.1

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1

1.1

3.1
3.2

List of Figures

Example of the Gaussian distribution 5
Example of the Poisson distribution 5
Example of the gamma distribution. L oL 5
Example of the negative binomial distribution 6
Example of the Laplace distribution 6
Example of the Tweedie distribution 6
Example of the Cauchy distribution 7
Relative time spent on parts of the KDDM process 10
Results of AutoML frameworks benchmark 11
Leaderboard of the best models 18
Histograms of generated data 22
Feature importance L L 25
Correlation between meta-features 26
First heuristic meta-dataset counts 29
Confusion matrices of the second heuristic 30
Heuristic H2 results on H20 AutoML 30
Confusion matrices of the third heuristic 31
Final heuristic results on H20 AutoML 32
Leaderboard of the best models with implemented heuristic 36

List of Tables

Distributions overview L L 7
Available regression distributions in H20 AutoML 15
Link functions L 16

vi

3.1
5.1
6.1
6.2

List of code listings

List of code listings

Example of the H20 AutoML 17
Example of the extracted rules 33
Integration to the existing function train. L 0oL 35

Implementation of obtaining meta-features. 35

Chitel bych podekovat predevsim vedoucimu této prace — Ing. Tomdsi
Fridovi, za velmi aktivni pristup k vedeni prdce, za casté konzultace,
vysvetlovdni, rychlé odepisovani a predevsim za jeho trpélivost. Také
dekuji svgm rodicim, prarodicim a dalsim blizkym za podporu.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023

viii

Abstract

This thesis aims to create a heuristic for the automatic selection of a hyperparameter that
represents a statistical distribution of the target variable in the H20 AutoML framework. Various
approaches were tested, providing different results, for instance, using artificially generated data,
using datasets from OpenML platform, or different benchmark methods.

The proposed heuristic improves the prediction performance in four followed criteria by
about 5 %. This one is implemented to the H20 AutoML. The thesis also examines unsuc-
cessful attempts to provide a solid baseline for future improvements.

Keywords H20 AutoML, automated distribution selection, automated hyperparameter selec-
tion, automated machine learning, data generation

Abstrakt

Tato prace se zabyva vytvorenim heuristiky pro automaticky vybér hyperparametru reprezen-
tujiciho statistickou distribuci vysvétlované proménné pro H20 AutoML framework. Bylo vyzkouseno
nékolik pristupt s riuznymi vysledky, jako naptiklad, pouziti uméle vygenerovanych dat, dat
ziskanych z platformy OpenML nebo rizné metody provadéni benchmarki.

Podafilo se vytvorit heuristiku, kterd ve ¢tyrech sledovanych metrikach zlepsuje predikéni
schopnost v priméru o zhruba 5 % a nésledné ji implementovat do H20 AutoML. Kromé
uspésnych piistupt prace také zkoumd neuspésné pristupy, které mohou pomoci pro budouci
zlepsovani.

Klicova slova H20 AutoML, automaticky vybér distribuce, automaticky vybér hyperparametri,
automatické strojové uceni, generovani dat

ix

Glossary

AUC
Area Under Curve. 11

AutoML
Automated Machine Learning. 9-11, 13, 16, 17

CD diagram
Critical difference diagram. 11

DRF
Distributed Random Forest. 13-15

ERD
Mean residual deviance. 4, 27, 30-32, 36, 37

GBM
Gradient Boosting Machine. 14, 15, 24, 31

GLM
Generilized Linear Model. 14-16, 19-21, 24

IQR
Interquartile range. 24

MAE
Mean Absolute Error. 3, 15, 16, 27, 30-33, 37

MSE
Mean Squared Error. 3, 4, 15, 16

PDF
Probability density function. 4-7

PMF

Probability mass function. 4-6
RMSE
Root Mean Squared Error. 4, 11, 27, 30-32, 37

RMSLE
Root Mean Squared Logarithmic Error. 4, 17, 18, 27, 31, 32, 36, 37

XGBoost
Extreme Gradient Boosting. 14-17, 24

Introduction

Machine learning has become a crucial computer science component in recent years. It is
widely used in all areas, from business to research. Almost every company has some application
where machine learning is used to help achieve better results. With the increased usage, there
is a natural effort to make things easier.

Machine learning tasks usually share some common steps — that are being done in almost
every task — for instance data preprocessing, model selection, model evaluation. .. Those tasks
also take a significant amount of time, and at the project’s end, some may prove futile.

What if those time-consuming tasks could be automated, so the first result that would give
more data insights would be obtained almost immediately? Here comes the automated machine
learning that removes all the need to handle those tasks.

One of the available automated machine learning frameworks is H20 AutoML. This framework
uses various models and gradually builds the best one. One thing in common is that the learning
strategy differs based on the selected data distribution.

It is up to the user which distribution will be chosen. But automated machine learning should
be done with the minimum effort — is there a way how would H20 AutoML framework pick the
most suitable distribution by itself?

This thesis aims to create and prove a heuristic that would decide which distribution should
be used, based on the given data — automize the selection of one of the hyperparameters. The
heuristic should be more powerful than the default behavior (Gaussian distribution for all regres-
sion tasks). That could improve the overall results and outcomes for users who lack knowledge of
statistical distributions or those who do not know the most suitable distribution for their data.

The heuristic itself is proposed only for the regression tasks since the distribution selection
for classification tasks is already automated.'

I chose this topic for my interest in machine learning and statistics. Since most of the machine
learning models have parameters that influence the results, it would be interesting to find a
relation between input data and the best hyperparameter value. And a distribution parameter
could provide this relationship since it is directly connected with the input data.

The thesis consists of the following chapters:

Statistical distributions and metrics This chapter describes basic and well-known concepts
used later in the thesis. It is organized into two sections — in the first one, evaluation metrics
are described. The ones that were used to create and evaluate the heuristic itself. In the
second part, statistical distributions used in this thesis are briefly described, accompanied by
the summary table for later reference.

LH20 AutoML supports only two classification distributions - one for the binary classification, other for the
multinomial classfication — so the automated selection is simple.

Introduction

Automated machine learning This chapter describes the motivation behind automated ma-
chine learning, its advantages, and disadvantages, followed by a concise description of the
selected existing frameworks. Next is a brief description of the AutoML benchmarks, and
lastly, platform OpenML and basic concepts of meta-learning are described to lay the theo-
retical foundation for the practical part.

H20 AutoML This chapter describes the H20 AutoML framework. Firstly, a quick overview
of the whole framework is provided, followed by an overview of the available models within.
Next, the distribution hyperparameter, the core of this thesis, is described — why it is essential
for the prediction and how it influences model behavior. And at the end of the chapter, the
whole automated machine learning process (as it is in H20 AutoML) is described together
with the practical example of usage.

Data generation This chapter describes the generation of artificial data, how it is generated,
which properties are used to create noise between the predictors and predicted variables, and
other additions to make the artificial data more diverse.

Heuristic creation This chapter describes the creation of the heuristic. Firstly, requirements
for the heuristic are described, followed by the description of the chosen meta-features from
which the heuristic is built. The creation can be described by three main attempts; the last
one is the only success. At the end of the chapter is described how the IF... ELSE rules for
the heuristic are created.

Implementation to the H20 AutoML This chapter describes the prototype implementa-
tion of the heuristic to H20 AutoML using the Python interface of the framework. This
is followed by the functionality test that was also run in the chapter H20 AutoML — but
without heuristic.

Chapter 1

Statistical distributions and
metrics

This chapter describes basic and well-known concepts used later in the thesis. It is organized
into two sections — in the first one (1.1), evaluation metrics are described. The ones that
were used to create and evaluate the heuristic itself. In the second part (1.2), statistical
distributions used in this thesis are briefly described, accompanied by the summary table for
later reference.

1.1 Evaluation metrics

Evaluation metrics tell how good is the performance of the model. Each metric covers a
different purpose; the choice is on the user, which criterion is more important. At the heuristic
creation (chapter 5), a big part of needs is covered — thanks to the metrics listed below.

The metrics and equations are taken from H20’s documentation [1]. In the formulas, n is
the number of observations, y is the vector true values, and ¢ is the vector of predicted values.

1.1.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a metric whose units are the same as in the predicted target.
Since the error is not squared, it is quite robust to the outliers.

1 n
MAE = — . — i 1.1
=i — il (1)

i=1

1.1.2 Mean Squared Error (MSE)

Mean Squared Error (MSE) has not the same units as the target variable — the values are
squared. Since the difference between the predicted and true values is powered, it is more affected

by outliers.
n

MSE= > (5 — i) (1.2)

i=1

Statistical distributions and metrics

1.1.3 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is extended MSE. It is also more affected by outliers but
has the same units as the target variable.

RMSE = (1.3)

1.1.4 Root Mean Squared Logarithmic Error (RMSLE)

Root Mean Squared Logarithmic Error (RMSLE) extends the RMSE formula with the loga-
rithmic scale. This helps to balance the contribution of small and large errors.

n

RMSLE = | - (log(y: +1) — log(g; + 1)) (1.4)

i=1

In the formula, 1 is added to avoid the logarithm of zero. If the values are negative, H20 AutoML
produces null value.

1.1.5 Mean Residual Deviance

Mean residual deviance (ERD) is the only used metric whose exact form depends on the
target’s distribution. This is because the deviance is based on the likelihood function, which
differs in each distribution. In general, in all its forms in H20 AutoML, it measures the goodness
of fit. This metric is also known as deviance in other frameworks.

The base idea is to calculate the difference between the log-likelihood of the saturated model (num-
ber of parameters equals the number of observations, so the model is flawless for the provided
data) and created model.

ERD is defined as:

Lgatur
ERD = —2log zatiated (1.5)
created

Where L is the log-likelihood of the model.

1.2 Statistical distributions

This thesis aims to create a heuristic to tell the best value for the hyperparameter “dis-
tribution” in H20 AutoML. This hyperparameter represents the statistical distribution of the
explained variable. It is more elaborated in the section 3.1.2.

For the regression tasks, H20 AutoML uses continuous distributions as well as discrete distri-
butions. Continuous distributions can be described by Probability density function (PDF) — the
area beneath the curve represents the probability of observation in the given range. Analogically,
there are Probability mass function (PMF) for the discrete distributions. The functionality is
similar but in a discrete space.

The following sections describe the distributions available in H20 AutoML or the distribu-
tions used for the heuristic creation. Please note that the distribution parameter names (like
Poisson’s A) use current conventions, not necessarily the original names. On the right side are
examples of the corresponding PMF or PDF.

Statistical distributions

1.2.1 Gaussian

Gaussian distribution [2] (also known as Normal distribution)
is the most common distribution that can represent many phe-
nomena and is also the default distribution in H20 AutoML
(for regression tasks) if other is not specified. It is a continu-
ous distribution and has two parameters, mean (u € R) and
variance (0 € RY). PDF is defined as:

flasp,0®) =

1.2.2 Poisson

A random wariable X from the Poisson distribution [3], de-
noted as X ~ Poisson, is a discrete random variable support-
ing only positive numbers and zero. It can be distinguished,
for example, as the probability of the number of occurrences
in the given interval. Although it is a discrete random wvari-
able H20 AutoML treats the distribution as continuous and
can even be used on the non-discrete data. The hallmark of
this distribution is that mean is equal to variance.

