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ABSTRACT 

Title of the Thesis: Microwave stroke detection and classification using machine 

learning algorithms and realistic models of the human head. 

The goal of this work is to systematically test the capabilities of machine learning 

algorithms in microwave detection and classification using data with natural variability. 

This requires large datasets to train and test the algorithms, obtained in this study with 2D 

and 3D numerical simulations and measurements on phantoms. The corresponding 

parametrized numerical models contain 10 different anatomically and dielectrically 

realistic human head models with a stroke model of adjustable size, position, and type. 

Experimental measurements were performed on an anatomically and dielectrically 

realistic 3D human head phantom supplemented with a computer-controlled positioning 

system to set the position of the stroke model within the head phantom. 

The support vector algorithm (SVM) proved to be the most effective for the given 

application. Algorithm performance was evaluated using a confusion matrix 

(classification accuracy, sensitivity, and specificity) and Cohen's kappa value. Cross-

validation was also evaluated during training. Algorithm performance was increased by 

hyperparameter optimization and dimensionality reduction using PCA. 

The results show the ability of the SVM algorithm to detect the presence of stroke 

and classify it into either ischemic or hemorrhagic subtype. Single-frequency data of 1 

GHz is sufficient, datasets with both transmission and reflection coefficients expressed in 

real and imaginary parts show higher classification accuracy than datasets with only 

transmission coefficients or with coefficients expressed in modulus and phase. Datasets 

from subjects with smaller strokes are best suited for training accurate SVM predictors, 

and the algorithms show high generalizability. Nevertheless, the study suggests that 

accurate detection and classification of strokes for natural data variability remains a 

challenge. Misclassifications can endanger patients' lives when classifying into three 

classes, but the algorithm is highly accurate in classifying ischemic strokes and safely 

recommends thrombotic therapy initiation in around 70 % of affected patients. Further 

research is needed to improve the sensitivity of the algorithm and increase its clinical 

usefulness. 
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ABSTRAKT 

Název práce: Mikrovlnná detekce a klasifikace cévních mozkových příhod pomocí 

algoritmů strojového učení a realistických modelů lidské hlavy. 

Cílem této práce je systematicky testovat možnosti algoritmů strojového učení v 

mikrovlnné detekci a klasifikaci CMP s důrazem na realistickou variabilitou testovacích 

dat. Za tímto účelem je nezbytné vytvořit velké soubory dat pro trénování a testování 

algoritmů. V této práci k tomu byly využity 2D a 3D numerické simulace a měření na 

fantomech. Odpovídající parametrizované numerické modely obsahují 10 různých 

anatomicky a dielektricky realistických modelů lidské hlavy s modelem CMP 

o nastavitelné velikosti, pozici a typu. Experimentální měření byla provedena na 

anatomicky a dielektricky věrném 3D fantomu lidské hlavy doplněném o počítačem 

řízený systém polohování modelu CMP. 

Z algoritmů strojového učení se pro tuto aplikaci nejvíce osvědčil algoritmus 

podpůrného vektoru (SVM). Výkonnost algoritmu byla hodnocena pomocí konfuzní 

matice (přesnost klasifikace, senzitivita a specificita) a hodnoty Cohenovy kappy. Při 

trénování byla rovněž vyhodnocena křížová validace. Výkon algoritmu byl zvýšen 

optimalizací hyperparametrů a redukcí dimenzionality pomocí PCA. 

Výsledky ukazují schopnost algoritmu SVM detekovat přítomnost CMP a 

klasifikovat ji buď na ischemický, nebo hemoragický podtyp. Jednofrekvenční data o 

frekvenci 1 GHz jsou dostatečná, datasety s přenosovými i odrazovými koeficienty 

vyjádřenými v reálné a imaginární části vykazují vyšší přesnost klasifikace než datasety 

s pouze přenosovými koeficienty nebo s koeficienty vyjádřenými v modulu a fázi. Datové 

sady od subjektů s menšími CMP jsou nejvhodnější pro trénování přesných prediktorů 

SVM a algoritmy vykazují vysokou schopnost generalizace. Studie nicméně naznačuje, 

že přesná detekce a klasifikace CMP pro přirozenou variabilitu dat zůstává výzvou. Při 

klasifikaci do tří tříd se objevovaly chybné klasifikace, které mohou ohrozit život 

pacientů, ale algoritmus byl přesný při klasifikaci ischemických CMP a bezpečně 

doporučuje zahájení trombotické léčby u přibližně 70 % postižených pacientů. Ke 

zlepšení citlivosti algoritmu a zvýšení jeho klinické užitečnosti je zapotřebí dalšího 

výzkumu.  
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List of symbols and abbreviations 
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1. Introduction 

Strokes affect 15 million people worldwide each year. Diagnosis of the type of 

stroke is crucial to initiating treatment. In approximately 85% of cases, thrombotic 

therapy could already be started in ambulances. Despite the major technological advances 

of recent decades, there is no prehospital diagnosis system. Without a diagnosis, it is 

impossible to start treatment without risking the patient's life. Patients must be transported 

to the hospital for diagnostics, which can delay the start of treatment by tens of minutes. 

Late start of treatment reduces the chance of recovery and increases the consequences of 

the disease. Microwave technologies may be a suitable basis for the development of a 

portable, reliable, rapid, and affordable prehospital stroke diagnosis system. [1]–[5]  

This study focuses on the detection and classification of different types of strokes 

using recent, widely-used machine learning algorithms. The selection of suitable training 

data is a crucial aspect of machine learning, and requires careful consideration of the data 

collection, format, and dimensionality reduction procedures and data variability. The 

testing of microwave systems in controlled laboratory environments, the development of 

appropriate data processing protocols, and the evaluation of suitable algorithms are 

critical phases in the implementation of a reliable system for clinical use. [6], [7] 

1.1 Stroke disease 

A stroke is a life-threatening condition caused by a disorder of the cerebral blood 

circulation. There are two main types of strokes (see Figure 1), hemorrhagic (hStroke) 

and ischemic (iStroke). Although both share a very similar symptom, the treatment is 

completely different, so it is important to diagnose the type of stroke quickly and 

accurately. In untreated strokes, millions of brain cells die every minute, which can result 

in loss of memory, movement, or speech, and can lead to death [8]. According to the 

World Health Organization (WHO)[2], 15 million people worldwide suffer a stroke each 

year, of which 5.8 million dies, and almost the same number have permanent 

consequences. Stroke accounts for almost 10% of the total mortality of the population. 

Stroke is also the most common cause of death among young people and people of 

working age. In developed countries, the incidence of stroke is decreasing, mainly due to 

the treatment of blood pressure and the decreasing popularity of smoking. However, the 

overall stroke rate remains high due to the aging population. Stroke is one of the most 
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dangerous diseases and one of the leading causes of disability in adults. It also has a great 

socio-economic impact on society as a whole. [2], [9] 

 

Figure 1. Ischemic stroke (left) and hemorrhagic stroke (right). Taken from [10]. 

A hemorrhagic stroke is caused by rupture of a cerebral vessel and bleeding into 

the brain. Bleeding can be intracerebral (occurring in 17% of cases), or intraventricular 

or subarachnoid (occurring in 3% of cases). Bleeding is stopped with endovascular 

surgery or neurosurgery. Hemorrhagic stroke is characterized by higher mortality than 

ischemic stroke. [9], [11]–[13] 

In an ischemic stroke, a cerebral vessel closes with a blood clot, causing a reduction 

in blood flow and can result in necrosis of blood-deficient tissues. Approximately 85 % 

of strokes are ischemic [3], [14]. Approximately two million neurons die every minute, 

which will never be replaced by new ones [15]. Therefore, a quick diagnostic is essential. 

Ischemic stroke can be treated with thrombolytic therapy, which dissolves the clot and 

restores blood circulation, or surgical removal of the clot is possible. According to the 

American Stroke Association and clinical thrombolysis guidelines, the first 4.5 h after 

ischemic stroke is “the golden period” for receiving thrombolytic therapy [13], [16]. 

Currently, only 10% of patients with ischemic stroke have received thrombolytic 

treatment during "the golden period". A precise diagnosis of an ischemic stroke is 

essential because if thrombolytic therapy is used during a hemorrhagic stroke, it would 

dilute blood, increase bleeding into the brain, and endanger the patient's life [4], [17]. 
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1.1.1 Stroke size and localization 

Detailed knowledge of strokes is important for the construction of numerical 

models and phantoms, especially its location, size, and dielectric properties. In real life, 

stroke volume depends on many factors, such as the blood vessels of interest, the location 

of the stroke, and the diagnosis time (see, e.g., [15], [18], [19]), and it can acquire volumes 

from 0.03 to 250.02 cm3 [19]. Motor and functional outcomes, including death or daily 

dependence on the help of other people, after stroke are significantly correlated with the 

location and size of the stroke [19]–[22].  

The size and location of the hemorrhagic stroke were examined in [20] on 55 

hemiplegic patients with magnetic resonance imaging (MRI) one month after the stroke. 

Five primary locations were identified depending on the dominant anatomic lesions. The 

size of a brain injury that results in poor motor and functional outcomes was found to 

vary depending on the injury's location: 75 cm3 for the cortex, 4 cm3 the corona radiata, 

0.75 cm3 for the internal capsule, 22 cm3 for the putamen, and 12 cm3 for the thalamus. 

In this study, it was also mentioned that brain images taken in the first 48 hours can 

seriously underestimate the size of the lesion, while those taken in the first 3 to 7 days 

can overestimate the size of the lesion. The initial increase in the size of the lesion and 

subsequent decrease as a result of activation of cytotoxic processes is also confirmed by 

study [23], in which this effect was investigated in rats. 

 

Figure 2. Location of the occurrence of hemorrhagic stroke and the median stroke volume in cm3. 

The dashed line marks the boundary for patients with poor motor and functional outcomes. Taken 

from [20]. 
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The study [24] provides detailed sizes and locations of the ischemic stroke. The 

location of the stroke was examined in 162 patients within 14 days after the onset of the 

stroke. The brain was divided into 8 parts for the right and left hemispheres. If we do not 

consider hemispheres, Figure 3 shows the numbers of strokes and their median size with 

the interquartile range. Although stroke on the left side is better distinguished by clinical 

signs than on the right side, the incidence of stroke on both hemispheres is approximately 

the same according to MRI scans [25]. The study confirms a smaller volume of 

nonhemorrhagic strokes at the time of admission than after a few days [26], which also 

mentions a reduction in stroke volume after a few months. Study [27] found that patients 

with diffusion abnormality greater than 72 mL had a poor motor and functional outcome, 

indicating severe deficits and a high risk of death or dependency, if not treated effectively. 

This conclusion is supported by studies [28], [29]. In a study [30] they found that the 

mean ischemic stroke volume in independent patients (not need help from another person) 

was 35.7 ± 29.7 mL compared to 88.3 ± 71.3 mL in dependent patients (need help from 

another person) and 166.5 ± 65.9 mL in dead patients. Patients with an initial infarct 

volume of less than 80 mL have fewer consequences than patients with a larger infarct 

volume [30]. 

 

 

Figure 3. Analysis of the location of ischemic stroke occurrence and the median stroke volume in 

cm3. The data taken from [24]. 
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It is envisaged that the microwave system for stroke detection and classification 

will be used for early diagnosis, where the lesion is small and growing, so it is necessary 

to consider rather smaller sizes. The stroke has a variety of shapes, but they are mostly 

spherical or ellipsoidal [31]–[33]. The volumes of spherical strokes are shown in Table 

1, where the spherical stroke sizes/volumes that we will consider in the study are in bold. 

Table 1. Spherical stroke volumes 

Stroke diameter (mm) Stroke volume (mL) 

10 0.52 

15 1.77 

20 4.19 

25 8.18 

30 14.13 

35 22.44 

40 33.49 

45 47.69 

50 65.72 

55 87.07 

60 113.04 

 

1.1.2 Stroke dielectric parameters 

For the microwave imaging of a stroke, it is essential to know the dielectric 

properties of the tissues in the human head. Several studies have been performed [34]–

[36], and a database of tissue dielectric properties [37] has been created. A fundamental 

requirement for the feasibility of microwave imaging and stroke classification is a 

significant contrast in the dielectric properties compared to other brain tissues. [38]–[40]. 

In the study [41], it was shown that the values of the dielectric properties of blood are 

approximately 20 % higher than those of grey matter and about 60 % higher than those 

of white matter. The study [42] examined the dielectric properties of swine brain tissues 

in an acute ischemic stroke, which proved that an ischemic stroke causes changes in the 

dielectric properties of brain tissue immediately after its origin. The dielectric properties 

of tissue at the site of origin are reduced by 10% to 25% of the original value. The study 

also showed that after the blood supply was restored, the dielectric properties returned to 
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their initial values. It has been demonstrated in [43] that the brain of pigs has dielectric 

properties very similar the human brain. The above-mentioned contrast should make it 

possible to detect and determine the type of stroke at an early stage using the microwave 

system, or to monitor its development over time. The contrast of the dielectric parameters 

for head tissue and ischemic and hemorrhagic stroke is shown in Figure 4. 

  

(a) (b) 

Figure 4. Comparison of relative permittivity (a) and electrical conductivity (b) for head tissue 

and ischemic and hemorrhagic stroke. The graphs were determined using the frequency-

dependent 4-pole Cole–Cole model with parameters obtained from database[37]. The dielectric 

properties of the brain were calculated as average values of white matter, gray matter, and 

cerebellum, and for the scalp, the average values of skin and fat were used. For ischemic strokes, 

a 15% reduction in the dielectric parameters of the brain was assumed, while the dielectric 

parameters of hemorrhagic strokes were set to be equivalent blood. 

1.2 Stroke diagnostics 

Computed tomography (CT) is now the gold standard for stroke diagnostics [44]. 

The main disadvantage of CT is that it is not well suited for field use. Although mobile 

CT units have been developed to examine stroke patients [41], it is not the usual 

equipment of ambulances. Furthermore, CT uses ionizing radiation, which cannot 

distinguish small affected areas, and the problem may be the diagnosis in the initial stage 

of stroke when the affected tissue does not appear abnormal. The handheld instrument 

using near-infrared spectroscopy, the Infrascanner [45], [46] was recently developed. The 

disadvantage of Infrascanner is the impossibility of detecting stroke deep inside the brain, 

due to the limited penetration depth of approximately 2.5 cm. Another possible stroke 

detection is electrical impedance tomography (EIT) [47], [48]. However, the skull has 

electrically insulating properties that limit current penetration and prevent high-quality 

deep imaging of the brain without the use of implanted electrodes [49]. The use of 
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ultrasound for stroke detection is in development [50], [51], and the device does not allow 

for portability. Magnetic resonance imaging (MRI) is often used for stroke diagnostics. 

MRI provides a high contrast of soft tissues, does not contain ionizing radiation, and thus 

allows an accurate determination of the location and type of stroke, even in small areas 

in the early stages of the disease. However, the diagnosis with an MRI is expensive, 

unsuitable for patients with claustrophobia or with implanted metal objects, and it is 

lengthy. Also, an MRI is not appropriate for use in the field, e.g. in ambulances, due to 

its size. 

Microwave technology has great potential for stroke diagnosis, as microwave 

(MW) systems could be small, portable, and inexpensive and thus suitable for the 

prehospital diagnosis of a stroke. The MW system uses also low-power (< 20 mW) signals 

signals that are capable to penetrate the skull and brain [1]. When signal transmission 

between antennas on opposite sides of the head is used, strokes deep in the brain can be 

detected. Thanks to the above mentioned contrast between healthy and stroke-affected 

brain tissue, non-invasiveness and non-ionizing radiation, such a system will be precise, 

safe, and easy to use. The disadvantages of MW imaging may be lower resolution, or also 

susceptibility to electromagnetic interference. It should also be noted that lay public still 

has a fear of electromagnetic waves, as their effect on human health is not yet entirely 

clear. [6], [52], [53] 

1.3 Microwave systems for stroke detection 

At the forefront of microwave imaging system development for stroke detection 

and classification are various research groups and companies globally. The leading 

groups include Medfield Diagnostics in Sweden [48], and EMtensor in Austria [55]. 

Additionally, other groups in Australia [50] and Italy [56] are also contributing to the 

development of microwave stroke systems. Our research team at the Faculty of 

Biomedical Engineering, Czech Technical University in Prague is also actively engaged 

in developing a microwave imaging system for the detection and classification of strokes 

[57]–[60]. 

In general, two different approaches for microwave stroke detection can be found 

in the literature. The first method is based on visualization (image reconstruction) of the 

distribution of dielectric parameters in the region of interest [61]–[64]. Since the 
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propagation of microwaves through the human head involves not only attenuation but 

also phase shift and multiple reflections at the interface of regions with different dielectric 

properties, image reconstruction is a complex problem requiring a priori information from 

the imaged area and high computing power. The second method is based on machine 

learning algorithms (see section 1.4), which quickly detect and classify the type of stroke. 

This information is enough to start appropriate treatment. On the other hand, the approach 

based on machine learning algorithms typically requires a large set of training data. 

Studies [1], [12], [65] have found that a frequencies close to 1 GHz are the most 

suitable for a microwave human head imaging. Frequencies around 1 GHz are a 

compromise between the attenuation of microwave signals and spatial resolution. The 

attenuation of electromagnetic (EM) waves in biological tissues and the spatial resolution 

increase with frequency. While we require the highest possible spatial resolution, 

attenuation reduces the signal-to-noise ratio. Considering typical dielectric properties, 

thicknesses, and order of the different tissues in the human head, there is a forbidden 

frequency band in the 1.5 to 4 GHz range in which the transmission coefficient is lower 

[66]. 

The research team of Prof. Serguei Semenov, EMTensor, Austria is developing 

a system based on microwave tomography that provides structural and functional 

3D imaging of the head. This system can be integrated into ambulances. Only 

microwave measurements are to take place directly in the ambulance, the measured data 

are subsequently sent via the Internet for processing on a high-performance computing 

cluster. In addition to the above system, the company is developing an electromagnetic 

tomographic system for continuous monitoring of patients in the form of a cap or which 

will be integrated into a headrest in a car or chair. The first generation of the microwave 

tomography system [67], [68] was tested in volunteers and images of the real human brain 

were introduced. The second generation called 'BRIM G2' [69] [70] was tested on 

phantoms. The imaging antenna array consists of 177 rectangular ceramic filled 

waveguide antennas mounted on a stainless-steel hemispherical chamber. The antennas 

are evenly spaced in eight circles at different heights. The operating frequency is 1 GHz. 

