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Abstract
As a part of a study into psilocybin’s ef-
fect on the human brain, the Czech Na-
tional Institute of Mental Health (NIMH)
conducted a series of tests of psilocybin’s
influence on music perception. This thesis
attempts to find a way to locate changes
in the brain and obtain quantifiable and
intelligible information about the scale of
psilocybin’s influence on perceiving dif-
ferent aspects of music from the provided
data. Two methods aiming to obtain these
results were proposed and tested. The
first method is finding coherence between
signals using the DICS method. It should
lead to obtaining both information about
which aspects of music are perceived dif-
ferently when under the influence and the
location of the parts of the brain that are
affected. The second method is based on
correlating features from EEG and the
cepstrum of music. In contrast to DICS
analysis, cepstral analysis is less spatially
specific in the EEG domain, but it is more
sensitive in capturing and describing the
underlying structure of the music.
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Coherence, Cepstrum, Dynamic Imaging
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MATLAB
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Abstrakt
V rámci studie o vlivu psilocybinu na lid-
ský mozek provedl český Národní ústav
duševního zdraví (NUDZ) sérii testů vlivu
psilocybinu na vnímání hudby. Tato práce
se pokouší najít způsob, jak lokalizovat
změny v mozku a z poskytnutých dat zís-
kat kvantifikovatelné a srozumitelné in-
formace o rozsahu vlivu psilocybinu na
vnímání různých aspektů hudby. Byly na-
vrženy a testovány dvě metody zaměřené
na získání těchto výsledků. První meto-
dou je zjišťování koherence mezi signály
pomocí metody DICS. Ta by měla vést k
získání informací jak o tom, které aspekty
hudby jsou pod vlivem vnímány odlišně,
tak o umístění ovlivněných částí mozku.
Druhá metoda je založena na korelaci rysů
z EEG a kepstra hudby. Na rozdíl od DICS
analýzy je kepstrální analýza méně prosto-
rově specifická v oblasti EEG, zato však
citliveji zachycuje a lépe popisuje základní
strukturu hudby.

Klíčová slova: Psilocybin, EEG, Hudba,
Koherence, Kepstrum, Dynamic Imaging
of Coherent Sources, Korelace, MATLAB

Překlad názvu: Psilobeats: Lokalizace
efektu psilocybinu na lidský mozek
vzhledem k vnímání hudby
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Chapter 1
Introduction

It is common knowledge that psilocybin, a substance found in some species of
fungi, is often associated with use for its psychoactive properties. The effects
of psilocybin have been researched since as early as the 1960s [2], but what
exactly psilocybin causes in the human brain has still not been established
well enough for its potential benefits to be utilized in patients with specific
mental health problems.

The Czech National Institute of Mental Health conducted several experi-
ments involving psilocybin when studying the potential benefits of psilocybin
and other psychedelics in psychiatric practice. Among these experiments was
a study into how psilocybin affects the perception of music. This work aims
to process the data obtained in these experiments and give intelligible and
quantifiable information about how is the perception of music affected by
psilocybin.

Two methods were attempted to obtain the desired information. The first
method is the Dynamic Imaging of Coherent Sources, further referred to as
DICS for short. DICS is used to find coherent areas in the brain along with
the time frames of their activity. The other method is based on cepstral
analysis, leading to a simple identification of rhythmically motivated signal
elements. Being a nonlinear method, it may lead to improved results over
DICS, that is only capable of detecting linear coupling.

1.1 Psilocybin

Psilocybin, or 4-phosphoryloxy-N,N-dimethyltryptamine, is a psychoactive
alkaloid commonly known to be found in Psilocybe mushrooms [3]. Mush-
rooms containing psilocybin are far from rare and can be found all around
the world, as illustrated in figure 1.1.

In 2022, Psychedelics Research Center (PRC) was founded under NIMH to
research the effects and potential benefits of psychedelics. While PRC is very
new, it follows up on a long term research conducted under Prague Psychiatric
Center and NIMH. Researching psilocybin as a potentially beneficial substance
in treating patients who do not respond to conventional treatment was
initiated by Dr. Tomáš Páleníček and Prof. Jiří Horáček, M.D., Ph.D,
both of whom now work at PRC with Dr. Páleníček being the head of the
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1. Introduction .....................................
department. The experiment that resulted in data processed in this work is a
part of the long term research that has now been encompassed under PRC.

Figure 1.1: Psilocybe Mushrooms Around The World (Sourced from [1])

1.2 Music and Notation

Figure 1.2: Written Music

When musical compositions are written, they are commonly written into
sheet music. Each tone is marked into a score, consisting of five horizontal
lines, on a line or into a space signifying its pitch. The symbol used to mark
a note also contains information about the duration of the tone. The most
simple lengths are whole note ( ¯ ), half note ( ˘ “), quarter ( ˇ “), quaver ( ˇ “( ), and
semiquaver ( ˇ “) ), each being two times the duration of the next one.

Quarter notes are sometimes referred to as beats as they are used to specify
the tempo of a composition. This is done by denoting beats per minute
(BPM) with quarter note most commonly used as the beat unit.

2



..................................1.2. Music and Notation

To specify the type of rhythm, notes are clustered into bars, also called
measures. A bar is denoted in sheet music by vertical lines and consists of
a specified number of beats of a given length denoted by a time signature.
In Western music, this is predominantly four quarters a beat, written as 4

4,
where the upper 4 denotes there are 4 beats in a bar, and the lower 4 denotes
a quarter note gives that beat. 4

4 time signature is sometimes also denoted as
S . Figure 1.2 shows a sample of written music for reference.

3
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Chapter 2
Methods

This chapter explains how the problem was approached and the tools and
techniques used to obtain results. As previously mentioned, this work utilizes
DICS and cepstral analysis based methods.

2.1 Experiment

A total of 40 test subjects took part in the psilocybin experiments. The
group consisted of 21 men and 19 women aged 28 to 53, with a mean age of
36. Twenty-one test subjects were mental health care professionals, meaning
psychiatrists, psychologists, or mental health nurses. Twenty-three of the test
subjects have had a previous experience with serotonergic psychedelics. Of
the original 40 participants, one did not finish both sessions. 19 of the 39
participants participated and finished the Psilobeats listening test studied in
this thesis.

