
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Analysis of Alpine Linux packages using a graph database

Jakub Meinlschmidt

Ing. Jakub Jirůtka

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The aim of this thesis is to provide package maintainers and users of Alpine Linux with a

tool to query information about packages (their metadata, relationships…) and to explore

the feasibility and benefits of using a graph database for this purpose.

1. Analyse Alpine Linux package repositories and package formats. Focus on the

contained metadata and relationships.

2. Research the state of the art in open source graph databases, graph modelling and the

use of graph databases in package distribution. Select the most appropriate database for

this task.

3. Design a graph data model to effectively store the metadata and relationships of

packages in the Alpine Linux repositories in the chosen graph database. Consider the

intended use of the database.

4. Design and develop a proof-of-concept implementation of the tool to collect and

import said data into the database, and to periodically update the database with new

data.

5. Demonstrate the capabilities of the implemented data model and database query

language on a set of queries inspired by the practical needs of package maintainers and

users. Compare with existing tools available in Alpine Linux.

6. Discuss the strengths, weaknesses and opportunities of graph databases for this

domain, especially in comparison with relational databases and SQL. Discuss the

benefits of this work for the Alpine Linux community.

Electronically approved by Ing. Michal Valenta, Ph.D. on 17 February 2023 in Prague.

Bachelor’s thesis

Analysis of Alpine Linux packages using a
graph database

Jakub Meinlschmidt

Department of Software Engineering
Supervisor: Ing. Jakub Jirůtka

May 11, 2023

Acknowledgements

I would like to thank my supervisor Ing. Jakub Jirůtka, for his guidance and
valuable observations. Thanks for the expert advice belongs to Ing. Štěpán
Plachý, Mgr. Vu Tung Anh and Hana Turková, DiS. for spelling corrections.
In special thanks, I would like to mention Ing. Jan Bittner for the practical
application of the methodology of enhancing the level of cognitive well-being
(the so-called outdoor walks). I would also like to thank all the others who
supported me on this journey.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Jakub Meinlschmidt. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Meinlschmidt, Jakub. Analysis of Alpine Linux packages using a graph database.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2023. Also available from: 〈https://github.com/jmeinlschmidt/
linux-pkgs-in-graph-db〉.

https://github.com/jmeinlschmidt/linux-pkgs-in-graph-db
https://github.com/jmeinlschmidt/linux-pkgs-in-graph-db

Abstract

This thesis aims to provide package maintainers and users of Alpine Linux
with a tool to query information about packages and explore the feasibility
and benefits of using a graph database for this purpose. As part of this work,
a proof-of-concept tool that represents package metadata and relationships
between them in the Neo4j graph database, is successfully implemented, pro-
viding new possibilities for their analysis. It also addresses the differences
in modelling this data in traditional relational databases versus the chosen
NoSQL database. Finally, this thesis provides recommendations on how to
make this tool accessible to the Alpine Linux community.

Keywords package management, Alpine Linux, graph databases, NoSQL,
Neo4j

vii

Abstrakt

Cílem této práce je poskytnout správcům balíčků a uživatelům systému Al-
pine Linux nástroj pro vyhledávání informací o balíčcích a prozkoumat mož-
nosti a výhody použití grafové databáze pro tento účel. V rámci této práce
je úspěšně implementován proof-of-concept nástroje, který reprezentuje meta-
data balíčků a vztahy mezi nimi v grafové databázi Neo4j, a poskytuje tak nové
možnosti pro jejich analýzu. Věnuje se také rozdílům v modelování těchto dat
v tradičních relačních databázích oproti zvolené NoSQL databázi. Na závěr
tato práce poskytuje doporučení, jak tento nástroj zpřístupnit komunitě Al-
pine Linux.

Klíčová slova správa balíčků, Alpine Linux, grafové databáze, NoSQL, Neo4j

ix

Contents

Introduction 1

1 State of the Art 3
1.1 Package Management . 3
1.2 Alpine Linux . 6
1.3 Graph theory . 15
1.4 Databases . 17

2 Analysis and Design 23
2.1 Requirements Analysis . 23
2.2 Data Modeling . 25
2.3 Dataset Estimates . 32
2.4 Graph DBMS Selection . 34

3 Implementation of Proof-of-Concept 37
3.1 Architecture . 37
3.2 Design Principles . 39
3.3 Technologies . 40
3.4 Background . 41
3.5 Commands . 52

4 Evaluation 53
4.1 Comparison with aports-turbo 54
4.2 Community Questionnaire . 54
4.3 Dataset size . 54

Conclusion 57

Bibliography 59

xi

A Acronyms 65

B Attachment Contents 67

C Queries for aports-turbo 69
C.1 Search . 69
C.2 Dependencies . 70

D Queries Evaluation 71
D.1 Queries for Package Maintainers 71
D.2 Queries for Consistency Checks 75
D.3 Queries for Users . 77

xii

List of Figures

1.1 aports-turbo search screen. 12
1.2 aports-turbo package detail screen. 13
1.3 Property graph example (including labels and properties). 16
1.4 Example of an adjacency list. 17
1.5 Graph processing using a table as an index to traverse between

nodes. Searching for characters disliked by Kevin Flynn requires
searching through Dislikes table in O(log n). 19

1.6 Graph processing using index-free adjacency to traverse between
nodes. Searching for characters disliked by Kevin Flynn requires
searching only through neighbouring nodes in O(1). 19

1.7 Neo4j Browser tool interface. 21

2.1 E-R diagram of APKBUILD and Package. 26
2.2 E-R diagram of APKBUILD, Repository and Package. 26
2.3 E-R diagram of APKBUILD, Architecture and Package. 27
2.4 E-R diagram of Package and Provider. 27
2.5 E-R diagram of APKBUILD and Package together with Depen-

dency satisfied by Provider. 28
2.6 E-R diagram of APKBUILD and Package together with Dependency. 28
2.7 E-R diagram of Package and File. 29
2.8 Graph diagram of Package and File. 30
2.9 Diagram of the relationship between Package and its previous ver-

sions. 31

3.1 The Clean Architecture [46]. 38
3.2 Architecture of the application. 39
3.3 Dependency subgraph diagram from Neo4j browser. Circles repre-

sent nodes. Yellow – packages, green – dependency, pink – provider. 46
3.4 Dependency satisfaction between git and libcurl packages. 47

xiii

3.5 Dependency tree of git package version 2.38.5-r0 in v3.17 according
to the proposed tool. 49

3.6 Dependency /bin/sh being satisfied by packages busybox, dash and
yash. 50

xiv

List of Tables

2.1 Functional requirements . 24
2.2 Non-functional requirements. Computation for NR5 is performed

in Section 2.3. 24
2.3 Comparison of query languages for graph DBMS. Performed on

April 15th 2023. 34
2.4 Comparison of graph DBMS. Performed on April 15th 2023. GitHub

star numbers are approximate. Type is according to [41]. 35

4.1 Comparison of datasets for single repositories. Performed on May
5th 2023. 55

4.2 Comparison of datasets for combined architectures or repositories.
Performed on May 5th 2023. 55

4.3 Comparison of shared nodes for combined architectures. Performed
on May 5th 2023. 55

xv

List of Source Codes

1.1 Example of dependency properties in APKBUILD. 10
1.2 Example of Cypher query that returns a list of the ages of

characters disliked by Kevin Flynn. 22
1.3 Example of Gremlin query that returns a list of the ages of

characters disliked by Kevin Flynn. 22
2.1 Example of architectures property in aports/main/gnu-efi/AP-

KBUILD. [44] . 27
3.1 Example of a command to run the application. 42
3.2 Example of a Repository class. 42
3.3 Sample of a use case implementation (adjusted). 43
3.4 Mapper from Entity to DTO Sample Sample of a mapper from

an Entity to DTO (adjusted). 44
3.5 FileDTO Sample. 45
3.6 Testing Parser class used for mocking (adjusted). 45
3.7 Example of query for simplifying intermediate nodes by using

an auxiliary relationship. 48
3.8 Example of query for obtaining a dependency tree of the given

package. 48
3.9 Dependency tree of git package version 2.38.5-r0 in v3.17 ac-

cording to apk-tools. 50
3.10 Traversing dependency tree using SQL recursive query. 51
C.1 Query source code for package search in SQL [17]. 69
C.2 Query code for package search in Cypher. 69
C.3 Query source code for dependencies search [17]. 70
C.4 Query source code for dependencies search in Cypher. 70

xvii

Introduction

Alpine Linux, known for its lightweight nature and security-focused design,
has gained significant popularity in the realm of Linux distributions. With its
minimalist approach, Alpine Linux has become a preferred choice for various
use cases, ranging from embedded systems to containerized environments.
As Alpine Linux is constantly evolving to meet the diverse user needs, efficient
package management1 becomes crucial for maintaining a stable and reliable
system.

Package management plays a vital role in the lifecycle of any Linux distri-
bution. The availability of accurate and up-to-date information about pack-
ages is essential for both package maintainers and users. Package maintainers
need to ensure the integrity and quality of packages, while users rely on this
information to make informed decisions regarding the software components
they include in their systems.

With the ever-growing complexity of software dependencies and the need
for efficient information retrieval, it becomes imperative to have robust tools
that facilitate package querying and analysis. This thesis focuses on addressing
these challenges within the context of Alpine Linux, aiming to provide package
maintainers and users with a tool that enables comprehensive information
retrieval and analysis of packages

The existing package management system in Alpine Linux lacks adequate
tools to efficiently explore package metadata and their relationships. This lim-
itation prevents users and maintainers from gaining valuable insights into the
package ecosystem, potentially leading to inefficiencies in software develop-
ment processes.

1In Linux terminology, a package refers to an archive containing computer software or
a library.

1

Introduction

To overcome these limitations, this thesis explores the feasibility and ben-
efits of employing graph databases as a solution. Graph databases, built upon
graph theory principles, offer a powerful and flexible approach for representing
complex relationships between entities. By leveraging the graph databases,
the thesis seeks to provide a proof-of-concept tool that represents package
metadata and their relationships in a structured manner. It is important to
note that none of the popular Linux distributions currently provide their users
with tools based on a graph database. However, in 2018, Preining partially
addressed this area in the context of Debian Linux on his blog [1].

This thesis begins by describing the problem of package management in
Alpine Linux, emphasizing the need for a more comprehensive and efficient in-
formation retrieval system. It then dives into graph theory and its application
to convert the package domain into a property graph structure. Various graph
database management systems are evaluated based on the requirements and
the graph model created, leading to the selection of Neo4j as the most suitable
solution for this purpose.

Building upon the chosen graph database, a proof-of-concept tool is devel-
oped, thereby allowing advanced querying and analysis capabilities. The per-
formance and simplicity advantages of the graph database approach over tra-
ditional relational databases are demonstrated, providing a compelling case
for its adoption in the Alpine Linux ecosystem.

Overall, this thesis aims to bridge the gap in package querying and analysis
within Alpine Linux by harnessing the power of graph databases, offering
package maintainers and users a valuable tool to enhance their understanding
and management of the package ecosystem.

2

Chapter 1
State of the Art

The purpose of this chapter is to provide a comprehensive theoretical under-
standing of package management, Alpine Linux, and the operational mech-
anisms of package management within Alpine Linux, along with the avail-
able solutions. Besides, this chapter introduces graph theory, including rel-
evant terminology and concepts. Finally, the chapter concludes by offering
an overview of databases, with a particular focus on graph databases.

It also outlines the area of relational databases but it is not the primary
purpose of this chapter. A closer connection between these areas is explored
in Chapter 2.

1.1 Package Management

1.1.1 Motivation

One established way for users to install software or libraries in open-source
Linux distributions is downloading the source code of the desired software and
then compiling it into an executable form on their device.

Despite the fact that initially this method may seem universal and func-
tional, it comes with various issues. One of the primary challenges arises
when the installed software requires another program or library to function
properly. Such required software is called a dependency, and it is the user’s re-
sponsibility to install these dependencies before installing the desired software
similarly. Notably, these dependencies can repeat transitively, and different
programs may require different versions of the same dependency, leading to de-
pendency conflicts.

Apart from dependency issues, the process of manual compilation can be
time-consuming, with some compilations taking not only minutes but also sev-
eral hours, and their successful completion is not always guaranteed. To sim-
plify the above-described software installation process, a system called package
management is leveraged.

3

1. State of the Art

Package management refers to a set of tools and methods for manag-
ing computer programs. [2] This includes their installation and automated
dependency resolution required for installation, upgrading, configuring, and
removal.

1.1.2 Package managers

Package management is implemented through a tool called a package manager.
[2] It is possible for a package management system to support multiple package
managers. While package managers are now a widespread feature of many
operating systems, this thesis focuses on the open-source Linux distribution
Alpine Linux. It does not describe proprietary package managers such as
the Apple App Store or Steam2.

Another widely used category of package managers, which is not addressed
in this work, is application-level package managers. These package managers
are typically specific to particular programming languages. Notable examples
include npm, Maven, pip, RubyGems, and CTAN3.

From the perspective of operating systems, two types of package managers
can be distinguished [3]:

1. Source code-based,

2. Binary.

The first type, source code-based package managers, functions on a similar
principle to that described in Section 1.1.1. The package manager automates
dependency resolution and is responsible for compiling the source code on
the target device. Compiling on the target device can provide better perfor-
mance and flexibility by allowing the software to be built with custom compi-
lation options. However, the compilation of packages from source is a complex
task with high requirements in terms of time and system resources which is
one of the negative aspects that have a negative impact on user friendliness.
Notable source code-based package managers are Ports (FreeBSD) or Portage
(Gentoo). Some, such as Homebrew (used in macOS) or Nix (NixOS), offer
both Source-code and Binary approaches.

However, the most widely used package managers install software from
distribution packages in binary form, compiled for the target CPU archi-
tecture and packaged on the infrastructure of a particular (Linux) distri-
bution. This method is particularly popular because of its fast installation
time, greater stability and predictability. The most notable examples include
apk-tools (used in Alpine Linux and OpenWrt), dpkg (Ubuntu), and Pacman
(Arch Linux). Software distributed within package managers is referred to as
a package.

2Gaming package manager developed by Valve
3Package manager for TeX

4

1.1. Package Management

1.1.3 Package

A package is an archive file containing computer programs or libraries to be
copied to the system and other metadata4. It also contains install scripts
required for its installation by a package manager. [2] The format of this file
typically varies depending on the package manager used.

From the perspective of Linux distribution, packages are its fundamen-
tal building blocks. The role of a Linux distribution is integrative and in-
volves orchestrating these packages into a functional whole. Usually, authors
of these packages are not the authors of the software itself but instead contrib-
utors to the particular Linux distribution. They also play a role of a reviewer.
As a result, the Linux distribution takes over some responsibility for the con-
tent it distributes via packages. However, this responsibility is typically not
legally grounded.

