
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

“Chronosite” – application for the timetable slots assigning

Yaroslav Borovyk

Ing. Ondřej Guth, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Design and implement a prototype of a tool for assigning teachers to the existing

timetable slots. The application has to:

1. Provide a web interface both for teachers and the administrator.

2. Gather constraints from teachers, and use them for computation of the possible

assignments of teachers to slots.

3. Display possible assignments to the administrator.

The project should minimize the administrator’s work and also allow future integration

with university information systems.

Electronically approved by Ing. Michal Valenta, Ph.D. on 6 February 2023 in Prague.

Bachelor’s thesis

“CHRONOSITE” –
APPLICATION FOR THE
TIMETABLE SLOTS
ASSIGNING

Yaroslav Borovyk

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Ondřej Guth , Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Yaroslav Borovyk. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Borovyk Yaroslav. “Chronosite” – application for the timetable slots assigning.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis objectives . 1
1.3 Thesis structure . 2

2 Analysis 3
2.1 Timatable Creation Process . 3

2.1.1 General roles . 3
2.1.2 Process steps . 3
2.1.3 Succefully created timetable . 4

2.2 Incoming data . 4
2.3 Chronosite requirements . 5

2.3.1 Functional Requirements . 5
2.3.2 Non-functional Requirements . 6

2.4 Existing solutions . 6
2.4.1 Doodle . 7

2.5 Use cases . 7
2.5.1 Admin use cases . 7
2.5.2 Teacher use casaes . 9
2.5.3 Summary . 10

2.6 Domain model . 13

3 Design 15
3.1 Wireframes . 15
3.2 System architecture . 18

3.2.1 Architecture types . 20
3.2.2 Roles . 23
3.2.3 Data management . 23
3.2.4 Problem of the timetable generation . 23

3.3 Server-side . 27
3.3.1 Architecture . 27

3.4 UI layer . 27

iii

iv Contents

4 Implementation 29
4.1 Programming language . 29

4.1.1 Java . 29
4.1.2 Node.js . 30
4.1.3 Summary . 31
4.1.4 Libraries . 31

4.2 Server implementation . 31
4.2.1 Framework . 31
4.2.2 Spring . 32
4.2.3 Jakarta EE . 32
4.2.4 Google Guice . 32
4.2.5 Final decision . 33
4.2.6 Libraries . 33
4.2.7 Java-based Templating Engine . 33

4.3 Algorithm implementation . 34
4.3.1 Backtracking algorithm . 34
4.3.2 Additional methods . 36
4.3.3 Optimizations implementation . 37
4.3.4 Improvement of performance . 42

4.4 UI implementation . 42
4.4.1 Front-end framework . 42
4.4.2 Summary . 43

5 Testing 45
5.1 User tests . 45
5.2 Future improvements . 46

6 Conclusion 49

Contents of enclosed media 53

List of Figures

2.1 Admin use cases . 11
2.2 Teacher use cases . 12
2.3 Class diagram . 14

3.1 Operations on teachers by admin . 16
3.2 Operations on schedules by admin . 17
3.3 Displayed schedule . 17
3.4 Notifications . 18
3.5 Operation on the timetable slots . 18
3.6 Profile edit process . 19
3.7 Preferences edit process . 19
3.8 Review timetable process . 20
3.9 Timetable generation process . 20
3.10 Client-Server architecture . 22
3.11 Microservices architecture . 22
3.12 Algorithm flowchart diagram . 26

List of Tables

2.1 Functional requirements covered by use cases . 10

List of code listings

1 The generateSchedules method in the ScheduleGenerationService class . . . 36
2 The BackTrackState record . 36
3 The processState method in the ScheduleGenerationService 38
4 The validateRanges method in the ScheduleGenerationService class 39
5 The teachersLogic method in the ScheduleGenerationService 40
6 The iterateThroughTeacherPreferences method in the ScheduleGenerationService

class . 41

v

Firstly, I want to express my heartfelt thanks to Ing. Ondřej Guth,
Ph.D., for his invaluable assistance and invaluable guidance while
I was writing my thesis. I am also grateful to my family for their
support.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2023 .

vii

Abstract

The thesis provides analysis, design, implementation, and testing of a prototype application
that assigns teachers to timetable slots based on their preferences. The tool consists of a server
written in Java and web interfaces for admins and teachers, implemented using Thymeleaf.
The purpose of the system is to receive preferred schedule options from teachers and generate
possible schedules satisfying these options. The functional module’s core part, a backtracking-
type algorithm, performs the parallel and asynchronous computation of timetables.

The thesis begins with a general analysis of the problem, including its primary aspects, func-
tional and non-functional requirements, use cases, investigation of existing solutions, and domain
model. The subsequent chapters cover the prototype’s design and implementation. Finally, the
thesis finishes with concepts of future improvements based on handled user testing of the principal
functionality.

Keywords prototype application, teacher scheduling, backtracking algorithm, parallel and
asynchronous computation, Java, Spring

Abstrakt

Práce obsahuje analýzu, návrh, implementaci a testováńı prototypu aplikace, která přiděluje
učitel̊um rozvrhová mı́sta na základě jej́ıch preferenćı. Nástroj se skládá ze serveru napsaného
v jazyce Java a webového rozhrańı pro administrátory a učitele, implementovaného s využit́ım
šablonového enginu Thymeleaf. Účelem systému je přij́ımat od učitel̊u preferované možnosti
rozvrhu a vytvářet možné rozvrhy, které tyto možnosti splňuj́ı. Základńı část funkčńıho modulu,
algoritmus typu backtracking, provád́ı paralelńı a asynchronńı výpočet rozvrh̊u.

Práce zač́ıná obecnou analýzou problému, včetně jeho primárńıch aspekt̊u, funkčńıch a ne-
funkčńıch požadavk̊u, př́ıpad̊u užit́ı, zkoumáńı existuj́ıćıch řešeńı a doménových model̊u. Následuj́ıćı
kapitoly se zabývaj́ı návrhem a implementaćı prototypu. Nakonec práce konč́ı koncepty bu-
doućıch vylepšeńı na základě provedeného uživatelského testováńı hlavńı funknosti.

Kĺıčová slova prototypová aplikace, rozvrhováńı učitel̊u, algoritmus backtracking, paralelńı
a asynchronńı výpočet, Java, Spring

viii

List of abbreviations

UI User Interface
UX User Experience
NP Nondeterministic Polynomial Time

WWW World Wide Web
REST Representational State Transfer
HTTP Hypertext Transfer Protocol

SQL Structured Query Language
NoSQL Not Only Structured Query Language

ROP Role Object Pattern
MVC Model-View-Controller
CSS Cascading Style Sheets

HTML HyperText Markup Language
XHTML EXtensible HyperText Markup Language

XML Extensible Markup Language
CSRF Cross-Site Request Forgery
LDAP Lightweight Directory Access Protocol

JVM Java Virtual Machine
JSP JavaServer Pages
JPA Java Persistence API
JMS Java Messaging Service
EJB Enterprise Java Beans
EE Enterprise Edition

NPM Node Package Manager

ix

x List of abbreviations

Chapter 1

Introduction

The following chapter introduces the problem and motivation that inspired the author to choose
a proposed topic. Additionally, it outlines the objectives and the structure of the thesis.

1.1 Motivation
In every aspect of our lives, we are often tasked with managing multiple things, but managing
people is undoubtedly one of the most challenging responsibilities. It requires time, effort, and
understanding of people’s thoughts and emotions. What if we could simplify this process and
make it less challenging?

The answer is simple and obvious – a solution like this would be beneficial in many daily
scenarios and there are certainly tools and solutions that can help make managing people easier.
With this motivation, the author decided to create a tool that simplifies the process of creating
timetables while considering people’s preferences and availability.

The majority of existing solutions to this problem are private applications with complex
architecture. Drawing from experience with these applications, the author attempted to create
a “Chronosite” – the tool that can gather people’s preferences and automate the process of
assigning people to timetable slots.

1.2 Thesis objectives
The primary objective is to analyze the problem of assigning people to the time slots, and design
and implement an application that simplifies the process of collecting information from teachers
regarding their preferences and limitations for scheduling. By using this data, the system will
automate the processes of receiving the data from people and assigning them to the timetable
slots. In detail, it will generate possible schedules that will be satisfactory for everyone involved,
making the process of creating a timetable easier for the person in charge. The additional
objectives are testing the prototype and formulating possible enhancements to the system.

1

2 Introduction

1.3 Thesis structure
The thesis has the following structure:

“Analysis” – formulates a common analysis of the problem and identifies its functional and
non-functional requirements. This includes describing use cases, and domain model, as well
as analysis of existing solutions.

“Design” – focuses on defining a design of a functional prototype that addresses the problem
effectively. Describes the author’s architecture solutions for the system, including algorithms,
data management, and UI.

“Implementation” – represents the technical realization of the tool, based on the key
statements discussed in the previous chapters.

“Testing” – demonstrates the testing process of the developed application and outlines future
improvements based on the test results.

“Conclusion” – provides a summary of the achievements in meeting the objectives of the
thesis, along with an overview of the resulting prototype.

Chapter 2

Analysis

This chapter will provide a general analysis of the problem by focusing on the common sub-
problems of the timetable creation process. It will also introduce the functional and non-
functional requirements, use cases, domain model, and existing solutions for the “Chronosite”
that will be implemented.

2.1 Timatable Creation Process
The author decided to start the following chapter with an analysis of the current process of creat-
ing timetables. Nowadays, receiving preferred schedules from teachers and generating timetables
with assigned teachers are mostly manual tasks, so it is important to define the roles and the
steps of this process.

2.1.1 General roles
At first, the timetable creation process divided the involved people into 2 specific groups. They
are either teachers or the person who is in charge of the creation of the timetable (administrator):

Administrator – a person who controls all the processes such as creating the timetable
with time slots, receiving the suitable schedules for the teachers and communicating with
them, and choosing the most optimal way how to assign teachers to the existing time slots
considering their preferences.

Teacher – an individual who reviews the created timetable by the administrator and provides
the availability for the time slots, preferable schedules, or limitations on the timetable. Also,
they provide feedback on the created schedule by the administrator whether they accept or
reject it.

An important point regarding the communication between teachers and administrators is that
the teachers usually provide unstructured preferences. The teachers submit sometimes abstract
preferences, for example, “I do not want to take more than 3 time slots in the raw on any day of
the week”. The author decided to state later in this chapter the precise rules for the incoming
data from the teachers.