Each test subject was invited for an experiment on two separate dates at
least 28 days apart. Each time the test subjects were administered a substance
without the knowledge of whether it contained psilocybin or whether it was a
placebo. Afterward, they went through several test activities in a comfortable,
decorated living room-like setting in a sound-attenuated and electrically
insulated experimental room. Conducting the tests took around 6 to 8 hours.

During the listening test, the test subject was played several music tracks
of various genres while having their EEG and ECG recorded. This music
listening test is where the data used in this work were obtained. The processed
recordings are from listening to Gidra, an 8-minute Dark Psytrance track by
the Russian Psytrance group Parasense.

2.2 DICS And Assumed Signal Properties

This section describes the basic idea behind DICS, a method used to localize
coherent areas in the brain, and the time frame of their activity. It has
previously been shown to be useful for localizing activity related to seizures,
photoparoxysmal responses, and hypsarrhythmia [4]. In [5], the authors show

5



2. Methods.......................................
how it is possible to localize muscle-related brain activity using detection of
coupling between EEG or MEG and EMG or among EEG channels.

The method itself is only detailed to the extent required to use DICS for the
task at hand. As the name Dynamic Imaging of Coherent Sources suggests,
the stimulus signal is assumed to be coherent with the EEG if any meaningful
results are observed. Coherence C of signals x and y is defined as

Cx,y(f) = |Sx,y(f)|2

Sx,x(f)Sy,y(f) , (2.1)

where Sx,y(f) is cross spectral density of x and y. The value of coherence can
be between 0 and 1, representing how linear a relation between studied spectra
is [5]. Since frequency analysis is more sensitive to detecting similarities
between the music signal and EEG, coherence is expected to be a suitable
metric.

DICS will be used in this work by calculating coherence between music and
each EEG source and inspecting the resulting coherence maps. The obtained
map would then show how related a specific area is to the music rather than
how active the area in question is.

It is well documented that while the music signal played to a person may not
show any similarities to recorded EEG in the time domain, it shows similarities
in frequencies corresponding to tempo and rhythm in the frequency domain
[6, 7]. Neither [6] nor [7] deal with how prominent the expected rhythmic
spectral components are, however.

To show the presence of the rhythmic element in the spectrum, it is necessary
to explain what the expectation is. The tempo of the provided music was
measured with a metronome to 146 BPM. To translate this information into
Hz, which can be directly observed in the spectrum, the value must be divided
by 60. A quick calculation gives a corresponding frequency fbeat = 2.43 Hz.
For the spectrum not to smooth over this frequency, in case its power is small,
the window length needs to be set sufficiently high. The minimum for fft
order was obtained using the formula

Nmin =
⌈

fs

∆fmax

⌉
, (2.2)

where ∆fmax is the resolution requirement set to 0.05 Hz.
The spectrum of the music signal in the sub-audible range from zero to

twenty hertz is shown in figure 2.1 (top), and in the standard range of EEG
signals from zero to eighty hertz in figure 2.1 (bottom). Upon inspecting
the figure, what may draw attention is that there are several evenly spaced
narrowband peaks. Upon closer inspection, one finds that they correspond
with n · fbeat. This might be, at least partially, caused by the rhythm within
the arrangement as the music does not follow straight quarter notes rhythm
as opposed to the signal studied in [7]. It could also be higher harmonic
elements of the base rhythm itself. However, as one can empirically prove
with little effort, the faster rhythmic elements are indeed present. If they
were to appear in the spectrum, they would undoubtedly show as narrowband
peaks at frequencies corresponding to n · fbeat.

6



...................................... 2.3. Cepstrum
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Figure 2.1: Music Signal PSD at Low Frequencies

2.3 Cepstrum

The next method attempted was based on extracting features from the cepstra
of music and EEG. Other works have shown that cepstral coefficients can be
used as perceptual features [8] and, when properly processed, can be used to
estimate emotion conveyed through speech signal [9].

Cepstral analysis is a nonlinear signal analysis based on the nonlinear
transform defined as

Cc = F−1{log F{x[n]}} (2.3)

in the case of complex cepstrum, where x[n] is the analysed signal, F is
Fourier transform and F−1 is the inverse Fourier transform, or

Cr = F−1{log ∥F{x[n]}∥} (2.4)

in the case of real cepstrum. Power cepstrum is defined as

CP =
∥∥F−1{log (∥F{x[n]}∥2)}

∥∥2
, (2.5)

or equivalently as
CP = 4 · C2

r , (2.6)

which can be implemented in MATLAB using rceps() function.
An important property of cepstrum is its ability to separate aperiodic and

periodic components in analyzed signals [10]. This property and cepstrum’s
ability to accurately estimate smoothed spectrum has proven extremely useful
in speech processing [11].

The real cepstrum of music was calculated in 6.6-second-long sliding win-
dows, which covered approximately four bars. The length was chosen to
capture structures in music with a longer duration. Neighboring windows
overlapped by 50%. Averaged cepstrum across all windows is depicted in
figure 2.2.

The markers highlight periodic activity occurring every semiquaver, quaver,
quarter, half note, three quarters, one bar, and two bars, respectively. The

7



2. Methods.......................................
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Figure 2.2: Music Real Cepstrum

values represent a measure of how much of the studied signal is periodic
within the given period.
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.................................. 2.4. Data Preprocessing
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Figure 2.3: Music Signal Channels

2.4 Data Preprocessing

As the provided data is raw recordings, a data preprocessing step had to be
made for both EEG and music signals. In order to do so in a meaningful way,
the data format should first be understood.

The music signal is a two-channel 16-bit audio file with a sample rate of 44.1
kHz. The right channel contains the music in mono, while the left contains
gaussian synchronization pulses. The channels are shown in figure 2.3. Since
the music signal is a fully mastered audio used as the stimulus for test subjects,
the only preprocessing required in order for the music signal to be used in
DICS is the separation of channels followed by filtering and resampling to
match the 1 kHz sampling frequency of provided EEG. Seventh-order lowpass
II. type Chebyshev filter with a cutoff at 500 Hz and minimum stopband
attenuation of 90 dB was used with zero-phase filtering. Since the signals will
be synchronized with the EEG using the left channel in the time domain, it
is desired to prevent any phase shift that might affect the synchronization.
Zero-phase filter function filtfilt() was used to satisfy this condition. The
implementation is shown in figure 2.4.

