
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

GraphQL Architecture – a case study

Oleksandr Yakunin

Ing. Michal Valenta, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

1. Describe GraphQL technology and its variant GraphQL Federation also in comparison to

older approaches like REST API.

2. Together with the supervisor formulate a suitable domain and application for

demonstration.

3. Analyze, design, implement and test a functional prototype of the application

specified in step 2.

4. According to the theory and also to your own experience, try to evaluate the pros and

cons of GraphQL Federation technology in software projects.

Electronically approved by Ing. Michal Valenta, Ph.D. on 20 October 2022 in Prague.

Bachelor’s thesis

GRAPHQL
ARCHITECTURE – A
CASE STUDY

Oleksandr Yakunin

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Oleksandr Yakunin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Yakunin Oleksandr. GraphQL Architecture – a case study. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments ix

Declaration x

Abstract xi

List of abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis goals . 1
1.3 Thesis structure . 1

2 Basic concepts and technologies 3
2.1 GraphQL . 3
2.2 Microservice architecture . 3
2.3 GraphQL Federation . 3
2.4 API Gateway . 4
2.5 Apollo Federation . 4
2.6 Netflix DGS . 4
2.7 Instrumentation . 4
2.8 Introspection . 4
2.9 Gradle . 5
2.10 Spring . 5
2.11 Spring Boot . 5
2.12 JPA . 5
2.13 Lombok . 5
2.14 Mapstruct . 5
2.15 Docker . 6

3 GraphQL 7
3.1 History of GraphQL . 7
3.2 What is GraphQL . 8
3.3 GraphQL vs REST . 8

3.3.1 GraphQL benefits . 8
3.3.2 GraphQL drawbacks . 10

3.4 Schema definition language . 10
3.4.1 Object type and fields . 11
3.4.2 Query, Mutation, Subscription . 11
3.4.3 Arguments . 11
3.4.4 Scalars . 12
3.4.5 Enumeration . 12
3.4.6 Interface . 13
3.4.7 Union . 13

iii

iv Contents

3.4.8 Input type . 13
3.5 Errors . 14
3.6 Abusive Queries . 15
3.7 Rate limiting . 16
3.8 Persisted Queries . 17
3.9 Query Language . 17
3.10 OpenAPI to GraphQL . 17

4 GraphQL Federation - theory 21
4.1 History of GraphQL Federation . 21

4.1.1 Simple Merging . 22
4.1.2 Schema Stitching . 22
4.1.3 Composition in GraphQL Federation . 23

4.2 Directives . 25
4.2.1 @key . 25
4.2.2 @extends . 26
4.2.3 @external . 26
4.2.4 @requires . 27
4.2.5 @provides . 27

4.3 Entity . 27
4.4 Value types . 28
4.5 Schema registry . 28
4.6 Federation with Schema Registry and Uplink . 29

5 GraphQL Federation - implementation 31
5.1 Netflix DGS . 31

5.1.1 Dependencies . 31
5.1.2 Schema . 31
5.1.3 Codegen plugin . 32
5.1.4 Type safe query API . 32
5.1.5 Data Fetcher . 33
5.1.6 Nested data fetcher . 34
5.1.7 Extending type . 35
5.1.8 Data Loader . 37
5.1.9 Gateway . 39
5.1.10 Authentication and Authorization . 40
5.1.11 Subscription . 40
5.1.12 Instrumentation . 40
5.1.13 Tracing . 41
5.1.14 Metrics . 42
5.1.15 Custom scalar . 43
5.1.16 Dynamic schemas . 43
5.1.17 Testing . 43

5.2 Proof of Concept . 45
5.2.1 Domain . 45
5.2.2 Service architecture . 47
5.2.3 How to use . 48
5.2.4 Predefined ports . 50
5.2.5 Testing . 51
5.2.6 Teacher Service . 51
5.2.7 Subject service . 52
5.2.8 Literature service . 52

Contents v

5.2.9 Lecture service . 52
5.2.10 Seminar service . 53
5.2.11 Gateway . 53
5.2.12 OpenAPIToGraphQL . 53

6 Conclusion 55

A Appendix 57

Enclosed media 65

List of Figures

3.1 Example of simple GraphQL query . 8
3.2 Example of using GraphQL query language to get nested object 9
3.3 Example of documented GraphQL schema . 9
3.4 Example of getTeachers query . 16
3.5 Example of getTeachers query . 16

4.1 Example of gateway pattern [8] . 21
4.2 Example of separation of concers [8] . 25
4.3 Example of managed federation [11] . 30

5.1 Overall proof of concept architecture . 48
5.2 Uvazky database . 49
5.3 Example of adding authorization header . 50

List of code listings

3.1 Example of using new endpoint for each type of client 7
3.2 Example of using query parameter to distinguish between clients 7
3.3 Example of object type definition . 11
3.4 Example of query and mutation definition . 11
3.5 Example of using field arguments . 12
3.6 Example of an enumeration type . 12
3.7 Example of an interface definition . 13
3.8 Example of a union type definition . 13
3.9 Example of input type . 14
3.10 Example of errors field . 14
3.11 Example of errors as data . 15
3.12 Example of abusive recursive query . 16
3.13 Example schema . 18
3.14 Example of a query . 18
3.15 Example schema . 18
3.16 Example of fragments usage . 18
3.17 Example of defining basic authorization in Swagger 19
3.18 Example of defining link in Swagger . 20
4.1 Lecture service schema . 22
4.2 Course service schema . 22
4.3 Resulting merged schema . 22
4.4 Example of declarative solution . 22

vi

List of code listings vii

4.5 Example of type extension in the gateway . 23
4.6 Example query . 23
4.7 Example of adding resolver in the gateway . 24
4.8 Example of simple @key definition . 25
4.9 Example of compound @key definition . 26
4.10 Example of multiple @key definitions . 26
4.11 Original definition . 26
4.12 Extending definition . 26
4.13 Example of @external directive . 27
4.14 Example of @requires directive . 27
4.15 Example of @provides directive . 28
4.16 Example of gateway entity request . 28
5.1 Example of using BOM . 32
5.2 Example of adding codegen plugin . 32
5.3 Example of configuring codegen plugin . 32
5.4 Example of configuring codegen plugin to generate query API 33
5.5 Example of using query API . 33
5.6 Example of data fetcher . 33
5.7 Example of equivalent definitions . 34
5.8 Example schema . 35
5.9 Example of using nested data fetcher . 35
5.10 Example of using local context of DataFetchingEnvironment 36
5.11 Example schema . 36
5.12 Example of entity fetcher . 37
5.13 Example of fetcher . 37
5.14 Example of data loader . 38
5.15 Example of mapped data loader . 38
5.16 Example of using data loader . 38
5.17 Example of cached thread pool . 39
5.18 Example of data loader dispatching . 39
5.19 Example of limiting batch size . 39
5.20 Example of using IntrospectAndCompose . 39
5.21 In-memory user details service . 41
5.22 Example of using @Secured . 41
5.23 Example of using introspection headers . 42
5.24 Example of using buildService . 42
5.25 Example of using AuthenticatedDataSource . 43
5.26 Example of subscription . 43
5.27 Example of simple instrumentation . 44
5.28 Example of Tracing Instrumentation . 45
5.29 Apollo dependency . 45
5.30 Example of Federated Tracing Instrumentation 45
5.31 DGS metrics dependency . 45
5.32 Custom Long scalar . 46
5.33 Example of using custom scalar in schema . 47
5.34 Example of using TypeDefinitionRegistry . 47
5.35 Example of using GraphQLCodeRegistry . 47
5.36 Example of testing data fetcher . 48
5.37 Example of query . 51
A.1 Teacher service schema . 58
A.2 Subjects service schema . 59
A.3 Literature service schema . 60

viii List of code listings

A.4 Lecture service schema . 61
A.5 Seminar service schema . 62

I would like to take this opportunity to express my sincere gratitude
to all the teachers of the university for their valuable work and the
knowledge they provided, which has helped me on my path towards
becoming a software engineer. I would also like to add special thanks
to Ing. Michal Valenta, Ph.D. for his guidance and support during
the writing of this thesis.

ix

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46 (6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and all
corresponding documentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the Work for non-profit
purposes only, in any way that does not detract from its value. This authorization is not limited
in terms of time, location and quantity.

In Prague on May 11, 2023 .

x

Abstract

This work has several objectives: to describe the fundamental concepts of GraphQL Federation
and demonstrate them in practice, to analyze its production readiness, and to explore its potential
contributions to the university. To address these objectives, the first part of the work provides
the necessary theoretical background while the second part focuses on the actual implementation
of a prototype in Java using Netflix DGS framework, showcasing a wide range of functionalities
required for creating a project based on the GraphQL Federation concept.

The results of this work indicate that while GraphQL Federation offers significant bene-
fits, there are several aspects that should be thoroughly considered before deciding to use the
GraphQL Federation technology. For many projects, it may be too complex of a task. Instead,
a smart combination of GraphQL and endpoint-based technologies may also bring significant
improvements while requiring less effort.

Keywords GraphQL, GraphQL Federation, Apollo Federation, Netflix DGS, Java

Abstrakt

Tato práce má několik ćıl̊u: popsat základńı koncepty GraphQL Federace a demonstrovat je v
praxi, analyzovat jej́ı připravenost k produkci a zkoumat jej́ı potenciálńı př́ınosy pro univerzitu.
Pro dosažeńı těchto ćıl̊u poskytuje prvńı část práce nezbytné teoretické pozad́ı, zat́ımco druhá
část se zaměřuje na skutečnou implementaci prototypu v jazyce Java s použit́ım frameworku Net-
flix DGS, který ukazuje širokou škálu funkcionalit potřebných pro vytvořeńı projektu založeného
na konceptu GraphQL Federace.

Výsledky této práce naznačuj́ı, že i když GraphQL Federace nab́ıźı významné výhody, ex-
istuj́ı určité aspekty, které by měly být pečlivě zvažovány před rozhodnut́ım použ́ıt technologii
GraphQL Federace. Pro mnoho projekt̊u může být př́ılǐs složité. Namı́sto toho může chytrá kom-
binace GraphQL a technologíı založených na koncových bodech také přinést významné vylepšeńı
při menš́ım úsiĺı.0

Kĺıčová slova GraphQL, GraphQL Federation, Apollo Federation, Netflix DGS, Java

xi

List of abbreviations

API Application Programming Interface

BOM Bill Of Materials

REST Representational State Transfer

RPC Remote Procedure Call

JPA Java Persistence API

PC Personal Computer

HTTP Hyper Text Transfer Protocol

DTO Data Transfer Object

POJO Plain Old Java Object

WEB World Wide Web

SDL Schema Definition Language

URL Uniform Resource Locator

CLI Command Line Interface

xii

Chapter 1

Introduction

This chapter presents the motivation behind the thesis, along with its objectives and structure.

1.1 Motivation
“Creating an API is like creating a work of art. It requires creativity, vision, and attention to
detail. But unlike a traditional work of art, an API has the power to make people’s lives easier
and more efficient.”[1]

I have always been interested in studying new technologies and ideas. Moreover, I have always
appreciated the beauty in creating useful and user-friendly APIs. Therefore, when I came across
an article written by Netflix developers about their new architecture based on the GraphQL
Federation concept, I was eager to explore it further. In addition, I consider it essential to keep
up with the latest trends and technologies in the field of software development. This approach
allows me to have more options to choose from when faced with a development problem and
avoid using a particular technology just because I am familiar with it, even though it may not
be the best fit for the problem at hand.

1.2 Thesis goals
The goal of this thesis is to introduce GraphQL Federation, explain its fundamental concepts,
benefits, potential problems, and provide a functional prototype that contains numerous examples
for the wide spectrum of problems that may be encountered during the development of a project
based on the GraphQL Federation concept.

Using this information, a conclusion will be drawn about the production readiness of GraphQL
Federation and its possible contribution.

1.3 Thesis structure
Thesis is divided into the following main sections:

1. ”Basic concepts and technologies” - briefly describes the main concepts and technologies
used in the thesis.

2. ”GraphQL” - introduces GraphQL and provides the necessary theoretical background for
subsequent chapters.

1

2 Introduction

3. ”GraphQL Federation - theory” - presents the concept of GraphQL Federation and offers
essential theoretical information required for the implementation part.

4. ”GraphQL Federation - implementation” - describes the functional prototype imple-
mentation, showcases Netflix DGS, and discusses common challenges encountered when ap-
plying GraphQL Federation in practice.