The large number of antennas used in this system ensures that a large amount of 

information is obtained for imaging purposes. The disadvantages are the high cost and 
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the accuracy of the system. The authors are confident that microwave tomography can be 

applied to the real human head and detect and differentiate strokes. The algorithm was 

adapted to the phantom of the human head and showed worse results for measurements 

on volunteers. This is despite the fact that the tissues of the human head show a higher 

dielectric contrast than the phantom used. A large data set obtained from anatomically 

and dielectrically realistic models of human heads showing natural variability is 

required. The latest version of the EMTensor system called 'BRIM G3' is presented in 

[71]. The system consists of 192 integrated waveguide-based antennas arranged in six 

rings with 32 antennas per ring. The system was experimentally verified using a 3D head 

phantom filled with homogeneous liquid to emulate average brain tissues [72]. Images of 

two patients (one patient with hemorrhagic stroke and the other with ischemic stroke) 

were imaged with tomography in [71]. Promising results have been shown, suggesting 

the ability to detect and differentiate between different lesions. However, the system is 

designed for monitoring patients at the bedside rather than for rapid field 

diagnostics in ambulance vehicles. 

 

 

 (a) (b) 

Figure 5: The third generation EMTensor clinical prototype microwave imaging system (a) and 

(b) top unit in operational mode behind the patient's bed with the patient's support pillow. Taken 

from [71], [72] 
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The research team of prof. Amin Abbosh, The University of Queensland,  

Australia is developing a system based on the radar approach and uses reconstruction 

algorithms to diagnose intracranial hematoma. The system consisting of an antenna 

rotating around the head phantom was presented in [53], [73], [74]. Alternatively, fixed 

antenna systems [75], [76] and finally a 16 antenna array system have been introduced 

[77]. The system was tested on a 3D printed human head phantom with 3D printed 

internal molds filled with tissue-equivalent mixtures [78]. This phantom can be used for 

the experimental validation of microwave systems before their clinical evaluation. 

Measurements on one phantom do not bring a natural variability of measured data, 

therefore, a larger number of test objects will be needed. In [79], five different healthy 

volunteer head images are presented and confirm the imaging similarities between 

realistic healthy head phantoms and volunteer heads, as well as among different sizes and 

shapes of the heads. Yet, still, the interior portion of the head cannot be prominently 

layered, and thus improvements in hardware and the imaging algorithm are required. 

 

Figure 6: Microwave radar-based system (a) developed by a team of prof. Abbosh from Australia; 

(b) 3D printed head imaging crown depicting the orientations of the sensing antenna holders; 

(c),(d) various 3D printed parts; (e) the halves of the fabricated phantom; (f) the whole head 

phantom. Taken from [77]. 
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The company EMVision Medical Devices, Sydney, Australia, introduced the 

first generation of a brain imaging system [80] probably based on previous developed the 

flexible electromagnetic cap described in [81], although this is not explicitly stated. The 

prototype of this mobile device consists of a helmet with an antenna array, which is 

shielded by a membrane that can be filled with matching medium. Data acquisition takes 

approximately 2 seconds for the frequency spectrum ranging from 0.5 to 2 GHz. Image 

reconstruction using several algorithms takes a few seconds to a few minutes. These 

algorithms use diverse processing approaches, including radar-based frequency domain 

[76] and time domain [82] signal analysis, signal asymmetry, tomography [62], and direct 

mapping. Study [83] used machine learning algorithm to recognize ischemic and 

hemorrhagic stroke from the image of the distribution of dielectric parameters obtained 

from Born iterative method. Currently, the brain imaging system is undergoing clinical 

testing at researches hospital and is not yet licensed for clinical use. 

 

 

 

 

(a) (b) 

Figure 7. (a) Clinical prototype electromagnetic head scanner, taken from [80]. (b) Flexible 

electromagnetic cap, taken from [81]. 
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The research team of prof. Pastorino from University of Genoa, Italy presented 

a microwave system with 16 vertically polarized antennas placed around the head [84]. 

Bags filled with coupling medium are placed between the head and the antennas to reduce 

reflections from the air and skin and to increase the penetration of waves into the deep 

layers of the head. The operating frequency band is between 500 MHz and 2.5 GHz. The 

system was tested on a cylindrical liquid phantom and provided the first results of 

differential imaging of dielectric parameter changes in 2D. However, testing on more 

complex phantoms is needed. In the study [85], the authors proposed the use of machine 

learning algorithms to detect the presence and classify the stroke type with differential 

dielectric parameter imaging for displaying the location and size of the stroke. However, 

no results for the developed system were presented. 

The research team of prof. Mikael Perrson, Chalmers University and Medfield 

Diagnostics, Sweden is developing an MW device which, however, is not meant for 

stroke imaging, but for its detection and classification (ischemic or hemorrhagic). Stroke 

classification is performed by measuring the whole scattering matrix (S-matrix) and 

processing the data using a training-based machine learning algorithm, using known 

data. Three generations of this microwave system have already been developed [86], [87]. 

The latest generation is called Strokefinder MD100 [6], [88]. This system consists of a 

system of 8 antennas operating at frequencies 0.1 – 1.95 GHz, a microwave unit, and a 

signal processing computer. This system fits completely in the case, without the need to 

send data over the Internet. The adaptation of the helmet to the shape of the patient's head 

is solved by bags with fluid in front of the antenna elements. The fluid fills the space 

between the antennas and the patient's head and provides an improvement in impedance 

matching. It is still an experimental device that has been tested in patients not under life-

threatening conditions, i.e. even a few hours after the onset of a stroke. The results show 

that patients with hemorrhagic stroke can be accurately identified with 90% detection 

sensitivity, but the classification results of ischemic patients are not satisfactory [1]. This 

slows further development because the algorithm needs the most up-to-date patient data 

possible in order to achieve more accurate results. Development could be accelerated 

by testing the system on a large data set.  Strokefinder was able to reliably distinguish 

whether the patient had a hemorrhagic stroke on several tests. However, it mistakenly 
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classified ischemic stroke several times into the category of a hemorrhagic stroke. 

Further development and testing of algorithms is needed.[54], [89] 

  

(a) (b) 

Figure 8. Strokefinder MD100 developed by a team of prof. Perrson from Sweden (a) and receiver 

operating characteristic curve and area under the curve (AUC) value (b). Taken from [88]. 

The research teams of Prof. Francesca Vipiana, The University of Torino and 

Prof. Lorenzo Crocco, The Institute for the Electromagnetic Sensing of the 

Environment, National Research Council of Italy are designing a microwave imaging 

system for stroke monitoring. In [90] the first prototype of a microwave imaging system 

specifically designed for continuous monitoring of stroke patients immediately after 

stroke onset and diagnosis was demonstrated. In [56], [91] designed a helmet with 24 

antennas to continuously monitor brain stroke in the postacute stage. Each of the 24 

antennas is placed inside a dielectric 'brick', which works as the coupling medium to 

maximize field penetration within the head at frequencies 0.8 – 1.2 GHz [92]. Preliminary 

experiments with homogenous liquid phantom confirm the potential of the technology in 

imaging a spherical target that mimics a stroke of a radius equal to 1.25 cm [56]. The 

system was evaluated in [81] by numerical analysis with a 3D phantom. Numerical 

analysis showed that the system is capable of imaging ischemic and hemorrhagic strokes 

of 1 cm in size, which is related to the resolution of the MW imaging system at 1 GHz, 

which is approximately 1 cm. The experimental validation of the MW system was 

introduced in [93], where in the first scenario the head was represented by a 3D printed 

plastic container with a homogenous liquid phantom and in the second more complex 
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scenario the head was represented with calf brains in the plastic head phantom. The stroke 

was represented by a thin plastic container filled with a liquid mimicking hemorrhagic or 

ischemic tissue with a volume of around 50 cm3. The truncated singular value 

decomposition (TSVD) algorithm can locate the stroke position properly, but it misses 

part of the stroke size. The MW system is used to monitor stroke in the postacute phase, 

where stroke size is an important parameter to monitor. For the clinic application of 

MW systems for stroke monitoring based on TSVD differential imaging, it is necessary 

to have a very good numerical model that will provide the device-specific mathematical 

operators needed to build an accurate and reliable imaging kernel [94]. Using the 24 

antenna system mentioned above and the linear scaling operator, a method was presented 

to obtain data for training and testing classification algorithms [95]. The method is further 

described in the chapter on machine learning algorithms. 

 
 

(a) (b) 

Figure 9: A microwave system for brain stroke imaging. (a) prototype from [56] and (b) numerical 

model from [95]. 
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1.4 Machine learning algorithms for stroke classification 

Machine learning algorithms seem to be a promising method for use in medical 

diagnostics. In the context of stroke, machine learning algorithms are commonly used to 

identify stroke risk and forecast it based on patient information [96], [97]. In [97] used 

dataset with observation issues with 12 attributes relevant to brain stroke Random Forest, 

Support Vector Machine (SVM) and Decision Tree classifiers are applied. This is only 

the probability of stroke risk, which is not our goal. Another common application of 

machine learning algorithms is stroke classification on CT or MRI scans. In [98], [99] 

machine learning algorithms were used to classify CT scans of patients (image processing 

review in [100]) with ischemic and hemorrhagic stroke. Although machine learning 

algorithms help to classify the type of stroke, this is based on images taken in the hospital 

and is still not a prehospital diagnosis. 

Microwave detection and classification based on machine learning algorithms 

is a new diagnostic option. For a quick prehospital diagnostic, it is enough to decide 

whether the patient is ill or not or to detect the type of disease. Such cases may be a stroke 

or cancer. Properly constructed machine learning algorithms can quickly recognize the 

presence of pathological tissues only according to the measured data. When using 

machine learning algorithms, we do not obtain an image of the examined area, but only 

information about the presence of pathology. 

Machine learning algorithms for microwave stroke classification are mainly 

used by the research team of prof. Persson from Sweden. In [1], results of two clinical 

studies were presented with the conclusion, that that microwave-based measurements can 

differentiate hStroke from iStroke in acute stroke patients, as well as differentiate iStroke 

from healthy volunteers. Data from microwave broadband technology at frequencies 0.3 

- 3.0 GHz were used for the machine learning algorithm based on singular value 

decomposition. On a very small amount of data was sensitivity 99.9 % to detect hStroke, 

the proportion of iStroke patients safely differentiated was approximately 30%, whereas 

at 90% hStroke sensitivity, 65% of iStroke patients could be differentiated. For more 

complex algorithms testing, it is necessary to obtain a larger amount of data. Another 

clinical study [88] investigated whether algorithms could distinguish patients with 

traumatic intracranial hematomas, chronic subdural hematomas, from a group of healthy 
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patients. At 100% sensitivity, the specificity was 75% - i.e. all hematomas were detected 

at the cost of 25% false positives. Clinical studies are time-consuming and costly, and the 

number of included patients should be kept at a minimum. On the other hand, machine 

learning methods usually require large amounts of training data to reach high accuracy. 

Therefore, it is necessary to investigate how the amount of training data relates to the 

performance and accuracy of the algorithm. 

In [101], Candefjord et al. created, using 2D numerical simulations, data 

corresponding to patients with intracranial bleeding  (subdural hematoma) of 4 sizes 

and 10 positions evenly spaced along the brain–cranium interface. One symmetrical head 

was scaled to 7 sizes. No realistic head models were used. To increase data variability, 

the thickness of the skull layer was varied, a small elliptical cerebrospinal fluid (CSF) 

region was added to the interior of the brain, and the head was rotated randomly between 

±6°. A wide frequency band of 100 MHz to 3 GHz was used to create a dataset of 1500 

observations (250 observations per bleeding size and 250 observations without bleeding). 

The authors do not mention any formatting of the data; feature selection or feature 

extraction techniques. When using the entire data set, the bleeding classification accuracy 

was 87-86% for the SVD-based classification algorithm. However, high classification 

accuracy required a relatively large training data set, and classification accuracy dropped 

when smaller subsets of data were used. The suitability of the data for training the 

algorithm was not investigated, but the training data were randomly drawn from a large 

dataset with approximately even distributions of bleeding sizes, head sizes, and helmet 

positions. Results in [101], [102] in addition to reliable detection, may have additional 

clinical value in estimating the size and location of the lesion. Both studies modelled the 

subdural hematoma in 2D, a crescent-shaped intracranial bleeding located between the 

skull bone and the brain. Subdural hematoma is different from intracerebral hemorrhage, 

which is the most common type of bleeding in stroke patients. Intracerebral bleeding is 

located within brain tissue and is commonly spherical and generally smaller in volume 

than a subdural hematoma. The authors also acknowledge that the 2D model is a 

significant simplification, and therefore it is unclear to what extent the results from such 

a model can be generalized to real measurements made in 3D. The development of a 3D 

model is therefore important, but running thousands of numerical simulations is a 

computationally intensive and time-consuming task. 
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Figure 10: The 3D numerical model from [103] used for the investigation of how the machine 

learning algorithm distinguishes healthy individuals from subjects with intracranial bleeding. 

This was followed by a 3D numerical study [103] where, Fhager et al. where a 3D 

human head model with intracranial bleeding was used. It was investigated how a 

machine learning-based classification algorithm distinguishes healthy individuals from 

subjects with intracranial bleeding based on the number of subjects needed for training. 

A computational model, consisting of a realistic human head models of bleeding patients, 

as well as healthy subjects, was virtually inserted into an antenna array model. One single 

normal head model was used as the starting point, which in all simulation was randomly 

rescaled to resemble a natural variation of skull sizes[104]. The bleeding was placed 

randomly inside the brain with randomly varying volumes of 0-150 mL of spherical 

shape.Therefore, a large data set was generated with a total of 1000 subjects, where 500 

were patients and 500 healthy models. The frequency range of 0.4-1.2 GHz was utilized 

in the simulation, and random white noise was added to the data to enhance the realism 

of the simulated microwave systems. The results are comparable to previous clinical 

studies [101]. There may be two reasons for the higher accuracy in the previous study. 

First, the variability in 2D geometry was less than in 3D; e.g., the bleeding geometry was 

more complex in 3D. Second, the bleeding in the 2D study was generally larger and not 

as deeply embedded as here. Therefore, the authors concluded that large-scale clinical 

trials with several hundred patients are needed for practical and clinical verification 

of the technique. 
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In [95] the authors from Torino, Italy, proposed an alternative and efficient 

method to create the training dataset, based on the distorted Born approximation. The 

method is using a linear scattering operator from the dielectric contrast space to the 

scattering parameters (S-parameters). Preliminary analyses with a homogeneous head 

model were recently presented in [105]–[107]. In [95] a dataset containing 10,000 

samples from a 3D multi-tissue numerical head model was created in a relatively short 

time. Only one CAD model of the human head was used and scaled to obtain 10 models. 

The algorithms were tested on a large number of data obtained from the linear scattering 

operator, but the suitability of using the data for training was not evaluated.  In our study, 

testing of the algorithm with multifrequency data was also performed although the results 

show that single frequency is sufficient. 

Classification using SVM algorithm with inverse Fast Fourier Transformation 

(FFT) for the transformation of the S-matrix from the frequency domain to time 

domain was used in [82]. Data were obtained for 10 human head models without scale 

and only for ellipsoid stroke of 10 mm3 to 35 mm3 in random positions. A total of 100 

stroke head models were built (50 for iStroke and 50 for hStroke). The classification was 

only between the iStroke and hStroke classes, the healthy individuals class was not 

included. Data variability was increased by adding noise, which also significantly 

reduced the classification success rate from 94% to 77%. Subsequently, the study was 

extended in [108] to Principal Component Analysis (PCA) to extract the electromagnetic 

signal directly and select the main component for classification. The classification results 

after PCA and SVM achieved 99% accuracy. A low number of training and testing 

samples were introduced. The authors did not investigate the selection of 

appropriate training samples. 

  



 

 

31 

 

In [109], a transmission-line (TL) based method was introduced that can identify 

the stroke type from the measured microwave signals S-parameters. The circular head 

under classification is surrounded by a two-antenna system that rotates and collects the 

S-parameters at several positions around the head. The classification was based on the 

correlation of the signals on a transmission line without the need for a training phase. The 

results show that significant differences can be observed for the computed correlation 

between the hStroke and iStroke cases. However, the head was spherical in shape, 

which may significantly increase the correlation of the signals. The authors 

themselves admit that an anatomically realistic phantom should be used to emulate real 

medical scenarios. 

In studies [110], [111] authors from China validated the diagnosis and 

monitoring of stroke types using a multichannel microwave-based stroke detection 

system in rabbits. They conducted controlled experiments on an internal capsule cerebral 

hemorrhage model and a bilateral carotid artery ligation ischemia model in rabbits. A new 

Euclidean distance transform method, namely, the reflection signal Euclidean distance 

(RSED), is proposed to transform the microwave scattering parameters into a new 

parameter, thus improving the discrimination between the hemorrhagic and the ischemic 

stroke. The transformed data were processed through the dimensionality reduction by 

PCA and the SVM classification algorithm by PCA. These results demonstrate that the 

dimensionality reduction significantly improves diagnostic accuracy, because the 

accuracy without dimensionality reduction was between 50 and 70% and increases to 90–

100% with dimensionality reduction. Since the head of a rabbit is significantly smaller 

than the head of an adult human (leading to a higher signal-to-noise ratio), a higher value 

of classification accuracy is to be expected. These results are not transferable to 

human stroke detection and classification. 

In [112] the authors from China presented a wideband microwave system and 

classification by SVM into two classes. The system was verified in one simplified 

cylindrical glass container and a test tube with a diameter of 4 cm. The cylinder was filled 

with oil, and the tube is filled with water, which have high contrasts of dielectric 

parameters not corresponding to the reality of the human head. The position of the tube 

was changed randomly to obtain 120 independent measurement of S-parameters. From 
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the S-parameters, phases and amplitudes were calculated and dimensionaality were 

reduced by principal component analysis (PCA). SVM classification reaches 100%, but 

the the variability of the data here is practically zero and the contrast of the classified 

data was far from resembling the real use of the system. 