2.4.1 Preprocessing EEG

Analyzed EEG is a 259-channel recording with 256 EEG channels, reference
voltage, ECG, and tag channel. The EEG data with a sampling frequency of
1000 Hz were recorded with an EGI Hydrocell MR-compatible 256-channel
high-density electrode net plugged into the EGI GES 400 signal amplifier
(Electrical Geodesics, Inc., Eugene, Oregon, United States). The tag channel
is a downsampled left channel from the music file and is meant to be used for
synchronization. Preparing this kind of data is a more complex task than
preparing the music data, and the two methods require some steps to be
modified for each one’s use case.

9



2. Methods.......................................
1 pulses_in=music_original(:,1);
2 music_in=music_original(:,2);
3 fs=1000;
4 fcut=500;
5 Wp=2*fcut/fsm;
6 N=7; R=90;
7 [b,a]=cheby2(N,R,Wp);
8 music_filtered=filtfilt(b,a,music_in);
9 pulses_filtered=filtfilt(b,a,pulses_in);

10 music_normalised=music_filtered./max(abs(music_filtered));
11 pulses_normalised=pulses_filtered./max(abs(pulses_filtered));
12 music_out=resample(music_normalised,fs,fsm);
13 pulses_out=resample(pulses_normalised,fs,fsm);

Figure 2.4: Music Preprocessing

Filtration

What needs to be filtered from EEG are mean value drift, line noise, and
high-frequency noise. Studied data is expected to be mostly within standard
frequency ranges, with delta waves in the bottom range and gamma waves
in the top. Some frequency components above the gamma band might be
potentially significant, and since all calculations are done in the spectral
domain, these components introduce no disturbance to further calculations.

Delta waves are commonly observed between 1 and 4 Hz, and, as previously
shown, the music used as a reference shows activity from around 1.5 Hz
corresponding to its rhythm. To eliminate the loss of any expected data, the
cutoff frequency for the highpass filter was set to 0.7 Hz. Fifth order II. type
Chebyshev filter was used with minimum stopband attenuation set to 20 dB.

The highest frequencies commonly studied in EEG are around 80 Hz. Since
the analysis is conducted strictly in the frequency domain, higher frequency
components do not introduce as significant a problem as they would if analyzed
in the time domain. For this reason, it was decided to filter the signal up
to 150 Hz with the intention of keeping components potentially coherent
with peaks in the lower frequency range of the music spectrum. The lowpass
filter was designed as a sixteenth-order II. type Chebyshev filter with a cutoff
frequency of 150 Hz and minimum stopband attenuation of 90 dB.

Since the recordings were taken in the Czech Republic, line noise is expected
at a European standard of 50 Hz. A notch filter was designed using Matlab’s
iirnotch() function with Q factor 100.

Since any phase shift resulting from filtration is undesired, just like in the
case of the music signal, zero-phase filter function filtfilt() was used.
The implementation is shown in figure 2.5.

Bad Channels and Bad Epochs

In order to remove bad epochs, the signals were manually inspected, and
noisy sections were marked and removed in the GUI version of EEGLab
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.................................. 2.4. Data Preprocessing

1 Fp=[0.7 50 150];
2 Wp=2*Fp/fs;
3 Nh=5; Rh=20;
4 Nl=16; Rl=90;
5 Q=100;
6 [bh,ah]=cheby2(Nh,Rh,Wp(1),"high");
7 [bn,an]=iirnotch(Wp(2),Wp(2)/Q);
8 [bl,al]=cheby2(Nl,Rl,Wp(3),"low");
9 for i=1:EEG.nbchan

10 EEG.data(i,:)=filtfilt(bh,ah,EEG.data(i,:));
11 EEG.data(i,:)=filtfilt(bl,al,EEG.data(i,:));
12 EEG.data(i,:)=filtfilt(bn,an,EEG.data(i,:));
13 end

Figure 2.5: EEG Filtration

(a) : Clean Window (b) : Window With an Artifact

Figure 2.6: Epoch Removal

[12] and in accordance to [13]. Before doing so, the synchronization channel
was replaced with a music signal to keep EEG and music synchronized even
after bad epoch removal. Figure 2.6 shows two images. Image 2.6a shows a
50-second window without artifacts. No epoch was removed from windows
like these. Image 2.6b shows a window of the same length containing an
artifact. Artifacts like this one were marked and removed.

The EEG was then mapped to an electrode map provided as a part of the
FieldTrip toolbox in order to be able to interpolate any rejected bad channels.
The electrode map describes the locations of electrodes on the HydroCel GSN
sensor net that was used in the experiment. Channels were again inspected
manually and interpolated in the GUI version of EEGLab.
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2. Methods.......................................
Independent Component Analysis

Independent Component Analysis, or ICA for short, is a method that allows
isolating independent sources of activity [14]. This means that if a source
isolated by ICA turns out to be noise or an artifact, it can also be relatively
easily removed.

While this method is widely used, it cannot be easily automatized for
general use as different EEG analysis tasks require different artifacts to be
removed or kept [14]. The judgment of which independent component is
to be removed is usually left to the user as there is no widely accepted
comprehensive method of successfully classifying artifacts as such [14].

EEGLab’s integrated function runica() was used to obtain independent
components. It was decided to perform decomposition into 35 independent
components. This decision was backed by a short experiment that showed
that 35 components are enough to explain approximately 98% of data variance
in available EEG signals. The graph in figure 2.7 shows the result of this
experiment, the dependence of covered variance on the number of components.

After finding independent components, EEGLAB’s pop_iclabel() was
used to make an initial guess on the character of each component. The
automatized labeling was merely a tool to simplify the last step of this
process, as the components were then manually inspected, and those that
showed typical artifact traits were removed.

2.4.2 Implementation

The previously described process was finally saved as a set of Matlab functions
psilo_preprocess() and psilo_autoprep() where the latter uses epochs
and channels to remove so the user does not have to do bad epoch and bad
channel removal by hand if they decide to redo preprocessing recordings they
completed before.

