
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Generic database metadata extractor

Victor Petukhov

Ing. Jan Trávníček, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

MANTA supports the extraction of metadata information about database objects

(schemas, tables, views, columns, etc.) from the most used databases systems,

Manta implements this for each database with a specific extractor, which uses the

implementation details of each concrete database system,

Metadata from less common databases could be extracted using a common JDBC

interface without any need to implement a specific extractor,

The goal of the thesis is to analyze the JDBC interface, propose a configurable generic

extractor able to extract most of the metadata available, and implement it,

Test the generic JDBC extractor against already supported database systems for the

correctness and on not yet supported database systems to evaluate the extractor's

applicability.

Electronically approved by Ing. Michal Valenta, Ph.D. on 2 January 2023 in Prague.

Bachelor’s thesis

GENERIC DATABASE
METADATA EXTRACTOR

Victor Petukhov

Faculty of Information Technology
Software Engineering department
Supervisor: doc. Ing. Jan Trávńıček, Ph.D.
May 10, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Victor Petukhov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Petukhov Victor. Generic database metadata extractor. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abbreviations xi

Introduction 1

1 Requirements analysis 3
1.1 Problem statement . 3
1.2 Functional requirements . 3
1.3 Non-functional requirements . 3

2 Analysis 5
2.1 Entities to be extracted . 5
2.2 Understanding the capabilities of the JDBC . 5

2.2.1 Limitations of the JDBC API . 6
2.3 DataSource interface and BasicDataSource class 6

2.3.1 Connecting to the database . 6
2.4 DatabaseMetaData interface . 7

2.4.1 Excluded methods . 8
2.4.2 Filtering database metadata . 9

2.5 Result Sets of the methods of the DatabaseMetaData class 9
2.5.1 Closing ResultSet object . 9

2.6 Differences in Result Sets in distinct databases 9
2.6.1 Comparison of the retrieved catalogs metadata 10
2.6.2 Comparison of retrieved schemas metadata 10
2.6.3 Comparison of retrieved procedures metadata 11
2.6.4 Comparison of retrieved procedure parameters and return type metadata 11
2.6.5 Comparison of retrieved functions metadata 12
2.6.6 Comparison of retrieved function parameters and return type metadata . 13
2.6.7 Comparison of retrieved tables metadata 13
2.6.8 Comparison of retrieved synonyms metadata 15
2.6.9 Comparison of retrieved views metadata 15
2.6.10 Comparison of retrieved table columns metadata 15
2.6.11 “SPECIFIC NAME” and “COLUMN DEF” columns absence 15
2.6.12 Not enough information about the database synonyms 16
2.6.13 Summary and additional information . 17

2.7 Relevant columns of the Result Sets . 17
2.7.1 Useful columns of the retrieved catalog information 17
2.7.2 Useful columns of the retrieved schema information 17
2.7.3 Useful columns of the retrieved procedure information 17

iii

iv Contents

2.7.4 Useful columns of the retrieved procedure column information 18
2.7.5 Useful columns of the retrieved function information 18
2.7.6 Useful columns of the retrieved function column information 18
2.7.7 Useful columns of the retrieved table information 18
2.7.8 Useful columns of the retrieved table column information 18
2.7.9 “TABLE TYPE” column . 19
2.7.10 “PROCEDURE TYPE” column . 19
2.7.11 “COLUMN TYPE” column . 19
2.7.12 “NULLABLE” column . 19
2.7.13 “DATA TYPE” column . 19
2.7.14 “TYPE NAME” column . 20
2.7.15 Ancestor name columns . 20
2.7.16 Column and Schema names accept null values 20
2.7.17 Excluded columns . 20
2.7.18 Summary . 21

2.8 Examples of specific JDBC API extractor behavior 21
2.8.1 Extraction of the catalogs and schemas in the Teradata database 21
2.8.2 Crash-prone substring in the Teradata database 22
2.8.3 Extraction of the system schemas . 22
2.8.4 Incorrect Extraction using methods with null arguments 22
2.8.5 Incorrectly extracted information about the PostgreSQL database’s schemas 22
2.8.6 Incorrect Extraction of the Oracle database hierarchy 23
2.8.7 Retrieval of columns containing referential data types 23

2.9 Filtering database and schema entities to be extracted 24

3 Design 25
3.0.1 Design constraint . 25

3.1 Tecnnologies . 25
3.1.1 Maven . 25
3.1.2 Spring framework . 26
3.1.3 Junit 5 . 26

3.2 Modules interconnection . 26
3.3 Modules structure . 27

3.3.1 POM files hierarchy . 27
3.4 Common Manta modules . 28

4 Implementation 29
4.1 Classes of the “manta-connector-jdbc-model” . 29

4.1.1 JdbcResolverEntitiesFactory interface . 29
4.1.2 JdbcDictionaryFactory interface . 29

4.2 Classes of the “manta-connector-jdbc-dictionary” 29
4.2.1 JdbcDialect class . 30
4.2.2 JdbcDictionaryFactory class . 30
4.2.3 JdbcDictionarySource class . 30
4.2.4 MemoryDictionaryFactory class and JdbcMemoryDictionaryFactoryImpl

class . 30
4.2.5 JdbcDataDictionary class . 30

4.3 Classes of the “manta-connector-jdbc-dictionary-extractor” 31
4.3.1 Entity package . 31
4.3.2 MetaDao interface . 32
4.3.3 MetaDaoImpl class . 32
4.3.4 DictionaryWriter interface . 32

Contents v

4.3.5 DictionaryWriterImpl class . 33
4.3.6 JdbcExtractor interface . 33
4.3.7 JdbcExtractorImpl class . 33
4.3.8 JdbcExtractorReader class . 33
4.3.9 Auxiliary classes . 33

4.4 Other packages . 34
4.4.1 Categories package . 34

4.5 Implementation decisions . 34
4.5.1 Generic extraction of catalogs and schemas 34
4.5.2 Filtering of the catalogs and schemas . 35
4.5.3 Routines with the same name . 35
4.5.4 Avoiding naming patterns . 36
4.5.5 Supporting names with crash-prone substrings 37
4.5.6 Save routines with unknown information 39
4.5.7 A function and a procedure with identical names 40
4.5.8 Return type of the routine . 40
4.5.9 Return types and out parameters interconnection 41

4.6 Automated tests . 41
4.7 The JDBC Scanner performance with an unsupported DBMS 41

5 Conclusion 43

6 Future Work 45

The content of the attached media 49

List of Figures

2.1 Included methods of the DatabaseMetaData class 8
2.2 Excluded methods of the DatabaseMetaData class 8
2.3 The hierarchy of the package in the Oracle database 23

3.1 Structure of the JDBC Scanner . 27

4.1 Methods for filtering extraction of schema and database entities 35

List of Tables

2.1 Procedures metadata in different databases . 11
2.2 Procedure parameters and return type metadata in different databases 12
2.3 Functions metadata in different databases . 13
2.4 Function parameters and return type metadata in different databases 14
2.5 Tables metadata in different databases . 14
2.6 Table columns metadata in different databases 16

List of code listings

2.1 Usage of the ResultSetMetaData class for analysis of the Result Sets 10
4.1 Part of the getAllCatalogs() method . 34
4.2 Filtering of the catalogs and schemas . 36
4.3 Method for the extraction and saving functions 37
4.4 The method for extracting columns of the table 38
4.5 Validation of the unknown procedure information. 39
4.6 The method for creating a return type of the routine. 40
4.7 SQL script for creating a function in an Oracle database 41

vi

I would like to express my deepest gratitude to my supervisor, Ing.
Jan Trávńıček, Ph.D., whose guidance was vitally important for my
work.
I would also like to thank Ing. Ondřej Mazanec and Mgr. Jiř́ı
Toušek for their support and assistance. Their knowledge and in-
sights have been crucial in helping me navigate the complex land-
scape of my research, and I am truly grateful for their contributions.
Lastly, I would like to express my sincere appreciation to my family,
especially my wife, whose love, support, and understanding have
been invaluable.

vii

Declaration

Hereby declare that I have authored this thesis independently, and that all sources used are
declared in accordance with the “Metodický pokyn o etické př́ıpravě vysokoškolských závěrečných
praćı”.