It has one parameter A € RT representing an expected value
and a variance of X. The PMF is defined as:

)\k —

f(X:k;)\):g-e , keNp (1.7)

1.2.3 Gamma

Gamma distribution [4] is a two-parameter continuous distri-
bution supporting real positive numbers (R1). If the random
variable X is from the Gamma distribution, it is denoted as
X ~ Gamma.

Distribution has two possibilities for how it can be parameter-
ized. There is a bijective function between them. This thesis
uses only one of them — parameters shape (o € R*) and scale
(B € RT). Shape represents number of modeled events while
scale represents the mean time between them. The PDF is
defined as:

flz;a,8) = B—axa_le_ﬂx, x>0 (1.8)

0.4

-50 -25 0.0 2.5 5.0
M Figure 1.1 PDF of

the Gaussian distribution
with g = 0 and 0 = 1.

0.3

o o
0.2 ®
®
0.1 ™Y
[]
0.0
0 2 4 6

B Figure 1.2 PMFE of

the Poisson distribution
with A = 2.

0.2

0.1

0.0

0.0 25 5.0 75 10.0

B Figure 1.3 PMF of the
gamma distribution with v = 2
and 8 = 2.

Statistical distributions and metrics

1.2.4 Negative binomial

Negative binomial distribution [5] is similar to Poisson distri-
bution. It is also discrete — but excludes the restriction that the
variance equals the mean. In the following text, the random
variable X from the Negative binomial distribution is denoted
as X ~ NB.

It has two parameters, » € RT represents the number of suc-
cesses to be achieved, and p € [0, 1] tells the probability of each
success. k in the formula represents observations.

PMF is defined as:

k+r—1

F(X =k;r,p) = < L)pr(l -p)* (1.9)

Where k is the number of failures before r-th success.

1.2.5 Laplace

Laplace distribution [6] (X ~ Laplace) is similar to the Gaus-
sian distribution with the difference of having heavier tails, so it
is more robust to the outliers. The domain is R. As Gaussian,
it takes two parameters, location (u € R) and scale (b € RT).
PDF is defined as:

(1.10)

1.2.6 Tweedie

Tweedie (X ~ Tweedie) [7] is a family of distributions that
varies based on the value of the variance power parameter (p).
Regarding the H20’s implementation [8], power parameter is
defined only within the interval (1 < p < 2). Another two
parameters are location (u € RT) and scale (¢ € RT). PDF is
defined as:

£ (2510 8) = ap(z, @) exp (‘d(x’“)) (1.11)

2¢
In the formula, the function d(z,u) is a unit deviance, and
function a,, is the power function that has different forms based
on the power parameter.
Some values of the wvariance power parameter result in other
distributions:

m p=0 Gaussian distribution

m p=1 Poisson distribution

m p=2 Gamma distribution

m p=23 Inverse Gaussian distribution

As was stated, H20 AutoML offers variance power parameter
only in the range 1 < p < 2.

02 ° e
[]
* ®
0.1 °
0.0 ‘ I
0 2 4 6
B Figure 1.4 PMF of the

negative binomial distribution
with k =10, =3 andp = 1/2.

0.6

0.4

0.2

0.0

-50 25 00 25 50
B Figure 1.5 PDF of the

Laplace distribution with 1 =0
and b= 1.

0.2

0.1

0.0

0 2 4 6 8 10

B Figure 1.6 PDF of the
Tweedie distribution with
tweedie_power = 1.5, u = 4 and
¢ = 2.

Statistical distributions

1.2.7 Cauchy

Cauchy distribution (X ~ Cauchy) [9] is a continous distribu-
tion with one significant property — it has no mean nor variance.
This distribution is unavailable in the H20 AutoML, but this
thesis uses it to create artificial data. It has two parameters,
location (o € R) and scale (0 € RT). PDF is defined as:

1+($;Q)T

1.2.8 Distributions summary

-1

fia,0) = — -

= (1.12)

0.4

0.2

0.0
-50 -25 0.0 25 5.0

B Figure 1.7 PDF of the
Cauchy distribution with 1 =0
and % = 1.

For better readability, table 1.1 summarizes all the aforementioned distributions and their

parameters.

B Table 1.1 Distributions overview

Distribution | Domain | Type Parameters

Gaussian R Continuous | p € R (location), o2 € RT (scale)

Poisson N Discrete A € RT (rate)

Gamma R* Continuous | a € RT (shape), [€ R* (rate)

Neg. bin. N Discrete r € Ny (rate), p € [0,1] (probability)

Laplace R Continuous | u € R (location), b€ RT

Tweedie R* Continuous | p € (1,2) (power) p € RT (location), ¢ € Rt (scale)
Cauchy R Continuous | a € R (location), 6 € RT (scale)

Statistical distributions and metrics

Chapter 2

Automated machine learning

This chapter describes the motivation behind Automated Machine Learning (AutoML), its ad-
vantages and disadvantages, followed by a concise description of the selected existing frame-
works. Next is a brief description of the AutoML benchmarks, and lastly, platform OpenML
and basic concepts of meta-learning are described to lay the theoretical foundation for the
practical part.

2.1 Motivation

Machine learning is nowadays used in many various tasks. Images, texts, audio, video, and
almost all kinds of data can be processed to obtain more information and insights into the given
problem domain. One can detect anomalies in the data, predict values, predict who or what is
in the picture, and many other applications. Some tasks are more complex in preprocessing and
computability, while others are simpler and often very similar in a workflow.

There are various attempts to describe the workflow, for example, by introducing the stan-
dards for the data mining process. One of the introduced standards is CRISP-DM [10]. This
process consists of defined steps that should be followed in the whole data mining process. Those
steps are:

1. Business Understanding
. Data Understanding

. Data Preparation

2
3
4. Modelling
5. Evaluation
6

. Deployment

Research was done to measure the time spent on each task in the CRISP-DM process [11].
The results can be seen in figure 2.1.

Figure 2.1 shows that most of the time is spent on data preparation. When getting new data,
it may take a while to see the first results and insights regarding the preprocessing and proper
model training. An automated solution would be handy because first results and insights would
be obtainable almost as soon as one gets the data, without needing more profound expertise and
domain knowledge which are almost inevitable requirements at data preprocessing.

Another case may occur when a researcher (in any field of study) wants to know if there is some
relation or other insights. Researchers in other areas of study (for instance, chemistry) may have

10

Automated machine learning

B Figure 2.1 Relative time spent on parts of the KDDM process. The results
are from the three different surveys. [11]

Relative effort (%) m Cabena et al. estimates

70 B Shearer estimates
60 O Cios and Kurgan estimates
50
40 A
30 -
20 -
3 ol ol IETETE

ol M|

Understandlng Understandlng Evaluat|on of Deployment of
of Domain of Data H'eparatlon Results Results
KDDM steps

some programming and machine learning knowledge. However, they may still be missing crucial
information on how to build a proper machine learning model. In the simplest case, AutoML
requires only input data almost in any condition. Those frameworks may make machine learning
more accessible for other study fields, removing the barrier of insufficient knowledge.

This approach can be full-fledged for the more straightforward datasets while saving a non-
negligible amount of time and resources. Generally, it is a good baseline where to start. The first
decent results are obtained almost immediately without manual data preprocessing and model
tuning.

Since everything is automated, this does not give the best results, but it can provide a solid
baseline without further work. Part of the H20 AutoML framework is the explainability mod-
ule, which can significantly help with data and model understanding and the relations between
features.

2.2 Available AutoML frameworks

AutoML has increased attention in recent years, that naturally leads to an increased number
of frameworks. Since the number of available frameworks is steadily growing, only a few will be
described, based on the AutoML Benchmark [12] that is being regularly done — the most recent
one in 2022. More about AutoML benchmarks in section 2.3.

H20 AutoML is easily distributable over multiple computation devices and it is big data
friendly. It automatically handles data preprocessing (one-hot encoding, normalization,. ..),
model selection, hyperparameter optimization, and model evaluation. The integrated explain-
ability module offers easily-obtainable access to the data and model insights. More info is in
chapter 3. [8]

Auto-Sklearn is built on the widely used machine learning framework scikit-learn [13]. It does
similar steps as H20 AutoML. It uses Bayesian optimization and meta-learning. Unlike H20
AutoML, it is not built for distributed systems and big data. [14]

FLAML is a relatively new framework that combines iterative boosting algorithms from var-
ious libraries with a small addition from the scikit-learn [13]. It emphasizes computation
efficiency. [15]

AutoGluon can be used for tabular data but can also be used for images and texts (apart from
the aforementioned frameworks). Unlike other models, it does not perform hyperparameter
tuning nor search for the best model. It emphasizes more on model selection (that is being
done by stacking) rather than data preprocessing. [16]

AutoML frameworks benchmark

2.3 AutoML frameworks benchmark

With the increasing number of AutoML systems, there is a natural need to compare them.
This section describes one of the AutoML benchmarks [12] (done in 2022), comparing the selected
top-performing ones. Conditions were the same for all participating frameworks. Benchmarks
were done on classification (binary and multi), and regression tasks on the carefully chosen
datasets from the OpenML platfrom [17] (described in section 2.4). Each model got the same
time, and then the performance was evaluated.

The Area Under Curve (AUC) for binary classification, log-loss for multinomial classification,
and RMSE for regression tasks.

To show the results, Critical difference diagram (CD diagram) [18] are used — the visualization
method based on rank and statistical tests.

The results for the multi-class classification and regression can be found in figure 2.2.

B Figure 2.2 Results of AutoML frameworks benchmark [12] using CD diagram [18]. The z-axis
represents the rank — the lower the rank, the better. Thick black horizontal lines connect the frameworks
whose differences in results are not statistically significant between themselves. The uppermost line with
the label “CD” determines the ranks whose results are not statistically significant from the correct results.

cD D
— —

1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11

AutoGluon(B) — constantpredictor AutoGluon(B) L— constantpredictor
H20AutoML RandomForest H20AutoML RandomForest
flaml TunedRandomFore mljarsupervised(B) TunedRandomFore
mljarst ised(B) TPOT lightautom| TPOT
lightautom| n autosklearn GAMA(B)
GAMA(B) —m — flaml —M

(e) Regression, 1 hour (f) Regression, 4 hours

It can be seen that the AutoGluon framework leads in both categories. As a matter of fact,
it leads in all six categories (the other categories are supervised classifications, see [12]). In
regression tasks, H20 AutoML is in the second place. And the heuristic that is being proposed
in this thesis aims to improve the regression score.

2.4 OpenML

As mentioned in section 2.3, data for the AutoML benchmarks come from the OpenML
platform [17] that also this thesis uses. It is an open platform for sharing any machine learning
related materials. Not only datasets but the whole pipelines, benchmarks, and experiments can
be found here. Since it is an open platform, anyone can contribute and use the datasets for free.

To use datasets from OpenML, one can utilize its package, available in Python [19]. The API
credentials are needed to start using it.