The entire process is shown in the form of an illustrative flowchart in
figure 2.8. The psilo_autoprep() function follows the same process but
ends after music goes through ft_preprocessing() and before EEG goes
through "component rejection in gui" block. The function saves this progress
and psilo_preprocess() can pick off where psilo_autoprep() stopped
to finnish preprocessing. This functionality was designed so that as many steps
as possible are done without the need for user input if repeating preprocessing
of a larger amount of data became necessary.

2.5 Dynamic Imaging of Coherent Sources Analysis

FieldTrip is a MATLAB toolbox that includes a plethora of functions for the
analysis of EEG, MEG, iEEG, and NIRS data [15]. It was chosen for this
work precisely because it has implemented functions for DICS. FieldTrip’s
use in the DICS part of this work loosely follows a tutorial [16] from the
project’s website.
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Figure 2.7: Variance Explained by PCA Based on Number of Components

Figure 2.8: psilo_preprocess() Flowchart
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2. Methods.......................................
2.5.1 Head Model Preparation

In order to show any findings on a map of a human head, it is necessary
to provide a model of it. A head model can be created from MRI using
FieldTrip’s implemented functions. The process based on a pipeline for
FieldTrip and SimBio [17] is shown in the form of an illustrative flowchart in
figure 2.9.

The MRI reading referenced in the very first square is a template reading
provided by NIMH.

Electrode location information referenced further in diagram 2.9 was ob-
tained from the template file used by psilo_preprocess() during prepro-
cessing.

Figure 2.9: psilo_head() Flowchart

The source model acts as a simulated model of the brain as a set of discrete
sources generating activity. For this work, the sources are placed 5 mm apart.

After obtaining the head and source models and fitting the electrode
locations on them, the data was used to calculate leadfield, which consists
of spatial distributions of sources contained in the source model in a volume
conductor represented by the head model.

As seen at the bottom of figure 2.9, the outputs were saved into a file.
This was mainly done because ft_prepare_volsens() function necessary
for leadfield calculation is significantly computationally demanding and time-
consuming.
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................................... 2.6. Cepstral Analysis

Head model preparation is an extensive field, and the process can become
significantly more complex than what is used in this work [18]. However,
thorough preparation is out of the scope of this thesis, and the described
method is sufficient for the purpose of this work.

2.5.2 Obtaining Coherence Maps

Fieldtrip allows using DICS on a properly prepared data and source model
using ft_sourceanalysis() function. In order to prepare the data for
DICS analysis, it needs to have trials defined and cross spectral densities
calculated. Figure 2.10 illustrates how psilo_analyze() function takes the
data obtained in preceding steps and uses it to obtain a coherence map.
ft_freqanalysis function requires a frequency range to be specified. It

was decided that the analysis would be conducted for each standard EEG
frequency band. In total, there would be two sets of coherence maps, one
for placebo recordings and one for psilocybin recordings for every inspected
frequency band.

Figure 2.10: psilo_analyze() Flowchart

2.6 Cepstral Analysis

2.6.1 Cepstral Features

It has been shown in other works that cepstral analysis is suitable for feature
extraction [8, 19]. This work will focus on high quefrency coefficients as
opposed to low quefrency mel-cepstral coefficients in the mentioned papers to
somewhat simplify the interpretation of the results.

Seven features were extracted from the music power cepstrum corresponding
to the marked peaks in figure 2.2. Music signal was first cut according to
each EEG recording as it would later be compared to features extracted from
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Figure 2.11: Extracted Cepstral Features

this recording. Cepstra were calculated in 6.6-second long windows with 50%
overlap, and the seven values extracted from each cepstrum to obtain the
time course of each feature. Figure 2.11 shows the time series obtained by
performing this extraction on unmodified music signal. Figure 2.12 illustrates
the implementation. The slack was added to minimize any potential tempo
imprecision’s effect on the results.

1 Ccoeffs=[4532 9063 18124 36247 54371 72494 144988];
2 slack=50;
3 Cp=4*psilo_vrceps(music',1,'h',wlen,wstep).^2;
4 Cm=zeros(width(Cp),length(Ccoeffs));
5 for i=1:width(Cp)
6 for j=1:length(Ccoeffs)
7 Cm(i,j)=max(Cp(Ccoeffs(j)−slack:Ccoeffs(j)+slack,i));
8 end
9 end

Figure 2.12: Music Feature Extraction

2.6.2 Band Limited Power

Band Limited Power (BLP) has been widely used in EEG analysis [20, 21, 22]
and it has been shown that there is relation to music to be found [20, 23, 22].

For each EEG recording, BLP was calculated to be compared to features
extracted from music. BLP was calculated in 6.6-second windows with 50%
overlap using MATLAB’s bandpower() function in the Alpha and Beta
bands. The EEG bands were chosen based on the literature studying the
coupling between music and EEG oscillations because it is reasonable to
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................................... 2.6. Cepstral Analysis

expect any potentially significant difference caused by psilocybin to be most
significant in the chosen bands [20, 21, 22]. No implementation is shown since
the bandpower() function automatically performs all calculations.
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2. Methods.......................................
2.7 Statistical Analysis

2.7.1 DICS

The two sets of obtained data would then be subjected to statistical analysis
in order to get a map of the likely effect of music and psilocybin on the brain.
Firstly this means the grand average over each set of recordings divided by
substance and over the entire set of all available coherence maps and the
difference between the average placebo and psilocybin.

In the next step, a pair T -test would be performed comparing placebo and
psilocybin results. FieldTrip allows for a parametric analytical method that
assumes normal data distribution or a non-parametric monte carlo method,
which can be used in a more general situation. The Monte Carlo method
would be utilized for its generality and lack of a necessity for normality.

Generally, T -test is used to determine whether two given sets of data have
the same mean. In this case, the two data sets are the sets of coherence
maps for placebo and psilocybin in the case of the DICS method and sets of
correlation maps for placebo and psilocybin for the cepstral analysis method.
The output of a T -test is T -value. In the case of the DICS method, the
output would be a map of T -values for each voxel in the head model. In the
case of the cepstral analysis method, the output would be a map of T -values
for each EEG electrode. T -value represents a ratio of the difference between
the two tested data sets and the variation within these sets. The higher the
absolute T -value, the more likely the data sets are different.