In our team, in collaboration with colleagues from The University of Trento, 

Italy, several studies were presented dealing with the classification of stroke using a 

microwave system. Several measurements have previously been performed using the first 

version of an experimental microwave system and a water phantom [58]. The measured 

data were processed using the SVM algorithm in studies [113] and [59]. In the study 

[113], the SVM algorithm was used to classify the presence or absence of a stroke on a 

simplified water-based phantom of the head. A very high accuracy of stroke detection 

was achieved even with a limited amount of data used to train the algorithm. This study 

was extended in [59] by including the distinction between ischemic and hemorrhagic 

strokes. In the study [60], a multistep strategy for stroke detection, stroke type 

classification, and stroke position localization was presented. The study showed that 

stroke type classification is a more difficult task than stroke detection and requires an 

increase in training data for the SVM algorithm. Furthermore, the authors found that the 

support vector regression (SVR) is suitable for stroke localization. Using SVR improves 

the estimation of the x and y coordinates of the stroke location. The algorithms were 

tested on data with low natural variability: 10 antennas MW system with a liquid head 

phantom and a cylindrical stroke of size 40 mm in diameter [58]. 
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1.5 Main goal and testing scenarios 

The main goal of the dissertation thesis is to systematically test the capabilities 

of machine learning algorithms in the microwave detection and classification of 

strokes using realistic models of the human head. To achieve this goal, it is necessary to 

obtain large datasets of training and test data, which can be obtained synthetically through 

numerical simulations and experimentally via measurements. This requires the creation 

of numerical models and conducting extensive numerical simulations, as well as creating 

phantoms for experimental measurements and developing a methodology for 

measurement and data storage. To evaluate the performance of machine learning 

algorithms in microwave detection and classification of strokes, several test scenarios 

were defined. Since the numeric simulations for the 3D geometries and frequencies 

considered here are time- and computationally intensive, the largest data sets were created 

using numeric simulations in 2D. 

We will investigate effects of reducing the number of training data or subjects, 

reducing the dimensionality of the data, selecting, and configuring the algorithm, and 

varying the frequency range depending on the use of algorithms for pre-hospital stroke 

diagnosis. 

1.5.1 Datasets created via 2D numerical simulations. 

Using 2D numerical simulations, due to their low computational demands, a large 

amount of data can be generated even in a relatively short time. By analyzing the results 

obtained via 2D simulations, it is possible to reduce the size of the training and test 

datasets for more computationally demanding 3D simulations and measurements. 

The motivation behind the initial testing scenario was based on the fact that for data 

classification, the SVM algorithm identifies a linear or hyperplane boundary between 

different classes. The SVM algorithm locates the support vectors, which are the closest 

data points to the boundary, and uses them to construct the decision boundary. It is 

possible that small stroke sizes may form support vectors due to their lower variability in 

the data and, therefore, play a significant role in determining the decision boundary. 

Based on this observation, we proposed first testing scenario (S1) where we verify if the 

most suitable training data are from subjects with small strokes. 
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The S-matrix of the measurement system can be obtained for multiple frequency 

points. However, such measurements are more time consuming and require higher 

bandwidth of the antennas and the measurement hardware. For rapid stroke detection and 

classification of stroke type, a single frequency measurement might be sufficient. Based 

on this, we define the second testing scenario (S2) where we verify if single-frequency 

and multi-frequency training data lead to the same classification accuracy. 

If the scenario S1 is confirmed, our next objective is to demonstrate the 

generalization capability of the SVM algorithm. We aim to find out whether the SVM 

algorithm trained on data from subjects with small strokes can also accurately classify 

medium and large strokes. This can be accomplished by using the same stroke positions 

for training and testing, but with the test data consisting of even larger stroke sizes. We 

propose the third testing scenario (S3) where we investigate if a SVM algorithm trained 

on data from subjects with small strokes can accurately classify randomly sized 

strokes. 

Subsequently, we intend to evaluate the generalization capability of the SVM 

algorithm to classify strokes (of random sizes) at random positions, which represents a 

practical clinical scenario. Hence, we proposed to test (S4) if a SVM trained on data 

from subjects with small strokes can accurately classify randomly sized strokes at 

random positions. 

The choice of the SVM algorithm is based on previous studies [59], [60], [114], 

where the algorithm's performance was evaluated using experiments with a single liquid 

head phantom.  However, the presence of higher data variability may lead to a decrease 

in the efficiency of the SVM algorithm. As such, we have selected a total of 5 alternative 

algorithms based on learning by examples (LBE) that are implemented in MATLAB 

Statistics and Machine Learning Toolbox. These algorithms are Logistic Regression 

(LR), Discriminant Analysis (DA), k-Nearest Neighbors (kNN), Naive Bayes Classifier 

(NB), and Classification Tree (CT). The accuracy of the classification of these 5 

algorithms and SVM will be evaluated and mutually compared in fifth scenario (S5) 

where we verify if a SVM algorithm is suitable for stroke detection and classification. 
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1.5.2 Datasets created via 3D numerical simulations 

Key conclusions made by means of data obtained from 2D simulations must first 

be confirmed for 3D simulation results. The initial testing scenario for datasets obtained 

via 3D numeric simulations (S6) is used to verify whether a SVM trained on a 3D data 

from subjects with small strokes can accurately classify randomly sized strokes. 

Classification accuracy could depend on the choice of suitable dataset format. S-

parameters, as well as any other complex numbers, can be expressed in cartesian complex 

plane by real and imaginary parts or in polar complex plane by modules and phases 

(argument). Despite its importance, the format of training data is not given sufficient 

attention in the literature. To investigate the impact of data format on classification 

success rates, we propose testing scenario (S7) where we tested if a SVM algorithm 

trained on data sets in real and imaginary part format will show higher classification 

accuracy than in module and phase format. 

The S-matrix consists of reflection coefficients located on its main diagonal and 

transmission coefficients located elsewhere. Based on the model verification results (see 

Appendix C), the reflection coefficients are less affected by the presence of stroke. Using 

the transmission parameters for algorithm training (leading to smaller dimensionality of 

the dataset), may result in a better trained model and higher classification accuracy. The 

seventh test scenario (S7) we test if a SVM algorithm trained on transmission 

coefficients will show higher classification accuracy than trained on the entire S-

matrix. 

The utilization of the SVM algorithm in pre-clinical settings, such as ambulance, 

necessitates an accurate classification of stroke type. As approximately 85% of strokes 

are ischemic [3], the SVM algorithm should have a higher success rate compared to 

statistical probability. The nineth test scenario (S9) we tested if the accuracy of an SVM 

classification model trained on a 3D numerical dataset will exceed 85% when 

classifying randomly sized strokes at random positions. 

Considering that approximately 85% of strokes are ischemic [3] and that prompt 

initiation of treatment is critical in reducing the impact of the disease [15], it is essential 

to definitively diagnose ischemic strokes in order to initiate thrombotic therapy safely. 
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The tenth test scenario was proposed based on the recognition that accurate classification 

of ischemic strokes has the potential to positively impact a large number of patients by 

reducing the consequences of the disease [13]. In tenth test scenario (S10) we tested if 

The SVM algorithm can reliably classify ischemic strokes, which would enable safe 

initiation of thrombotic therapy for a 3D numerical dataset. 

1.5.3 Experimental measurements 

To validate the key conclusions arising from 2D and 3D numerical simulations, it 

is necessary to confirm them through experimental measurements. The first test scenario 

for the dataset obtained from experimental measurements on a liquid head phantom and 

a realistic head phantom (S11) we tested if SVM trained on experimentally measured 

dataset consisting of small stroke sizes will be able to generalize and accurately 

classify larger stroke size. 

As with the 3D numerical simulations, we aim to verify the experimental 

measurements to determine if the SVM has higher success rates than the statistical 

probability of stroke, which indicates that 85% of strokes are ischemic [3]. Another test 

scenario (S12) we tested if The accuracy of an SVM classification model trained on 

an experimentally measured dataset will exceed 85% when classifying randomly 

sized strokes at random positions. 

Finally, we will use the data from experimental measurements to test whether the 

SVM algorithm can provide information necessary to safety initiate thrombotic therapy 

in ischemic stroke patients. The final testing scenario (S13) we tested if the SVM 

algorithm can reliably classify ischemic strokes. 
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2. Methods 

The numerical simulator COMSOL Multiphysics [115] was used to create synthetic 

training and test data in the form of transmission and reflection coefficients (called 

scattering parameters or, shortly, S-parameters). The experimental system was used to 

obtain experimental measured data, and this data was then compared with the results of 

numerical simulations to validate the results generated through the numerical simulations 

testing scenarios. 

2.1 Numerical models 

The chapter is based on the author's article published in a journal with impact factor 

[116] and [117]. 

First, a 3D CAD model of the experimental microwave system [58] was created. 

The microwave (MW) system consisting of 10 fixed antennas (described in [118]) 

surrounding a human head model. Next, the geometry of the 3D numerical model was 

prepared from a cross-section of the 3D CAD model, specifically at the 100 mm 

coordinates which correspond to the plane of the antenna elements. A mesh was utilized 

in which the maximum value of the side length was set to 1/8 of the transverse 

electromagnetic wavelength in the given environment and for the operating frequency 

equal to 2 GHz. 

The geometries of the models of all 10 human heads used in 2D and 3D are based 

on head models from the IT'IS Foundation's “The Population Head Model V1.0” database 

[119]. In Materialize 3-matic software [120], the mesh of the models was modified so 

that it could be imported and used for FEM simulations in COMSOL Multiphysics. The 

models contain layers representing the scalp, skull, cerebrospinal fluid, and brain (white 

matter and grey matter). Based on the resulting models, molds were also created to 

produce anatomically and dielectrically realistic phantoms. 

Realistic dielectric properties values were assigned to the individual domains of the 

human head models, which represents different biological tissues, as well as to produce 

individual phantom layers. These values were determined using the frequency-dependent 

4-pole Cole–Cole model [121]. Specifically, for the skull, CSF, and hemorrhagic stroke 

represented by the blood, the 4-pole Cole–Cole model parameters were directly adopted 
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from the IT'IS material parameter database V3.0 [37]. For the brain dielectric properties, 

we used average values of white matter, gray matter and cerebellum and for the scalp 

average values of skin and fat. The ischemic stroke represent a 15% reduction in the 

dielectric parameters of the brain [42], while the dielectric parameters of hemorrhagic 

stroke were set to be equivalent to blood. Matching medium dielectric properties are given 

by the IEEE standard [111]. The dielectric properties of the individual domains at 1 GHz 

are shown in Table 2. 

Table 2. Dielectric properties of the domain in the human head modes at 1 GHz [37]. 

Tissue Layer εr (−) σ (S/m) 

Scalp † 35.68 0.66 

Skull 12.34 0.16 

CSF 68.44 2.46 

Brain ‡ 40.00 1.00 

Ischemic stroke 34.00 0.85 

Hemorrhagic stroke 61.07 1.58 

Matching Medium * 40.00 1.00 

† Average parameters of skin and fat. ‡ Average parameters of grey matter, white matter, and cerebellum.  

* Matching medium dielectric properties are given by the IEEE standard [122]. 

The COMSOL Multiphysics simulations were controlled with in-house written 

MATLAB scripts. These scripts specifically set the operating frequency, stroke type, size 

and position, head models size scaling, and saved the resulting S-matrices together with 

the numerical model settings to a MATLAB structure matrix file. 

2.2 2D numerical models and simulations 

The chapter is based on the author's article published in a journal with impact factor 

[116] and [117]. 

The 2D geometry of the model was described in the Section 2.1. Absorption 

boundary conditions are set around the entire outer perimeter of the computational 

domain. The antenna elements used in this study are inspired by the slot antenna from 

[118]. An antenna 2D equivalent model consists of a rectangle representing a conductive 

cavity and a slot was used in simulations (see Figure 11). A slot segment was created on 
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the perimeter of the rectangle facing the displayed area and the boundary condition of the 

port (“User defined”, Ez) was assigned to it. The rest of the perimeter of the rectangle 

antenna was assigned a perfect electric conductor boundary condition. The sizes of the 

antenna segments representing the slots were changed to find the global minimum of a 

cost function using the genetic algorithm. We minimized the transmission parameter 

differences between the optimized 2D model and the reference experimental 

measurement for the entire 10-port system. The genetic algorithm minimizes the fitness 

function [123]: 

 𝑓𝑖𝑡 = ∑ ∑
|(𝑟𝑒𝑓𝑛𝑚 − 𝑜𝑝𝑡𝑛𝑚)2|

|𝑟𝑒𝑓𝑛𝑚
2 |

𝑚

𝑚=1

𝑛

𝑛=1

  , (1) 

where 𝑛 are rows and 𝑚 are columns S-matrix, 𝑟𝑒𝑓 is reference (experimental 

measurement) S-matrix and 𝑜𝑝𝑡 S-matrix calculated from the optimalization 2D 

numerical model. The inner part of the antenna array was filled only with the matching 

medium. The maximum possible agreement between the transmission coefficients for 2D 

numerical simulation and experimental measurement was achieved. Antennas operate in 

the frequency range from 0.8 GHz to 2 GHz.  

   

(a) (b) (c) 

Figure 11. (a,b) is the 3D geometry of the slot antennas [118] and (c) is the final 2D antenna 

model, where segment representing the slot (marked in blue) was changed to achieve maximum 

agreement between calculated and measured transmission parameters of the laboratory system. 
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The 2D geometries of the models of all 10 human heads are depicted in Appendix 

A. The dielectric properties of individual domains representing different biological 

tissues vary with the frequency used and were calculated using the Cole model. Target 

values for a frequency of 1 GHz are listed in Table 2. The stroke locations are represented 

by a circle with diameters from 20 to 40 mm placed in different positions in the brain 

domain shown in Figure 12. 

   

(a) (b) (c) 

Figure 12. 20 positions (a), 83 positions (b), and 456 positions (c) in the brain where strokes of 

various sizes were placed. 

The 2D numerical training and testing datasets were automatically generated using 

the reconfigurable 2D numerical model in COMSOL Multiphysics controlled with in-

house written MATLAB scripts. According to studies [59], [124], the most suitable 

operating frequencies for MW imaging are around 1 GHz. Our datasets contain 

simulation results for 25 equidistant frequency points ranging from 0.8 to 2 GHz. 

The head models were based on 10 different patient-specific geometries. To 

increase the variability of tested datasets, the geometries of the head models were scaled 

to 95–105% of their original size independently in the x and y directions. The scaling 

factors were determined for each data point using a uniform probability density random 

number generator. We used 2 types of strokes: Ischemic stroke (iStroke) caused by 

blockage of a blood vessel by a clot and hemorrhagic stroke (hStroke) caused by 

intracranial bleeding, also the scenario without stroke (noStroke) was used. Three datasets 

have been generated as summarized in the text below and Table 3. 
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Table 3. The parameters of the models in the datasets of 2D numerical simulations. 

DataSet 

(−) 

Stroke 

Type 

(−) 

Stroke 

Sizes 

(mm) 

Stroke 

Positions 

(−) 

Head 

Models 

(−) 

Head 

Scaled 

(%) 

Frequenc

y Points 

(−) 

2D_1 

hStroke 

iStroke 

noStroke 

20, 25, 

30, 35, 

40 

Fixed 20 + 83 + 

456 
10 95–105 † 25 

2D_2 

hStroke 

iStroke 

noStroke 

20–40 † Fixed 20 10 95–105 † 25 

2D_3 

hStroke 

iStroke 

noStroke 

20–40 † Random 20 † 10 95–105 † 25 

† Uniform probability density random number generator. 

 

DataSet 2D_1 includes 2D simulation results for subjects with five different stroke 

sizes (20, 25, 30, 35 and 40 mm in diameter) of both stroke types placed at 20 predefined 

positions within randomly chosen and scaled head models. In total, 1000 simulations were 

for each stroke type, and 1000 simulations of randomly scaled head models without 

stroke. Therefore, 3000 calculations of S–matrices were done for one frequency point. 

DataSet1 was subsequently supplemented with data generated in the same way for 83 and 

456 different stroke positions. 

DataSet 2D_2 includes the simulations results for subjects with ischemic and 

hemorrhagic strokes of random size (ranging from 20 to 40 mm in diameter determined 

using uniform probability density random number generator) placed at 20 predefined 

positions within randomly chosen and scaled head models. In total, 200 simulations were 

computed for each type of stroke and 200 simulations for randomly scaled head models 

without stroke. 

DataSet 2D_3 includes the simulations results for subjects with ischemic and 

hemorrhagic strokes of random size (range from 20 to 40 mm and determined using uniform 

probability density random number generator) placed at random positions within randomly 

chosen and scaled head models. In total, 200 simulations were calculated for each type of 

stroke and 200 simulations for randomly scaled head models without stroke. 
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2.3 3D numerical models and simulations 

The 3D geometry of the MW system was described in Section 2.1 The operating 

frequency 1 GHz was used in the 3D numerical simulations. The 3D geometries of the 

models of all 10 human heads are depicted in Appendix B. The dielectric properties of 

individual domains representing different biological tissues for a frequency of 1 GHz are 

listed in Table 2. The tetrahedral mesh was used to generate a mesh for each layer of the 

3D model. The resulting meshes for one head model are depicted in Figure 13. 

 

  

(a) (b) 

  

(c) (d) 

Figure 13. 3D numerical model of a human head models composed of (a) scalp, (b) skull, (c) CSF, 

and (d) brain. 

The spherical model of the stroke was placed in the plane of the antennas. The 

stroke locations are placed in 7 and 20 different positions in the brain domain shown in 

Figure 14. 
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(a) (b) 

Figure 14: Brain tissue model with red marked 7 positions (a) and 20 positions (b) where the 

spherical stroke model was virtually placed. 

The 3D numerical training and test datasets were automatically generated using the 

reconfigurable 3D numerical model in COMSOL Multiphysics controlled with in-house 

written MATLAB scripts. These scripts set the head and stroke model parameters, 

operating frequency, and saved the resulting S-matrices. Three datasets have been 

generated. Datasets are summarized in the Table 4. To increase the data variability, noise 

was added to the iStroke and hStroke data. We used random white noise at level 85 dB, 

which corresponds to noise in experimental measurements described in the following 

chapter. Used 10 head models allow to generate only 10 noStroke S-matrices for training 

and test the algorithm. The number of noStroke data was extended by repeatedly inserting 

noise into 10 simulated S-matrices, which therefore corresponds to repeated 

measurements of patients. 

Table 4. The parameters of the models in the datasets of 3D numerical simulations. 

DataSet 

(-) 

Stroke 

type 

(-) 

Stroke 

sizes 

(mm) 

Stroke  

positions 

(-) 

Head 

models 

(-) 

Frequency 

points 

(-) 

DataSet 

size 

(-) 

3D_1 

hStroke 

iStroke 

noStroke 

20,30,40 Fixed 7 10 1 

210 

210 

70‡ 

3D_2 

hStroke 

iStroke 

noStroke 

20 Fixed 20 10 1 

200 

200 

200‡ 

3D_3 

hStroke 

iStroke 

noStroke 

20 - 40† Random 10† 10 1 

100 

100 

100‡ 

†Uniform probability density random number generator. ‡ Data from one numerical simulation 

for each of the head models were extended by adding random noise at the 85 dB level. 
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2.4 Numerical models validation 

This chapter is based on the author’s article published in a journal with impact factor 

[116]. 

