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Abstrakt

Tato bakalářská práce se zaměřuje na využit́ı neuronových śıt́ı při navrhováńı vybraných prvk̊u
interiéru domu. Hlavńım ćılem práce je extrahovat vlastnosti jako barva, styl a materiál a na
základě těchto vlastnost́ı vytvářet kombinace vzor̊u a doplňk̊u pomoćı grafových neuronových
śıt́ı. Metodika této práce zahrnuje použit́ı VGG pro extrakci rys̊u, YOLOv7 pro detekci objekt̊u
a GCN pro predikci kompatibility mezi prvky interiéru.

Kĺıčová slova neuronové śıtě, interiérový design, kombinace vzor̊u, extrakce funkćı, barva,
styl, materiál, VGG, YOLOv7, GCN, GNN

Abstract

This bachelor’s thesis delves into the utilization of neural networks in designing specific com-
ponents of home interiors. The objective of this research is to extract features including color,
style, and material, and employ these features to construct a graph neural network that generates
combinations of patterns and accessories. The methodology adopted in this work entails the uti-
lization of VGG for feature extraction, YOLOv7 for object detection, and GCN for compatibility
prediction.

Keywords neural networks, interior design, pattern combinations, feature extraction, color,
style, material, VGG, YOLOv7, GCN, GNN
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Chapter 1

Introduction

In this chapter, we present an overview of the motivation behind this work, define its goals,
outline the methodology implemented, and provide an overview of the structure of the entire
study.

Artificial intelligence (AI) has shown remarkable success in image recognition, a field known as
computer vision. This ability has found applications in various domains, providing solutions to
many real-world problems. In this work, we aim to apply computer vision to the field of interior
design, with the goal of significantly reducing the time required for selecting interior elements
based on user preferences.

Artificial intelligence is used extensively in different areas, including interior design. Creating
AI-assisted interior design faces many challenges, such as recognizing different styles, color com-
binations, recognizing shapes and objects, combining these elements with each other, and much
more.

Using existing libraries and tools, we design a neural network that combines patterns and
accessories based on user preferences, taking into account their preferred style, colors, and mate-
rials. The neural network generates a set of patterns and accessories that fit these requirements
and are combined with each other in a coherent manner.

Our motivation for this work stems from our belief that the future lies in the widespread
use of neural networks in various fields. Correctly applying these techniques has the potential
to simplify and improve people’s lives and work. Neural networks can efficiently analyze large
datasets and organize them better than humans. Interior designers often spend considerable
time searching for the right materials, patterns, and accessories. By automating this process, the
productivity of designers can be significantly increased, while also saving time for people who
choose interiors for their homes.

1.1 Goals

The primary aim of this study is to develop an algorithm capable of detecting objects in interior
design, extracting specific features from patterns and accessories, and predicting the compatibility
of these objects using the extracted features. Subsequently, the algorithm should be able to select
the most suitable object based on the compatibility scores. To achieve these objectives, several
steps must be taken:

1. Identify a suitable dataset and select an appropriate architecture for the object detector to
be used in interior design contexts.

1



2 Introduction

2. Develop or select a neural network architecture that can effectively extract features from
interior design objects, focusing on characteristics such as style, color, and material.

3. Create a database of images and their corresponding features, which will serve as a foundation
for generating various combinations.

4. Design an algorithm that can create meaningful combinations based on the available data,
taking into account the compatibility of the objects in the design context.

1.2 Methods
The VGG neural network, a variation of CNN, was used in this work to extract features such as
style, color, and materials from patterns and attributes. Tensor libraries were used to implement
the VGG neural network and train the model.

To create the dataset for this work, web scrapers were developed to collect images from two
different sources: Google Images and Houzz. The Selenium library was used to automate the
scraping process and an HTML parser was used to extract image URLs from the webpages.

In addition to using the VGG neural network, the YOLOv7 object detection system was
utilized to detect attributes of interior spaces and combine them in future models. YOLOv7 is
a real-time object detection system that uses a deep neural network to detect objects in images.
This system was trained using a dataset of annotated images and was used to detect specific
attributes of interior spaces, such as furniture, decor, and lighting.

To manage the collected images and their associated features, the Pandas library was used
to create a dataframe. The dataframe contained the image file path and features extracted by
the VGG neural network, including the style, color, and material of the pattern or accessory.

To predict the compatibility of interior design objects, a Graph Convolutional Neural Network
(GCN) was developed using the PyTorch-Geometric library. This library offers a variety of
methods for deep learning on graphs, making it a suitable choice for this task.

Overall, these methods were used to create a dataset of patterns and accessories with their
associated features, which were then used to train a neural network to generate combinations of
patterns and accessories for interior design.

1.3 Structure of work
Research In this part, we will conduct a comprehensive review of existing research works that

focus on problems related to interior design. We will explore the methods that have been
used in these works and the ideas they have proposed. The goal of this part is to identify the
strengths and weaknesses of the existing approaches and to use this information to inform
the development of a new algorithm.

Theory In this part, we will study and describe the basics of neural networks, including the
main algorithms and principles used in their development. We will explore the different types
of neural networks, such as convolutional neural networks (CNNs) and Graph Convolutional
Neural Network (GCN), which we will use in this work. The aim of this part is to provide a
theoretical foundation for the algorithm we will propose in the implementation part.

Algorithm In this section, we present a overview of the implementation structure employed
in this study. We delve into the key components of the algorithm, including the detector,
models utilized for feature extraction, and the process of constructing a graph neural network
to predict compatibility. Furthermore, we elucidate the interconnections between these com-
ponents and provide insight into why it was necessary to implement each of them to achieve
the objectives of this study.



Structure of work 3

Datasets In this section, we delve into the intricate process of dataset construction for all the
neural networks implemented in this study. We address the challenges encountered during
dataset creation, the techniques employed for data labeling, and the underlying principles
guiding the selection of classes. Furthermore, we provide valuable insights into the utilization
of pre-existing datasets, elucidating their relevance and applications within the context of
this research.

Used architectures and libraries In this section, we discuss the architectures and libraries
used in this study, explaining their functionality and purposes. We provide insights into why
these tools were chosen to accomplish the objectives of this work.

Implementation In this section, we will describe the algorithm developed for creating combi-
nations of patterns and accessories in interior design. The implementation process consists
of several stages, including data collection, feature recognition using the VGG neural net-
work, and the development of a Graph Convolutional Neural Network (GCN) for predicting
compatibility between interior design objects.

Results and experiments In this part, we will present the results of the experiments con-
ducted using the proposed algorithm. We will discuss what the algorithm can and can not
do, and we will analyze the strengths and weaknesses of the algorithm. The aim of this part
is to evaluate the effectiveness of the proposed algorithm and to provide insights for future
research in this area.
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Chapter 2

Research

In this section, we are going to analyze the works of some authors in order to see what tools
they use to solve these problems. We have also explored the pros and cons of using such tools
to solve different problems. We will give some content of these works and what conclusions
we have made from them below.

2.1 Computational Intelligence in architectural and inte-
rior design: a state-of-the-art and outlook on the field

Emil RACEC in [1] shows problems of design automation which faces particular interior design.
At the article deals with the evolution of building plan models from untrained models that

were based on direct enumeration. Because of the exponential growth in complexity their use
became impossible for complex projects.

In the next part they evolved to more flexible probabilistic approaches models that might not
fully specify layout requirements. Learnable relations have success in dependencies of complex
components including their location relative to each other.