Performing as many T -tests as this method requires significantly increases
the risk of a type I error. This is commonly compensated by adjusting the
alpha value based on chosen correction method. The correction is mostly
derived from the number of performed tests, but more sophisticated methods
comparing test results to each other are also available, such as the cluster-
based correction method, which is used in our case [24].

2.7.2 Cepstral Analysis

Correlating Extracted Features

Pearson’s correlation for each music-EEG feature pair was chosen to find a
connection between the Cepstral and EEG Features. This would result in
7 × 2 values for every channel in every recording.

In order to eliminate the multiple comparison problem, a histogram of
correlations across all data (pooling PLA and PSI) in each band-feature
set will be plotted, and only band-feature combinations with multimodal
distributed data will be chosen for further analysis because those are likely
to exhibit a cluster structure.

18



.................................. 2.7. Statistical Analysis

Finding Areas of Interest

Benefiting from the knowledge of the results of the exploratory analysis
in DICS and the problem caused by multiple comparison problem, it was
decided that the correlation analysis would be hypothesis-driven. Only
selecting a limited number of channels for analysis radically limits the multiple
comparison problem and decreases the likelihood of statistical correction
forcing rejection of significance of all results.

Mean correlation maps will be plotted for each selected band-feature set
to determine whether the correlations are expected to be low or high. 25%
electrodes with the highest or lowest mean values will be chosen and averaged
for each subject with each substance for each band-feature set.

Data comparison

The resulting sets of values would then be used to compare placebo to
psilocybin. Each band-feature-substance subset will be tested with the
Shapiro-Wilk test, and depending on the result, either T -test or Wilcoxon
signed rank test.
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Chapter 3
Results

3.1 Preprocessing

Preprocessing was realized according to the diagram in figure 2.8. During
epoch inspection, it was found that in one case, such a large portion of the
recording consisted of artifacts similar to those in figure 2.6b that it was
decided to remove the test subject altogether. Both placebo and psilocybin
recordings were removed even though only the psilocybin recording was
riddled with artifacts, so the different amounts of samples in each test would
not affect the statistical analysis.

It was later noticed that the antialiasing filter used before downsampling
music was misdesigned. The 500 Hz cutoff frequency means there is some
aliasing present. Fortunately, the analysis was performed up to 60 Hz only,
and the used filter’s attenuation at 900 Hz (corresponding to aliasing at
100 Hz) is approximately 90 dB, meaning no aliasing was present in the
studied part of the spectrum.

3.2 Head Model Preparation

Figure 3.1 shows the original and segmented MRI obtained from it. The
segmented MRI in figure 3.1b was then used to prepare the head model.

Figure 3.2a shows visualized placements of the electrodes on the surface of
the created head model. The locations of the electrodes were obtained from
the template file provided with the FieldTrip toolbox that was used during
preprocessing. Figure 3.2b shows the created source model inside the head
model.

3.3 DICS

3.3.1 Obtaining Coherence Maps

In order to visualize obtained coherence map, it needs to be interpolated
to show activity in the respective area instead of in one of the substitute
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3. Results .......................................

(a) : Realigned MRI (b) : Segmented MRI

Figure 3.1: Realigned and Segmented MRI

(a) : Electrodes Placed On Head Model (b) : Source Model

Figure 3.2: Electrodes And Source Model

sources of the source model. Figure 3.3 shows the resulting coherence map
for a placebo recording of a single test subject in the delta band.

The analysis resulted in five coherence maps for each subject (n = 18)
and condition (PLA and PSI). A statistical analysis was performed on the
coherence maps in order to find any common trend in the effect of stimulus
or psilocybin on the test subjects.

3.3.2 Statistical Analysis

The grand average of coherence maps for placebo recordings is shown in
figure 3.4, psilocybin recordings in 3.5, and the difference between placebo
and psilocybin grand averages in 3.6. The results for other bands are shows
in figures 3.7, 3.8 and 3.9 for theta band, 3.10, 3.11 and 3.12 for alpha band,
3.13, 3.14 and 3.15 for beta band and 3.16, 3.17 and 3.18 for gamma band.

The obtained coherence maps for each substance type were also used in a
pair T -test using FieldTrip’s ft_sourcestatistics() to obtain results in
each band. Both parametric and non-parametric T -tests were attempted, but
since the results were identical, only parametric results are shown. Since the
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........................................ 3.3. DICS

Figure 3.3: Coherence Map - Delta Band, Placebo, Subject 18

T -test was performed with α = 0.05. All of the obtained results are considered
without correction, because statistical correction dismissed significance of all
of the obtained results. Figure 3.19 shows results of the performed T -test in
Delta band masked to only show areas with significant results. Similarly the
results for T -tests in other bands are shown in figures 3.20 for theta band,
3.21 for alpha band, 3.22 for beta band and 3.23 for gamma band.

An overview of found statistically important differences between placebo
and psilocybin is listed in table 3.1. Areas known to be unreliable in EEG
studies were omitted.

PSI - higher coherence with psilocybin, PLA - higher coherence with placebo
L/R - side in case of one sided effect
Area Delta Theta Alpha Beta Gamma
Cingulate Gyrus PSI PSI PSI PSI
Cuneus PSI PSI
Lateral Occipitotemporal Gyrus PSI (L)
Lingual Gyrus PSI
Middle Occipital Gyrus PSI
Middle Temporal Gyrus PLA (R) PLA (L)
Orbital Gyri PSI (R)
Postcentral Gyrus PLA (L) PSI PSI
Precentral Gyrus PSI (R) PSI PSI
Superior Frontal Gyrus PSI PSI PSI
Superior Occipital Gyrus PSI
Superior Parietal Lobe PSI
Superior Temporal Gyrus PSI (L)

Supramarginal Gyrus PSI (L)
PLA (R)

Table 3.1: Area Result Table
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Figure 3.4: Grand Average, Placebo, Delta Band

Figure 3.5: Grand Average, Psilocybin, Delta Band
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Figure 3.6: Grand Average, Difference, Delta Band

Figure 3.7: Grand Average, Placebo, Theta Band
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Figure 3.8: Grand Average, Psilocybin, Theta Band