5. ”Conclusion” - summarizes the results of the thesis and presents the final conclusions.

Chapter 2

Basic concepts and technologies

This chapter aims to list and provide a brief description of all the essential concepts and
technologies used in this thesis. The chapter begins with a discussion of more theoretical
concepts such as GraphQL Federation and concludes with specific technologies used in the
implementation of the prototype.

2.1 GraphQL
“GraphQL is more than just a tool: it changes how teams communicate. It empowers developers
to request for the data they want, reducing their dependency and communication overhead with
API teams. It thrives on community and collaboration.”[2]

GraphQL is a modern query language and runtime for APIs, developed by Facebook in 2012
and later released as an open-source project. It allows clients to request specific data from a
server, enabling more efficient and flexible data retrieval compared to traditional REST APIs.
With GraphQL, clients can define the shape of the response, reducing the amount of over- or
under-fetched data. The language supports queries, mutations, and subscriptions, enabling read,
write, and real-time updates for data. GraphQL’s type system ensures that data is strongly
typed, providing better error handling and improved development experience.

2.2 Microservice architecture
Microservice architecture is a modern software design approach that structures an application
as a collection of small, loosely coupled services. Each microservice is responsible for a specific
functionality or domain and can be developed, deployed, and scaled independently. This mod-
ularity promotes separation of concerns, enabling teams to work concurrently on different parts
of the system while minimizing the impact of changes on other components.

2.3 GraphQL Federation
GraphQL Federation is an architectural pattern that enables the creation of a unified API by
composing multiple, separately deployed GraphQL services. It allows developers to break down
a monolithic GraphQL schema into smaller, more manageable microservices. Each microservice
can define its own schema, which is then combined into a single, federated schema by a gateway.
This approach promotes separation of concerns, easier scaling, and better maintainability while
still providing a seamless experience for clients.

3

4 Basic concepts and technologies

2.4 API Gateway
“The API gateway pattern is recommended if you want to design and build complex large
microservices-based applications with multiple client applications. The pattern is similar to
the facade pattern from object-oriented design, but it is part of a distributed system reverse
proxy or gateway routing for using as a synchronous communication model. We said that It is
similar to the facade pattern of Object-Oriented Design, so it provides a single entry point to
the APIs with encapsulating the underlying system architecture. The pattern provides a reverse
proxy to redirect or route requests to your internal microservices endpoints. An API gateway
provides a single endpoint for the client applications, and it internally maps the requests to
internal microservices. In summary, the API gateway locate between the client apps and the
internal microservices. It is working as a reverse proxy and routing requests from clients to
backend services. It is also provide cross-cutting concerns like authentication, SSL termination,
and cache.”[3]

2.5 Apollo Federation
Apollo Federation is an implementation of GraphQL Federation, developed by the Apollo team.
It provides a set of tools and guidelines for building scalable and modularized GraphQL APIs
using Federation principles. It also provides features such as distributed tracing, error propa-
gation, and cross-service caching, which further enhance the performance and resilience of the
federated API.

2.6 Netflix DGS
Netflix DGS is a GraphQL framework developed by Netflix to simplify the process of building
and maintaining GraphQL APIs in Java and Kotlin applications. The framework leverages
Spring Boot and offers a set of tools, conventions, and features that streamline the development
experience.

2.7 Instrumentation
In the context of GraphQL, instrumentation refers to the ability to hook custom code before or
after the execution of a query, enabling fine-grained control and observability of the GraphQL
engine.

By using instrumentation, developers can gather metrics, implement tracing, apply custom
logic, or modify query responses. The instrumentation mechanism allows for the creation of
reusable components that can enhance the functionality and maintainability of the GraphQL
API. This feature helps improve the overall development experience, allowing developers to
monitor, diagnose, and optimize their GraphQL applications more effectively.

2.8 Introspection
“As a developer, we are always consuming new APIs. We often spend a lot of time reading
the documentation (frequently out of date) and finding which resources are available. GraphQL
provides a tool that tells you which resources you can get/modify and how to do it. GraphQL
supports it with the concept known as Introspection. Introspection is the ability to query which
resources are available in the current API schema. Given the API, via introspection, we can see
the queries, types, fields, and directives it supports.”[4]

Gradle 5

2.9 Gradle

Gradle is a powerful and versatile build automation tool used primarily for Java, Kotlin, and
other JVM-based projects, but it also supports a variety of other programming languages. It
simplifies and streamlines the process of building, testing, and deploying software applications
by automating various tasks, such as compilation, packaging, dependency management, and
versioning.

Gradle leverages a domain-specific language based on Groovy or Kotlin to define and configure
build scripts, providing developers with a readable, maintainable, and expressive way to specify
build processes.

2.10 Spring

At its core, Spring provides a lightweight container for managing and configuring application
components, known as beans. The framework emphasizes inversion of control and dependency
injection patterns, which help promote modularity, testability, and maintainability in applica-
tions. Spring covers a wide range of functionality, including data access, web development,
security, and messaging.

2.11 Spring Boot

Spring Boot is a widely-used framework that simplifies the process of creating, configuring, and
deploying Java-based applications built with the Spring framework. By providing a set of auto-
configuration options, Spring Boot enables developers to rapidly build stand-alone, production-
ready applications with minimal effort and boilerplate code.

2.12 JPA

JPA is a standardized specification that provides a set of guidelines for object-relational mapping
in Java applications. The primary goal of JPA is to simplify the process of persisting Java objects
to relational databases by bridging the gap between object-oriented programming and relational
database concepts.

2.13 Lombok

Lombok is a library that helps developers reduce boilerplate code and improve code readability.
It provides a set of annotations that can be used to generate Java code during compilation time,
such as getter and setter methods, constructors, and logging code.

2.14 Mapstruct

MapStruct is a code generation tool that simplifies the mapping between Java classes. It gener-
ates code that maps data from one Java class to another, reducing the amount of boilerplate code
that developers need to write. MapStruct uses Java annotations to generate code that performs
mapping operations, eliminating the need for developers to write mapping code manually.

6 Basic concepts and technologies

2.15 Docker
Docker is a platform that simplifies the process of creating, deploying, and running applications
in containers. Containers are lightweight, portable, and self-contained packages that include
all the necessary software, libraries, and dependencies required to run an application. Docker
allows developers to create and manage containers, which can be used to build, test, and deploy
applications across different environments.

Chapter 3

GraphQL

This chapter explains the fundamental concepts of GraphQL and provides the theoretical back-
ground required for the following chapters. The chapter covers all the necessary concepts,
starting from the schema definition to security and caching.

3.1 History of GraphQL

Currently, endpoint-based APIs such as REST and RPC dominate the field of Web APIs. These
technologies have multiple advantages: they are easy to implement, cache, use and are really
suitable for single use cases. However, with the constantly growing number of clients, the re-
quirements for APIs have started to change. Different clients, such as PCs, phones, consoles,
and watches, require distinct data, leading to the development of One-Size-Fits-All APIs that at-
tempted to cover too many use cases. There have been numerous attempts to solve this problem,
but in most cases, APIs became challenging to manage and evolve due to their tight coupling
with various clients. For example, there were ideas to create new endpoint for each type of the
client (see Listing 3.1) or use query parameter to distinguish between them (see Listing 3.2).

All these attempts failed to solve the problem, and as a result, around the beginning of the
21st century, major tech companies began investing in the development of a brand new solution.
This is how GraphQL was developed in 2012 and then made available to the public in 2015.

GET api/mobile/products
GET api/watch/products

Code listing 3.1 Example of using new endpoint for each type of client

GET api/products?version=mobile
GET api/products?version=watch

Code listing 3.2 Example of using query parameter to distinguish between clients

7

8 GraphQL

3.2 What is GraphQL
It is very common to think that GraphQL is devloped using graph theory or to confuse it with
different technologies such as graph database. Actually, “GraphQL is a query language for your
API, and a server-side runtime for executing queries using a type system you define for your
data. GraphQL isn’t tied to any specific database or storage engine and is instead backed by
your existing code and data.”[5]. GraphQL follows three main concepts as listed below:

Declarative - let the client define what it wants to get.

Compositional - allow composing query out of multiple resources.

Strictly typed - allow client developers to know exactly what kind of requests are supported,
what they return and what parameters they accept.

3.3 GraphQL vs REST
GraphQL and REST are two widely used approaches for building WEB APIs but as we already
discovered they have fundamental differences in their philosophy. Therefore, it is useful to
compare them and gain an overview of potential indicators that suggest the use of one technology
over the other. This section will be divided into two parts: the first discussing the benefits of
GraphQL and the second outlining its drawbacks.

3.3.1 GraphQL benefits
3.3.1.1 Under and over fetching
Unlike REST, GraphQL provides a concept of partial payload which eliminates the common
problems of under and over fetching which often arise due to the constantly changing data.
GraphQL allows clients to request exactly the data they need by specifying fields that should be
present in the response. Let’s imagine there exists GraphQL endpoint which allows to query for
all teachers and retrieve their username, first name and last name but we are only interested in
their usernames. You can find an example of how to use GraphQL query language to retrieve
only the necessary fields in Figure 3.1.

Figure 3.1 Example of simple GraphQL query

3.3.1.2 Waterfall requests
The concept of enabling clients to request precisely the data they require, as mentioned in the
previous subsection, is also beneficial in dealing with the waterfall requests problem. Waterfall

GraphQL vs REST 9

requests are a common issue in traditional REST APIs, where the client needs to make multiple
requests to various endpoints to retrieve all the necessary data for a single view. This leads to
slower performance and increased network traffic.

Imagine we have a Teacher resource that can have multiple assigned subjects. In REST, we
would need to create two separate endpoints: one for fetching the teachers and one for fetching
the subjects assigned to teacher. However, in GraphQL, we can easily combine both endpoints
into a single query and get no drawbacks. See Figure 3.2 for an example.

Figure 3.2 Example of using GraphQL query language to get nested object

3.3.1.3 Strong typing
GraphQL simplifies common problems such as determining which endpoint to use and which
query parameters are valid by using a single endpoint in conjunction with a strongly-typed
schema. The schema defines all available resources and input parameters and then server side
runtime ensures that clients receive the expected data type as the response. Also, you can
document the schema using code style comments which not only make development easier and
faster but also eliminate the need for additional tools such as Swagger. See an example of
documented schema in Figure 3.3

Figure 3.3 Example of documented GraphQL schema

In combination with introspection it becomes very powerful feature as introspection allows
clients to query an API an obtain the description of schema, allowing them to understand the
API’s capabilities and structure without having to rely on external documentation or knowledge.

10 GraphQL

3.3.1.4 Versioning
In the REST architecture, it is typical to create new endpoints for each version of the API.
However, this approach can create confusion as it becomes challenging to determine the latest
version of the API capable of returning the correct data and track all the changes. On the
other hand, in GraphQL, the result set of a query is tailored to the specific needs of the client.
Therefore, the addition of new features or fields does not affect the existing clients. For instance,
Facebook uses a single version of a graph in combination with Schema registry to track the
evolution of the graph.

3.3.2 GraphQL drawbacks
3.3.2.1 Abusive queries
GraphQL provides clients with a significant amount of control and flexibility, which can lead to
the execution of queries that may put excessive load on the server. Consequently, developers must
take extra precautions to prevent undesirable queries from being executed, requiring additional
effort.

3.3.2.2 Caching
In REST we can cache on resource level as URL may serve as an identifier. In GraphQL, there
is no possibility to implement caching at HTTP level as there is only one POST endpoint and all
queries even the ones operating on the same resource may be different. Thus, other techniques
such as Persisted Queries should be used.

3.3.2.3 Rate limiting
On contrary to REST, rate limiting in GraphQL is more challenging as each query may have a
different complexity, and thus limiting by the number of requests per unit of time is ineffective.
Instead, a different approach based on query complexity or the time required for query execution
should be considered.

3.3.2.4 Tooling
While the GraphQL ecosystem is growing rapidly, it may not have the same level of tooling and
support as more established technologies like REST. This can make it more challenging to find
libraries, frameworks, and other resources for development and debugging.

3.4 Schema definition language
“Because the shape of a GraphQL query closely matches the result, you can predict what the
query will return without knowing that much about the server. But it’s useful to have an exact
description of the data we can ask for - what fields can we select? What kinds of objects might
they return? What fields are available on those sub-objects? That’s where the schema comes in.