And finally it goes to generative models, which solved the problem of creating a variety
of models by studying existing models to create new ones, also being able to compose them,
preserving the style and preference of the user. But this method works better in the virtual
world than in the real one, since in our world there are many restrictions that must be observed.

Further, the author said that interior design and artificial intelligence are being developed in
parallel. AI is helpful in automating some processes and facilitates the work of designers using
expert knowledge. AI helps in interior design to select furniture depending on the type of a
room and functionality. It is also used for arranging furniture, combining styles, in ornamental
decoration.

This work leans on the fact that computerization plays a big role in interior design. The
author describes how technology evolved along with design and what was used for each purpose.
Problems which AI can solve in design and how it can help specialists.

2.2 Classifying in interior design

In the article [2], the author proposes utilizing CNNs to recognize various interior elements
and categorize them based on material, size, shape, and style. To train these models, the
author created a dataset by scraping Google Images using keywords and by extracting data from
www.Houzz.com, which is one of the largest commercial websites for interiors and furniture.

5



6 Research

After scraping, the author manually filtered the dataset based on different features. Using this
dataset of chairs, the author trained four distinct CNN models to recognize material, capacity,
functional features, and design style. Subsequently, these trained CNN models were applied to
a dataset containing chairs, and as a result, each chair was assigned characteristics according
to these parameters. The mean accuracy of training these models is 94.3%; parameters such
as color and shape are recognized quite well, but challenges arise with features like style and
material. This is because style is more subjective, and material can appear different in various
images. These models can be employed for implementing recommendation systems based on
specific requirements.

This work [2] demonstrates that CNN models are effective in recognizing objects and classi-
fying them based on relevant parameters.

In this paper [3], the author asserts that shape recognition is a crucial aspect of interior design
due to its inherent complexity. While attributes such as light or color can be specifically defined
or calculated, there is no clear measure for form assessment. The author selected 343 images
of built house interiors based on their historical context and style. The historical periods were
categorized into five time periods, and features such as surface, lines, and points were extracted
from 3D models.

Using the Graphical Clustering Toolkit (gCLuTO), the author divided the rooms, which were
created in different styles, into 25 clusters based on form similarity. As a result, 16 clusters ex-
hibited various rectangular shapes, five clusters had curved shapes, and four had inclined shapes.
The differences between clusters were not solely based on curvature forms; slope angles, loca-
tion, and the number of features also played a significant role in determining cluster distinctions.
This work serves as a foundation for design studies on forms and can be applied to fields such
as environmental psychology, environmental behavior studies, neuro-architecture, or any other
domain that requires the measurement and evaluation of forms.

This study may be beneficial for measuring and evaluating various forms and grouping them
according to different parameters.

In the paper [4], the author says that texture is a fundamental characteristic of objects. There-
fore, in this work, using a two-stream neural network that uses the CNN model and handcrafted-
based, the author separates images by texture types. The CNN model receives an input RGB
image of 300 × 300 × 3 and returns a 2048 feature vector to the output, in turn for handcrafred
RGB is converted to black and white format and using GLCM features, LBG features and others
is converted into its own feature vector, then these vectors are combined and a texture classifying
model is obtained. This work shows that a CNN combined with a handcrafted-based model gives
more accurate results than just a CNN.

2.3 Predicting human design decisions with deep recur-
rent neural network combining static and dynamic
data

In this study [5], the author aims to predict human decisions in design by employing RNN and
combining both static and dynamic data. Static data consists of designer-related attributes,
which remain constant throughout the project. In contrast, dynamic data comprises the sequen-
tial actions taken by the designer, as they change at different time stages.

The author tests the RNN on two distinct design tasks: an energy-plus house and a solar
parking lot. These tasks differ in complexity and thus effectively evaluate the versatility of this
approach.

The author introduces two methods for integrating static and dynamic data. The first method
directly combines the data into a one-hot vector, serving as input for the RNN. The second
method, based on clustering, utilizes a hidden representation of both static and dynamic data



Stochastic Detection of Interior Design Styles Using a Deep-Learning Model for
Reference Images 7

to obtain a surrogate function. This function can enhance the integration process through su-
pervised and unsupervised learning. Experimental results demonstrate that incorporating static
data improves the performance of LSTM/GRU models for design prediction.

Overall, the study indicates that utilizing both static and dynamic data yields superior results
compared to traditional models that rely solely on the sequence of actions in design without
considering human attributes.

2.4 Stochastic Detection of Interior Design Styles Using
a Deep-Learning Model for Reference Images

This study [6] aims to categorize reference images of interior styles using a deep learning model.
To prepare the data for training, the author scrapes images from various sharing platforms such
as ”Ohouse,” ”Ggumim,” and ”Houzz.” The collected data is then preprocessed through labeling,
resizing, and augmenting, which includes rotation, shifting, and stretching. These steps increase
the number of training samples and enable the model to learn from non-ideal images. The data
is subsequently divided into training and validation datasets.

The author utilizes a pre-trained VGG model with a fully connected layer consisting of 256
outputs, a dropout layer, and a classification layer with softmax activation. This architecture
predicts the probability of an image belonging to each class. The CNN model ultimately learns
to recognize the styles of living room interiors (casual, classic, modern, and natural) with an
average probability of 85 percent.

Subsequently, the author develops a recommendation system that can suggest similar interiors
or find suitable options based on user requirements. Overall, this study demonstrates that the
CNN model is highly effective in classifying and identifying interior designs from images.
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Chapter 3

Theory

In this section, we will examine the underlying principles of neural networks, focusing on their
architecture and functionality. We will also investigate different types of neural networks and
their respective applications. The purpose of this discussion is to enhance the comprehension
of the entire work. The theoretical concepts presented in this section are based on the book by
Aggarwal [7] and are summarized in our own words.

Neural networks are a type of computer model that mimic the way the human brain processes
information. They are made up of multiple layers of interconnected ”neurons,” which receive
input data, process it, and transmit the results to other neurons. Neural networks are used
in artificial intelligence and machine learning to tackle various types of problems, including
classification, regression, and clustering. They are employed in a wide range of fields, including
natural language processing, pattern recognition, robotics, and more. These networks can also
be utilized to create artificial agents that can learn from experience and independently solve
problems.

There are many different types of neural networks, including feedforward neural networks,
convolutional neural networks, and recurrent neural networks. The architecture of a neural
network, including the number of layers and the number of neurons in each layer, can be adjusted
to suit the needs of a particular problem.

3.1 Basic concepts of neural networks

In this chapter, we will describe the fundamental building blocks of neural networks and how
they interact to process and analyze input data. These elements include neurons, weights, biases
and activation functions. we will also discuss the overall structure of a neural network, which is
designed to filter and process input data.

3.1.1 Neuron
A neuron is the fundamental unit of a neural network, which is a mathematical representation of
the human nervous system. It analyzes and manipulates input data, performs calculations based
on the data, and generates an output.

The purpose of a neuron is to analyze input data and pass the results on to other neurons
in the network. To do this, it multiplies the input data by corresponding weights, adds up
the results, and applies an activation function. The activation function determines the strength

9
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with which the neuron is ”turned on” and ready to transmit its output to other neurons in the
network.

3.1.2 Weights

Weights are factors that are taken into account when neurons in neural networks analyze input
data. They determine the significance of each feature in the final output.