Available items can be filtered by their type. For example, datasets can be categorized by the
type of task that uses them. There are eight task categories, basic types like supervised regression,
supervised classification, clustering, but there are also more specific tasks, like survival analysis
or learning curve construction. ..

Datasets are accompanied by its meta-data, through which they can also be filtered, from the
common properties like dataset shape, number of missing values, or dataset name to more specific
regarding the task type, like the number of classes in the explained variable (classification).

Since it is an open platform where anyone can contribute, not all datasets share the same
qualities. Currently (2023), there are 2600 available datasets (through the python package) for
supervised regression tasks. When creating a heuristic, it sometimes happened that explained
variable in the dataset, labeled as regression task, had only two values, coincidentally {0,1},

11

12

Automated machine learning

which makes it a binary classification. This problem with others, like insufficient size, missing
metadata, or missing target variable, can be easily filtered out during fetching.

The last problem encountered with the OpenML platform was data source bias. Multiple
datasets have the same source (for example, standardized chemical experiments in one laboratory
— same structure, but different values). Those datasets usually share part of the name and are
easily identifiable. One of those groups currently has 1102 regression datasets. Most of those
datasets in the group share the features. If those datasets were used in the meta learning,
their shared properties would heavily influence meta-model. Its generalization ability would be
negatively affected, resulting in overfitting. For this reason, they are filtered out.

2.5 DMeta-learning

In [20], meta-learning is defined as: “the study of principled methods that exploit metaknowl-
edge to obtain efficient models and solutions by adapting machine learning processes.” In this
definition, metaknowledge is any knowledge gained from the prior tasks useful for future model-
ing.

Meta-learning can be interpreted as deriving knowledge from the prior tasks to improve the
effectiveness and results of future ones. It can be seen as a sort of learning. However, instead
of learning, e.g., how to recognize cats in a picture with the neural network, one learns how to
learn how to improve the recognition based on prior experience and input data characteristics.

This thesis deals with the meta-learning from the input data characteristics point of view.
The heuristic itself (described in chapter 5) is built on the information obtained from the various
datasets and their properties, not considering the model characteristics part of this study field.

Can the optimal hyperparameter value be derived only from the input data? Moreover, if
so — why would one bother with hyperparameter tuning, which takes a lot of computation and
time?

It may not work for most hyperparameters since most are not directly linked with the in-
put data. This thesis aims to determine the distribution hyperparameter that tells which data
distribution corresponds the most with the explained variable. So the value represents the data
characteristics, which naturally leads to the assumption that the data characteristic could deter-
mine the hyperparameter value.

Chapter 3
H20 AutoML

This chapter describes the H20 AutoML framework. Firstly, a quick overview of the whole
framework is provided, followed by an overview of the available models within. Next, the
distribution hyperparameter, the core of this thesis, is described — why it is essential for the
prediction and how it influences model behavior. And at the end of the chapter, the whole
automated machine learning process (as it is in H20 AutoML) is described together with the
practical example of usage.

3.1 H20 AutoML

One of the available AutoML frameworks and core of this thesis is H20 AutoML [8]. It is an
open-source framework. It handles big data and can be easily distributed (unlike other AutoML
systems). There are APIs in R, Python, Scala and Java — but the functionality is the same for
all. The core of the application is written in Java.

Currently (2023), regression, classification, and the multi-class classification supervised tasks
are supported. Additional tools, like the explainability module, are available for all tasks.

H20 AutoML is built as a distributed system, so the application requires a running back-
end that provides API (in the aforementioned programming languages). This backend can be
distributed over multiple server instances and run locally, for example, through the Docker con-
tainers. In the practical part of this thesis, one Docker container is used.

3.1.1 H20 AutoML models

As of April 2023, H20 AutoML uses five selected models from H20 Open Source (another
H20’s framework), together with Stacked Ensemble models made from them. Selected models
are diverse, each representing a different direction of machine learning algorithms. Since each
model used in H20 AutoML has a different approach, the resulting Stacked Ensemble model
usually has good results and does not overfit.

3.1.1.1 Distributed Random Forest

H20’s Distributed Random Forest (DRF) [8] is the implementation of the classical Random
Forest [21] concerning the possibility of distributing the training over multiple devices, making
it faster and able to handle larger datasets.

13

14

H20 AutoML

3.1.1.2 Generalized Linear Model

Generilized Linear Model (GLM) [22] is the generalized version of the classical linear model,
such as Linear Regression.

In the Linear Regression, the expected value (denoted as E) of the random variable is predicted
while the GLM model predicts the transformation of the mean. The transformation function is
called the link function, and the model uses its inversion. An explained variable must be from
the Exponential family of distributions. The GLM equation is defined as:

9 =Elye |21, 8] = g7 (8" 21) (3.1)

GLM can be used with multiple distributions that change the behavior and aim of the model.
For instance, GLM with the identity link function and Gaussian distribution can be used as a
classical linear (Gaussian) regression.

H20’s GLM [23] has multiple available distributions, supporting the classification and re-
gression tasks. Supported regression distributions (that are also supported in H20 AutoML)
are Gaussian, Poisson, gamma, negative binomial and Tweedie. For classification tasks, it is
binomial and multinomial. Each distribution is supposed to be for a different task and has a
different training equation.

3.1.1.3 GBM

Gradient Boosting Machine (GBM) [24] is one of the ensemble learning methods. It iteratively
builds decision trees, using residuals to improve. H20’s implementation [8] adds the possibility
to parallelize the training similarly to H20’s DRF.

3.1.1.4 XGBoost

Extreme Gradient Boosting (XGBoost) available in the H20 AutoML [8] is not H20’s imple-
mentation. It is the original XGBoost algorithm [25], wrapped in the H20’s framework. It is the
only model in H20 AutoML with no custom implementation. The algorithm is quite similar to
the GBM, also implemented in the H20 AutoML framework, but focuses more on regularization.

3.1.1.5 DeepLearning

The last algorithm included in H20 AutoML represents artificial neural networks. H20’s
DeepLearning [26] is a multi-layer network trained with stochastic descent. Various activation
functions, regularization options, and many other possible hyperparameters exist.

3.1.1.6 Stacked Ensemble

H20’s Stacked Ensemble [8] itself is not exactly another unique model, and it can not be
used standalone. The stacking approach used there is based on Super learner algorithm [27]. Tt
takes the predictions from the base models and creates a new model (also called meta-model).
The advantage of this approach is increased robustness, reduced possibility of overfitting, and
the ability to possibly capture patterns and relationships that individual models did not capture.

3.1.2 Distribution hyperparameter

Each of the models above (except for Stacked ensemble) has a hyperparameter named dis-
tribution that should determine the distribution of the explained variable and the model usage.
In all models (except for Stacked ensemble), it sets the loss function. It determines the whole
training equation for the GLM.

H20 AutoML

If a user does not set the hyperparameter, it uses Gaussian distribution for all the continuous
data; for classification tasks, there is a binomial or multinomial (depending on the number of
the target classes).

Not all models support all distributions. If the chosen distribution is not supported on the
current model, the distribution is set as Gaussian. Available regression distributions for each
model can be seen in table 3.1. All the distributions were described in section 1.2.

B Table 3.1 Available regression distributions in H20 AutoML [8]

H DeepLearning ‘ DRF ‘ GBM ‘ GLM ‘ XGBoost

Gaussian X X X X X
Poisson X X X X
Gamma X X X X
Negative binomial X

Laplace X X

Huber X X

Tweedie X X X X

3.1.3 Distribution & Loss function

For all the models, the distribution parameter influences the loss function. Below is a brief
overview of the different loss functions for different distributions — they are similar for all the
models, but the differences are mainly in regularization. The regularization helps with the
predictive performance of the models, and thus it is very practical to keep it turned on; however,
it can make a task more difficult to show an improvement.

Those loss functions are common for all the H20 AutoML base models (Deep learning, GBM,
GLM, XGBoost) except for DRF 1.

Note that for simplicity, the loss functions below are cropped of the variable w representing
weight that a user can set if one wants to assign different weights for the observations and
regularization.

m Gaussian loss function equals to MSE already mentioned in 1.1.2.

= Poisson loss function A
L(y,9) =2 (y-logj — €°8Y) (3.2)

= Gamma loss function A
L(y,9) =2 (y- €8 +log) (3.3)

= Negative binomial loss function. Parameter 6 is automatically learned during the training.

Lng)=e?: F(er(ly) +r9(;l 0 (99: y)“’ ' (aly+y>y (3-4)

= Laplace loss fuction equals to MAE already mentioned in 1.1.1.
= Tweedie loss function, p is the Tweedie power parameter.

L(y,9) = Q.y(%p)/((lfp)(%p)) _y.e@-(lfp)/(l —p) +e@-(2fp)/(2_p) +e@.(2,p)/(2_p) (3.5)

All the info was taken from [23] and from online documentation [28].

1 Random forests are trained differently from the other models that treat the loss function another way. For this
reason, regression tasks for DRF supports only one loss function marked as Gaussian in the context of distribution
hyperparameter.

16

H20 AutoML

3.1.3.1 Huber

It can be misleading that the hyperparameter is called distribution when Huber distribution
is not defined. In H20 AutoML, if the distribution is set as Huber, the Huber loss function [29]
is applied. It combines MSE and MAE. A hyperparameter § is set. An error is linear if the
distance between the prediction and the true value is greater than . If it is lower, the error is
quadratic. This reduces the influence of outliers on the model.

Ly - f(x))? if |y — f(x)] <6

3.6
8ly — f(z)| — 36° otherwise (3.6)

3.1.4 Distribution & GLM

As was mentioned, a special case regarding distribution hyperparameter is the GLM model.
The artificial data generation? is based on the GLM equations 3.1. Each distribution has a differ-
ent link function, those functions may vary in different implementations. H20’s implementation
is shown in table 3.2 — but only for the distributions relevant to the heuristic creation and for
the distributions available in H20’s GLM (see table 3.1).%

B Table 3.2 Link functions

Distribution Link function | Inverse of link
Gaussian identity identity
Poisson log exp

Gamma log exp

Negative binomial | log exp

Tweedie log exp

3.2 H20 AutoML process

Assume that H20 AutoML is already running, and the dataset is uploaded to the backend.
The whole process begins with calling the method train, followed by the following steps:

1. Data preprocessing. Machine learning algorithms have specific requirements for the input
data and H20 AutoML is no exception. Missing values imputation, one-hot encoding, target
encoding and normalization (when required) is being done in the first phase of the AutoML
process. Those are current steps, but others are in the framework’s roadmap.

2. Base models. To ensure a solid starting point, the training of the first few models is pre-
defined. That means the training has given order, and the models have set hyperparameters.
The hyperparameter values are chosen regarding the various benchmark results and strong
domain knowledge of H20’s data scientists. The goal is to obtain a solid baseline through the
models that are generally behaving well, with most kinds of the data (like XGBoost). After
each of those groups, Stacked Ensembles are also trained to obtain possibly better results.

3. Random search. After the initial baseline is set, the training is more randomized. There is
a random search (that is, by default cross-validated) within the set of chosen hyperparameters
and models.