Every GraphQL service defines a set of types which completely describe the set of possible
data you can query on that service.”[6] This set of defined types is referred to as the Schema and
is used for validation and execution of a query by the server-side runtime. Since GraphQL is a
specification and can be implemented in any language, it cannot rely on a specific syntax. That
is why GraphQL defines its own known schema language referred as the Schema Definition
Language.

Schema definition language 11

3.4.1 Object type and fields
Object type is a core building block of GraphQL schema which represents a set of related fields
and is mainly used to represent a resource. See Listing 3.3 for an example of simple object type
definition. You can see that each field in GraphQL is associated with specific data type. In our
case, all fields are of a String type. Moreover, you may notice two special literals: ! and [].
The ! indicates that a field is non-nullable, guaranteeing that the value will always be present
in the response. On the other hand, [] is used to signify that a field will return a list in the
response..

type Teacher {
username: String!
firstName: String
roles: [String]!

}

Code listing 3.3 Example of object type definition

3.4.2 Query, Mutation, Subscription
There are three special predefined object types: Query, Mutatation and Subscription that
serve as an entry points to an application. Fields defined under these types correspond to the
operations that can be performed on the server in the same way as REST endpoints do. See
Listing 3.4 for an example of the definition.

The Query type defines the read operations that can be performed on the data. A query is
a read-only operation and is used to retrieve data from the server.

On the other hand, the Mutation type defines the write operations that can be performed
on the data, which usually includes modifying or creating data on the server.

Subscription type is used for real-time operation that enables clients to receive an update
whenever specific event occurs on the server.

type Query {
getTeachers: [Teacher]
getTeacherByUsername(username: String!): Teacher

}

type Mutation {
createTeacher(teacher: TeacherInput!): Teacher
deleteTeacherByUsername(username: String!): Boolean

}

Code listing 3.4 Example of query and mutation definition

3.4.3 Arguments
In GraphQL, each field can have any number of associated named arguments. These arguments
serve the same purpose as parameters in Java functions, allowing for more dynamic and cus-

12 GraphQL

tomized queries. For instance, Listing 3.5 showcases an example of teacherByUsername query
returning corresponding teacher to the username argument.

type Query {
teacherByUsername(username: String!): Teacher

}

Code listing 3.5 Example of using field arguments

As you can see, the ! literal can be applied on field arguments too. This makes them non-
nullable and thus mandatory for the query execution.

3.4.4 Scalars
Scalars are used to represent the leaf nodes of a GraphQL query, as they correspond to primitive
data types that cannot have child fields. Their primary use case is to represent the types of
arguments or return values of the fields. You can see the comprehensive list of the built-in scalar
type below:

Int - signed 32-bit integers.

Float - signed double-precision fractional values.

String - UTF-8 character sequences.

Boolean - true or false value.

ID - it is serialized the same way as String and is used to mark unique identifiers.

It’s worth noting that GraphQL provides developers with the ability to define custom scalars
in addition to the built-in ones. This means that developers can create their own scalar types to
represent specialized data types, such as dates or geographical coordinates, that are not covered
by the built-in scalar types. You can see Custom scalar section for an example of custom scalar
implementation.

3.4.5 Enumeration
An enumeration type is a special scalar type that is constrained to a finite set of values. It
functions similarly to traditional enums in Java and can be defined using the syntax shown
in Listing 3.6. In the aforementioned listing, an enumeration type User is defined, with three
possible values: TEACHER, STUDENT, and ADMIN. Enumeration types are useful for specifying fields
that can only take on a limited number of valid values, making them an important tool for
ensuring the integrity of data in a GraphQL schema.

enum User {
TEACHER
STUDENT
ADMIN

}

Code listing 3.6 Example of an enumeration type

Schema definition language 13

3.4.6 Interface
An interface is a type that defines a set of fields that any implementing type must include in its
own definition. On contrary to Java interfaces which are used to define the behaviour, GraphQL
interfaces are used to define common fields. Listing 3.7 provides an example of an interface User
with a single field, username which Student type must include in its definition to become an
implementing type.

interface User {
username: String

}

type Student implements User {
username: String
department: String
studyYear: Int

}

Code listing 3.7 Example of an interface definition

Interfaces are useful for creating reusable components in a GraphQL schema, as well as for
enforcing consistency and reducing duplication in type definitions.

3.4.7 Union
Similar to an interface, a union type is used for achieving polymorphism. It also allows a field to
return one of multiple object types, enabling more flexible and dynamic queries. The difference
is that with a union type, the types do not need to share any common fields.

Listing 3.8 provides an example of a union type in GraphQL. The GetUserByUsernamePayload
union type is defined as a combination of two types: GetUserByUsernameSucess and UserNotFound.
It is used as a return type of getUserByUsername query to indicate that any union type may
be returned in the response based on some condition. Note that querying of the union is differ-
ent from regular GraphQL queries, for this fragments concept which is described in the Query
Language should be used.

union GetUserByUsernamePayload = GetUserByUsernameSucess | UserNotFound

type Query {
getUserByUsername(username: String!): GetUserByUsernamePayload

}

Code listing 3.8 Example of a union type definition

3.4.8 Input type
To avoid confusion and potential errors, GraphQL prohibits the use of object types as field argu-
ments. Instead, a special Input type should be used. Consider Listing 3.9, which demonstrates
the use of an input type.

14 GraphQL

type Mutation {
creteTeacher(teacherInput: TeacherInput!): Teacher

}

type Teacher {
username: String
firstName: String

}

input TeacherInput{
username: String
firstName: String

}

Code listing 3.9 Example of input type

In this example, the createTeacher mutation takes an argument of type TeacherInput
contains the necessary fields for creating a teacher.

3.5 Errors
In GraphQL, errors are indicated using top level field errors (see Listing 3.10) instead of common
response status approach. errors field consists of an array of error objects, each with a message,
locations, path, and extensions fields. Note that extensions field may be used to add custom
information.

{
"errors": [

{
"message": "message",
"locations": [],
"path": [],
"extensions": { }

}
]

}

Code listing 3.10 Example of errors field

This approach definitely reduces the declarative power of the schema, so it is wise to combine
it with the approach known as errors as data. The idea is to use the errors field only for
developer errors, such as timeouts and internal server errors while to return errors as data in
case of user errors such as duplicate password or username taken.

The errors as data approach involves defining errors as types in the schema and using them as
operations return types. There is no established convention on how to implement this approach
so I will show the one I like the most. See Listing 3.11 for an example.

Benefits of the described approach are following:

Expressive and discoverable schema - by defining errors as types in the schema, the

Abusive Queries 15

type Mutation {
createTeacher(teacher: TeacherInput!): CreateTeacherPayload!

}

type CreateTeacherPayload {
teacher: Teacher
errors: [CreateTeacherError!]!

}

union CreateTeacherError = UserNameTaken | FirstNameNotSet

interface UserError {
message: String!

}

type UserNameTaken implements UserError {
message: String!
suggestion: String

}

Code listing 3.11 Example of errors as data

schema becomes more expressive and easier to understand. Developers can quickly see what
errors can be returned by each field and handle them accordingly.

Easier evolution - as the schema evolves, it is easier to add or modify error types without
affecting existing clients. Error types can be deprecated or renamed, and clients can be
updated accordingly.

Structured error handling - by defining error types, developers can implement structured
error handling in their code. They can catch specific errors and handle them appropriately,
rather than relying on generic catch-all error handling.

The drawback of the approach is the amount of effort. It is quite verbose and requires
significant amount of developer attention.

3.6 Abusive Queries
The prevention of abusive queries is a hot topic in GraphQL, as it gives clients a lot of power
which may result in executing queries that overload the server. For example, defining a two-
way relationship in the schema can lead to unlimited nesting, causing server overload. Initially,
validating the depth of the incoming query may seem sufficient, but it is far from it. GraphQL
queries can also be abused in breadth, requiring different handling logic. The recommended
approach is to compute the complexity of the incoming query based on the number of required
operations.

Additionally, setting a timeout for the server can be useful, as clients may try to overload the
server by sending an enormous list of input parameters which needs to be parsed and validated
by the server. As you can see, there are many potential issues with abusive queries that require
a lot of attention from developers. See Listing 3.12 for an example of abusive recursive query.

16 GraphQL

{
getTeachers {

username
subjects {

code
teacher {

username
subjects {

code
teacher {

// ...
}

}
}

}
}

}

Code listing 3.12 Example of abusive recursive query

3.7 Rate limiting
In REST, rate limiting is very easy to do just by limiting the number of incoming requests
per some amount of time. But what to do if every query may have different complexity. See
Figure 3.4 and Figure 3.5 for an example of same query having different complexity.

Figure 3.4 Example of getTeachers query
Figure 3.5 Example of getTeachers query

This means that we have to implement rate limiting based on different factors like query
complexity or the time required for query execution, which adds additional complexity to the
implementation.

Persisted Queries 17

3.8 Persisted Queries
For each GraphQL query, server lexes, parses, validates and executes the query and then returns
the result. This is costly operation and there is no point in doing it over and over again if
the query doesn’t change. There are multiple options to consider but one of the most popular
techniuqes is called Persisted Queries. It is used to optimize performance and reduce network
overhead. The difference with regulat approach is that instead of sending the whole query every
time, client firstly registers queries with the server and obtains some unique identifiers such as
query hashes or URLs as a response.

“With persisted queries, instead of sending the full query document on every request, the
client starts by registering queries with the server, before any query is even sent. Sometimes
these queries are registered before or during the deploy process. In other cases, the first query
from a client is used as the “registration”. In exchange, a GraphQL server capable of supporting
persisted queries will provide the client with an identifier for that query. Examples of good
identifiers are query hashes, URLs at which the queries can be accessed, or simple IDs. Once the
client has the identifier for a particular query, it can send the identifier along with any needed
variables to execute the query, this time without passing the full query document. For example,
if the server returned an URL after the registration of a certain query, the client could use this
URL instead of sending the query document every single time.

Besides the performance and bandwidth improvements, this also helps API providers secure
GraphQL APIs. Earlier we covered whitelisted queries, which meant allowing only certain queries
to be ran against our GraphQL server. With persisted queries, this is even more straightforward,
since an API provider could allow only pre-registered queries to be run, essentially blocking access
to all other queries against the API. The funny thing with persisted queries implemented that
way is that it starts to look a lot like what we wanted to escape in the first place, endpoint
based and fixed queries! However, there’s a small detail that makes this so powerful. Even
though we’re dealing with static queries/resources, these resources are generated by the clients
rather than the server. In fact I love thinking of persisted queries as client dynamically generated
resources, using the dynamic GraphQL engine to support as many different resources as needed
by clients.”[7]

3.9 Query Language
GraphQL provides a simple and intuitive way to query data from a server. When making a
request, you simply specify the fields you want to retrieve. For example, let’s say we have a
schema like the one shown in Listing 3.13. To retrieve a list of teachers, their usernames and first
names, we can use the query as demonstrated in Listing 3.14. In this query, we specify that we
want to retrieve data from the getTeachers field of Query type which returns a list of Teacher
objects. We then specify the fields we are interested in for each Teacher object, which in this
case are username and firstName. As you can see, it is all about selecting desired fields from
the list of all available ones.

Now, let’s consider different schema as shown in the Listing 3.15. As you can see, query
getTeachers might return a Success or an Error type, depending on whether the operation
was successful. To handle these scenarios, you can use concept knows as fragments which is
shown in the Listing 3.16. In the mentioned listing, we defined two fragments, one for each
response type using ... on syntax. Then, we can simply select desired return fields.

3.10 OpenAPI to GraphQL
Sometimes there is a need to convert REST service in the GraphQL one in rapid way. Usually,
this is accomplished by creating a GraphQL wrapper that calls REST endpoints internally.

18 GraphQL

type Query {
getTeachers: [Teacher]

}

type Teacher {
username
firstName
lastName

}

Code listing 3.13 Example schema

query {
getTeachers {

username
firstName

}
}

Code listing 3.14 Example of a query

type Query {
getTeachers: Response

}

union Response = Success | Error

Code listing 3.15 Example schema

query {
getTeachers {

... on Success {
// fields

}
... on Error {

// fields
}

}
}

Code listing 3.16 Example of fragments usage

It is worth noting that there are libraries available that allow automatic wrapping of existing
Swagger-documented REST services in GraphQL. You can find complete example of using IBM
framework for wrapping of REST server in the practical part of the thesis. In this section, I
want to highlight two most important and not obvious possibilities.