2.1.2 Process steps
The following subsection describe several concrete steps that should be performed:

3

4 Analysis

1. Gather information – the order of priority regarding course selection during scheduled
timings is then determined based on the gathered information, such as course offerings, teacher
availability, classroom availability, and other details that can be useful during the scheduling
process.

2. Create draft schedule – a preliminary schedule will be created, taking into account all
factors mentioned in the previous step. Also, this step can be repeated several times after
the review from the teachers, or the draft schedule can be updated.

3. Review draft schedule – the draft schedule will be reviewed and revised as needed to
ensure that it meets the needs of all parties involved.

4. Finalize the schedule – once the schedule has been reviewed and revised, a final version
will be created and distributed to students and teachers.

These steps describe the concept of the timetable creation process. Gathering information,
and generating and reviewing schedules are tasks that can be sorted out using online tools or
services, such as email for communication. However, the concept of automating this nontrivial
process should aim to automate each step as much as possible.

2.1.3 Succefully created timetable
So, how the successfully created timetable can be described? The successfully created timetable
should follow the listed requirements:

1. The logical amount of teachers should be involved and assigned to the timetable slots.

2. The created timetable should match the preferable schedules of the involved teachers.

3. The created timetable should be approved by the administrator and the teachers that were
assigned to the time slots.

If the created timetable adheres to the all stated requirements, then it can be considered as a suc-
cessfully created timetable. A detailed description of the optimizations or rules of the timetable
generation process in the “Choronosite” application is presented in the next chapters of the thesis.

The next sections will focus on the requirements, existing solutions, use cases, and domain
model of the ”Chronosite” application, which is related to the process defined in this section.

2.2 Incoming data
Before establishing the requirements and use cases, the author decided to describe the rules for
the data that will be received from the teachers.
Such rules are highly sensitive to organizational differences as useful data can vary between
institutions. The author has defined basic rules for data that will be submitted by the teachers
to the application, including:

1. Time slot preferences – teachers should be able to accept or reject each time slot individually.
More complex options, such as preferred colleagues to teach with, can also be added.

2. Range of taken time slots – teachers should be able to specify a minimum and a maximum
number of time slots to take per day or week.

3. Various number of the preferable schedules – teachers should be able to create any number
of preferred timetables.

Chronosite requirements 5

While there may be additional rules specific to certain institutions, the author believes that
these basic rules cover a large percentage of teachers’ preferences. The time slot operations
provide flexibility to create any desired combinations of accepted and rejected time slots, and
the range of taken time slots allows teachers to generalize their preferences. Finally, the teachers
would be able to create a pool of the preferred schedules on different timetables provided by the
administrator.

2.3 Chronosite requirements
“Requirements” – a popular noun that people use in different contexts across various areas of
life. Firstly, it is vital to define “requirements” in the context of software engineering:

“Requirements are a specification of what should be implemented. They are descriptions of how
the system should behave, or of a system property or attribute. They may be a constraint on the
development process of the system.” [1]

This definition acknowledges the diverse types of information that collectively are referred to
as “the requirements.” Requirements encompass both the user’s view of the external system be-
havior and the developer’s view of some internal characteristics. They include both the behavior
of the system under specific conditions and those properties that make the system suitable—and
maybe even enjoyable—for use by its intended operators.[1]

Furthermore, this chapter formulates functional and non-functional requirements based on the
objectives of the thesis.

2.3.1 Functional Requirements
Functional requirement – a description of behavior that a system will exhibit under specific
conditions.[1] Functional requirements have been established for the “Chronosite”, as follows:

F1: Admin profile The system provides an administrator role. Predefined administrators
can create teachers’ profiles (based on username and password), manipulate schedules with
time slots, and generate schedules.

F2: Teacher profile Created teachers can use the application with limitations. Mainly, they
can submit their preferred timetables to the system and send feedback about the generated
schedule to the administrator.

F3: Display schedule The system displays schedules with their time slots to the users
(administrators and teachers).

F4: Constraints on timetable Teachers can choose suitable time slots to pick. Also, it
should be possible to manipulate the number ranges of the picked time slots for the day or
week. It should be possible to choose any number of time slots in all possible ways. By
default, all time slots are selected by the teacher.

F5: Variety of the preferable timetables Teachers can create any number of preferred
schedules. All of them should be used in the phase of schedule generation.

F6: Validation of the preferable timetables The suitable schedule should be validated
by the creator (teacher). It should be possible to validate the changed preferred timetable
after the original timetable changes.

6 Analysis

F7: Schedule generation The system should generate all possible timetables with the
assigned teachers to the timetable slots, considering validated preferred schedules from the
teachers. The generation of the timetable should be available only if each teacher has sub-
mitted at least one preferred timetable. Generated timetables should be saved for future
usage.

F8: Review of the generated schedule Users can approve or reject generated sched-
ules. The administrator should approve one possible schedule in the first place. All teachers
should also approve the same schedule. If any teacher rejects the proposed schedule, then
it becomes unapproved automatically. Additionally, teachers can write a comment on the
provided schedule regardless of their choice (approve or reject).

F9: Notifications The system should send notifications to the administrators. These noti-
fications should contain information about the teachers’ feedback and schedule states.

2.3.2 Non-functional Requirements
Non-functional requirement – a description of a property or characteristic that a system must
exhibit or a constraint that it must respect.[1] “Chronosite” is expected to meet the following
non-functional requirements:

N1: Client The website is expected to be designed using modern web technologies and
front-end frameworks to ensure an effective UI. It should be responsive and easily accessible
on various devices, such as laptops, desktop computers, tablets, and smartphones.

N2: Server The server should be running using the Java application using modern pro-
gramming languages and frameworks. Also, It has to be integrable with other systems or
services.

N3: Maintainability It’s important to consider the system’s scalability to integrate future
changes and updates. This means that the system should be able to easily adapt to progressive
technologies, new functionalities, and changes to the domain model while maintaining its
performance and stability.

N4: Performance Considering the potentially high time complexity of the schedule genera-
tion problem, it is necessary to ensure that the schedule generation operations are optimized
to execute within a rational timeframe.

N5: Security The system should provide secure authentication and authorization processes.
Additionally, it should use technologies and frameworks that will have features like password
hashing, encryption, and access control mechanisms that can help maintain the system’s
security.

2.4 Existing solutions
The investigation of the existing fields in software engineering requires to make research on
working applications, implemented concepts, and talented people.

For the study purposes of the existing solutions that solve the same problem, the author
investigated the WWW using different search engines.
Unfortunately, there do not exist many public programs related to the problem itself. To be
more precise, only Doodle, as a public website, can be compared to “Chronosite” in terms of
existing solutions.

Use cases 7

2.4.1 Doodle
“Doodle is an online calendar tool for time management and coordinating meetings. Users are
asked to determine the best time and date to meet. The organizer then chooses the time that
suits everyone and the meeting is booked in the user’s calendar. Meeting coordinators (admin-
istrators) receive e-mail alerts for votes and comments.”[2]

Key features:

Poll creation: The users can easily create polls to find the most suitable date and time for
a meeting or event. The poll creator has the flexibility to propose multiple options for dates
and times, and your participants can vote on their availability. The same logic contains the
requirements F1, F2, and F4. The administrator will create a timetable with time slots and
the teachers will choose their preferred time slots.

Real-time updates: When participants respond to the poll, the poll creator can view the
results in real time. As stated in the F4, teachers will submit their preferable schedules to the
system and the administrator can track submissions during the timetable generation process.

Suitable date and time detection: The poll creator can manually determine the most
suitable date and time for the meeting using real-time updates which is similar to requirement
F7, but the difference will be described later in this chapter.

Overall, Doodle application has a user-friendly and intuitive interface and efficient commu-
nication options. Moreover, it solves the problem of agreeing on the date and time for the events.
Distinctions:

Participant preferences: The participants can only submit one suitable option for the
specific event in the poll. “Chronosite” provides the functionality to create multiple preferred
options for one schedule.

Possible poll generation: The Doodle provides the ability for the poll creator to manually
assign participants to a specific event. “Chronosite” can collect preferred schedules and
automatically generate all possible timetables.

Approvement by participants: The Doodle does not provide the functionality to submit
feedback to the poll creator or reject the finished poll with assigned people for the events.
However, “Chronosite” offers the possibility to accept or reject the generated schedule and
submit feedback.

2.5 Use cases
The upcoming chapter describes the use cases of the application, but first, the meaning of the
term “use case” in the software engineering context must be defined:

“A use case describes a sequence of interactions between a system and an external actor that
results in the actor being able to achieve some outcome of value.” [1]

The following use cases have been defined for ”Chronosite”. They are divided into 2 categories:
admin and teacher use cases.

2.5.1 Admin use cases
This section primarily centers on the administrator’s use cases regarding manipulations of the
teachers, schedules, and time slots and they are represented in Figure 2.1, but the role of the

8 Analysis

administrator should be generally described first.

ADMIN – has access to operations such as creating, updating, and deleting teachers, timeta-
bles, and timetable slots. It also provides permission to generate possible schedules, decide
which generated schedule will be approved, and used it as the blueprint for assigning teachers to
the original timetable slots. Additionally, the administrator receives notifications regarding the
timetable creation process.

UC1: Create teacher The administrator should be able to register teachers using user-
names and passwords created by the administrator.

UC2: Update teacher The administrator should be able to update teachers’ credentials
using their existing username.

UC3: Delete teacher The administrator should be able to delete registered teachers using
their existing username.

UC4: Create timetable The administrator should be able to create new timetables by
submitting their future names.

UC5: Edit timetable The administrator should be able to edit timetables by performing
various operations on the time slots of the selected timetable.

UC6: Delete timetable The administrator should be able to delete timetables through
manual interaction with the system.

UC7: Create time slot The administrator should be able to create time slots by submitting
their future start and end time.

UC8: Update time slot The administrator should have the ability to manually edit the
time slots of selected schedules. This means that the administrator should be able to change
the start or end time of the selected time slot.

UC9: Delete time slot The administrator should have the option of manually removing
the time slots from chosen schedules.

UC10: Receive notification The administrator should be able to receive notifications
from the system regarding a specific schedule state or notifications regarding the teacher’s
feedback.

UC11: Read the message of notification The administrator should be able to read the
more detailed message of the notification if it exists.

UC12: Delete notification The option to manually remove notification should be available
to the administrator.