I acknowledge that my thesis (work) is subject to the rights and obligations arising from
Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and on Amendments
to Certain Laws (the Copyright Act), as amended, (hereinafter as the ”Copyright Act”), in
particular § 35, and § 60 of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work) and with respect
to all documentation related to the computer programs (”software”), in accordance with Article
2373 of the Act No. 89/2012 Coll., the Civil Code, I hereby grant a nonexclusive and irrevocable
authorization (license) to use this software, to any and all persons that wish to use the software.
Such persons are entitled to use the software in any way without any limitations (including use
for-profit purposes). This license is not limited in terms of time, location and quantity, is granted
free of charge, and also covers the right to alter or modify the software, combine it with another
work, and/or include the software in a collective work.

In Prague on May 10, 2023 .

viii

Abstract

This bachelor’s thesis aims to demonstrate the feasibility of implementing a generic metadata
extractor for DBMSs using JDBC API. The study implemented the JDBC metadata extrac-
tor, which can be used for all relational database management systems that provide the JDBC
interface.

The motivation behind implementing a generic metadata extractor was to address the absence
of a suitable generic extractor for all databases in Manta software solutions for data lineage
analysis. The generic metadata extractor which uses JDBC API for gathering the metadata is
implemented. The extractor is capable of retrieving various details such as the name, catalog,
and schema of procedures, functions, tables, and views. Additionally, it provides information on
the parameters and return types in these routines. The extractor can gather information about
columns and their data types of tables, and views. The extractor was tested, and its ability to
retrieve details about the database structure was demonstrated. The extracted entries are stored
in in-memory or H2 databases using dictionary that was implemented using Manta dictionary
abstractions.

The findings of the study demonstrated that implementing a generic metadata extractor for
RDBMS using JDBC API is feasible. The implemented extractor can be used for database
management systems supported by the JDBC interface. It can provide information about the
database structure required for data analysis.

Further development and optimization of the extractor could lead to even more efficient and
powerful database analysis.

Keywords generic database metadata extractor, JDBC API, Manta Scanner

Abstrakt

Tato bakalářská práce si klade za ćıl ukázat proveditelnost implementace generického extraktoru
metadat pro DBMS pomoćı JDBC API. V rámci studie byl implementován JDBC extraktor
metadat, který může být použit pro všechny relačńı databázové systémy, které poskytuj́ı JDBC
rozhrańı.

Motivaćı za implementaćı generického extraktoru metadat bylo vyřešit absenci vhodného gen-
erického extraktoru pro všechny databáze v softwarových řešeńıch Manta pro analýzu datových
tok̊u. Byl implementován generický extraktor metadat, který využ́ıvá JDBC API pro źıskáńı
metadat. Extraktor je schopen źıskávat r̊uzné informace, jako je jméno, katalog a schéma proce-
dur, funkćı, tabulek a pohled̊u. Nav́ıc poskytuje informace o parametrech a návratových typech
těchto rutin. Extraktor může źıskávat informace o sloupćıch a jejich datových typech tabulek
a pohled̊u. Extraktor byl testován a jeho schopnost źıskávat informace o struktuře databáze

ix

x Abstract

byla demonstrována. Extrahované položky jsou ukládány do paměti nebo H2 databáźı pomoćı
slovńıku, který byl implementován pomoćı abstrakćı slovńıku Manta.

Výsledky studie ukázaly, že je proveditelné implementovat generický extraktor metadat pro
RDBMS pomoćı JDBC API. Implementovaný extraktor může být použit pro databázové systémy
podporované JDBC rozhrańım. Může poskytnout informace o struktuře databáze, které jsou
potřebné pro analýzu dat.

Daľśı vývoj a optimalizace extraktoru by mohl vést k ještě efektivněǰśı a výkonněǰśı analýze
databáze.

Kĺıčová slova generický extraktor metadat z databáze, JDBC API, Manta Scanner

Abbreviations

JDBC Java Database Connectivity
DBMS Database Management System

RDBMS Relational Database Management System
API Application Programming Interface

MSSQL Microsoft SQL Server
SSL Secure Sockets Layer

DDL Data definition language
URL Uniform Resource Locators
POM Project Object Model
DTO Data Transfer Object
CSV Comma-Separated Values

xi

xii Abbreviations

Introduction

Manta Tools is a company that specializes in providing software solutions for data lineage anal-
ysis. Data lineage is the process of tracking data from its origin to its final destination, which is
essential for data governance, compliance, and auditing purposes. Manta Tools’ software prod-
ucts enable businesses to track and visualize data lineage across various data sources, platforms,
and technologies, providing them with visibility into their data and enhancing their decision-
making capabilities. In order to achieve this, Manta Tools utilizes an extractor system, which
extracts data from various sources, and a resolver system, which resolves complex data relation-
ships to provide a complete and accurate view of data lineage. The extractor and resolver are
critical components of Manta Tools’ software solutions, allowing businesses to gain insights into
their data and make informed decisions about data governance, compliance, and auditing.

One of the critical components of the software solution for data lineage analysis is an extractor.
An extractor is a component that is responsible for pulling data from data stores and feeding it
into the data lineage system for analysis. While Manta Tools does provide many database-specific
extractors, they do not have a generic extractor that is suitable for all databases. To address
this, the possibility of implementing the generic metadata extractor was analyzed. What’s more,
the implementation of the metadata extractor was done using JDBC API. While the JDBC
extractor may not be as powerful as a database-specific extractor, it can be used for all database
management systems that provide the JDBC interface, including those that do not have a custom
extractor available.

1

2 Introduction

Chapter 1

Requirements analysis

1.1 Problem statement
Some databases are unsupported by Manta. The extractor was not created for them. Manta
needs the generic extractor for all databases to make it possible to extract information about
entities that exist in the given database regardless of the existence of the database’s connector.1.

1.2 Functional requirements
This section describes functional requirements need to be fulfilled to develop the generic extractor.

1. Establish a connection to the database by providing a URL, a username, and a password.

2. Extract metadata, which includes information about the types and names of entities present
in the database.

3. Be able to apply include and exclude filters to extract specific catalogs and schemas of the
database.

4. Store the extracted data in a suitable format.

5. Make extraction possible for both Manta-supported and unsupported DBMSs.

1.3 Non-functional requirements
This section describes non-functional requirements need to be considered during the development
of the generic extractor.

1. Store extracted metadata in either an H2 database or an in-memory dictionary.

2. Integrate extractor in the manta platform.

1unit that includes extractor and resolver for the specific DBMS in Manta platform

3

4 Requirements analysis

Chapter 2

Analysis

This chapter includes an analysis of the possibility of implementing the generic JDBC metadata
extractor. The use of applicable technologies is analyzed. The important knowledge for the
future realization of the project is presented in the chapter.

2.1 Entities to be extracted
The particular entity types of the database system are extracted.

Catalog is a collection of objects. It represents the highest level of organization in a database
and can contain schemas.

Schema is a logical container that holds objects such as tables, views, procedures, synonyms,
and functions. It represents a way to organize and group related database objects together.

Table is a collection of related data organized in rows and columns.

View is a virtual table that is based on the result of a database query. It displays information
in a customized format, without altering the original data.

Procedure is a set of instructions which takes some input and performs certain tasks. It
represents a way to encapsulate and reuse code within a database. Usually, procedures do
not return a value. However, the procedure may have a return value if specific instructions
are used.

Function is similar to the Procedures. Nevertheless, the function return value should be speci-
fied.

Synonym is an alias for a database object such as a table, view, function or procedure. It
represents a way to simplify and shorten the name of an object.1

2.2 Understanding the capabilities of the JDBC
The JDBC API is a powerful tool for Java developers to interact with relational databases. It
provides a standard way for Java applications to connect to and perform operations on a wide
range of databases.

1synonym extraction is omitted. Explained in Section 2.6.12

5

6 Analysis

2.2.1 Limitations of the JDBC API
The JDBC API is exclusively designed for communication between Java programs and relational
databases. The JDBC API does not include any built-in features for facilitating interactions
with NoSQL databases. Therefore, the JDBC API is entirely devoted to working with relational
systems.[1]

2.3 DataSource interface and BasicDataSource class
The DataSource interface is part of the Java Database Connectivity API. It is used in Java
applications to provide a standard way of managing database connections and connection pooling,
as well as to abstract away the details of connecting to different types of databases.[2]

The connection properties required for establishing a connection to the data source are set
using the DataSource interface. This includes information such as the host name, port number,
database name, user credentials, and any other required parameters for the specific data source.
The DataSource class provides a standard way to manage these connection properties, and it can
be easily integrated with various database technologies, such as MySQL, PostgreSQL, Oracle,
and Microsoft SQL Server.