OpenAPI to GraphQL 19

First one, is the possibility to add security to the GraphQL wrapper. It can be done by
applying the @SecurityScheme annotation to the controller or configuration class, and then
using the @SecurityRequirement annotation for each endpoint that requires protection. An
example of implementing basic authorization can be seen in Listing 3.17.

@Tag(name = "Teacher API", description = "API for accessing teacher
information. Protected by oAuth/fake tokens.")↪→

@SecurityScheme(name = "basic", type = SecuritySchemeType.HTTP, scheme =
"basic")↪→

@RestController
@RequiredArgsConstructor
public class TeacherController {

private final TeacherService teacherService;

@ResponseStatus(HttpStatus.OK)
@GetMapping(value = "/teachers", produces =

MediaType.APPLICATION_JSON_VALUE)↪→

@SecurityRequirement(name = "basic")
@Operation(summary = "Retrieve a list of all teachers.")
@ApiResponse(responseCode = "200")
public List<Teacher> findAllTeachers() {

return teacherService.findAll();
}

Code listing 3.17 Example of defining basic authorization in Swagger

The second thing is that in GraphQL it is very common to fetch multiple objects via single
query which is not the case in REST. We can use @Link annotation to instruct IBM framework
to query multiple REST endpoints in single GraphQL query. See Listing 3.18 for the example.

20 GraphQL

@GetMapping(value = "/people/{username}", produces =
MediaType.APPLICATION_JSON_VALUE)↪→

@Operation(summary = "Retrieve a person with provided username.",
responses = {↪→

@ApiResponse(responseCode = "200", links = {
@Link(name = "Find Car", description = "Find connected

car", operationId = "findCar", parameters = {↪→

@LinkParameter(name = "username", expression =
"$request.path.id")↪→

})
})

})
public Person findPerson(@PathVariable String username) {

return personService.findPersonByUsername(username)
.orElseGet(Person::new);

}

@GetMapping(value = "/people/{username}/car", produces =
MediaType.APPLICATION_JSON_VALUE)↪→

@Operation(summary = "Retrieve a car.")
public Car findCar(@PathVariable String username) {

return new Car("Porsche", "Cayenne");
}

Code listing 3.18 Example of defining link in Swagger

Chapter 4

GraphQL Federation - theory

This chapter presents GraphQL Federation, discussing its origin, explaining key concepts, and
providing the necessary theoretical foundation for subsequent chapters.

4.1 History of GraphQL Federation
The origin of GraphQL comes from the monolithic API layer but with the recent trend towards
distributed architecture, it has found its way into various contexts and proved itself with the
API gateway pattern (see Figure 4.1). This is true due to the fact that it is beneficial to use
GraphQL as an abstraction over existing APIs as it provides a stable and easily discoverable
schema along with the query language that enables clients to consume only the necessary data.
One of the main challenges of using GraphQL with a gateway lies in the fact how to compose
the schema in a way that preserves the key benefits of GraphQL. As a result, there are several
different approaches to schema composition that have emerged over time which will be described
in following subsections.

Figure 4.1 Example of gateway pattern [8]

21

22 GraphQL Federation - theory

4.1.1 Simple Merging
One of the initial ideas for composing GraphQL schemas was to merge all the fields together
in the simplest possible manner and halt the composition process if any conflicts arose. In the
scenario where we have two schemas, as depicted in Listing 4.1 and Listing 4.2, the resulting
schema would look as presented in Listing 4.3.

type Query {
getLecturesByTeacherUsername(username: String!): [Lecture]

}

Code listing 4.1 Lecture service schema

type Query {
getCoursesByTeacherUsername(username: String!): [Course]

}

Code listing 4.2 Course service schema

type Query {
getLecturesByTeacherUsername(username: String!): [Lecture]
getCoursesByTeacherUsername(username: String!): [Course]

}

Code listing 4.3 Resulting merged schema

This approach doesn’t have any special handling logic thus it is easy to implement. The
drawback is that it sacrifices declarative power of GraphQL. It becomes impossible to express
relation between two types defined in different services as shown in Listing 4.4. Instead, as
demonstrated in Listing 4.3, we revert to a REST-style approach where the client must query
both getLecturesByTeacherUsername and getCoursesByTeacherUsername to obtain the data
required for a single view.

type Course {
code: ID
lectures: [Lecture]

}

Code listing 4.4 Example of declarative solution

4.1.2 Schema Stitching
In an effort to restore the declarative power of GraphQL, a technique known as Schema Stitching
was devised. The idea is to delegate all the relationship logic to the gateway, as it possesses

History of GraphQL Federation 23

enough information to generate a valid schema. For instance, taking the same example as
described in the previous section, we can use Apollo Stitching to instruct our gateway on how
to compose the schema, as illustrated in Listing 4.5.

const typeExtensionDefinition = `
extend type Course {

lectures: [Lecture]
}

`;

mergeSchemas({
schemas: [

courseService,
lectureService,
typeExtensionDefinition

]
});

Code listing 4.5 Example of type extension in the gateway

In the aforementioned listing, we specified that the teacher and course service schemas should
be composed, and a typeExtensionDefinition should be added to the resulting schema. As
a result, the schema now has the same structure as presented in Listing 4.4. The declarative
power of GraphQL is back as you can clearly see the connection between Course and Lecture
from the schema. However, if we query the gateway in the manner depicted in Listing 4.6, null
will be returned for the lectures field.

{
getCourses {

code
lectures {

// ...
}

}
}

Code listing 4.6 Example query

The issue is in the fact that we did not define a resolver for the lectures field. We need to
instruct GraphQL what to do when lectures field is queried. As demonstrated in Listing 4.7
we can delegate resolutiom of field to lecturesByCourseCode query.

In conclusion, while the distributed architecture was created to decentralize development,
Schema Stitching centralizes the logic within the gateway layer and adds too much logic in it.
Therefore, Schema Stitching approach was recently deprecated in favor of GraphQL Federation.

4.1.3 Composition in GraphQL Federation
“Netflix is known for its loosely coupled and highly scalable microservice architecture. Inde-
pendent services allow for evolving at different paces and scaling independently. Yet they add
complexity for use cases that span multiple services. Rather than exposing 100s of microservices

24 GraphQL Federation - theory

mergeSchemas({
schemas: [

courseService,
lectureService
typeExtensionDefinition

],
resolvers: {

Teacher: {
lectures: {

fragment: `... on Course { lectures }`,
resolve(course, args, context, info) {

returns info.mergeInfo.delegateToSchema({
schema: courseService,
operation: 'query',
fieldName: 'lecturesByCourseCode',
args: {

code: course.code
},
context,
info

});
},

},
},

},
});

Code listing 4.7 Example of adding resolver in the gateway

to UI developers, Netflix offers a unified API aggregation layer at the edge. UI developers love
the simplicity of working with one conceptual API for a large domain. Back-end developers
love the decoupling and resilience offered by the API layer. But as our business has scaled, our
ability to innovate rapidly has approached an invisible asymptote. As we’ve grown the number
of developers and increased our domain complexity, developing the API aggregation layer has
become increasingly harder. In order to address this rising problem, we’ve developed a federated
GraphQL platform to power the API layer. This solves many of the consistency and development
velocity challenges with minimal tradeoffs on dimensions like scalability and operability. We’ve
successfully deployed this approach for Netflix’s studio ecosystem and are exploring patterns and
adaptations that could work in other domains.”[9]

GraphQL Federation was developed to enhance Schema Stitching approach by relocating all
relationship code from the gateway to the schemas themselves. This is accomplished with the
help of special directives which are used to express relationships with other services, without the
need for a centralized gateway to manage those relationships. The gateway layer can then use
this information to construct a federated schema that can be queried as a single entity, while
still maintaining the autonomy and independence of each service.

Both Schema Stitching and GraphQL Federation offer a significant advantage - they allow
for a separation of concerns, as illustrated in Figure 4.2. This means that each service can define
only the types and fields it is capable of resolving, resulting in more streamlined code. GraphQL
Federation solves important problem, it enables developers to keep the code for a specific feature
within a single subgraph isolated from unrelated concerns while creating a product-centric schema

Directives 25

with rich types that reflect the natural way developers would consume the graph.

Figure 4.2 Example of separation of concers [8]

4.2 Directives
The most important thing to know in GraphQL Federation is directives. Thus, we will go through
all of them in this chapter and discuss their primary use cases.

4.2.1 @key
The @key directive allows developers to define unique identifiers for types. This is a mandatory
requirement if a type needs to be referenced, extended, or used in another service within a
federated graph. See Listing 4.8 for an example of @key directive definition.

type Teacher @key(fields: "username") {
username: String
firstName: String
lastName: String

}

Code listing 4.8 Example of simple @key definition

In addition to defining a single key for a type, it is also possible to define compound keys (see
Listing 4.9) or multiple keys (see Listing 4.10) . This can be particularly useful when a type is
used in multiple services that require different fields for an identification.

26 GraphQL Federation - theory

type Teacher @key(fields: "username firstName") {
username: String
firstName: String
lastName: String

}

Code listing 4.9 Example of compound @key definition

type Teacher @key(fields: "username") @key(fields: "firstName") {
username: String
firstName: String
lastName: String

}

Code listing 4.10 Example of multiple @key definitions

4.2.2 @extends
The @extends directive allows a service to extend the type defined in another service. This can
be done without modifying the original definition or requesting changes from the service that
owns the type. The ability to extend types in this way helps with the separation of concerns and
allows different service teams to collaborate more easily.

When using the @extends directive, it is important to note that it is mandatory that @key
directive is defined for the type being extended. As an example, consider the original type
definition as shown in Listing 4.11 and its extension as shown in Listing 4.12.

type Teacher @key(fields: "username") {
username: String
firstName: String
lastName: String

}

Code listing 4.11 Original definition

type Teacher @key(fields: "username") @extends {
username: String
lectures: [Lecture]

}

Code listing 4.12 Extending definition

4.2.3 @external
The @external directive is used to mark a field as being owned by another service. It means
that even though this field is defined in the schema, it is not resolved by the service itself but

Entity 27

instead by the owning service. See Listing 4.13 for the example.

type Teacher @key(fields: "username") {
username: String
firstName: String @external
lastName: String @external

}

Code listing 4.13 Example of @external directive

4.2.4 @requires
The @requires directive is used to mark the dependencies of the field. In the Listing 4.14
numOfLectures and lectureLength fields are marked as @external, indicating that they are
resolved by an external service. The @requires directive specifies that the courseLength field
requires these fields to be resolved first before it can be computed correctly.

When a query is executed that includes the courseLength field, the gateway will first fetch
the numOfLectures and lectureLength fields from the external service before resolving the
courseLength field. This ensures that the required data is available before attempting to com-
pute the final result.

type Course @key(fields: "code") {
code: ID
numOfLectures: Int @external
lectureLength: Int @external
courseLength: Int @requires(fields: "numOfLectures lectureLength")

}

Code listing 4.14 Example of @requires directive

4.2.5 @provides
The @provides directive allows a service to specify that field can be resolved by the service but
only at a specific schema path. In Listing 4.15, the firstName field is marked as external and
generally cannot be resolved by the current service. However, the @provides directive indicates
that teachers query is capable of resolving firstName field.

4.3 Entity
In GraphQL Federation, an entity is an object type that has a unique identifier defined using
the @key directive. Entities represent the data shared across multiple services. When a service
defines the @key directive on one of its types, it indicates that the service can resolve an instance
of the entity based on the identifier. Then, service must define an entity fetcher that can process
the gateway request and resolve associated entities from it.

An entity fetcher is a function that takes in a list of entity references (see Listing 4.16) and
returns the corresponding entity objects. The entity references are objects that have the same
shape as the entity’s unique identifier, which includes the entity’s typename and any fields that

28 GraphQL Federation - theory

type Teacher {
username: String
firstName: String @external

}

type Query {
teachers: [Teacher] @provides(fields: "firstName")

}

Code listing 4.15 Example of @provides directive

make up the identifier. The entity fetcher is responsible for mapping these references to actual
entity objects, which can be fetched from a database, an API, or any other data source.

[
{

"__typename": "Teacher",
"username": "teacher1"

},
{

"__typename": "Teacher",
"username": "teacher2"

},
//...

]

Code listing 4.16 Example of gateway entity request

4.4 Value types

On contrary, to entities value types are not derived from a specific service but rather belong to
each individual service that defines them. For instance, if you need to share an enum across all
services, you would need to define it in each of them. It is essential to note that the definition
of the value type must be identical in each service to ensure successful schema composition.