The role of weights in neural networks is to consider the importance of different features in the
processing of input data by neurons. For instance, if a neural network is used for image recogni-
tion, weights can determine the relative importance of different colors and shapes for identifying
objects. In general, weights assist the neural network in identifying important characteristics
and making more precise classifications.

3.1.3 Activation function

The activation function is a specific function that is used in neural networks to control the
intensity with which a neuron is activated. It takes as input the sum of the weighted inputs and
produces an output value, which is then transmitted through the network.

There are many different activation functions that can be used in neural networks. Some of
the most common activation functions include:

Linear The formula is: f(x) = x.

This function is used when a simple linear model is needed, such as for regression.

Sigmoid The formula is: f(x) = f(x) = 1
1+e−x This function is often used in neural networks

for binary classification because it produces an output value between 0 and 1, which can be
interpreted as a probability.

Hyperbolic Tangent (tanh) The formula is: f(x) = tanh(x).

This activation function is often used in neural networks because it smooths the output values,
converting them to a range of -1 to 1. This can be useful for tasks such as classification, where
it is important to consider negative values. However, it is worth noting that the tanh function
is sensitive to outliers, which can lead to degradation of the model quality.

ReLU (Rectified Linear Unit) The formula is: f(x) = max(0, x).

This function is often used in neural networks for image and audio processing. It works so
that all negative values are replaced by 0, and all positive values remain unchanged. This
can lead to faster learning speed and better accuracy of the model.

Below are graphs of these functions:
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3.1.4 Bias
A bias is a value that is added to the weighted sum of a neuron’s inputs before the activation
function is applied. The role of biases in a neural network is to help the network learn more
complex patterns and relationships in the data, and to help prevent the network from becoming
stuck in a local minimum during the training process. To use biases in a neural network, they
are typically initialized to a small, non-zero value and updated during the training process along
with the weights. The values of the biases are typically updated using techniques such as gradient
descent and backpropagation, which adjust the biases to optimize the network’s performance on
a given task.

3.2 Types of neural networks

3.2.1 Perceptron
The simplest NN is perceptron, it has only one layer of input nodes and one output node. Input
layer contains d nodes with features X = { x1, x2 ... xd } and edges to output node with weight
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W = { w1, w2 . . . wd }. Using these values, the linear function computes the output node.

ŷ = sign{
d∑

i=1
wi ∗ xi}

After that, we can predict output value ŷ using the sign function that maps our value of
output node to -1 or +1. The error of prediction we can count using E(X) = y - ŷ, where y is
a real value, ŷ is a predicted value. If the error is not 0, we need to update the weight of NN.
Instead of a sign function we can use other activation functions for different types of goals, like
a support vector machine, least-squares regression, regression classifier.

3.2.2 Feedforward neural network
A feedforward network is a type of ANN that does not have any feedback or loop connection, so
the information flows only in one direction (from input layer to output).

The basic structure of a feedforward neural network can be represented by the following
formula:

y = f(
∑n

i=1 wixi + b)
where:
y is the output of the network f(x) is the activation function wi is the weight of the ith input

xi is the ith input b is the bias The activation function is used to introduce non-linearity to the
network. Some common activation functions include sigmoid, tanh, and ReLU.

Feedforward neural networks are used in a variety of applications, including image and speech
recognition, natural language processing, and even playing video games. They are trained using
an optimization algorithm, such as stochastic gradient descent, to minimize the error between
the predicted output and the desired output.

3.2.3 Perceptron
The simplest NN is perceptron, it has only one layer of input nodes and one output node. Input
layer contains d nodes with features X = {x1, x2 ... xd} and edges to output node with weight
W = {w1, w2 . . . wd}. Using these values, the linear function computes the output node.

ŷ = sign{
d∑

i=1
wi ∗ xi}

So at the 3.1 you can see scheme of perceptron:
After that, we can predict output value ŷ using the sign function that maps our value of

output node to -1 or +1. The error of prediction we can count using E(X) = y - ŷ, where y is
a real value, ŷ is a predicted value. If the error is not 0, we need to update the weight of NN.
Instead of a sign function we can use other activation functions for different types of goals, like
a support vector machine, least-squares regression, regression classifier.

The goal of the perceptron algorithm is to minimize the prediction error, so we can write the
goal of the algorithm in least squares form that also names as a loss function:

MinimizeW̄ L =
∑

(X̄,y)∈D

(y − ŷ)2

The training algorithm of ANN gives a random element of input and after each iteration
updates the weight vector based on the error E(X) as follows:

W = W + α ∗ E(X) ∗ X
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Figure 3.1 CNN model [8]

Where the parameter α is a learning rate of the NN. Training algorithm reiterates over all
the training data and balances the weight until our prediction is really close to the actual value,
this process called feeding.

Sometimes, the output of a prediction model includes a constant value that cannot be ex-
plained by the input features. This constant value is known as the bias. Bias is usually used for
balance distribution, this is especially important when the two binary classes are not evenly dis-
tributed. The bias variable b helps to account for this constant value and improve the accuracy
of the prediction:

ŷ = sign{
d∑

i=1
wi ∗ xi + b}

3.2.4 Recurrent neural networks
Recurrent neural networks (RNNs) are a type of artificial neural network that are specifically
designed to process sequential data. They are particularly useful for tasks such as language
translation, speech recognition, and time series forecasting.

RNNs have a unique architecture that includes feedback connections, which allow the network
to retain information from previous time steps and use it to inform the current prediction. This
is accomplished through the use of hidden states, which are updated at each time step and passed
on to the next time step.

The 3.1 shows a scheme of RNN:
RNN consists of:

Input layer: The input layer receives the input data, x, at each time step t.

Hidden layer: The hidden layer computes the hidden state ht at each time step t, using the
previous hidden state ht−1, the current input xt, and the weights and biases for the hidden
layer. The computation can be represented by the following formula:

ht = f(Whhht−1 + Wxhxt + bh)
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Figure 3.2 CNN model [rnn-image]

Output layer: The output layer computes the output yt at each time step t, using the current
hidden state ht and the weights and biases for the output layer. The computation can be
represented by the following formula:

yt = g(Wyhht + by)

Weights and biases:

Whx: Weights matrix connecting the input layer to the hidden layer
Whh: Weights matrix connecting the previous hidden state to the current hidden state
bh: Bias term for the hidden layer
Wyh: Weights matrix connecting the hidden layer to the output layer
by: Bias term for the output layer

Activation functions:

f : Activation function for the hidden layer
g: Activation function for the output layer

A recurrent neural network (RNNs) is universal because it can compute any function that can
be computed by a Turing machine, meaning that it can perform any computation that is possible
by a computer. The output of the RNN can be obtained after a number of time steps that is
proportional to the amount of time needed by the Turing machine to complete the computation
and the length of the input. These results apply to precise implementations of functions, not
approximations, and the input to the RNN must be a binary sequence, with the output being
discretized as a binary output.
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3.2.5 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of artificial neural network that are specifically
designed to process data with a grid-like topology, such as images. They are commonly used in
tasks that involve image and video analysis, such as image classification, object detection, and
video action recognition.

To use a CNN, a large dataset of labeled examples is required for training. The CNN is then
trained using an optimization algorithm, such as stochastic gradient descent. Once trained, the
CNN can make accurate predictions on new, unseen data.