UC13: Browse schedules The administrator should be able to browse through created
timetbles.

UC14: Browse time slots The administrator should be able to browse through created
time slots in the selected schedule.

UC15: Browse notifications The administrator should be able to browse through received
notifications.

UC16: Generate schedule The administrator should be able to generate all possible
schedules. It is possible if all teachers have submitted at least 1 verified preference of the
schedule.

Use cases 9

UC17: Approve generated schedule The administrator should be able to approve gen-
erated schedule. Doing so, all other generated schedules were deleted, and chosen generated
schedule is available for approval by the teachers.

2.5.2 Teacher use casaes
This subsection focuses on the teacher’s use cases involving the interaction with schedules, pre-
ferred schedules, and time slots. They are described in Figure 2.2, also the description of the
teacher role is stated as follows:

TEACHER – has access to the timetables created by the administrator and can create the
preferable schedules that will the most suit the availability of the teacher. Also, the teacher can
perform the operations on the created preferable schedule as edition and validation. Moreover,
the teacher can send feedback to the administrator regarding the approved generated schedule
by the administrator.

UC18: Edit profile The teacher should be able to edit the profile and credentials which
were created by the administrator.

UC19: Create preferable schedule The teacher should be able to create many preferable
schedules on the chosen timetable created by the administrator by passing the name of the
future suitable schedule.

UC20: Validate preferable schedule The teacher should be able to confirm the preferred
schedule they have created.

UC21: Edit preferable schedule The teacher should be able to edit the preferred schedule
that they have created. Moreover, they should have the option to update their preferences
for specific time slots and ranges for each day and week.

UC22: Delete preferable schedule The teacher should be able to delete their preferred
schedules from the selected schedules that were created by the administrator, by manually
interacting with the system.

UC23: Browse schedules The teacher should be able to browse through the schedules that
were created by the administrator.

UC24: Browse preferable schedules The teacher should be able to browse through the
preferred schedules they have created.

UC25: Review generated schedule The teacher should be able to review the schedule
that has already been generated and approved by the administrator before deciding to accept
or reject the presented schedule.

UC26: Approve generated schedule The teacher should be able to approve the schedule
that has already been generated and approved by the administrator. By doing so, the teacher
can provide feedback to the administrator.

UC27: Reject generated schedule The teacher should be able to reject the already
approved generated schedule by the administrator. By doing so, the teacher can send feedback
to the administrator, and the generated schedule is no longer approved by the administrator
and unavailable to the other teachers.

10 Analysis

2.5.3 Summary
To summarize how the use cases related to the functional requirements, the author decided to
provide a short description of the correlation between the use cases and functional requirements
and the Table 2.1:

The admin profile requirement is covered by the use cases related to the operations of the
teachers, timetables, and time slots.

The teacher profile requirement is correlated to the use cases that describe the manipula-
tions on the preferable schedules and the approval or rejection of the generated schedules by
the administrator.

The display schedule requirement is covered by the use cases that are linked to the browsing
of the timetables by users.

The constraints on timetable, validation of the preferable timetables, and variety
of the preferable timetables requirements are correlated to the use cases that are related
to the operations on the teachers’ preferable schedules.

The schedule generation requirement is covered by the use cases that describe the schedule
generation process performed by the administrator.

The review of the generated schedule requirement is correlated to the use cases that are
related to approval or rejection by users.

The notifications requirement is related to the use cases that describe the connection be-
tween the administrator and the notifications.

Table 2.1 Functional requirements covered by use cases

Functional requirements Use cases
F1 UC1-UC9, UC16
F2 UC19, UC21, UC22, UC26-27
F3 UC13, UC23, UC25
F4 UC19, UC20, UC22
F5 UC19
F6 UC20,UC21
F7 UC16
F8 UC17, UC25-UC27
F9 UC10-UC12

Use cases 11

Figure 2.1 Admin use cases

12 Analysis

Figure 2.2 Teacher use cases

Domain model 13

2.6 Domain model
The analysis in this chapter, which includes functional and non-functional requirements, problem
analysis, and use cases, provides an idea of how the domain model could be constructed. This
model is then implemented and shown in 2.3.
Additionally, the entities and enumerations in the model have to be described.

Notification status The notifications have the 3 statuses: “Accept”, “Reject”, and
“Complete”. These statuses are the main, short messages of the notifications. Specifically,
“Accept” indicates that a teacher has accepted the proposed schedule, while “Reject” indi-
cates that the schedule has been rejected. “Complete” is the schedule’s status once everyone
has approved it and teachers are assigned to the time slots.

Preferences The teacher time slots have 2 statutes: “Accept”, “Reject”. Teachers can
pick one option when they are creating a preferable schedule. Prospectively, “Accept” is
when a teacher wants to be assigned for the time slot, if not – “Reject”.

User The user interface provides the ability to implement the administrators and teachers
with the predefined roles. The goal of distinguishing the administrators and teachers instead
of leaving the only user is to have different relationships with other entities.

Schedules The Schedule, TeacherSchedule, and PossibleSchedule are generally the
timetables with the concrete roles. Schedule is a original timetable created by the admin-
istrators and has the timeslot entities. The TeacherSchedule and PossibleSchedule
are linked to the original timetable. So TeacherSchedule is the preferable timetable of
the teacher and PossibleSchedule is the generated schedule using the teachers’ preferable
schedules.

Timeslots The Timeslot is an entity that describes the start and end time and the specific
day of the week of the lecture, seminar, or any other event. A TeacherTimeslot is the entity
that describes the choice of the teacher to teach or not the original time slot.

14 Analysis

Figure 2.3 Class diagram

Chapter 3

Design

This chapter will present the design of the “Chronosite” application, which includes the system
architecture and its functional components. The server-side design and UI layer, along with
the wireframes, will be discussed in detail.

3.1 Wireframes
Whether designing websites or web applications today creating purposeful graphics is not enough
if there is not sufficient understanding of how best to lay out web pages themselves for optimal
effectiveness. A good page structure must embody features like easy-to-use navigation systems
that integrate seamlessly with excellent user interfaces (UIs) which embody great attention to
detail information designs. A visually presented diagrammatic schematic or wireframe is an
essential tool in achieving this since it provides a complete overview of the web page’s constituent
parts and layout allowing the design team to plan and execute their designs with greater preci-
sion.[3]
The author decided to present the wireframes that will introduce the UI of the “Chronosite” ap-
plication. They were created based on the analysis in the previous chapter, especially considering
the functional requirements and use cases of the system.

The Figure 3.1 shows the administrator’s screen that is related to the manipulations with
teachers. It describes the use cases UC3, UC4, and UC5. The input fields as “Username”
and “Password” are provided by the design of the wireframe because these data are required
to perform operations on the teachers.

The Figure 3.2 demonstrates the screens of the administrator’s timetable list with available
operations on them. The wireframes describe the use cases UC6, UC8, and UC15. The design
of this wireframe provides the ability to choose different operations on the timetables in one
place. Also, the input field “Name” is gain the required data to create a new timetable.

The Figure 3.3 shows the screen with timetable. This wireframe provides the ability to review
all the time slots of the timetable and differentiate them by day, start and end time, location,
and type of lesson (lecture, seminar). Overall, the timetable would be displayed in the same
way for all use cases that are related to timetable management or preferable schedule creation.
The only difference would be the active buttons for the teachers’ preferences and time slot
creation. So, it covers the use cases UC7, UC9, UC21, UC23, and UC27.

The Figure 3.4 demonstrates a screen with a notification list and operations on it. The
wireframe is related to use cases UC12, UC13, UC14, and UC17, and includes functionality

15

16 Design

such as buttons for “Message” and “Delete” to perform operations on the notifications, as
well as a brief description of the notifications.

The Figure 3.5 demonstrates the use cases related to the operations on the time slots. It
especially covers use cases UC10, UC11, and UC21 and provides input fields such as “Start
time”, “End time”, “Location” and “Type” to collect data that is needed to create or update
the time slot. Also, the wireframe includes functionality such as buttons for ”Message” and
”Delete” to receive a teacher preference regarding a specific time slot.

The Figure 3.6 shows the process of the profile of the teacher editing. The wireframes are
related to UC18. The input field “New password” and the button “Submit” are designed to
receive a new password from the teacher and perform the profile edition process.

The browsing of the preferable schedules of the teacher and operations on them are shown
in Figure 3.7. The wireframes describe the use cases UC19, UC20, UC22, UC23, and UC24
and provide the ability to perform operations on the preferable schedules via buttons labeled
“Validate/Edit” and “Delete”. In addition, teachers can edit the preferable schedule by click-
ing on the displayed schedule and using the “Week Range” button to change the number
of time slots per week. This design allows teachers to easily track and perform changes as
everything is in one place.

The Figure 3.8 describes the process of the timetable reviewing. The wireframes cover the use
cases UC26, UC27, UC28, and UC29, providing intuitively located buttons “Approve” and
“Reject” that make it easy for teachers to decide whether to accept or reject the proposed
schedule, which will be displayed on the same page. In addition, an input field labeled
“Message” is provided to teachers to submit more precise feedback.

Finally, Figure 3.9 shows the screen of the administrator for the timetable generation and it
is related to the use case UC25. The wireframe contains a list of teachers along with their
statuses (submitted or not submitted), which helps the administrator understand when it will
be possible to generate the schedules. Additionally, the “Approve” button will be available
after the schedule generation, allowing the administrator to easily review all of the generated
schedules.