The BasicDataSource class is an implementation of the DataSource interface that provides
connection pooling. Connection pooling is a technique that involves creating a pool of database
connections that can be reused by multiple threads or processes in an application. By reusing
connections from the pool, the application can avoid the overhead of establishing new connec-
tions each time data access is required. When using the getConnection method provided by
BasicDataSource, the pool will return a connection if one is available. If there are no available
connections, the pool will create a new connection. However, the limitation on new connections
can be set.

The BasicDataSource class will be used in the testing and analysis phases to establish a
connection with a database.

2.3.1 Connecting to the database
In order to extract the metadata from every RDBMS, a generic way of connecting to every
relational database should be found.

For the non-secured connection, a connection string, driver name, username, and password
should be provided. The username and password are credentials for entering the database. The
driver name depends on the RDBMS. A driver name is provided in order to load a specific driver.
A JDBC driver allows Java applications to interact with a database. The connection string speci-
fies the hostname and port number of the SQL server instance that you want to connect to. An ex-
ample of the MSSQL connection string is jdbc:sqlserver://mssql.int.getmanta.com:1433.
The host name and port number are important for establishing a connection with the right
database.

BasicDataSource class provides methods including setDriverClassName(String drivName),
setUrl(String url), setUsername(String userName), setPassword(String password) for
setting the connection parameters.

For the secured connection, certain parameters should be configured in addition to the non-
secured connection parameters. The parameters of a MSSQL connection string are used as
an example to show how a secured connection must look. To enable SSL encryption for the
connection, the "encrypt=true" parameter should be configured.[3] Integrated security must be
disabled with the "integratedSecurity=false" parameter. This means that the SQL Server
will not use the Windows credentials of the user running the Java application. To ensure that
the certificate presented by the SQL Server is trusted, the "trustServerCertificate=false"

DatabaseMetaData interface 7

parameter should be used to instruct the driver not to blindly trust the certificate. Instead,
the trust relationship should be established in the usual way. The "hostNameInCertificate"
parameter specifies the expected hostname in the SSL certificate presented by the SQL Server.
Finally, the "trustStore" parameter specifies the location of the trust store that contains the
trusted SSL certificates, and the "trustStorePassword" parameter specifies the password for
the trust store. These parameters ensure that the certificate presented by the server is trusted
and verified.

In some cases, the server may require that you present a valid client certificate in order to
establish a connection. This is known as client-side authentication, and it provides an additional
layer of security to ensure that only authorized clients can access the server.[4]

Establishing the secured connection can be done either through the connection string or
through the parameters of the BasicDataSource class.

It is possible that some databases may not support establishing a secured connection through
the BasicDataSource class or may have specific requirements or limitations on how to estab-
lish a secured connection. Nonetheless, the connection string should be a generic solution for
establishing an encrypted connection.

In order to prove the assumption, the list of dialects supporting encrypted connections in
Manta was tested. The list includes Mssql, Oracle, PostgreSQL, Teradata, Hive, and Db2.
HIVE, DatabricksSQL, and MSSQL were tested practically. The proof of the assumption about
establishing the secured connection through the connection string of PostgreSQL is found on the
“Initializing the Driver” official page of PostgreSQL.[5] Similarly, the proof for DB2 DBMS was
found online in the “HOW TO: Connect to SSL enabled DB2 through the JDBC V2 connector
in IICS” article.[6] For Oracle DBMS, the proof was found in the Oracle official blog.[7] Finally,
it was proven for Teradata under the “Making a Database Connection” section on the page
“Teradata JDBC Driver”.[8]

Based on these findings, it can be concluded that the connection string approach is a viable
solution for establishing secure connections across the multiple DBMS used by Manta. It is
likely that the connection string approach can be used to establish secure connections across
all the databases that support encrypted connections. Therefore, it can be concluded that the
connection string approach is a generic and reliable solution for establishing secure connections
across various DBMSs with encrypted connections.

2.4 DatabaseMetaData interface
The DatabaseMetaData class in Java is an important part of the JDBC API that provides
a way for Java programs to retrieve metadata information about a database. This metadata
information includes details about the database structure, such as tables, columns, indexes,
stored procedures, and more. Metadata refers to information about the structure and properties
of the database rather than the data stored in the database.

The DatabaseMetaData class provides a set of methods that can be used to retrieve this
metadata information. The important methods for the JDBC metadata extractor are listed in
Figure 2.1.[9]

The getCatalogs method retrieves the information of the catalogs available in the given
database.

The getSchemas method retrieves information about the schemas.
The getProcedures method retrieves a description of the stored system and user procedures.
The getProcedureColumns method retrieves a description of the given stored procedure

parameter and result columns.
The getFunctions method retrieves a description of the stored system and user functions.
The getFunctionColumns method retrieves a description of the given function parameters

and return type.
The getTables method retrieves a description of tables, views, synonyms, and more.

8 Analysis

The getColumns method retrieves a description of columns of entities extracted using the
getTables method.

Every observed method in Java returns a ResultSet java object.

Figure 2.1 Included methods of the DatabaseMetaData class

getCatalogs();

getSchemas(String catalog, String schemaPattern);

getProcedures(String catalog, String schemaPattern, String procedureNamePattern);

getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,
String columnNamePattern);

getFunctions(String catalog, String schemaPattern, String functionNamePattern);

getFunctionColumns(String catalog, String schemaPattern, String functionNamePattern,
String columnNamePattern);

getTables(String catalog, String schemaPattern, String tableNamePattern, String[] types);

getColumns(String catalog, String schemaPattern, String tableNamePattern,
String columnNamePattern);

2.4.1 Excluded methods
There are several methods that were excluded from being used but may be important for a future
enhancement of the JDBC Scanner.

The method getPrimaryKeys retrieves a description of the primary key columns of the given
table.

The method getExportedKeys retrieves a description of the foreign key columns that refer-
ence the given table’s primary key columns. The foreign keys exported by a table.

The method getImportedKeys retrieves a description of the primary key columns that are
referenced by the given table’s foreign key columns. The primary keys imported by a table.

Overall, these methods provide essential information about the table relationships in a database,
and the JDBC metadata extractor can use them to build an understanding of the database
schema.

Figure 2.2 Excluded methods of the DatabaseMetaData class

getPrimaryKeys(String catalog, String schema, String table);

getExportedKeys(String catalog, String schema, String table);

getImportedKeys(String catalog, String schema, String table);

Result Sets of the methods of the DatabaseMetaData class 9

2.4.2 Filtering database metadata
All methods, except for getCatalogs(), can be filtered by specifying the catalog name as the
first parameter of the method.

In certain methods of the DatabaseMetaData class, you may need to provide pattern argu-
ments as strings. These patterns use special characters to determine which metadata to retrieve.

The “%” character in a pattern string represents any number of characters, including none,
while the “ ” character represents a single character. These pattern arguments are used to filter
the metadata entries, and only the entries that match the search pattern will be returned.

If you set any argument in the method signature to null, it will be excluded from the search
criteria, meaning that it won’t be used to filter the metadata entries. This can be useful for
creating more customized search queries based on specific criteria.[9]

2.5 Result Sets of the methods of the DatabaseMetaData
class

In Java, a ResultSet is an object that represents a set of results obtained from executing a SQL
statement. It is part of the Java Database Connectivity API and is used to retrieve data from a
database.[10]

A ResultSet object maintains a cursor that points to the current row in the result set. By
default, the cursor is positioned before the first row, and the next() method is used to move
the cursor to the next row. The ResultSet is typically used in a loop to process each row of the
result set until there are no more rows. For example, the outcome of invoking the getTables
method would consist of a collection of information about the retrieved tables. Each individual
row in the collection would represent a distinct table.

The ResultSet object provides methods for accessing the data in the current row, such as
getInt, getString, getDouble, and so on. The parameters of the methods can be either column
index, represented by an integer, or column label, represented by a string. In the context of the
JDBC Scanner2, the getInt, getString methods are useful because the data retrieved after the
invocation of the methods from Figure 2.1 can be either a string type or an integer type.

2.5.1 Closing ResultSet object
It is important to close the ResultSet object after you have finished using it to release database
resources and prevent memory leaks.

The connection should not be forgotten and closed. What’s more, the connection should not
be closed if the ResultSet object is still used. It may throw a SQLException exception. The best
practice is to close all the objects related to the connection before the connection is closed.

2.6 Differences in Result Sets in distinct databases
During the execution of the Java program and the retrieval of data from a SQL database, it
was observed that certain columns in the ResultSet were throwing a SQLException exception
with the message “Invalid column name”. It was determined that this was due to the specific
implementation of the ResultSet attributes in different databases, which may result in some
columns being unavailable in certain databases.