In contrast to BSD, Linux distributions also perform system-wide updates
through the package manager. It is because even the Linux kernel itself is
distributed as a separate package.

1.1.4 Dependency

Package dependencies are requirements that must be met for a package to
function properly. Dependency issues, including problems and conflicts reso-
lution, have already been discussed in the previous section.

Another perspective on the significance of dependencies lies in the com-
plexity of the code base. As the number of dependencies in software increases,
so does its complexity. This complexity is accompanied by a higher likelihood
of errors and an expanding attack surface. [4]

According to Kernighan [5]: “Controlling complexity is the essence of com-
puter programming.”.

1.1.5 Repository

A repository is a group of packages linked by a specific attribute. [6] To ac-
cess these repositories, users need to specify them in the package manager’s
configuration. Some package managers allow users to access a broader range
of packages and versions from various sources. [7] Managing multiple reposi-
tories in package management systems can pose a challenge due to conflicting
dependencies or package versions.

1.1.6 Mirror

A mirror is a website or a server that hosts a copy of one or more reposito-
ries and provides users with faster and more reliable access to packages and
updates. [6]

4Such as dependencies, name, version, author, etc.

5

1. State of the Art

Mirrors can also be used to distribute packages to more users, reducing
the load on the primary repository and improving overall system performance.
Some mirrors may offer additional features, such as customized packages or lo-
calized content, to better serve specific needs.

1.2 Alpine Linux

Alpine Linux is a lightweight, non-commercial, security-oriented distribution
known for its small size. Its motto is “Small, Simple, Secure”. [8] Alpine Linux
is based on musl libc and has a small base userland – in terms of disk size, mem-
ory footprint, and number of packages. Making it ideal for running in contain-
ers and embedded devices where disk space and memory resources are limited.
The name Alpine originally stood for “A Linux Powered Integrated Network
Engine”. [9] It was created by the Alpine Linux Development Team in 2005.
Initially, it was supposed to be an embedded-first distribution. [10]

However, during that time, it gained popularity as a distribution for con-
tainer images in services such as Docker due to its small size. The container
image size is approximately 8 MiB, while a minimal installation on a vir-
tual machine or a bare metal requires roughly 130 MiB of disk space. [8]
Having a minimal amount of packages creates a small attack surface, making
Alpine Linux popular for container images and general use.

1.2.1 Package Management

Alpine Linux divides its repositories into three types [11]:

Main Packages in the main repository receive direct support and updates
from the Alpine core team and the main team.

Community Packages in the community repository are created by users
in collaboration with the official developers, who are closely involved
in the Alpine package development process. The maintenance of these
packages relies on the contributions made by the users. If the users
cease to support the packages, their availability and functionality may
be affected.

Testing Packages in the testing repository require testing first. Accepted
packages from the testing repository are moved to the community repos-
itory. The testing repository is exclusively accessible in the edge branch.

6

1.2. Alpine Linux

Within the edge branch, there is also located the current development tree.
Therefore, the edge branch is considered a rolling release model. Since the edge
is considered a development branch, numerous modifications are not thor-
oughly tested or tested at all, and thus packages in the edge are susceptible
to breaking without prior notice.

Alpine Linux releases a stable branch twice a year, receiving support
for a designated period. [6] In Alpine Linux, packages are managed using
the Alpine Package Keeper; this tool is distributed as apk-tools. More infor-
mation about this tool can be found in Section 1.2.3.4.

The information mentioned above leads to the following constraints:

1. There are no dependencies between individual releases.5 [6]

2. There are no dependencies between individual architectures.6

3. Packages in the individual repositories can depend on each other in
the following way:

a) A package in the testing repository can depend on packages from
both community and main repositories.

b) A package in the community repository can depend on a package
from the main repository.

c) Other dependencies between repositories are prohibited.

These constraints may suggest approaches that could be used when search-
ing for disjoint subgraphs in data modelling. More information can be found
in the upcoming Section 2.2.4. All packages can be listed on the web page
pkgs.alpinelinux.org or installed using the package manager via apk-tools tool.

1.2.2 Package Structure

This section describes the principles of package creation, its definition, ad-
ditional constraints, and metadata. Two sources serve as metadata sources
for subsequent analysis: the APKBUILD file, which serves as a template for
package generation and is described in Section 1.2.2.1, and the resulting binary
package, which is described in Section 1.2.2.2.

5For example a package released in v3.17 cannot depend on a package released in v3.16.
6A package provided for architecture x86_64 cannot depend on a package provided for

architecture aarch64.

7

https://pkgs.alpinelinux.org/

1. State of the Art

Both sources have a non-empty intersection, but for future analysis, merg-
ing the information from both is necessary. Although the second-mentioned
source depends on the first one, there are time delays that can lead to database
anomalies. This fact imposes an additional requirement on graph modeling
in Section 2.2.

1.2.2.1 APKBUILD

Anyone can create their own package for Alpine Package Keeper. To generate
a package for Alpine Linux, an APKBUILD file is used. It serves as a specifi-
cation for creating one or multiple packages. [12] APKBUILD is a shell script
that adheres to a specific structure. More details of this structure are further
explained later.

For the purpose of storage, management, and versioning of individual
APKBUILDs, a Git repository called aports exists. This repository or a so-
called tree contains the corresponding APKBUILD file for every package.

Packages in Alpine Linux are organized into separate directories based
on the specific repository they belong to.7 Versioning for specific releases
(and the edge branch) is managed using git branches. The master branch is
considered to be the edge. [11]

Additionally, there is an unmaintained directory for packages that are
no longer supported. Most importantly, unmaintained packages are no longer
built. Thus, they do not appear in the Alpine primary mirror.8

Brief structure9 of APKBUILD [13]:

maintainer Package maintainer.

pkgname Name of the packaged software.

pkgver Version of the packaged software.

pkgrel Version of the APKBUILD file, starting from 0, is incremented with
each change. This value gets reset when changing pkgver.

arch What architectures to build for. This can also be noarch in case it is
architecture-independent or all. Architectures can be negated using
the “!” character to exclude them from the list of supported architec-
tures.

license License reflects licensing policy of the packaged software.

7As mentioned previously – main, community, and eventually testing in the edge.
8Packages in this folder may show signs of errors, and their APKBUILD may not be

valid.
9Some less properties significant are omitted.

8

1.2. Alpine Linux

subpackages Multiple packages can be built from one recipe. For example,
doc and dev are the most common subpackages we see. However, defining
custom subpackages is a possibility.

source List of local files or remote sources to fetch. Checksum calculation is
performed on listed files.

secfixes Map of security vulnerabilities (CVE identifier) fixed in each version
of the APKBUILD’s package(s)

Dependencies are listed in Section 1.2.2.3.

Another component of APKBUILD are functions that run commands
to build and test the packaged software and create the resulting packages.
Their description is not essential for the further procedure and therefore omit-
ted in this work. APKBUILD is consumed by a tool called abuild. This tool
is then used to compile and build the resulting binary package(s), which can
be further distributed. The binary file is referred to as a package from now on
and is described in more detail in Section 1.2.2.2.

1.2.2.2 Package

Although the resulting package is generated from the APKBUILD file, it is
impossible to rely solely on the data obtained by parsing this file, as not all
necessary data can be obtained through static analysis. It is important to note
that some data are generated or extended during the build phase of packages,
most notably auto-discovered dependencies and providers. The abuild tool
inspects ELF headers in binaries to discover dynamically linked libraries, in-
spects shebangs in scripts etc. Therefore, they can only be obtained from
the resulting distributed package.

The current version of the binary package file format, apkv2, is based
on the gzip format. The package file consists of three gzip streams concate-
nated together, each containing a TAR segment [14]:

1. Digital signature,

2. Control segment,

3. Package data.

The critical component for metadata analysis is the control segment which
includes installation scripts and, most importantly, the so-called PKGINFO
file containing the required metadata.

9

1. State of the Art

The PKGINFO file is a plain-text file with key-value pairs. Its content is
based mainly on the previously mentioned APKBUILD, but it contains some
additional data (according to Alpine Linux Development Team [14]):

size Size of the installed package in bytes.

builddate Time stamp of the date and time when the package was built.

packager Identifier of the builder of the package.

origin Name of the origin package (useful for subpackages).

commit Commit hash of the APKBUILD from which the package was built.

On the other hand, compared to APKBUILD, some data are missing,
such as build dependencies, check dependencies, subpackages, security fixes
or property pkgrel. To be precise, pkgrel becomes part of the pkgver as
a suffix.

Apart from PKGINFO metadata, information about files (more precisely,
their paths) from the package data segment is also essential for analysis since
we can further investigate possible file conflicts between individual packages.

1.2.2.3 Dependencies

Dependencies between packages are fundamental relationships that need to be
explored. This section aims to explain all types of relationships and their
connotations thoroughly (according to Alpine Linux Development Team [13]):

checkdepends Dependencies required by the package only during the check
phase (i.e. for running tests).

depends Dependencies required by the package during the runtime.

makedepends Dependencies required by the package only during the build.

Dependencies are listed as the name of the required package or the required
provider and the optional version constraint, as shown in Code 1.1. Several
operators can be used to define the version constraint: <, <=, <~, =, ~, ~, >~,
>=, >, ><. If no version constraint is specified, any version of the package
satisfies the constraint.

makedepends="gperf>=0.2.0 autoconf automake libtool"
depends="ethtool wireless-tools iw sqlite grep>=5.8.1-r1"
checkdepends="coreutils"

Code 1.1: Example of dependency properties in APKBUILD.

10

1.2. Alpine Linux

Although the following relationships are not dependencies, they are essen-
tial for dependency resolution and are therefore mentioned here:

provides List of provider (package) names (and optionally version info) this
package provides. Provider is like a virtual package.

replaces The packages whose files this package is allowed to overwrite
(i.e both can be installed even if they have conflicting files).

install_if A set of dependencies that, if installed, trigger installation of this
package.

Additionally, the resulting package may contain so-called auto-detected
provides:

• cmd:<name> Command on PATH (e.g. cmd:git=2.36.3-r0).

• pc:<name> pkg-config file (e.g. pc:shared-mime-info=2.2).

• py<abiver>:<name> Python module (e.g. py3.10:pygments=2.11.2-
r0).

• so:<name> shared library (e.g. so:libruby.so.3.1=3.1.3).

It is possible that the provided package does not have a version specified.
In this case, the dependency resolution process is based on the comparison
of the provider_priority attribute with higher provider_priority hav-
ing increased precedence. Later, concerns about this solution were raised in
the Alpine community. [15]

The second situation concerns the replaces property. Multiple pack-
ages may provide a file with the same path. Listing the second package
in the replaces property allows the first package to be installed simulta-
neously as the listed package and overwrite conflicting files of the second
package. Similar to the provider_priority property, the decision is based
on the replaces_priority property with higher priority having increased
precedence.

1.2.2.4 Mirror

As mentioned in Section 1.1.6, a mirror is a server used to distribute packages
in specific repositories. In the case of Alpine Linux, the resulting packages are
uploaded to the mirror by an automated process after building from aports.
Anyone can set up their own mirror and synchronize it with the primary
mirror, for example, using the rsync tool. Changes to the original mirror,
such as adding or removing packages, are reflected depending on the chosen
synchronization period. [16]

11

1. State of the Art

Each architecture in a given repository has an index of packages. This
APKINDEX file is used by tools such as apk-tools to improve searching effi-
ciency. However, this file only contains a subset of the PKGINFO metadata
(e.g. it does not contain a list of package files), so it cannot be fully utilized
for the metadata analysis mentioned above.

1.2.3 Existing Tools

This chapter describes the current tools available to the Alpine Linux com-
munity.

1.2.3.1 aports-turbo

aports-turbo is a server-side web application accessible via pkgs.alpinelinux.org.
[17] It is written in Lua language and uses the embedded DBMS SQLite.
Its database is periodically updated by scripts that are run against reposito-
ries on a mirror.

This web application is used by the community and developers to search for
information about packages. Users can flag packages as outdated to inform
their maintainers that a new version of the packaged software is available.
However, this is usually not needed as aports-turbo is integrated with the
Anitya release monitoring service. [18]

For querying from the user’s perspective, this tool allows users to search
packages individually based on their name, branch, repository, architecture,
and maintainer. It is also possible to search for files based on the file path
and file name. It provides an overview of package metadata and shows direct
dependencies.

Figure 1.1: aports-turbo search screen.

12

https://pkgs.alpinelinux.org/

1.2. Alpine Linux

Initially, aports-turbo operated over a single database but the performance
became insufficient as the dataset grew. Therefore, the dataset was divided
into individual databases by package branches. Individual branches can be
considered disjoint, as discussed in Section 1.2.1.

Figure 1.2: aports-turbo package detail screen.

However, advanced queries are not possible.10 This tool does not meet
the requirements stated in Section 2.1.

1.2.3.2 apkbrowser

apkbrowser [19] is a reimplementation of the aports-turbo project in Python.
The set of functionalities remains the same.

1.2.3.3 Security Issue Tracker

Alpine Linux has its own Security Fixes Database, which obtains data from
the secfixes property inside the APKBUILD file. The database11 pro-
vides structured data in JSON/YAML format, extracted from the comments
in APKBUILDs. This data contains information about the CVEs fixed in each
version of each aport or package. [20]

10E.g. listing transitive dependencies, searching packages based on their dependencies,
working with file paths, etc.

11The database is available at secdb.alpinelinux.org.

13

https://secdb.alpinelinux.org/

1. State of the Art

Another tool12 is the Security Issue Tracker, which monitors security issues
affecting the Alpine Linux distribution. This tracker is derived from the CVE
dictionary, the NVD database and Alpine’s own security fixes database. It in-
fers which CVEs have been fixed and which remain unfixed. The data are
provided in JSON-LD format. [21]

1.2.3.4 apk-tools

The package manager apk-tools [22] was explicitly designed for Alpine Linux.
Its core features include searching, installing, updating, and removing pack-
ages.

This tool initially consisted of a group of shell scripts, but it was reimple-
mented in C. From the perspective of package metadata analysis, it is possible
to read package information, including its dependencies or search for packages
by name.

Similarly to aports-turbo, advanced queries are not supported by this tool.
Neither this tool meets the requirements stated in Section 2.1.

1.2.3.5 abuild

abuild [23] is a tool used for building packages in Alpine Linux. It provides
a framework for building packages from source code and is used to generate
binary packages in the .apk format. Abuild handles dependencies, configures
the build environment and the source code, and creates the final package.

It is integrated with the Alpine Linux package repository and allows cre-
ation of custom packages for use within the Alpine Linux ecosystem. Pack-
age maintainers and developers typically use it to build and distribute pack-
ages for Alpine Linux.