Figure 3.1 Operations on teachers by admin

Chronosite Admin teachers

Create

Notifications LogoutTeachers Schedules

Username

Update

Create Teacher Update Teacher Delete Teacher

Update

Username

Username

Delete

Password Password

Wireframes 17

Figure 3.2 Operations on schedules by admin

Chronosite

Chronosite

Admin

Admin

schedules

create scheudle

Create

Name

Create schedule

Notifications

Notifications

Logout

Logout

Teachers

Teachers

Schedules

Schedules

List of the schedules

05-06-2022 Delete

Name Date

GenerateEditTest

Create schedule using name

Figure 3.3 Displayed schedule

Chronosite Admin Display

schedule

LogoutTeachers Schedules Notifications

M
on

d
ay

M
on

d
ay

Tu
es

d
ay

W
ed

ne
sd

ay
T

hu
rs

d
ay

Fr
id

ay

9:00
9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Time slot

Time slot

Time slot Time slot

Time slot
Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

Time slot

9:00 - 10:45 am
Building A

Lecture

Time slot

18 Design

Figure 3.4 Notifications

Chronosite

Chronosite

Admin

Admin

notifications

notifications

Return

Notifications

Notifications

Logout

Logout

Teachers

Teachers

Schedules

Schedules

StatusText

Notifications

Message Delete

Text of the message

Figure 3.5 Operation on the timetable slots

Chronosite Admin TimeslotLogoutTeachers Schedules Notifications

Start time - 00:00

Type

Location

End time - 00:00

Create time slot

Start time - 00:00

Location

End time - 00:00

Update time slot Preferences

Type

Accept Reject

3.2 System architecture
In this section, the system architecture will be discussed with its types, and functionality of the
different components, but firstly the author decided to state several key points and the definition

System architecture 19

Figure 3.6 Profile edit process

Chronosite

Chronosite Teacher

Teacher

profile

profile

Submit

Edit

Logout

Logout

Profile

Profile

Schedules

Schedules

Teacher’s Data

Username

Password

teacher1

New password

Change password

Figure 3.7 Preferences edit process

Chronosite

Chronosite Teacher

Teacher

preferences

preferences

Create preferable schedule

Week RangeValidate / Save

Logout

Logout

Profile

Profile

Schedules

Schedules

List of preferable schedules of the schedule “Test”

Name Status Date Options

test Invalid 05-06-2022 Validate / Edit Delete

Displayed schedule

of the “system architecture”.

The system architecture is the representation of a system that maps out the function-
alities of hardware and software components, as well as takes into account human interaction
with these components. The system architecture covers the entire system, including hardware,
software, and humans.[4]

20 Design

Figure 3.8 Review timetable process

Chronosite - menu Admin / Teacher Review

RejectApprove

Logout

Displayed schedule

Message (for teachers)

Figure 3.9 Timetable generation process

Chronosite Admin Generate

schedule

LogoutTeachers Schedules Notifications

Teacher1

Name

Teacher2

Status

Submitted

Submitted

Generate Approve (after generation)

The thesis describes the concept of the web application. The system architecture of a web
application can vary depending on the specific requirements and technologies used, but in gen-
eral, it can be described as a client-server architecture. However, the web application can have
different types of system architectures, such as microservices, service-oriented, and event-driven
architectures, and the most suitable for the “Chronosite” prototype – monolithic architecture.

Also, the system should store user profiles and all types of schedules described in the domain
model section. Additionally, it has to resolve the problem of timetable generation, so the al-
gorithm and problem should be described. The following section will cover these precise topics
with various architectures.

3.2.1 Architecture types
This subsection provides general information about system architecture types and describes their
advantages and disadvantages.

In a monolithic architecture, which is described in [5], the application is developed and
deployed as a single unit, resulting in a single executable. While this approach is straightforward
to implement and manage, it may pose challenges in scaling and maintaining the system as it

System architecture 21

becomes larger and more complex.

Advantages:

1. Simple to develop and deploy, as the application is built and deployed as a single unit.

2. Easier to test, as the entire application can be tested in one go.

3. Fewer network calls as all components of the application reside on the same server, which
results in faster performance.

Disadvantages:

1. Monolithic architecture can be difficult to scale, as the application has to be scaled up or
down, besides the specific component that requires more resources.

2. Lack of modularity makes it challenging to make changes to specific components of the ap-
plication, requiring redeployment of the entire application.

3. Risk of the system failing if any part of the application fails, leading to a single point of
failure.

A client-server architecture is a type of distributed architecture that comprises two dis-
tinct parts: the client, which handles user interaction, and the server, which processes requests
and stores data. This type of architecture is usually employed in web applications and offers
benefits such as scalability, flexibility, and ease of maintenance. It explained in [6]

Advantages:

1. Allows the distribution of the workload between the server and clients, which makes it easier
to expand the system as needed.

2. Allows for centralized management, making it possible to monitor and control access to
resources.

3. Can be more cost-effective than other architectures since clients can be less expensive and
less powerful, while the server can be more powerful and expensive.

Disadvantages:

1. The risk of a single point of failure. If the server fails, it can bring the entire system down.

2. The architecture is also heavily reliant on network communication, which can result in delays
or interruptions if network problems arise.

3. The server’s workload can become a bottleneck, impacting system performance and respon-
siveness, especially when there are many clients.

A microservices architecture, which is outlined in the [7] involves building an application
using small, autonomous services that interact with each other through APIs. This approach
offers benefits such as flexibility, scalability, and ease of maintenance. However, it can also add
complexity in terms of managing and deploying the services, which can be challenging.

Advantages:

1. Microservices architecture enables scalability, flexibility, and fault isolation.

2. Each component can be scaled independently, allowing the system to handle higher loads as
it grows.

22 Design

Figure 3.10 Client-Server architecture

3. Faster development and deployment of new features, making it easier to respond to customer
needs and market changes.

Disadvantages:

1. Microservices architecture can be more complex to manage, especially when dealing with a
large number of services.

2. Requires additional management and monitoring to ensure consistency, reliability, and secu-
rity across all services.

3. The overhead involved in managing and coordinating multiple services can also lead to in-
creased costs and complexity, particularly for smaller projects or teams.

Figure 3.11 Microservices architecture

Considering the advantages and disadvantages of the several architecture types, which should
be used for the prototyping? Using a monolithic architecture for prototyping a “Chonosite” can
be a good option due to its simplicity and ease of setup, which allows focusing on building and

System architecture 23

testing the application’s core features without worrying about the complexities of a microservices
architecture.

3.2.2 Roles
The system requirements, F1 and F2, mandate that the system must offer roles for registered
users. One approach to handling authorization and access control in the system is to use the
Role Object Pattern (ROP), as described in [8]. ROP involves creating a Role object that
contains information about a specific role in the system, such as its name and permissions. Users
are then assigned to these roles, allowing them to access only the parts of the system that are
relevant to their role. This simplifies permission management, as changes can be made at the
role level, instead of for each user. Furthermore, this pattern promotes consistency and helps
ensure that users have the appropriate level of access for their role, while also reducing the risk
of unauthorized access.

3.2.3 Data management
The system requirements F1, F2, and N5 specify that user profiles must be stored securely to
prevent potential data leaks. Additionally, requirements related to timetables call for optimized
data structures and database schema. Therefore, an SQL database with a security framework
like Spring Security would be preferable. However, a NoSQL database could be used for data
storage. A detailed description of the technologies will be provided in the next chapter, but first,
a comparison between SQL and NoSQL databases will be presented.
One of the primary differences between SQL and NoSQL databases is their approach to data
modeling. SQL databases rely on a rigid schema that defines the database structure, which can
make it challenging to modify the schema when new requirements arise. In contrast, NoSQL
databases employ a flexible schema that allows developers to add new data elements without
modifying the existing schema. However, NoSQL databases are relatively new and lack a well-
established security framework compared to SQL databases. Typically, NoSQL databases use
access control mechanisms like IP-based access restrictions, encryption, and firewalls to secure
the data.
In summary, based on the system requirements, SQL databases are a better fit than NoSQL
databases. Therefore, the choice is clear.

3.2.4 Problem of the timetable generation
Requirement F7 states that the prototype should generate all possible schedules, considering
validated preferred schedules from the teachers. To create a design of the solution that automates
the process described in the analysis section 2.1, the problem should first be described in detail.
Additionally, each step of the timetable generation process should be described along with a
solution for automation.

3.2.4.1 Description
The described problem itself is similar to the employee scheduling problem in computer sci-
ence that is explained in [9] with possible solutions. The employee scheduling problem involves
assigning employees to work shifts based on various constraints, such as availability, skills, prefer-
ences, labor laws, and union rules and is also considered an NP-hard problem and is characterized
by several types of constraints, including:

Employee availability Each employee has certain hours or days of availability during which
they can work, and the schedule must take these constraints into account.

24 Design

Skill requirements Certain tasks may require specific skills or qualifications that only some
employees possess. The schedule must assign the appropriate employees to these tasks.

Time constraints Some tasks may have strict deadlines or specific start times, and the
schedule must ensure that these constraints are met.

As stated in the [10], polynomial-time reductions provide a formal means for showing that one
problem is at least as hard as another, to within a polynomial-time factor. That is, if L1 ≤p L2,
then L1 is not more than a polynomial factor harder than L2, which is why the “less than or equal
to” notation for reduction is mnemonic. We can now define the set of NP-complete languages,
which are the hardest problems in NP.

A language L ⊆ {0, 1}∗ is NP-complete if

1. L ∈ NP, and

2. L′ ≤p L for every L′ ∈ NP

If a language L satisfies property 2, but not necessarily property 1, we say that L is NP-
hard. We also define NPC to be the class of NP-complete languages. As the following theorem
shows, NP-completeness is at the crux of deciding whether P is, in fact, equal to NP.

Based on the definition of NP-hard and an analysis of the problem, the author decided to
demonstrate a possible polynomial-time reduction from the employee scheduling problem to
show that the teacher scheduling problem is an NP-hard problem:

1. Create an employee for each teacher and create a task for each course.

2. Assign a set of available time slots for each employee, based on the times that they are
available to teach.

3. For each time slot, create a set of required qualifications and assign a set of required employees
to teach the time slot, based on their qualifications.

4. Run the employee scheduling algorithm on the resulting problem instance.

Doing so, the teacher scheduling problem can be solved by transforming it into an instance
of the employee scheduling problem, which is known to be NP-hard and it can be stated that
the teacher scheduling problem is also NP-hard.

3.2.4.2 Create draft schedule
To create a draft schedule, an optimized algorithm is needed to solve the teacher scheduling
problem. The crucial step is to choose the optimal algorithm type that best addresses the
problem. The algorithm flowchart presented in Figure 3.12 and described within five steps as
follows:

1. The algorithm should take each time slot one after another.

2. It should assign one teacher to each time slot using only one suitable schedule submitted by
the following teacher. If the teacher can be assigned again, the algorithm should use the same
preferable schedule until the end of the computational process.

3. If it is impossible to perform the previous step, the algorithm cannot create a possible sched-
ule.

4. If it is possible to assign a teacher, the algorithm should move on to the next time slot.

5. If all time slots have been assigned to teachers, the algorithm should create a possible schedule.

System architecture 25

Considering the steps outlined, several algorithm types can be used for the teacher scheduling
problem, such as backtracking, genetic, and simulated annealing algorithms. Genetic and sim-
ulated annealing algorithms are typically used in machine learning or robotics areas and are
complex algorithms for large systems. In the case of the prototype, the backtracking algo-
rithm would be the most suitable option.