2Described later in the chapter 4
3For Tweedie distribution, link function differs based on tweedie variance power parameter. In H20 AutoML,
this parameter is confined to 1 < p < 2, so the link function is the same.

N}

3 X

H20 AutoML example

4. Stacked ensembles. Random search provides a diverse set of models, and from that, Stacked
Ensemble models are trained. Thanks to the diversity of the models, the results are usually
better than any of the before-trained models (but not always). They are also trained after
the base models.

5. Leaderboard. It is up to the user how extensive random search (parts 3 & 4) will be.
Users can confine the framework either by the maximum number of trained models or the
training time. Also, early-stopping mechanisms are available. A leaderboard is provided when
the training ends, containing various metrics and training info. An example may be seen in
section 3.3.

All the info for this section was taken from [8].

3.3 H20 AutoML example

An example of the H20 AutoML framework is shown in the following lines. The demon-
stration is done on the Medical Cost Personal dataset [30], where the individual medical costs
are predicted based on basic personal data (6 features). This whole example is available in the
jJupyter notebook in the attachment.

Since the H20 AutoML framework is suitable for big data, it is expected to be on some remote
server that is computationally superior to standard computers. But it can still be run locally via
Docker container that will provide API for the framework.

Data is uploaded to the cluster; the response column is set. Then, H20 AutoML is initialized.
Note that distribution is set as auto, meaning that the default value — Gaussian distribution will
be used. Next, 13 base models without further hyperparameter optimization are trained. And
that is all. There are various ways how to set how many models will be trained. One can set the
total models count or confine the training with a time limit. The time limit approach was used
in the AutoML benchmark described in 2.3. The code described in this paragraph is available
in the code 3.1.

train = h2o.upload_file("insurance.csv"

train.columns
y = "charges"
X.remove (y)

Run AutoML for 13 base models
aml = H20AutoML (max_models=13, seed=13, distribution="auto")
aml.train(x=X, y=y, training_frame=train)

B Code listing 3.1 Example of the H20 AutoML

Results are obtained when the training ends. The value of the RMSLE* is approximately
0.407, which is a decent baseline. Regarding the leaderboard (3.1) of all trained models, the best
models were Stacked ensembles of others, closely followed by the XGBoost.

With the trained model, one can examine the possibilities of H20’s explainability module.
Simply by calling automl.explain(valid_set), the user will get® leaderboard, residual analysis,
learning curve plot, variable importance, and its heatmap, correlation of models, SHAP values
and plots for each feature, partial dependence plots for each feature and model, ICE plots and
other possible outcomes, based on parameters.

All this can be obtained without data preprocessing, model selection, etc...This approach
gave fast first results providing insights into the data and inner structure.

40n cross-validation data
5This example is for the regression tasks. In the case of classification, some items will be different.

17

18

H20 AutoML

B Figure 3.1 Leaderboard of the best models, ordered by RMSLE). Ordering can be changed. Column
model id determines the used model; the rest are metrics, described in 1.1.

model_id
0 StackedEnsemble_BestOfFamily_1_AutoML_22_20230...
1 StackedEnsemble AllModels_1_AutoML 22 20230508...
2 XGBoost_grid_1_AutoML_22 20230508 80303_model_1
3 GBM_4_AutoML_22_20230508_80303
4 GBM_2 AutoML_22_20230508_80303

5 DRF_1_AutoML_22_20230508_80303

rmse

4493738406

4499423606

4514519718

4709.750661

4750.766129

4798550557

mse

2.019368e+07

2.024481e+07

2.038089e+07

2.218175e+07

2.256978e+07

2.302609e+07

mae

2428.147171

2435.660403

2398695239

2702.171413

2802.340424

2758264493

rmsle mean_residual_deviance

0407778

0.410949

0411722

0.470540

0.479540

0.438675

2.019368e+07

2.024481e+07

2.038089e+07

2.218175e+07

2.256978e+07

2.302609e+07

Chapter 4

Data generation

This chapter describes the generation of artificial data, how it is generated, which properties
are used to create noise between the predictors and predicted variables, and other additions to
make the artificial data more diverse.

4.1 Introduction

This thesis aims to create a heuristic to tell which available distributions one should use
to train the H20 AutoML framework. This task can also be described as finding the best
hyperparameter value based on the dataset’s properties. The initial step was creating artificial
datasets with predictors covering all the required distributions — to see whether it was possible
to distinguish the most suitable distribution based on artificial data properties.

4.2 Generating artificial data
Creating artificial data is problematic regarding covering as much variability as possible.

Data generation is done with the same approach as is used in the GLM (equation 3.1) — the
equation through that data is generated has a form:

yi = 0a(g~ (8" 1)) (4.1)
m Where y; is the i-th term in the explained variable vector,
= 0, is the function that returns a random variety from the specified distribution d,
m ¢! is the inversion of the link function (3.2),

= (3 is the vector of coefficients,

m ; is the i-th row in the training set X.

The correctness of the generated data can be tested through the GLM. Since the equation is
the same as GLM has, its coefficients can also be used for comparison/evaluation.

The following sections show how the formula is created.

19

20

Data generation

4.2.1 Train set

The explained variable y is calculated using the train set X. For the creation, the simplest
approach is used — all the features are numeric and i.i.d. — but still, multiple factors must be
considered.

Dataset size It is expectable that larger datasets may perform differently than smaller datasets.
Regarding the computational power of the benchmark device, there are defined two sets of
numbers — rows and columns. The resulting shapes are derived from the Cartesian product
between those two sets.

= Row counts: 50000, 500
= Feature counts: 1250, 500, 100, 2

Intercept Different intercepts for the explained variable increase the variability of the generated
data. Two values — 0.15 and 8 — were chosen. To include datasets near zero as well as further
values.

Feature values As was stated, only numeric values are acceptable. Features are i.i.d. and each
feature X; has the uniform distribution, X; ~ Uniform(0,1).

Coefficient values In the equation, coefficients are represented with the vector 5. To make
the data more diverse, there are two types of them:
= Small coefficients, each row ¢; ~ Uniform(—1,1)
= Big coefficients, each row ¢; ~ Uniform(—>50, 50)

4.2.2 Explained variable

With the defined training set X, an explained variable y is calculated. Relation between the
training set and the explained variable can be represented through the formula 4.1.

Given this relation, explained variable can be constructed, and exact parameters in 5 can be
calculated through the GLM. But that is not enough; real-world data is messy, and there is some
noise.

4.2.3 Noise

For data generation, there are two types of features:

Informative feature This feature is directly included in the resulting value of the explained
variable. In the GLM equation, it is represented as x;.

Non-informative feature This feature was not used during the data generation process; thus,
it contains no useful information. The problem is that the model does not know it and needs
to figure it out.

Noise is introduced via non-informative features; those features are randomly chosen from the
rest. The proportion of informative features is set to the three options:

m 100% of the features are informative
m 75% of the features are informative

m 25% of the features are informative

The special case is for the datasets with only two features; in this case, the choice is reduced to
100% and 50%.

Regarding the GLM formula 3.1, an optimal model would have non-informative features
coefficients (3; set to zero.

Conclusion

4.2.4 Modality

And last addition is modality. Data generated through the GLM formula now have one
mode. Unfortunately, that is not a rule for the real-world data. For this reason, another mode
is introduced. That is achieved with the categorical variable X. with the Bernoulli distribution,
X. ~ Be(9/20). In the construction of y, this variable is multiplied by the higher constant (25),
so the explained variable y is divided into two clusters, each having its mode.

This is not applied to all the datasets.

4.2.5 Link functions

To follow the GLM formula, inverse link function must be applied. A sum of coefficients with
the features labeled as informative is put into the link function. List of link functions is available
in table 3.2.

4.2.6 Distributions

All the regression distributions available in H20 AutoML were used, accompanied by the
Cauchy distribution to create artificial data with more outliers. Distributions are described in
section 1.2.

4.2.7 Random variates

The last step is to generate random variate from the appropriate distribution. The Python
package Scipy [31] is used for this. For each distribution, a function rvs takes the given input
(and distribution parameters), treats it as a mean of the distribution, and returns a random
number from it.

4.2.7.1 Random variates parameters

As was mentioned, some distributions have additional parameters. The overview may be seen
in table 1.1. Parameters that are not related to the input data are required at Negative bino-
mial (1.2.4) and Tweedie (1.2.6) distributions. Those parameters are taken from the predefined,
uniformly distributed grid in both cases.

For Negative binomial, it is parameter p € [0, 1] representing the probability of success (see
1.2.4). For Tweedie, it is Tweedie variance power p € (1,2) and scale ¢ € RT (see 1.2.6).

4.2.8 Example

Since the theoretical description may be confusing, there is a Jupyter notebook in the at-
tachment with the complete code. Also, in figure 4.1 is an example of the histograms from one
randomly chosen generated explained variable.

4.3 Conclusion

Eight unique datasets came from the data generating described above. Each dataset has
multiple explained variables — each generated from the same training data but with the different
parameters, informative indices, etc. . .

There are 1980 unique target variables, 792 for the Tweedie distribution, 396 for the Negative
binomial distribution, and 132 for the rest. The higher amount for Tweedie and Negative binomial
is caused by other required parameters, explained in 4.2.7.1.

21

22

Data generation

B Figure 4.1 The figure shows an example of the explained variable histograms of one randomly chosen
dataset. Seven generated distributions are generated from the same base (same coefficients, informative
features, ...). The dotted line show where z = 2 and y = 30 to highlight the different proportions of
each distribution.

Parameter 7 represents the generating parameter obtained during the generation process.

Gaussian (u=n, 0?2 =1) Poisson (A =n) Gamma (a=n, B=1) Negative binomial (r=n, p=1/2)
300 - 300 - 350 ;
i | i
250 3 250 | 300 i
| | 1
! 250
200 200
200
150 150
150
100 100
100
50 4 50 50 4
0 - T 0 T T 0 1 m T
0 2 4 6 8 0 1 2 3 4 5 0 2 4 6 8
Laplace (u=n, b=1) Tweedie (u=n,p=1.5,¢=10)
450
001 [] 2501
350
200
300
250 150 4
200
150 4 100
100
50 4
50 4
o b .]

Chapter 5

Heuristic creation

This chapter describes the creation of the heuristic. Firstly, requirements for the heuristic are
described, followed by the description of the chosen meta-features from which the heuristic is
built. The creation can be described by three main attempts; the last one is the only success.
At the end of the chapter is described how the IF... ELSE rules for the heuristic are created.

5.1 Introduction

The purpose of the heuristic was described in previous chapters. This chapter describes its
creation.
The general requirements for the heuristic are:

Explainability One of the core requirements is the ability to clearly see (and explain) the
decisions that are being made by the heuristic. Ideally, it should consist of IF... ELSE state-
ments.

Speed Another requirement is the speed of the decision - it should be done almost instantly,
without long computations. The computation time would increase in case of a big data and
would slow down the whole framework by a significant amount of time.

Reliability The usage of the heuristic should improve the performance of H20 AutoML, so
it will generally be more beneficial to use it instead of the current behavior (Gaussian for
regression).