Validation of the numerical models was done in two steps. First, we directly 

compared the (synthetic) S-parameters obtained from simulations using 2D and 3D 

models (the geometries of these models are shown in Figure 24 and Figure 25).  and 

measurements using the laboratory prototype of a MW system shown in Figure 15. For 

the 2D and 3D simulations and measurements, the inner part of the antenna array was 

filled only with the matching medium, which allowed us idealized comparisons of all 

these scenarios. Values of the magnitude differences were displayed for the 2D numerical 

model versus the 3D numerical model, and for the 3D numerical model versus the 

experimental measurements. Relative magnitudes differences are defined as: 

 ∆𝑀𝑖𝑗 = 20 ∙ log10 (| 
𝑆𝑖𝑗

𝐴

𝑆𝑖𝑗
𝐵|), (2) 

where 𝑆𝑖𝑗
𝐴 and 𝑆𝑖𝑗

𝐵 denote the compared scattering parameters calculated or measured.  

Magnitudes differences of S-parameters are listed in Appendix C.  

In the second step of the numerical models validation, we inserted the ischemic and 

hemorrhagic stroke inside the antenna array, specifically at the center and at position 

(−20, 30) and compared the magnitude differences in the 2D and 3D numerical models 

and the measurements. 
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2.5 Measurements 

This chapter is based on the author's article published in a journal with impact factor 

[118] and conference papers [125]. 

2.5.1 Laboratory prototype of MW system 

An experimental MW system was designed for measurements with head and stroke 

phantoms. The system (see Figure 15) [58] consists of a plastic 3D printed 

container/holder for the 10 antenna elements [118]. 

 

Figure 15. A laboratory prototype of a microwave imaging system with a computer-controlled 

stroke positioning system and measurement devices. 

2.5.2 Human head and stroke phantoms 

The chapter is based on the author’s article published in a journal with impact 

factor [126]. 

To fabricate a multilayer solid head phantom, we designed phantom molds with 

anatomically realistic shapes [127]. Phantom molds were designed based on MRI-derived 

scans adopted from The Population Head Model V1.0 of IT'IS Foundation database [119]. 

We used 3D printing technology for the printing of molds suitable for filling with a 
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mixture of polyurethane and conductive powders [125]. The skin mold was divided into 

two parts because of the production of a phantom that can be better removed from the 

mold. The inner molds (bone, cerebrospinal fluid, and brain) were solid because it is 

necessary to ensure their mechanical strength for pressing into the outer mold. The brain 

mold represents the anatomy of white matter. The phantom was prepared using mixtures 

of polyurethan rubber, graphite powder, carbon black powder, and acetone (refer to Table 

5 for material specification). 

Table 5. Phantom materials to be used in the fabrication of the solid tissue layers of the human 

head phantom. 

Material Model Manufacturer 

Polyurethan rubber VytaFlexTM 20 Smooth-On, Inc (US) 

Graphite powder 282863 – Graphite Sigma – Aldrich (US) 

Carbon Black powder 45527 Carbon black Alfa Aesar (US) 

Acetone 99.9% Acetone Lach-Ner, s.r.o. (CZ) 

 

The head phantom fabrication process is described in detail in [126] for 2.5D 

version. However, in this work the molds now represent the 3D anatomy of the head, so 

it is important to keep the depth of the inner mold, which is slowly pressed into the 

homogeneous mixture to create the layers. The depth of pressing is controlled by stops, 

which are located on all internal molds and fit exactly into the external mold of the scalp; 

see Figure 16. Another advantage of these stops is the precise maintenance of the position 

of the inner mold and thus the maintenance of a precise distance from the wall of the outer 

mold. The phantom of the human head with layers of skin, bone, and CSF forms a 

waterproof container where a liquid brain phantom can be placed. The phantom of the 

brain consists of distilled water, isopropanol, and salt and represents the proportional 

dielectric properties of the grey matter of the brain, the white matter of the brain, and the 

cerebellum. 
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Figure 16: 3D printed molds for manufacturing of the 3D solid head phantom. Precise positioning 

of the inner mold in the outer mold, due to stabilizing stops, which also follow the exact pressing 

depth of the inner mold. 

Similar to the head phantom, we developed demountable molds to produce the 

stroke phantom. These molds enabled the accurate and reproducible manufacturing of the 

spherical stroke phantom with a diameter of 20 mm, 30 mm, and 40 mm. Phantoms with 

dielectric properties of ischemic stroke (iStroke) and hemorrhagic stroke (hStroke) was 

created. We created an ischemic stroke phantom to represent a 15% reduction in the 

dielectric parameters of the brain [42], while the dielectric parameters of hemorrhagic 

stroke were set to be equivalent to blood. Stroke phantom form a mixture of graphite 

powder, carbon black powder, and polyurethane rubber [126].  

The Dielectric parameters of individual layers of human head phantom and stroke 

phantoms were measured using the SPEAG Dielectric Assessment Kit (DAK, Schmid & 

Partner Engineering AG, Switzerland) with the probe DAK-12 in the frequency range 

0.5-3.0 GHz. The dielectric properties of each layer were compared with target dielectric 

properties (see Table 2) obtained from the IT’IS material parameter database V3.0 [37] 

at frequency 1 GHz.  
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2.5.3 Computer-controlled stroke positioning system 

The computer-controlled stroke positioning system was developed to adjust the XY 

position of a stroke phantom inside the head phantom. Components for 3D printers were 

used to design a precise and reliable computer-controlled system for adjusting the position 

of a stroke phantom. Specifically, smoothed travel rods, stepper motors with a trapezoidal 

rod, ball bearings and linear bearings were used. Stepper motors are controlled using in-

house written MATLAB scripts and the Arduino platform. Microwave measurements are 

also controlled from the MATLAB environment using a vector network analyzer. 

The 3D printed parts were designed in the 3D Builder program. Corner parts were 

used to fix travel rods and standing legs, see Figure 17 (a). Stepper motor holders are used 

for stable mounting of the motors to the travel rods and contain space for linear bearing 

insertion, see Figure 17 (b). The bearing holders contain space for a linear bearing and a 

ball bearing which is used to stabilize the stepper motor and easily rotate the trapezoidal 

rod, see Figure 17 (c). The moving center part contains space for insertion of two 

trapezoidal screws and consists of a mechanism for holding a stroke phantom, see Figure 

17 (d). The attachment of the stroke phantom is designed using a plastic rod that contains 

a semicircular cap, Figure 17 (e). The mechanism to secure the plastic rod is presented in 

Figure 17 (f) and works on the principle of rotating the rod by 180 degrees and inserting 

a stop part, which prevents the plastic rod from turning back and falling out, see Figure 

18. The parts were printed on 3D printer Prusa I3 MK3s with polyethylene terephthalate 

glycol-modified PETG and glued with polyurethane glue. Wooden rods were used as 

standing legs. Due to the power consumption of the stepper motors an external 12V and 

1A power supply was used. 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 17. 3D printed parts. (a) Left and right corners for mounting the travel rod and the standing 

rod. (b) Stepper motor holders for mounting the linear bearings and stepper motor. (c) The bearing 

holders for mounting the linear bearing and fixing the trapezoidal rod by ball bearing. (d) Middle 

part with a stroke holder mechanism and space for the insertion of two trapezoidal screws. (e) 

Stroke holder stick. (f) Parts of the stroke holder mechanism. 

 

         (a)               (b)                      (c)                      (d)               (e) 

Figure 18. Stroke holder mechanism: (a) Middle part with the stroke holder mechanism and the 

stroke holder stick. (b) Stroke holder stick inserted into the mechanism. (c) Stroke holder stick 

rotated by 180 degrees. (d) Inserted stop part that fix the stroke holder stick. (e) assembled 

mechanism. 

Arduino UNO with the L293D motor shield was used to control the stepper motors. 

The Arduino IO Package for MATLAB [128] was used. The source code (motor_v1.pde) 

has been uploaded to the Arduino board, which allows to receive commands from 

MATLAB. The rotation of the stepper motors with the trapezoidal rod causes a change 

in the position of the middle part. A MATLAB function was developed to control the 

stepper motor and move the middle part with the stroke holder mechanism to a defined 

position. Once the specified position is reached, the motors are turned off. This involves 

releasing the motors and interrupting the current flow. The center of the system is defined 

by the xy coordinates [0, 0]. Then, it is necessary to define positions for the movement of 

the middle part with the stroke phantom. The maximum range of motion in the liquid 

brain of human head phantom of the brain for the x axis was determined from -6 to 6 cm 

and the maximum range in the y axis was determined from -4.5 to 4.5 cm. However, it is 

necessary to consider the variability of the human head and the diameter of the stroke 
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phantom. The stroke phantom should not hit the walls of the phantom. If a 0.5 cm step is 

defined in the code for one cycle, the position of stroke phantom must be defined in 

multiples of 0.5 cm and finally multiplied by 2 to give an integer number for repetitions 

of cycles. The positions defined in this way can be used as input to the created function 

that controls the stepper motors. The control script of Computer-controlled stroke 

positioning system and 3D models are available for download at: 

printables.com/cs/model/75443/files. 

Twenty different positions were selected along the xy-axis to position the spherical 

stroke phantom within the head phantom. Figure 19. depicts the xy-coordinates of the 

stroke phantom at each of these locations. It should be noted that the z-axis of the stroke 

phantom is aligned with the plane in the middle of the antennas. 

 

Figure 19: The 20 different x-y positions in the brain where the stroke phantom was placed using 

the computer-controlled stroke positioning system. The z-axis position of the phantom was set to 

the center of the antennas. 

2.5.4 Training and testing datasets 

Microwave measurements were conducted at a frequency of 1 GHz using an in-

house written MATLAB script with a computer-controlled stroke positioning system and 

network analyzer ZNB8 equipped with a switching matrix ZN-Z84, both 

Rohde&Schwarz. A full-port calibration was performed before the measurement using 

the automatic calibration unit ZN-Z153 Rohde & Schwarz. The measurement script 
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initiated the movement of the stroke phantom to a predefined position and waited for the 

liquid level of the brain phantom to stabilize before initiating measurements of the S-

parameters. The measured parameters were stored in a structured format, along with 

information about the position, size and type of the stroke phantom. Once the 

measurement was complete and the data saved, the stroke phantom was moved to the next 

predefined position, and the measurement process repeated. This automated process 

allowed for all 20 positions depicted in Figure 19 to be measured without any user 

intervention. Finally, the stroke phantom was returned to its initial coordinates. The 

measurement setup is shown in Figure 20. 

 

Figure 20. The measurement setup consists of an experimental microwave system, a multilayer 

head phantom, and a stroke phantom embedded in a computer-controlled stroke positioning 

system for motion along the x-y axis in a liquid head phantom. 
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Initially, measurements were performed on the experimental microwave system 

that was filled with a homogeneous liquid phantom. These measurements were conducted 

to evaluate the measurement noise and machine learning algorithm testing. Multiple 

measurements were taken between each stroke phantom measurement to obtain a larger 

dataset, which included a no-stroke scenario. As a result, two datasets were generated for 

the homogeneous liquid phantom, and they are presented in Table 6. Additionally, two 

datasets were generated for the realistic multilayer head phantom, and they are also 

summarized in Table 6.  

Table 6: Phantom parameters in the DataSets of experimental measurements 

DataSet 

(-) 

Stroke  

type 

(-) 

Stroke  

sizes  

(mm) 

Stroke 

positions 

(-) 

Head  

phantoms 

(-) 

Frequency  

points 

(-) 

DataSet 

size 

(-) 

M_1 

hStroke 

iStroke 

noStroke 

20,30,40 Fixed 20 1 (liquid) 1 

60 

60 

20 

M_2 

hStroke 

iStroke 

noStroke 

20,30,40 Random 30† 1 (liquid) 1 

90 

90 

20 

M_3 

hStroke 

iStroke 

noStroke 

20,30,40 Fixed 20 1 (realistic) 1 

60 

60 

20 

M_4 

hStroke 

iStroke 

noStroke 

20,30,40 Random 30† 1 (realistic) 1 

90 

90 

20 
†Uniform probability density random number generator. 

2.6 DataSets structure 

A specialized custom file structure was designed in MATLAB to effectively store 

the large datasets generated from numerical simulations and experimental measurements. 

Example of dataset structure show Figure 21. Each row within the structure array contains 

data representing a different scenario. The columns of the structure array correspond to 

the various parameters and characteristics of the scenario. These 

parameters/characteristics are described in Appendix E: 

 

Figure 21. Example of dataset structure 
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2.7 Data analysis, format, and dimensionality reduction 

Due to the “curse of dimensionality” [129], the required number of training samples 

to construct an accurate classifier increases exponentially as the dimensionality of the 

input data increases. Our objective is to reduce the number of necessary training samples. 

2.7.1 Feature selection 

The microwave system used in this study contains 10 antennas, as illustrated in 

Figure 22. The microwave measurement resulted in an S-matrix with dimensions of 

10x10, corresponding to a total of 100 elements or 200 elements if considering both the 

real and imaginary components. 

 

Figure 22. Antenna position numbers for the 10-antenna microwave system used in this study. 

In the first step of dimensionality reduction, we employed the Lorentz principle of 

reciprocity (𝑆𝑖𝑗 = 𝑆𝑗𝑖) and only utilized only 55 independent elements of the S-matrix 

(elements on main diagonal and below). By dividing the complex values of these S-

parameters into their real and imaginary components, we obtained a total of 110 observed 

features. 

Two different formats of data were used to train and test the LBE algorithms. The 

first format of data consisted of the real and imaginary parts of the S-matrix elements, 

resulting in 110 features. The second format of data was modulus (in dB) and phase, again 

resulting in 110 observed features. 
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2.7.2 Principal component analysis 

Principal component analysis (PCA) was used to further reduce the dimension for 

training and test data. Due to the further reduction of the dimension, the complexity of 

learning, the costs of the training phase and, above all, the number of required samples 

for accurate training of the algorithm are reduced. It is recommended to perform 

normalization of the data before applying PCA [130]. By normalizing the data, the 

features are formatted to be on a similar scale. This can result in a more robust 

representation of the data. The training and test data were preprocessed by centering and 

normalizing to the range of 0 to 1. Principal component coefficients were calculated for 

the training data using PCA, which was implemented through Singular Value 

Decomposition (SVD). 

The optimal number of dimensions for the PCA-extracted features was selected 

based on the classification accuracy for various dimension sizes. The classification 

accuracy was assessed for a minimum of five dimensions, increasing by increments of 

five, up to the maximum number of dimensions. 

2.7.3 Data variance and variability analysis 

We analyzed the variance of the principal components in the 3D numerical data. A 

comparison was performed between the data represented in the real- and imaginary-part 

format (ReIm) and the data represented in the module and phase format (MoPh).  

PCA represents the data in a new coordinate system. The first principal component 

(PC) describes the largest part of the variance of the original data, the second PC describes 

the largest part of the variance not contained in first PC and it is perpendicular to the first 

PC. The third PC describes the largest part of the variance not contained in first PC and 

second PC. Third PC is perpendicular to both the first and second PC. This orthogonal 

property allows us to visualize the first three components in 3D space, aiding in the 

exploration of relationships among the data. We created a 3D visualization of the first 

three principal components for dataset of 3D numerical data. In practice, algorithms may 

use additional PCs beyond the first three to capture more subtle patterns and enhance 

classification performance. 
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Additionally, for the 3D numerical dataset, we analyzed the variability of the data 

resulting from the insertion of ischemic and hemorrhagic stroke phantoms into the head 

phantom. We evaluated the relative magnitude differences between the S-matrices with 

and without strokes. Relative magnitudes differences are defined as: 

 ∆𝑀𝑖𝑗 = 20 ∙ log10 (| 
𝑆𝑖𝑗

𝐴

𝑆𝑖𝑗
𝐵|), (3) 

where𝑆𝑖𝑗
𝐴 and 𝑆𝑖𝑗

𝐴 denote the scattering parameters in the presence or absence of a stroke, 

respectively, for each i, j antennas pair. Boxplots were used to display the variability of 

the calculated relative magnitude differences for stroke sizes of 20 mm, 30 mm, and 40 

mm. The purpose of this analysis was to determine if the presence of a stroke in the head 

causes variability in the data, enabling the classification algorithm to accurately classify 

it into the iStroke, hStroke, and noStroke classes. The analysis was conducted for stroke 

diameters of 20, 30, and 40 mm. The relative magnitude differences, calculated using 

formula (3), were employed for the analysis. 

2.8 Stroke classification 

This chapter is based on the author’s conference paper [114]. 

In general, there are various algorithms and machine learning techniques that can 

be used for stroke classification, including decision trees, random forests, support vector 

machines (SVMs), and deep learning methods such Deep Neural Networks (DNNs). 

DNNs require a large amount of training data to perform optimally. DNNs are therefore 

not suitable for the classification of strokes, as it is challenging to obtain a sufficient 

amount of training data for this task. Support Vector Machines (SVMs) were used in past 

for microwave stroke classification [82], [95], [110], [113]due to their strong performance 

in various classification tasks, including medical imaging analysis. In this study, we 

specifically focused on using SVMs [131], as they have been found to be the most 

appropriate method based on our previous research results reported in [59], [60], [113], 

[114].  
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2.8.1 Support Vector Machine algorithm 

For the detection and classification of strokes, we employed a non-linear SVM 

with kernel functions [132]. Kernel functions map the data to higher dimensional space 

where the classes are easier to separate. For classification between ischemic, 

hemorrhagic and no stroke scenario we construct a three-class SVM classifier by 

combining multiple binary classifiers. The one vs all learning technique was used. The 

implementation of the algorithm used in this work is the one from MATLAB 2022a 

Statistics and Machine Learning Toolbox version 12.3. The aim was to classify the data 

into three different classes: iStroke, hStroke, and noStroke. Additionally, two-class 

SVM classifier was designed to differentiate ischemic stroke from other cases, 

including hemorrhagic stroke and a healthy head, which was labeled as the Other class. 

The aim was to verify whether the SVM classifier can provide safe information for 

initiating thrombotic therapy in ischemic stroke patients and avoid misclassification of 

hemorrhagic stroke patients as ischemic stroke patients. To this end, a cost matrix was 

created where the misclassification of a patient in the other class (i.e., primarily 

referring to hemorrhagic stroke patients) into the iStroke class was given a higher cost 

than the misclassification of a patient in the iStroke class into the Other class. 