Backtracking is an algorithmic approach described in [10] that involves starting with an in-
complete solution and gradually adding new elements to it until a complete solution is reached.
At each step, the algorithm generates all possible extensions of the current partial solution and
checks if each one is valid. If a valid extension is found, the algorithm proceeds to the next step
with the extended solution. However, if no valid extensions are found, the algorithm backtracks
to the previous step and tries a different extension. It’s important to note that backtracking is
a brute-force approach, so the resulting schedules should have a reasonable number of assigned
teachers and optimization to decrease time complexity.

The list of rules to prevent an illogical number of teachers from being assigned to time slots
are as follows:

1. If the number of teachers is equal to the number of time slots, then each teacher must be
assigned only once.

2. If the number of teachers is greater than the number of time slots, then the number of assigned
teachers must be equal to the number of time slots in the timetable.

3. If the number of teachers is less than the number of time slots, then each teacher must be
assigned at least once, and some of them can be assigned again.

The list of optimizations that will cut off the failure schedules and improve the assigning
process:

1. The assignment should start with unassigned teachers so that the possible schedules with
unique teachers can be generated first.

2. The difference between the assigned and unassigned teachers should be tracked. It would be
used to follow the rules that prevent an illogical number of teachers that being assigned to
time slots.

3. The ranges of the taken time slots per week or day of the chosen preferable schedule of the
teacher and the number of assigned teachers should be reviewed by the system during the
assignment process. This optimization will decrease the amount of generated schedules and
eliminate potentially unsuccessful generated schedules.

Additionally, to improve the performance of the algorithm a great option is to use parallel
computation and asynchronous programming techniques. The parallel computation approach
involves breaking down a problem into smaller tasks, such as the process of the time slot, that
can be processed in parallel. Multiple processors can work together to solve the problem faster.
Moreover, asynchronous programming allows multiple tasks, such as reviewing the ranges per
day or week of the chosen preferable schedule of the teacher or the number of assigned teachers,
to be executed simultaneously without waiting for each other to finish. This allows the program
to continue running while it waits for some long-running task to complete.

To summarize, the backtracking algorithm should be used to solve the teacher scheduling
problem. It should have the listed optimizations, which will create the most suitable algorithm
for the problem and increase computational power.

26 Design

Figure 3.12 Algorithm flowchart diagram

3.2.4.3 Review draft schedule
The reviewing process is split into two main parts: review by the administrator and review by
all involved teachers.

1. The administrator should choose one schedule from the list of generated schedules that, in
his opinion, would be acceptable for the involved teachers.

2. The teachers can then accept or reject the schedule selected by the administrator. They can
also leave a message for the administrator along with their choice.

3.2.4.4 Finalize the schedule
The complete timetable would be a timetable with assigned teachers to all time slots. If all the
involved teachers accept the generated and approved schedule by the administrator, then teachers

Server-side 27

would be assigned to the time slots in the original timetable created by the administrator.
However, if at least one teacher rejects the proposed schedule by the administrator, then the
process of schedule generation starts from scratch.

3.3 Server-side
To meet the functional requirements, use cases, and system architecture of the prototype, the lan-
guages, frameworks, and libraries used for developing the server layer should satisfy the following
requirements:

1. Simplicity, scalability, robustness.

2. High computing, performance speed.

3. Security.

Many languages meet enumerated requirements such as Java, Node.js, Ruby, and Python.
Also, the programming should be platform-independent, robust language with security libraries
to satisfy all required criteria.

As stated before, the monolithic architecture allows for building a single unit. Packaging
in such an architecture is simple because all components are packaged together, so complex
packaging structures are not required.

3.3.1 Architecture
The architecture of the server should be structured into three layers, each with a distinct set of
responsibilities:

Presentation layer is responsible for exposing the functionality of the server to clients via a
RESTful API. It consists of REST controllers that manage HTTP communication and handle
requests and responses.

Domain layer contains the core business logic of the server. It defines the data structures,
business rules, and algorithms that govern the behavior of the application.

Data layer is responsible for data persistence. It is connected to an SQL database and
handles database queries and updates.

To ensure a high degree of modularity and maintainability, the Presentation layer depends
only on the Domain layer, while the Domain layer depends only on the Data layer. This design
ensures that there are no inverse dependencies between layers, thereby avoiding tight coupling
and making it easier to modify individual layers without affecting others.

3.4 UI layer
This UI layer should be compatible with the monolithic architecture, front-end frameworks,
and modern programming languages. Also, it should follow the Model-View-Controller (MVC)
pattern[11] that has the following key points:

Separation of Concerns The MVC pattern aims to separate an application’s data model,
user interface, and control logic into 3 distinct components: Model, View, and Controller.

Model The Model is responsible for managing the data and the business logic of the appli-
cation. It encapsulates the data and provides methods to access and manipulate it.

28 Design

View The View is responsible for presenting data to the user and receiving user input. It
represents the user interface of the application.

Controller The Controller acts as an intermediary between the Model and the View. It
receives input from the View, manipulates the Model, and updates the View accordingly.

Loose Coupling The MVC pattern promotes loose coupling between the Model, View, and
Controller. This means that each component is independent of the others, making it easier
to maintain, test, and modify the code.

Chapter 4

Implementation

This chapter aims to demonstrate the implementation of the “Chronosite” prototype using the
design discussed in the previous chapter.

4.1 Programming language
The chosen programming language should be the most suitable for the “Chronosite” considering
the statements from the design chapter. Because the author is only able to implement a prototype
using Java or JavaScript programming languages, these 2 languages can be used. A runtime
environment such as Node.js can be utilized for JavaScript. However, a comparison between
Java and Javascript would be pointless, because Javascript is commonly used to create dynamic
and interactive web pages[12]. So, the description and key features will be provided for Java and
Node.js with a comparison of them.

4.1.1 Java
Java is a popular programming language that can be run on any operating system that has a
Java Virtual Machine (JVM) installed. It is an object-oriented language, meaning it is based
on the idea of objects interacting with each other to carry out tasks. Java is strongly typed,
which means all variables must be explicitly declared with a specific data type. Additionally,
Java supports automatic garbage collection to help manage memory usage.[13]

Key features:

Portability – Java code can be compiled into bytecode, which can be run on any system that
has a JVM installed, making it highly portable.

Security – Java includes built-in security features, such as sandboxing, that help protect
against malicious code.

Multithreading – Java supports multithreading, which allows multiple threads to run concur-
rently within a single program.

Exception handling – Java includes a robust exception-handling mechanism that helps devel-
opers write more reliable and robust code.

Rich APIs – Java includes a large set of standard libraries and APIs, including networking,
and database access which can help developers build complex applications more quickly and
easily.

29

30 Implementation

4.1.1.1 Collections Framework
Based on the [14], the Collection Framework is a set of tools for managing collections of objects
in Java. It includes several key interfaces, like List, Set, and Map, and their associated imple-
mentations. These tools help simplify code and improve performance by providing efficient ways
to sort, search, filter, and manipulate collections of data. Some examples of the common data
structures supported by the framework are ArrayList, LinkedList, HashSet, and TreeMap.

4.1.1.2 Stream API
The Stream API is a library in Java. It was introduced in Java 8 as a part of the Java Collections
Framework and is a powerful tool for processing collections of data. The Stream API provides
a functional programming approach to working with data collections, allowing developers to
perform operations such as filtering, mapping, and reducing a collection of objects in a concise
and readable way. It is a part of the java.util.stream package and provides several classes and
interfaces that can be used to work with data streams in Java.[15]

4.1.1.3 Concurrent
It is a library in Java that provides a set of utilities for concurrent programming in Java. It
includes classes and interfaces for managing threads, locks, atomic variables, synchronizers, and
executor services. The library was introduced in Java 5 to make it easier to write multithreaded
applications in Java. It provides higher-level abstractions for managing concurrency, making it
easier to write correct and efficient concurrent code.[16]

4.1.2 Node.js
Node.js is a runtime environment that lets developers use JavaScript on the server side, which
was previously limited to client-side use in web browsers. It is open-source and cross-platform,
meaning it can be used on different operating systems. Node.js is based on the V8 JavaScript
engine from Google, which enables fast and efficient execution of JavaScript code. It comes
with built-in modules for tasks like file system access, networking, and handling HTTP requests.
Node.js also has a vast collection of third-party packages available through the Node Package
Manager (NPM), making it easy for developers to incorporate existing tools and libraries into
their projects.[17]

Key features:

Asynchronous and Event-driven Programming Model – Node.js is designed to handle multiple
concurrent connections efficiently without slowing down the server, thanks to its event-driven,
non-blocking I/O model

Built-in Modules and Libraries – Node.js includes built-in modules and libraries for tasks
such as file system access, networking, and HTTP request handling, making application
development faster and easier

Cross-platform Compatibility – Node.js is a cross-platform runtime environment that can be
run on Windows, macOS, and Linux.

Scalability and Performance – Node.js is highly scalable and performant, allowing for the cre-
ation of applications that can handle many simultaneous connections due to its asynchronous
I/O model.

Server implementation 31

4.1.3 Summary
Before choosing the programming language, the author decided to provide a comparison between
Java and Node.js:

Node.js applications are easy to deploy, especially when compared to Java, as they require
fewer resources and can be run on smaller servers.

As described in the [18], Node.js is not as suitable for CPU-intensive tasks as Java. It may
not be the best choice for applications that require a lot of computational power.

Node.js has limited support for multithreading, which can be a drawback for applications
requiring parallel processing or high scalability.

To summarize, Node.js is a good choice for prototyping, but Java has significantly better
computational power compared to Node.js because as stated before Node.js is not suitable for
CPU-intensive tasks and has limited support for multithreading. The problem of scheduling
teachers is an NP-Hard problem and has a high time complexity and requires high computational
power. So, based on the comparison, Java has been chosen as the programming language for the
application.

4.1.4 Libraries
Several libraries of Java programming language were utilized to streamline the development
process. Below are the most noteworthy of these.