A Convolutional Neural Network (CNN) is composed of multiple layers, including convolu-
tional layers, pooling layers, and fully-connected layers. Each layer has a specific role in the
model and contributes to the model’s ability to extract and abstract features from the input
data. The architecture of CNN is shown on 3.3:

Figure 3.3 CNN model [9]

The input layer receives the input data, typically in the form of an image or a sequence of
images. The input data is passed through the convolutional layers, which apply a convolution
operation to extract local features. The convolution operation can be represented by the following
formula:

f(x, y) = (x ∗ y) =
∞∑

i=−∞

∞∑
j=−∞

x(i)y(j)

where x and y are the input functions and ∗ is the convolution operator.
The convolutional layers are followed by pooling layers, which reduce the spatial dimensions

of the feature maps by applying a pooling operation, such as max pooling or average pooling.
The pooling operation can be represented by the following formula for max pooling:

f(x) = nmax
i=1

xi

where x is the input data and n is the size of the pooling window.
The final layer is the fully-connected layer, which performs the final classification or regression

tasks. The fully-connected layer takes the output of the pooling layer as input and applies a
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linear operation, followed by a non-linear activation function, such as the rectified linear unit
(ReLU). The linear operation can be represented by the following formula:

f(x) = Wx + b

where W is the weight matrix and b is the bias term.
In summary, the structure of a CNN consists of an input layer, followed by multiple convolu-

tional and pooling layers, and ending with a fully-connected layer. Each layer is connected to the
next through a linear operation and possibly a non-linear activation function, and the weights
and biases of the layers are learned through training.

3.2.6 Graph neural network
The theoretical concepts presented in this section are based on the paper by Thomas N. Kipf
and Max Welling [10] and are summarized in our own words.

Graph Convolutional Networks (GCNs) are a type of neural network specifically designed
to operate on graph-structured data. In GCNs, the input data is represented as a set of nodes
and edges that connect these nodes. GCNs have been used extensively in computer vision,
bioinformatics, recommendation systems, and other fields that deal with graph-structured data.

In a GCN, each node in the graph represents a vector of features that capture information
about that node. The goal of the GCN is to learn a function that maps each node to a low-
dimensional vector representation that captures both the node’s features and its neighborhood
structure. This is achieved by using a localized linear filter that aggregates information from a
node’s neighbors, defined as:

H
(l+1)
i = σ(

∑
j∈N (i)

1
cij

H
(l)
j W (l))

where H
(l)
i is the representation of node i at layer l, N (i) is the set of neighbors of node i,

W (l) is the learnable weight matrix for layer l, and cij is a normalization constant that depends
on the degree of nodes i and j. The activation function σ is typically a non-linear function such
as ReLU.

The above equation can be written in matrix form as:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W (l))

where H(l) is the matrix of node representations at layer l, Ã = A+I is the adjacency matrix
of the graph with added self-loops, D̃ is the diagonal matrix of node degrees of Ã, and I is the
identity matrix. The normalization of Ã by D̃− 1

2 and D̃− 1
2 ensures that the filter is localized

and takes into account the degree of the nodes.
Overall, GCNs are a powerful tool for working with graph-structured data. They are able to

capture both the features and the structure of the graph, making them suitable for a variety of
tasks such as node classification, link prediction, and graph classification.



Chapter 4

Algorithm

In this chapter, we discuss the structure of the algorithm implemented in this work. We
discuss the detector employed for furniture recognition, the neural network utilized for feature
extraction from cropped images, and the process of constructing a graph neural network based
on the generated data to predict compatibility among interior design elements.

In this study, we present a method that predicts the compatibility between interior design objects
and subsequently generates various combinations based on this compatibility. The algorithm op-
erates on features extracted from furniture items. To implement this algorithm, several steps
are required: create a detector that can recognize and crop images of furniture, extract features
from the cropped furniture images, and develop a graph neural network (GNN) to predict com-
patibility between accessories based on the extracted features. Below we will elaborate on each
of these steps.

Initially, we trained a YOLOv7 detector to recognize furniture within various interior settings
with the goal of generating a dataset consisting of cropped images. These cropped images were
then utilized for feature extraction, ultimately creating a dataset suitable for training a graph
convolution neural network (GCN).

Subsequently, we aimed to develop a neural network for extracting features from furniture
items, which would then be used to create a graph for predicting compatibility. The challenge
in combining images of patterns and accessories based on features is the potential for differing
features that do not always intersect. As a solution, we propose focusing on a set of parameters
common to all interior elements: color, material, style, and room type. We believe these features
are sufficient for effectively predicting compatibility.

Initially, our intention was to create a single neural network for predicting all these features.
However, we encountered several challenges, the primary one being the labeling of data from
different manufacturers. Consequently, we were unable to create a dataset with labels containing
all of these features. We decided to train four separate neural networks to predict each feature
independently.

For feature extraction, we employed the VGG architecture, which consists of several layers of
convolutional neural networks. We created four datasets for each feature by dividing images into
classes and preprocessing the data through resizing and normalization. These datasets were then
fed into pretrained VGG networks, resulting in four VGG neural networks that extract features
that can be used for creating combinations.

Finally, we assembled all the necessary tools to train a graph neural network (GNN) that
would predict compatibility between elements of interior design. Utilizing YOLOv7, we cropped
the images, and with the VGG neural networks, we extracted features from the cropped furniture
images obtained from interior scenes. These features were then used to create a graph.

17



18 Algorithm

For objects of interior design that belong to the same room type and share a similar style,
we established an edge between them. If they also have the same color or material, the weight
of the edge is increased. To each node, we added the image that was transformed into a vector
along with its corresponding features.

Subsequently, we constructed a graph convolution network, with the input being the built
graph and the output being a compatibility matrix. Based on this output, we are able to generate
combinations of patterns and accessories for interior design.



Chapter 5

Datasets

In this chapter, we elucidate the process of constructing datasets for all neural networks im-
plemented in this study. We discuss the challenges faced during dataset creation, the methods
employed for data labeling, and the principles guiding class selection. Additionally, we pro-
vide insights into the pre-existing datasets utilized in this work and explain their respective
applications.

5.1 Dataset for VGG
In this work, we collect a dataset of images of patterns and accessories for use in training our
models. To obtain a diverse and representative sample, we source our data from two sources:
www.Houzz.com, a website that offers a large collection of interiors and interior attributes, and
Google image search, a widely used image search engine.

In our initial approach, we aimed to collect images of patterns and accessories with labels
that corresponded to the parameters we desired to use, such as style, color, and material. To
obtain a large and diverse dataset, we used www.Houzz.com as a source and developed a scraper
to collect the images and their associated labels.

However, we encountered a significant challenge in the annotation process, as different man-
ufacturers used different formats and terminology to describe the attributes of their products.
This resulted in a highly fragmented dataset, with a large number of variations in the naming
and labeling of materials, for example. As a result, we were unable to use the labels as they
were.

To illustrate this issue, we present an example of patterns for covering walls and the materials
from which they are made. We collected a total of 5490 images and divided them by the name
of the material, resulting in 173 folders with the names of different materials (Figure 5.1 shows a
portion of this distribution). Despite the large size of the dataset, the variations in the labeling
made it difficult to use the labels directly for training our models.

Despite our attempts to preprocess and clean the collected dataset of images of patterns
and accessories in order to make it suitable for training our models, we were unable to find a
satisfactory solution to address the inconsistency in the labeling of the attributes by different
manufacturers. As a result, we determined that the dataset was unreliable for training and
decided to use it only for generating combinations and testing our model.