Figure 3.9: Grand Average, Difference, Theta Band
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Figure 3.10: Grand Average, Placebo, Alpha Band

Figure 3.11: Grand Average, Psilocybin, Alpha Band
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Figure 3.12: Grand Average, Difference, Alpha Band

Figure 3.13: Grand Average, Placebo, Beta Band
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Figure 3.14: Grand Average, Psilocybin, Beta Band

Figure 3.15: Grand Average, Difference, Beta Band
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Figure 3.16: Grand Average, Placebo, Gamma Band

Figure 3.17: Grand Average, Psilocybin, Gamma Band
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Figure 3.18: Grand Average, Difference, Gamma Band

Figure 3.19: T -Value Map For Delta Band

31



3. Results .......................................

Figure 3.20: T -Value Map For Theta Band

Figure 3.21: T -Value Map For Alpha Band
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Figure 3.22: T -Value Map For Beta Band

Figure 3.23: T -Value Maps For Gamma Band
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3. Results .......................................
3.4 Cepstral Analysis

Figure 3.24 shows the correlation histograms in all calculated band-feature
combinations. Semiquaver, quaver, one bar, and two bars features were chosen
for further analysis.

Figure 3.24: Correlation Histograms
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Mean correlation maps for each remaining band-feature combination are
shown in figures 3.25a, 3.26a, 3.27a and 3.28a for Alpha band, and 3.29a,
3.30a, 3.31a and 3.32a for Beta band. Higher 25% values were chosen for
semiquaver in Alpha Band and one bar in both Alpha and Beta bands. Lower
25% values were chosen for semiquaver in the Beta band and quaver and
two bars in both Alpha and Beta Bands. Electrodes corresponding to cheeks
below the eyes (upper part in figures) were removed from the selection as the
measurements from these areas are likely highly inaccurate.

Shapiro Wilk test resulted in varying results, so the data comparison was
made using Wilcoxon signed rank test at significance level 0.05 corrected with
the Bonferroni method. The Wilcoxon signed rank test indicated that the
median correlation was significantly higher for psilocybin in the Alpha band
for quaver (z=-3.20, p=0.001) and two bars (z=-3.42, p<0.001). In other
cases, there was no significant difference in correlation. The results of the
tests are visualized with boxplots in figures 3.25c, 3.26c, 3.27c, 3.28c, 3.29c,
3.30c, 3.31c and 3.32c and listed in table 3.2.

The two band-features showing significant differences between placebo and
psilocybin were then tested with another Wilcoxon signed rank test to see
if the data was statistically significantly different from zero. In the case of
the Alpha-two bars band-feature, the test indicated a statistically significant
difference from zero for placebo only (z=-2.68, p=0.0074). The test results
are listed in table 3.3

corrected α = 6.25 · 10−3 Alpha Beta
Semiquaver z=-1.85, p=0.064 z=0.20, p=0.84
Quaver z=-3.20, p=0.001 z=-2.46, p=0.014
One Bar z=-2.29, p=0.022 z=-0.11, p=0.91
Two Bars z=-3.42, p<0.001 z=-1.89, p=0.058

Table 3.2: Cepstral Approach PLA-PSI Result Table

corrected α = 1.25 · 10−2 PLA PSI
Alpha-quaver z=-1.81, p=0.071 z=1.33, p=0.18
Alpha-two bars z=-2.68, p=0.0074 z=1.24, p=0.21

Table 3.3: Cepstral Approach Zero Difference Result Table
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Mean Correlation, Alpha Band, Semiquaver Feature
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Figure 3.25: Alpha Band, Semiquaver

Mean Correlation, Alpha Band, Quaver Feature
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Figure 3.26: Alpha Band, Quaver
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Mean Correlation, Alpha Band, One Bar Feature
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Figure 3.27: Alpha Band, One Bar

Mean Correlation, Alpha Band, Two Bars Feature
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Figure 3.28: Alpha Band, Two Bars
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Mean Correlation, Beta Band, Semiquaver Feature
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Figure 3.29: Beta Band, Semiquaver

Mean Correlation, Beta Band, Quaver Feature
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Figure 3.30: Beta Band, Quaver
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Mean Correlation, Beta Band, One Bar Feature
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Figure 3.31: Beta Band, One Bar

Mean Correlation, Beta Band, Two Bars Feature
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Figure 3.32: Beta Band, Two Bars
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Chapter 4
Discussion

4.1 DICS

With values with the order of magnitude between 10−3 for Delta, Theta, and
Alpha bands and 10−4 for Beta and Gamma bands, the found coherence
was overall small. This comes as no surprise since coherence is a measure of
a linear relationship between spectra. While it was expected to find some
linear relation, especially where rhythm can be found, the majority of the
music’s spectral components do not appear in the EEG spectrum. To assess
the within-subject coherence values per se, a surrogate model based statistic
is essential to be used, which was out of the scope of this thesis.

The grand averages and T -tests show areas with pronounced coherence
differences between placebo and psilocybin. Even though statistical correction
dismissed significance of any of the results, the areas that would be considered
significant without correction are discussed. Since the analysis yielded a
relatively large number of results, each frequency band will be discussed
separately. Figure 4.1 shows the music spectrum below 80 Hz with each
standard band highlighted in a unique color for a clear idea of what the EEG
was compared to in each band.
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Figure 4.1: Labeled Music Spectrum
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4. Discussion ......................................
4.1.1 Musical Meaning of EEG Frequency Bands

Delta Band

Delta band range is highlighted violet in figure 4.1. In this frequency range,
the activity was compared to the quarter note tempo of the song. The test
subjects can be reasonably expected to have perceived the rhythm in this
band.

Theta Band

Theta band range is highlighted blue in figure 4.1. In this frequency range,
the activity was compared to eighth and sixteenth notes in the music and
higher harmonics of the base tempo. Like in the case of the Delta band,
it is reasonable to expect the test subjects to perceive the rhythm in this
frequency range.

Alpha Band

Alpha band range is highlighted green in figure 4.1. In this frequency range,
the activity was likely compared to higher harmonics of the rhythmic elements
in previous bands. Any thirty-second notes would also be within the Alpha
band.