4.1.4.1 Guava
Guava is a Java library created by Google that offers a range of utilities and helper classes to
improve Java programming by making it simpler and more effective. The library enhances the
functionality provided by the Java standard library with features such as collections, caching,
concurrency, functional programming, and I/O.[19]

4.1.4.2 Lombok
Based on [20], Lombok is a library for Java that aims to simplify the process of writing Java
classes by reducing the amount of boilerplate code that developers need to write. It provides
a set of annotations that are processed at compile time to generate code that would otherwise
need to be written manually. Although some people refer to it as a “compile-time framework,” it
does not have a runtime component or a formal architecture for building applications. Instead,
it is a tool that can be used to improve the efficiency and readability of Java code.

4.2 Server implementation

4.2.1 Framework
The backend framework needs to be in sync with both the Java language and the server-side
design and should offer a broad range of libraries, such as security and dependency injection.
Based on the author’s research, the well-known Spring framework, Jakarta EE, and Google Guice
can be potential candidates to use.

32 Implementation

4.2.2 Spring
The Spring Framework is an open-source framework that provides extensive infrastructure sup-
port for building enterprise-level applications. It offers a wide range of features such as depen-
dency injection, inversion of control, aspect-oriented programming, and data access.[21]

Advantages:

Dependency injection simplifies object dependencies, promotes loose coupling

Integrates well with 3rd-party libraries and frameworks

Large, active community with extensive documentation and tools

Disadvantages:

Runtime performance overhead compared to lighter frameworks.

Potential complexity in large projects, requiring good planning and adherence to best prac-
tices.

4.2.3 Jakarta EE
Jakarta EE is a platform that offers a collection of technologies and specifications for building
enterprise-level Java applications. This platform provides a standard framework and a shared set
of APIs, making it easier to construct secure, scalable, and reliable enterprise applications that
can be deployed on various servers and platforms. Jakarta EE includes a set of well-defined tech-
nologies such as servlets, JavaServer Pages (JSP), Java Persistence API (JPA), Java Messaging
Service (JMS), Enterprise Java Beans (EJB), and more. These standardized components help
to build high-performance, distributed, and transactional applications with minimal effort.[22]

Advantages:

Standardized platform and APIs for enterprise Java development

Large community support and wide range of compatible servers

Mature and well-established technology stack

Disadvantages:

Complex and heavyweight, may not be suitable for small applications

Limited innovation and slow pace of updates compared to other frameworks.

4.2.4 Google Guice
Google Guice is a framework that helps Java developers write more flexible and maintainable
code by separating different parts of an application and reducing dependencies between them.
By defining bindings between interfaces and their implementations, Guice automatically injects
dependencies at runtime, making code more modular, testable, and easier to maintain.[23]

Advantages:

Dependency injection simplifies object dependencies, promotes loose coupling

Integrates well with 3rd-party libraries and frameworks

Server implementation 33

Large, active community with extensive documentation and tools

Disadvantages:

Smaller Community and Resources

Configuration Complexity for Large Projects

4.2.5 Final decision
The named frameworks have their benefits and cons, however, the Google Guice does not provide
any security library. Also, the Spring framework and Jakarta EE are more mature products than
Google Guice, so the author decided to use them for the implementation of the “Chronosite”.

4.2.6 Libraries
Certain external libraries were utilized in the development process, and they are outlined below.

4.2.6.1 Spring Boot
Spring Boot is a framework for building standalone applications in the Java ecosystem. It aims
to simplify the development process by providing pre-configured settings that allow developers
to quickly set up and deploy applications with minimal configuration. Spring Boot includes a
range of features such as embedded servers, health checks, metrics, and security, among others.

4.2.6.2 Spring Security
Spring Security is a security framework for Java applications that provides authentication, au-
thorization, and access control features. It is built on top of the Spring Framework and integrates
seamlessly with it. Spring Security offers a flexible and customizable architecture that supports a
wide range of authentication and authorization mechanisms, including form-based, HTTP basic,
and OAuth2. It also provides advanced features such as CSRF protection, session management,
and LDAP integration.

4.2.7 Java-based Templating Engine
A Java-based server-side templating engine is a software tool that generates dynamic web pages
by combining HTML templates with data from a back-end system. They provide powerful fea-
tures such as conditional statements, and variable substitution, and integrate easily with Java-
based web frameworks like Spring. The popular and intuitive in practice Java-based server-side
templating engine is Thymeleaf.

“Thymeleaf is a Java XML/XHTML/HTML5 template engine that can work both in web
(servlet-based) and non-web environments. It is better suited for serving XHTML/HTML5 at
the view layer of MVC-based web applications, but it can process any XML file even in offline
environments. It provides full Spring Framework integration”.[24]

The main benefits of the usage of the Thymeleaf are:

Fully supports HTML5 and integrates with popular Java-based web frameworks.

Enables reusability through the creation of template fragments, which can save development
time and effort.

34 Implementation

Provides advanced features such as conditional statements, loops, and variable substitution,
which can help create complex and dynamic web pages.

Overall, Thymeleaf is compatible with monolithic architecture and Java language. Also, it
provides various benefits which make the described engine a good option to choose.

4.3 Algorithm implementation
The following section describes the backtracking algorithm implementation with the optimiza-
tions established in the design chapter.

4.3.1 Backtracking algorithm
The method generateSchedule shown in the listing 1 is a core part of the computation of the
possible schedule based on the backtracking algorithm. Mainly, it is divided into the 3 parts:
preparation, computation, and result.

4.3.1.1 Preparation
In the preparation stage, the method initializes and prepares the necessary data structures and
variables for generating possible schedules. The steps of the preparation are described as follows:

1. The method generateSchedules takes two input parameters: scheduleId of type Long and
adminUsername of type String.

2. The method initializes three lists: possibleScheduleDtos, timeslotDtos, and teachers.

3. The method also retrieves a list of PossibleSchedule entities from a repository using
scheduleId.

4. The futureShuffle boolean variable is set to true if the number of possible combinations of
teachers and timeslots is less than or equal to the number of already generated schedules.

5. If futureShuffle is false and there is only one schedule and it’s not approved, then the
method returns the list of PossibleSchedule entities for that scheduleId.

6. Otherwise, the method deletes all the previously generated PossibleSchedule entities for
the given scheduleId.

4.3.1.2 Computation
In the computation stage, the method generates all possible schedules by using a backtracking
algorithm that is implemented with the similarity to the Depth-First Search algorithm[10] by
the following steps:

1. The method initializes a Stack of shown in the listing 2 BackTrackState objects with one
initial object representing an empty schedule.

2. The algorithm runs in a loop until the Stack is empty.

3. Each iteration of the loop collects in parallel a limited number of BackTrackState objects
from the Stack to the statesToProcess list. The limit number is up to the available processes
of the system.

Algorithm implementation 35

4. The processState method takes a BackTrackState object from the statesToProcess list
and tries to generate a possible schedule based on the current state and the remaining
timeslotDtos and teachers.

5. The processState method adds the newly created BackTrackState objects to the Stack
and removes the processed ones.

6. The algorithm terminates either when the Stack is empty or when the maximum number of
schedules (maxSchedules) is reached.

4.3.1.3 Result
In the result stage, the method returns a list of PossibleSchedule objects by converting each
PossibleScheduleDto object in the following steps:

1. After the backtracking algorithm finishes, the method generateSchedules checks if any valid
PossibleScheduleDto objects were generated. If not, it throws a custom exception.

2. Otherwise, it converts each PossibleScheduleDto to a PossibleSchedule entity and adds
it to a list of PossibleSchedule entities.

3. Finally, the method returns the list of PossibleSchedule entities.

@Override
@Transactional
public List<PossibleSchedule> generateSchedules(Long scheduleId, String

adminUsername) {↪→

List<PossibleScheduleDto> possibleScheduleDtos = new ArrayList<>();
List<TimeslotAssignmentDto> timeslotDtos =

timeslotGenerationService.getAssignmentDtos(scheduleId);↪→

List<TeacherAssignmentDto> teachers =
teacherService.getAllByAdminUsername(adminUsername)↪→

.stream()

.map(teacher ->
ScheduleGenerationMapper.fromEntityToTeacherAssignmentDto(teacher,
scheduleId))

↪→

↪→

.collect(Collectors.toList());

List<PossibleSchedule> existedSchedules =
possibleScheduleRepository.getAllByScheduleId(scheduleId);↪→

boolean futureShuffle = ((int)Math.pow(teachers.size(), timeslotDtos.size())
<= existedSchedules.size());↪→

if(!futureShuffle && (existedSchedules.size() == 1 &&
!existedSchedules.get(0).getApprovedByAdmin())){↪→

return possibleScheduleRepository.getAllByScheduleId(scheduleId);
}else {

possibleScheduleRepository.deleteAllByScheduleId(scheduleId);
}

Stack<BackTrackState> stack = new Stack<>();
stack.push(new BackTrackState(new PossibleScheduleDto(scheduleId,

timeslotDtos.size()), timeslotDtos, teachers, futureShuffle));↪→

36 Implementation

while (!stack.isEmpty()) {
List<BackTrackState> statesToProcess = stack

.stream()

.parallel()

.limit(Math.min(stack.size(),
Runtime.getRuntime().availableProcessors()))↪→

.collect(Collectors.toList());

stack.removeAll(statesToProcess);

int maxSchedules = 50;
List<PossibleScheduleDto> processedSchedules = statesToProcess

.parallelStream()

.map(state -> processState(state, stack))

.filter(Objects::nonNull)

.limit(maxSchedules - possibleScheduleDtos.size())

.collect(Collectors.toList());

possibleScheduleDtos.addAll(processedSchedules);
}

if (possibleScheduleDtos.isEmpty() ||
possibleScheduleDtos.get(0).getTimeslots().isEmpty()) {↪→

throw new
CustomException("Impossible to generate schedule with teachers' preferences or schedule structure");↪→

}

return possibleScheduleDtos
.stream()
.parallel()
.map(this::toEntity)
.collect(Collectors.toList());

}

1 The generateSchedules method in the ScheduleGenerationService class

public record BackTrackState(PossibleScheduleDto schedule,
List<TimeslotAssignmentDto> timeslots,
List<TeacherAssignmentDto> teachers,
boolean shuffle) {

}

Code listing 2 The BackTrackState record

4.3.2 Additional methods
This subsection describes the additional methods that were used in the backtracking algorithm
implementation.

Algorithm implementation 37

4.3.2.1 processState

The processState method shown in the listing 3 is a part of the backtracking algorithm that
performs the assignment of the teachers to available timeslots in a schedule. It takes a state
object and a stack of previous states as inputs and returns a PossibleScheduleDto object rep-
resenting the completed schedule if one is found.