We also investigated other sources for labeled data, but encountered similar challenges with
inconsistency in the labeling. Therefore, we concluded that it was infeasible to collect a dataset
in which each image contained all the desired characteristics, and we had to modify our approach
accordingly. Rather than attempting to predict all the desired parameters at once, we decided
to build separate models for each parameter and generate the labels ourselves.
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Figure 5.1 Distribution of materials from houzz.com

To this end, we used Google image search as a source for the images and manually labeled
them according to the parameters of interest, such as style, color, and material. This approach
had its own set of challenges, as Google image search does not always return images that match
the query, leading to a need for more thorough cleaning and preprocessing of the data.
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5.1.1 Materials
One of the parameters we consider is the material of the objects, as it is an important factor
that influences the appearance and properties of the interior elements.

To collect data for this parameter, we selected seven main categories of materials from which
interior objects are commonly made:

ceramic

glass

paper

plastic

stone

textile

wood

We used Google image search to collect a large dataset of images that represent these ma-
terials, both in the form of simple images of the materials themselves and images of interior
objects made from these materials. In total, we obtained 20215 images, which we divided into
the respective categories based on their material.

Figure 5.2 shows the distribution of the images by material group. As can be seen, the dataset
is balanced and covers a wide range of materials, enabling us to train models that are capable
of extracting meaningful features from a diverse set of images.

Figure 5.2 Distribution of materials
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5.1.2 Styles
In the next phase of our project, we aim to train a model to recognize the style of interior
attributes as an important parameter for combining images of patterns and accessories. Style
is a significant factor that influences the aesthetic and visual appeal of the interior, and it is
essential to consider it when selecting and combining elements.

To train our model, we collected a dataset of images of interior designs from Google image
search, focusing on six of the most common interior styles:

bohemian

contemporary

farmhouse

industrial

modern

traditional

We selected a diverse set of images that represent these styles, both in terms of the overall design
and the specific elements that define the style.

As a result, we obtained a dataset of 8910 images in different styles (the distribution of images
is shown at Figure 5.3), which we used to train our model. By learning from this dataset, our
model is able to extract features that are relevant to the style of the interior attributes and use
them to make accurate predictions.

Figure 5.3 Distribution of styles
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5.1.3 Colors
Also we scrapped 13,689 color images were scraped to aid in the training of a model for extracting
colors from any given object. The main colors that were chosen for this task are listed below in
a bulleted list:

green

orange

red

grey

blue

white

yellow

brown

violet

black

These colors were selected as they represent a wide range of hues and shades that are com-
monly used in interior design, and the scraped images can be used to train a model to recognize
and categorize colors in the design process. The distribution of colors is shown at Figure 5.4).

Figure 5.4 Distribution of colors
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5.1.4 Type room
In addition to extracting style, material and color, we also sought to identify the type of room
depicted in the image. For this task, we used the ADE20k dataset and selected three room
categories:

living room

child’s room

bedroom

The dataset provided object coordinates for each image, allowing us to crop the relevant portion
of the image for analysis. With this dataset, we were able to train a model to predict the type
of room depicted in an image. The final dataset contained 16,744 cropped images labeled with
their corresponding room type. The distribution of colors is shown at 5.5)

Figure 5.5 Distribution of colors
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5.2 Dataset for GCN
In developing a combination of accessories, we decided to implement a graph convolutional neural
network (GCN). To achieve this, it was necessary to create a dataset that could be represented
as a graph. Consequently, we utilized the ADE20k dataset and performed object detection
on interior elements. Following this, we cropped the images and generated features for each
object. The resulting dataset was stored in a CSV file containing the image names, room types,
attributes, styles, colors, and materials. The structure of the dataset is illustrated below:

0 ADE train 00000386 15.jpg bedroom lamp Industrial red ceramic
1 ADE train 00000386 8.jpg bedroom wall Modern brown paper
2 ADE train 00003821 5.jpg bedroom bed Industrial orange textile
3 ADE train 00004132 11.jpg bedroom bed Bohemian yellow textile
4 ADE train 00004132 17.jpg bedroom wall Bohemian orange ceramic

Each row in the CSV file represents an object in the scene, along with its associated metadata.
The dataset was designed to facilitate the training of a GCN model that can effectively predict
the compatibility between different interior design objects.

The ADE20k [11] dataset is advantageous for our purposes because it allows us to determine
which accessories belong to a particular interior, enabling the creation of graphs based not only
on features but also on the relationships between elements within the same interior. However,
the dataset has some limitations concerning image quality, as some objects are very small, and
cropped images may contain parts of other objects, which negatively impacts the efficiency of
feature extraction.

To address these issues, we decided to create another dataset based on the Bonn Furniture
Styles Dataset [12], which comprises images of interior objects. We also predicted features for
each image and generated a dataset suitable for training and testing a GCN model. Although
this dataset does not provide explicit information about the relationships between objects within
the same interior, it still allows for the construction of graphs based on features.
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Chapter 6

Used architectures and libraries

In this chapter, we discuss the architectures and libraries utilized in this study, explaining
their functionality and purposes. We will elucidate the underlying principles of these tools
and elaborate on the reasons for their selection in order to accomplish the objectives of this
work.

In this study, we employ the VGG architecture to train models that extract features from images
of interior objects, including the style, material, and type of room. Additionally, we utilize the
YOLO detector to recognize furniture present in the images. The present work outlines the tech-
nical underpinnings of these two methods and elucidates the rationale for our selection of these
techniques, with the aim of providing a more comprehensive understanding of the subsequent
steps in our research.

6.1 YOLOv7

YOLO [13] is a real-time object detection system that uses a deep neural network to detect
objects in images. The basic idea behind YOLO is to divide the input image into a grid of
cells and predict the class probabilities and bounding boxes for each cell. The class probabilities
represent the probability of an object belonging to a particular class, and the bounding boxes
represent the coordinates of the box that tightly encloses the object.

YOLOv7 uses a backbone network, typically a pre-trained convolutional neural network
(CNN), to extract features from the input image. The features are then passed through a
series of convolutional layers to reduce the spatial dimensions of the features while increasing
the depth of the feature map. This process allows the network to detect increasingly complex
patterns and features within the image.

The output of the convolutional layers is then fed into a set of detection heads, which are
responsible for predicting the bounding boxes and class probabilities for the objects in each cell
of the grid. YOLOv7 uses a single detection head to predict all objects in the image, which
allows it to detect multiple objects in real-time. Each prediction consists of a set of bounding
boxes and the class probabilities for those boxes. The boxes are parameterized relative to the
grid cell they are in, so the network predicts the center coordinates, width, and height of each
box as offsets from the coordinates of the cell.

To train the YOLOv7 network, a loss function is used to measure the error between the
predicted object detections and the ground-truth object annotations. The most commonly used
loss function for object detection is the mean average precision (mAP) loss, which is a combination
of classification accuracy and localization accuracy.
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6.2 VGG
VGG, or the Visual Geometry Group network [14] is a deep convolutional neural network (CNN)
architecture that comprises multiple layers. In this study, we utilize the VGG-16 architecture,
which is composed of 16 convolutional layers. VGG has demonstrated excellent performance in
recognition and classification tasks. Specifically, the VGG-16 model achieves 92.7% test accuracy
on ImageNet, which consists of 10 million images distributed among 1000 classes.