4.5 Schema registry

“At its core, the schema registry is a version control system for our schema. It stores our schema’s
change history, tracking the types and fields that were added, modified, and removed. Similar
to how we commit and push changes to our codebase to a Git repository, we should push every
new version of our schema to the registry. Thanks to the schema registry, we can track variants
of the same graph that are deployed in different environments, such as staging and production.
We can run schema checks to detect when a potential change might break one of our clients.”[10]

Schema Registrty is a crucial concept in the GraphQL Federation concept. See Federation
with Schema Registry and Uplink section for usage example.

Federation with Schema Registry and Uplink 29

4.6 Federation with Schema Registry and Uplink
There are two ways to utilize the gateway. The first way involves providing the gateway with
service URLs, which it then scrapes and uses to create a federated schema. The second approach
is to provide the gateway with an already composed schema. While the first approach may be
convenient for local development, it is strongly discouraged for production environments due to
its possible failure, the need for introspection, and the inability to reload the schema without
redeploying.

Instead, the approach depicted in Figure 4.3 is recommended. This approach involves utilizing
a Schema Registry that not only tracks changes but also validates and composes the schemas. If
the composition is successful, the registry updates the uplink, which is periodically queried by
the gateway for the updates. This approach has numerous benefits:

Router stability - you can modify subgraph schemas (and even add or remove entire sub-
graphs) without needing to modify or redeploy your router. Your router is the point of entry
to your entire graph, and it should maximize its uptime.

Composition stability - whenever your router obtains an updated configuration from
Apollo, it knows that the updated set of subgraph schemas will compose, because the config-
uration includes the composed supergraph schema.
The router also knows that your subgraphs are prepared to handle operations against the
updated set of schemas. This is because your subgraphs should publish their updated schemas
as part of their deployment, meaning they’re definitely running by the time the router is aware
of the configuration change.
And whenever a subgraph accidentally pushes a schema change that doesn’t compose, Uplink
continues to provide the most recent valid configuration to your router.

Schema flexibility - by using a configuration manager that’s external to your router, you
help ensure the safety of certain schema changes. For example, if you want to migrate a type
or field from one subgraph’s schema to another, you can perform this migration safely only
if you externalize your configuration.

[11]
Though this architecture proves to be highly efficient, it can pose considerable challenges for

smaller projects. One of the main obstacles is the lack of reliable open-source solutions for the
Schema Registry and Uplink. Many large corporations develop these tools in-house, with no
public access available. However, there is some hope as companies like Netflix have indicated
their intention to release such tools in the near future.

Thus, there are two approaches left: either develop your own solution or go for Managed
Federation from Apollo. While the latter is an efficient choice, it is hosted on their cloud which
may be not suitable for some projects.

30 GraphQL Federation - theory

Figure 4.3 Example of managed federation [11]

Chapter 5

GraphQL Federation -
implementation

This section is dedicated to discussing the practical aspects of the thesis, focusing on the most
essential concepts, issues, and their solutions required to develop a GraphQL Federation-
based project in Java. It is divided into two major subsections. The first one is presented
in the form of a tutorial, which introduces Netflix DGS and showcases the critical problems
and their solutions. It is worth noting that all examples provided in this chapter are taken
from the practical part of the thesis. To keep things concise, unrelated code, such as JPA
repositories and DTO converters, is omitted from the examples. However, for a comprehensive
understanding, please refer to the practical part of the thesis. The second part of chapter will
concentrate on the practical aspects of the thesis, outlining the work completed, its intended
usage, and other relevant details.

5.1 Netflix DGS

5.1.1 Dependencies
When starting your project, the first task is to make sure all necessary dependencies are included.
You can find a detailed list of required dependencies in the build.gradle file, located in the
practical part of the thesis. Here, I want to encourage the usage of BOM which helps to align
dependencies and avoid version conflicts.

The DGS team provides two variations of BOM: graphql-dgs-platform, which manages
only the DGS framework dependencies, and graphql-dgs-platform-dependencies, which ad-
ditionally handles all dependencies used by the DGS framework itself, such as Spring, Jackson
and others. Listing 5.1 demonstrates an example of BOM usage.

5.1.2 Schema
There are two approaches in the GraphQL world: client-first and schema-first. I will be focusing
on the latter one in this thesis. The DGS framework has been set up to look for schema files
in the resources/schema directory. Therefore, you must create a schema.graphqls file within
this directory. Then, you can proceed with definition of your schema.

31

32 GraphQL Federation - implementation

dependencies {

implementation(platform("com.netflix.graphql.dgs:graphql-dgs-platform-dependencies:3.10.2"))↪→

// BOM will take care of dependencies below so there is no need to
manually define versions↪→

implementation "com.netflix.graphql.dgs:graphql-dgs-spring-boot-starter"
implementation

'com.netflix.graphql.dgs:graphql-dgs-subscriptions-websockets-autoconfigure'↪→

}

Code listing 5.1 Example of using BOM

5.1.3 Codegen plugin
Once you’ve defined the schema, it’s common to use the DTO pattern and create POJO classes
for the schema types. Creating these classes manually can be tedious and time-consuming, so
it’s better to use the Codegen plugin, which automates this process. To include the plugin in
your build.gradle file, follow the example shown in Listing 5.2.

plugins {
id "com.netflix.dgs.codegen" version "5.6.9"

}

Code listing 5.2 Example of adding codegen plugin

After adding the Codegen plugin to your project, it automatically creates a Gradle task
generateJava under the build group. This task has many configuration options that can be set
using standard Gradle syntax, as shown in Listing 5.3.

generateJava {
schemaPaths = ["${projectDir}/src/main/resources/schema"]
packageName = 'com.example.graphqlthesis.dto'

}

Code listing 5.3 Example of configuring codegen plugin

By running gradle generateJava, the Codegen plugin produces the required Java classes
similar to the types defined in the schema and stores them in the /build/generated/dgs-codegen
directory.

Additionally, the Codegen plugin provides extra features like generating a DgsConstants
class with constants for all field and type names in the schema, or even a type-safe query API.

5.1.4 Type safe query API
One of the valuable features offered by the Codegen plugin is the ability to generate a type-safe
query API, which is beneficial for testing and server-to-server communication. At its core, this
API promotes compile-time safety and enhanced readability. This is achieved by generating Java

Netflix DGS 33

classes that are used to construct queries. You can enable query API generation the same way
as demonstrated in Listing 5.4. Also, see Listing 5.5 for example of using query API.

generateJava {
generateClient = true

}

Code listing 5.4 Example of configuring codegen plugin to generate query API

private final GraphQLQueryRequest getLiteratureQuery = new
GraphQLQueryRequest(↪→

new GetProseminarsGraphQLQuery(),
new GetProseminarsByCodeProjectionRoot()

.code()

.parallel()
.studentCount());

Code listing 5.5 Example of using query API

It’s important to note that only one generateJava gradle task can exist per one java module.
This essentially means that you cannot have multiple schemas within a single module. Instead,
you must create separate modules for each new schema. So, you will need to create a new module
where to locate other server schema and then use this module as a dependency.

5.1.5 Data Fetcher
Data Fetchers (also known as data resolvers) are a key concept in the DGS framework. They are
responsible for retrieving data from a data source in response to a GraphQL query. Listing 5.6
demonstrates an example of creating a data fetcher for the getSubjects query.

@DgsComponent
@RequiredArgsConstructor
public class TeacherDataFetcher {

private final ISubjectService subjectService;
private final SubjectMapper subjectMapper;

@DgsData(parentType = DgsConstants.QUERY.TypeName, field =
DgsConstants.QUERY.GetSubjects)↪→

public List<Subject> getSubjects() {
return subjectService.findAll().stream()

.map(subjectMapper::toDto)

.toList();
}

}

Code listing 5.6 Example of data fetcher

34 GraphQL Federation - implementation

First, note the @DgsComponent annotation. This annotation informs the DGS framework
to examine the bean for instructions and thus all DGS related code should be placed under
this annotation. Second thing to note, is the @DgsData annotation which allows to designate a
function as responsible for a specific part of the schema. This annotation has two parameters:

parentType - a mandatory parameter representing the name of the type containing the
required field.

field - an optional parameter representing the name of the field for which the function is
resolving the data.

If the field parameter is omitted, it will be inferred from the name of the function. It is worth
mentioning that there are three shortcut annotations that can be used instead of @DgsData:

DgsQuery - the parent type is always equal to Query.

DgsMutation - the parent type is always equal to Mutation.

DgsSubscription - the parent type is always equal to Subscription.

Thus, all definitions shown in the Listing 5.7 are equivalent.

@DgsData(parentType = "Query", field = "getSubjects")
public List<Subject> function() {}

@DgsQuery(field = "getSubjects")
public List<Subject> function() {}

@DgsQuery
public List<Subject> getSubjects() {}

Code listing 5.7 Example of equivalent definitions

To conclude, all you need to create data fetcher is to use a combination of @DgsComponent
and @DgsData annotation with regular java function.

5.1.6 Nested data fetcher
In GraphQL, we have the option to create data fetchers for any field defined in a schema. Thus,
we can create multiple data fetchers for a single type, with a maximum of one per field. There
is no need to create nested data fetchers for types whose fields can be loaded from the database
via a single query. However, let us consider the schema defined in Listing 5.8, and imagine that
the additionalField requires an additional database operation to be resolved.

It would be inefficient to execute an additional query for the field even if it is not requested
by the client. To avoid this, we can create a nested data fetcher that resolves additionalField
only when requested by the client. See an example of nested data fetcher in Listing 5.9.

Defining a nested data fetcher is similar to creating a regular one, with the main distinction
being that the parentType of @DgsData is now set to Subject not Query.

As a result, the nested data fetcher only fetches the data when necessary. It’s also worth noting
the DgsDataFetchingEnvironment class, which provides access to the data fetching context,
including the query, data loaders, source object, and more. One of its powerful features is the
local context. You can populate it yourself, and it will be passed to the nested data fetcher. This
enables query optimization, as demonstrated in Listing 5.10, where reviews are loaded only once

Netflix DGS 35

type Subject {
code: ID
titleCz: String
titleEn: String
garant: String
addditionalField: [AdditionalField]

}

Code listing 5.8 Example schema

@DgsComponent
@RequiredArgsConstructor
public class TeacherDataFetcher {

private final ISubjectService subjectService;
private final SubjectMapper subjectMapper;

@DgsQuery(field = DgsConstants.QUERY.GetSubjects)
public List<Subject> getSubjects() {

return subjectService.findAll().stream()
.map(subjectMapper::toDto)
.toList();

}

@DgsData(parentType = DgsConstants.SUBJECTS.TYPE_NAME, field =
DgsContants.SUBJECTS.AdditionalInfo)↪→

public AdditionalInfo additionalInfo(DgsDataFetchingEnvironment dfe) {
Subject subject = dfe.getSource();
// ...

}
}

Code listing 5.9 Example of using nested data fetcher

and then passed to the nested data fetcher through the local context. This approach allows for
fetching AdditionalInfo only once using a batch request, instead of loading them one by one
which requires higher number of database operations.

5.1.7 Extending type
Let’s go through an example of type extension in Netflix DGS, by examining the schema defined
in Listing 5.11.

As described in Entity section, it is essential to be prepared for entity queries from the
gateway when extending the type. To handle entity query, it is needed to create an entity fetcher
by defining a function that accepts a Map<String, Object> as a parameter and constructs
corresponding Subject objects based on the entity reference. Last step, is to annotate the
function with @DgsEntityFetcher and specify the name of type we are resolving. See an example
illustrated in the Listing 5.12.