To address this issue, the ResultSetMetaData class was utilized to retrieve information about
the columns in the ResultSet that are accessible in different databases. This class provides
metadata about the ResultSet object, including the number of columns, the column names,

2another name for the JDBC metadata extractor

10 Analysis

Code listing 2.1 Usage of the ResultSetMetaData class for analysis of the Result Sets

ResultSetMetaData metaData = resultSet.getMetaData ();
int columnCount = metaData.getColumnCount ();
for (int i = 1; i <= columnCount; i++) {

String columnName = metaData.getColumnName(i);
String columnType = metaData.getColumnTypeName(i);
System.out.println("Column␣" + i + ":␣" + columnName
+ "␣(" + columnType + ")" + "Value:␣"
+ resultSet.getString(columnName));

}

data types, and other properties. The usage the ResultSetMetaData class can be observed in
Listing 2.1

The investigation was carried out on three databases, namely Oracle, Microsoft SQL Server,
and PostgreSQL. These databases are provided by Manta’s development environment.

The ResultSetMetaData class was used to retrieve the column names and their corresponding
data types for each of these databases. The results indicated that there are differences in the
columns that were accessible across the three databases.

2.6.1 Comparison of the retrieved catalogs metadata
In this analysis, we compare the output of the getCatalogs().

In Oracle, the database structure consists of a two-segment hierarchy. There are no catalogs
in the Oracle database structure. Therefore, the ResultSet object after the invocation of the
getCatalogs() method on the Oracle database is empty.

PostgreSQL has only one database, while MSSQL has many databases.
The retrieved data conforms to the structures of the databases. The generic column for all

three databases is “TABLE CAT”. No more columns were found.

2.6.2 Comparison of retrieved schemas metadata
In this analysis, we compare the output of the getSchemas with null parameters. The columns
and their associations with the databases are listed in Table 2.1.

In Oracle, when executing the getSchemas(null,null) method, all existing schemas in the
database are extracted with a catalog name equal to null. The output includes some default
schemas of the Oracle database, such as “SYS”.

In PostgreSQL, executing the method with null arguments also shows all existing schemas
in the database without a catalog name. The catalog name is null. The output includes the
schema ”information schema,” which provides a standardized view of metadata for all objects
within a database.

In MSSQL, executing the method getSchemas("ENT_ODS",null) is expected to return one
schema in the catalog “ENT ODS”. However, the actual output contains many default system
schemas, such as “db accessadmin” and “db ddladmin”. When executing the method with null
arguments, the output only shows system schemas and schemas from the master catalog, which
also contains system schemas. Nevertheless, there are more catalogs than one in the database.

The generic columns for all three databases are “TABLE CATALOG” and “TABLE SCHEM”.
System schemas are extracted with every extraction of schemas in all three DBMSs. In Oracle
and PostgreSQL, when executing getSchemas(null,null) all existing schemas in the database
are displayed without catalog. In Oracle, such behavior is expected. Nevertheless, the informa-
tion about user-defined schemas in the PostgreSQL database should have been retrieved with the

Differences in Result Sets in distinct databases 11

catalog names. Moreover, the number of extracted user-defined MSSQL schemas when executing
getSchemas(null,null) is smaller than expected.

2.6.3 Comparison of retrieved procedures metadata
In this analysis, we compare the output of the getProcedures with null parameters. The columns
of the output are illustrated in Table 2.1.

When executing the getProcedures(null,null,null) method in Oracle, the output con-
tains nine columns. The “SPECIFIC NAME” column is always null, and three columns are
undefined, always returning null. The column label3 of these columns is “NULL”.

In PostgreSQL, the output contains the same columns as Oracle, but the three undefined
column are named as “?column?”, always returning null.

In MSSQL, executing the same method returns eight columns. The columns from six to eight
always return -1 for all procedures.

The five columns are common to all three databases. MSSQL doesn’t have any information
about a specific name of the procedure. The additional columns and their information in the
output vary between Oracle, PostgreSQL, and MSSQL. Oracle and PostgreSQL have three unde-
fined columns, while MSSQL includes three columns with different labels and fixed information,
presumably intended for future use.

Table 2.1 Procedures metadata in different databases

Column Database
1 PROCEDURE CAT generic
2 PROCEDURE SCHEM generic
3 PROCEDURE NAME generic
4 REMARKS generic
5 PROCEDURE TYPE generic
6 NUM INPUT PARAMS MSSQL
7 NUM OUTPUT PARAMS MSSQL
8 NUM RESULT SETS MSSQL
9 SPECIFIC NAME Oracle and PostgreSQL

2.6.4 Comparison of retrieved procedure parameters and
return type metadata

The current examination involves a comparison of the output results of the
getProcedureColumns with null arguments. The columns of the Result Sets are illustrated
in Table 2.2.

In Oracle, the columns “COLUMN DEF”, “SCALE”, “SQL DATA TYPE”,
“SQL DATETIME SUB” and “DEFAULT VALUE” are always null in the tested data. Four
columns are database-specific columns. Twenty-three columns are extracted.

In PostgreSQL, “PRECISION”, “LENGTH”, “SCALE”, “RADIX” “REMARKS”,
“COLUMN DEF”, “SQL DATA TYPE”, “SQL DATETIME SUB”, “CHAR OCTET LENGTH”
are always null in the tested data. Twenty columns are extracted in total.

In MSSQL, nine columns are specific columns of the MSSQL database. The columns from
twenty to twenty-seven in Table 2.2, “COLUMN DEF”, and “SQL DATETIME SUB” are always
null in the tested data. Twenty-eight columns are extracted.

3column label is a name of the column of the Result Set row

12 Analysis

There are nineteen common columns across all three databases. According to the
DatabaseMetaData interface documentation “SQL DATETIME SUB” and “SQL DATA TYPE”
are unused. However, there is information in the “SQL DATA TYPE” column in MSSQL. The
“SPECIFIC NAME” is not retrieved as the column of the Result Set in MSSQL comparing to
other databases. “COLUMN DEF” is null in all of the databases according to the tested data.

Table 2.2 Procedure parameters and return type metadata in different databases

Column label Database
1 PROCEDURE CAT generic
2 PROCEDURE SCHEM generic
3 PROCEDURE NAME generic
4 COLUMN NAME generic
5 COLUMN TYPE generic
6 TYPE NAME generic
7 PRECISION generic
8 LENGTH generic
9 SCALE generic
10 RADIX generic
11 SQL DATA TYPE generic
12 SQL DATETIME SUB generic
13 CHAR OCTET LENGTH generic
14 ORDINAL POSITION generic
15 IS NULLABLE generic
16 NULLABLE generic
17 REMARKS generic
18 COLUMN DEF generic
19 DATA TYPE generic
20 SS TYPE CATALOG NAME MSSQL
21 SS TYPE SCHEMA NAME MSSQL
22 SS UDT CATALOG NAME MSSQL
23 SS UDT SCHEMA NAME MSSQL
24 SS UDT ASSEMBLY TYPE NAME MSSQL
25 SS XML SCHEMACOLLECTION CATALOG NAME MSSQL
26 SS XML SCHEMACOLLECTION SCHEMA NAME MSSQL
27 SS XML SCHEMACOLLECTION NAME MSSQL
28 SS DATA TYPE MSSQL
29 SPECIFIC NAME Oracle and PostgreSQL
30 SEQUENCE Oracle
31 OVERLOAD Oracle
32 DEFAULT VALUE Oracle

2.6.5 Comparison of retrieved functions metadata
In this analysis, we compare the output of the getFunctions method with null arguments. The
columns of the retrieved Result Set are listed in Table 2.3.

The method with null parameters in Oracle returns six columns and the “SPECIFIC NAME”
column is always null.

When this method is executed on the PostgreSQL database, getFunctions(null,null,null)
returns 6 columns. Unlike Oracle, the “SPECIFIC NAME” column is not null in PostgreSQL,

Differences in Result Sets in distinct databases 13

and it provides a unique name for each function.
In the case of MSSQL, eight columns are extracted, and three database-specific columns

always have a value of -1.
In conclusion, there are 5 common columns in all three databases.

Table 2.3 Functions metadata in different databases

Column Database
1 FUNCTION CAT generic
2 FUNCTION SCHEM generic
3 FUNCTION NAME generic
4 REMARKS generic
5 FUNCTION TYPE generic
6 NUM INPUT PARAMS MSSQL
7 NUM OUTPUT PARAMS MSSQL
8 NUM RESULT SETS MSSQL
9 SPECIFIC NAME Oracle and PostgreSQL

2.6.6 Comparison of retrieved function parameters and re-
turn type metadata

The present analysis compares the output results of the getFunctionColumns with null argu-
ments. The columns of the Result Sets are illustrated in Table 2.4.