The VGG architecture is characterized by convolution layers with rectified linear unit (ReLU)
activation, max pooling layers, fully connected layers, and softmax normalization, as depicted in
Image 6.1.

Figure 6.1 VGG architecture [14]

We have decided to use the VGG architecture to extract features because it has shown to
deliver superior performance in image classification tasks, as compared to simpler CNN models
or analogs such as AlexNet. One of the reason for this is the use of multiple 3x3 kernel-sized
filters in instead of larger kernel-sized filters, which provides better feature learning capability.
Furthermore, pre-trained VGG neural networks can be utilized to improve prediction results
with a smaller number of images.

6.3 Libraries
TensorFlow: TensorFlow is an open-source software library for machine learning and artificial
intelligence that provides a flexible and efficient platform for training, testing, and deploying
models. We have used TensorFlow to develop and train our models, including the VGG
model that we have used in our bachelor work. TensorFlow has enabled us to define complex
models and optimize their performance using advanced techniques such as gradient descent
and backpropagation.

SciPy: SciPy is a library for scientific computing in Python that provides a wide range
of numerical and statistical algorithms, as well as tools for linear algebra, optimization,
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and signal processing. We have used SciPy to perform various mathematical and statistical
operations on the data, such as fitting models, computing distances and correlations, and
generating plots.

os: The os library is a built-in Python library that provides functions for interacting with
the operating system, such as reading and writing files, creating and deleting directories,
and executing external commands. We have used os to access and manipulate the files and
directories in our project, as well as to communicate with external programs and resources.

tqdm: tqdm is a library for displaying progress bars and status updates during long-running
tasks. We have used tqdm to provide feedback and updates on the progress of our experiments
and data processing tasks, as well as to monitor the performance of our models.

util: The util library is a custom library that we have developed for our project. It contains
various utility functions and classes that we have found useful for our tasks, such as data
loading, preprocessing, and visualization. We have used the util library to streamline the
development and testing of our models and to simplify the codebase.

matplotlib: matplotlib is a library for plotting and visualizing data in Python. We have
used matplotlib to generate various charts, plots, and figures to illustrate the results of our
experiments and to communicate our findings to the reader.

requests: requests is a library for making HTTP requests in Python. It simplifies the process
of sending and receiving HTTP messages, and provides support for various authentication
and encoding schemes. We have used requests to communicate with web servers and APIs,
and to fetch data from the web.

selenium: selenium is a library for automating web browsers. It allows us to write scripts that
simulate user interactions with a web page, such as clicking links, filling forms, and scrolling.
We have used selenium to scrape data from websites and to perform functional testing of our
web applications.

urllib: urllib is a Python library for working with URLs. It provides functions for parsing
and building URLs, as well as for sending HTTP requests and receiving responses. We have
used urllib to access web resources, as well as to encode and decode data for transmission
over the web.
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Chapter 7

Implementation

This chapter outlines the software implementation for predicting compatibility between objects
in interior design. The implementation comprises several key components, including a data
scraper for collecting images from web resources, the training of the YOLOv7 detector for
furniture recognition, the training of VGG neural networks for feature extraction, and the
training of a Graph Convolutional Neural Network (GCN) for predicting object compatibility.

7.1 Scraper

For data collection, we developed a web scraper that extracts images from Google search results.
The input for this scraper consists of a list of links and a corresponding list of directories in which
to save the images from those links. The scraper accesses each link and saves any images it finds,
scrolling down the page to collect all available images. The resulting data can be organized into
various categories as desired by the user and be used for training purpose.

7.2 VGG model training

To extract features related to attributes such as style, color, and material, we employed the
VGG neural network. The training process was composed of a loader, model, and worker. In
the loader, the dataset was loaded, prepared for training, and split into folders for training and
validation sets. In the model, we loaded and configured the parameters of VGG16, and worked
with its layers. The worker was responsible for performing the training and validation process, as
well as calculating the accuracy. The following sections will provide more detailed explanations
of each component of the training process.

7.2.1 Loader
We use transforms from the PyTorch torchvision library to prepare the images for training.
Specifically, we use the Compose function to chain together a series of transformations that are
applied to each image before it is fed into the VGG neural network. The transformations that
we use are as follows:

1. RandomResizedCrop: We first resize each image to a standard size of 224x224 pixels, which
is the format required for the VGG neural network. We also use the RandomResizedCrop
transformation to randomly crop the image to a slightly smaller size, with a random scaling
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factor applied. This is done to ensure that the network is exposed to a variety of image sizes
and scales during training, which can improve its ability to generalize to new images.

2. RandomHorizontalFlip: We then apply a random horizontal flip to the image with a 50%
probability. This transformation is used to create mirrored versions of the original image,
which effectively doubles the size of the training set and can improve the model’s ability to
recognize objects at different orientations.

3. ToTensor: The transformed image is then converted to a PyTorch tensor, which is a multi-
dimensional array that can be processed by the neural network.

4. Normalize: Finally, we normalize the pixel values of the image using the mean and standard
deviation values of the entire dataset. This is done to bring the pixel values of the images to
a similar range, which can help to stabilize and speed up the training process. Specifically,
we subtract the mean value of the dataset from each pixel, and then divide the result by the
standard deviation of the dataset.

Overall, this series of transformations allows us to preprocess the input images in a way that can
help to improve the performance and stability of the VGG neural network during training.

Next, the dataset was randomly split into training and validation sets, with 80% of the data
used for training and 20% used for validation. This was achieved by generating a random split
of indices for the dataset and then using these indices to create two samplers, one for training
and one for validation. The samplers were used to create two DataLoader objects, which were
used to facilitate the training process.

7.2.2 Models
This is a module containing the implementation of the vgg16 model, as well as some helper
functions for defining its layers and initializing its weights.

The vgg16 model is a convolutional neural network architecture consisting of 13 convolutional
layers, 5 max-pooling layers, and 3 fully connected layers. It takes an input image and produces
a classification output. The vgg16 class inherits from the nn.Module class in the PyTorch library
and implements the forward pass of the model in its forward method.

The cnn layers function is a helper function that creates the convolutional layers for the vgg16
model. It takes the number of input channels and a boolean flag indicating whether to use batch
normalization and returns a sequential container of the convolutional layers. The function defines
the configuration of the convolutional layers as a list of integers and the string ”M” (indicating a
max-pooling layer) and iterates through this configuration to create the convolutional layers. If
the batch normalization flag is set to True, batch normalization and ReLU activation are added
to each convolutional layer.

The fc layers function is a helper function that creates the fully connected layers for the vgg16
model. It takes the number of classes and returns a sequential container of the fully connected
layers. The function defines a fixed architecture for the fully connected layers and returns it in
a sequential container.

The vgg16 class also contains methods for initializing the weights of its layers (init weights),
loading pretrained weights (load weights), and freezing layers for transfer learning (freeze cnn layers).
The memory usage method is a utility function that prints the memory usage of the model.

Overall, models.py provides an implementation of the vgg16 model with helper functions
for defining its layers and initializing its weights, making it a useful module for training and
evaluating image classification models.
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7.2.3 Worker

The ”worker” component of the codebase is responsible for managing the training process of a
machine learning model. When the training process is initiated, the worker first loads the model
that is to be trained. The model may have been previously saved at some checkpoint during a
previous training session, and the worker provides the ability to load this checkpoint and continue
training from that point.