The method first checks if the schedule is already complete. If not, it retrieves the available
timeslots and teacher assignments from the state object, and checks if the current state is valid.
If the state is valid, it attempts to assign a teacher to the first available timeslot.

If there are unassigned teachers left and there are not enough available timeslots to assign them
all, the method will backtrack to a previous state and try a different assignment. If no solution
is found, the method returns null.

4.3.2.2 validateRanges

The validateRanges method that is presented in the listing 4 receives a multimap of teacher
timeslots and a map of used teacher preferences. It validates the assigned teacher ranges for each
teacher. If a teacher’s ranges are invalid, it throws a RuntimeException. If all teacher ranges
are valid, it returns true.

4.3.2.3 teachersLogic

As shown in the listing 5, the teachersLogic method receives a list of available teachers, a
timeslot, and a boolean indicating whether any teachers are unassigned. It shuffles the list of
teachers if required, and then iterates through them to check whether they can be assigned to the
timeslot. If a teacher is already assigned to the timeslot, it creates a new schedule with the same
teacher and adds it to the stack. Otherwise, it calls the iterateThroughTeacherPreferences
method for the teacher.

4.3.2.4 iterateThroughTeacherPreferences

The iterateThroughTeacherPreferences method that is shown in the listing 6 iterates through
a teacher’s schedule to check whether they are available to teach during a given timeslot. If a
teacher is available, it creates a new schedule with the teacher assigned to the timeslot and adds
it to the stack.

4.3.3 Optimizations implementation
All described optimizations in the design chapter are related to the processState method 3 and
some of them are implemented in the additional methods.

The optimization of starting the assignment with unassigned teachers has been implemented
in a way that the unassignedTeachers list receives teachers who were not assigned to any
time slot during the generation of the schedule. Depending on the value of the logicState
variable, this list can be used in future computational processes.

The optimization of tracking the difference between the assigned and unassigned teachers
to prevent an illogical number of teachers being assigned to time slots was implemented by
creating a boolean variable called logicState. This variable dictates which list of teachers
(unassignedTeachers or teachers) will be passed to the method teachersLogic.

38 Implementation

public PossibleScheduleDto processState(BackTrackState state,
Stack<BackTrackState> stack) {↪→

PossibleScheduleDto schedule = state.schedule();
List<TimeslotAssignmentDto> allTimeslots = state.timeslots();
List<TeacherAssignmentDto> teachers = state.teachers();

Multimap<String, TimeslotAssignmentDto> teacherTimeslotMap =
schedule.getTeachersTimeslots();↪→

Map<String, Long> usedPreferences = schedule.getTeacherPreferences();

// Check for the completed schedule
if (schedule.isComplete()) {

return schedule;
}

// Receive available timeslots and already used teachers with
preferences↪→

List<TimeslotAssignmentDto> availableTimeslots =
getAvailableTimeSlots(allTimeslots, schedule.getTimeslots());↪→

if(!validateRanges(teacherTimeslotMap, usedPreferences)) {
return null;

}

// Go through all available timeslots and try to assign teacher
if (!availableTimeslots.isEmpty()) {

try {
TimeslotAssignmentDto availableTimeslot =

availableTimeslots.get(0);↪→

List<CompletableFuture<Void>> futures = new ArrayList<>();
List<TeacherAssignmentDto> unassignedTeachers =

unassignedTeachers(schedule, teachers);↪→

boolean logicState = !unassignedTeachers.isEmpty() &&
unassignedTeachers.size() - availableTimeslots.size() ==
0;

↪→

↪→

teachersLogic(
stack,
schedule,
usedPreferences,
allTimeslots,
logicState ? unassignedTeachers : teachers,
availableTimeslot,
futures,
logicState,
state.shuffle()

);

CompletableFuture.allOf(futures.toArray(new
CompletableFuture[0])).get();↪→

} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();

}
}

return null;
}

Code listing 3 The processState method in the ScheduleGenerationService

Algorithm implementation 39

private Boolean validateRanges(Multimap<String, TimeslotAssignmentDto>
teacherTimeslotMap, Map<String, Long> usedPreferences) {↪→

try {
List<CompletableFuture<Void>> futures = new ArrayList<>();

for (Map.Entry<String, Collection<TimeslotAssignmentDto>> entry :
teacherTimeslotMap.asMap().entrySet()) {↪→

CompletableFuture<Void> future = CompletableFuture.runAsync(()
-> {↪→

if (!teacherGenerationService.validateRanges(
new ArrayList<>(entry.getValue()),
entry.getKey(),
usedPreferences.get(entry.getKey())

)) {
throw new

RuntimeException("Validation failed for teacher "
+ entry.getKey());

↪→

↪→

}
});
futures.add(future);

}

CompletableFuture.allOf(futures.toArray(new
CompletableFuture[0])).get();↪→

} catch (InterruptedException | ExecutionException e) {
return false;

}
return true;

}

Code listing 4 The validateRanges method in the ScheduleGenerationService class

40 Implementation

private void teachersLogic(Stack<BackTrackState> stack,
PossibleScheduleDto schedule,
Map<String, Long> usedPreferences,
List<TimeslotAssignmentDto> timeslots,
List<TeacherAssignmentDto> teachers,
TimeslotAssignmentDto timeslot,
List<CompletableFuture<Void>> futures,
boolean unassigned,
boolean shuffle){

if(shuffle)
Collections.shuffle(teachers);

for (TeacherAssignmentDto teacher : teachers) {
// if teacher's already assigned
if (!unassigned &&

usedPreferences.containsKey(teacher.getUsername())) {
CompletableFuture<Void> future = CompletableFuture.runAsync(()

-> {↪→

if (wantTeach(usedPreferences, timeslot, teacher)) {
PossibleScheduleDto newSchedule = createNewSchedule(

schedule,
timeslot,
teacher,
usedPreferences.get(teacher.getUsername())

);
stack.push(new BackTrackState(newSchedule, timeslots,

teachers, shuffle));↪→

}});
futures.add(future);
continue;

}

iterateThroughTeacherPreferences(stack, schedule, timeslots,
teachers, timeslot, futures, teacher, shuffle);↪→

}
}

Code listing 5 The teachersLogic method in the ScheduleGenerationService

Algorithm implementation 41

private void iterateThroughTeacherPreferences(
Stack<BackTrackState> stack,
PossibleScheduleDto schedule,
List<TimeslotAssignmentDto> timeslots,
List<TeacherAssignmentDto> teachers,
TimeslotAssignmentDto timeslot,
List<CompletableFuture<Void>> futures,
TeacherAssignmentDto teacher,
boolean shuffle

) {
teacher.getTeacherSchedules().forEach(teacherSchedule -> {

if (teacherSchedule.getValid() &&
teacherGenerationService.wantTeach(timeslot, teacherSchedule))
{

↪→

↪→

CompletableFuture<Void> future = CompletableFuture.runAsync(()
-> {↪→

PossibleScheduleDto newSchedule = createNewSchedule(
schedule,
timeslot,
teacher,
teacherSchedule.getId()

);
stack.push(new BackTrackState(newSchedule, timeslots,

teachers, shuffle));↪→

});
futures.add(future);

}
});

}

Code listing 6 The iterateThroughTeacherPreferences method in the ScheduleGenerationService
class

42 Implementation

The optimization of reviewing the ranges of taken time slots per week or day of the preferred
schedule of the teacher is implemented in the validateRanges method. This method is used
before the process of assigning the teacher to a new time slot begins in the processState
method.

4.3.4 Improvement of performance
The design chapter states that parallel computation and asynchronous programming techniques
could be used to improve the performance of the algorithm.

These techniques were used during the implementation of the prototype using the Stream API
and CompletableFuture class.

As described in the [13], the Stream API provides a way to achieve parallelism through the
parallel() method, which can be invoked on a stream to enable parallel processing. With
parallel processing, the stream is split into multiple sub-streams that are processed on separate
threads, thus improving processing efficiency. To be more precise, the method parallel() was
used several times in the generateSchedules during the iterations in the while loop.

CompletableFuture is a class in the Java programming language that provides a way to perform
asynchronous and concurrent programming. It is a part of the Java Concurrency API and was
introduced in Java 8.[13] The runAsync() method allows you to execute a task asynchronously
using a ForkJoinPool or a specific executor. The task is specified by passing a lambda ex-
pression as an argument to the runAsync() method. When runAsync() is called, it returns
a CompletableFuture<Void> object right away, which represents the asynchronous computa-
tion that will eventually be complete when the task is finished. This approach was used in the
functions processState, iterateThroughTeacherPreferences, and teachersLogic.

4.4 UI implementation

4.4.1 Front-end framework
A front-end framework is essentially a set of pre-built tools and resources that developers can use
to create the user interface and user experience of a web application. It is designed to simplify
and speed up the development process by providing pre-written code, libraries, and templates
that can be easily reused. The suitable easy-to-use framework would be Bootstrap.

4.4.1.1 Boostrap
“Bootstrap is an open-source CSS framework directed at responsive, mobile-first front-end web
development. It contains HTML, CSS, and (optionally) JavaScript-based design templates for
typography, forms, buttons, navigation, and other interface components.”[25]

The advantages of the Boostrap are as follows:

Provides a flexible and adaptable grid system for responsive design.

Offers consistency in styles and components for improved user experience.

Highly customizable with pre-built components and templates.

UI implementation 43

4.4.2 Summary
Why the Bootstrap and Thymeleaf should be used together? Using Bootstrap with Thymeleaf
in web application development offers several advantages. Bootstrap provides a set of pre-built
UI components that can be quickly integrated with Thymeleaf templates, allowing developers to
create web pages rapidly. It also ensures that web pages are optimized for mobile devices and
provides a consistent and professional design across different browsers and devices.

44 Implementation

Chapter 5

Testing

In this chapter, the implemented system is discussed in terms of testing, as well as outlining
possible improvements for future development.

5.1 User tests
To understand the current problems of the prototype and identify areas for future improvement,
user tests should be conducted. Teachers with different academic degrees from universities and
schools were selected to test the functionality of ”Chronosite”. The implemented prototype ran
on one laptop to perform the tests. Firstly, the author played the role of the administrator, while
the teachers played the role of teachers. Secondly, the author became a teacher and the teachers
took turns being the administrator. Each individual tested the prototype without communicat-
ing in real time.