To train the multi-class algorithm, the fitcecoc function was used. This function 

takes as inputs the training data matrix (TrainData), the input matrix with the true 

classes (TrainDataClass), and the type of the classification algorithm (Learner). The 

training data matrix consisted of a pre-determined number of rows, with each row being 

filled with values that had been obtained after the adjustment of the S-matrix through 

normalization and dimensionality reduction using principal component analysis 

(PCA). The classification algorithm (Learner) was set up using the function 

templateSVM, which allowed for the definition of parameters such as kernel type, 

kernel scale, and box constraint. However, we optimized these parameters using 

hyperparameter optimization as defined in fitcecoc function. Learner allows for the 

definition of different machine learning algorithms, such as Logistics Regression 

(templateKernel), Discriminant Analysis (templateDiscriminant), Nearest Neighbors 

(templateKNN), Naïve Bayes classifier (templateNaiveByes), and Classification Tree 

(templateTree). This algorithm will be tested as well with hyperparameters 

optimization of his parameters. 
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For testing the learned classifier, a test data matrix (TestData) and a 

corresponding test data class matrix (TestDataClass) were created to assess the 

classification results. Additional information required for analysis, such as stroke size 

and position, phantom type and scale, used frequency, etc., was stored in a 

corresponding information matrix (TestDataInfo). This information matrix was 

utilized exclusively for the evaluation of classifications that were problematic. The 

selection of test and training data from datasets is performed using in-house written 

functions in MATLAB. The algorithm’s performance testing is done using the predict 

function, where the input is the trained model and test data. The output of the function 

is the classification of data into classes. 

2.8.2 Hyperparameters optimization  

To enhance the algorithm’s performance, we utilized the configuration of 

hyperparameters. However, the lack of information about their meaning and 

interconnection often makes it hard to select parameters correctly. Therefore, 

hyperparameter optimization tools were used. The optimization process was conducted 

using Bayesian optimization, which is a highly efficient global optimization method 

for machine learning models [133]. Bayesian optimization is more efficient in 

determining hyperparameters than the commonly used grid search or random search 

[134]. For each step of dimensionality reduction, 500 iterations of hyperparameter 

optimization were performed. The following parameters were optimized: 

- Kernel function: The kernel function to map the input data into a higher-

dimensional space, where it becomes easier to separate the data into classes. 

The choice of kernel function (e.g. linear, polynomial, radial basis function) 

can greatly affect the performance of the SVM model. 

- Penalty parameter C (in MATLAB called Box Constraint): For large 

values of penalty parameter the SVM will prioritize classifying all the 

training data correctly which can lead to sacrificing the margin between the 

classes and overfitting - the resulting hyperplane may not generalize new 

data. For small values of penalty parameter, the SVM will prioritize 

maximizing the margin between the classes which can lead to misclassifying 

some training examples and underfitting - the resulting hyperplane may not 
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capture all the important patterns in the data. The goal of hyperparameter 

optimization is usually set to a value that balances the wide margin with the 

correct classification of most of the training data. Box Constraint takes values 

from 0.001 to 1000. 

- Gamma (in MATLAB called Kernel Scale): This parameter controls the 

influence of individual training instances and create the shape of the decision 

boundary. A high gamma value results in a more complex decision boundary, 

providing a better fit for the training data. However, this may lead to 

overfitting, where the boundary fits the training data too closely and fails to 

generalize effectively to new data. On the other hand, a low gamma value 

provides a simpler decision boundary that may not perfectly fit the training 

data but is less susceptible to overfitting. Kernel scale takes values from 

0.001 to 1000.  

MATLAB 2022a Statistics and Machine Learning Toolbox version 12.3 is 

equipped with automatic hyperparameter optimization feature, which was used 

throughout this work. By using hyperparameter optimization the optimal values for 

these hyperparameters were determined for a given dataset, which should significantly 

improve the performance of the SVM model for stroke detection and classification.  

2.8.3 Classification algorithm assessment 

The use of a confusion matrix allows for the assessment of the performance of the 

classifier in terms of correctly and incorrectly classified samples, which can provide 

insight into which classes (stroke types) are problematic for the classification task. This 

information can be used to further optimize classifier setting and improve its 

performance. 
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Figure 23: Confusion matrix 

The accuracy of the classifier, which can be calculated from the confusion matrix, is a 

common metric used to quantify the performance of the classifier. The classification 

accuracy (CL-accuracy) is defined as the ratio of the number of correctly classified 

instances to the total number of instances in the dataset, expressed as: 

 𝐶𝐿-𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  .  (4) 

While overall accuracy provides an estimate of the accuracy of the model, it does not 

account for imbalanced class distributions. To address this issue, Cohen’s kappa [135] 

is a commonly used metric that provides a more objective evaluation of the performance 

of the model. Cohen’s kappa compares the accuracy of the system to the accuracy of a 

random system and takes values from -1 to 1. If Cohen’s kappa is negative, the overall 

accuracy of the model is lower than that of a random system. The formula for calculating 

Cohen’s kappa is as follows: 

 𝜅 =
𝐶𝐿-𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 , (5) 

where the 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is defined as the sum of the product of the reference and 

result likelihood for each class. In terms of false positives etc., 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 can 

be written as: 
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 𝑟𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃) ∙ (𝐹𝑃 + 𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 ∙ 𝑇𝑜𝑡𝑎𝑙
  (6) 

In the two-class learner, the sensitivity and specificity of stroke classification was 

monitored. In this scenario, positive cases refer to patients diagnosed with ischemic 

stroke, while negative cases are comprised of patients with hemorrhagic stroke or who 

are healthy. The specificity is defined as: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 , (7) 

where true negatives (TN) refer to the cases that are correctly classified as negative, while 

false positives (FP) refer to cases that are incorrectly classified as positive. In the context 

of ischemic stroke classification, false positives refer to cases that are wrongly classified 

as ischemic stroke, but are actually hemorrhagic stroke or healthy patient. The sensitivity 

is defined as: 

 𝑆𝑒𝑛𝑧𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , (8) 

where True Positives (TP) are the cases correctly classified as positive and False 

Negatives (FN) are the cases that are actual positive but classified as negative by the 

algorithm (see Figure 23). Our objective is to set the specificity such that there are no 

misclassifications of hemorrhagic stroke into the ischemic class, even if this comes at the 

cost of a lower sensitivity, i.e., a lower successful classification rate of ischemic patients. 

This approach is chosen based on the critical nature of administration of thrombotic 

therapy to ischemic patients. Misclassifying hemorrhagic stroke patients as ischemic 

could lead to the administration of thrombotic therapy to bleeding patients, which could 

be life-threatening. Therefore, it is crucial to set the specificity of the model such that 

hemorrhagic stroke patients are not misclassified as ischemic, even if it leads to a lower 

sensitivity and fewer successfully classified ischemic patients. The ability to track 

whether a hemorrhagic or healthy patient (classified as Other class) was not misclassified 

as ischemic is made possible by the information matrix of the test data (TestDataInfo), 

which is compatible with the classification result in a backward manner. 
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The cross-validation error (CV-error) was calculated to evaluate the performance 

of the algorithms before classifying the training data. In 𝑘-fold cross-validation, the 

dataset is divided into k parts, with one part being used for testing and the remaining 𝑘-1 

parts being used for training. The process is repeated so that each part is used for testing 

only once. In this work, 𝑘 = 5 fold validation was utilized. 

2.9 Scenario testing 

This chapter is partially based on the author’s article published in a journal with impact 

factor [116]. 

To systematically test the algorithms under different scenarios, training and testing 

datasets were created from the complete numerical simulation and experimental 

measurement datasets. The process of selecting the training and testing datasets was 

performed using in-house written functions in MATLAB. The information regarding the 

dataset utilized for each testing scenarios is presented in the summary tables. 

2.9.1 2D numerical simulations 

Data corresponding to patients with small ischemic and hemorrhagic stroke sizes 

show the smallest deviation from data for healthy subjects. It can be expected that they 

represent the worst case for classification and therefore may be the most relevant for 

determining support vectors. We trained the SVM algorithm with datasets including 

successively only 20, then 30, and finally, 40 mm iStrokes and hStrokes placed at 20 

positions in 10 randomly scaled models (in total, 600 for each stroke type for testing). 

The SVM algorithm classified the remaining data. Dimensionality reduction using PCA 

was not used in this case. For simplification, only data for 1 GHz were used. The data 

used for training and testing algorithm in scenario S1 are described in Table 7.  

Table 7. Description of the training and testing data parameters for testing scenario S1 

 TrainData TestData 

DataSet (−) 2D_1 2D_1 

Stroke type (−) 
hStroke, iStroke, 

noStroke 
hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 or 30 or 40 20, 25, 30, 35, 40 

Stroke positions (−) Fixed 20 Fixed 20 
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Head models (−) 10 scaled 10 scaled 

Frequency points (−) 1 1 

DataSet size† (−) 600 3000 

DataSet dimensions ‡ (−) 110 110 

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix. 

 

For a smaller number of frequency points, the algorithm works with a smaller amount 

of data. On the other hand, for a higher number of frequency points, we can reduce the 

dimensionality to only useful information. Classification results were compared for the 

SVM algorithm trained on data for a single frequency point (1 GHz), five frequency points 

(from 0.8 GHz, step 0.1 GHz, to 1.2 GHz), fifteen frequency points (from 0.8 GHz, 0.05 

GHz step, up to 1.5 GHz) data and twenty-five frequency points (from 0.8 GHz, 0.05 GHz 

step, up to 2 GHz) data. We train the SVM algorithm for 20 mm iStroke and hStroke sizes 

located at 20 positions in 10 random scaled models. The SVM algorithm classified the 

remaining data. The data used for training and testing algorithm in scenario S2 are 

described in Table 8. 

Table 8. Description of the training and testing data parameters for testing scenario S2. 

 TrainData TestData 

DataSet (−) 2D_1 2D_1 

Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20, 25, 30, 35, 40 

Stroke positions (−) Fixed 20 Fixed 20 

Head models (−) 10 scaled 10 scaled 

Frequency points (−) 1 or 5 or 15 or 25 1 

DataSet size† (−) 600 3000 

DataSet dimensions‡ (−) 110 or 550 or 1650 or 2750 110 or 550 or 1650 or 2750 

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix. 

 

For testing scenario S3 we trained the SVM algorithm using data on subjects with 

20 mm iStroke and hStroke located at 20 positions in 10 randomly scaled head models. 

We used training data for a frequency of 1 GHz and 90 dimensions reduced by PCA. The 

SVM algorithm classified the data of subjects with random stroke sizes. The data used 

for training and testing algorithm in scenario S3 are described in Table 9.  
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Table 9. Description of the training and testing data parameters for testing scenario S3. 

 TrainData TestData 

DataSet (−) 2D_1 2D_2 

Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20–40 

Stroke positions (−) Fixed 20 Fixed 20 

Head models (−) 10 scaled 10 scaled 

Frequency points (−) 1 1 

DataSet size† (−) 600 600 

DataSet dimensions‡ (−) 90 90 

† The single measured S-matrices, ‡ The number of S-parameters from S-matrix. 

 

For testing scenario S4 we trained the SVM algorithm using data for 20 mm iStroke 

and hStroke sizes located at 20, 83, and 456 positions in 10 randomly scaled head models. 

We used training data for a frequency of 1 GHz and 90 dimensions reduced by PCA. The 

SVM algorithm classified data for random stroke sizes and random stroke positions. The 

data used for training and testing algorithm in scenario S4 are described in Table 10. 

Table 10. Description of the training and testing data parameters for testing scenario S4. 

 TrainData TestData 

DataSet (−) 2D_1 2D_3 

Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20–40 

Stroke positions (−) Fixed 20 or 83 or 456 Random 20 

Head models (−) 10 scaled 10 scaled 

Frequency points (−) 1 1 

DataSet size† (−) 600 or 2490 or 1368 600 

DataSet dimensions‡ (−) 90 90 

†The single measured S-matrices, ‡ The number of S-parameters from S-matrix. 
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For testing scenario S5 we trained the SVM algorithm using data for 20, 30 and 40 

mm iStroke and hStroke sizes located at 20 positions in 10 randomly scaled head models. 

We used training data for a frequency of 1 GHz. Dimensionality reduction was performed 

by PCA to find the best result for each algorithm. The SVM algorithm classified data for 

random stroke sizes and random stroke positions. The data used for training and testing 

are described in Table 11. 

Table 11. Description of the training and testing data parameters for testing scenario S5. 

 TrainData TestData 

DataSet (−) 2D_1 2D_3 

Stroke type (−) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20, 30, 40 20–40 

Stroke positions (−) Fixed 20 Random 20 

Head models (−) 10 scaled 10 scaled 

Frequency points (−) 1 1 

DataSet size† (−) 600 600 

DataSet dimensions‡ (−) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

 

2.9.2 3D numerical simulation 

For testing scenario S6 the SVM algorithm was trained using data for 20 mm 

iStroke and hStroke sizes located at 20 predefined positions for 3D numerical simulation. 

Based on previous results, we used training data for a frequency of 1 GHz and gradually 

increased the data dimension to find the dimension with the highest classification 

accuracy. The SVM algorithm classified data for 20, 30 and 40 mm iStroke and hStroke 

sizes located at 20 predefined positions. The data used for training and testing algorithm 

in scenario S6 are described in the Table 12. 
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Table 12: Description of the training and testing data parameters for testing scenario S6 – 3D 

numerical simulations. 

 TrainData TestData 

DataSet (-) 3D_1 3D_1 

Stroke type (-) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20, 30, 40 

Stroke positions (-) Fixed 7 Fixed 7 

Head models (-) 10 10 

Frequency points (-) 1 1 

DatSet size† (-) 70+70+70 210+210+70 

DataSet dimensions‡ (-) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

For testing scenario S7, we utilized the training and testing datasets from test 

scenario S6, but the TrainData and TestData were formatted to include two formats. The 

first format was the original format of real and imaginary parts, while the second format 

involved modulus and phases. The dataset dimensionality was gradually increased using 

PCA, and the dimension with the highest classification accuracy was determined. 

For testing scenario S8, we used the training and test datasets from test scenario S6 

in the data format specified by test scenario S8. However, the TrainData and TestData 

were formatted to include only the transmission parameters of the S-matrix and compared 

to the original data format that contained both reflection and transmission parameters of 

the matrix. The dataset dimensionality was gradually increased using PCA, and the 

dimension with the highest classification accuracy was determined. 

Around 85% of strokes are ischemic [3], therefore, the SVM algorithm should have 

a higher success rate than the statistical probability. For testing scenario S9 the SVM 

algorithm was trained using data for 20 mm iStroke and hStroke sizes located at 20 

predefined positions for 3D numerical simulation. We used training data for a frequency 

of 1 GHz and gradually increased the data dimension to find the dimension with the 

highest classification accuracy. The SVM algorithm classified data for random stroke 

sizes and random stroke positions. The data used for training and testing are described in 

the Table 13. 
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Table 13: Description of the training and testing data parameters for testing scenario S9 – 3D 

numerical simulations. 

 TrainData TestData 

DataSet (-) 3D_2 3D_3 

Stroke type (-) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20 - 40 

Stroke positions (-) Fixed 20 Random 20 

Head models (-) 10 10 

Frequency points (-) 1 1 

DatSet size† (-) 200+200+200 100+100+100 

DataSet dimensions‡ (-) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

Testing scenario H10 utilized the same data as test scenario S9 for training and 

testing the algorithm (see Table 13). In this case, the hStroke and noStroke scenarios were 

merged into a single class labeled ‘Other’ This step enabled the use of a two-class learner 

SVM algorithm. The dataset dimensionality was gradually increased using PCA, and the 

dimension with the highest classification accuracy was determined. 

2.9.3 Measurements 

For testing scenario S11 the SVM algorithm was trained using data for 20 mm 

iStroke and hStroke sizes located at 20 predefined positions for and experimental 

measurement with liquid head phantom and for realistic head phantom. Based on previous 

results, we used training data for a frequency of 1 GHz and gradually increased the data 

dimension to find the dimension with the highest classification accuracy. The SVM 

algorithm classified data for 20, 30 and 40 mm iStroke and hStroke sizes located at 20 

predefined positions. The data used for training and testing algorithm in scenario S11 are 

described in the Table 14 and Table 15.  



 

 

67 

 

Table 14: Description of the training and testing data parameters for testing scenario S11 – 

experimental measurements with liquid phantom. 

 TrainData TestData 

DataSet (-) M_1 M_1 

Stroke type (-) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20, 30, 40 

Stroke positions (-) Fixed 20 Fixed 20 

Head phantoms (-) 1 1 

Frequency points (-) 1 1 

DatSet size† (-) 20+20+20 60 + 60 +20 

DataSet dimensions‡ (-) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

Table 15: Description of the training and testing data parameters for testing scenario S11 – 

experimental measurements with realistic phantom. 

 TrainData TestData 

DataSet (-) M_3 M_3 

Stroke type (-) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20 20, 30, 40 

Stroke positions (-) Fixed 20 Fixed 20 

Head phantoms (-) 1 1 

Frequency points (-) 1 1 

DatSet size† (-) 20+20+20 60 + 60 +20 

DataSet dimensions‡ (-) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

For testing scenario S12 the SVM algorithm was trained using data for 20, 30 and 

40 mm iStroke and hStroke sizes located at 20 predefined positions for and experimental 

measurement with liquid head phantom and for realistic head phantom. We used training 

data for a frequency of 1 GHz and PCA reduced the data dimensions based on the results 

of the previous testing scenarios. The SVM algorithm classified data for random stroke 

sizes and random stroke positions. The data used for training and testing are described in 

the Table 16 and Table 17. 
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Table 16: Description of the training and testing data parameters for testing scenario S12 – 

experimental measurements with liquid phantom. 

 TrainData TestData 

DataSet (-) M_1 M_2 

Stroke type (-) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20, 30, 40 20, 30, 40 

Stroke positions (-) Fixed 20 Random 20 

Head phantoms (-) 1 1 

Frequency points (-) 1 1 

DatSet size† (-) 20+20+20 60 + 60 +20 

DataSet dimensions‡ (-) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

 

Table 17: Description of the training and testing data parameters for testing scenario S12 – 

experimental measurements with realistic phantom. 

 TrainData TestData 

DataSet (-) M_3 M_4 

Stroke type (-) hStroke, iStroke, noStroke hStroke, iStroke, noStroke 

Stroke sizes (mm) 20, 30, 40 20, 30, 40 

Stroke positions (-) Fixed 20 Random 20 

Head phantoms (-) 1 1 

Frequency points (-) 1 1 

DatSet size† (-) 20+20+20 60 + 60 +20 

DataSet dimensions‡ (-) 110 110 

†The single measured S-matrices, ‡The number of S-parameters from S-matrix. 