In Oracle, the method returns twenty-three columns with some of them being specific to
the Oracle database. Some columns are always null in the tested data, including “SCALE”,
“COLUMN DEF”, “SQL DATA TYPE”, “SQL DATETIME SUB”, “SPECIFIC NAME”, and
“DEFAULT VALUE”.

In PostgreSQL, the method returns seventeen columns, and some of the columns that are
always null in the tested data include “PRECISION”, “LENGTH”, “SCALE”, and “RADIX”.

In Microsoft SQL Server, the method returns twenty-eight columns. In the tested data, the
columns “COLUMN DEF”, “SQL DATETIME SUB”, and columns from twenty to twenty-seven
in Table 2.4 are always null.

There are sixteen columns that are common for all three databases. Most of the database-
specific columns of MSSQL has null values.

2.6.7 Comparison of retrieved tables metadata
The present analysis compares the output results of the getTables with the first two parameters
equal to null and the latter parameter equal to String[]{"TABLE"}. Therefore, all entities of
type table are extracted. The output columns are listed in Table 2.5.

For Oracle, the five columns are extracted.
In contrast, when executing getTables(null, null, null, String[]{"TABLE"}), ten

columns are extracted from PostgreSQL. All null values are found in all the database-specific
columns of the PostgreSQL database.

In MSSQL, only five columns are extracted, similar to Oracle.
In conclusion, there are five common columns for all three databases. “TABLE TYPE”

column is always equal to TABLE, because the types parameter in the method is assigned to
TABLE and the output was filtered accordingly.

14 Analysis

Table 2.4 Function parameters and return type metadata in different databases

Column label Database
1 FUNCTION CAT generic
2 FUNCTION SCHEM generic
3 FUNCTION NAME generic
4 COLUMN NAME generic
5 COLUMN TYPE generic
6 TYPE NAME generic
7 PRECISION generic
8 LENGTH generic
9 SCALE generic
10 RADIX generic
11 SQL DATA TYPE generic
12 SQL DATETIME SUB Oracle and MSSQL
13 CHAR OCTET LENGTH Oracle and MSSQL
14 ORDINAL POSITION generic
15 IS NULLABLE generic
16 NULLABLE generic
17 REMARKS generic
18 COLUMN DEF Oracle and MSSQL
19 DATA TYPE generic
20 SS TYPE CATALOG NAME MSSQL
21 SS TYPE SCHEMA NAME MSSQL
22 SS UDT CATALOG NAME MSSQL
23 SS UDT SCHEMA NAME MSSQL
24 SS UDT ASSEMBLY TYPE NAME MSSQL
25 SS XML SCHEMACOLLECTION CATALOG NAME MSSQL
26 SS XML SCHEMACOLLECTION SCHEMA NAME MSSQL
27 SS XML SCHEMACOLLECTION NAME MSSQL
28 SS DATA TYPE MSSQL
29 SPECIFIC NAME Oracle and PostgreSQL
30 SEQUENCE Oracle
31 OVERLOAD Oracle
32 DEFAULT VALUE Oracle

Table 2.5 Tables metadata in different databases

Column Database
1 TABLE CAT generic
2 TABLE SCHEM generic
3 TABLE NAME generic
4 REMARKS generic
5 TABLE TYPE generic
6 TYPE CAT PostgreSQL
7 TYPE SCHEM PostgreSQL
8 SELF REFERENCING COL NAME PostgreSQL
9 REF GENERATION PostgreSQL
10 TYPE NAME PostgreSQL

Differences in Result Sets in distinct databases 15

2.6.8 Comparison of retrieved synonyms metadata
The current examination involves a comparison of the output results of the
getTables(null, null, null, String[]{"SYNONYM"}) with the first two parameters equal
to null and the latter parameter equal to String[]{"SYNONYM"}. Hence, all entities of the type
synonym are extracted.

The same columns were extracted for Oracle and MSSQL as in Section 2.6.7.
PostgreSQL does not offer functionality that is equivalent to SQL Server synonyms.[11] There-

fore, the observed Result Set of the retrieved data from the PostgreSQL database was empty.

2.6.9 Comparison of retrieved views metadata
The current examination involves a comparison of the output results of the
getTables(null, null, null, String[]{"VIEW"}) with the first two parameters equal to
null and the latter parameter equal to String[]{"VIEW"}. Therefore, entities of the type
view are extracted.

The same columns were extracted for all three databases as in Section 2.6.7.
The database-specific columns of the Posgtresql were extracted and columns “TYPE CAT”,

“TYPE SCHEM”, “TYPE NAME”, “SELF REFERENCING COL NAME”, and
“REF GENERATION” have null values likewise.

2.6.10 Comparison of retrieved table columns metadata
The current examination involves a comparison of the output results of the
getColumns with null arguments. The columns of the output results are presented in Table 2.6.

In Oracle, the columns “SCOPE CATALOG”, “SCOPE SCHEMA”, “SCOPE TABLE”,
“SQL DATA TYPE”, “SQL DATETIME SUB” and “SOURCE DATA TYPE” are always null
in the tested data. Twenty-four columns are extracted in total.

Similar to Oracle, twenty-four columns are extracted from the PostgreSQL database, and the
columns with null values are identical.

In MSSQL, all the database-specific columns, “COLUMN DEF”, “SCOPE SCHEMA”,
“SCOPE CATALOG”, “SQL DATETIME SUB”, and “SCOPE TABLE” are always null in the
tested data. Thirty-two columns are extracted.

In summary, there are twenty-four columns generic for all three databases. However,
“SCOPE CATALOG”, “SCOPE SCHEMA”, and “SCOPE TABLE” are always null in all the
tested data sources. “COLUMN DEF” is usually null but can have different values in some
cases. In the tested data, “SOURCE DATA TYPE” is always present in the MSSQL database.
“SQL DATA TYPE” and “SQL DATETIME SUB” are always 0 or null in the tested data
for Oracle and PostgreSQL. According to the DatabaseMetaData interface documentation, the
columns “SQL DATA TYPE” and “SQL DATETIME SUB’ are unused. However, different val-
ues can be retrieved from the MSSQL database for these columns.

2.6.11 “SPECIFIC NAME” and “COLUMN DEF” columns
absence

The “SPECIFIC NAME” is a column of the methods: getProcedures, getFunctions,
getProcedureColumns, and getFunctionColumns. It is a default column according to the
DatabaseMetaData interface documentation. Nevertheless, there is no such column in MSSQL.

The “COLUMN DEF” is a column of the methods: getProcedureColumns, getColumns,
and getFunctionColumns. It is a default column according to the DatabaseMetaData interface

16 Analysis

Table 2.6 Table columns metadata in different databases

Column label Database
1 TABLE CAT generic
2 TABLE SCHEM generic
3 TABLE NAME generic
4 COLUMN NAME generic
5 COLUMN SIZE generic
6 TYPE NAME generic
7 BUFFER LENGTH generic
8 DECIMAL DIGITS generic
9 NUM PREC RADIX generic
10 DATA TYPE generic
11 SQL DATA TYPE generic
12 SQL DATETIME SUB generic
13 CHAR OCTET LENGTH generic
14 ORDINAL POSITION generic
15 IS NULLABLE generic
16 NULLABLE generic
17 REMARKS generic
18 COLUMN DEF generic
19 SCOPE CATALOG generic
20 SCOPE SCHEMA generic
21 SCOPE TABLE generic
22 SOURCE DATA TYPE generic
23 IS AUTOINCREMENT generic
24 IS GENERATEDCOLUMN generic
25 SS IS SPARSE MSSQL
26 SS IS COLUMN SET MSSQL
27 SS UDT CATALOG NAME MSSQL
28 SS UDT SCHEMA NAME MSSQL
29 SS UDT ASSEMBLY TYPE NAME MSSQL
30 SS XML SCHEMACOLLECTION CATALOG NAME MSSQL
31 SS XML SCHEMACOLLECTION SCHEMA NAME MSSQL
32 SS XML SCHEMACOLLECTION NAME MSSQL

documentation. However, it was not extracted when the getFunctionColumns was executed on
the PostgreSQL database.