1.2.3.6 GitLab

Alpine’s GitLab [24] provides a collaborative platform for software develop-
ment. It is the primary tool the Alpine Linux community uses to manage their
packages and source code, allowing users to manage and review code and track
bugs, requests, and issues. The Alpine community uses GitLab as a central
hub for their package development and maintenance.

12The tool is available at security.alpinelinux.org.

14

https://security.alpinelinux.org/

1.3. Graph theory

1.3 Graph theory

Graphs can be found all over the world. Thanks to them, it is possible to re-
duce almost every real-world problem to a graph using edges and vertices.
These problems can then be solved by using graph theory, which often gives
us a set of tools to solve some of these problems efficiently and elegantly.

Let us take the world-famous case of the electrification of Moravia around
1925, where the objective was to design the power lines between villages with
minimal usage of power lines for the electric company. [25] This problem led
to the discovery of one of the fundamental algorithms in graph theory.13

Unless stated otherwise, the following definitions have been adjusted from
Diestel [26]:

Undirected graph An undirected graph is a pair G = (V, E) of finite sets
such that E ⊆ {{u, v} | u, v ∈ V }; thus, the elements of E are 2-element
subsets of V . The elements of V are the vertices of the graph G, the el-
ements of E are its edges.

Directed graph A directed graph is a pair G = (V, E) of finite sets such that
E ⊆ {(u, v) | u, v ∈ V }; thus, the elements of E are ordered pairs of V .
The elements of V are the vertices of the graph G, the elements of E
are its edges. [27]

Multigraph A multigraph is a graph G = (V, E) together with map E → V 2.

Subgraph Let G = (V, E). A graph G′ = (V ′, E′) is a subgraph of G (and G
a supergraph of G′), if V ′ ⊆ V and E′ ⊆ E, written as G′ ⊆ G.

Path A path of length k ≥ 0 is a graph P = (V, E) of the form:

V = {x0, x1, ..., xk} E = {x0x1, x1x2, ..., xk−1xk},

where the xi are all distinct. The vertices x0 and xk are linked by P and
are called its ends; the vertices x1, ..., xk−1 are the inner vertices of P .

Incident vertex A vertex v is incident with an edge e if v ∈ e; then e is
an edge at v. the two vertices incident with an edge are its ends and
an edge joins its ends. An edge {x, y} is usually written as xy (or yx).
If x ∈ X and y ∈ Y , then xy is an X−Y edge.

13The algorithm known as Boruvka’s algorithm, later simplified and known as Kruskal’s
algorithm for finding a minimum spanning tree of an undirected edge-weighted graph.

15

1. State of the Art

Property graph Property graph G is a tuple (V, E, ρ, λ, σ), where [28]:

1. V is a finite set of vertices.

2. E is a finite set of edges such that V ∩ E = ∅.

3. ρ : E → (V × V) is a total function. Intuitively, ρ(e) = (v1, v2)
indicates that e is a directed edge from vertex v1 to vertex v2 in G.

4. λ : (V ∪ E) → Lab is a total function with Lab a set of labels.
Intuitively, if v ∈ V (respectively, e ∈ E) and λ(v) = l (respectively,
λ(e) = l), then l is the label of vertex v (respectively, edge e) in G.

5. σ : (V ∪E)×Prop → V al is a partial function with Prop a finite set
of properties and V al a set of values. Intuitively, if v ∈ V (respec-
tively, e ∈ E), p ∈ Prop and σ(v, p) = s (respectively, σ(e, p) = s),
then s is the value of property p for vertex v (respectively, edge e)
in the property graph G.

Age = 54
Name = Kevin Flynn

Age = 34
Name = CLU

Age = 27
Name = Sam Flynn

Age = 31
Name = Quorra

{Character, Human} {Character, Program}

{Character, Human} {Character, Program}
{Father} {Dislikes}

{Likes}

Since =
16th Dec 2010

{Dislikes}

{Dislik
es}

Figure 1.3: Property graph example (including labels and properties).

1.3.1 Storing graphs

There are two commonly utilized approaches for representing a directed multi-
graph G = (V, E) in a computational context:

Adjacency matrix Let V = {v1, v2, ..., vn}. The adjacency matrix M(G) =
[mij] of a multigraph G is an n × n−matrix such that mij = number of
vi−vj edges. [27]

16

1.4. Databases

Adjacency list consists of an array Adj of |V | lists, one for each vertex
in V . For each u ∈ V , the adjacency list Adj[u] contains all the vertices
v such that there is an edge (u, v) ∈ E. That is, Adj[u] consists of all
the vertices adjacent to u in G. [29]

2 5 /

1 5 3 4 /

2 4 /

2 5 3 /

4 1 2 /

1

2

3

4

5

Figure 1.4: Example of an adjacency list.

1.4 Databases

A database is a data collection that is stored electronically in a structured
manner for easy retrieval and manipulation of the data. It is typically managed
by a database management system (DBMS) that acts as an interface between
users and the database.

Since the 1970s, the well-known type of database has been a relational
database, which stores data in tables with a defined schema and is designed
to adhere to the use of transactions. [30]

A transaction involves a series of operations treated as a single unit of work.
The fundamental characteristic of a transaction is that all its constituent ac-
tions are executed as a complete set, and if any part of the transaction fails,
the engine rolls the database back to its initial state. [31] In other words,
a transaction can have only two possible outcomes: successful completion and
committing all of its changes or a failure that leads to undoing all its changes.

The ACID properties represent a set of vital transactional features essential
to ensure data consistency of state despite concurrent accesses and failures.
These properties include Atomicity, Consistency, Isolation, and Durability.
[32]

Presently, there are discussions among data engineers regarding the lim-
itations of relational databases and exploring alternative non-traditional ap-
proaches, known as NoSQL databases, to overcome them. Graph databases
are often classified as one type of NoSQL database.

17

1. State of the Art

1.4.1 Graph databases

Graph databases are becoming increasingly popular due to their ability to cap-
ture and analyse complex relationships between data entities. They provide
a more natural way of modelling and querying data, making it easier to man-
age large interconnected datasets.

As previously mentioned, many structures can be represented using edges
and vertices. However, in the field of graph databases, the terms relationships
and nodes are more commonly used. In the following chapters, this terminol-
ogy is used exclusively.

In contrast to traditional relational databases, traversing highly intercon-
nected data is generally more efficient in graph databases. Traversing rela-
tionships in relational databases is achieved using JOIN operations, the com-
plexity of which increases directly with the size of the dataset. In comparison,
the complexity of such queries in a graph database should remain roughly
constant regardless of the total size of the dataset. [33]

The key features of graph databases can be classified as follows [33]:

Native processing We say that a graph database uses native processing if it
exhibits a property so-called index-free adjacency. Native graph pro-
cessing offers faster traversal performance but can make non-traversal
queries more difficult and memory-intensive to execute. E.g. Neo4j,
TigerGraph.

Native storage Certain graph databases employ a mechanism called native
graph storage, which has been specifically engineered and optimised
to store and manage graphs. The actual implementation varies de-
pending on the specific database used. These are usually modifications
of the structures listed in Section 1.3.1.14 On the other hand, graph
databases using native graph storage may encounter challenges in terms
of performance when handling supernodes, which are nodes with a high
degree of relationships, or in terms of scalability. [34]

Non-native storage In contrast, non-native graph storage uses non-graph
backends, usually well-established relational databases. These are reli-
able and scalable and are well-understood by operations teams. This
provides a more accessible option than native graph processing, which
may require more specialised knowledge to implement and maintain.
An example of such a database is AgensGraph.

14For example, in Neo4j, a doubly linked list is used for representing relationships. [33]

18

1.4. Databases

With index-free adjacency, each node in the graph contains direct ref-
erences to its adjacent nodes. This eliminates the need for global indexing
(hence index-free), as each node acts as a local index of adjacent nodes.
Searching indices typically takes O(log n) in time complexity15 as shown in
Figure 1.5, whereas traversing relationships in index-free adjacency is O(1) in
time complexity as shown in Figure 1.6, where n is the size of the dataset.
This approach is beneficial for local graph queries, as it reduces the need for
expensive indexing operations and allows for faster traversal through direct
pointer dereferencing. [35] [36]

ID Age Name
1 54 Kevin Flynn
2 34 CLU
3 31 Quorra
4 27 Sam Flynn

Start_ID End_ID
1 2
2 2
2 3
2 4

Foreign key (ID)

Characters table Dislikes table

Figure 1.5: Graph processing using a table as an index to traverse between
nodes. Searching for characters disliked by Kevin Flynn requires searching
through Dislikes table in O(log n).

Age = 54
Name = Kevin Flynn

Age = 34
Name = CLU

Age = 27
Name = Sam Flynn

Age = 31
Name = Quorra

{Character} {Character}

{Character} {Character}
{Dislikes}

{Dislikes}

{Dislik
es}

Figure 1.6: Graph processing using index-free adjacency to traverse between
nodes. Searching for characters disliked by Kevin Flynn requires searching
only through neighbouring nodes in O(1).

For purposes of this thesis, any database engine that behaves like a graph
database from an interface perspective (i.e., exposes a graph data model)
qualifies as a graph database.

15Time complexity for searching in a balanced tree.

19

1. State of the Art

Graph databases can also be evaluated based on the representation of
the graph itself. The following two methods are among the most popular:

Resource Description Framework In Resource Description Framework
(RDF), data are represented as a graph that has directed edges and
labelled nodes. [37]

Property graphs In the context of property graphs, the conventional repre-
sentation is a directed property multigraph, as previously introduced in
Section 1.3. For purposes of this thesis, the term property graph is used
as a synonym.

The subject matter of this thesis is limited to the exploration of property
graphs since property graphs are a relatively newer concept than RDF. Exam-
ples include AgensGraph, Amazon Neptune, ArangoDB, JanusGraph, Neo4j,
and TigerGraph. [38]

1.4.1.1 Neo4j

Neo4j is currently the most popular graph database. [39] Like many NoSQL
databases, it is schema-free but allows working with constraints. It represents
graph structures using property graphs, which can be viewed as bidirectional
for data querying. Although many NoSQL stores are not transactional, Neo4j
is fully ACID-compliant and provides support for transactions. [33]

In contrast to many graph databases such as AgensGraph, Neo4j is consid-
ered a graph database with native processing thanks to its index-free adjacency
and native storage.

The software is distributed in two editions, the Community Edition and
the Enterprise Edition. The former is an open-source version distributed under
the terms of the GNU General Public License v3.

Neo4j utilizes the Java Virtual Machine and has various libraries, provid-
ing additional functionalities for working with graphs and extending the query
language, such as APOC and Graph Data Science (GDS).

In conclusion, Neo4j offers its users a wide range of tools, such as Neo4j
Browser, which provides an interactive interface for querying and visualizing
data stored in the database, Neo4j Desktop for managing databases, and Neo4j
Bloom for graph exploration.

20

1.4. Databases

Figure 1.7: Neo4j Browser tool interface.

1.4.1.2 AgensGraph

AgensGraph is a database management system that combines two data models
– graph model and a relational model. Thus it is called multi-model. It is a fork
of the well-known PostgreSQL database management system and adopts both
SQL and Cypher languages even within one single query. Same as Neo4j,
it uses property graph structure, it is schema-free and it is ACID-compliant
thanks to the underlying relational database, which is then considered non-
native.

Although, in 2017, the vendor of AgensGraph claimed that their database
outperformed Neo4j in all aspects based on the LDBC16 benchmark with
an average 50×improvement in time complexity, a peer-reviewed study from
2020 contradicts this statement using the same LDBC benchmark methodol-
ogy. [40] [41]

According to the same study, AgensGraph timed out even under a small
dataset17 while finding paths by length from 3 to 5. Overall, AgensGraph out-
performs Neo4j in SQL-accompanied workload and simple update and query
operations while performing badly in processing complex queries and manag-
ing large datasets. [41]

16The Linked Data Benchmark Council, ldbcouncil.org.
17Including 3.182 mil. Nodes and 17.256 mils. relationships.

21

https://ldbcouncil.org/

1. State of the Art

1.4.1.3 Query Languages

Both Neo4j and AgensGraph database management systems utilize the Cypher
language, respectively OpenCypher18, for property graph querying. Other sys-
tems using Cypher include, for example, Memgraph, RedisGraph and Tu-
Graph. The language was initially introduced in 2011 by Neo4j, and its syntax
draws inspiration from SPARQL. Cypher’s pattern-matching functionality is
a crucial feature that allows users to define a pattern of nodes and relation-
ships to match in a graph. This feature has a shallow learning curve, making
it relatively easy for new users to learn and leverage in their data analysis
and interpretation tasks.

Over time, the absence of a standardized query language for property
graphs has become increasingly apparent. In 2015, as a response to this issue,
Neo4j launched the OpenCypher initiative, enabling Cypher to adopt as a gen-
eral language for property graphs. While this project has led to the growing
industrial use of Cypher, it has not been able to establish a universal standard
on its own. [38]

MATCH (a:Character)-[:DISLIKES]->(b:Character)
WHERE a.name = "Kevin Flynn"
RETURN b.age

Code 1.2: Example of Cypher query that returns a list of the ages of characters
disliked by Kevin Flynn.

To address this challenge, the Joint Technical Committee 1 of ISO/IEC,
which defines information technology standards for the International Orga-
nization for Standardization and International Electrotechnical Commission,
approved the development of a new property graph query language in 2019.
This new query language, called GQL, aims to extend SQL with the pattern-
matching paradigm of Cypher and thus provide a standardized query language
for property graphs. [42] The expected declaration as an international stan-
dard is April 2024. [43]

Another widely used query language is Gremlin, which is used in Apache
TinkerPop. This language is utilized by many graph DBMS such as Janus-
Graph. It is a Turing-complete traversal language incorporating functional
programming elements and does not rely on pattern matching. ArangoDB
Query Language (AQL) is another query language.

g.V().has("name","Kevin Flynn").out("dislikes").values("age")

Code 1.3: Example of Gremlin query that returns a list of the ages of charac-
ters disliked by Kevin Flynn.

18The terms Cypher and OpenCypher may be used interchangeably in this thesis.

22

Chapter 2
Analysis and Design

In continuation of Chapter 1, this chapter aims to identify and consolidate all
the functional and non-functional requirements, constraints, and specifications
for the proposed solution. To achieve this goal, domain knowledge is utilized to
transform the problem into a graph model. Additionally, the chapter considers
the estimated size of the dataset and explores potential sharding options for
future scalability.

Finally, a suitable graph database management system is selected based
on the given parameters. Through this process, this chapter lays the founda-
tion for the subsequent development and implementation stages of the pro-
posed solution.