The author established the scenarios for each role to test the common functionality that
covers the use cases:
Admin:

1. Try to create teachers and update or delete one of them.

2. Try to create a timetable.

3. Try to edit the created timetable in step 2 and add some time slots.

4. Try to edit the generated possible schedules of the created timetable in step 2. Choose the
one that is most logical for you and approve it.

5. Check the notifications and try to read the messages of several notifications.

6. Wait for feedback from all the involved teachers. If all the teachers have approved the
proposed schedule, check the created timetable in step 2 with the assigned teachers for the
time slots.

Teacher:

1. Try editing the provided profile from the administrator, for example, by changing the pass-
word.

2. Try to browse through the timetables created by the administrator.

3. Try to create a preferred schedule for a specific timetable.

45

46 Testing

4. Try to edit and validate the preferred schedule created in step 3. For example, change the
range of taken time slots for all days.

5. Wait until the administrator generates possible schedules and approves one of them. Then, try
accepting or rejecting the schedule chosen by the administrator, and don’t forget to provide
a message.

The important questions were discussed with selected teachers after successfully passed sce-
narios:

1. Was the location of the UI elements or the flow of the actions intuitive or sometimes additional
instructions were needed?

2. What were the things or features that you like the most?

3. Do you feel like several features or some functionality were missing?

The primary objective of the provided questions was to assess the implemented design, identify
any potential improvements, and determine what aspects users appreciate the most in the cre-
ated prototype as well as any issues they perceive.

The responses provided by the users were as follows:

User 1

1. The location of the UI elements and the flow of the actions were intuitive. However, I did
need additional instructions in a few cases, particularly when trying to validate the created
preferably schedule in the teacher role scenario.

2. I appreciated the search functionality that allowed me to quickly create a suitable schedule
in the teacher’s scenario. I also liked the generation of the possible schedule process in the
admin’s scenario with the feedback from the teacher.

3. The prototype seemed to have all the necessary features for assigning teachers to the timetable
slots. However, the potential missing thing is the lack of information about the provided time
slots by the administrator. They contain only start and the end time, I suggest adding at
least one location to the time slot information.

User 2

1. Overall, everything was quite intuitive, and I don’t have any negative feedback regarding the
location of the UI elements and the flow of actions.

2. The prototype has great functionality and useful features. I extremely appreciate the ability
to create multiple suitable schedules in the teacher’s scenario, it gives the flexibility to isolate
and submit all of my preferences.

3. While the prototype covered most of the necessary functionality for assigning time slots, I did
feel like there could have been more options for specifying more complex teacher preferences.

5.2 Future improvements
Considering the results of the testing and the feedback from the teachers who were involved in
the testing process, the author defined the following future improvements:

User Experience (UX) Some parts of the UI were intuitive for the users, however, more
user tests could be performed to identify which UI and UX elements could make ”Chonosite”
more user-friendly.

Future improvements 47

Additional constraits The teacher should have more options to specify their preferences.
This improvement would increase the number of strategies available to create preferable sched-
ules. One possible approach is to customize the constraints according to the organization.
However, this improvement is sensitive to the chosen organization and may not be useful to
other organizations.

The nearest possible schedule Perhaps the most necessary improvement is to provide
functionality for generating possible schedules when it is impossible to satisfy all teachers’
preferences. These schedules would satisfy the maximum possible percentage of teachers’
preferences but not all of them. This functionality could be provided if teachers’ preferences
were assigned levels of importance, and preferences with lower priority would be omitted first.

48 Testing

Chapter 6

Conclusion

The objective of this thesis was to develop a system that can assign teachers to timetable slots
based on their preferences. Once all the necessary processes, such as gathering preferable sched-
ules from teachers, generating possible scheduling, and reviewing the schedule, are completed,
the application creates a completed timetable with assigned teachers to the time slots. The
thesis was structured into several logical parts, with each part beginning with an explanation of
fundamental concepts and relevant technologies that are pertinent to the work. This approach
was adopted to aid in achieving the overall objective of the thesis.

The first step was to analyze the timetable creation process, including its key steps and
processes. Additionally, this part formulated detailed functional and non-functional requirements
and use cases, as well as analyzed existing solutions.

Using this information, the application’s design was created, including the system architec-
ture, server, and UI layer and functional modules such as the key algorithm with optimizations,
and data management. These architectures were designed based on the previous analysis and
modern best practices.

After the system was designed, it was implemented using suitable libraries. All the ana-
lyzed requirements and use cases, such as user authentication, an algorithm for timetable genera-
tion, and receiving preferable schedules from teachers, were successfully implemented. Advanced
optimizations were also made to the backtracking algorithm to improve the performance and
stability of the schedule generation process.

Finally, the system’s correctness and usability were tested via user testing. As expected,
the current state of the prototype does not allow it to be released due to its limited functionality.
However, in the course of working on this thesis, a good foundation was created that makes the
prototype easily extensible.

49

50 Conclusion

Bibliography

1. KARL, Wiegers; JOY, Beatty. Software requirements. Pearson Education, 2013. isbn 978-
0-7356-7966-5.

2. Doodle (website) [online]. Wikimedia Foundation, 2023 [visited on 2023-03-14]. Available
from: https://en.wikipedia.org/wiki/Doodle_(website).

3. GARRETT, Jesse James. The Elements of User Experience. Peachpit Pr, 2002. isbn 0-321-
68368-4.

4. BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. Software architecture in practice. Addison-
Wesley Professional, 2003. isbn 978-0321154958.

5. NEWMAN, Sam. Monolith to microservices: evolutionary patterns to transform your mono-
lith. O’Reilly Media, 2019. isbn 978-1492047841.

6. VAN STEEN, Maarten; TANENBAUM, A. Distributed systems principles and paradigms.
Network. 2002, vol. 2, no. 28, p. 1.

7. NEWMAN, Sam. Building microservices. O’Reilly Media, Inc., 2021. isbn 978-1492034025.
8. FOWLER, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2012.

isbn 978-0321127426.
9. FRED, Glover; CLAUDE, McMillan. The general employee scheduling problem. An inte-

gration of MS and AI. Computers & operations research. 1986, vol. 13, no. 5, pp. 563–
573.

10. THOMAS, H.Cormen; CHARLES, E.Leiserson; RONALD, L.Rivest; CLIFFORD, Stein.
Introduction to algorithms. MIT press, 2022. isbn 978-0-262-03384-8.

11. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; JOHNSON, Ralph E; VLISSIDES,
John. Design patterns: elements of reusable object-oriented software. Addison-Wesley, 1995.
isbn 978-0201633610.

12. FLANAGAN, David; NOVAK, Gregor M. Java-Script: The Definitive Guide. O’Reilly Me-
dia, 1998. isbn 978-1565923928.

13. SCHILDT, Herbert; COWARD, Danny. Java: the complete reference. McGraw-Hill Educa-
tion New York, 2014. isbn 978-0071808552.

14. Collections Framework [online]. 2023. [visited on 2023-05-09]. Available from: https://
docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html.

15. Stream (java platform SE 8) [online]. 2023. [visited on 2023-05-07]. Available from: https:
//docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html.

51

https://en.wikipedia.org/wiki/Doodle_(website)
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

52 Bibliography

16. Package java.util.concurrent [online]. 2023. [visited on 2023-05-09]. Available from: https:
//docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.
html.

17. CANTELON, Mike; HARTER, Marc; HOLOWAYCHUK, TJ; RAJLICH, Nathan. Node.js
in Action. Manning Greenwich, 2014. isbn 978-1617290572.

18. The good and the bad of Node.js Web App Programming [online]. AltexSoft, 2023 [visited
on 2023-05-10]. Available from: https://www.altexsoft.com/blog/engineering/the-
good-and-the-bad-of-node-js-web-app-development/.

19. Google Guava [online]. Wikimedia Foundation, 2023 [visited on 2023-05-09]. Available from:
https://en.wikipedia.org/wiki/Google_Guava.

20. Lombok [online]. Project Lombok, 2023 [visited on 2023-05-10]. Available from: https :
//projectlombok.org/.

21. WALLS, Craig. Spring in action. Simon and Schuster, 2022. isbn 978-1617297571.
22. Jakarta EE [online]. Wikimedia Foundation, 2023 [visited on 2023-05-08]. Available from:

https://en.wikipedia.org/wiki/Jakarta_EE.
23. Google Guice [online]. Wikimedia Foundation, 2023 [visited on 2023-05-09]. Available from:

https://en.wikipedia.org/wiki/Google_Guice.
24. Thymeleaf. Wikimedia Foundation, 2023. Available also from: https://en.wikipedia.

org/wiki/Thymeleaf.
25. Bootstrap (front-end framework). Wikimedia Foundation, 2023. Available also from: https:

//en.wikipedia.org/wiki/Bootstrap_(front-end_framework).

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-node-js-web-app-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-node-js-web-app-development/
https://en.wikipedia.org/wiki/Google_Guava
https://projectlombok.org/
https://projectlombok.org/
https://en.wikipedia.org/wiki/Jakarta_EE
https://en.wikipedia.org/wiki/Google_Guice
https://en.wikipedia.org/wiki/Thymeleaf
https://en.wikipedia.org/wiki/Thymeleaf
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)

Contents of enclosed media

readme.txt...................................... .a brief description of the media content
src. ... the source codes of the work

impl.....................................the directory of implementation source codes
thesis................................ the directory of LATEX source codes of the work

text ... the text of the work
thesis.pdf...................................the text of the work in the PDF format

53

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Motivation
	Thesis objectives
	Thesis structure

	Analysis
	Timatable Creation Process
	General roles
	Process steps
	Succefully created timetable

	Incoming data
	Chronosite requirements
	Functional Requirements
	Non-functional Requirements

	Existing solutions
	Doodle

	Use cases
	Admin use cases
	Teacher use casaes
	Summary

	Domain model

	Design
	Wireframes
	System architecture
	Architecture types
	Roles
	Data management
	Problem of the timetable generation

	Server-side
	Architecture

	UI layer

	Implementation
	Programming language
	Java
	Node.js
	Summary
	Libraries

	Server implementation
	Framework
	Spring
	Jakarta EE
	Google Guice
	Final decision
	Libraries
	Java-based Templating Engine

	Algorithm implementation
	Backtracking algorithm
	Additional methods
	Optimizations implementation
	Improvement of performance

	UI implementation
	Front-end framework
	Summary

	Testing
	User tests
	Future improvements

	Conclusion
	Contents of enclosed media