2.6.12 Not enough information about the database syn-
onyms

It is not possible to extract enough information about synonyms with the methods getTables
and getColumns. Firstly, the getTables method extracts information about a catalog name
and schema name, where a synonym is located, and the name of the synonym. The absence of
information about the entity to which the synonym refers, such as information about the entity’s
name, kind, and location, makes it impossible to determine its reference entity and connect the
entity with the synonym. Secondly, the getColumns method gives no information on synonym
columns. It would not be important if the first point was covered correctly. Otherwise, it could
give us a synonym that is constructed as a table. It would be better than having no information

Relevant columns of the Result Sets 17

about the synonyms. According to the second point, creating a synonym as a table is not possible
without having any information about columns.

There is no rudimentary information about synonyms, such as a reference entity type, name,
location, or columns of the synonyms. The decision is not to extract synonyms in any way.

2.6.13 Summary and additional information
During the analysis, many database-specific columns were retrieved. Especially, a large number
of columns specific to the MSSQL database were obtained during the analysis.

Many columns of the Resut Sets were always null. It is likely that most of these columns
were created but remained unused, given the large volume of data that was tested.

It is worth mentioning that there are different data types of the retrieved data. Never-
theless, it is converted to the suitable Java data type format. For example, for the column
“COLUMN DEF” the data type is LONG in oracle and varchar in PostgreSQL. It is converted
to the String data type in Java.

Testing the extracted data for each database is crucial to ensuring that any default columns
that may be missing are identified. What’s more, additional columns vary from one database to
another.

2.7 Relevant columns of the Result Sets

After the comparison of the columns of the Result Sets, the generic columns were found for all
three databases. With assistance from the documentation of DatabaseMetaData interface and
output of the analyses, the most relevant for the JDBC metadata extractor columns of the Result
Sets were chosen.

2.7.1 Useful columns of the retrieved catalog information
The only column is retrieved using getCatalogs method. “TABLE CAT” contains a catalog
name in a Java String format.

2.7.2 Useful columns of the retrieved schema information
The two columns are observed after the getSchemas invocation. “TABLE CATALOG” carries
information about the catalog name where the schema is located, and “TABLE SCHEM” has a
schema name. Both of the columns have a string format.

2.7.3 Useful columns of the retrieved procedure informa-
tion

There are four relevant columns found in the output Result Set of the method getProcedures.
The first column, “PROCEDURE CAT” specifies the catalog name where the procedure can

be found. The second column, “PROCEDURE SCHEM”, specifies the schema name where the
procedure is located. The third column, “PROCEDURE NAME”, is a string that identifies the
name of the procedure. All three columns have a string format. Finally, the
“PROCEDURE TYPE” column provides information on whether the procedure returns a value
or not. The column is described in Section 2.7.10. The “PROCEDURE TYPE” column is of the
integer data type.

18 Analysis

2.7.4 Useful columns of the retrieved procedure column
information

The Result Set of the getProcedureColumns contains several columns relevant for the JDBC
metadata extractor that provide information about each column in the procedure. The first three
columns, “PROCEDURE CAT”, “PROCEDURE SCHEM”, and “PROCEDURE NAME”, pro-
vide information about the location of the procedure and the name of the procedure. It can be
useful for finding the exact procedure to which the column belongs. The “COLUMN NAME”
attribute specifies the name of the column. These four columns are of type string. The
“COLUMN TYPE” attribute provides information about the role of the column. The column
is of the integer type and described in Section 2.7.11. Finally, the “TYPE NAME” attribute
provides the name of the data type of the column. The “DATA TYPE” attribute specifies the
SQL type of the column using an integer value from the java.sql.Types class. The columns are
explained in Section 2.7.14 and in Section 2.7.13, accordingly.

2.7.5 Useful columns of the retrieved function information
There are three relevant columns found in the output Result Set of the method getFunctions.

The first column, “FUNCTION CAT” specifies the catalog name where the function can
be found. The second column, “FUNCTION SCHEM”, specifies the schema name where the
function is located. The third column, “FUNCTION NAME”, is a string that identifies the
name of the function. All three columns have a string format.

2.7.6 Useful columns of the retrieved function column in-
formation

The Result Set of the getFunctionColumns contains several columns relevant for the JDBC
metadata extractor that provide information about each column of the function.

The columns “FUNCTION CAT”, “FUNCTION SCHEM”, and “FUNCTION NAME” rep-
resent a location and a name of the function to which the column belongs. All three columns are of
type string. The “COLUMN NAME”, “COLUMN TYPE”, “TYPE NAME” and “DATA TYPE”
columns have the same meaning as in the Result Set output of the getProcedureColumns.

2.7.7 Useful columns of the retrieved table information
The output Result Set of the method getTables contains four columns with relevant information.
The first column is called “TABLE CAT” and indicates the catalog name where the table is
located. The second column is called “TABLE SCHEM” and specifies the schema name where
the table can be found. The third column is named “TABLE NAME” and contains a string
that identifies the name of the table. All three columns have a string format. The last column,
“TABLE TYPE”, is a string value that contains the name of the type of the table. The column
is described in Section2.7.9.

2.7.8 Useful columns of the retrieved table column infor-
mation

The getColumns method is used to retrieve several important columns for the JDBC Scanner
from the Result Set. The columns “TABLE CAT”, “TABLE SCHEM”, and “TABLE NAME”
represent a location and a name of the table of the current column, while “COLUMN NAME”
indicates the name of the column. These four columns have a string type. The “DATA TYPE”

Relevant columns of the Result Sets 19

column, which contains information about the SQL type from java.sql.Types, is of the integer
type. “TYPE NAME” indicates the name of the data type. The “TYPE NAME” column is of
the string type. Finally, “NULLABLE” contains information about whether the column allows
null values. The “NULLABLE” is of type short, and it is described in Section2.7.12

2.7.9 “TABLE TYPE” column
The “TABLE TYPE” column is found in the Result Sets of the method getTables.
“TABLE TYPE” contains information about a table type. It can be useful to distribute en-
tities and store them separated by a table type. Some types that might be useful include
“SYNONYM”, “VIEW”, and “TABLE”.

2.7.10 “PROCEDURE TYPE” column
The “PROCEDURE TYPE” column is found in the Result Sets of the method getProcedures.
“PROCEDURE TYPE” contains information about whether a procedure has a return type. This
column can take one of the three possible values: unknown, does not return a value, or returns
a value. These values are assigned to the numbers 0, 1, and 2, respectively.

The storage of a procedure with information about its signature can benefit from knowing
whether a saved procedure has a return type or not.

2.7.11 “COLUMN TYPE” column
The Result Sets of the methods getProcedureColumns and getFunctionColumns have the
“COLUMN TYPE” column. It indicates a role of the column. It can take one of six possi-
ble values: unknown, input, input/output, output, return value, or result column in ResultSet.
These values are assigned to the numbers 0 to 5, respectively.

The role of the column is important because it determines how the column is used within
the routine4. What’s more, it determines how it is expected to behave. For example, an input
column is used to pass data into a routine, while an output column is used to return data from
a routine.

2.7.12 “NULLABLE” column
The “NULLABLE” column is found in the Result Sets of the method getColumns. “NUL-
LABLE” contains information about whether the column allows null values. There are three
possible values: 0, 1, or 2, representing the options that the column cannot contain null values,
the column can contain null values, or nullability is unknown, respectively.

The nullability of the column affects the behavior of the database when inserting, updating,
and querying data. For example, when inserting data into a table, if a column is not nullable,
then a value must be provided for that column. Otherwise, an error will occur.

The nullability is an important piece of additional information for the columns.

2.7.13 “DATA TYPE” column
The “DATA TYPE” column is found in the Result Sets of the methods getProcedureColumns,
getFunctionColumns, getColumns. It gives information about the SQL type from java.sql.Types.
Specifically, a column returns a constant value from the Types class. This is very helpful for
the JDBC Scanner implementation as it generalizes all the data types from different RDBMSs.

4routine is another name for a function or a procedure

20 Analysis

For example, Oracle data type VARCHAR2, PostgreSQL data type name, and MSSQL data type
nvarchar are generalized to the Java SQL type Types.NVARCHAR constant from the java.sql.Types
class.

Having such information plays a crucial role in representing data types in the generic extrac-
tor.

2.7.14 “TYPE NAME” column
The “TYPE NAME” column is found in the Result Sets of the methods getProcedureColumns,
getFunctionColumns, getColumns. “TYPE NAME” indicates a name of the data type. The
name is database-specific. For example, a PostgreSQL type name may return int4 or varchar
for the primitive data types. Moreover, the column can return more information when it comes
to complex data types, such as structure. For example, in PostgreSQL, the ddltest_t1 can be
returned as a type name of the data type Types.STRUCT. The column can be useful for showing
more information about complex data types.