2.1 Requirements Analysis

In this section, representatives of the Alpine Linux community were contacted
to provide specific requirements, including queries they cannot evaluate with
current tools. As is common in software engineering, requirements are typi-
cally divided into two categories:

Functional requirements describe what the system should do and usually
refer to the application’s features.

Non-functional requirements describe how the system should perform and
are not directly related to the application’s functionality.

Collecting requirements is crucial for selecting a suitable graph DBMS
and creating an appropriate data model. Understanding the functional and
non-functional requirements helps to make an informed decision and avoid
potential issues in the future.

23

2. Analysis and Design

ID Description
FR1 Members of the Alpine community are allowed to write their own

queries for reading data and expect an easily understandable query
language.

FR2 Regularly monitor package changes and incrementally store them
while preserving previous data.

FR3 Enables the control of the constraints Alpine imposes on its pack-
ages.

FR4 Collect package metadata for multiple repositories, architectures
and release branches.

FR5 Collect available package metadata from both binary packages and
APKBUILDs.

FR6 Allow queries across branches.

Table 2.1: Functional requirements

ID Description
NR1 Read transactions are a priority from a performance perspective;

they are more common than write transactions.
NR2 Used license must comply with Alpine policies.
NR3 Code base must be open-source.
NR4 Runs on Alpine Linux.
NR5 Performs well on a dataset with a minimum of 4 mils. highly

connected nodes.
NR6 Access control is necessary, thus normal users can perform read-

only operations only.
NR7 DBMS can limit the size of the query in order to prevent DOS

attacks.

Table 2.2: Non-functional requirements. Computation for NR5 is performed
in Section 2.3.

24

2.2. Data Modeling

Together with both functional and non-functional requirements, several
actors have been identified:

1. Package Maintainers,

2. Consistency Checker,

3. Regular Users.

As one of the actors is the so-called Consistency Checker, the database
must allow storing data that violates the schema given by Alpine Linux in or-
der to be able to detect these violations using queries. A total of 16 use cases
were collected, which are part of Appendix D and their evaluation is detailed
in Chapter 4.

2.2 Data Modeling

This section presents the domain modelling of the Alpine Linux package sys-
tem, previously described in Section 1.2. It starts by using an E-R diagram
to describe the essential entities, properties, and relationships in the concep-
tual modelling approach. Core entities, such as APKBUILD, Package, File,
Dependency and Provider, are introduced. The following subsection focuses
on the relationships between the entities, outlining the various associations
among them.

Additionally, the section describes how the conceptual model was trans-
formed into a graph model. It highlights the benefits of graph databases over
traditional relational databases in terms of modelling and explains the con-
siderations made during the modelling process.

2.2.1 Conceptual schema

In Section 1.2, two data sources for the database were identified – APKBUILD
and the resulting binary package. As mentioned earlier, the resulting pack-
ages are generated using the abuild tool from the APKBUILD files. Despite
overlapping data and certain duplications, the model treats these data sources
as independent entities. This approach is adopted to avoid reliance on their
proper synchronization. Therefore, when designing the data model, it is nec-
essary to consider this limitation and consider such anomalies.

25

2. Analysis and Design

The following chapters primarily focus on the properties and relationships
of the package entity, with a similar approach taken for APKBUILD.

APKBUILD

pkgname

pkgrel

pkgver Builds >

Package

pkgname

pkgver

Figure 2.1: E-R diagram of APKBUILD and Package.

A combination of properties pkgname and pkgver (respectively pkgrel)
serves as a unique identifier.

2.2.1.1 Repository

According to the domain of Alpine Linux packages, a package and its corre-
sponding APKBUILD should belong to one repository. However, it is possi-
ble for a package to appear in two repositories simultaneously, either due to
an error or natural development, such as during the transition from testing to
community. Therefore, the conceptual model is designed to be more flexible
in this regard, allowing for the detection of potential errors or inconsistencies
in the data.

APKBUILD

pkgname

pkgrel

pkgver In >

Repository

name

branch < In

Package

pkgname

pkgver

Figure 2.2: E-R diagram of APKBUILD, Repository and Package.

2.2.1.2 Architecture

The role of entity Architecture differs depending on whether it is in the context
of an APKBUILD or a resulting package. In the APKBUILD specification,
a list of architectures for which the resulting package is to be built can be
specified. This list may also include the keyword all along with individual
negated architectures. For such negated architectures, the package is not
built.

26

2.2. Data Modeling

The edge between the APKBUILD and a specific Repository indicates for
which architectures the package is built. The absence of this edge expresses
negation in the APKBUILD.

arch="all !armhf !s390x !ppc64le !mips !mips64"

Code 2.1: Example of architectures property in aports/main/gnu-efi/AP-
KBUILD. [44]

The entity Package is then built for individual architectures. The edge be-
tween the Package and a specific Architecture indicates for which the Package
is built. The Package is built for only one architecture.

The architecture named noarch represents a particular type of architecture.
This refers to a package that is not architecture-dependent.

APKBUILD

pkgname

pkgrel

pkgver Built For >

Architecture

name

< Built For

Package

pkgname

pkgver

Figure 2.3: E-R diagram of APKBUILD, Architecture and Package.

2.2.1.3 Provides

As mentioned in Section 1.2.2.3, each package creates its own virtual packages
called providers (via property provides). Additionally, the package itself is
also considered as a provider for the purposes of this model. This modification
is utilized in Section 2.2.1.4.

A combination of properties pkgname and pkgver serves as a unique identi-
fier. It should be noted that, unlike packages, providers may not be versioned.

Package

pkgname

pkgver

Provider

pkgname

pkgverProvides >

Figure 2.4: E-R diagram of Package and Provider.

27

2. Analysis and Design

2.2.1.4 Dependencies

As mentioned in Section 1.2.2.3, each package has various types of dependen-
cies. However, all dependencies can be modelled as a single entity, as they
share a common principle. The role of each dependency in a given package
is distinguished by its type of relationship. This applies to both the package
and APKBUILD data sources. A combination of dependency entities pkgname
and ver_constraint serves as a unique identifier.

Package

pkgname

pkgver

Dependency

pkgname

ver_constraint

Depends, Conflicts >
Replaces, Install if, ... >

APKBUILD

pkgname

pkgver

pkgrel

Make depends, check depends, ... >

Builds >

Figure 2.5: E-R diagram of APKBUILD and Package together with Depen-
dency satisfied by Provider.

One of the primary roles of a dependency is to determine whether it has
been satisfied. Dependency entities can only be satisfied by a provider entity.
The process of satisfying dependencies is described in detail in Section 1.2.2.3.
In essence, a provider entity can satisfy a dependency only when its pkgname
and pkgver match the ver_constraint requirements specified by the depen-
dency.

Package

pkgname

pkgver

Dependency

pkgname

ver_constraint

Depends, Conflicts, Replaces, Install if, ... >

APKBUILD

pkgname

pkgver

pkgrel

Make depends, check depends, ... >

Builds >

Provider

pkgname

pkgver< Satisfies

Figure 2.6: E-R diagram of APKBUILD and Package together with Depen-
dency.

28

2.2. Data Modeling

2.2.1.5 Files

As mentioned in Section 1.2.2.3, each package can provide multiple files iden-
tified solely by the path property.

Package

pkgname

pkgver

File Path

path

size

mode

Dependency

pkgname

ver_constraint

Replaces >

Figure 2.7: E-R diagram of Package and File.

However, it is possible that multiple packages provide a file with the same
path. While this scenario is undesirable, it is allowed if the package provid-
ing the file with the same path is listed as a dependency in the replaces
relationship. In case the replaces relationship is not listed among these two
packages, they cannot be installed at the same time.

This situation is not a problem when the mutual installation of packages
is prevented by other criteria. For instance, if one package explicitly lists
another as a conflicting dependency.

2.2.2 Graph Model

According to Pokorný and Valenta [31], in the case of a relational model,
the conceptual model needs to be transformed into a relational one in several
steps (simplified):

1. Representation of entity types: This is typically done by directly con-
verting entities into tables.

2. Representation of relationship types: The process varies depending on
the relationship’s cardinality – 1:1, 1:N, and M:N, which must be de-
composed. This results in the creation of additional tables to represent
some types of relationships.

3. Normalization.

29

2. Analysis and Design

However, in the case of a graph model (according to Robinson et al. [33])
this entire process is straightforward and does not require any particular con-
version of the conceptual model. On the contrary, it is possible to convert
the conceptual model into a property graph directly, but the following tech-
niques should be kept in mind:

1. Represent entities as nodes.

2. Relationships and their orientation represent the relations between en-
tities.

3. Entity attributes are represented as node properties.

4. Labels typically represent the role in the domain, and a single node may
belong to multiple (sub)domains.

5. Relationships can also be viewed as connecting different domains.

6. Details of the relationship between entities can be specified as the prop-
erties of the relationship.

Although converting a conceptual schema to a graph model (more pre-
cisely, a property graph) is straightforward compared to converting to a re-
lational model, some techniques from graph theory have been utilized. They
have been mainly used for query optimization and simplification of relation-
ships.

Regarding files, all of their attributes except for the path attribute have
been separated and added as relationship properties. As a result, the nodes
representing files are uniquely identified by the path attribute, significantly
simplifying any operations or manipulations involving this entity. To speed
up searching, folders are also stored in the same way as file nodes. This op-
timization is used, for example, in query D.1.5. Further optimization can
be achieved by representing the folder structure as a tree using relationships
between file nodes.

Package
pkgname
pkgver

File
path

Has

size mode

Figure 2.8: Graph diagram of Package and File.

30

2.2. Data Modeling

According to Robinson et al. [33], a structure called linked list is suitable
for the rapid traversal of time-ordered events. One of the suitable applications
could be the attribute pkgver (i.e. version) of individual packages. These can
be distinguished from each other using the relationship type previous, where
we consider this relation as a strict order [45].

Definition. Let ≺ be a relation on a set S. Then ≺ is a strict ordering
on S if and only if ≺ satisfies the strict ordering axioms:

1. Irreflexivity: ∀a ∈ S : ¬(a ≺ a)

2. Asymmetry: ∀a, b ∈ S : a ≺ b ⇒ ¬(b ≺ a)

3. Transitivity: ∀a, b, c ∈ S : (a ≺ b) ∧ (b ≺ c) ⇒ (a ≺ c)

Package

pkgname

pkgver

Previous version >

Figure 2.9: Diagram of the relationship between Package and its previous
versions.

Using a versioned graph allows the recovery of a specific state of the graph.
However, most graph databases do not support versioning as a primary con-
cept. Creating a versioning scheme within the graph model by timestamping
nodes and relationships is possible, but this adds complexity to queries written
against the graph. [33]

2.2.3 Incremental changes

Functional requirement FR2 stated in Section 2.1 demands that the modelled
graph should be capable of incrementally adding new data, for instance, when
a new version of a package is released. For this reason all changes are resolved
additively, i.e. there is no deletion of old data.

31

2. Analysis and Design

Graphs possess an additive nature, allowing for introducing new nodes, la-
bels and relationships into an existing structure without impacting the existing
structure. [33] In contrast, relational databases, which are not schema-free,
encounter more challenges when dealing with structural changes in package
management in future versions of Alpine Linux.

2.2.4 Subgraphs

This section explores possible dataset partitioning methods, specifically iden-
tifying suitable subgraphs for potential sharding. This may be necessary
if the dataset in the database becomes too large or grows over time, thereby
reducing the DBMS’s ability to execute transactions within a reasonable time
or leading to high memory or storage usage.

As revealed by the aports-turbo tool described in Section 1.2.3.1, the data-
set can be divided to some extent based on branches. While this division may
result in specific duplicates, such as in the case of entities like a person who
acts as a package maintainer, it is feasible.

However, it is essential to note that dividing the dataset based on branches
is not suitable for analyzing the history of packages in general. This limita-
tion arises from the release cycle of Alpine Linux itself. New development
always occurs in the edge branch, while for each release, the edge branch is
branched off into its release branch (e.g. v3.17). Consequently, when dis-
cussing the package history, all packages would be present in the edge branch,
while the history of packages in a particular release branch would only be-
gin with its branching. Therefore, when considering potential divisions, it is
necessary to acknowledge that each decision carries inevitable trade-offs.

As discussed in Section 1.2.1, another way to partition the dataset is based
on package architecture, as they must be disjointed in dependencies. How-
ever, as elaborated in Section 2.3, this may not necessarily be a reasonable
approach. This decision is endorsed in the Section 4.3.

It is impossible to partition the dataset based on repositories from a depen-
dency perspective, as explained in Section 1.2.1, as packages in the community
repository may have dependencies on packages in the main repository.

While various methods of dataset partitioning can be identified, it is es-
sential to consider that one of the fundamental requirements of the tool being
developed is the ability to analyze dependencies.

2.3 Dataset Estimates

In order to perform requirements engineering and subsequently select an ap-
propriate database, it is necessary to make a rough estimate of the dataset
size.

32

2.3. Dataset Estimates

Using the tools mentioned in Section 1.2.3 and [16], the following values
were collected19:

• Number of architectures: 8

• Number of stable releases per year : 2

• Number of stable APKBUILDS in latest release20: 6608

• Number of x86_64 stable (sub)packages21: 17811

• Average number of (runtime) dependencies per (sub)package: 3.6

• Average number of providers per (sub)package: 1.09

• Average number of files per (sub)package22: 105

It can be inferred that the majority of the dataset will consist of files. How-
ever, analysis of packages across two architectures revealed that roughly 85 %
of file paths are shared, significantly reducing the number of file nodes. This
finding should be taken into account when estimating the dataset size. More-
over, as an optimization strategy, storing packages for different architectures
in the same database may be advisable.

The following estimates apply only to a single stable release and define
the rough minimum size of the dataset stored in the database.

• Package nodes: ≈200,000

• Provider nodes: ≈220,000

• Dependency nodes: ≈700,000

• File nodes23: ≈3,000,000

A rough estimate reveals that representing a single stable branch and all
of its architectures will require several million nodes, approximately 4 million
nodes. This calculation, for example, does not account for shared dependency
nodes and completely disregards relationships or nodes whose number is neg-
ligible in these orders of magnitude.

19Measurements were taken for release 3.17.
201558 in main and 5050 in community.
214989 in main and 12822 in community.
22Measured main and community repository for x86_64.
23≈1.8 mil. nodes for a single architecture.

33

2. Analysis and Design

2.4 Graph DBMS Selection

The first criterion for selecting a Graph DBMS was the query language. Func-
tional requirement FR1 states that more comprehensive community can per-
form queries without requiring in-depth knowledge of graph databases.

According to community size, as shown in table 2.3, and a good learning
curve24, the choice of the query language was Cypher, previously described
in Section 1.4.1.3.

Further formal requirements from a licensing standpoint and the demand
for open-source code were placed on the Graph DBMS. Thus, the following
graph DBMS were excluded from the selection: Amazon Neptune, MemGraph
and TigerGraph.