Testing scenario S13 utilized the same data as test scenario S12 for training and 

testing the algorithm (see Table 16 and Table 17). In this case, the hStroke and noStroke 

scenarios were merged into a single class labeled Other class. This step enabled the use 

of a two-class learner SVM algorithm. The dataset dimensionality was gradually 

increased using PCA, and the dimension with the highest classification accuracy was 

determined.  
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3. Results 

In this study, we systematically tested the capabilities of SVM-based machine 

learning algorithms in detecting and classifying strokes. Large datasets from both 2D and 

3D numerical simulations and experimental measurements were generated, and 13 

scenarios were tested on these datasets. The datasets have been or will be made available 

to the scientific community for further algorithm development and testing. Additionally, 

ten 5-layer 2D and 3D numerical models of human head were created to generate datasets, 

which can be utilized in other applications, such as microwave hyperthermia treatment. 

Further, the computer-controlled stroke positioning system was developed to enable 

repeatable and reproducible microwave measurements, in conjunction with developed 

stroke phantoms and a 3D anatomically and dielectrically realistic phantom of an adult 

human head.  

3.1 2D and 3D numerical models 

The chapter is based on the author’s article [116] published in an journal with an impact 

factor. 

The geometry of one 2D numerical model is depicted in Figure 24. A total of 10 

numerical models for different human head models were created. The 2D geometries of 

all 10 head models are shown in Appendix A. 
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Figure 24. Geometry of the 2D numerical model. Antenna holder and antenna elements 

surrounding a realistic human head model. XY-plane corresponds to the cross-section at z = 100 

mm of the laboratory prototype 3D numerical model (corresponds to the plane of the antenna 

elements). 

The geometry of one 3D numerical model is depicted in Figure 25. A total of 10 

numerical models for different human head models were created. The 3D geometries of 

all 10 head models are shown in Appendix B. 

  

(a) (b) 

Figure 25. The geometry of the 3D numerical model of the experimental microwave system. The 

model geometry with air region hidden (a), with container and matching liquid areas hidden (b). 

  



 

 

71 

 

3.2 Numerical models validation 

The chapter is based on the author’s article [116] published in a journal with impact 

factor. 

Numerical model validation was done by direct comparison of measured S-

parameters from laboratory prototype of the microwave imaging system and S-parameters 

from 2D and 3D numerical simulations (see Figure 26). The 3D numerical model of the 

microwave system yields a more accurate fit of the reflection and transmission parameters 

to experimental measurements than the simplified 2D numerical model. 

  
(a) (b) 

Figure 26. Magnitudes differences of 2D numerical model and 3D numerical model (a) and 

magnitudes differences of 3D numerical model and experimental measurement (b), calculated 

using formula (2).  

The results of the analysis of changes in S-parameters resulting from the presence 

of a stroke are presented in Appendix C for both the 2D and 3D numerical models and 

the experimental system. No significant changes in the reflection coefficients were 

observed for magnitudes differences (in dB) when the stroke was inserted. However  

variations in the transmission coefficients were noted and were found to be distinct for 

ischemic and hemorrhagic strokes, making them useful for the intended purpose. The 

results indicate that changes in the transmission coefficients are more pronounced in the 

2D model than in the 3D model. The experimental measurements of ischemic stroke 

correlate well with the 3D numerical simulation. However, the experimental 

measurements of hemorrhagic stroke show higher changes in the S-matrix compared to 

the 3D numerical simulation. Furthermore, for both the 2D and 3D numerical simulations 

and experimental measurements, changing the position of the stroke results in changes in 

the same S-parameters. 
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3.3 Head and stroke phantoms 

The chapter is partly based on the author’s article published in a journal with 

impact factor [126] and conference paper [125]. 

New molds for the production of phantoms were created using a 3D printer. These 

molds provide more precise control over the positioning of individual layers in the x, y, 

and z directions than molds presented in [126]. Figure 27 shows the individual 

components of the molds. 

  

(a) (b) 

  

(c) (d) 

Figure 27. 3D printed molds for multilayer human head phantom fabrication. (a) scalp mold, (b) 

skull mold, (c) cerebrospinal fluid mold, and (d) brain mold. 
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Table 18: Head phantom and stroke phantoms materials weight percentages. 

Tissue layer 

Urethane 

rubber† 

(%) 

Graphite 

powder 

(%) 

Carbon Black 

Powder 

(%) 

Acetone 

(%) 

Scalp 66.0 22.7 2.3 9.0 

Skull 88.0 10.0 2.0 0 

CSF 44.0 36.0 0 20 

Hemorrhagic stroke 61.5 22.0 3.5 13.0 

Ischemic stroke 66.0 22.7 2.3 9.0 

Liquid Brain 61.15 % deionized water + 38 % isopropanol + 0.85 % NaCl 

 

The 3D phantom produced in this study is anatomically and dielectrically realistic, 

as depicted in Figure 28. It was designed to mimic the human head, with anatomical 

features such as the scalp, skull, cerebrospinal fluid, and brain tissue. The ratios of the 

mixtures that make up the head phantom are listed in Table 18. The dielectric properties 

of the human head phantom and target dielectric properties from the IT’IS Foundation 

database [33] are listed in Table 19. 

 

 

Figure 28. Photograph of the anatomically and dielectrically realistic 3D human head phantom: 

external solid layers corresponding to scalp, skull, and CSF and forming waterproof container, 

which is filled with a liquid brain phantom during the measurements. This concept allows the 

physical stroke model to be inserted at different positions.  
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Table 19. Dielectric properties at 1 GHz of the different tissue-equivalent layers of the human 

head phantom. The measured data are supplemented with extended uncertainty (k = 2). 

Tissue layer 
εr (-) 

human 

εr (-) 

measured 

σ (S/m) 

human 

σ (S/m) 

measured 

Scalp 35.68 31.58 ± 4.54 0.66 0.84 ± 0.20 

Skull 12.34 12.29 ± 0.26 0.16 0.19 ± 0.01 

CSF 68.44 79.99 ± 13.99 2.46 3.75 ± 0.41 

Liquid brain 40.00 41.40 ± 0.71 1.00 1.04 ± 0.01 

 

The human head phantom complements a computer-controlled stroke positioning 

system (see Figure 29) with stroke phantoms of size 20, 30, and 40 mm in diameter that 

mimic ischemic and hemorrhagic strokes (see Figure 30). The dielectric properties of the 

stroke phantoms and target dielectric properties from the database are listed in Table 20. 

 

Figure 29. Computer-controlled stroke positioning system allowing sequential measurement of 

S-parameters for multiple stroke positions in a head phantom. 
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Figure 30: Stroke spherical phantoms with diameters 20, 30 and 40 mm. 

 

Table 20: Dielectric properties of the stroke domain in the human head modes at a frequency of 

1 GHz. Measured data are supplemented with extended uncertainty (k = 2).  

Tissue layer 
εr (-) 

human 

εr (-) 

measured 

σ (S/m) 

human 

σ (S/m) 

measured 

Ischemic stroke 34.00 31.72 ± 4.43 0.85 0.92 ± 0.07 

Hemorrhagic stroke 61.07 52.73 ± 7.39 1.58 2.85 ± 0.58 

 

3.4 Data variability and noise 

Figure 31 compares the relative magnitude differences caused by the presence of 

stroke in the 3D numerical simulation dataset. To eliminate the variability caused by 

different head shapes, the data for one head model were compared. Boxplots were used 

to present the variability of the data for iStroke and hStroke. The data variability was 

characterized by the relative magnitude differences, calculated according to formula (3), 

between the S-matrices with and without strokes. 
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Figure 31. The relative magnitude differences caused by the presence of strokes with diameters 

of 20, 30, and 40 mm calculated using 3D numerical simulation dataset for a single head phantom. 

The bottom and top of each blue box represent the 25th and 75th percentiles of the sample, 

respectively. The red line in the middle of each box is the median. The black lines represent the 

data outside the box that lies in 5 times the box. The data marked with red stars are outlier values. 

To determine the noise in the experimental measurements, the homogenous liquid 

head phantom without the stroke phantom was repeatedly measured for 7 hours. The S-

matrices for the MW system were measured between stroke measurements, with three 

measurements taken at approximately one-hour intervals and a time interval of 10 minutes 

between measurements. Figure 32 shows the relative magnitude differences between the 

first antenna and all other antennas. The results indicate that the transmission parameters 

can for your experimental setup change by up to ±0.7 dB (f = 1 GHz, IF bandwidth = 

10 Hz). 
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Figure 32. The relative magnitude differences of S-parameter in repeated experimental 

measurements of a homogeneous liquid head phantom without the stroke phantom. 

3.5 Principal component analysis 

During the PCA analysis, we examined the variances of the principal components 

in the 3D numerical simulation for two different data formats. The measurement data 

exhibited higher variance than the data from numerical simulations. Figure 33 displays 

the variances for all principal components. 

 

Figure 33. The variances of the principal components for 3D numerical simulation. Two different 

data formats were taken into account: real and imaginary part (ReIm) and module and phase 

(MoPh). 
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As part of the PCA analysis, we visualized the first three principal components of 

the 3D numerical simulation data in 3D space (see Figure 34). For the data represented in 

real and imaginary part format, the plotted points exhibited well-defined clusters that 

enabled better separation of iStroke, hStroke, and noStroke data compared to the data in 

the modulus and phase format, where the points appeared to be blended more into each 

other. 

  

(a) (b) 

Figure 34. Visualization of the first three principal components (PCs) in three-dimensional space 

is presented for both the real and imaginary component data format (a), as well as for the module 

and phase data format (b) for 3D numerical data. 

3.6 Scenario testing 

This chapter is partially based on the author’s article published in a journal with impact 

factor [116]. 

3.6.1 2D numerical simulations 

SVMs were successively trained with data for different stroke sizes and then 

classified the remaining strokes (Training and testing data are described in Table 7). By 

training the algorithm with data corresponding to the smallest considered stroke sizes 

(with a diameter of 20 mm), the highest classification accuracy was achieved (see Table 

21), even when classifying strokes up to the maximum considered diameter (40 mm). 
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Table 21. Effect of stroke sizes on classification accuracy – results for testing scenario S1. 

Stroke Size 

(mm) 

CV-Error 

(%) 

CL-Accuracy 

(%) 

20 11.8 95.7 

30 7.0 85.3 

40 5.5 65.5 

 

Graphs of classification accuracy and cross-validation error for different values of 

dimensionality and different numbers of frequency points are in Appendix B. From Table 

22, we conclude that for SVM training, it turns out to be most appropriate to use 1 or 5 

frequency points, where the classification accuracy and cross-validation error were 

almost identical. For 15 and 25 frequency points the results are significantly worse and 

only after dimensionality reduction using PCA do the results reach similar classification 

accuracy as with a lower number of frequency points. 

Table 22. The effect of number of frequency points and dimensionality reduction on the 

classification accuracy – results for testing scenario S2. 

Frequency 

Points 

(−) 

Frequencies 

(GHz) 

Total  

Dimensions 

(−) 

CL-Accuracy 

CV-Error 

(%) 

Reduced 

Dimensions 

(−) 

CL-Accuracy 

CV-Error 

(%) 

1 1.00 110 
94.6 

14.9 
90 

96.9 

10.4 

5 
0.80 1.00 1.20 

1.40 1.50 
550 

77.0 

17.3 
80 

96.8 

10.2 

15 
0.80–1.50  

step 0.05 
1650 

87.2 

21.1 
70 

96.3 

11.1 

25 
0.80–2.00 

step 0.05 
2750 

33.3 

28.6 
150 

92.2 

8.4 

 

The confusion matrix in Figure 35 shows that the classification between the iStroke 

and the hStroke class was accurate, only 6.5% of strokes were classified as the noStroke 

class, and 6.0% noStrokes were classified as the iStroke class. 
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Figure 35. The confusion matrix for the classification of random ischemic and hemorrhagic stroke 

sizes. 

From Table 23 we see that even for a larger amount of data, the algorithm cannot 

classify random data accurately and reach a maximum at around 70% classification 

accuracy. From the confusion matrixes in Figure 36, we can observe the correct and 

incorrect classification of iStroke, hStroke, and noStroke classes. 

Table 23. The SVM algorithm classification of random stroke sizes and random stroke positions 

with different amounts of training data (different number of 20 mm stroke positions in the 

head). 

Training Data 

Stroke Positions 

(−) 

Training Data 

Number of 

Models 

(−) 

CV-Error 

(%) 

CL-Accuracy 

(%) 

Hyperparameters 

Optimalization Settings 

(−) 

20 hStroke 

20 iStroke 
10 11.3 64.3 

Box Constraint = 912.92 

Kernel = Gaussian 

Kernel Scale = 17.8 

83 hStroke 

83 iStroke 
10 8.9 70.5 

Box Constraint = 212.97 

Kernel = Gaussian 

Kernel Scale = 11.41 

456 hStroke 

456 iStroke 

1 randomly 

selected from 

10 models 

11.3 70.2 

Box Constraint = 385.03 

Kernel = Gaussian 

Kernel Scale = 19.74 
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(a) (b) (c) 

Figure 36. The confusion matrixes for classification of random stroke sizes and random stroke 

positions. In total, 200 samples for iStroke, 200 samples for hStroke and 200 samples for 

noStroke. SVM algorithm was trained for (a) 20 and (b) 83 ischemic and hemorrhagic strokes in 

10 scaled models and (c) for 456 ischemic and hemorrhagic strokes in 1 randomly selected model 

from 10 scaled models. 

The testing of six machine learning algorithms for detecting and classifying stroke 

types is presented in Table 24. We tested Support Vector Machine (SVM), Logistic 

Regression (LR), Discriminant Analysis (DA), k-Nearest Neighbors (kNN), Naive Bayes 

Classifier (NB), and Classification Tree (CTr) algorithms. The SVM algorithm 

demonstrated the best performance. Other algorithms have classification accuracy that 

was close to random estimation, indicated by their low kappa value. Negative kappa 

values were not presented. 

Table 24. Results for classification of random stroke sizes and random stroke positions by 

different machine learning algorithms. 

Algorithm 

(-) 

Reduced dimensions 

(-) 

CL-error 

(%) 

CL-accuracy 

(%) 

Kappa  

(-) 

SVM 90 7.0 67.8 0.28 

LR 90 - 55.7 0.01 

DA 90 5.2 36.3 - 

kNN 90 19.4 56.3 0.02 

NB 40 - 38.7 - 

CTr 50 25.7 43.8 - 
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3.6.2 3D numerical simulations 

To verify the generalization ability of the SVM algorithm, we utilized data from 3D 

numerical simulations with a frequency of 1 GHz and gradually reduced the dimensions 

using PCA. The graph depicting the progress of dimensionality reduction (see Figure 37) 

indicates that 100% classification accuracy was achieved for 40 dimensions. 

 

Figure 37. Dimensionality reduction graph for verifying the generalization ability of the SVM 

algorithm – testing scenario S6. 

Table 25 shows that for the data in the real and imaginary format, the classification 

accuracy is already higher without dimensionality reduction then data in module and 

phase format. After reducing the dimensionality to 40, the SVM algorithm achieved 100% 

classification accuracy. For data in the module and phase format, the best result was 

obtained for a higher number of dimensions (75), but the algorithm achieved only 94.9% 

classification accuracy. A better classification result for the data in the real and imaginary 

format was also indicated by the variance of the principal components in Figure 34. 

Table 25. Result for test scenario S7 - comparison of classification for real-imaginary part 

(ReIm) and module-phase (MoPh) format data. 

Data form 

(-) 

Total dimensions 

(-) 

CL-accuracy 

CV-error 

(%) 

Reduced dimensions 

(-) 

CL-accuracy 

CV-error 

(%) 

ReIm 110 
96.1 

15.7 
40 

100.0 

13.3 

MoPh 110 
92.7 

25.2 
75 

94.9 

34.3 
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In test scenario S8, we evaluated the performance of the SVM algorithm for two 

different S-parameter data sets: the former includes both transmission and reflection 

coefficients (TrRe) with 110 dimensions, and the latter includes transmission coefficients 

(Tr) only with 90 dimensions. The comparison was performed also for reduced 

dimensionality using PCA. The SVM for TrRe data shows a higher success rate for both 

original and reduced dimensionality. Dimensionality 40 gives the best results for both 

datasets – TrRe and Tr. For TrRe the classification accuracy reached 100%, while for Tr 

the classification accuracy closely approached 100%. The big difference is in the cross-

validation error, which is half the size of the original as well as the reduced size of TrRe 

(see Table 26). 

Table 26. The result of test scenario S8 - comparison of SVM performance for datasets 

including transmission and reflection (TrRe) and transmission coefficients (Tr) only. 

Data form 

(-) 

CL-accuracy 

CV-error 

(%) 

Reduced 

dimensions 

(-) 

CL-accuracy 

CV-error 

(%) 

TrRe (110 dimensions) 
96.1 

15.7 
40 

100.0 

13.3 

Tr (90 dimensions) 
87.8 

29.0 
40 

99.38 

26.7 

 

The classification results for test scenario 9 are shown in Table 27. We conclude 

that for randomly placed stroke models, the SVM algorithm is capable of classifying 

stroke types with 86.3% accuracy. From the confusion matrix presented in Figure 38, it 

is evident that misclassifications occur most frequently for the noStroke scenario. 

However, misclassifications in other classes were observed too. It is worth noting that 2% 

of hStroke were classified as iStroke scenario. 

Table 27. Results for testing scenario S9 – classification classifying randomly sized strokes at 

random positions for 3D numerical simulations datasets. 

Data 

form 

(-) 

Total 

dimensions 

(-) 

Reduced 

dimensions 

(-) 

CL-

accuracy 

(%) 

Kappa  

(-) 

Hyperparameters 

Optimalization Settings 

(-) 

ReIm 110 20 86.3 0.69 

Box Constraint = 267.6 

Kernel = Gaussian 

Kernel Scale = 20.6 
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Figure 38: Confusion matrix for test scenario S9 – classification of randomly sized strokes at 

random positions, 3D numerical simulations datasets. 