What’s more, SQL type Types.OTHER does not give us much information. The Types.OTHER
indicates that the type is database-specific and cannot be generalized as others[12]. The type
name may be helpful in this situation too. It may give a name of the data type that is used
in the database. For example, for the data type Types.OTHER type name “record” was given
in PostgreSQL as the return type of the procedure using getProcedureColumns. With the
knowledge of a database-specific type name, it can help to understand how the data is stored
and how it can be accessed or manipulated.

2.7.15 Ancestor name columns
The information about ancestor names such as “PROCEDURE CAT”, “PROCEDURE SCHEM”,
and “PROCEDURE NAME” in the Result Set of the getProcedureColumns method or
“TABLE CATALOG” in the Result Set of the getSchemas method can be very important for
validating that the entities that are extracted are the descendant of the exact ancestors that are
provided.

2.7.16 Column and Schema names accept null values
In the Result Set of the methods getColumns, getProcedureColumns,
getFunctionColumns, getProcedures, getFunctions, and getTables, columns that express
schema or catalog name such as “PROCEDURE SCHEM” or “TABLE CAT” can be null
values. The column that indicates the catalog name of a schema in the Result Set of the
getSchemas can be equal to null. The null values of the catalogs and schemas are observed
during the extraction of the system entities.

A catalog name being null value is also observed in the extraction of the entities inside the
catalog in the PostgreSQL database. It can be marked as invalid metadata extraction, and it is
illustrated in Section 2.8.5.

2.7.17 Excluded columns
There are several columns that were excluded from being used in the JDBC Scanner. However,
they may be important for the future or require some explanation as to why they were removed
from being used.

The column “ORDINAL POSITION” is extracted using the getColumns,
getProcedureColumns, getFunctionColumns methods. It is used to indicate a position of the
parameter in a function or a procedure or an index of the column in a table. For instance, if a

Examples of specific JDBC API extractor behavior 21

stored procedure has three input parameters, the “ORDINAL POSITION” column would have
the values 1, 2, and 3, respectively, indicating the position of each parameter in the procedure.
This information is particularly useful when creating DDL statements, as it helps ensure that
correct parameters are assigned to correct positions in a procedure. However, recreation of DDL
scripts is not part of the JDBC Scanner. Nevertheless, it may be important for the future if
generic recreation of DDL scripts is considered possible and important.

A value of “SCOPE CATALOG” pertains to a catalog of the table that serves as scope of
the reference attribute. Similarly, a value of “SCOPE SCHEMA” pertains to a schema of the
table that serves as scope of the reference attribute. Lastly, a value of “SCOPE TABLE”
pertains to a name of the table that serves as scope of the reference attribute. A value of the
columns is null if the data type Types.REF is not defined. The column “DATA TYPE” with
the value Types.REF was not presented in any extracted metadata of the columns using methods
getColumns, getProcedureColumns, getFunctionColumns. Due to the absence of a specific
data type, it has been decided that the columns “SCOPE CATALOG”, “SCOPE SCHEMA”,
and “SCOPE TABLE”, which are associated with the REF SQL data type, will not be extracted.

The column “FUNCTION TYPE” that is extracted using getFunctions provides informa-
tion on whether a function returns a table. It can have one of three values: unknown, does not
return a table, or returns a table, which are assigned numerical values of 0, 1, and 2, respectively.
It is recommended to consider the use of the column in future implementations of the JDBC
Scanner, as it can help understand the return type of the function more thoroughly.

The “COLUMN DEF” attribute is extracted as a Result Set column of the methods
getColumns and getProcedureColumns. “COLUMN DEF” indicates the default value of the
column. null value of the column means that the default value is either not specified or null
itself.

The “PRECISION” column indicates the maximum number of digits or characters that can
be stored in a specific data type column. The “LENGTH” column provides the length of a
column’s value, in bytes or characters. The “SCALE” column indicates the number of digits
that can be stored to the right of the decimal point in a numeric column. These three columns
are extracted using getProcedureColumns or getFunctionColumns.

The maximum amount of data that a column can store is defined by the “COLUMN SIZE”
column. The column is extracted using getColumns method.

It is recommended to consider the use of the columns “COLUMN DEF”, “PRECISION”,
“LENGTH”, “SCALE”, and “COLUMN SIZE” in future implementations of the JDBC Scanner
as it gives extra information about the column.

2.7.18 Summary
Enough information was found to implement the generic JDBC scanner. The database structure
can be recreated, and many additional pieces of information can be retrieved, especially for the
columns of the routines, tables, and views.

2.8 Examples of specific JDBC API extractor behavior
In this section, the JDBC API atypical and unforeseen actions are examined and explained,
along with the examination of obscure test scenarios.

2.8.1 Extraction of the catalogs and schemas in the Tera-
data database

The choice was made to test the Teradata database as well because of its unique hierarchical
structure. There are no schemas in Teradata’s two-segment hierarchy. A DBMS with the same

22 Analysis

hierarchy has not been tested yet. Due to this, it was decided to test the Teradata for informa-
tion extraction about catalogs and schemas using the DatabaseMetaData class and its methods
getCatalogs and getSchemas with null arguments.

The method getCatalogs has no catalogs in the database. In the meantime, the getSchemas
method has several schemas. It was discovered that the JDBC extractor interprets databases as
schemas even though Teradata has databases but no schemas.

2.8.2 Crash-prone substring in the Teradata database
During the extraction of the Teradata database’s entities, the crash-prone view name is found
in the tested data. There is a name of the view “ugly” \:/*” which is in the database for the
purpose of testing edge-cases. The method failed to read columns of the view using getColumns.
The SQLException was thrown by the method. The error message was about invalid escape
clause “\:”. The table name was specified as a parameter.

Efforts, such as escaping special characters, were made to prevent special characters from
causing issues with the name, but none of them were effective in preventing an exception from
occurring.

2.8.3 Extraction of the system schemas
The getSchemas(catalog_name,null) extracts all the schemas of the given catalog and system
schemas that do not have a catalog. The behavior is unexpected given that the catalog name
ought to narrow down the search. However, it leaves the system schemas in the output.

It is considered a general behavior observed in all three tested dialects.

2.8.4 Incorrect Extraction using methods with null argu-
ments

It is important to observe that, as per the official documentation of the DatabaseMetaData
interface, “null means the catalog name should not be used to narrow down the search.”[9]
However, when executing the getSchemas(null, null) method, it does not show all of the
catalogs, and consequently not all the schemas. Such behavior can be observed in MSSQL.

get***5 methods with all null arguments ought to extract all the entities of the type ***
in the given database. However, it is not always the case, as getSchemas(null,null) does
not always extract all schema’s catalogs, as it is observed in Section 2.6.2. Only entities that
are located outside of any catalog or inside those catalogs which schemas are extracted using
getSchemas(null,null) method are extracted with all the null arguments.

Therefore, utilizing get*** methods with null arguments does not allow for the retrieval of
all of the data that is stored in the database. It highlights the importance of considering the
output of the methods using null arguments.

2.8.5 Incorrectly extracted information about the Post-
greSQL database’s schemas

In PostgreSQL, the output of the getCatalogs() method is equal to the Result Set with one
row. The row has one column “TABLE CAT” which is equal to the name of the catalog. The
getSchemas method with the catalog name parameter retrieves only the schemas with catalog
equal to null. It extracts the schemas from the correct catalog (regardless of system schemas).
Nevertheless, it shows the catalog name as null value.

5*** stands for an entity type

Examples of specific JDBC API extractor behavior 23

In conclusion, some user-defined schemas can be extracted without the catalog name, even
when the schema has one.

2.8.6 Incorrect Extraction of the Oracle database hierar-
chy

In Oracle, the catalog name column is equal to null because there are no catalogs. However,
there is an exception.

Oracle has packages. Package is a schema object that groups logically related PL/SQL
types, variables, constants, subprograms, cursors, and exceptions. The Oracle database hierar-
chy consists of a schemas, which in turn contain packages and some information contained within
those packages. An example of the hierarchy is in Figure 2.3. The database administration
tool was used to obtain the information. As it can be observed, “TEST SYNONYMS PROC”
is the entity inside the “TEST SYNONYMS” package. Every package is located inside the
“DWH” schema. Despite that, the JDBC extractor shows a different hierarchy when proce-
dures are trying to be extracted using getProcedures method. The Result Set has columns
“PROCEDURE CAT”, “PROCEDURE SCHEM”, and “PROCEDURE NAME” where the cat-
alog name is “TEST SYNONYMS”, schema name is “DWH”, and the procedure name is
“TEST SYNONYMS PROC”. Hence, the hierarchical structure is thoroughly disordered. In
the meantime, there was no schema with the catalog “TEST SYNONYMS” retrieved when the
getSchemas(null,null) method was executed.