The narrow selection included AgensGraph, Neo4j, and TuGraph. In Sec-
tion 2.3, the estimated dataset size was taken into account, resulting in non-
functional requirement NR5. Based on the study [41], AgensGraph, which had
an inadequate performance on a dataset of comparable size, was removed from
the selection. Another disadvantage of AgensGraph was its small community,
as shown in Table 2.4, and a lack of tools compared to Neo4j.

Its underlying engine (PostgreSQL), widely popular with its multi-model
approach, could be considered an advantage. Although the multi-model ap-
proach can be considered an advantage, replacing it with more single-model
DBMSs and then orchestrating them within the application layer is usually
possible.

Undoubtedly, concerns with larger datasets arose with Neo4j as well. How-
ever, these concerns were limited to write transactions only which do not have
a performance requirement according to Section 2.1. Although TuGraph ap-
pears to be a more powerful DBMS from the perspective of the mentioned
study, both remaining DBMSs, Neo4j and TuGraph, meet the non-functional
requirements regarding performance.

Name Stack Overflow tags
AQL 440
Cypher 9,624
Gremlin 3,434

Table 2.3: Comparison of query languages for graph DBMS. Performed on
April 15th 2023.

24From the perspective of the author of this thesis.

34

2.4. Graph DBMS Selection

However, limited support for Cypher language and its relatively new open-
source status in September 2022 are some of TuGraph’s drawbacks, together
with NR7, which could not be confirmed since its limited documentation.
It has a tiny community and some documentation is in Chinese. Non-funct-
ional requirement NR7 can be satisfied in Neo4j using configuration by limit-
ing memory per transaction. Since Alpine Linux provides a package for Neo4j,
the non-functional requirement NR4 is also satisfied.

Name Stack
Overflow
tags

GitHub
stars

License Query language Type

AgensGraph 109 1,300 Apache 2.0 Cypher + SQL Non-native
ArangoDB 1,954 12,900 Apache 2.0 AQL Hybrid
JanusGraph 818 4,800 Apache 2.0 Gremlin Hybrid
neo4j 22,488 11,300 GPL v3 Cypher Native
TuGraph 0 580 Apache 2.0 Cypher (limited) Native

Table 2.4: Comparison of graph DBMS. Performed on April 15th 2023.
GitHub star numbers are approximate. Type is according to [41].

Based on the above, Neo4j was selected as the Graph DBMS, which
has the largest community, extensive documentation and user-friendly tools.
Neo4j satisfies all the requirements placed on graph DBMS regarding both
functional and non-functional requirements.

35

Chapter 3
Implementation of
Proof-of-Concept

This chapter provides insight into the implementation aspect of the developed
proof-of-concept. The chapter begins with a high-level overview of the cho-
sen software architecture, explaining the different layers and their interaction.
Subsequently, it describes the utilized design patterns and highlights key de-
sign decisions.

At the lowest level, it focuses on the chosen technologies, describing their
benefits and drawbacks while justifying specific choices. Additionally, it ad-
dresses the more specific implementation of significant classes and mentions
some technical challenges or complex solutions.

3.1 Architecture

The significance of software architecture cannot be underestimated. Well-
designed architecture can facilitate software development and improve its sus-
tainability and testability, naturally leading to higher reliability. Architecture
provides a high-level view of software and primarily focuses on fulfilling non-
functional requirements instead of software design, which mainly deals with
functional requirements.

According to Martin [46]: “The goal of software architecture is to minimize
the human resources required to build and maintain the required system.”

Although there are numerous architectural design patterns, the vast ma-
jority of them strive for the same goal: separation of concerns. The so-called
multi-layered architectures attempt to achieve this goal by dividing software
into several layers.

37

3. Implementation of Proof-of-Concept

For this thesis, architecture inspired by the concept of The Clean Archi-
tecture, as shown in Figure 3.1, was selected. This concept was developed
by Robert C. Martin, also known as Uncle Bob. Other popular approaches
include Hexagonal Architecture and Onion Architecture. [46]

Figure 3.1: The Clean Architecture [46].

The resulting application can be divided into following parts (as shown in
Figure 3.2):

Controllers This layer processes and handles input from the user and presents
output.

Interface Adapters This layer mainly contains implementations of Repos-
itories whose contract was defined in lower layers, on which this layer
depends. The task of this layer is to mediate access to data sources,
specifically the Neo4j database. The DTO pattern is utilized for the pur-
pose of converting data between entity representation and database rep-
resentation, which is presented in detail in Section 3.2.

Use cases Use cases are the core part of the application’s business logic. Nev-
ertheless, to allow use cases to access database data, this layer would
have to become dependent on the Interface adapters which is prohib-
ited in the proposed architecture. Therefore, the Dependency Inversion
Principle is utilized, described in detail in Section 3.2. Thus, use cases
use Repository interfaces as a form of contract rather than a direct de-
pendency.

38

3.2. Design Principles

Entities Entities are representing the essential and abstract concepts of the ap-
plication’s business logic.

The architecture of the application, which was inspired by The Clean Ar-
chitecture, is illustrated in Figure 3.2. Some less significant parts have been
omitted for the sake of clarity.

Controllers

Interface Adapters

Repositories
Neo4j

Repository
Interfaces

DTOsEntities

Use Cases
Neo4j

DB

Figure 3.2: Architecture of the application.

3.2 Design Principles
As software architecture provides a high-level view, software design deals with
the design of specific methods and classes, and how these classes should be
interconnected. Software design can be viewed as a set of principles and
patterns. According to Martin [46], the most significant principles can be
considered the so-called SOLID principles:

Single-responsibility principle Each class should have only one responsi-
bility.

Open–closed principle “Software entities ... should be open for extension,
but closed for modification.” [47]

Liskov substitution principle “Build software systems from interchange-
able parts, those parts must adhere to a contract that allows those parts
to be substituted one for another.” [46]

Interface segregation principle “Clients should not be forced to depend
upon interfaces that they do not use.” [48]

Dependency inversion principle “The code that implements high-level
policy should not depend on the code that implements low-level details.
Rather, details should depend on policies.” [46]

39

3. Implementation of Proof-of-Concept

Recurring issues in software design are commonly addressed by utilizing
so-called design patterns. One of the most significant sets of design patterns
is the Gang of Four (GoF). In the implementation of the proof-of-concept,
several patterns were used, such as the Data Transfer Object (DTO), which
serves to transfer data between the database and the entity, or the Repository
pattern, which provides an interface between the database and the domain.
[49]

Neo4j provides the library Neo4j-OGM for Object-Graph Mapping (OGM),
which is the equivalent of well-known Object-Relational Mapping (ORM) in
the world of relational databases. Considering the fact that this work is
a proof-of-concept, the author decided not to utilize this library.

From the perspective of the developed application, there will be more
emphasis on larger queries for bulk writes to the database. Therefore, using
such a library at this stage of the application would rather add complexity
than being beneficial.

3.3 Technologies

This section focuses on the specific technologies that were utilized in the im-
plementation.

3.3.1 Neo4j Integration

Selected Graph DBMS Neo4j provides several officially supported drivers for
Java, JavaScript, Python, .NET, and Go programming environments. In addi-
tion to the drivers, this DBMS provides a range of libraries, such as the GDS,
as mentioned above. It also offers a variety of connectors, including integration
with GraphQL, which opens up possibilities for potential future development.

Neo4j is written in the Java and Scala programming languages. Therefore,
the driver for Java is by far the most widely used and offers features that other
drivers do not have, such as the Traversal Framework. This framework has
broader graph traversing capabilities than Cypher. This is because, instead
of Cypher, the framework can dynamically make choices on how to traverse
the graph at each step of traversal. Its expressive power is then higher than
the expressive power of Cypher. In addition to drivers, the Traversal frame-
work can also be utilized in procedures, which are created using plugins in
Neo4j. [50]

Although Neo4j is schema-free, it is still possible to ensure data consis-
tency, to some degree, by using constraints. In this project, constraints are
used to ensure the uniqueness of primary keys. Indices are also utilized for
query performance optimization.

40

3.4. Background

3.3.2 TypeScript

TypeScript is a high-level programming language developed by Microsoft,
a syntactic superset of the JavaScript language. [51] It is transpiled into
JavaScript during compilation. Unlike JavaScript, TypeScript has a powerful
type system and static typing that is evaluated during compile time. It is
a multi-paradigm language that is primarily oriented towards functional and
object-oriented paradigms.

Since TypeScript is a superset of JavaScript, its type system can be dis-
abled in cases where it may be too restrictive, which can be especially useful
in creating a proof-of-concept.

Although the previous Section 3.3.1 suggests that the Java environment is
more appropriate for developing an enterprise-level application using Neo4j,
the author chose TypeScript for its lower complexity. This was mainly because
the emerging application is in the proof-of-concept phase. The primary goal of
this work is to verify whether graph representation is suitable for this domain
at all. Any further development towards a fully usable tool may be the subject
of follow-up work.

3.3.3 Node.js

Node.js is an open-source JavaScript runtime environment built on Chrome’s
V8 JavaScript engine, using an event-driven, non-blocking I/O model. It al-
lows developers to execute JavaScript code on the server-side, outside of a web
browser. Node.js was initially released in 2009 and it is currently maintained
by the OpenJS Foundation.

3.4 Background

This section dives into implementation details, describing specific types of
classes, such as Entities or Repositories, and builds upon the forenamed lay-
ering approach using mocking techniques. Subsequently, it discusses more
complex technical solutions, such as dependency tree traversal.

3.4.1 Package Metadata Extraction

As mentioned in Section 2.2.1, two types of files need to be used as data
sources. Extracting metadata from these formats is non-trivial, so an external
package called alpkit was used to extract this data to JSON format. The alpkit
tool was originally developed for the needs of this thesis.

41

https://github.com/jirutka/alpkit

3. Implementation of Proof-of-Concept

3.4.2 Controllers

Controllers serve as an interface between users and business logic, their only
task is to process the user input and pass the control to the business logic.
Since the purpose of the application at this time is importing data into the
database, only a command-line interface is available.

apk-importer bootstrap v3.16 x86_64 main

Code 3.1: Example of a command to run the application.

Controllers are implemented as higher-order functions processing the data
from the CLI, preparing the dependencies, and passing the control to a specific
use case.

3.4.3 Repositories

As mentioned earlier, repositories (according to the Repository pattern de-
scribed by Fowler [49]) serve as an interface between the database and busi-
ness logic. In other words, other layers should not be aware of whether data
was retrieved from the database or from memory. An example of a repository
was provided in Listing 3.2.

export class CveNeo4jRepository
implements ICreateRepository<ICve> {

constructor (private _session: Session) {}

public async create({ id, fixedIn }: ICve): Promise<void> {
await this._session.run(`

MERGE (c:cve { id: $id }) WITH c
MATCH (a:apkbuild) WHERE a.pkgname=$pkgname AND
a.pkgver=$pkgver AND a.pkgrel=$pkgrel

MERGE (c)-[:fixed_in]->(a)
`, { id, pkgname: fixedIn.pkgname, pkgver: fixedIn.pkgver,

pkgrel: fixedIn.pkgrel });
}

}

Code 3.2: Example of a Repository class.

42

3.4. Background

3.4.4 Use Cases

Use cases encapsulate a specific user requirement, incorporating the essential
logic and operations necessary to fulfil one particular functionality, and they
are fundamental in implementing the system’s business logic.

Use cases are implemented as a higher-order functions where the outer
function serves for passing dependencies.

export const apksBootstrapUseCaseFactory = (
logger: ILogger,
parser: IFileParser<IApk>,
// ...

) => async (): Promise<void> => {
const filePaths = await filePathsGetter.getFilePaths();
const apks = await parser.parse(filePaths);

if (!conf.disableFiles) {
await filesImportUseCase(apks);

}

await archRepository.createBulk(apks.map(({ arch }) => arch));
await createApkRepository.createBulk(apks);
await dependencySatisfaction();
await vdependencyRepository.create();

}

Code 3.3: Sample of a use case implementation (adjusted).

43

3. Implementation of Proof-of-Concept

3.4.5 Entities and DTOs

The entities are almost identical to the entities modelled in Section 2.2. For
simplicity, they are usually defined in the form of an interface. In more com-
plex cases, for example, when derived properties are required, they are defined
as a class with derived properties in the form of methods.

export const mapFileEntityToDto =
(entity: entities.IFile): IFileDto => {

try {
return {

path: entity.path,
type: entity.type,
link_target: entity.link_target || null,
uname: entity.uname || null,
gname: entity.gname || null,
size: entity.size || null,
mode: entity.mode,
device: entity.device || null,
digest: entity.digest || null,
xattrs: entity.xattrs
? JSON.stringify(entity.xattrs)
: null,

}
} catch(e) {

const message = 'Cannot convert File entity to DTO';
// ...
throw new Error(message);

}
}

Code 3.4: Mapper from Entity to DTO Sample Sample of a mapper from
an Entity to DTO (adjusted).

Data Transfer Objects (DTOs) transfer entities between different repre-
sentations. They are used to represent data from the alpkit tool and to rep-
resent data in the database since they are not directly stored as entities. One
of the reasons why entities cannot be stored directly in the database is, for
example, the representation of numbers in Neo4j. This database represents
numbers as 64-bit, while Node.js represents numbers in 32-bit. Therefore, it is
necessary to ensure adequate conversion when reading and writing. A simple
mapper is used for such conversion between DTOs and entities, represented
as a function, as shown in Code 3.4.

44

3.4. Background

export interface IFileDto {
path: string;
type: string;
mode: string;
link_target: string | null,
uname: string | null,
gname: string | null,
device: string | null,
digest: string | null,
xattrs: string | null,
size: number | null,

}

Code 3.5: FileDTO Sample.

3.4.6 Mocking

The technique called mocking is widely used in testing and development.
Its principle is to enable the isolated development or testing of a particu-
lar class (or a package) by replacing its specific dependencies with a fake
substitute considered functional and therefore not subject to testing.

export class ApkTestingParser extends ApkParser
implements IFileParser<IApk> {

public override async parse(path: string): Promise<IApk> {
const buffer = await readFile(path);
const dto: apkInspectMappers.IApkDto = JSON.parse(

buffer.toString()
);

return apkInspectMappers.mapApkDtoToEntity(dto);
}

}

Code 3.6: Testing Parser class used for mocking (adjusted).

Thanks to the layered architecture, as shown in Section 3.1, and adher-
ence to SOLID principles, as shown in Section 3.2, especially the Single-
Responsibility and Interface Segregation principles, it is possible to easily
replace the individual layers and dependencies of specific classes, making it
easy to perform unit testing of specific classes or methods.