After the consultation with the thesis supervisor, it was decided that to fulfill all three re-
quirements above, the heuristic itself will be created through the decision tree that will be trained
using meta-learning (described in 2.5). This approach meets the explainability requirement be-
cause it is easy to derive the rules from the given tree in the form of IF... ELSE statements.
This approach also partially fulfills the requirement of speed because getting the decision from
the conditions is almost instant.

The problematic part about speed is getting the variables for the decision making, which is
described in the section 5.2.

Three different heuristics were created with similar approaches — decision tree from meta-
learning. This approach was based on performance, not considering distributions intentions and
purpose.

And a reminder from section 1.2, this hyperparameter sets the loss function for all the models.

H1 — Artificial data The first heuristic was built purely on artificial data. The initial motiva-
tion was to find out if there was an improvement. Using artificial data has the advantage of

23

24

Heuristic creation

knowing the coefficients used for generating. Those coefficients can be obtained through the
GLM model since the generating was done with its equation, so I could see how much they
differed.

The results were poor, it did not generalize well on the real-world data, but it showed that
creating meta-features from the training set is unnecessary and that creating it from the
target variable is enough. More described in section 5.4.

H2 — Solo models The second heuristic was created on open datasets from OpenML platform
using standalone models available in H20 AutoML. This was done with the expectation of
higher generalization — but did not satisfy it. Also, the computational requirements were far
smaller than in the case of using AutoML. For one dataset and one distribution, only four
models were trained (GLM, GBM, XGBoost, and Deep learning)".

This approach had much better results than the first one, but on the standalone models —
not on H20 AutoML. More described in section 5.5.

H3 — AutoML model The final heuristic with the good overall results, created through the
H20 AutoML itself. More described in section 5.6.

Before describing the heuristic itself, used meta-features will be introduced.

5.2 Meta-features

All three heuristics were created through the meta-learning, based on the meta-features from
the input dataset. The selection of those features was mainly made in the first heuristic — based
on the decision’s tree feature importance (via multiple approaches of importance calculation).
But the features themselves will be described here.

The selection of the initial features was mainly based on the chapter Dataset Characteristics
(Meta-features) from the book Meta-learning [32], and from the article, [33], which shows how
to treat bivariate statistics. Some other meta-features were introduced and tested by me.

5.2.1 Chosen features

Most of the features selected for the final usage were chosen based on the feature importance
(done with the random feature elimination algorithm and with the feature importance from
the decision tree) and heuristic performance. The next considered criterion was the correlation
between the features. Keeping highly correlated features (like mean and median) would increase
the complexity of the rules while adding a negligible amount of new information.

Lastly, some features were added/removed based on domain knowledge. According to fig-
ure 5.1 that shows the importance ranks of the selected features (the lower the rank, the better),
the least useful chosen features are Only integers, Outliers ratio and Minimum. While the rank
is higher, they are still crucial for the correct prediction of some distributions (especially Poisson
and Negative binomial).

The statistics formulas below correspond with the calculation within the framework, using
the Scipy package [31] and are calculated on the explained variable y?.

Outliers ratio Some loss functions (like Laplace or Huber) are more fitting for the data with
many outliers. The ratio tells the percentage of terms out of the range using Interquartile
range (IQR). The term x is considered an outlier if it is outside of the interval:

(@1 —5-1QR, @3 +5-IQR] (5.1)

IThe third heuristic using AutoML had to train 13 models for each dataset and each distribution.
2As a matter of fact, in the proposed heuristic implementation, Scipy is not used, the calculations are done
with the H20 framework itself.

Meta-features

B Figure 5.1 Feature importance based on the random feature elimination al-
gorithm from the scikit-learn [13]. Features are ranked from the most impor-
tant (rank 1) to the least (rank 6) and built on the final heuristic using cross-
validation.

Only integers
Outliers ratio
Minimurm

Mean

Variation coefficient
SEM

MAD

Skewness

Kurtosis

Maximum

Standard deviation

Where @1 is the first quantile, X5 is the third quantile and IQR = Q3 — Q1. Note that this
outlier detection method usually has a constant of 1.5 instead of 5. The number was risen
to mark only the furthest outliers and was estimated through the multiple benchmarks with
the pre-defined grid of possible values.

Coefficient of variation Measure of the relative variability. The lower value indicates lower
variability.

oV = (5.2)

SIS

Where zx is a random variable.
Standard deviation Well-known statistics showing the dispersion of the variable.

o= M (5.3)

Where x is a random variable and n is the number of observations.
Minimum Useful for determining if distribution contains negative numbers or zeros.
Maximum Proved to be useful. It provides information about outliers.

Mean Another well-known statistics. It is also used for the computation of almost all other
meta-features.

Skewness Third moment, it is a measure of a distribution’s asymmetry. Scipy’s calucaltion
uses Fisher-Pearson formula.
Iy (- a)
n=TEE oy (5.4)
(Z i1 (@i —))

Where z is a random variable and n is the number of observations.

Kurtosis Fourth moment. It describes the shape of a probability distribution. In Secipy, it is
calculated through the Fisher’s formula.
DGt WL (55)

Y2 = "

(0 (2 — 7)2/n)?

26 Heuristic creation

Where x is a random variable and n is the number of observations.

Median absolute deviation (MAD) Similar to the standard deviation, it is a measure of
dispersion but less affected by outliers.

MAD = median (|z; — &, |22 — Z|, ..., |z, — Z|) (5.6)
Where x is a random variable and % is its median.

Standard error of mean (SEM) Measurement of the likelihood that the sampled value would
differ from the population mean. Smaller values indicate that the sample mean is more likely
to be close to the population mean.

SEM, = % (5.7)

Where x is a random variable and n is the number of observations in x.

The selection of this feature was based more on randomness than on the fundament — the trees
containing this feature generally performed better. It is similar to the wvariation coefficient
that is also included. But while variation coefficient represents relative variability, SEM
measures the precision of the sample mean estimate — so fundamentally, the features are
different, bringing different information.

Only integers indicator The only selected feature that is not a descriptive statistic but a
categorical variable. It tells if the random variable = consists only of integers or not.

Summarized, eleven different features were chosen. The selection was done with the first
heuristic and validated later in the second and third. Figure 5.2 shows the correlation between
the features. Since standard deviation and mean are used in other feature calculations, it is no
surprise that they are more correlated with others.

B Figure 5.2 Pearson’s correlation between meta-features. It was done
on the dataset from the final heuristic.

1.00
Outliers ratio . [

Variation coefficient . 0.75

Standard deviation
Mean . . - 050
Maximum . . . - 025
Minimum . .
Kurtosis .-
Skewness .- — 025
w EEE W
SEM .

Only integers

- 0.00

-0.50

-0.75

Qutliers ratio
Mean
Maximum
Minimum
Kurtosis
Skewness
MAD

SEM

Only integers

Variation coefficient
Standard deviation

Dataset creation and heuristic evaluation

5.2.2 Other tested features

Three types of features were also tested and considered but were not chosen for the heuristic
creation.

Other target variable statistics All the selected features (except for Only integers) are de-
scriptive statistics of the target variable. Others were tested, like quantiles, trimmed mean,
IQR, ..., but proved irrelevant.

Dataset characteristics I experimented with features like data density (number of rows di-
vided by number of columns) or just solo dataset shapes. While in some cases it can be
decisive, for the whole H20 AutoML had those features a little effect and were rather contra-
productive.

Bivariate statistics Statistics (Pearson’s correlation, kurtosis, skewness) between the target
variable and training features and within the features in the training set. It was done with the
approach proposed in the [33]. If there was a new feature for every pair of features between
which would be statistics computed, the dimensionality would drastically grow. Therefore
those statistics were computed, and then binned into the bins, [33] referred to those bins as
histograms. The interval of bins is defined after the computation, and all the bins have a
similar number of terms within them. In each bin is the number of features within this range,
and those are the resulting meta-features.

The ideal number of bins was benchmarked and tested. It was suggested by [33] to use ten
bins, but better results were obtained with five bins.

Even though there was some improvement in the heuristic (after discarding the bins that
were not considered as important by the feature selection), the calculation took too long and
contradicted the requirement for speed. All those statistics would have to be calculated for
each input dataset, and that is too much time for a little improvement.

5.3 Dataset creation and heuristic evaluation

To apply a meta-learning, 1 first needed a dataset that could be learned from. All three
heuristics are very similar in the form of the creation. What makes them distinct is the meta-
dataset from which they were created. Each approach is described at the corresponding heuristic.

Meta-dataset consists of the meta-features (5.2.1) representing training set X, and the ex-
plained variable y is represented as a distribution with the best results — multinomial classification.

Defining the criteria at which is the given distribution better than the Gaussian is a complex
problem, so the most straightforward approach was taken. There would be actually four meta-
datasets that differ at the values of explained variables — its value is determined by the four
different criteria: MAE, RMSE, RMSLE and ERD. For the MAE criterion, the distribution
providing the lowest MAE score is chosen — and analogically for the rest.

The second approach (and the used one) is to create an incosistent dataset®. This means,
e.g., that if the dataset outperformed the default distribution with Poisson and Tweedie, the
meta-dataset will have two same rows in training set X, each with a different value of the
explained variable (one Poisson and one Tweedie). Despite the inconsistency, this approach
enlarges the training dataset and outperforms the consistent one. Decision trees can easily treat
these inconsistencies by introducing the probabilities to the computations.*

Gaussian distribution was set as a target variable if the results on the other distributions
were worse.

3In other words, if the heuristic predicts a distribution that improves over Gaussian distribution, it’s considered
as a correct prediction, even if it is not the best prediction.

4The inconsistent dataset was only the training set. Validation and test sets were consistent (one row equals
one distinct dataset).

27

28

Heuristic creation

The heuristic itself is firstly assessed on the validation data from the meta-dataset using
modified confusion matriz — the value is on the diagonal even though it is not predicted correctly,
but still outperforms the default (Gaussian) distribution. The second evaluation is done on the
test set and more described at each heuristic.

5.4 H1 — The first heuristic

The first attempt at heuristic creation was more kind of an experiment than a genuine at-
tempt. To get some context in this domain and set a starting point. It had terrible results, but
those failures defined how the heuristic should be created correctly. Also, feature selection was
made mainly on the first heuristic (and validated on the second and third — but with much better
results).

Only artificially generated data was used. The idea was to look at how would H20 AutoML
generalize if it was trained purely on the almost-perfect (in terms of distribution properties) data
and tested on the real-world datasets from OpenML. I noticed some flaws in this approach right
at the beginning. The artificial data was not diverse enough — mainly skewness and kurtosis was
almost the same for every dataset — both were expected to be important for the decisions. Also,
they varied significantly on the few datasets from OpenML.

5.4.1 H1 — Meta-dataset creation

The artificial dataset (described in chapter 4) was taken, and for each of the 1980 datasets,
each individual available model in H20 AutoML with each available distribution (3.1) set was
benchmarked and results were taken.

Since benchmarks took a lot of time and the results were not good, the benchmarks were not
performed for all the datasets. But still, 7878 unique results came from this benchmarking, and
another improvement would be negligible at this number.