During the training process, the worker also performs validation to assess the performance
of the model. This involves passing a set of validation data through the model and computing
various performance metrics, such as accuracy and the confusion matrix. These metrics provide
valuable insights into how well the model is generalizing to new data and can guide decisions on
how to adjust the training process.

Overall, the worker component plays a critical role in the training process of a machine
learning model. By managing the loading of the model and providing tools for checkpoint and
validation, the worker enables more efficient and effective training, leading to better performance
of the final model. The use of scientific methods and rigorous evaluation techniques ensures that
the trained model is reliable and useful for its intended purposes.

7.3 Detecting patterns and furniture

To extract relevant features from various patterns and attributes in the field of interior design,
it is necessary to first detect and crop the relevant regions of interest. This can be accomplished
through the use of an object detection algorithm, such as YOLOv7, which is specifically designed
to locate and identify objects within an image.

To train the YOLOv7 algorithm to detect the relevant attributes and patterns in the field of
interior design, we utilized the ADE20k dataset. This dataset contains a large number of images
annotated with object labels, making it an ideal choice for training object detection models.
By training the YOLOv7 algorithm on this dataset, we were able to teach the algorithm to
accurately identify and locate the relevant attributes and patterns within the images.

Once the YOLOv7 algorithm has been trained, it can be used to detect and crop the relevant
regions of interest in new images. By generating a combination of these cropped regions, we can
extract the relevant features from the images and use them to inform further analysis or design
decisions in the field of interior design.

7.3.1 Training YOLOv7

For training YOLOv7 on the ADE20k dataset, we needed to create labels for each image in
YOLO format. Each label consists of the class ID, center coordinates (x,y), and the width and
height of the bounding box. The ADE20k dataset provides a segmentation of polygons, which
is represented as a list of x and y coordinates. To obtain the bounding box of each object, we
obtained the minimum x and y values and maximum x and y values of the polygon. we then
translated these values into the YOLO format by computing the center coordinates, width, and
height of the bounding box using the following formulas:
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centerx = min x + max x

2 × image width

centery = min y + max y

2 × image height

width = max x − min x

image width

height = max y − min y

image height

These formulas calculate the center coordinates and size of a bounding box (in terms of the
object’s width and height). By dividing the center coordinates and size by the dimensions of the
image, we are normalizing the values to be in the range [0, 1], which is necessary for the YOLO
algorithm to work properly. By computing these values for each object, we was able to generate
YOLO-formatted labels for the ADE20k dataset, which could be used to train the YOLOv7
algorithm to detect and localize the relevant attributes of interior design in images.

ADE20k dataset has a variety of scenes, but for this project, only images from the Living
Room, Bedroom, and Child Room classes were used. There are over 100 attributes present in
each of these classes, but for the purposes of this project, 14 attributes were selected, as they
are the most relevant for interior design and appear in nearly every room. These attributes have
the largest number of instances in the dataset, and include: wall, bed, table, clock, chair, sofa,
couch, lounge, lamp, plant, flora, plant life, vase, pot, flowerpot, rug, carpet, carpeting, blanket,
cover, coffee table, cocktail table, and ottoman, pouf, pouffe, puff, hassock.

Using the labels and images from the ADE20k dataset, we trained the YOLOv7 model and was
able to extract attributes. These attributes can be used in the future for creating a combination
of patterns and attributes.

7.4 GCN

The primary goal of this work is to generate combinations of interior objects by developing a
Graph Convolutional Neural Network (GCN) to predict compatibility between images of fur-
niture. To accomplish this, we utilize a series of previously developed networks. Initially, we
employ the YOLOv7 detector to extract furniture from interior images. We then extract features
such as style, color, room type, and material to create a dataset that can be represented as a
graph.

7.4.1 Creating the graph
To begin, we must represent our data from the CSV file as a graph where each node corresponds
to an image with its associated features. We create edges between nodes based on these features.
If images share the same room type and style, we create edges between them, and the edge weight
increases if they have the same color or material. This process results in a graph with weighted
edges.

Each node must also include the image itself. This is achieved by employing a pre-trained
ResNet-18 model with the last layer removed to represent the image as a feature vector. The
feature vector of the image is concatenated with existing features such as room type, style, color,
and material to create a representation for each node.
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7.4.2 Creating GCN
Subsequently, we create a PyTorch Geometric Data object, which acts as an input for the Py-
Torch Geometric framework. The Data object is initialized using the following parameters: x,
representing the feature vectors of the nodes; edge index, denoting the indices of the nodes
connected by edges; and edge weight, indicating the weights assigned to the edges. These pa-
rameters, which were generated earlier, are now employed to construct a comprehensive graph
representation.

The output of the GCN is a compatibility matrix, which is constructed according to the
following rules: If the images belong to the same interior, their compatibility is set to 100.
Otherwise, their compatibility increases proportionally to the number of shared features between
the images. This approach captures the degree of compatibility between images based on the
similarity of their attributes.

Now that we have the input Data and the output compatibility matrix, we can build a GCN
model implemented as a PyTorch module. Below, you can see the structure of the GCN model:

class GCN(torch.nn.Module):
def init (self, num features):

Initialize GCNConv layers and BatchNorm1d layers
Initialize a fully connected layer

def forward(self, data):
Extract x, edge index, edge weight from data
Pass x through the first GCNConv layer and BatchNorm1d layer
Apply Leaky ReLU activation and dropout
Pass x through the second GCNConv layer and BatchNorm1d layer
Apply Leaky ReLU activation and dropout
Pass x through the third GCNConv layer and BatchNorm1d layer
Apply Leaky ReLU activation
Pass x through the fully connected layer
Scale x using sigmoid function and map to range 0 to 100
Compute compatibility matrix using torch.mm function
return compatibility matrix

In this pseudo code, you can observe that the data passes through three convolution layers
for learning graph representation, followed by batch normalization to improve training stability,
a Leaky ReLU activation function, and dropout for regularization. After that, the data is passed
through the fully connected layer, and the output is scaled using the sigmoid function, mapping
it to a range from 0 to 100. In the end, a compatibility matrix between each pair of nodes is
created using the torch.mm function.

7.4.3 Algorithm summary
We have developed an algorithm that utilizes the YOLOv7 detector to extract patterns and
attributes from images. The detector generates bounding boxes and class labels for the detected
attributes, which are subsequently cropped from the original image. A set of four VGG models
is then applied to the cropped attribute images to predict their style, material, color, and room
type. These cropped images and their corresponding features are then used to construct a Graph
Convolutional Neural Network (GCN) that generates a compatibility matrix for each element of
interior design.

In Figure 7.1, you can see the scheme of the algorithm.
As a result of this approach, we are able to predict the compatibility between every element

of interior design, thereby allowing us to create new combination.
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Figure 7.1 Algorithm
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Results and experiments

In this chapter, we will present the results of our experiments on detecting attributes of interior
design and feature extraction. The experiments were conducted using the YOLOv7 detector
and four VGG models trained for style, material, color, and type of room recognition. Ad-
ditionally, we conducted experiments using the GCN to create interior design combinations
based on the predicted object compatibility. We provide a table in the attachment that lists the
sources of all images used in this section.

8.1 Extracting features

In this section, we present the results of training the VGG models for feature extraction. Specif-
ically, we report the accuracy scores for each category of color, style, material, and type of
room.