45

3. Implementation of Proof-of-Concept

As package metadata extraction takes a significant amount of time to
run, pre-processed data in the form of JSON files were used during the de-
velopment and testing of other layers instead of repeated data extraction.
Similarly, classes for working with aports repository or Alpine mirror were
mocked.

3.4.7 Dependency satisfaction

One implementation detail worth mentioning is the potential satisfaction of
dependencies. It is important to mention right at the beginning that this work
does not aim to create a full-fledged dependency solver in a graph database.
For example, proposed solution does not consider provider_priority. That
may be the purpose of future development. This work is a proof-of-concept
to answer whether this domain and its issues are representable and solvable
using a graph database.

For these reasons, only a simplified version of dependency resolving has
been implemented based on version matching. Its purpose is to limit the space
of searchable dependencies for query search. More specific dependency traver-
sal is up to the user and their query.

Although the full dependency resolution algorithm is already implemented
in the apk-tools, unfortunately, it does not provide a sufficient application
interface for the needs of this work. As a apart of future development, it
would be advisable to consider how to extend the interface provided by apk-
tools for these purposes appropriately.

satisfies

dependsdepends

depends

de
pe

nd
sdepends

depends

depends

de
pe

nd
s

git git

etcke...

abuild…

gitolite

tigalpine...

aaudit…

aports…

alpine…

Figure 3.3: Dependency subgraph diagram from Neo4j browser. Circles rep-
resent nodes. Yellow – packages, green – dependency, pink – provider.

46

3.4. Background

As already outlined in the conceptual model, in Section 2.2.1.4, depen-
dencies are represented by the Dependency entity. Dependency can only be
satisfied by the Provider entity. Whether a particular dependency is satisfied
by a given provider is determined by the satisfies edge. Since dependency it-
self is not domain-dependent on any particular Package that requests it, it can
be reused for multiple Packages. This sharing of the intermediate node saves
significant computational resources and is a natural optimization. As shown
in Figure 3.3, green git node is shared among multiple packages, although it
had to be resolved only once.

For comparison, the aports-turbo tool only considers the name when work-
ing with dependencies, it does not compare versions.

3.4.8 Dependency tree traversal

One of the fundamental queries is the dependency tree traversal. In other
words, to list all packages on which the selected package depends directly
or transitively. If there are no cycles in the graph, it will be a subgraph
of the tree type. It is also a query suitable for demonstrating the ability
of the graph approach to data representation.

The representation of dependencies between packages is problematic in
this case. It is not a direct connection but a path consisting of multiple
intermediate nodes. Querying transitive dependencies is beyond the expressive
power of the Cypher language in this scenario, as it is necessary to decide which
edge to follow at each step of traversing the graph.

depends providessatisfiesgit libcurlso:libc… so:libc…

Figure 3.4: Dependency satisfaction between git and libcurl packages.

One solution is the Traversal framework mentioned in Section 3.3.1, which,
however, adds further complexity to the project. There is an alternative solu-
tion that is more optimal for read operations, in line with NR1 requirement.
This solution involves maintaining an auxiliary structure in the graph, a de-
rived edge called vdepends.

The relationships vdepends mentioned in Code 3.7 also reflect the domain
restriction that packages in main repository can only depend on packages in
the same repository. Packages in the community repository can depend on
packages in both the main and community repositories.

With this modified graph, it is now easy to traverse it using common algo-
rithms such as BFS. Example 3.8 returns the dependency tree for the package
git and assigns the individual dependencies into levels according to BFS. Al-
though Neo4j offers a feature called virtual graphs, these cannot be used for
further traversal, only for visualization.

47

3. Implementation of Proof-of-Concept

MATCH
(pa:package)-->(a:arch),
(pa)-->(ra:repository {name: "community"}),
(pa)-[:depends]->(de:dependency),
(de)<-[:satisfies]-(pr:provider),
(pr)<-[:provides]-(pb:package),
(pb)-->(a),
(pb)-->(rb:repository)

WHERE
ra.branch = rb.branch AND
rb.name IN ["main", "community"]

WITH pa, pb
MERGE (pa)-[:vdepends]->(pb)
MERGE (pa)-[:vdepends_any]->(pb)

Code 3.7: Example of query for simplifying intermediate nodes by using
an auxiliary relationship.

Technically, several types of these auxiliary relationships are used, de-
pending on the type of dependency (depends, makedepends, etc.). It is also
important to keep in mind that the install_if relationship reverses the direc-
tion of the dependency. If at least one of these edges exists, a relationship
vdepends_any is created simultaneously for easier querying.

MATCH
(p:package {pkgname: "git"})-->(a:arch {name: "x86_64"})

CALL apoc.path.spanningTree(p, {
relationshipFilter: "vdepends_any>"

})
YIELD path
RETURN path, length(path) as hops

Code 3.8: Example of query for obtaining a dependency tree of the given
package.

As already mentioned, this is not exact dependency resolution, but version
matching only. A comparison with the actual solver in apk-tools has been
made. The result of the actual dependency resolution performed by apk-tools
is shown in Code 3.9. The result of version matching in the proposed tool is
shown in Figure 3.5, generated by the query in Code 3.8.

48

3.4. Background

As can be seen from the example, the proposed tool included more pack-
ages in the dependency tree. The reason for this is that all packages potentially
satisfying the dependency are marked using version matching. Thus, it is not
one specific dependency tree like the one generated by apk-tools, but rather
a union of several dependency trees.

To be specific, in the discussed example, the proposed tool identified three
possible ways to satisfy the /bin/sh dependency from ca-certificates package
– either with package busybox, dash or yash. The apk-tools chose busybox
from these options since it has the highest provider_priority.

vdepends_any

vdepends_any vdepends_
any

vdepends_
any vd

ep
en

ds
_a

ny

vdepends_any

vd
ep

en
ds_

an
y

vd
ep

en
ds

_
an

y

vdepends_
any

vdepends_any

vdepends_any

vd
ep

en
ds

_a
ny

vdepends_
any

vdepends_any

vdepends_any

vdepends_any

vdepends_any
vd

epends_
any

git

musl

libexpat zlib

libcurl
pcre2

libcrypto3

brotli-libs

nghttp2-l…
libssl3

ca-certifi…

ssl_client

yash-bin…dash-bin…busybox…

yashdash
busybox

ncurses-…

Figure 3.5: Dependency tree of git package version 2.38.5-r0 in v3.17 according
to the proposed tool.

49

3. Implementation of Proof-of-Concept

(1/14) Installing musl (1.2.3-r4)
(2/14) Installing busybox (1.35.0-r29)
(3/14) Installing busybox-binsh (1.35.0-r29)
(4/14) Installing libcrypto3 (3.0.8-r4)
(5/14) Installing ca-certificates (20220614-r4)
(6/14) Installing brotli-libs (1.0.9-r9)
(7/14) Installing nghttp2-libs (1.51.0-r0)
(8/14) Installing libssl3 (3.0.8-r4)
(9/14) Installing ssl_client (1.35.0-r29)
(10/14) Installing zlib (1.2.13-r0)
(11/14) Installing libcurl (8.0.1-r0)
(12/14) Installing libexpat (2.5.0-r0)
(13/14) Installing pcre2 (10.42-r0)
(14/14) Installing git (2.38.5-r0)

Code 3.9: Dependency tree of git package version 2.38.5-r0 in v3.17 according
to apk-tools.

satisfies

provides

provides

prov
ides

/bin/sh

yash-bin…

dash-bin…

busybox…

/bin/sh

Figure 3.6: Dependency /bin/sh being satisfied by packages busybox, dash
and yash.

Just to compare with the traditional relational approach, a query similar
to Code 3.8 could be done in the SQL language using recursive queries. How-
ever, as illustrated in Code 3.10, such a query for a graph traversal is very
complicated, both for humans to comprehend and for the DBMS to execute.

50

3.4. Background

WITH RECURSIVE dependency AS (
SELECT

vdepends_any.parent_id AS parent_id,
0 AS level

FROM vdepends_any
JOIN package

AS parent ON vdepends_any.parent_id = parent.id
JOIN package

AS child ON vdepends_any.child_id = child.id
JOIN arch ON parent.arch_id = arch.id

WHERE child.pkgname = "git"
AND child.arch_id = parent.arch_id
AND arch.name = "x86_64"

UNION ALL
SELECT

vdepends_any.parent_id,
level + 1

FROM dependency, vdepends_any
WHERE dependency.parent_id = vdepends_any.child_id

)
SELECT * FROM dependency

Code 3.10: Traversing dependency tree using SQL recursive query.

51

3. Implementation of Proof-of-Concept

3.5 Commands
The application offers following commands:

Bootstrap command creates the database in bulk. This command is ex-
pected to take a long time to complete, usually several hours.

Update command updates an already bootstrapped database with new
changes in the repositories. This command is expected to take no
more than a few minutes to complete and is usually run on a popu-
lated database. The implementation of this command fulfils functional
requirement FR2, which requires the ability to track and incorporate
incremental changes.

Rebuild command is used to generate dependency satisfaction and auxil-
iary vdepends relationships. It is automatically executed after bootstrap
and update.

Both bootstrap and update modes share a large portion of the functionality
but may differ in some cases, mainly for performance reasons. Proper import
order of individual entities must be maintained during the execution of these
commands. For example, dependency resolution, mentioned in Section 3.4.7,
must be executed only after all Dependency and Provider entities are present
in the database.

Running the tool requires a locally downloaded repository of aports and
a local Alpine mirror.25 In the case of update mode, the application synchro-
nizes changes in the aports repository and Alpine mirror by itself. Based on
the logged data and standard output, it processes affected packages. This com-
mand can be run automatically after connecting to a CRON-like service or
a publish-subscribe protocol such as MQTT.

25It should be noted that the entire Alpine mirror takes up units of TB (according to
Alpine Linux Development Team [16]).

52

Chapter 4
Evaluation

The application allows for the creating and updating of a graph database.
The purpose of this chapter is to evaluate the established objectives. How-
ever, the main objective was to determine the new possibilities for querying
and analyzing data that the proposed tool provides.

Firstly, this chapter compares the tool with the existing aports-turbo tool
which was described in previous chapters. Secondly, representatives from
the Alpine Linux community were approached to provide queries that would
be beneficial for their work, but which they are currently unable to execute.
Finally, this chapter addresses the actual measured size of the dataset.

It is worth noting that the process of developing the application alone
was a significant contribution to the Alpine Linux community, as the author
identified and reported several bugs in the APKBUILDs during development,
resulting in a prompt fix.

The testing was conducted on a virtual machine26 running Alpine Linux
v3.17. The Neo4j DBMS version 5.4.0 was launched on the same machine in
a container environment using the Podman tool27.

During the testing of the requested queries, no performance issues were
noted that would significantly limit the functionality of the proposed tool.
The only observed performance degradation was encountered during the search
for cycles with a length of four or more, referring to the use case CC3 in Ap-
pendix D.2.3. Worsened performance was also observed for queries using string
operations. This problem is, however, solvable to some extent by using better
indexing or improving the graph structure.

26Four CPUs, 16 GB of RAM, and SSD storage were available.
27The Neo4j package for Alpine Linux was not yet in existence at the time of the appli-

cation development.

53

4. Evaluation

4.1 Comparison with aports-turbo

As stated in Section 1.2.3.1, it is based on a relational database and was
therefore selected for comparison with the tool created in this work.

As a result of the evaluation, it was confirmed that the proposed tool allows
the same set of queries to be performed as aports-turbo. Additionally, a com-
parison was made between existing SQL queries and the same queries written
in Cypher language, which proved to be more natural and more straightfor-
ward for graph querying. Some examples of unusual queries are mentioned in
Appendix C.

4.2 Community Questionnaire

During the evaluation, all 16 queries provided by the Alpine Linux commu-
nity were successfully implemented and evaluated using the Cypher language.
Few of them required features from the Neo4j APOC library. The detailed
analysis of each query is presented in Appendix D. The developed tool meets
all functional and non-functional requirements specified in Section 2.1.

4.3 Dataset size

This chapter deals with the evaluation of the total size of the dataset over
which the database operates. The original estimates were expressed in Sec-
tion 2.3. These were in the order of millions of nodes for a single branch.28

In the non-functional requirements, there was a requirement for at least 4 mil-
lion nodes. In fact, fewer nodes were needed to represent this single branch.
This difference is mainly due to the fact that the original estimate was based
on the x86_64 architecture, for which the largest number of packages is avail-
able. But it is still units of millions of nodes:

• Nodes: 2,262,672

• Relationships: 7,652,959

• Total time of bootstrapping29 approximately 12 hours.

For the following tables, only the x86_64 and aarch64 architectures were
selected since they are containing the largest number of packages. All testing
was done over branch v3.16, its raw data size is approximately 200 GB.

28Including both repositories and all architectures.
29Including parsing both APKBUILDS and resulting binary files.

54

4.3. Dataset size

Repository Architecture Nodes Relationships
main x86_64 384,707 686,370
main aarch64 336,443 656,481
community x86_64 1,745,538 2,270,696
community aarch64 1,483,708 2,157,162

Table 4.1: Comparison of datasets for single repositories. Performed on May
5th 2023.

Table 4.2 shows how the size of dataset is affected by the combination
of architectures, or repositories, within a single database. This way leads
to more efficient usage since a significant part of the nodes is being shared.
This applies, for example, to the files and dependencies nodes.

Repository Architecture Nodes Relationships
main x86_64 ∪ aarch64 394,312 724,710
comm. x86_64 ∪ aarch64 1,762,218 2,918,577
main ∪ comm. x86_64 ∪ aarch64 2,135,174 3,819,912

Table 4.2: Comparison of datasets for combined architectures or repositories.
Performed on May 5th 2023.

Table 4.3 shows the number of shared file nodes across architectures and
within the repository. Total files represent all non-unique files identified by
its path.

Repository Architecture Total files File nodes
main x86_64 342,248 294,875
main aarch64 390,823 343,270
main x86_64 ∪ aarch64 733,071 352,661
comm. x86_64 1,612,817 1,416,280
comm. aarch64 1,828,106 1,646,219
comm. x86_64 ∪ aarch64 3,440,923 1,686,705
main ∪ comm. x86_64 ∪ aarch64 4,173,994 2,037,781

Table 4.3: Comparison of shared nodes for combined architectures. Performed
on May 5th 2023.

55

Conclusion

The main goal of this thesis was to provide the Alpine Linux community with
a tool for querying information about packages, which would allow for their
in-depth analysis. The thesis aimed to explore solutions to this problem using
graph theory and graph databases.

Initially, this thesis described the problem of package management in
Alpine Linux. The chosen domain was converted into a structure called prop-
erty graph with the help of graph theory.

Several graph DBMSs were compared based on the gathered requirements,
created graph model, and the analysis as mentioned earlier. Eventually, Neo4j
was identified as the most suitable solution for this purpose.