Next, we need to create regular data fetcher where instruct GraphQL on how literature

36 GraphQL Federation - implementation

@DgsQuery(field = DgsConstants.QUERY.GetSubjects)
public DataFetcherResult<List<Subject>> getSubjects(DataFetchingEnvironment

dfe) {↪→

List<Subject> subjects = subjectService.findAll().stream()
.map(subjectMapper::toDto)

.toList();

if (dfe.getSelectionSet().contains("additionalInfo") {
Map<Integer, List<AdditionalInfo>> additionalInfo = // load

additionalInfo↪→

return DataFetcherResult.<List<Subject>>result()
.data(subjects)
.localContext(additionalInfo)
.build()

} else {
return DataFetcherResult.<List<Subject>>result()

.data(subjects)

.build()
}

}

@DgsData(parentType = DgsConstants.SUBJECTS.TYPE_NAME, field =
DgsContants.SUBJECTS.AdditionalInfo)↪→

public AdditionalInfo additionalInfo(DgsDataFetchingEnvironment dfe) {
Subject subject = dfe.getSource();

Map<Integer, List<AdditionalInfo>> additionalInfo = dfe.getLocalContext();
return additionalInfo.get(subject.getCode());

}

Code listing 5.10 Example of using local context of DataFetchingEnvironment

type Literature {
isbn: ID
code: String
title: String

}

type Subject @key(fields: "code") @extends {
code: ID
literature: [Literature]

}

Code listing 5.11 Example schema

field should be fetched. You can see example in the Listing 5.13.
In described example, literature is loaded individually for each subject, resulting in the well-

known N+1 problem, which negatively impacts the performance. To address this issue, consider

Netflix DGS 37

@DgsEntityFetcher(name = DgsConstants.SUBJECT.TYPE_NAME)
public Subject subject(Map<String, Object> values) {

return Subject.newBuilder()
.code((String) values.get("code"))
.build();

}

Code listing 5.12 Example of entity fetcher

@DgsData(parentType = DgsConstants.SUBJECT.TYPE_NAME, field =
DgsConstants.SUBJECT.Literature)↪→

public List<Literature> literature(DgsDataFetchingEnvironment
dataFetchingEnvironment) {↪→

Subject subject = dataFetchingEnvironment.getSource();
return literatureService.findByCode(subject.getCode()).stream()

.map(literatureMapper::toDto)

.toList();
}

Code listing 5.13 Example of fetcher

using the Data Loader approach, which is discussed in detail in the following chapter.

5.1.8 Data Loader
Data Loaders provide a mechanism to efficiently fetch data by batching multiple requests, thereby
mitigating the N+1 problem commonly encountered in GraphQL applications. By aggregating
multiple keys and retrieving the corresponding data in a single batch request, Data Loaders
significantly improve performance and reduce the load on underlying data sources.

First thing to do, is to make sure that you are supporting batch requests in underlying layers
such as repositories. Next, create a class, annotate it with the @DgsDataLoader annotation, and
implement the BatchLoader interface by overriding the load method. An example of a data
loader can be found in Listing 5.14.

A frequent pitfall when crating data loader is overlooking scenarios where no associated
literature exists for a given entity key. In these instances, the entire query fails, and no partial
data is returned. To address this issue, consider implementing the MappedBatchLoader interface
which maps each key to the response using map. For this scenario, you would need to rewrite
data loader as shown in the Listing 5.15.

When data loader is ready it is time to use it in the data fetcher. As mentioned before
DataFetchingEnvironment contains all context information and can be used to get required
data loader. See Listing 5.16 for the example.

There are few features of data loader that are worth noting. First one is the possibility to
optimize thread pool by creating new thread if all others are already utilized. For this purpose
we need to define bean in configuration class as shown in the Listing 5.17.

After defining the bean in the configuration class, the next step is to autowire the Executor
bean in the data loader. From there, DGS will take care of the rest of the process automatically.

The second noteworthy feature of the data loader is its ability to dispatch queries. You can
define rules that determine whether a query should be resolved with a data loader based on
factors such as query depth or estimated execution time as shown in the Listing 5.18.

38 GraphQL Federation - implementation

@DgsDataLoader
@RequiredArgsConstructor
public class LiteratureDataLoader implements BatchLoader<List<Literature>> {

private final ILiteratureService literatureService;
private final LiteratureMapper literatureMapper;

@Override public CompletionStage<List<Literature>> load(Set<String>
keys) {↪→

return CompletableFuture.supplyAsync(() ->
literatureService.findAllByIds(keys).stream()

.map(literatureMapper::toDto)

.toList());
}

}

Code listing 5.14 Example of data loader

@Override public CompletionStage<Map<String, List<Literature>>>
load(Set<String> keys) {↪→

return CompletableFuture.supplyAsync(() ->
literatureService.findAllByIds(keys).entrySet().stream()

.map(entry -> Map.entry(entry.getKey(),
entry.getValue().stream()↪→

.map(literatureMapper::toDto).toList()))
.collect(Collectors.toMap(Map.Entry::getKey,

Map.Entry::getValue)));↪→

}

Code listing 5.15 Example of mapped data loader

@DgsData(parentType = DgsConstants.SUBJECT.TYPE_NAME, field =
DgsConstants.SUBJECT.Literature)↪→

public CompletableFuture<List<Literature>>
literatures(DgsDataFetchingEnvironment dataFetchingEnvironment) {↪→

DataLoader<String, List<Literature>> dataLoader =
dataFetchingEnvironment.getDataLoader(LiteratureDataLoader.class);↪→

Subject subject = dataFetchingEnvironment.getSource();
return dataLoader.load(subject.getCode());

}

Code listing 5.16 Example of using data loader

Another useful feature of the data loader is the ability to limit the maximum batch size.
To implement this feature, you can specify the maximum batch size in the @DgsDataLoader
annotation, as shown in the Listing5.19

Netflix DGS 39

public class DataLoaderConfig {

@Bean(name = "LiteratureDataLoaderExecutor") Executor
literatureDataLoaderExecutor() {↪→

return Executors.newCachedThreadPool();
}

}

Code listing 5.17 Example of cached thread pool

@DgsDispatchPredicate private final DispatchPredicate predicate =
DispatchPredicate.dispatchIfLongerThan(Duration.ofSeconds(2));↪→

@DgsDispatchPredicate private final DispatchPredicate predicate =
DispatchPredicate.dispatchIfDepthGreaterThan(2);↪→

Code listing 5.18 Example of data loader dispatching

@DgsDataLoader(maxBatchSize = 300)

Code listing 5.19 Example of limiting batch size

5.1.9 Gateway
We can use any compatible to GraphQL Federation specification implementation of the Gateway.
There are two most popular ones: Apollo Router, which is written in Rust language and designed
for high performance and Apollo Server used with Apollo Gateway extensions which is the
predecessor of the Apollo Router. In this chapter, I will focus on the later one.

Installing the gateway is a straightforward process. First, you need to run the command npm
init to initialize your project, and then run npm install @apollo/gateway @apollo/server
graphql to install the necessary dependencies for the gateway. Once this is complete, you will
have a fully functional gateway at your disposal.

However, in order to use the gateway to compose services, we need to inform it about the ad-
dresses of the services to be used. This can be accomplished by using the IntrospectAndCompose
function, which takes a list of URLs as a parameter. Listing 5.20 provides an example of how
this function can be used.

const gateway = new ApolloGateway({
supergraphSdl: new IntrospectAndCompose({

subgraphs: [
{ name: 'teacherService', url: 'http://localhost:8080' },
{ name: 'courseService', url: 'http://localhost:8081' },

],
}),

});

Code listing 5.20 Example of using IntrospectAndCompose

40 GraphQL Federation - implementation

Note that while IntrospectAndCompose is perfect fit for local development, it is strongly
discouraged from the production use. See Federation with Schema Registry and Uplink for
detailed information.

5.1.10 Authentication and Authorization
Suppose we wish to restrict access to one of our queries so that it is only available to users
with administrative privileges. DGS framework support integration with Spring Security via
@Secured annotation so lets setup in-memory user details service as shown in the Listing 5.21.

Next, we can just simply apply @Secured annotation on data fetcher or service API as shown
in the Listing 5.22.

This approach functions well until we attempt to use the service with the gateway. If we
use the IntrospectAndCompose function, it will fail with a 401 response status. This occurs
because our service now requires authentication to access its endpoints and it makes intro-
spection query fail. To address this issue, we can use the introspectionHeaders function in
IntrospectAndCompose to add an authorization header for the schema composition process.
Refer to Listing 5.23 for an example.

With the composition issue resolved, another problem arises when attempting to execute
the secured query even with the correct authorization header, it fails with a 401 error. The
issue here is that the gateway receives the authorization header but does not propagate it to the
underlying services. We can address this by using the buildService function, as demonstrated
in Listing 5.24. buildService allows to modify every request sent to the underlying services so
we can make use of it to propagate authorization header.

At this point, we once again encounter a composition failure with a 401 error code. The
buildService function is applied during each request, which causes it to overwrite the header set
by introspectionHeaders. As a result, we need to differentiate between regular and introspec-
tion requests within the buildService. To achieve this, let’s modify the AuthenticatedDataSource
as shown in the Listing 5.25.

5.1.11 Subscription
Subscriptions enable clients to subscribe to real-time updates from a server by specifying a query
that will be executed whenever new data is available to be pushed from the server. Defining
a subscription is quite similar to creating a query or mutation, but it necessitates the use of
reactive programming concepts. See Listing 5.26 for an example of subscription.

For a complete example, refer to the implementation of the literatureAdded subscription
which can be found in the practical section of the thesis.

5.1.12 Instrumentation
Monitoring the state of an application and swiftly detecting issues is essential for production
environments. To this end, DGS provides various functionalities to address these tasks. One
key feature is the concept of instrumentation, which allows developers to hook code before or
after query execution. To create custom instrumentation, developers can create a spring bean
and implement the SimpleInstrumentation interface. An example of custom instrumentation
that logs the data fetcher name and type upon the completion of any query can be found in
Listing 5.27.

Netflix DGS 41

@Configuration
@EnableWebSecurity
@EnableMethodSecurity(securedEnabled = true)
public class SecurityConfig {

@Bean public SecurityFilterChain securityFilterChain(HttpSecurity
httpSecurity) throws Exception {↪→

httpSecurity
.csrf().disable()
.authorizeHttpRequests(auth ->

auth.anyRequest().authenticated())↪→

.sessionManagement(session ->
session.sessionCreationPolicy(SessionCreationPolicy.STATELESS))↪→

.httpBasic(Customizer.withDefaults());

return httpSecurity.build();
}

@Bean public UserDetailsService userDetailsService(PasswordEncoder
passwordEncoder) {↪→

UserDetails admin = User.builder()
.username("admin")
.password(passwordEncoder.encode("admin"))
.roles("ADMIN")
.build();

UserDetails user = User.builder()
.username("user")
.password(passwordEncoder.encode("user"))
.roles("USER")
.build();

return new InMemoryUserDetailsManager(admin, user);
}

@Bean PasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder();

}
}

Code listing 5.21 In-memory user details service

@Secured("ROLE_ADMIN")
List<LectureEntity> findAll();

Code listing 5.22 Example of using @Secured

5.1.13 Tracing
Another crucial aspect is query tracing. Although it can be implemented manually through
instrumentation, there is no need to do so, as Apollo already provides available solutions. All

42 GraphQL Federation - implementation

const gateway = new ApolloGateway({
supergraphSdl: new IntrospectAndCompose({

subgraphs: [
{ name: 'teacher_service', url: 'http://localhost:8080/graphql' },
{ name: 'lecture_service', url: 'http://localhost:8081/graphql' },

],
introspectionHeaders: {

Authorization: 'admin admin',
}

})
});

Code listing 5.23 Example of using introspection headers

class AuthenticatedDataSource extends RemoteGraphQLDataSource {
willSendRequest({ request, context }) {

request.http.headers.set('Authorization', context.authorization);
}

}

const gateway = new ApolloGateway({
supergraphSdl: new IntrospectAndCompose({

subgraphs: [
{ name: 'teacher_service', url: 'http://localhost:8080/graphql' },
{ name: 'lecture_service', url: 'http://localhost:8081/graphql' },

],
introspectionHeaders: {

Authorization: 'admin admin',
}

}),
buildService({name, url}) {

return new AuthenticatedDataSource({url})
}

});

Code listing 5.24 Example of using buildService

you need to do is register an Instrumentation bean with the TracingInstrumentation imple-
mentation, as demonstrated in Listing 5.28.

While this approach works well for regular GraphQL queries, it doesn’t support federated
ones. To enable federated traces, you need to add dependency demonstrated in Listing 5.29:

After adding the dependency, register the instrumentation bean with FederatedTracingInstrumentation
as shown in the Listing 5.30.

5.1.14 Metrics
Another essential aspect for every production ready application is metrics. Luckily metrics
are implemented out of the box by DGS framework. Simply, add dependency shown in the
Listing 5.31.