Analysis of the dataset provided a lot of information. The most important one was the
overall performance expressed in counts that may be seen in figure 5.3. It shows that if the
“distribution” hyperparameter is set to the according distribution of the explained variable, it
outperforms Gaussian distribution in a significant amount of cases (for almost all distributions),
which proves that creating the heuristic is possible.

5.4.2 H1 — Conclusion

As was stated, the first heuristic was more the testing one and was not finished. It ended
after a few trials with the decision trees, whose results had the same value as a random roll with
the dice. Although the initial conditions looked optimistic (figure 5.3), it turned out that the
quality of meta-features is severely low. There was not enough diversity, and the time that would
be required to create the new artificial dataset and especially time for benchmarks to create the
dataset would be too great. For this reason, I moved to the OpenML datasets.

5.5 H2 — The second heuristic

The second attempt for the heuristic creation had much better results on the validation set
but very poor results on the test set. Used meta-feafures are the same (described in 5.2).

H2 — The second heuristic

B Figure 5.3 First heuristic meta-dataset counts. The relative percentage
of how many datasets from the given distribution outperformed models with
Gaussian distribution. A horizontal line is shown at y = 0.5 to show the
proportion boundary of outperformance.

Proportions of outperforming MAE

data_distribution
poisson
negativebinomial
gamma

cauchy

tweedie

laplace

08

06

Proportion

04

02

0.0

Better

5.5.1 H2 — Meta-dataset creation

The most significant change was the move from the artificial data to the real-world datasets
obtained from the OpenML platform, which were initially intended as a test set for the heuristic
created from the artificial data. 832 different datasets were benchmarked (chosen concerning the
possible biases described in 2.4).

The benchmarks were done on the standalone models from the H20 AutoML with their
default parameters, not on H20 AutoML itself. This was intended to create more variability and
see if the rules derived from the tree were more general or not. As described in 3.2, the models
used in H20 AutoML are predefined, with chosen hyperparameters and training order.

Meta-dataset itself was tested in consistent and inconsistent form®. The inconsistent form
had better results. In that form, the dataset had 2727 rows.

5.5.2 H2 — Decision tree

With the built dataset (and split on training, validation, and test parts), decision tree was
constructed. The most considered hyperparameter was class weight, determining the weight for
each class. The testing was done on the validation dataset along with hyperparameter serach
using Bayesian optimization. Since the number of records in each class is not equal (but differs a
lot), the weight ended up accordingly to the proportions (bigger proportion, lower class weight).
Also, class weight for the Gaussian distribution rose because it is desirable to obtain predict
Gaussian rather than the distribution that would end up worse.

The results of the second heuristic on the validation data can be seen in figure 5.4.

5.5.3 H2 — Benchmarks on H20 AutoML

With this heuristic tweaked and cross-validated, it was time to test it on the H20 AutoML
itself — on the test dataset that was kept from the training and tuning all the time. The results
may be seen in the figure 5.5, and they are also not good.

5As was described in 5.3

29

30 Heuristic creation

B Figure 5.4 Both matrices display each class’s relative counts (percentage). The left confusion matrix
is the confusion matrix of the base model. The matrix on the right is permissible — marking prediction
as true if it outperforms Gaussian regardless of whether the value corresponds with the true one.

Decision Tree Permissible Decision Tree

gamma | 029 014 014 029 000 014 0.00 gamma | 043 000 014 029 000 014 0.00

gaussian | 0.04 [MVEEEN 006 000 000 002 004 | gaussian | 0.00 0.00
huber | 0.19 019 000 000 019 0.00 huber | 0.19 0.00
laplace | 0.11 = 039 022 017 000 006 0.06 laplace | 0.06 0.00
negbin | 0.00 000 0.00 negbin | 0.00 0.00

poisson | 0.00 | 038 0.00 poisson | 0.00 0.00
tweedie | 0.00 000 000 tweedie | 000 000 000 000 000
© c = o c c o © c = o c c I
> © = Q g] o] c Q
5 g, = a 2 g, - 2 e

The only improved metric was ERD. Both MAE and RMSE had worse results. This heuristic
could have been used at least for the improvement of the ERD, but that is not that much success
since the rest of the criteria are far more frequent and more assessed in AutoML competitions 2.3.
The ability to generalize from the default models to the AutoML models was not transferred.

B Figure 5.5 The second heuristic results were performed on the test set. The
red dotted line represents the model with the default (Gaussian) distribution. Values
above this value are worse, and values below are better. The value is obtained as
(Distribution value /Gaussian value)

13 MAE 13 RMSE Mean Residual Deviance
1.2
12 ¢ 12 .
10 F -1
11 11
10 = =4 10 |= - 08
06
09 09
L)
08 + 08 0.4
0.7 07 : 0.2
0.6 A 0.6 00

5.5.4 H2 — Additional experiments

Some additional experiments were performed during the creation. Dataset balancing tech-
niques (under-sampling, SMOTE method and Tomek links) were tested. Still, the results on the
validation data not had not significantly improved, so it was not used in the final form.

Also, data was augmented with the artificial data regarding the balance of each class. In
some cases, this outperformed the heuristic on the validation data but not the test data.

For the comparison, meta-dataset was also trained on other, more powerful models. Both

H3 — The final heuristic

Random forest and GBM outperformed the Decision tree, but not that significantly. Also, H20
AutoML was put on those data, but again the improvement was insignificant.

5.6 H3 — The final heuristic

The third heuristic was successful and outperformed the default distribution in all the tracked
criteria.

5.6.1 H3 — Meta-dataset creation

Meta-dataset for the third heuristic was built from the OpenML datasets, but apart from the
second heuristic, the creation was done on the H20 AutoML framework itself. The benchmarks
ran for two weeks since every dataset was tested with every distribution — many of the datasets
failed (because of the low memory of the used benchmark device). H20 AutoML was confined
to using only thirteen base models. Those are the base models described in 3.2, without the grid
search and other tunings — only the pure base models with predefined hyperparameters.

As a result, 798 different datasets were benchmarked, and using an inconsistent explained
variable approach (described in 5.3), the meta-dataset had 1332 rows.

5.6.2 H3 — Decision tree

Four different decision trees (for each of the following criteria — MAE, RMSE, RMSLE and
ERD) were built and tuned. Since explained variable differs by each criterion (if MAE ended up
better, it does not necessarily mean that other metrics were also better), the proportions of each
distribution were different.

Regardless of those proportions, trees with the manual set class weight (which was not bal-
anced) ended up better than the balanced ones. Balancing was set and validated with manual
tweaking, resulting in Poisson distribution to weight 4, gamma distribution to weight 3.5, and
the rest of the distributions with value 3.

B Figure 5.6 Both matrices display each class’s relative counts (percentage) and work the same way as
the matrices in figure 5.4.

Permissible Decision Tree

Decision Tree

gamma 0.00 000 000 007 gamma

gaussian 000 000 OM 0.08 | gaussian

huber 0.00 0.09 0.00 0.00 huber

laplace 027 000 000 000 laplace

negbin 000 025 000 000 negbin

poisson | 013 003 003 006 000 ENEE 000 poisson

tweedie | 0.00 0.00 H 0.00 000 0.00 [k tweedie

gamma
gaussian
huber
laplace
neghbin
poisson
tweedie
gamma
gaussian
huber
laplace
negbin
poisson
tweedie

31

32

Heuristic creation

Figure 5.6 shows the confusion matrices on the validation data. The right matrix shows that
the heuristic provided the correct prediction of the better distribution for almost five distribu-
tions. The Achilles heel is the Gaussian distribution which is correctly predicted only from the
62%, resulting in the rest 38% being worse.

All the additional techniques mentioned in 5.5.4 were also tested but proved again as not
significantly better.

5.6.3 H3 — Results on the H20 AutoML

Since the Meta-dataset was generated with H20 AutoML, it was unnecessary to rerun bench-
marks to see the test results. Instead, a quick comparison, if the chosen distribution outperforms
Gaussian, was sufficient — since the benchmarks were already done from the creation part.

Every one of the four heuristics (determined by criterion) was tested. The best overall results
for all the requirements had a tree built on the MAE criterion. Trees constructed on RMSE and
RMSLE performed worse (even at themselves) but still outperformed Gaussian. And tree based
on ERD ended up as the worst one and is outperformed by Gaussian distribution. I attribute this
to the fact that the training dataset for the ERD was highly imbalanced and that the criterion
targets the quality of fit instead of the prediction quality.

Two evaluation approaches were used to assess the heuristic. The first one is the same
visualization technique as was used for the second heuristic — figure 5.5. The results for the
MAE criterion (which ended up overall best) may be seen in figure 5.7.

B Figure 5.7 The performance of the final heuristic on the H20 AutoML built on the MAE
criterion. The red dotted line represents the model with the default (Gaussian) distribution.
Values above this value are worse, and values below are better. The value is obtained as
(Distribution value /Gaussian value)

MAE RMSE RMSLE Mean residual deviance
1.2 12 1.2 12
1.0 -é 10 = e 1.0 [= e e 1.0 -I: |
08 . 08 08 08
0.6 06 0.6 0.6
)
04 04 - 04 - 04 t

Evaluation with the boxplots is backtested with the statistical test. The differences between
Gaussian and the predicted distribution do not follow the normal (Gaussian) distribution, so the
Wilcoxon signed-rank test [34] was used. The null hypothesis was set as the differences between
the predictions § and true values y are symmetric about zero. The alternative hypothesis was
set as less, meaning that the distribution of the differences is less than a distribution symmetric
about zero.

This test was done for all four followed metrics, resulting in four p-values very close to zero.
This means that the null hypothesis can be rejected and indicates that the alternative hypothesis
is likely true — and, in this case, can be confirmed from the boxplots in 5.7.

Regarding those results, I can say that the performance of H20 AutoML has improved by
0-5% in the four followed metrics.

H3 — The final heuristic

5.6.4 Rule extraction

Since the heuristic is created and represented by the decision tree, the rule extraction is
simple. Rules are extracted from the tree built with the MAE criterion because it performed
the best in all four metrics. All the nodes are recursively visited — firstly, left nodes, then right
nodes. Within this procedure, rules in the form of Python code are generated with indentation
corresponding to the node depth.

1 if y_skewness <= 0.7:

2 if y_mad <= 0.12:

3 if y_sem <= 0.0:

4 if y_std <= 0.0:

5 return "huber"

6 else: # if y_std > 0.0
7 return "gaussian"

8 else: # if y_sem > 0.0

9 # (...)

B Code listing 5.1 Example of the extracted rules

Extracted rules are long, even with only eleven features, consisting of 685 rows. It may be
seen that some rules are futile — for instance, in the code shown in code 5.1, the y_sem (Standard
error of the mean) can not be negative (by its definition), and the likelihood that it would equals
to zero is also almost zero. For greater effectiveness and clarity, rules should be pruned manually.
But since this is only a prototype, there is no reason to do that for the thesis.

5.6.5 Conclusion

The results of the third heuristic are positive, meaning the appropriate hyperparameter value
can improve performance. My computer limited me; hence not all the datasets could be processed
(due to size, etc...), and H20 AutoML was strictly confined by the number of models. For
those reasons, the creation of the heuristic should be repeated by H20, using more powerful
computational devices and more datasets — with the code from the third heuristic. After the
creation, it should be manually reviewed to improve effectiveness and remove futile or very
specific rules.