Using the modelled property graph and the Neo4j graph DBMS, a tool
that converts package metadata and their relationships into a graph database
was created. The Node.js runtime environment and the TypeScript language
were chosen for the implementation of the application logic. The resulting
solution is a proof-of-concept that meets all functional and non-functional
requirements.

Compared to the relational approach, this method of representing package
data has proven to be both viable and simple. In particular, it has proved
to be more straightforward in terms of data modelling, storing and in terms
of querying.

The proposed data representation allows the domain to be queried and
analysed in ways that were previously impossible. The chosen graph DBMS
meets the performance requirements and does not suffer from the limitations
of the described solutions based on a relational database. The only significant
performance degradation occurred when searching for cycles of length four or
more.

57

Conclusion

Regarding the practical application of the results of this work, the new so-
lution has the potential to completely replace the current application aports-
turbo, if an appropriate API and web interface are developed. However, it
would be necessary to consider a high number of concurrent users and to ad-
dress the potential scalability issues that may arise.

During the problem solving process within this domain, several areas were
identified as having potential for further development. These include integrat-
ing with CVE security trackers, implementing a full dependency solver within
the Neo4j DBMS, or collecting additional metadata such as from git logs or
files. In addition, data retention issues need to be addressed as the database
continues to grow with new data.

58

https://pkgs.alpinelinux.org/
https://pkgs.alpinelinux.org/

Bibliography

1. PREINING, Norbert. Analysing Debian packages with Neo4j - Part 1
- Debian [online]. 2018. [visited on 2023-05-06]. Available from: https:
//www.preining.info/blog/2018/04/analysing-debian-packages-
with-neo4j-part-1-debian/.

2. DEBIAN. What is a package manager? [online]. 2023. [visited on
2023-04-14]. Available from: https://www.debian.org/doc/manuals/
aptitude/pr01s02.en.html.

3. WIKIPEDIA CONTRIBUTORS. List of software package management
systems [online]. 2023. [visited on 2023-04-16]. Available from: https:
//en.wikipedia.org/w/index.php.

4. DECAN, Alexandre; MENS, Tom; CONSTANTINOU, Eleni. On the im-
pact of security vulnerabilities in the npm package dependency network.
In: 2018. Available from doi: 10.1145/3196398.3196401.

5. WIKIQUOTE. Brian Kernighan [online]. 2023. [visited on 2023-05-06].
Available from: https://en.wikiquote.org/w/index.php?title=
Brian_Kernighan&oldid=3273358.

6. ALPINE LINUX DEVELOPMENT TEAM. Working with the Alpine
Package Keeper [online]. 2019. [visited on 2023-04-15]. Available from:
https://docs.alpinelinux.org/user-handbook/0.1a/Working/
apk.html.

7. ALPINE LINUX DEVELOPMENT TEAM. Alpine Package Keeper [on-
line]. 2022. [visited on 2023-04-14]. Available from: https : / / wiki .
alpinelinux.org/wiki/Alpine_Package_Keeper.

8. ALPINE LINUX DEVELOPMENT TEAM. About Alpine Linux [on-
line]. www.alpinelinux.org, 2022. [visited on 2023-04-17]. Available from:
https://www.alpinelinux.org/about/.

59

https://www.preining.info/blog/2018/04/analysing-debian-packages-with-neo4j-part-1-debian/
https://www.preining.info/blog/2018/04/analysing-debian-packages-with-neo4j-part-1-debian/
https://www.preining.info/blog/2018/04/analysing-debian-packages-with-neo4j-part-1-debian/
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://en.wikipedia.org/w/index.php
https://en.wikipedia.org/w/index.php
https://doi.org/10.1145/3196398.3196401
https://en.wikiquote.org/w/index.php?title=Brian_Kernighan&oldid=3273358
https://en.wikiquote.org/w/index.php?title=Brian_Kernighan&oldid=3273358
https://docs.alpinelinux.org/user-handbook/0.1a/Working/apk.html
https://docs.alpinelinux.org/user-handbook/0.1a/Working/apk.html
https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
https://www.alpinelinux.org/about/

Bibliography

9. ALPINE LINUX DEVELOPMENT TEAM. Alpine Linux Trivia [on-
line]. www.alpinelinux.org, 2022. [visited on 2023-04-17]. Available from:
https://wiki.alpinelinux.org/wiki/Alpine_Linux:Trivia.

10. COPA, Natanael. Re: [leaf-devel] 2.6.x kernel support? [online]. source-
forge.net, 2005. [visited on 2023-04-19]. Available from: https : / /
sourceforge.net/p/leaf/mailman/message/12731159/.

11. ALPINE LINUX DEVELOPMENT TEAM. Repositories [online].
www.alpinelinux.org, 2023. [visited on 2023-04-17]. Available from:
https://wiki.alpinelinux.org/wiki/Repositories.

12. ALPINE LINUX DEVELOPMENT TEAM. Creating an Alpine package
[online]. 2023. [visited on 2023-04-20]. Available from: https://wiki.
alpinelinux.org/wiki/Creating_an_Alpine_package.

13. ALPINE LINUX DEVELOPMENT TEAM. APKBUILD Reference [on-
line]. 2023. [visited on 2023-04-20]. Available from: https : / / wiki .
alpinelinux.org/wiki/APKBUILD_Reference.

14. ALPINE LINUX DEVELOPMENT TEAM. Apk spec [online]. 2022. [vis-
ited on 2023-04-14]. Available from: https://wiki.alpinelinux.org/
wiki/Apk_spec.

15. CONILL, Ariadne. Spelunking through the apk-tools dependency solver
[online]. ariadne.space, 2021. [visited on 2023-04-29]. Available from:
https://ariadne.space/2021/10/31/spelunking-through-the-
apk-tools-dependency-solver/.

16. ALPINE LINUX DEVELOPMENT TEAM. How to setup a Alpine Linux
mirror [online]. www.alpinelinux.org, 2023. [visited on 2023-04-19]. Avail-
able from: https://wiki.alpinelinux.org/wiki/How_to_setup_a_
Alpine_Linux_mirror.

17. ALPINE LINUX DEVELOPMENT TEAM. aports-turbo [online]. [N.d.].
[visited on 2023-04-26]. Available from: https://gitlab.alpinelinux.
org/alpine/infra/aports-turbo.

18. RED HAT, INC. AND OTHERS. Anitya [online]. release-monitoring.org,
2022. [visited on 2023-05-09]. Available from: https : / / release -
monitoring.org/.

19. POSTMARKETOS.ORG CONTRIBUTORS. postmarketOS - ap-
kbrowser [online]. [N.d.]. [visited on 2023-04-26]. Available from: https:
//gitlab.com/postmarketOS/apkbrowser.

20. ALPINE LINUX DEVELOPMENT TEAM. secdb [online]. [N.d.]. [vis-
ited on 2023-04-26]. Available from: https://gitlab.alpinelinux.
org/alpine/security/secdb.

60

https://wiki.alpinelinux.org/wiki/Alpine_Linux:Trivia
https://sourceforge.net/p/leaf/mailman/message/12731159/
https://sourceforge.net/p/leaf/mailman/message/12731159/
https://wiki.alpinelinux.org/wiki/Repositories
https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package
https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/APKBUILD_Reference
https://wiki.alpinelinux.org/wiki/Apk_spec
https://wiki.alpinelinux.org/wiki/Apk_spec
https://ariadne.space/2021/10/31/spelunking-through-the-apk-tools-dependency-solver/
https://ariadne.space/2021/10/31/spelunking-through-the-apk-tools-dependency-solver/
https://wiki.alpinelinux.org/wiki/How_to_setup_a_Alpine_Linux_mirror
https://wiki.alpinelinux.org/wiki/How_to_setup_a_Alpine_Linux_mirror
https://gitlab.alpinelinux.org/alpine/infra/aports-turbo
https://gitlab.alpinelinux.org/alpine/infra/aports-turbo
https://release-monitoring.org/
https://release-monitoring.org/
https://gitlab.com/postmarketOS/apkbrowser
https://gitlab.com/postmarketOS/apkbrowser
https://gitlab.alpinelinux.org/alpine/security/secdb
https://gitlab.alpinelinux.org/alpine/security/secdb

Bibliography

21. ALPINE LINUX DEVELOPMENT TEAM. Security Issue Tracker [on-
line]. [N.d.]. [visited on 2023-04-26]. Available from: https://security.
alpinelinux.org.

22. ALPINE LINUX DEVELOPMENT TEAM. apk-tools [online]. [N.d.].
[visited on 2023-04-26]. Available from: https://gitlab.alpinelinux.
org/alpine/apk-tools.

23. ALPINE LINUX DEVELOPMENT TEAM. abuild [online]. [N.d.]. [vis-
ited on 2023-04-26]. Available from: https://gitlab.alpinelinux.
org/alpine/abuild.

24. ALPINE LINUX DEVELOPMENT TEAM. alpine [online]. [N.d.]. [vis-
ited on 2023-04-26]. Available from: https://gitlab.alpinelinux.
org/alpine.

25. BORŮVKA, Otakar. Příspěvek k otázce ekonomické stavby elektrovod-
ných sítí. Elektrotechnický obzor 15. 1925.

26. DIESTEL, Reinhard. Graph Theory. 5th. Prentice Hall, 2017. isbn
9783662536216.

27. BANG-JENSEN, Jørgen; GUTIN, Gregory. Digraphs: theory, algorithms
and applications. Springer-Verlag, 2007.

28. ANGLES, Renzo; ARENAS, Marcelo; BARCELÓ, Pablo; HOGAN,
Aidan; REUTTER, Juan; VRGOČ, Domagoj. Foundations of Modern
Query Languages for Graph Databases. ACM Computing Surveys. 2017,
vol. 50, no. 5. Available from doi: 10.1145/3104031.

29. LEISERSON, Charles E.; CORMEN, Thomas H.; RIVEST, Ronald L.;
STEIN, Clifford. Introduction to Algorithms. 3rd. The MIT Press, 2009.
isbn 9780262033848.

30. RAMAKRISHNAN, Raghu; GEHRKE, Johannes. Database Manage-
ment Systems. 3rd. McGraw-Hill, 2003. isbn 9780072465631.

31. POKORNÝ, Jaroslav; VALENTA, Michal. Databázové systémy. 2.
přepracované vydání. Česká technika - Nakladatelství ČVUT, 2020.
isbn 9788001066966.

32. LITTLE, Mark. Transactions and Web services. Communications of the
ACM. 2003, vol. 46, no. 10, pp. 49–54. Available from doi: 10.1145/
944217.944237.

33. ROBINSON, Ian; WEBBER, Jim; EIFREM, Emil. Graph Databases.
2nd. O’Reilly Media, Inc., 2015. isbn 9781491932001.

34. MCCREARY, Dan. The Neighborhood Walk Story [online]. 2018. [vis-
ited on 2023-04-14]. Available from: https : / / dmccreary . medium .
com/how-to-explain-index-free-adjacency-to-your-manager-
1a8e68ec664a.

61

https://security.alpinelinux.org
https://security.alpinelinux.org
https://gitlab.alpinelinux.org/alpine/apk-tools
https://gitlab.alpinelinux.org/alpine/apk-tools
https://gitlab.alpinelinux.org/alpine/abuild
https://gitlab.alpinelinux.org/alpine/abuild
https://gitlab.alpinelinux.org/alpine
https://gitlab.alpinelinux.org/alpine
https://doi.org/10.1145/3104031
https://doi.org/10.1145/944217.944237
https://doi.org/10.1145/944217.944237
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a

Bibliography

35. POKORNÝ, Jaroslav. Graph Databases: Their Power and Limitations.
In: SAEED, Khalid; HOMENDA, Wladyslaw (eds.). Computer Informa-
tion Systems and Industrial Management. Springer-Verlag, 2015, pp. 58–
69. isbn 978-3-319-24369-6. Available from doi: 10.1007/978-3-319-
24369-6_5.

36. VILHENA, Thomas. Index-free adjacency [online]. 2019. [visited on
2023-04-14]. Available from: https://thomasvilhena.com/2019/08/
index-free-adjacency.

37. W3C. RDF 1.1 Concepts and Abstract Syntax [online]. 2014. [visited on
2023-04-15]. Available from: https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/.

38. DEUTSCH, Alin; FRANCIS, Nadime; GREEN, Alastair; HARE, Keith;
LI, Bei; LIBKIN, Leonid; LINDAAKER, Tobias; MARSAULT, Victor;
MARTENS, Wim; MICHELS, Jan; MURLAK, Filip; PLANTIKOW,
Stefan; SELMER, Petra; REST, Oskar van; VOIGT, Hannes; VRGOČ,
Domagoj; WU, Mingxi; ZEMKE, Fred. Graph Pattern Matching in GQL
and SQL/PGQ. Proceedings of the 2022 International Conference on
Management of Data. 2022. Available from doi: 10.1145/3514221.
3526057.

39. SOLIDIT CONSULTING & SOFTWARE DEVELOPMENT GMBH.
DB-Engines Ranking [online]. 2023. [visited on 2023-04-15]. Available
from: https://db-engines.com/en/ranking/graph+dbms.

40. BITNINE GLOBAL INC. Graph DBMS Performance Comparison
AgensGraph vs. Neo4j [online]. bitnine.net, 2017. [visited on 2023-04-15].
Available from: https://bitnine.net/blog-agens-solution/blog-
agensgraph/graph-dbms-performance-comparison-agensgraph-vs-
neo4j/.

41. WANG, Ran; YANG, Zhengyi; ZHANG, Wenjie; LIN, Xuemin. An Em-
pirical Study on Recent Graph Database Systems. Knowledge Science,
Engineering and Management [online]. 2020, vol. 12274, pp. 328–340 [vis-
ited on 2023-04-15]. Available from doi: 10.1007/978-3-030-55130-
8_29.

42. ALASTAIR, Green. GQL Is Now a Global Standards Project alongside
SQL [online]. Neo4j Graph Data Platform, 2019. [visited on 2023-04-15].
Available from: https://neo4j.com/blog/gql-standard-query-
language-property-graphs/.

43. ASSOCIATION OF ISO GRAPH QUERY LANGUAGE PROPO-
NENTS. Graph Query Language GQL - What is a GQL Standard?
[online]. JCC Consulting, Inc., www.gqlstandards.org, 2022 [visited on
2023-04-16]. Available from: https://www.gqlstandards.org/what-
is-a-gql-standard.