Beta Band

Beta band range is highlighted orange in figure 4.1. Just like in lower bands,
higher harmonics of rhythm can be found here. Beta band lies around the
threshold of audible frequencies, so any sub-bass and some lower bass elements
can also be found here. The beta band is the lowest band in which it is
reasonable to expect coherence with tonal components. It is apparent from
figure 4.1 that some peaks start showing up close to 30 Hz, which may
correspond to some low-end instruments.

Gamma Band

Gamma band range is highlighted red in figure 4.1. Higher harmonics of
rhythmic components can be found here, like in other bands. There are
also likely some tonal components and probable higher harmonics of tonal
components from the Beta band. Gamma band components were likely
perceived purely in terms of their tonal qualities.

4.1.2 Areas of Interest

The following section describes the identified areas and a functional meaning
of increased coherence in them is estimated. Since the MRI scan used was a
template and the electrode placements were aligned on the head model by
hand, the accuracy of any findings may be uncertain.
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........................................ 4.1. DICS

Superior Parietal Lobe

Superior Parietal Lobe processes highest associative stimuli [25]. This area
is responsible for spatial memory and visual-spatial transformations [25].
Visual-spatial transformations can be explained as information containing
looking at something and reaching for it simultaneously.

Increased coherence with psilocybin in the Gamma band means coherence
with tonal components of the music.

Visual Processing Centers

Activity in Lateral Occipitotemporal Gyrus means cognitive visual informa-
tion processing, namely processing of colors [25]. Cuneus is responsible for
more abstract visual stimuli [25]. Lingual Gyrus is closely tied to abstract
visualisations [25]. Occipital Gyri are involved in processing visual informa-
tion [25]. They can be divided into V1 to V6 areas, where V1 are areas
processing primary simple stimuli and V2 and higher processes increasingly
more complex and abstract stimuli [25].

The Lateral Occipitotemporal Gyrus showed increased coherence with
psilocybin in the Theta band, which suggests associations of faster rhythmic
elements of music and colors. The test subjects may have "seen music" on
psilocybin. Cuneus showed increased coherence with psilocybin in Delta and
Theta bands. The Lingual Gyrus area showed higher coherence with psilocybin
in the Delta band. Increased coherence in Cuneus and Lingual Gyrus areas
suggests that subjects experienced visual perception of rhythm or that any
potential synesthesia, or even visual hallucinations, were synchronized to the
rhythm of the music. Middle Occipital Gyrus showed increased coherence
with psilocybin in the Gamma band. As a V1 area, it processes simpler, more
concrete stimuli. Superior Occipital Gyrus, which showed increased coherence
with the Alpha band, falls into V2 or higher category. Coherence in this area
suggests some synchronization between higher visual associations and faster
rhythmic elements of the music.

Superior Temporal Gyrus

Superior Temporal Gyrus is a primary auditory cortex [25].
The increased coherence with psilocybin in the Theta band and placebo in

the Gamma band suggests the test subjects were experiencing the rhythmic
elements stronger on psilocybin and the tonal elements stronger on placebo.

Supramarginal Gyrus

Supramarginal Gyrus is a sensoric center for speech processing [25]. The
area on the left side that showed activity is called Wernicke’s area and is
responsible for processing and discerning voices, concepts, textual meanings,
and thoughts [25].
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The increased coherence with psilocybin in Wernicke’s area in the Theta

band would suggest an increased perception of the meaning behind lyrics.
However, as the music was an instrumental piece, it likely means the test
subjects projected some lyrical content supporting the possibility of auditory
hallucinations related to the music. There is a theory that dysfunctional
corollary discharge may lead to the inability to discern one’s idea from it
being told to them [25]. The corollary discharge process is often disrupted in
cases of psychosis, which is a state psilocybin pharmacologically mimics [25].

Cingulate Gyrus

Heightened activity in the Posterior Cingulate Gyrus, a main hub of the
so-called "Default Mode Network," is a common finding in psilocybin studies
[25]. The area is responsible for sensory and emotional perception [25]. The
increased activity may mean the test subjects subjectively perceived the music
with other senses than hearing [25]. It may also simply mean the subjects
experienced the music in a stronger manner [25].

The Cingulate Gyrus showed increased coherence with psilocybin in all
bands, except for Theta, which suggests perception of both rhythmic and
tonal elements of music was affected.

Orbital Gyri

Orbital Gyri are a part of the prefrontal cortex. They are involved in working
memory, reasoning, and morality [25].

Orbital Gyri showed increased coherence with psilocybin in the Gamma
band.

Postcentral Gyrus

Postcentral Gyrus processes tactile perception and is tied to mental represen-
tation and awareness of one’s own body [25].

Postcentral Gyrus showed higher coherence with placebo in the Delta
band and psilocybin in Theta and Alpha bands. The higher coherence with
psilocybin suggests the subjects subjectively perceived fast rhythmic elements
within their body or with touch.

Precentral Gyrus

Precentral Gyrus is a motoric cortex responsible for mechanic activity [25].
The higher coherence with psilocybin in the Delta, Theta, and Alpha band

could likely be related to an increased tendency to tap to the rhythm at the
base tempo and faster passages while imagining the tapping, dancing, or
other movements to the rhythm.
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................................... 4.2. Cepstral Analysis

Superior Frontal Gyrus

Superior Frontal Gyrus is responsible for movement planning [25].
The increased coherence in Delta, Beta, and Gamma bands supports the

suggestion of heightened coherence in the Precentral Gyrus, that the test
subjects had an increased tendency to tap along the rhythm of the music.

Middle Temporal Gyrus

The Middle Temporal Gyrus serves emotional association of audiovisual
stimuli and face recognition [25]. It is a higher associative area responsible
for complex stimuli and emotional connection to them [25].

The Middle Temporal Gyrus showed increased coherence with placebo
in Delta and Gamma bands. The T -values in this area were closer to the
threshold than in other cases.