Netflix DGS 43

class AuthenticatedDataSource extends RemoteGraphQLDataSource {
willSendRequest({ request, context }) {

if (request.query === 'query __ApolloGetServiceDefinition__ { _service
{ sdl } }') {↪→

context.authorization = 'Basic dXNlcjp1c2Vy'
}

request.http.headers.set('Authorization', context.authorization);
}

}

Code listing 5.25 Example of using AuthenticatedDataSource

@DgsData(parentType = DgsConstants.SUBSCRIPTION_TYPE, field =
DgsConstants.SUBSCRIPTION.LiteratureAdded)↪→

public Publisher<Literature> literatureAdded() {
return literatureService.getLiteraturePublisher();

}

Code listing 5.26 Example of subscription

As you can see, metrics are implemented using Micrometer, so you can utilize any compatible
solution, such as Prometheus and Grafana, to display them. Of course, you can use Micrometer
to add your custom metrics too.

5.1.15 Custom scalar
GraphQL comes with predefined scalars, but sometimes there is a need to add custom ones, such
as Long or Date scalars. Let’s look at an example of a custom scalar that will represent java Long
class. The first step is to create a class that implements the Coercing interface and annotate
it with @DgsScalar annotation. To implement the Coercing interface, you need to provide
instructions on how to serialize and deserialize the value. You can see an implementation of
custom Long scalar in the Listing 5.32.

Then, you can simply register and use scalar in the schema as shown in the Listing 5.33.

5.1.16 Dynamic schemas
Sometimes, it can be helpful to modify the schema during runtime. This can be achieved by
creating a function with a return type of TypeDefinitionRegistry and annotating it with
@DgsTypeDefinitionRegistry, as demonstrated in Listing 5.34.

Once the query is defined, it’s time to add a data fetcher. This can be accomplished
by creating a function with a return type of GraphQLCodeRegistry and annotating it with
@DgsCodeRegistry, as shown in Listing 5.35.

5.1.17 Testing
DGS supports testing with the spring-boot-test so it is pretty straightforward task. Simply
annotate your class with @SpringBootTest and autowire the DgsQueryExecutor class. To reduce

44 GraphQL Federation - implementation

@Component
@Slf4j
public class LoggingTracingInstrumentation extends SimpleInstrumentation {

@Override public DataFetcher<?> instrumentDataFetcher(DataFetcher<?>
dataFetcher, InstrumentationFieldFetchParameters parameters) {↪→

if(parameters.isTrivialDataFetcher()) {
return dataFetcher;

}

return environment -> {
Object result = dataFetcher.get(environment);
if(result instanceof CompletableFuture) {

((CompletableFuture<?>) result)
.whenComplete((r, ex) ->

log.info("Async datafetcher {}
finished execution",
findDatafetcherTag(parameters)));

↪→

↪→

↪→

} else {
log.info("Datafetcher {} finished execution",

findDatafetcherTag(parameters));↪→

}

return result;
};

}

private String findDatafetcherTag(InstrumentationFieldFetchParameters
parameters) {↪→

GraphQLOutputType type =
parameters.getExecutionStepInfo().getParent().getType();↪→

GraphQLObjectType parent;
if (type instanceof GraphQLNonNull) {

parent = (GraphQLObjectType) ((GraphQLNonNull)
type).getWrappedType();↪→

} else {
parent = (GraphQLObjectType) type;

}

return parent.getName() + "." +
parameters.getExecutionStepInfo().getPath().getSegmentName();↪→

}
}

Code listing 5.27 Example of simple instrumentation

the number of components set up for the test, you can limit the number to DgsAutoConfiguration
and the classes you’re actually testing.

For building of queries, it’s highly recommended to use the Type safe query API as demon-
strated in Listing 5.36. This approach streamlines the process and makes it easier to manage

Proof of Concept 45

@Configuration
public class AppConfig {

@Bean
public Instrumentation tracingInstrumentation(){

return new TracingInstrumentation();
}

}

Code listing 5.28 Example of Tracing Instrumentation

implementation
'com.apollographql.federation:federation-graphql-java-support:$latestVersion'↪→

Code listing 5.29 Apollo dependency

@Configuration
public class AppConfig {

@Bean
public Instrumentation tracingInstrumentation(){

return new FederatedTracingInstrumentation();
}

}

Code listing 5.30 Example of Federated Tracing Instrumentation

implementation 'com.netflix.graphql.dgs:graphql-dgs-spring-boot-micrometer'

Code listing 5.31 DGS metrics dependency

complex queries.

5.2 Proof of Concept

5.2.1 Domain
The proof of concept is based on the uvazky database which is illustrated in Figure 5.2. For
demonstration purposes, only a portion of the database is used, specifically the Teacher, Subject,
Lecture, Literature and Seminar entities.

To showcase the capabilities of GraphQL Federation, separate services have been created
for each entity, resulting in Teacher, Subject, Lecture, Seminar, and Literature services. This
approach allows us to envision each individual service being managed by a different team, high-
lighting the real power of GraphQL Federation.

Additionally, the proof of concept includes a gateway that composes schemas and acts as an
entry point for the application. The overall architecture is depicted in Figure 5.1.

46 GraphQL Federation - implementation

@DgsScalar(name="Long")
public class LongScalar implements Coercing<Long, String> {

@Override public String serialize(@NotNull Object dataFetcherResult)
throws CoercingSerializeException {↪→

if (dataFetcherResult instanceof Long result) {
return String.valueOf(result);

} else {
throw new CoercingSerializeException("Invalid Long

type");↪→

}
}

@Override public @NotNull Long parseValue(@NotNull Object input)
throws CoercingParseValueException {↪→

try {
if (input instanceof String val) {

return Long.valueOf(val);
} else {

throw new
CoercingParseValueException("Expected
input type is String");

↪→

↪→

}
} catch (Exception e) {

throw new CoercingParseValueException(e);
}

}

@Override public @NotNull Long parseLiteral(@NotNull Object input)
throws CoercingParseLiteralException {↪→

if (input instanceof StringValue stringValue) {
try {

return Long.valueOf(stringValue.getValue());
} catch (Exception e) {

throw new CoercingParseLiteralException(e);
}

} else {
throw new CoercingParseLiteralException("Value is not

a valid long scalar");↪→

}
}

}

Code listing 5.32 Custom Long scalar

Furthermore, there is additional standalone project called OpenAPIToGraphQL which serves
as an illustration for the OpenAPI to GraphQL section included in the thesis.

Proof of Concept 47

type Lecture {
parallel: Long

}

scalar Long

Code listing 5.33 Example of using custom scalar in schema

@DgsTypeDefinitionRegistry
public TypeDefinitionRegistry registry() {

TypeDefinitionRegistry typeDefinitionRegistry = new
TypeDefinitionRegistry();↪→

ObjectTypeExtensionDefinition query =
ObjectTypeExtensionDefinition.newObjectTypeExtensionDefinition().
name("Query").fieldDefinition(

↪→

↪→

FieldDefinition.newFieldDefinition().name("getTeachers").
type(new ListType(new TypeName("Teacher"))).build()↪→

).build();

typeDefinitionRegistry.add(query);
return typeDefinitionRegistry;

}

Code listing 5.34 Example of using TypeDefinitionRegistry

@DgsCodeRegistry
public GraphQLCodeRegistry.Builder registry(GraphQLCodeRegistry.Builder

codeRegistryBuilder, TypeDefinitionRegistry registry) {↪→

DataFetcher<List<Teacher>> df = dfe ->
teacherService.findAll().stream()↪→

.map(teacherMapper::toDto)
.toList();

FieldCoordinates fieldCoordinates =
FieldCoordinates.coordinates("Query", "getTeachers");↪→

return codeRegistryBuilder.dataFetcher(fieldCoordinates, df);
}

Code listing 5.35 Example of using GraphQLCodeRegistry

5.2.2 Service architecture
In the proof of concept, each service follows the three-tier architecture, dividing the application
into three separate logical components to achieve modularity, maintainability, and scalability.

Each service has its own PostgreSQL database. Consequently, the data access tier is repre-
sented by JPA repositories, which query data from the associated database.

The business tier is represented by services. This layer is quite thin and primarily delegates

48 GraphQL Federation - implementation

@Test
void getLiteratures() {

// setup data
var projectionRoot = new GetLiteraturesProjectionRoot().isbn().code();
GraphQLQueryRequest graphQLQueryRequest = new

GraphQLQueryRequest(GetLiteraturesGraphQLQuery.newRequest().build(),
projectionRoot);

↪→

↪→

// execute query
List<Literature> literature =

dgsQueryExecutor.executeAndExtractJsonPathAsObject(graphQLQueryRequest.serialize(),
"data.getLiteratures", new TypeRef<List<Literature>>() {});

↪→

↪→

// assert result
Assertions.assertEquals(4, literature.size());

}

Code listing 5.36 Example of testing data fetcher

Figure 5.1 Overall proof of concept architecture

calls to the data access tier. The simplicity of this layer is due to the demonstration purposes of
the proof of concept, which does not require complex business logic.

The presentation layer is represented by data fetchers, which are responsible for handling
user input and presenting the response.

5.2.3 How to use
5.2.3.1 Services
All five services and their associated databases are designed to be launched as Docker containers.
To facilitate this, a /docker folder is located in the root of each service, containing db and
server sub-folders. The server folder holds a Dockerfile responsible for creating the server
image, while the db folder contains a Dockerfile that creates the database image and populates
it with data found in the scripts sub-folder of db.

The images are used in the docker-compose.yml file, which creates the containers. You can
launch services one by one, going to their individual folder and executing docker compose up or

Proof of Concept 49

Figure 5.2 Uvazky database

you can execute docker compose up in the root of the main project to get all the services and
databases running. Each service can be manually tested by going to the /graphiql endpoint
where built-in GUI for query execution is located. Note that LiteratureService requires
authentication with username and password equal to admin. For this, you need to
add authorization header as show in the Figure 5.3.

50 GraphQL Federation - implementation

Figure 5.3 Example of adding authorization header

5.2.3.2 Gateway
Once all services and databases are up and running, you can start the gateway. For this, ensure
that Node.js is installed on your system and then, run npm install and npm start in the root
folder of the gateway. As a result, the gateway should print a log confirming that it has started
successfully, along with the port on which it is running.

The gateway includes a built-in GUI that can be used for executing queries and testing the
application. To access the GUI, navigate to the http://localhost:9200/graphiql endpoint
and click Explore graph button. Please note that this feature is only compatible with Google
Chrome and Mozilla Firefox browsers.

5.2.3.3 OpenAPIToGraphQL
The OpenAPIToGraphQL project can also be launched as a Docker container by running docker
compose up. The next step is to install the IBM CLI tool, which is responsible for convert-
ing OpenAPI to GraphQL. To do this, ensure that Node.js is installed on your system and
then run npm i -g openapi-to-graphql-cli. Next step, is to execute openapi-to-graphql
http://localhost:9040/v3/api-docs -p 9999 which should start graphql wrapper on port
9999. Now, you should be able to query graphql wrapper with any client tool like Postman. For
example, you may try query as showed in the Listing 5.37.

5.2.4 Predefined ports
Teacher service server - 8080

Teacher service database - 5432

Subject service server - 8081

Literature service server - 8082

Subject service database - 5632

Literature service database - 5732

Lecture service server - 8083

Proof of Concept 51

{
viewerBasicAuth(username: "string", password: "string") {

teacher(username: "yakunole") {
findCar {

name
}
firstName
lastName
username

}
}

}

Code listing 5.37 Example of query

Lecture service database - 5832

Seminar service server - 8084

Seminar service database - 5932

Gateway - 9200

OpenAPIToGraphQL - 9040

5.2.5 Testing
Note that all queries, mutations and entity fetchers are covered by unit tests. You can find
associated tests in the /src/main/test of each service. Testing is done as described in the
Testing section.

5.2.6 Teacher Service
Teacher service is responsible for all operations related to Teacher entity. It contains only
teacher information and doesn’t know anything about the relation with other entities. Instead,
Teacher is extended by other services. This is done to showcase the separation of concerns
which is possible because of GraphQL Federation. You can see the schema of the service in the
Listing A.1.

5.2.6.1 Dynamic schema
Although the schema only defines the getTeacherByUsername query, there is an additional
getTeachers query that is dynamically generated. The code for this query can be found in
the DynamicTypeDefinitions and TeacherDataFetcher classes. For more information on this
topic, refer to the Dynamic schemas section.

5.2.6.2 Errors as data
This service also demonstrates the ”errors as data” concept. It does so by specifying possible user
errors for the getTeacherByUsername query within the schema, fully utilizing the declarative na-
ture of GraphQL. With this approach, it is clear from the schema that the getTeacherByUsername

52 GraphQL Federation - implementation

query has two possible outcomes: success and teacher not found. For more information on this
topic, refer to the Errors section.