62

https://doi.org/10.1007/978-3-319-24369-6_5
https://doi.org/10.1007/978-3-319-24369-6_5
https://thomasvilhena.com/2019/08/index-free-adjacency
https://thomasvilhena.com/2019/08/index-free-adjacency
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3514221.3526057
https://db-engines.com/en/ranking/graph+dbms
https://bitnine.net/blog-agens-solution/blog-agensgraph/graph-dbms-performance-comparison-agensgraph-vs-neo4j/
https://bitnine.net/blog-agens-solution/blog-agensgraph/graph-dbms-performance-comparison-agensgraph-vs-neo4j/
https://bitnine.net/blog-agens-solution/blog-agensgraph/graph-dbms-performance-comparison-agensgraph-vs-neo4j/
https://doi.org/10.1007/978-3-030-55130-8_29
https://doi.org/10.1007/978-3-030-55130-8_29
https://neo4j.com/blog/gql-standard-query-language-property-graphs/
https://neo4j.com/blog/gql-standard-query-language-property-graphs/
https://www.gqlstandards.org/what-is-a-gql-standard
https://www.gqlstandards.org/what-is-a-gql-standard

Bibliography

44. ALPINE LINUX DEVELOPMENT TEAM. Aports tree [online]. 2022.
[visited on 2023-04-20]. Available from: https://wiki.alpinelinux.
org/wiki/Aports_tree.

45. CONRADIE, Willem; GORANKO, Valentin. Logic and Discrete Math-
ematics. John Wiley & Sons, 2015. isbn 9781119000099.

46. MARTIN, Robert C. Clean Coder Blog [online]. Cleancoder.com, 2019.
[visited on 2023-04-21]. Available from: https://blog.cleancoder.
com/uncle-bob/2012/08/13/the-clean-architecture.html.

47. MARTIN, Robert C. The Open-Closed Principle [online]. 2006. [vis-
ited on 2023-04-20]. Available from: https : / / web . archive . org /
web/20150905081105/http://www.objectmentor.com/resources/
articles/ocp.pdf.

48. OBJECT MENTOR, INC. The Interface Segregation Principle [on-
line]. 1996. [visited on 2023-04-24]. Available from: https : / / web .
archive.org/web/20150905081110/http://www.objectmentor.com/
resources/articles/isp.pdf.

49. FOWLER, Martin. Patterns of enterprise application architecture.
Addison-Wesley, 2015.

50. NEO4J, INC. Traversal Framework - Java Reference [online]. Neo4j
Graph Data Platform, 2023. [visited on 2023-05-03]. Available from:
https://neo4j.com/docs/java-reference/current/traversal-
framework/.

51. MICROSOFT. TypeScript - JavaScript that scales. [online]. Typescript-
lang.org, 2015. [visited on 2023-04-24]. Available from: https://www.
typescriptlang.org/.

63

https://wiki.alpinelinux.org/wiki/Aports_tree
https://wiki.alpinelinux.org/wiki/Aports_tree
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources/articles/isp.pdf
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources/articles/isp.pdf
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources/articles/isp.pdf
https://neo4j.com/docs/java-reference/current/traversal-framework/
https://neo4j.com/docs/java-reference/current/traversal-framework/
https://www.typescriptlang.org/
https://www.typescriptlang.org/

Appendix A
Acronyms

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

APOC Awesome Procedures On Cypher (Neo4j library)

APT Advanced Package Tool

AQL ArangoDB Query Language

BFS Breadth-first search

BSD Berkeley Software Distribution

CLI Commands Line Interface

CPU Central Processing Unit

CTU Czech Technical University in Prague

CVE Common Vulnerabilities and Exposures

DBMS Database Management System

DFS Depth-first search

DTO Data Transfer Object

ELF Executable and Linkable Format

GDBMS Graph Database Management System

GoF Gang of Four (set of design patterns)

GQL Graph Query Language

65

A. Acronyms

FIT Faculty of Information Technology

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JSON JavaScript Object Notation

LDBC The Linked Data Benchmark Council

NVD National Vulnerability Database

OGM Object-Graph Mapping

ORM Object-Relational Mapping

RAM Random-access memory

RDF Resource Description Framework

SSD Solid-state Drive

SQL Structured Query Language

TAR Tape Archive (file format)

UC Use Case

YAML YAML Ain’t Markup Language (markup language)

66

Appendix B
Attachment Contents

README.adoc..brief description
paper

BP_Meinlschmidt_Jakub_2023.....source code of this thesis in LATEX
BP_Meinlschmidt_Jakub_2023.pdf.text of this thesis in PDF format

project................................ source code of the practical part
README.adoc..................brief description of running the project

67

Appendix C
Queries for aports-turbo

The queries runtime was tested over the entire branch v3.16, i.e. main and
community repositories and all architectures.

C.1 Search
The tool allows searching for specific packages by repository, architecture and
name.

SELECT
packages.*,
datetime(packages.build_time, 'unixepoch') as build_time,
maintainer.name as mname, maintainer.email as memail

FROM packages
LEFT JOIN maintainer ON packages.maintainer = maintainer.id
WHERE

packages.repo = :repo AND
packages.arch = :arch AND
packages.name = :pkgname

Code C.1: Query source code for package search in SQL [17].

MATCH
(p:package {pkgname: $pkgname}),
(p)-->(r:repository {name: $repository_name}),
(p)-->(a:arch {name: $arch})

OPTIONAL MATCH (m:person)-[:maintains]->(p)
RETURN p, m.email, m.name

Code C.2: Query code for package search in Cypher.

69

C. Queries for aports-turbo

This query took approximately 1 ms to complete.

C.2 Dependencies
The tool allows searching for packages by dependencies.

SELECT DISTINCT
pa.repo,
pa.arch,
pa.name,
MAX(pa.provider_priority)

FROM depends de
LEFT JOIN provides pr ON de.name = pr.name
LEFT JOIN packages pa ON pr.pid = pa.id
WHERE pa.arch = :arch AND de.pid = :id
GROUP BY pr.name
ORDER BY pa.name

Code C.3: Query source code for dependencies search [17].

The difference is that in the proposed tool the primary key ID is not used,
but pkgname and ver_constraint is used to identify the dependency.

MATCH (de:dependency)
OPTIONAL MATCH

(pa:package)-->(de),
(pr:provider)-->(de),
(pa)-->(r:repository),
(pa)-->(a:arch)

WHERE pa.arch = $arch AND de.pkgname = $pkgname
RETURN

DISTINCT r.name,
a.name,
pa.name,
MAX(pa.provider_priority)

Code C.4: Query source code for dependencies search in Cypher.

This query took approximately 50 ms to complete.

70

Appendix D
Queries Evaluation

Explanation for types of dependencies:

R depends (runtime)

B makedepends (buildtime)

C checkdepends (for tests)

I install_if

The query runtime was tested over the entire branch v3.16, i.e. main and
community repositories and all architectures.

D.1 Queries for Package Maintainers

D.1.1 Use Case PM1

Description: Find aports maintained by “Jakub Jirutka” that depend on “cargo”.

MATCH
(a:apkbuild)<-[:maintains]-(pe:person),
(a)-->(d:dependency {pkgname: "cargo"})

WHERE pe.name = "Jakub Jirutka"
RETURN a

This query took approximately 5 ms to complete.

71

D. Queries Evaluation

D.1.2 Use Case PM2

Description: Find aports with “ppc64le” arch enabled that depend (RBC) on
“luajit” package, directly and transitively.

MATCH
(a:apkbuild)-[:vdepends|vmakedepends|vcheckdepends*]->

(d:package),
(a)-[:built_for]->(c:arch)

WHERE
d.pkgname = "luajit" AND
c.name = "ppc64le"

RETURN a

This query took approximately 10 ms to complete.

D.1.3 Use Case PM3

Description: Find aports that transitively depend (RBC) on “cargo” or “rust”
and are disabled on “riscv64”.

MATCH
(a:apkbuild)-[:vdepends|vmakedepends|vcheckdepends*1..]->

(d:package)
WHERE

d.pkgname IN ["cargo", "rust"] AND
NOT (a)-[:built_for]->(:arch {name: "riscv64"})

RETURN a

This query took approximately 20 ms to complete.

D.1.4 Use Case PM4

Description: Find aports that depend (B) on “cargo” and “zstd-dev”.

MATCH
(a:apkbuild),
(a)-[:vmakedepends]->(:package {pkgname: "cargo"}),
(a)-[:vmakedepends]->(:package {pkgname: "zstd-dev"})

RETURN a

This query took approximately 1 ms to complete.

72

D.1. Queries for Package Maintainers

D.1.5 Use Case PM5

Description: Find aports that depend (B) on “ruby-dev” or depend (R) on
“ruby” or “so:libruby.so.3.1” or installs any file with the given path.

Path: /usr/lib/ruby/gems/3.1.0/*

MATCH (a:apkbuild)-[:depends]->(d:dependency)
WHERE

d.pkgname IN ["ruby-dev", "ruby", "so:libruby.so.3.1"]
RETURN a
UNION
MATCH (a:apkbuild)-[:builds]->(p:package)
WHERE (p)-[:file_rel]->

(:file {path: "/usr/lib/ruby/gems/3.1.0/"})
RETURN a

This query took approximately 2 s to complete.

D.1.6 Use Case PM6

Description: Find packages with at least one file with the “setuid” bit set.

MATCH (p:package)-[r:file_rel]->(f:file)
WITH p, count(f) as files, r, left(r.mode, 1) as mode
WHERE

files > 0 AND
mode <> "0"

WITH apoc.bitwise.op(toInteger(mode), "&", 4) as setuid, r, p
WHERE

setuid = 4
RETURN p.pkgname, r.mode, setuid

This query took approximately 11 s to complete.

73

D. Queries Evaluation

D.1.7 Use Case PM7

Description: Find packages with at least one file with file capabilities in “xat-
trs”.

MATCH (p:package)-[r:file_rel]->(f:file)
WITH p, count(f) as files, r
WHERE

files > 0 AND
NOT r.xattrs IS NULL

RETURN p.pkgname

This query took approximately 8 s to complete.

D.1.8 Use Case PM8

Description: Find packages whose name ends with “-doc” and that do not
contain any file with path “/usr/share/man/*”.

The following approach is ineffective30, since it creates a cartesian product of
packages and files:

MATCH (p:package), (f:file)
WHERE

p.pkgname ENDS WITH "-doc" AND
f.path STARTS WITH "/usr/share/man/" AND
NOT (p)-[:file_rel]->(f)

RETURN p

More efficient approach can be used:

MATCH (p:package)
WHERE

p.pkgname ENDS WITH "-doc" AND
NOT (p)-[:file_rel]->(:file {path: "/usr/share/man/"})

RETURN p.pkgname

This query took approximately 5 s to complete.
30Takes more than minutes to complete.

74

D.2. Queries for Consistency Checks

D.1.9 Use Case PM9

Description: Find packages whose name ends with “-doc”, contain at least one
file outside of the “/usr/share/man/” directory, and the size of the installed
files is over 256 kiB.

MATCH (p:package)-[r:file_rel]->(f:file)
WITH p, count(f) as man_files, r, f
WHERE

p.pkgname ENDS WITH "-doc" AND
NOT f.path STARTS WITH "/usr/share/man/" AND
// Ends with `/` <=> is a directory
NOT f.path ENDS WITH "/" AND
man_files > 0

WITH p, sum(r.size) as total_size
WHERE total_size > 256*1024
RETURN p.pkgname, total_size

This query took approximately 13 s to complete.

D.2 Queries for Consistency Checks

D.2.1 Use Case CC1

Description: Find packages for “x86_64” with conflicting files (i.e. two pack-
ages provide the same path that is not a directory) that do not declare the
other package in “replaces”.

MATCH
(a:arch {name: "x86_64"}),
(a)<--(pa:package)-[:file_rel]->

(f:file)<-[:file_rel]-(pb:package)-->(a)
WHERE

// Ends with `/` <=> is a directory
NOT f.path ENDS WITH "/" AND
NOT (pa)-[:replaces]->(:dependency)

<-[:satisfies]-(:provider)<--(pb)
RETURN pa.pkgname, pb.pkgname, f.path

This query took approximately 200 ms to complete.

75

D. Queries Evaluation

D.2.2 Use Case CC2

Description: Find aports and packages with unsatisfied dependencies (RBCI).

MATCH
(a:apkbuild|package)-->(d:dependency)

WHERE NOT (d)<-[:satisfies]-(:provider)
RETURN a

This query took approximately 20 ms to complete.

D.2.3 Use Case CC3

Description: Find aports with cyclic dependencies (RBC).

MATCH
path=(p:package)-[:vdepends|vmakedepends|vcheckdepends*]

->(p)
RETURN path

The time for the query to complete varied depending on the length of the
searched path:

• Path of length 2 took 900 ms

• Path of length 3 took 4 s

• Path of length 4 took 13 s

• Path of length 5 took 42 s

• Path of length 6 took 121 s

• Path of length 6 took 307 s

76

D.3. Queries for Users

D.2.4 Use Case CC4

Description: Select two APKBUILDs of the same name in a single branch but
in two repositories.

MATCH
(a:apkbuild),
(a)-[:in]->(ra:repository)

WITH
a.pkgname as aport,
ra.branch as branch,
count(ra.name) as repositoriesInSingleBranch

WHERE repositoriesInSingleBranch > 1
RETURN aport

This query took approximately 50 ms to complete.

D.3 Queries for Users

D.3.1 Use Case U1

Description: Find packages for architecture “x86_64” that provide file “ioctl.h”.

MATCH
(p:package),
(p)-[:built_for]->(:arch {name: "x86_64"}),
(p)-[:file_rel]->(f:file)

WHERE f.path ENDS WITH "/ioctl.h"
RETURN p

This query took approximately 800 ms to complete.

D.3.2 Use Case U2

Description: Find out in which version of packages (aports) “CVE-2022-
37434” was fixed.

MATCH (c:cve {id: "CVE-2022-37434"})-->(a:apkbuild)
RETURN a

This query took approximately 1 ms to complete.

77

D. Queries Evaluation

D.3.3 Use Case U3

Description: Find packages for architecture “x86_64” whose pkgname contains
“postgresql”.

MATCH (:arch {name: "x86_64"})<--(p:package)
WHERE p.pkgname CONTAINS "postgresql"
RETURN p

This query took approximately 20 ms to complete.

78

	Introduction
	State of the Art
	Package Management
	Alpine Linux
	Graph theory
	Databases

	Analysis and Design
	Requirements Analysis
	Data Modeling
	Dataset Estimates
	Graph DBMS Selection

	Implementation of Proof-of-Concept
	Architecture
	Design Principles
	Technologies
	Background
	Commands

	Evaluation
	Comparison with aports-turbo
	Community Questionnaire
	Dataset size

	Conclusion
	Bibliography
	Acronyms
	Attachment Contents
	Queries for aports-turbo
	Search
	Dependencies

	Queries Evaluation
	Queries for Package Maintainers
	Queries for Consistency Checks
	Queries for Users