4.2 Cepstral Analysis

Our results agree with literature [20] in that a significant correlation between
music and EEG was found specifically in the Alpha band. In [20], the authors
showed that Alpha oscillations in the parieto occipital area could be linked
to music imagination and synchronized to music stimulus depending on
subjective enjoyment of the music stimulus. The results obtained in this work
show that the EEG occipital alpha oscillations are related to the two-bar long
patterns in music such that the presence of two-bar long patterns in music
coincides with a decrease in Alpha activity. Further, Alpha oscillations are
known for their selective inhibition effect in the cortex. This suggests that
music perception is rather a dynamic cortical process co-regulated by Alpha
oscillation. More specifically, the presence of longer periodic structures in
music is related to lower inhibition (due to the lower Alpha activity) in the
occipital cortex, which corresponds to the higher excitability states. However,
this phenomenon was not observed in the psilocybin group.

The Alpha activity is known to be decreased during psilocybin intoxication.
In [21], the authors showed decreased Alpha activity in the occipital cortex
during the baseline period preceding the visually evoked potential (VEP).
Simultaneously, the VEP amplitude was altered by psilocybin [21]. Thus,
the decrease in the alpha activity in the occipital region is expected to cause
increased excitability in the cortex which is hypothesized to be the cause of
presence of visual hallucinations.

Based on the results of this work, the music perception and specifically
perception of longer musical patterns (two bars long) seems to be related to
high excitability states of the occipital cortex. Thus, visual processing seems
to be naturally involved in the perception of the musical structure. However,
this connection was not observed in the psilocybin group. A hypothesized
explanation could be that it is due to the constant decrease of EEG alpha
activity in the occipital cortex, i.e., increased excitability of the occipital
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cortex during the psilocybin intoxication. This would be in favor of the
explanation that on psilocybin, the visual cortex is involved in the processing
all throughout the listening. This is different from the placebo condition,
where the visual cortex is involved only during the presence of specific musical
patterns.

4.3 Outside Performed Analysis

4.3.1 DICS

There is likely little to be found in frequencies below the Delta band. Above
the Gamma band, there is a significant activity in the music spectrum in the
50-60 Hz range. It may be beneficial to complement the standard EEG bands
with bands defined by activities in the music spectrum as they may have had
some coherent response in EEG. However, since the coherence in Beta and
Gamma bands was the lowest of tested bands, going even higher in frequency
may not lead to any meaningful results.

As previously mentioned, the coherence values are low. While it does not
invalidate the DICS method for use with music stimuli, the results would
bear more substantial significance if a baseline comparing EEG to a random
signal was tested.

In this work, the analysis was performed on the entire eight-minute length
of the music track. In a further analysis, it might be beneficial to segment
the recordings into relevant shorter frames to obtain a deeper knowledge of
what parts of music have more influence than others.

4.3.2 Cepstral Analysis

This work focused on using the power cepstrum of music to extract cepstral
coefficients in high quefrencies. The analysis only focused on the Alpha and
Beta band and several easily interpretive cepstral features chosen. Only four
of the extracted features were used to reduce the amount of results, and
further analysis could explore the features omitted here and other commonly
studied EEG bands.

It has been shown that the first several coefficients of mel-cepstrum calcu-
lated in short frames can be used as perceptual features [8]. Mel-frequency
spectrum, which the mel-cepstrum is calculated from, is known to corre-
spond to human perception better than the linear frequency spectrum. Using
mel-cepstrum to extract features may yield improved results.
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Chapter 5
Conclusion

This work first showed how dynamic imaging of coherent sources could be
used to analyze brain activity connected to music stimuli, specifically their
rhythmic components. It then showed a method of finding a connection
between music and EEG using the power cepstrum of music and band limited
power of EEG. The latter method used cepstral analysis to extract the power
or rhythmically changing components of the music and compared the obtained
time courses to band limited power of standard EEG bands.

In the first part, it was found that brain activity somewhat coherent with
music stimuli can be observed. The coherence between music and EEG was
found to be generally very low, with an order of magnitude 10−3 or lower.
This can likely be attributed to the fact that while some elements of music
may cause a coherent reaction in EEG, a large portion of spectral activity in
music does not show in EEG, and a large portion of spectral activity in EEG
is unrelated to music.

From the obtained results listed in table 3.1 and shown in figures 3.19,
3.20, 3.21, 3.22 and 3.23, it can be deduced that psilocybin affects the brain
activity differently in each band. The largest area affected was observed in
the Alpha band, corresponding to very fast rhythmic elements, and the Beta
band around the threshold of rhythmic and tonal areas.

The effect was observed mainly in areas responsible for processing, discern-
ing, and representing visual information, which suggests that any synesthesia
caused by psilocybin could be tied to how a person perceives music. It was
also found that psilocybin caused higher coherence between activity in area
identified as Wernicke’s and faster rhythmical elements, which may be caused
by some auditory hallucinations perceived as added lyrical content in the
instrumental music composition the subjects were listening to. The results
suggest that psilocybin moves the listener’s focus from tonal aspects of music
toward rhythmic elements.

In the second part, it was shown that a correlation between extracted
cepstral features and EEG band limited power can be observed. Even though
the correlations are overall small, a difference between placebo and psilocybin
can be observed. A significant effect of psilocybin was found in the occipital
area in the Alpha band for long-time periodic elements, where placebo
showed an increased negative correlation, which is consistent with literature.
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5. Conclusion......................................
Psilocybin showed no significant correlation in this band-feature, which is
hypothesized to be possibly caused by Alpha activity being already suppressed
by psilocybin. More results may be obtainable by extracting other perceptual
features from music.

Some of the results are supported by already-known effects of psilocybin,
especially the negative correlation with music in occipital Alpha and any
coherence found in the posterior Cingulate Gyrus area in Alpha, which is
known to show increased activity under the influence of psilocybin.

The two methods resulted in very different types of results. DICS was
used for exploratory analysis, leading to very detailed information about
where phenomena are located. However, the fine detail also led to all results
being dismissed by statistical correction, and as such, no credible discovery
has been made. The hypothesis driven analysis using cepstral coefficients
only provided a rough estimate of the location of the studied phenomena.
However, due to a considerably lower risk of multiple comparison problem,
the statistical correction did not dismiss the significance of discovered effect
in occipital Alpha.

Further analysis of the experiment data, like the potential improvements on
this work mentioned in chapter 4, may uncover more evidence of psilocybin’s
influence that may help establish the extent and exact nature of psilocybin
for medicinal use.
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