To evaluate the accuracy of each VGG model, we generated a confusion matrix. The algorithm
first computed the total number of classes (ncls). Then, for each class in the matrix, the algorithm
computed the number of correctly predicted instances (acc) by taking the diagonal element
corresponding to the class. Finally, the algorithm summed up the acc values for all classes and
divided the result by ncls to obtain the total accuracy. The process of creating the confusion
matrix is outlined in the following pseudocode:

ncls = len( conf_mat )
tot_acc = 0
for we in range(ncls ):
acc = conf_mat [i][i]
if we > 0:

acc += conf_mat [i][i -1]
if we < ncls - 1:

acc += conf_mat [i][i+1]
tot_acc += acc
tot_acc = tot_acc / ncls
print ("%.2f" % ( tot_acc * 100))

8.1.1 Color model
After training the color model using the new dataset, we calculated the accuracy using the
confidence map and obtained an accuracy of 97.7%.
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Figure 8.1 shows a visualization of the color model at work. Additional visualizations can be
found in the file vizual color.ipynb.

Figure 8.1 Vizualization color model

8.1.2 Material model
Using the same method, a material model achieved an accuracy of 97.1%. The visualization of
this model in action is shown in 8.2. However, achieving high accuracy with a material model
is challenging because objects often consist of multiple materials. Therefore, it is necessary to
consider the several highest values when predicting the materials.

Figure 8.2 Vizualization material model

8.1.3 Style model
Applying the same evaluation method, the accuracy of the style model was found to be 93.1%.
This lower accuracy is due to the fact that styles often overlap and it is difficult to determine with
certainty which specific style an object belongs to. Additionally, a visualization of the working
style model can be seen in 8.3.

8.1.4 Room type model
The final model trained to extract features is the type of room, achieving an accuracy of 93%
on validation data. This model was trained on cropped images of objects commonly found in
interior design, which may appear in multiple room types. For example, a table may be present
in both a living room and a bedroom, leading to a lower accuracy than the color model.

Despite this limitation, the model performs predictably on validation data. To further test
its accuracy, we evaluated the model on full room images and achieved a satisfactory accuracy
of 92%. Figure 8.4 shows an example of the model’s predictions on full room images.
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Figure 8.3 Vizualization style model

Figure 8.4 Vizualization type room model

8.2 Detector
For detecting patterns and attributes, we trained a YOLOv7 model on the ADE20K dataset.
However, there are only 2551 images of interior spaces such as bedrooms, living rooms, and
children’s rooms with attributes. This dataset is not sufficient for training the model to detect
14 classes of attributes. As a result, while training the model, we only achieved an accuracy
of 68%, which is not ideal. Furthermore, the accuracy was lowered for objects that were rarely
found in the dataset. An example of a detected image is shown in 8.5.
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Figure 8.5 Detected attributes of interior design

8.3 Predicting compatibility

The objective of this experiment is to assess the relevance of the predictions made by the GCN.
The experimental procedure involves selecting four interior objects and requesting the neural
network to choose the most compatible image out of five options.

8.3.1 Method of execution
The experiment will be conducted using the Bonn Furniture Styles dataset [12], which has not
been used for training. Initially, the VGG models will be employed to predict style, material,
room type, and color, thereby generating a CSV file containing the features.

Also have created 20 distinct interior designs for the purpose of conducting this experiment.
The primary objective is not to create flawless interiors, but rather to evaluate the model’s ability
to predict image compatibility and assess how well the selected images correspond with the given
input images.

The experiment involves selecting each of the combinations we have created and examining
the attribute type of the last element in the list of images, which then becomes the predicted
element. Next, we randomly choose four objects of the same type from my dataset. This
data is subsequently processed through a Graph Convolutional Neural Network (GCN), which
generates a prediction matrix. From this matrix, we select the attribute that has the highest
value in relation to the given images.
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By doing so, we aim to gain insights into the model’s performance and its potential for
practical application in the field of interior design.

8.3.2 Method of evaluating
A challenge in evaluating this experiment lies in the difficulty of assessing the design through
computational methods. Therefore, the experiment will be evaluated by a colleague who works as
an interior designer. Additionally, this experiment will be conducted on two different models, with
the aim of comparing their performance and determining the more effective model in predicting
compatibility among interior objects.

I have generated 100 distinct interior designs for the purpose of conducting this experiment.
The primary objective is not to create flawless interiors, but rather to evaluate the model’s ability
to predict image compatibility and assess how well the selected images correspond with the given
input images. By doing so, we aim to gain insights into the model’s performance and its potential
for practical application in the field of interior design.

8.3.3 Evaluation results
In this experiment, we created a total of 20 distinct interior designs, each containing 5 images.
Consequently, 100 predictions were made based on these interiors. Presenting all of these pre-
dictions in this report would require more than 50 pages, so we have chosen to showcase a few
representative examples of both positive and negative predictions.

In the provided images8.6, 8.7, 8.8, 8.9, the first row displays the given interior design,
while the second row presents the candidate images from which the selection was made. The
chosen image is highlighted with a green box. Above each image, the Graph Convolutional
Neural Network (GCN) prediction is displayed, indicating the compatibility score with the given
images.

In the displayed images, it is evident that the evaluation of these predictions is somewhat
subjective, as an objective assessment in design is challenging to achieve. Nevertheless, a friend
of mine who works as an interior designer assessed the predictions and determined that 74% of
them were positively aligned with the intended design. This provides an indication of the model’s
effectiveness in predicting compatible images within the context of interior design.

Figure 8.6 Positive predicted lamp
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Figure 8.7 Positive predicted dresser

Figure 8.8 Negative predicted dresser

Figure 8.9 Negative predicted sofa



Chapter 9

Conclusion

In this study, we propose an algorithm capable of detecting interior design objects, extracting
specific features from these objects, and subsequently utilizing a convolutional graph neural
network to predict compatibility between interior design objects. Based on these predictions,
various combinations can be generated.

To achieve this, we conducted a comprehensive review of existing literature on the application
of neural networks in interior design, which allowed us to understand the main challenges in this
domain and gather ideas for implementing our tasks. We also studied various types of neural
networks and their use, helping us select the appropriate methods to achieve our objectives.

We believe that the goals of this work have been accomplished, contributing to the prob-
lem of selecting patterns and accessories in interior design. We created suitable datasets and
implemented an algorithm that predicts compatibility between interior design objects based on
extracted features, which assists in generating combinations.

Evaluating results in the design field can be challenging, but an experiment assessed by a
designer revealed that our algorithm proposed suitable variants in 74% of cases. While not
perfect, this outcome demonstrates the potential of the algorithm. To improve these results, a
higher quality and larger dataset for training would be required, which may not be feasible due
to resource constraints.

This work establishes a solid foundation for further advancements in this field. It serves as
the basis for developing generative models capable of creating complete interior designs tailored
to users’ preferences, which could potentially transform the landscape of the interior design
industry.
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readme.txt.......................................a brief description of the media content
src.....................................................................implementation

datasets
features models..............training and visualization models for features extraction
scrap data vgg........................................directory containing scrappers
create labels.................... scripts that extract features and create labeled data
GCN ............................................ training and visualization GCN model
detector ....................................... directory containing training detector
experiments ........................... directory contains visualization of experiments

text
thesis.pdf ..................................... thesis text thesis text in PDF format
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