33

34

Heuristic creation

Chapter 6
Implementation to H20 AutoML

This chapter describes the prototype implementation of the heuristic to H20 AutoML using
the Python interface of the framework. This is followed by the functionality test with the same
example as in the previous chapter 3.3, but using the distribution proposed by the heuristic.

6.1 Implementation

The interface is Pythonic, but in H20 AutoML, code is translated to the language similar to
Lisp'. Then, those expressions are calculated parallelly on the backend, using MapReduce.

Automated distribution selection is invoked if the distribution hyperparameter is set as esti-
mate. The estimation uses the train method. If, for some reason, estimation fails, the default
Gaussian value is used (for regression tasks), so this solution is safe and, in the worst case,
changes nothing.

The only affected file is h2o0/automl/_estimator.py. To the train method, after y validation
(which is the first thing that is being done) is put a small piece of code referring to the new file
_distribution.py (code 6.1). There is sent the explained variable in the form of the H20Frame
(which is a similar structure to the Pandas DataFrame).

1 # (...) y validation

3 if self.distribution == "estimate":
4 self .distribution = distribution_heuristic(self.training_framel[y])
¢« # (...) rest of the train function

B Code listing 6.1 Integration to the existing function train.

This file contains the heuristic in the form of IF... ELSE rules generated in the previous chapter
and a function that creates properties of the y (5.2.1). This method returns the estimated
distribution or, in case of a failure, the default value (which is Gaussian) (code 6.2). Note that
all the meta-features calculations are being done only using H20 package, and in one case, using
native Python package math. No external dependencies are required.

1 from math import sqrt

w N

1 def distribution_heuristic(y):

TH20 refers to it as Rapid expression.

35

36

Implementation to H20 AutoML

quantiles = y.quantile(prob=[.25, .50,
y_ql = quantiles[0, 1]

y_median = quantiles[1, 1]

y_93 = quantiles[2, 1]

IQR = y_q3 - y_ql

outliers = y[(y < (y_ql - 5 * IQR)) | (y >
y_outliers_ratio = len(outliers) / len(y)
y_std = y.sd () [0]

y_mean = y.mean () [0]
y_variation_coefficient =
y_max = y.max()

y_min = y.min ()

y_std / y_mean

y_kurtosis = y.kurtosis () [0]

y_skewness = y.skewness () [0]

y_mad = (abs(y - y_median)).median () [0]
y_sem = y_std / sqrt(len(y))
y_only_integers =
try:

.751)

(y_q3 + 5 % IQR))]

1 if (y.dtype == "int") else 0

return estimate_distribution(y_outliers_ratio,

y_variation_coefficient,

y_skewness, y_mad, y_sem,

except ValueError:
return "gaussian"

y_std, y_mean,
y_only_integers)

B Code listing 6.2 Implementation of obtaining meta-features.

made of generated rules; part of it is in the code 5.1.

6.2 Testing

y_max,

y_min, y_kurtosis,

Function estimate_distribution is

An example of H20 AutoML was shown in 3.3. I replicate the run, but instead of setting

distribution parameter as auto, I set it as estimate. Based

on the properties of the explained

variable, the heuristic proposed a Gamma distribution with that is model trained.
Referring to the leaderboard with the Gaussian distribution 3.1, the value of RMSLE was
approximately 0.407. The RMSLE of the H20 AutoML with the implemented heuristic is 0.399,

so there is a small improvement.

B Figure 6.1 Leaderboard of the best models with Gamma distribution, ordered by RMSLE. Ordering
can be changed. Column model id determines the used model; the rest are metrics, described in 1.1.

model id rmse mse
0 XGBoost_3_AutoML_23_20230508_83830 4783.374899 2.288068e+07
1 DRF_1_AutoML_23_20230508_83830 4798.550557 2.302609e+07

2 XGBoost_grid_1_AutoML_23 20230508 83830_model 1 4818.818618 2.322101e+07

3 XGBoost_2_AutoML_23 20230508 83830 4893.508758 2.394643e+07
4 XGBoost_1_AutoML_23 20230508 _83830 4925.729021 2.426281e+07
5 GBM_4_AutoML_23 20230508 83830 5156.646042 2.659100e+07

A far bigger improvement is in the ERD. The value for

mae rmsle mean_residual_deviance
2484764766 0.399417 2.043995e+01
2758.264493 0438675 2.302609e+07
2694.618675 0.395664 2.040512e+01

2615.519096 0410890 2.044658e+01

2711.679625 0413697 2.044538e+01

3030.291475 0448196 2.040560e+01

the Gaussian model was 2.01 - 107

while for the Gamma model, the value is 2.04 - 10!, meaning that the model fits the data better

by a tremendous difference.?

2This does not necessarily implicate the improved prediction performance of the model.

Conclusion

This thesis aimed to propose and create a heuristic for the automated hyperparameter se-
lection for the H20 AutoML framework that would improve overall performance. This aim was
fulfilled, and a heuristic in the form of IF...ELSE rules was created, using meta-learning and
meta-features based on the benchmarks and tests.

This proposed heuristic improves the performance in four metrics — MAE, RMSE, RMSLE
and ERD making H20 AutoML more accurate in the predictions for a significant proportion of
possible use-cases.

For future work and usage, benchmarks should be done again, using a more powerful compu-
tational device that would allow larger datasets to increase the variety in the creation, making
the heuristic more robust and general.

Also, rules created by the heuristic should be manually reviewed and pruned to achieve greater
clarity and effectiveness.

The thesis also showed other possible approaches to creation, showing why they are unsuit-
able. Anyone who would follow up on this thesis has a solid baseline.

37

38

Conclusion

10.

11.

Bibliography

Performance and Prediction — H20 3.40.0.3 documentation [online]. [visited on 2023-
04-22]. Awvailable from: https : //docs . h20 . ai /h20/ latest - stable /h20 - docs /
performance-and-prediction.html.

Normal Distribution. In: The Concise Encyclopedia of Statistics [online]. New York, NY:
Springer, 2008, pp. 378-380 [visited on 2023-04-13]. 1SBN 978-0-387-32833-1. Available from
DOI: 10.1007/978-0-387-32833-1_285.

Poisson Distribution. In: The Concise Encyclopedia of Statistics [online]. New York, NY:
Springer, 2008, pp. 425-427 [visited on 2023-04-13]. ISBN 978-0-387-32833-1. Available from
DOI: 10.1007/978-0-387-32833-1_321.

Gamma Distribution. In: The Concise Encyclopedia of Statistics [online]. New York, NY:
Springer, 2008, pp. 215-216 [visited on 2023-04-13]. 1SBN 978-0-387-32833-1. Available from
DOI: 10.1007/978-0-387-32833-1_157.

Negative Binomial Distribution. In: The Concise Encyclopedia of Statistics [online]. New
York, NY: Springer, 2008, pp. 369-370 [visited on 2023-04-13]. 1SBN 978-0-387-32833-1.
Available from DOI: 10.1007/978-0-387-32833-1_277.

Laplace Distribution. In: The Concise Encyclopedia of Statistics [online]. New York, NY:
Springer, 2008, pp. 294-295 [visited on 2023-04-13]. I1SBN 978-0-387-32833-1. Available from
DOI: 10.1007/978-0-387-32833-1_219.

DUNN, Peter K; SMYTH, Gordon K. Tweedie family densities: methods of evaluation

[online]. 2001, pp. 2—6 [visited on 2023-04-02]. Available from: https://www.researchgate.
net/publication/237533744_Tweedie_Family_Densities_Methods_of_Evaluation.

LEDELL, Erin; POIRIER, Sebastien. H20 AutoML: Scalable Automatic Machine Learning.
7th ICML Workshop on Automated Machine Learning (AutoML) [online]. 2020 [visited on
2023-04-13]. Available from: https://www.automl.org/wp-content/uploads/2020/07/
AutoML_2020_paper_61.pdf.

Cauchy Distribution. In: The Concise Encyclopedia of Statistics [online]. New York, NY:
Springer, 2008, pp. 60-60 [visited on 2023-04-13]. 1SBN 978-0-387-32833-1. Available from
DOI: 10.1007/978-0-387-32833-1_46.

WIRTH, Riudiger; HIPP, Jochen. CRISP-DM: Towards a Standard Process Model for Data
Mining [online]. [N.d.] [visited on 2023-04-13]. Available from: http://www.cs.unibo.it/
~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf.

KURGAN, Lukasz A.; MUSILEK, Petr. A survey of Knowledge Discovery and Data Mining
process models. The Knowledge Engineering Review [online]. 2006, vol. 21, no. 1, pp. 1-
24 [visited on 2023-02-22]. 1SSN 0269-8889, 1SSN 1469-8005. Available from DoOI: 10.1017/
S50269888906000737.

39

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/performance-and-prediction.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/performance-and-prediction.html
https://doi.org/10.1007/978-0-387-32833-1_285
https://doi.org/10.1007/978-0-387-32833-1_321
https://doi.org/10.1007/978-0-387-32833-1_157
https://doi.org/10.1007/978-0-387-32833-1_277
https://doi.org/10.1007/978-0-387-32833-1_219
https://www.researchgate.net/publication/237533744_Tweedie_Family_Densities_Methods_of_Evaluation
https://www.researchgate.net/publication/237533744_Tweedie_Family_Densities_Methods_of_Evaluation
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://doi.org/10.1007/978-0-387-32833-1_46
http://www.cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf
http://www.cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf
https://doi.org/10.1017/S0269888906000737
https://doi.org/10.1017/S0269888906000737

40

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Bibliography

GIJSBERS, Pieter; BUENO, Marcos L. P.; COORS, Stefan; LEDELL, Erin; POIRIER,
Sébastien; THOMAS, Janek; BISCHL, Bernd; VANSCHOREN, Joaquin. AMLB: an Au-
toML Benchmark [online]. arXiv, 2022 [visited on 2023-04-13]. No. arXiv:2207.12560. Avail-
able from DOI: 10.48550/arXiv.2207.12560.

PEDRECOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.;
GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VAN-
DERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCH-
ESNAY, E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search [online]. 2011, vol. 12, pp. 28252830 [visited on 2023-04-13]. Available from: https:
//scikit-learn.org.

FEURER, Matthias; EGGENSPERGER, Katharina; FALKNER, Stefan; LINDAUER, Mar-
ius; HUTTER, Frank. Auto-sklearn 2.0: The next generation. arXiv preprint arXiv:2007.04074
[online]. 2020, vol. 24 [visited on 2023-04-13]. Available from: https://www.researchgate.
net/publication/342801746_Auto-Sklearn_20_The_Next_Generation.

WANG, Chi; WU, Qingyun; WEIMER, Markus; ZHU, Erkang. FLAML: A fast and lightweight
automl library. Proceedings of Machine Learning and Systems [online]. 2021, vol. 3, pp. 434—
447 [visited on 2023-04-13]. Available from: https://arxiv.org/pdf/1911.04706.pdf.