The SVM algorithm can distinguish between the two classes with an accuracy of 

83.7% (see Table 28). Cohen’s kappa reaches high values of 0.6. However, from 

confusion matrix in Figure 39 (a) we can see, that classifications of the class Other to 

ischemic occurs in 12 %. Misclassification analysis revealed that hStroke was being 

misclassified as iStroke, which is clinically unacceptable. In response, the cost of this 

misclassification was increased, resulting in the classification of the class Other as 

ischemic only occurring in 4% of cases, see Figure 39 (b). For this setting no hStroke 

misclassification occurred at all. However, this increase in specificity caused a gradual 

decrease in sensitivity to 68%. This indicates, that the SVM algorithm can reliably 

classify only about 68% of ischemic stroke patients. 

Table 28. Results for test scenario S10 – classification of ischemic strokes, 3D numerical 

simulations datasets. 

Data 

form 

(-) 

Total 

dimensions 

(-) 

Reduced 

dimensions 

(-) 

CL-

accuracy 

(%) 

Kappa  

(-) 

Sensitivity 

(%) 

Specificity 

(%) 

ReIm 110 20 83.7 0.63 75.0 88.0 

ReIm 110 20 86.7 0.68 68.0 96.0 
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Box Constraint = 11.5 

Kernel = Gaussian 

Kernel Scale = 15.8 

 

Box Constraint = 948.8 

Kernel = Gaussian 

Kernel Scale = 44.6 

 

(a) (b) 

Figure 39: Confusion matrix for test scenario S10 – SVM algorithm without sensitivity limitation 

(a), with sensitivity set to 100% (b). 

3.6.3 Measurements 

To verify the generalization ability of the SVM algorithm, we employed 

experimental data obtained using measurement setup and homogeneous liquid and an 

anatomically and dielectrically realistic human head phantom at a frequency of 1 GHz. 

We gradually reduced the dimensions using PCA, as shown in Figure 40. For the 

homogeneous liquid head phantom data, the highest classification accuracy was 82 % for 

60 dimensions. For the anatomically and dielectrically realistic human head phantom 

data, the highest classification accuracy was 71% for 100 dimensions. 

  

(a) (b) 

Figure 40. Dimensionality reduction graph for verifying the generalization ability of the SVM 

algorithm – testing scenario S11. (a) homogenous liquid head phantom and (b) realistic head 

phantom. 
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The results of test scenario 12 are in Table 29. It can be concluded that the SVM 

algorithm is capable of classifying stroke types on experimental data with a 98.1% 

classification accuracy for the liquid head phantom and 83.1% for the realistic head 

phantom when strokes of randomly varying sizes are placed at random positions in the 

brain. However, from the confusion matrix in Figure 41, it can be observed that for both 

the liquid phantom and the realistic phantom, there are misclassifications of the hStroke 

to iStroke scenario, which is not clinically acceptable. 

Table 29. Results for test scenario S12 – classification of randomly sized strokes at random 

positions for measurements with homogeneous liquid head phantom and dielectrically and 

anatomically realistic head phantom. 

Phantom 

Type 

(-) 

Data 

form 

(-) 

Total 

dimensions 

(-) 

Reduced 

dimensions 

(-) 

CL-

accuracy 

(%) 

Kappa  

(-) 

Hyperparameters 

Optimalization 

Settings 

(-) 

Liquid 

head 
ReIm 110 20 98.1 0.95 

Box Constraint = 36.0 

Kernel = Gaussian 

Kernel Scale = 4.9 

Realistic 

Head 
ReIm 110 20 83.3 0.62 

Box Constraint = 981.5 

Kernel = Gaussian 

Kernel Scale = 7.1 

 

  

(a) (b) 

Figure 41: Confusion matrix for testing scenario S12 – classification classifying randomly sized 

strokes at random positions for measurements homogeneous liquid head phantom (a) and 

dielectrically and anatomically realistic head phantom (b). 
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The SVM algorithm demonstrates an ability to distinguish the presence of an 

ischemic stroke (class iStroke) from healthy individuals or those with bleeding (class 

Other) with an accuracy exceeding 94 %, as evidenced by Table 30. The Cohen’s kappa 

value is high, exceeding 0.8. However, the confusion matrices in Figure 42 (a, c) show 

that there are misclassifications of the class Other as ischemic for both the liquid head 

phantom and the realistic head phantom. After misclassification analysis, it was revealed 

that hStroke was being misclassified as iStroke, which is clinically unacceptable. In 

response, the cost of this misclassification was increased, resulting in the classification of 

the class Other as ischemic only occurring in 0% of cases for the liquid phantom (see 

Figure 42(b) and the classification of the class Other as ischemic for the realistic head 

phantom only occurring in 0.8% (see Figure 42(d)), but fortunately without the presence 

of hStroke misclassification. In both the realistic head phantom and the liquid head 

phantom, this increase in specificity resulted in an increase in sensitivity. 

Table 30. Results for test scenario S13 –classification of ischemic strokes for measurement with 

homogeneous liquid head phantom and dielectrically and anatomically realistic head phantom. 

Phantom 

Type 

(-) 

Data 

form 

(-) 

Total 

dimensions 

(-) 

Reduced 

dimensions 

(-) 

CL-

accuracy 

(%) 

Kappa  

(-) 

Sensitivity 

(%) 

Specificity 

(%) 

Liquid 

head 
ReIm 110 20 94.3 0.88 94.4 94.2 

Liquid 

head 
ReIm 110 20 99.5 0.99 98.9 100 

Realistic 

head 
ReIm 110 20 80.0 0.59 72.2 85.6 

Realistic 

head 
ReIm 110 20 91.4 0.82 81.1 99.2 

 

  



 

 

88 

 

Box Constraint = 25.1 

Kernel = Gaussian 

Kernel Scale = 2.7 

 

Box Constraint = 116.9 

Kernel = Gaussian 

Kernel Scale = 8.3 

 

(a) 

 
(b) 

 

Box Constraint = 6.9 

Kernel = Gaussian 

Kernel Scale = 6.8 

 

 

Box Constraint = 56.1 

Kernel = Gaussian 

Kernel ScaI= 5.4 

 

(c) (d) 

 

Figure 42: Confusion matrixes for test scenario S13 – (a) and (b) the SVM algorithm for the 

liquid head phantom, with and without an increase in misclassification cost, (c) and (d) the SVM 

algorithm for a realistic head phantom, with and without an increase in misclassification cost. 
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4. Discussion 

The main result of this work is the adaptation of the SVM algorithm for stroke 

classification using the most suitable data from the microwave antenna array surrounding 

a adult human head. Our findings indicate that the adapted SVM algorithm is not able to 

accurately classify the type of stroke, including ischemic and hemorrhagic strokes, or 

patients without stroke in cases where the data exhibits a higher degree of variability that 

is closer to natural scenarios. Misclassifications occur when classifying into three classes, 

which could potentially endanger the patient’s life in the case of incorrect initiation of 

treatment based on the algorithm’s result. However, the algorithm demonstrates high 

accuracy in classifying ischemic strokes and is capable of safely recommending 

thrombotic therapy initiation in approximately 70 % of patients with this condition. The 

SVM algorithm was tested on datasets from a 10-port microwave system for 2D and 3D 

numerical simulations and measurements. 

4.1 2D and 3D numerical models 

The chapter is based on the author’s article published in a journal with impact factor 

[116] and [117]. 

The numerical 5-layer models of 10 different human heads were created in both 3D 

and 2D. The 2D models geometry is cross-section of the 3D model geometry in the brain. 

In previous studies [95], [103] only a single head model was used and data variability was 

increased by geometry scaling. The created 2D and 3D models can be used to refine stroke 

diagnosis algorithms and develop novel monitoring and therapeutic systems for the head 

region. For example, the models can be used to investigate hyperthermia treatment of 

head tumors as in [117]. 

4.2 Numerical models validation 

The chapter is based on the author’s article published in a journal with impact 

factor [116]. 

Numerical models of the antenna array for an existing experimental microwave 

system with 10 antennas were created in 2D and 3D variants. In general, the 2D numerical 

model does not consider the propagation of EM waves in the 3rd dimension. In this work, 

a global optimization method was used to find the size of the boundary condition of the 
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antenna port in 2D, which ensure a good match between the measured and 2D simulated 

transmission coefficients. Therefore, the magnitudes of the transmission parameters 

obtained from experimental measurements and 2D numerical simulations are in good 

agreement, as shown in Figure 26 (a). However, the agreement in the reflection 

coefficients for the 2D numerical simulations is comparatively weaker. This issue does 

not exist in 3D numerical model, and Figure 26 (b) demonstrates good agreement between 

both the reflection and transmission coefficients from the 3D numerical simulations and 

measurements. The calculated S-parameters are symmetric with respect to the main 

diagonal, whereas the S-parameters obtained experimentally exhibit slight asymmetry. 

These differences could be attributed to noise or temperature fluctuations and should be 

taken into consideration when detecting a stroke. The noise level that was observed in the 

experimental data was added in the form of white gaussian noise of the same level to the 

calculated S-parameters. 

Changes in S-parameter values induced by the presence of ischemic and 

hemorrhagic stroke were studied using 2D and 3D numerical simulations and 

measurements. The reflection coefficients did not change upon insertion of the stroke, but 

changes in the transmission coefficients were observed, even in the worst-case scenario 

with the stroke located in the middle of the brain. The changes in transmission coefficients 

were different for ischemic and hemorrhagic stroke, which is a prerequisite for using 

machine learning algorithms for stroke classification. In addition, both the 2D and 3D 

numerical simulations, as well as the measurements, revealed changes in the transmission 

parameters for the stroke location (-20, 30). The results indicate that the changes in the 

transmission coefficients are more pronounced in the 2D model than in the 3D model. 

This can be attributed to the way the waves propagate in the 2D numerical simulations, 

which do not account for wave propagation below and above the stroke. The 

measurements of ischemic stroke correlate well with the 3D numerical simulation. 

However, the measurements of hemorrhagic stroke exhibit higher changes in the S-matrix 

compared to the 3D numerical simulation. This could be due to the higher conductivity 

of the hemorrhagic stroke model discussed in the following chapter. 
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4.3 Head and stroke phantoms 

The chapter is based on the author’s article published in a journal with impact factor 

[126] and conference paper [125]. 

A realistic adult human head phantom was developed, including the scalp, skull, 

cerebrospinal fluid, and brain tissue layer complementary with ischemic and hemorrhagic 

stroke phantoms. In contrast to the previously described approach [8], this phantom is a 

3D representation of the human head anatomy. The use of updated molds allowed for 

more precise control over the xyz-positioning of the individual layers. The dielectric 

properties of individual tissues have a relative error of up to 30%, except for tissues with 

high dielectric properties such as cerebrospinal fluid and hemorrhagic stroke, where the 

relative error is up to 80%. Producing phantoms with high dielectric parameters using 

polyurethane and conductive powders can be challenging due to the high stiffness of the 

mixture when larger quantities of powder are used. This can result in inhomogeneities of 

the phantom throughout its volume [8]. The head phantom enables changing of stroke 

type, size and location, making it a suitable tool for obtaining large datasets, unlike the 

previously presented solutions [11], [136], [137]. 

The computer-controlled stroke positioning system developed in this study enables 

control of the position of the stroke phantom only in the x and y directions. To change the 

position of the phantom along the z-axis, a plastic rod of variable length is used to hold 

the phantom. One limitation of this approach is that the microwave system and phantom 

must be placed upside-down to fill the brain phantom with liquid. This approach was 

used, for example, in [56], [138]. The motion of the stepper motors and the stroke model 

can cause vibrations and waves on the surface of the liquid phantom, which may affect 

the measurement. To mitigate this, a 10-second pause was added after the motion was 

completed before taking measurements. No step loss was observed during the 

measurements, and the stroke model always returned to the initial position. However, we 

recommend calibrating the phantom before each measurement and after replacing the 

stroke model. Once the position change is complete, the motors are turned off to avoid 

any potential current flow that could affect the measurement. However, caution must be 

exercised when replacing the phantom to avoid moving the middle part of the system with 

the stroke holder. 
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4.4 Training and testing datasets 

Numerical simulations and experimental measurements were utilized to obtain 

training and testing datasets for the SVM algorithm. 2D numerical simulations allow for 

extensive multi-frequency simulations in a short period. In total, three datasets were 

generated from 2D numerical simulations. 2D datasets reflect the highest data variability, 

resulting from the variation in type, size, and position of stroke and the use of 10 scaled 

head phantoms. Based on the results of the 2D numerical simulations, we created three 

3D numerical datasets that accurately approximates the real measurements, thanks to the 

quality of the model and the incorporation of the noise from the measurements. 

Nevertheless, we performed measurements to validate the results of the obtained 

numerical simulations. 

These datasets can be utilized to investigate the performance and limits of the 

classification algorithms, optimize their setting and evaluate their potential for the given 

application. The datasets have been, in the case of 2D simulations, or will be, in the case 

of 3D simulations, shared with the community to test their developed algorithms. In this 

study, we utilized the datasets to test specific scenarios. 

4.5 Data variability and noise 

In Figure 31 we demonstrated changes in relative magnitude differences for 

presence of iStroke and hStroke. As expected, the presence of hStroke caused a higher 

data variability than the presence of iStroke. This is because hemorrhage has greater 

differences in dielectric parameters than ischemia [37], [42]. Moreover, as expected, 

strokes with a smaller size induce less variability in the data compared to strokes with 

larger size. This finding enabled us to formulate testing scenario S1.  

The noise level in the measurements was determined experimentally using a 

simplified liquid phantom and is represented in Figure 32 as relative magnitude 

differences changes of ±0.75 dB, corresponding to an 85 dB noise level. The authors of 

study [95] used noise information from the vector analyzer datasheet. In contrast, our 

measurements did not use absorbers and shielding around the microwave system, 

providing a more realistic assessment of the noise conditions than if we had relied solely 

on the noise information provided in the vector analyzer datasheet. The noise level had a 

greater impact on the transmission of the opposite antennas. . However, repeated 
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calibration resulted in much larger changes in reflection and transmission parameters, 

possibly due to bending of the cables connecting the switch matrix to the antenna 

automatic calibration unit ZN-Z153 Rohde & Schwarz. 

For our experimental setup the relative magnitude differences caused by small 

ischemic strokes (size 20 mm in diameter) are smaller than the noise level, as indicated 

by the 25th and 75th percentile of box plot (see Figure 31). Variability in reflection and 

transmission parameters that exceed the 85dB noise level may contribute to the observed 

variability. This provides a basis for stroke detection and classification. Physical limit of 

the state-of-the-art microwave measurement hardware is 140 dB.   

4.6 Principal component analysis 

Principal component analysis was employed for dimensionality reduction and 

analysis of variance of data in real and imaginary components format versus data in 

module and phase format. Most papers dealing with stroke classification (see section 1.4) 

do not explicitly mention the data format used, we can expect use of real and imaginary 

parts. As shown in Figure 33, the variance graph for the individual principal components 

is higher for the module and phase format compared to the real and imaginary components 

format. This suggests that the use of module and phase data may increase the variance of 

the data, which has the potential to improve the performance of the classifier. However, 

the variance difference between individual principal components was not as significant 

for the experimental data, which may be attributed to the lower variability of the data. 

Furthermore, we plotted the first three principal components, i.e. the components 

with the highest variance to obtain the arrangement of data in 3D space, as shown in 

Figure 34. For the data represented in the format of the real and imaginary parts of 

S - parameters, the plotted points exhibited well-defined clusters that enabled better 

separation of iStroke, hStroke, and noStroke data compared to the data in the modulus 

and phase format, where the points appeared to be more blended together. These results 

suggest that the use of data in the real and imaginary part format may be more suitable 

for the classification algorithm. 
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4.7 Scenario testing 

The chapter is partially based on the author’s article published in a journal with impact 

factor [116]. 

Thirteen testing scenarios were proposed to systematically test the performance of 

the machine learning algorithms using datasets obtained from both 2D and 3D numerical 

simulations, as well as measurements. 

4.7.1 2D numerical simulation 

S1: From Table 21 we can conclude that when training the algorithm only on the 

data of subjects with the smallest strokes (diameter 20 mm), the SVM algorithm achieved 

the highest classification accuracy of subjects with larger strokes up to a diameter of 40 

mm. On the other hand, the cross-validation error increased from 5.5% to 11.8%. We 

assume that data of subjects with larger strokes contain higher variability; therefore, it is 

easier to classify them, and the algorithm achieves a smaller cross-validation error when 

training for larger strokes. Useful information for creating a support vector is provided 

by small-stroke subjects; however, they are more difficult to divide, which is why the 

Cross-validation error is higher than for larger strokes.  

S2: SVM trained on data containing one and five frequency points showed almost 

identical classification accuracy and cross-validation error. They also outperformed an 

SVM trained with data containing a larger number of frequency points, even though the 

performance of the latter was enhanced by dimensionality reduction using PCA. This 

means that for this particular application, it would be sufficient to use a narrowband 

imaging system. 

S3: The confusion matrices for the classification of ischemic and hemorrhagic 

strokes of random sizes are shown in Figure 35. The classification between ischemic and 

hemorrhagic stroke was accurate and only 6.5% of strokes were classified as non-stroke 

scenario and 6.0% of no strokes were classified as ischemic stroke. Pre-hospital MW 

detection and classification of cerebrovascular events have the following specifics. 

Ischemic strokes need to be detected because they can be treated immediately with 

thrombolytic therapy. A situation where a hemorrhagic stroke is classified as ischemic is 

completely unacceptable. Thrombolytic therapy in case of hemorrhagic stroke causes 
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hematoma enlargement and increases the risk of mortality [5]. It is, therefore, possible to 

consider only a 2-class classification into ischemic cerebrovascular events and the rest. 

In testing scenario S3, unacceptable misclassification was observed only when we 

classified random stroke sizes at random positions. When we increased the number of 

positions misclassification was eliminated. 

S4: We tested if the SVM algorithm for stroke classification trained on data of the 

subjects with small strokes can accurately classify random size and random position 

strokes. From Table 23 we can conclude that only 20 iStroke and hStroke positions were 

not enough and the SVM algorithm only achieved a 63.5% classification accuracy. For 

83 and 456 iStroke and hStroke positions SVM algorithm achieved classification 

accuracy of 70% and 71%, respectively. Furthermore, we observed that the box 

constraint, which was determined by the optimization of the hyper-parameters, reached 

high values. High box constraint values suggest good separation and fewer 

misclassifications for the training data. However, this may result in reduced robustness 

when applied to unknown data, such as random stroke size and position. For this data the 

SVM algorithm was unable to accurately classify strokes and achieves only 70% 

classification accuracy. We also checked which samples were misclassified, but no 

pattern was discovered. From the confusion matrixes in Figure 36 we concluded that most 

of the inaccurate classifications belonged to the category without stroke, and these stroke 

patients will be taken to the hospital anyway. The biggest problem in the treatment of 

stroke patients is the classification of hemorrhagic strokes into the ischemic category. The 

use thrombotic therapy in hemorrhagic stroke causes hematoma enlargement and 

increases the risk of mortality [5]. For this situation, there were no misclassifications for 

the 456 iStroke and hStroke positions used for SVM algorithm training. 