5.2.7 Subject service
The Subject Service manages all operations related to the Subject entity. Additionally it pop-
ulates Teacher entity with the list of related subjects. The schema for this service can be found
in Listing A.2.

5.2.7.1 Type extension
This service demonstrates the use of type extension in the DGS framework. To achieve this, both
the entity fetcher and nested data fetcher are defined within the TeacherDataFetcher class as
described in Extending type section.

5.2.8 Literature service
The Literature Service manages all operations related to the Literature entity and extends the
Subject entity with a list of related literature. The schema for this service can be found in
Listing A.3.

5.2.8.1 Data Loader
This service demonstrates the data loader concept. The MappedBatchLoader implementation
can be found in the LiteratureDataLoader class, while the thread executor configuration is
located in the DataLoaderConfig class. For more information on this topic, refer to the Data
Loader section.

5.2.8.2 Subscription
Additionally, a real-time subscription called literatureAdded located in the LiteratureDataFetcher
is also implemented. You can find the associated test in the LiteratureDataFetcherTest. See
Subscription section for more information.

5.2.8.3 Authentication and Authorization
The service also showcases an example of authentication and authorization in the DGS frame-
work. This is achieved by registering an admin user in the SecurityConfig class and restricting
access to the getLiteratureByCode query for user with admin role only. Note that this has a
significant impact on the gateway and for more information on this topic, see the Authentication
and Authorization section.

5.2.8.4 Mutation
The implementation of mutations and the usage of input types are also demonstrated. The
addLiterature mutation example can be found in the LiteratureDataFetcher class.

5.2.9 Lecture service
The Lecture Service is responsible for managing the Lecture entity and extending the Subject
entity with a list of related lectures. See the service schema in the Listing A.4.

Proof of Concept 53

5.2.9.1 Instrumentation
This service demonstrates the basic usage of the Instrumentation concept by providing the
LoggingTracingInstrumentation class, which logs the name of the data fetcher when its exe-
cution is complete. For more information on this topic, refer to the Instrumentation section.

5.2.9.2 Tracing
The service showcases tracing functionality by implementing TracingInstrumentation in the
TracingConfig class. Consequently, when executing queries for this service, traces are present
in the response. For more information on this topic, see the Tracing section.

5.2.9.3 Metrics
Metrics are also demonstrated in this service and can be accessed at the /actuators endpoint.
A list of default actuator metrics is available from the start, and GraphQL metrics will appear
after executing queries. For more information, refer to the Metrics section.

5.2.9.4 Custom scalar
Occasionally, it may be necessary to create a custom scalar, such as for handling date types. In
this example, a custom Long scalar is implemented. You can refer to the LongScalar class for
an example of implementation and to Custom scalar section for additional information.

5.2.10 Seminar service
Seminar service is responsible for the Seminar entity. It also extends Subject entity with the
list of related seminars. See the schema in the Listing A.5.

5.2.11 Gateway
Gateway is the default ”apollo server” used with the ”apollo gateway” extension. Additionally,
it is customized to allow local composition of schemas and passing of authorization header to the
underlying services. You can find more information in the Gateway section.

5.2.12 OpenAPIToGraphQL
OpenAPIToGraphQL is implemented as regular web server with three swagger documented
REST endpoints. You can see the swagger documentation by going to /swagger-ui.html end-
point of running server. It is created to showcase the OpenAPI to GraphQL section, so refer
there for more details.

54 GraphQL Federation - implementation

Chapter 6

Conclusion

The main goal of this thesis was to introduce GraphQL Federation, explain its fundamental
concepts, benefits, potential problems, and provide a functional prototype. The first three chap-
ters were dedicated to providing a comprehensive theoretical foundation, while the final chapter
explored the implementation of Netflix DGS and a prototype. Throughout this study, we have
thoroughly examined the key benefits and limitations of the GraphQL Federation technology,
enabling us to now draw the conclusion.

Gateway Federation is particularly advantageous for organizations that are required to serve
significant number of distinct clients requiring different data, thus necessitating the use of
GraphQL to manage this demand. It also proves beneficial when operating in a distributed
architecture where it significantly simplifies communication between teams and reduces the need
for requesting changes from other teams. Therefore, Gateway Federation stands out as a great
fit for complex, distributed systems, requiring a more efficient working environment.

However, smaller companies may encounter a number of challenges trying to adopt GraphQL
Federation. For instance, a well-implemented GraphQL Federation architecture necessitates
Schema Registry and Uplink which are not available as open-source solutions, but rather are
built in-house by large tech companies.

Additionally, GraphQL Federation is a relatively new technology and the community knowl-
edge and support is still growing. This means that best practices are not yet established, and
there may be fewer experts or resources to turn to when encountering problems and issues.

To conclude, I would say that GraphQL Federation is a great choice in case you are prepared
to invest the necessary resources and effort to overcome potential challenges. However, if your
priority is a workable solution that is easy to implement, I would say that a combination of
GraphQL with other technologies is beneficial. For example, I would suggest to consider a single
GraphQL service serving as an abstraction layer communicating with underlying services to
resolve incoming requests.

55

56 Conclusion

Appendix A

Appendix

57

58 Appendix

type Query {

"""
Query to retrieve teacher by username
"""
getTeacherByUsername(username: String!): GetTeacherByUsernamePayload

}

union GetTeacherByUsernamePayload = GetTeacherByUsernameSuccess |
TeacherNotFound↪→

"""
Type representing teacher of the university
"""
type Teacher @key(fields: "username") {

username: ID
firstName: String
lastName: String
titleBefore: String
titleAfter: String
employmentStatus: String
position: String
department: String

}

type GetTeacherByUsernameSuccess {
teacher: Teacher

}

interface UserError {
message: String!

}

type TeacherNotFound implements UserError {
message: String!

}

Code listing A.1 Teacher service schema

59

type Query {
"""
Query to retrieve the list of all subject
"""
getSubjects: [Subject]

"""
Query to retrieve subject by code
"""
getSubjectByCode(code: String!): Subject

}

"""
Type representing subject in the university
"""
type Subject @key(fields: "code") {

code: ID
titleCz: String
titleEn: String
garant: String
kat: String
psp: String
psem: String
ects: Int
rozshah: String
end: String
role: String
poznamka: String
osnovacz: String
anotacecz: String
osnovaen: String
anotaceen: String

}

"""
Extension of teacher type with the list of related subjects
"""
type Teacher @key(fields: "username") @extends {

username: ID
subjects: [Subject]

}

Code listing A.2 Subjects service schema

60 Appendix

type Query {
getLiteratures: [Literature]

getLiteraturesByCode(code: String!): [Literature]
}

type Mutation {
addLiterature(literature: AddLiteratureInput!): Literature

}

type Subscription {
literatureAdded: Literature

}

type Literature {
isbn: ID
code: String
title: String
author: String
publisher: String
year: String

}

type Subject @key(fields: "code") @extends {
code: ID
literature: [Literature]

}

input AddLiteratureInput {
isbn: String
code: String
title: String
author: String
publisher: String
year: String

}

Code listing A.3 Literature service schema

61

type Query {
getLectures: [Lecture]

getLecturesByCode(code: String!): [Lecture]
}

type Lecture {
code: String
parallel: Int
studentCount: Int

}

type Subject @key(fields: "code") @extends {
code: ID
lectures: [Lecture]

}

Code listing A.4 Lecture service schema

62 Appendix

type Query {
getLiteratures: [Literature]

getLiteraturesByCode(code: String!): [Literature]
}

type Mutation {
addLiterature(literature: AddLiteratureInput!): Literature

}

type Subscription {
literatureAdded: Literature

}

type Literature {
isbn: ID
code: String
title: String
author: String
publisher: String
year: String

}

type Subject @key(fields: "code") @extends {
code: ID
literature: [Literature]

}

input AddLiteratureInput {
isbn: String
code: String
title: String
author: String
publisher: String
year: String

}

Code listing A.5 Seminar service schema

Bibliography

1. LANE, Kin. The API-first transformation. Postman, Inc, 2022. isbn 9798986951805.
2. SHRADDHA. 5 years of graphql: Lee Byron and others look back at their graphql journey

[online]. Hasura GraphQL Engine Blog, 2021. Available also from: https://hasura.io/
blog/graphql-at-five-years.

3. OZKAYA, Mehmet. API gateway pattern [online]. Design Microservices Architecture with
Patterns and Principles, 2023. Available also from: https://medium.com/design-microservices-
architecture-with-patterns/api-gateway-pattern-8ed0ddfce9df.

4. CHIAZZO, Ignacio. Introspection in graphql [online]. Medium, 2021. Available also from:
https://ignaciochiazzo.medium.com/introspection-in-graphql-a5a5bd744a66.

5. What is GraphQL [online]. [N.d.]. Available also from: https://graphql.org/learn/.
6. What is GraphQL Schema [online]. [N.d.]. Available also from: https://graphql.org/

learn/schema.
7. GIROUX, Marc-Andre. Production ready GraphQL [online]. 2020.
8. Apollo Federation Introduction [online]. [N.d.]. Available also from: https://www.apollographql.

com/docs/federation/.
9. BLOG, Netflix Technology. How netflix scales its API with Graphql Federation (part 1)

[online]. Netflix TechBlog, 2020. Available also from: https://netflixtechblog.com/how-
netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2.

10. Schema registry in GraphQL Federation [online]. [N.d.]. Available also from: https://www.
apollographql.com/tutorials/lift-off-part5/02-what-is-the-schema-registry.

11. Apollo managed federation overview [online]. 2022. Available also from: https://www.
apollographql.com/docs/federation/managed-federation/overview.

63

https://hasura.io/blog/graphql-at-five-years
https://hasura.io/blog/graphql-at-five-years
https://medium.com/design-microservices-architecture-with-patterns/api-gateway-pattern-8ed0ddfce9df
https://medium.com/design-microservices-architecture-with-patterns/api-gateway-pattern-8ed0ddfce9df
https://ignaciochiazzo.medium.com/introspection-in-graphql-a5a5bd744a66
https://graphql.org/learn/
https://graphql.org/learn/schema
https://graphql.org/learn/schema
https://www.apollographql.com/docs/federation/
https://www.apollographql.com/docs/federation/
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://www.apollographql.com/tutorials/lift-off-part5/02-what-is-the-schema-registry
https://www.apollographql.com/tutorials/lift-off-part5/02-what-is-the-schema-registry
https://www.apollographql.com/docs/federation/managed-federation/overview
https://www.apollographql.com/docs/federation/managed-federation/overview

64 Bibliography

Enclosed media

Readme.txt..Description of starting the application
src

impl..Source code of a functional prototype
thesis..Source of thesis in the LATEX

text..Text of the thesis
thesis.pdf...Text of thesis in PDF format

65

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Motivation
	Thesis goals
	Thesis structure

	Basic concepts and technologies
	GraphQL
	Microservice architecture
	GraphQL Federation
	API Gateway
	Apollo Federation
	Netflix DGS
	Instrumentation
	Introspection
	Gradle
	Spring
	Spring Boot
	JPA
	Lombok
	Mapstruct
	Docker

	GraphQL
	History of GraphQL
	What is GraphQL
	GraphQL vs REST
	GraphQL benefits
	GraphQL drawbacks

	Schema definition language
	Object type and fields
	Query, Mutation, Subscription
	Arguments
	Scalars
	Enumeration
	Interface
	Union
	Input type

	Errors
	Abusive Queries
	Rate limiting
	Persisted Queries
	Query Language
	OpenAPI to GraphQL

	GraphQL Federation - theory
	History of GraphQL Federation
	Simple Merging
	Schema Stitching
	Composition in GraphQL Federation

	Directives
	@key
	@extends
	@external
	@requires
	@provides

	Entity
	Value types
	Schema registry
	Federation with Schema Registry and Uplink

	GraphQL Federation - implementation
	Netflix DGS
	Dependencies
	Schema
	Codegen plugin
	Type safe query API
	Data Fetcher
	Nested data fetcher
	Extending type
	Data Loader
	Gateway
	Authentication and Authorization
	Subscription
	Instrumentation
	Tracing
	Metrics
	Custom scalar
	Dynamic schemas
	Testing

	Proof of Concept
	Domain
	Service architecture
	How to use
	Predefined ports
	Testing
	Teacher Service
	Subject service
	Literature service
	Lecture service
	Seminar service
	Gateway
	OpenAPIToGraphQL

	Conclusion
	Appendix
	Enclosed media