ERICKSON, Nick; MUELLER, Jonas; SHIRKOV, Alexander; ZHANG, Hang; LARROY,
Pedro; LI, Mu; SMOLA, Alexander. Autogluon-tabular: Robust and accurate automl for
structured data. arXiv preprint arXiv:2008.06505 [online]. 2020 [visited on 2023-04-13].
Available from: https://arxiv.org/pdf/2003.06505.pdf.

VANSCHOREN, Joaquin; RIJN, Jan N. van; BISCHL, Bernd; TORGO, Luis. OpenML:
networked science in machine learning. SIGKDD Ezplorations [online]. 2013, vol. 15, no. 2,
pp. 4960 [visited on 2023-03-11]. Available from DOI: 10.1145/2641190.2641198.

DEMS‘;AR, Janez. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine learning research [online]. 2006, vol. 7, pp. 1-30 [visited on 2023-04-01]. Available
from: https://www. jmlr.org/papers/volume7/demsar06a/demsar06a.pdf.

FEURER, Matthias; RIJN, Jan N. van; KADRA, Arlind; GIJSBERS, Pieter; MALLIK,
Neeratyoy; RAVI, Sahithya; MUELLER, Andreas; VANSCHOREN, Joaquin; HUTTER,
Frank. OpenML-Python: an extensible Python API for OpenML. arXiv [online]. 2020,
vol. 1911.02490 [visited on 2023-03-11]. Available from: https://arxiv.org/pdf/1911.
02490. pd.

BRAZDIL, Pavel; RIJN, Jan N van; SOARES, Carlos; VANSCHOREN, Joaquin. Met-
alearning: applications to automated machine learning and data mining. Springer Nature,
2022. 1SBN 978-3-030-67024-5.

BREIMAN, Leo. Random Forests. Machine Learning [online]. 2001, vol. 45, no. 1, pp. 5-32
[visited on 2023-03-08]. 1SSN 1573-0565. Available from DOI: 10.1023/A:1010933404324.

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. Journal of the
Royal Statistical Society: Series A (General) [online]. 1972, vol. 135, no. 3, pp. 370-384
[visited on 2023-03-10]. 1SSN 2397-2327. Available from DOI: 10.2307/2344614.

NYKODYM, Tomas; KRALJEVIC, Tom; WANG, Amy; WONG, Wendy. Generalized lin-
ear modeling with h2o. Published by H20. ai Inc [online]. 2016 [visited on 2023-04-23].
Available from: https://docs.h20.ai/h20/latest-stable/h20~-docs/booklets/
GLMBooklet.pdf.

FRIEDMAN, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics [online]. 2001, vol. 29, no. 5, pp. 1189-1232 [visited on 2023-03-18].
1SSN 0090-5364. Available from: https://www.jstor.org/stable/2699986.

https://doi.org/10.48550/arXiv.2207.12560
https://scikit-learn.org
https://scikit-learn.org
https://www.researchgate.net/publication/342801746_Auto-Sklearn_20_The_Next_Generation
https://www.researchgate.net/publication/342801746_Auto-Sklearn_20_The_Next_Generation
https://arxiv.org/pdf/1911.04706.pdf
https://arxiv.org/pdf/2003.06505.pdf
https://doi.org/10.1145/2641190.2641198
https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
https://arxiv.org/pdf/1911.02490.pdf
https://arxiv.org/pdf/1911.02490.pdf
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/2344614
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GLMBooklet.pdf
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GLMBooklet.pdf
https://www.jstor.org/stable/2699986

Bibliography 41

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

CHEN, Tianqgi; GUESTRIN, Carlos. XGBoost: A Scalable Tree Boosting System. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining [online]. 2016, pp. 785-794 [visited on 2023-04-23]. Available from DOTI:
10.1145/2939672.2939785.

CANDEL, Arno; PARMAR, Viraj; LEDELL, Erin; ARORA, Anisha. Deep learning with
H20. H20. ai Inc [online]. 2016, pp. 1-21 [visited on 2023-04-23]. Available from: https:
//docs.h20.ai/h20/latest-stable/h20-docs/booklets/DeepLearningBooklet.pdf.

LAAN, Mark J. van der; POLLEY, Eric C.; HUBBARD, Alan E. Super Learner. Statistical
Applications in Genetics and Molecular Biology [online]. 2007, vol. 6, no. 1 [visited on 2023-
04—01]. ISSN 1544-6115. Available from DOI: 10.2202/1544-6115.1309.

Distribution — H20 3.40.0.8 documentation [online]. [visited on 2023-04-22]. Available
from: https://docs.h20.ai/h20/latest-stable/h20-docs/data-science/algo-
params/distribution.html.

HUBER, Peter J. Robust Estimation of a Location Parameter. In: KOTZ, Samuel; JOHN-
SON, Norman L. (eds.). Breakthroughs in Statistics: Methodology and Distribution [online].
New York, NY: Springer, 1992, pp. 492-518 [visited on 2023-04-13]. Springer Series in
Statistics. ISBN 978-1-4612-4380-9. Available from DOI: 10.1007/978-1-4612-4380-9_35.

Medical Cost Personal Datasets [online]. [visited on 2023-05-08]. Available from: https :
//www.kaggle.com/datasets/mirichoi0218/insurance.

VIRTANEN, Pauli; GOMMERS, Ralf; OLIPHANT, Travis E.; HABERLAND, Matt; REDDY,
Tyler; COURNAPEAU, David; BUROVSKI, Evgeni; PETERSON, Pearu; WECKESSER,
Warren; BRIGHT, Jonathan; VAN DER WALT, Stéfan J.; BRETT, Matthew; WILSON,
Joshua; MILLMAN, K. Jarrod; MAYOROV, Nikolay; NELSON, Andrew R. J.; JONES,
Eric; KERN, Robert; LARSON, Eric; CAREY, C J; POLAT, Ilhan; FENG, Yu; MOORE,
Eric W.; VANDERPLAS, Jake; LAXALDE, Denis; PERKTOLD, Josef; CIMRMAN, Robert;
HENRIKSEN, Tan; QUINTERO, E. A.; HARRIS, Charles R.; ARCHIBALD, Anne M.;
RIBEIRO, Anténio H.; PEDREGOSA, Fabian; VAN MULBREGT, Paul; SCIPY 1.0 CON-
TRIBUTORS. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na-
ture Methods [online]. 2020, vol. 17, pp. 261-272 [visited on 2023-04-07]. Available from DOI:
10.1038/541592-019-0686-2.

BRAZDIL, Pavel; RIJN, Jan N van; SOARES, Carlos; VANSCHOREN, Joaquin. Dataset
Characteristics (Metafeatures). In: Metalearning: applications to automated machine learn-
ing and data mining. Springer Nature, 2022, pp. 53-75. 1SBN 978-3-030-67024-5.

KALOUSIS, Alexandros; THEOHARIS, Theoharis. NOEMON: An intelligent assistant for
classifier selection [online]. 1999 [visited on 2023-04-08]. Available from: https://www .
researchgate.net/publication/2239411_ NOEMON_An_Intelligent_Assistant_for_
Classifier_Selection.

WOOLSON, R. F. Wilcoxon Signed-Rank Test. In: Wiley Encyclopedia of Clinical Trials
[online]. John Wiley & Sons, Ltd, 2008, pp. 1-3 [visited on 2023-04-22]. 1SBN 978-0-471-
46242-2. Available from DOI: 10.1002/9780471462422 .e0ct979.

https://doi.org/10.1145/2939672.2939785
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf
https://doi.org/10.2202/1544-6115.1309
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/distribution.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/distribution.html
https://doi.org/10.1007/978-1-4612-4380-9_35
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://doi.org/10.1038/s41592-019-0686-2
https://www.researchgate.net/publication/2239411_NOEMON_An_Intelligent_Assistant_for_Classifier_Selection
https://www.researchgate.net/publication/2239411_NOEMON_An_Intelligent_Assistant_for_Classifier_Selection
https://www.researchgate.net/publication/2239411_NOEMON_An_Intelligent_Assistant_for_Classifier_Selection
https://doi.org/10.1002/9780471462422.eoct979

42

Bibliography

List of files in attachment

README .IMQ . . oottt it et it it it i e et i e instructions
I Lo o3 =5 e 1 = AR to create Docker image
| reqUITemMENntS . TR oottt ettt e required packages
| AutoML example

H20 AutoML example.ipynb.......... Jupyter notebook with example of H20 AutoML
B 0TSV B ot oL o] YN o < data source for example
, Data generation
data-generation.ipynb......... Jupyter notebook containing artificial data generation
CEN PATAMS . COV 4t vttt ettt e e eneeeeneenennennenns meta-data from generation
BENETALOTS . PY e ettt eineeeenneeenn. generating functions for each distribution
| Final heuristic
1 - AML dataset creation.ipynb.......... Jupyter notebook with dataset generation
2 - Heuristic.ipynb........ Jupyter notebook with creation of the proposed heuristic
aml dataset.CSV....ovvereirnnneennnnn. dataset created in the first Jupyter notebook
dataset 1dS.CSV ...vvuinnrieinnnnnnnnn ids of the regression tasks available in OpenML
failed datasets.cSv................. ids of the failed datasets from the first notebook
heuristic.py.......ccovvuuun... proposed heuristic exported from the second notebook
, Implementation
_distribution.py ..ot implementation — see instructions
eSTImMAt O PV ettt e implementation — see instructions
| other

tFirst heuristic source files to replicate the creation of the first heuristic

Second heuristic source files to replicate the creation of the second heuristic
| theSisS.ZIp ..uiiiii Source TEX code for thesis

43

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Statistical distributions and metrics
	Evaluation metrics
	Mean Absolute Error (MAE)
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)
	Root Mean Squared Logarithmic Error (RMSLE)
	Mean Residual Deviance

	Statistical distributions
	Gaussian
	Poisson
	Gamma
	Negative binomial
	Laplace
	Tweedie
	Cauchy
	Distributions summary

	Automated machine learning
	Motivation
	Available AutoML frameworks
	AutoML frameworks benchmark
	OpenML
	Meta-learning

	H2O AutoML
	H2O AutoML
	H2O AutoML models
	Distribution hyperparameter
	Distribution & Loss function
	Distribution & GLM

	H2O AutoML process
	H2O AutoML example

	Data generation
	Introduction
	Generating artificial data
	Train set
	Explained variable
	Noise
	Modality
	Link functions
	Distributions
	Random variates
	Example

	Conclusion

	Heuristic creation
	Introduction
	Meta-features
	Chosen features
	Other tested features

	Dataset creation and heuristic evaluation
	H1 – The first heuristic
	H1 – Meta-dataset creation
	H1 – Conclusion

	H2 – The second heuristic
	H2 – Meta-dataset creation
	H2 – Decision tree
	H2 – Benchmarks on H2O AutoML
	H2 – Additional experiments

	H3 – The final heuristic
	H3 – Meta-dataset creation
	H3 – Decision tree
	H3 – Results on the H2O AutoML
	Rule extraction
	Conclusion

	Implementation to H2O AutoML
	Implementation
	Testing

	Conclusion
	List of files in attachment