S5: In our study, we focused on evaluating the effectiveness of the SVM algorithm 

for stroke classification, as it is the most used algorithm for this application. However, 

we also tested the performance of other machine learning algorithms, except deep neural 

networks that require a large amount of training data. As shown in Table 24, the SVM 

algorithm achieved the highest classification accuracy, while the kNN algorithm and 

logistic regression performed better than probability estimation, with Cohen’s kappa 

values exceeding 0. On the other hand, the discriminant analysis, nearest neighbors, and 



 

 

96 

 

classification trees algorithms achieved classification accuracies lower than a statistical 

estimate would predict. 

4.7.2 3D numerical simulation 

S6: We confirmed that the SVM algorithm could be trained using data for strokes 

of 20 mm in diameter and then successfully classify larger strokes. This generalization 

capability was previously demonstrated in 2D numerical datasets, and our study verifies 

it for 3D numerical dataset too. The SVM algorithm achieved 100% accuracy in stroke 

classification using a dataset of approximately 25 to 45 dimensions, with the lowest cross-

validation error observed at 40 dimensions, as shown in Figure 37. 

S7: The classification accuracy was studied for two different data formats. We 

found (see Table 25) that the real and imaginary part format provided the highest 

classification accuracy compared to the module and phase format despite the fact that the 

module and phase data showed a slightly higher variance of principal components 

compared to the real and imaginary parts (as shown in Figure 33). On the other hand, our 

classification result corresponds to the distribution of the first three principal components. 

As demonstrated in Figure 34, the plotted points of the data represented in the real and 

imaginary part format exhibited well-defined clusters, which allowed for better separation 

of iStroke, hStroke, and noStroke data, whereas the points in the modulus and phase 

format appeared more blended together. Therefore, our findings suggest that the choice 

of data representation has significant impact on the accuracy of stroke classification, and 

we recommend using the data in the original format of the real and imaginary 

components.  

S8: In the figures included in Appendix C, we have demonstrated that the presence 

of pathology inside the head did not significantly affect the reflection parameters in the 

data. Building on this, we conducted a test whether using only transmission parameters 

would result in the same classification accuracy as using both transmission and reflection 

parameters together. The results, shown in Table 26, indicate a slight decrease in 

classification accuracy when using transmission parameters only for training and 

classification. This suggests that further reduction of the S-matrix beyond the 55 

independent elements for 10 antennas may not be recommended. However, our study has 

shown that dimensionality reduction using PCA can improve classification accuracy and 
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we recommend its use for future testing. Further exploration of feature extraction 

techniques may also be beneficial in enhancing classification performance. 

S9: We tested whether the classification accuracy for strokes of random size and 

position exceeded 85%, a threshold chosen based on the assertion in [3], which states that 

85% of strokes are ischemic. We tested that the SVM algorithm would outperform 

statistical probability in identifying the stroke type. The early initiation of thrombotic 

therapy is critical for treating ischemic strokes, as it helps dissolve clots and alleviate the 

disease consequences [13]. The SVM algorithm achieved a classification accuracy of 

86%. The Cohen’s kappa value, which measures agreement beyond chance, reached a 

value of 0.69, indicating that the algorithm achieved higher accuracy than random 

estimation. A kappa value as low as 0.41 may be considered acceptable in medical studies 

[139]. A high value of Box Constraint indicates that the algorithm created a small margin. 

Together with a higher value of Kernel Scale, it indicates good separation of training data 

but less general separation margin. The confusion matrix in Figure 38 revealed that 2% 

of hemorrhagic strokes were classified incorrectly as ischemic strokes, which is an 

unacceptable clinical outcome [5]. Thrombotic therapy in hemorrhagic strokes may lead 

to hematoma enlargement and increase the risk of mortality [21]. Based on these findings, 

we propose the use of a 2-class SVM classifier, where we assume that classification 

between ischemic stroke (iStroke) and hemorrhagic stroke (hStroke) scenarios will be 

easier. 

S10: This work has shown that the SVM algorithm is capable of identifying the 

presence of ischemic stroke, achieving an accuracy of 83.7% (as presented in Table 28). 

Cohen’s kappa also confirmed that the results were not due to random chance. However, 

it is concerning that 12% of misclassifications from the Other class to ischemic stroke 

included hemorrhagic stroke patients, which is a clinically unacceptable outcome [5]. To 

address this issue, we increased the cost of misclassifications. The updated algorithm 

achieved only 4 % of misclassifications without misclassifying patients with hemorrhagic 

stroke, as determined by analyzing the information matrix for the test data and comparing 

it with the classification results. However, this increase in specificity resulted in a gradual 

decline in sensitivity to 68%, meaning that we can only reliably administer thrombotic 
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therapy to around 68% of people with ischemic stroke, which amounts to approximately 

6 million individuals per year [2]. 

4.7.3 Measurements 

S11: Figure 40 shows that the generalization capability was not confirmed for 

experimental data. The inability to generalize for experimental data is likely related to the 

lower number of training data available for experimental measurements. In numerical 

simulations, a total of 10 different head models were used, leading to a tenfold increase 

in the dataset size for training and testing. To further test the SVM algorithm’s 

performance, we trained it on 20 mm, 30 mm, and 40 mm strokes located in 20 positions. 

S12: Figure 41 shows that, for the classification of strokes at random positions, the 

SVM algorithm achieved an accuracy rate above the 85 percent threshold only for the 

liquid phantom. However, for the realistic phantom, the success rate was only 83 percent, 

which is lower but expected result due to the higher complexity of the more realistic 

phantom. As in the 3D numerical simulations, clinically unacceptable misclassifications 

occurred where hStroke was classified as iStroke. The results of the 3D simulations with 

added measurement noise suggest that the classification accuracy for measurements is 

unlikely to improve. Therefore, we recommend using a 2-class SVM algorithm to reliably 

differentiate iStroke from other types and safely initiate treatment, as was done in the 3D 

numerical simulations. 

S13: The SVM algorithm demonstrated the ability to identify the presence of 

ischemic stroke with an accuracy of approximately 94% for the liquid phantom and 80% 

for the realistic phantom (see Table 30). This represents a higher classification accuracy 

than observed with the 3D numerical data, which may be due to the lower complexity of 

the experimental measurement data (only one phantom was used). However, as observed 

in the 3D numerical simulations, the algorithm misclassified some cases from the Other 

class as iStroke class. After analyzing these misclassifications, it was revealed that these 

misclassifications also came from hStroke, which is clinically unacceptable. To address 

this issue, the cost of misclassifications was increased, resulting in an updated algorithm 

with no clinically unacceptable misclassifications. Misclassifications in the Other class 

were determined by analyzing the information matrix for the test data and comparing it 

with the classification results. There were only 0.8 % misclassifications from the noStroke 
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to iStroke class for the realistic head phantom (see Figure 42). The algorithm 

demonstrated a sensitivity of over 80 % for both the measurement of the liquid head 

phantom and the realistic head phantom, which is a notable finding. This high sensitivity 

could allow for the safe initiation of thrombotic therapy for ischemic patients. 

4.8 Comparison stroke classification results with published studies 

The results are partially comparable to [101], where a study of the feasibility of 

subdural hematoma classification by the SVD-based algorithm was performed on 

synthetic data from 2D numerical simulations. The authors achieved 82–96% 

classification success rate, considering only a two-class classification of healthy subjects 

and subjects with subdural hematomas. The study did not consider cases of ischemic 

stroke. Subdural hematoma is distinct from intracerebral hemorrhage, which is the most 

common type of hemorrhage in stroke patients. Intracerebral hemorrhage is located 

within the brain tissue and is usually of spherical shape and is generally characterized by 

a smaller volume than subdural hematoma; therefore, subdural hematoma may be 

classified with higher accuracy. The 2D numerical model is a significant simplification; 

therefore, a 3D numerical model was presented in [103]. Again, a two-class classification 

is performed. In our study, the results of classification into three classes are presented. 

In [95], an alternative and efficient method was introduced to create the training 

dataset, based on the distorted Born approximation, to obtain a linear scattering operator 

from the dielectric contrast space to the scattering parameters’ one. A dataset containing 

10,000 samples was created in a relatively short time and with low computational effort. 

On the other hand, a single 3D CAD model of a human head was used and scaled to obtain 

a total of 10 head models. In our study, a higher data variability was considered because 

each numerical simulation involved randomly scaling one of 10 different head models. 

The algorithms were tested in [95] on a large amount of data obtained from the 

linear dispersion operator. An evaluation of the suitability of different datasets for training 

was not conducted. In our study, we tested the effect of using multi-frequency data on 

classification accuracy, but the results show and agree with the statement in [95] that 

single-frequency data is sufficient for this application. 
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Classification using the SVM algorithm with a different data processing approach 

was performed in [82]. Data were obtained for 10 head models without scaling and only 

for ellipsoidal strokes of 10 mm3 to 35 mm3. A total of 100 stroke head models were 

created. A two-class classification was performed between iStroke and hStroke classes. 

The noStroke class was excluded. Inverse FFT was used to convert these signals to time 

series signals. Data variability was increased by adding noise, which also significantly 

reduced the classification success rate from 94% to 77%. In [108], dimensionality 

reductions by PCA led to classification success rate increase to 99%. The increase in the 

classification success using PCA also confirms our results, even though it was a different 

data processing approach. 

4.9 Further plans 

Training data for machine learning algorithms should ideally be obtained from 

measurements performed in subjects with acute strokes. However, these patients are in a 

life-threatening situation. In future, we plan to expand the number of training data for 3D 

numerical simulations. As 3D simulations can be computationally demanding, we plan to 

use a linear operator for efficient data generating [107]. This approach could also be 

useful in clinical settings, where it could facilitate obtaining the training data, thereby 

accelerating the deployment of the system into clinical practice.  

Machine learning algorithms do not provide the position or size of the stroke in the 

human head; therefore, in the future, we propose to combine the SVM algorithm with the 

TSVD Born approximation to obtain an image of the observed area. Both algorithms can 

be used on the same device. This would enable the potential for in-bedside monitoring of 

stroke treatment using a microwave system designed for pre-hospital diagnosis.  

In this work we used a single antenna ring placed in axial plane, which might be a 

limitation in this study. PCA significantly reduce the dimension of the data, therefore we 

plan to investigate whether all 10 antennas are necessary for accurate stroke detection. 

Further we plan to investigate suitable antenna placement in a spherical arrangement 

around the head [95]. We are currently developing a system with 24 antennas [57], which 

will allow us to test the classification algorithm using a different number of antennas and 

identify on the most appropriate number of antennas. 
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The goal of our research will be clinical testing in patients. This will involve tests 

in ambulances while patients are being transported to a hospital, ideally on an 

international scale. The clinical testing phase is crucial in our research and will help to 

validate the efficacy and accuracy of the microwave system in a clinical setting. 
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5. Conclusion 

This work systematically investigated the potential of SVM for microwave 

detection and classification of stroke. For this purpose, using validated 2D and 3D 

numerical models and an experimental setup, large datasets (S-parameters) were 

generated for training and testing algorithms with different levels of data variability. Both 

the numerical models and the experimental setup consisted of a microwave antenna array 

surrounding an anatomically and dielectrically realistic human head model with 

adjustable geometry with and without a stroke model. The variability of the data was 

increased by including different degrees of freedom, regarding stroke size, position, head 

model type and size, and frequency points with the addition of random white noise. The 

results demonstrate the ability of SVM algorithm to detect the presence of a stroke and 

classify it into either ischemic or hemorrhagic subtypes.  

In this work, it was confirmed that PCA dimensionality reduction significantly 

improved the classification results, s single-frequency data (1 GHz) will provide the same 

information as multi-frequency data for this application, which simplifies measurement 

hardware. The results showed higher classification success for datasets containing both 

transmission and reflection coefficients, compared to datasets with transmission 

coefficients only and also if the datasets are given in real and imaginary part, compared 

to module and phase. 

Furthermore, it was shown, that the datasets of subjects with smaller strokes appears 

to be the most suitable for training accurate SVM predictors with high generalization 

capabilities for stroke-trained position placement. Overall, the study indicates that in the 

case of natural variability of data, accurate detection and classification of stroke will be 

challenging.  

Nevertheless, our SVM algorithm demonstrated an ability to accurately classify 

ischemic strokes and suggest safe initiation of thrombotic therapy in approximately 70 % 

of ischemic stroke patients. This finding holds significant clinical implications, as it could 

reduce the adverse consequences of strokes and improve the lives of many stroke patients. 

Further research is needed to improve the sensitivity of the algorithm and increase its 

clinical usefulness.  
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Appendix A 
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Phantom 7 Phantom 8 

  

Phantom 9 Phantom 10 

Figure 43. Ten different 2D models of human heads based on real subjects, created by cutting 

through the brain part of the head. Models include layers of the scalp, skull, cerebrospinal fluid 

(CSF), and brain. 
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Appendix B 
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Phantom 7 

 

Phantom 8 

  
Phantom 9 

 

Phantom 10 

Figure 44. Ten different 3D models of human heads based on real subjects. Models include layers 

of the scalp, skull, cerebrospinal fluid (CSF), and brain. 
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Appendix C 

This appendix presents the S-parameter changes induced by the virtual presence of 

ischemic and hemorrhagic strokes calculated using 2D and 3D numerical models and 

experimental measurements. These changes were calculated by subtracting the S-

parameters for the case when the inner part of the antenna system was filled only with the 

matching medium (εr = 40, σ = 1 S/m) from the S-parameters for the case where the stroke 

model was added virtually. 

  

(a) (b) 

Figure 45. 2D numerical simulations. Magnitudes difference of 2D numerical model induced by 

the virtual presence of a 40 mm radius (a) hemorrhagic and (b) ischemic stroke located at position 

(0, 0). 

  

(a) (b) 
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Figure 46. 3D numerical simulations. Magnitudes difference of 3D numerical model induced by 

the virtual presence of a 40 mm radius (a) hemorrhagic and (b) ischemic stroke located at position 

(0, 0). 

  

(a) (b) 

Figure 47. Experimental measurements with liquid phantom. Magnitudes difference of 

experimental microwave system induced by the presence of a 40 mm radius (a) hemorrhagic and 

(b) ischemic stroke phantom located at position (0, 0). 

 

  

(a) (b) 

Figure 48. 2D numerical simulations. Magnitudes difference of 2D numerical model induced by 

the virtual presence of a 40 mm radius (a) hemorrhagic and (b) ischemic stroke located at position 

(−20, 30). 
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(a) (b) 

Figure 49. 3D numerical simulations. Calculated differences in S-parameters induced by the 

virtual presence of a 40 mm radius (a) hemorrhagic and (b) ischemic stroke located at position 

(−20, 30). 

 

  

(a) (b) 

Figure 50. Experimental measurements with liquid phantom. Magnitudes difference of 

experimental microwave system induced by the presence of a 40 mm radius (a) hemorrhagic and 

(b) ischemic stroke phantom located at position (−20, 30). 
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Appendix D 

Graphs of classification accuracy and cross-validation error for different 

dimensionality reductions for different numbers of frequency points. 

 

Figure 51. Classification accuracy and cross-validation error for different dimensionality 

reductions in data for a single frequency point (1 GHz). 

 

Figure 52. Classification accuracy and cross-validation error for different dimensionality 

reductions in the data for five frequency points (from 0.8 GHz, step 0.1 GHz, to 1.2 GHz). 
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Figure 53. Classification accuracy and cross-validation error for different dimensionality 

reductions in data for 15 frequency points (from 0.8 GHz, step 0.05 GHz, to 1.5 GHz). 

 

Figure 54. Classification accuracy and cross-validation error for different dimensionality 

reductions in the data for 25 frequency points (from 0.8 GHz, step 0.05 GHz, to 2 GHz). 
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Appendix E 

 

Table 31. Description of the dataset structure to store simulation and measurement data 

Parameter Description Units 

 

No 

 

Number of the simulation or measurement scenario (-) 

StrokeType 
Stroke phantom type number: hemorrhagic (1), ischemic 

(-1), no stroke (0) 
(-) 

 

StrokeSizeD 

 

Diameter of stroke (mm) 

StrokePositionXYZ X,Y, and Z coordinates of the location of a stroke in head (mm) 

 

PhantomType 

 

Number of head phantom used: 310, 311…319 (-) 

ScalePhantomXYZ 
Phantom scaling in XYZ axes- Scalp, Scull, CSF and 

Brain was scaled. 
(-) 

 

Freq 

 

Simulation / measurement frerquency (Hz) 

S_mat_ReIm S-matrix in real and imaginary format (-) 

 

Modul 

 

S-matrix in module format (dB) 

Phase S-matrix in phase format (°) 

LineReIm 

 

The real (Re) and imaginary (Im) values were formatted 

into one line - format to be utilized in the LBE algorithms. 

Only the independent elements of the S-matrix were 

employed. The S-matrix is sorted in the following order: 

1 : 11 is Re S1,1, Re S2,2 …..Re S10,10 

11 : 20 is Im S1,1, Im S2,2 … Im S10,10 

21 : 65 is Re S2,1, Re S3,1, Re S3,2, Re S4,1 … Re S4,3, Re 

S5,1 … Re S5,4, Re S6,1 ………… Re S10,9; 

66 : 110 is Im S2,1, Im S3,1, Im S3,2, Im S4,1 … Im S4,3, Im 

S5,1 … Im S5,4, Im S6,1 ………… Im S10,9; 

 

(-) 

LineModulPhase 

The module (Mo) and phase (Ph) values were formatted 

into one line - format to be utilized in the LBE algorithms. 

Only the independent elements of the S-matrix were 

employed. The S-matrix is sorted in the following order: 
1 : 11  is Mo S1,1, Mo S2,2 …..Mo S10,10; 

11 : 20 is Ph S1,1, Ph S2,2 … Ph S10,10 

21 : 65 is Mo S2,1, Mo S3,1, Mo S3,2, Mo S4,1 … Mo S4,3, Mo S5,1 … Mo 

S5,4, Mo S6,1  ………… Mo S10,9; 

66 : 110 is Ph S2,1, Ph S3,1, Ph S3,2, Ph S4,1 … Ph S4,3, Ph S5,1 … Ph S5,4, 

Ph S6,1 ………… Ph S10,9; 

(-)° 

 