In conclusion, there may be some discrepancies in a hierarchy of database objects when they
are extracted through the DatabaseMetaData class. These discrepancies could potentially cause
confusion or errors.

Figure 2.3 The hierarchy of the package in the Oracle database

2.8.7 Retrieval of columns containing referential data types
In order to understand how the DatabaseMetaData methods extracts columns with a reference
type, a test case was produced.

24 Analysis

A table “t1” has two columns. The first column is of type int and has the name “a”. The
second column is of type int and has the name “b”. A second table with the name “t2” has a
column “x” with the type t1. The type is a reference to the table “t1”. The question is how the
data is extracted. The “t2” table will either have two columns of type integer or one column of
type “t1”.

The case is tested with the PostgreSQL database. The output of the
getColumns(catalog_of_table_t2,schema_of_table_t2,t2_name,null) is a Result Set with
one column. The “COLUMN NAME” is “x”. The “DATA TYPE” of the column “x” is equal
to the Types.Struct. The name of the table “t1” is assigned to the column “x” as the
“TYPE NAME” value.

In conclusion, the data is extracted by fetching the column with the reference type rather
than extracting the reference type columns.

2.9 Filtering database and schema entities to be extracted
The class DatabaseSchemaFilter provides a two-level filtering mechanism for databases and
schemas based on regular expressions. The class is created by Manta and it is used in the
Connectors. It allows specifying include and exclude filters in the format of “database/schema,
database/schema, etc.”, where each comma-separated value represents a database and schema
combination to filter. The format can be different if the DBMS has a two-segment hierarchy. In
that situation, the filter is “database, database, etc.” or “schema, schema, etc.” depending on
what entity type is excluded from the hierarchy.

Chapter 3

Design

The goal for the JDBC Scanner is to be consistent with other Connectors of Manta. The
same frameworks, libraries, tools and structures ought to be used. To ensure consistency and
compatibility with other connectors, modules structure and their interconnections are going to
be examined.

3.0.1 Design constraint
The extractor must maintain consistency in the classes and methods used, as well as preserve
the same structure as in other extractors. This requirement ensures that the new extractor is
built in accordance with existing standards, enabling easier integration with other components
of the system. By maintaining consistency in the classes and methods used, the new extractor
can leverage existing code and promote code reuse, resulting in a more maintainable and efficient
system. Preserving the same structure also promotes a more modular design, making it easier
to add and modify functionality in the future.

What’s more, the same frameworks, libraries and tools ought to be used. Using them across
different extractors in the system also helps to ensure consistency and compatibility between
components. This approach can help to reduce the likelihood of errors or conflicts that may
arise when using different technologies, and can facilitate collaboration among developers who
are familiar with the same technologies.

Overall, this constraint ensures that the new extractor is developed in a manner that is
consistent with existing standards and promotes ease of use, maintainability, and interoperability
with other system components.

3.1 Tecnnologies
There are several technologies used in Manta that are considered compulsory for the JDBC
Scanner.

3.1.1 Maven
Maven is a widely used build automation tool for Java projects that helps to manage project
dependencies and streamline the build process. One of the key features of Maven is its support
for modular development, which allows developers to break a large project into smaller, more
manageable modules that can be developed and tested independently. Maven uses a project

25

26 Design

object model to define the structure and dependencies of a project, and each module in the
project can have its own POM file.

In a Maven-based project, modules are typically interconnected through dependencies defined
in the POM files. Each module can declare its own dependencies on other modules or external
libraries, and Maven will automatically download and include the necessary dependencies in the
build process. This allows developers to focus on developing individual modules without worrying
about the dependencies of other modules in the project.[13]

3.1.2 Spring framework
Spring is a popular open-source framework for building Java applications.

One of the key features of Spring is its support for the creation and management of beans,
which are objects that form the core of a Spring application. Beans are typically defined as Java
classes that are managed by the Spring container, which is responsible for creating, configuring,
and managing instances of those classes.

Spring provides several mechanisms for creating and configuring beans, including XML con-
figuration files, annotations, and Java-based configuration. The XML configuration files and
annotations are decided to be used for the implementation. With XML configuration files, devel-
opers can define the structure and dependencies of beans using a set of XML tags and attributes.
Annotations, on the other hand, allow developers to define the configuration of beans directly in
the source code.

Another key benefit of using Spring for the JDBC metadata extractor is its support for unit
testing and integration testing. Spring provides a variety of tools and utilities that can be used
to write effective tests for Spring-based applications. One of the ways that Spring helps during
testing is by providing a lightweight container for managing the application’s components. It
allows to define and wire up the application’s dependencies in a way that is easy to test. During
testing, the container inject any necessary dependencies, making it easier to write isolated and
focused tests. Spring provides a variety of testing annotations and utilities that make it easier
to write effective tests.[14]

3.1.3 Junit 5
JUnit 5 is a modern and highly capable testing framework that provides with a wide range of
features.

Using a testing framework is important for several reasons. It allows developers to write
automated tests that can quickly and reliably validate the correctness of their code. This can
help catch bugs early in the development process, reducing the time and effort required to fix
them. Testing frameworks also make it easier to maintain and refactor code over time, as tests can
help ensure that changes do not introduce new issues or regressions. Finally, testing frameworks
can help ensure that code is robust and reliable, increasing the overall quality and value of the
software being developed.

3.2 Modules interconnection

Manta introduces its maven modules dependency system. The system is generic for most of the
Connectors. The idea behind the structure of the maven modules dependencies is to have all the
main modules be dependent only on the one module “manta-connector-xxx-model”. By using
this approach, the implementation time can be reduced, and the likelihood of errors, especially
in large projects, can be reduced.

Modules structure 27

Figure 3.1 Structure of the JDBC Scanner

The “manta-connector-xxx-model”1 contains classes that are used in several other modules
and logically do not belong to any of the modules they are used in. Moreover, the module contains
interfaces of classes that logically belong to another module but are used as dependencies in
classes of other modules where the class of the interface is not implemented.

3.3 Modules structure
There are three modules considered useful for the JDBC Scanner implementation. The first
module is “manta-connector-xxx-model”. This module contains auxiliary interfaces and classes
for working with extracted data and providing the dependency management system introduced
in Section 3.2. The second module is “manta-connector-xxx-dictionary-extractor”. This module
provides an extraction scenario. The third module is “manta-connector-xxx-dictionary”. This
module provides access to the storage of an extracted metadata database. It provides function-
ality to store the data correctly, both hierarchically and syntactically, in the storage.

Using the 3 modules structure helps to simplify the implementation of the JDBC Scanner by
providing clear and distinct responsibilities for each module. This can make it easier to manage
dependencies and modify or add new features to the scanner in the future. The modules provide
a clear separation of concerns for handling the extraction of data.

The three modules are named “manta-connector-jdbc-model”,
“manta-connector-jdbc-dictionary-extractor”, and “manta-connector-jdbc-dictionary”, accord-
ingly.

3.3.1 POM files hierarchy
The modules are placed in the JDBC folder. Every module has its own POM file for es-
tablishing a configuration. The POM file of the module is connected to the parent POM
“manta-platform-parent-pom” of all the Manta’s modules. The parent POM file contains all
the versions of dependencies and all the dependencies that are valid for usage during develop-
ment.

The centralized dependency management helps to ensure consistency and avoid conflicts
between dependencies and their versions used in different modules.

1xxx replaced by the name of the Connector

28 Design

3.4 Common Manta modules
There are several Manta modules that provide generic logic for all of the Connectors. These
modules have the name structure “manta-connector-common-xxx”2.

The JDBC Scanner implements the dictionary module. The “manta-connector-common-
dictionary” is relevant for it. It provides functionality for saving dictionary objects in the in-
memory dictionary or in the H2 dictionary.[15].

The extractor module of the JDBC Scanner can use the help of the “manta-connector-
common-dictionary-extractor”.

Finally, the model module can use the “manta-connector-common-dictionary-model” as a
dependency.

Those dependencies are helping to maintain reusability and standardization.

2xxx replaces by the name of the connector logic part

Chapter 4

Implementation

The implementation chapter provides an overview of the classes that have been developed and
integrated into the project. This chapter details the specific decisions that were made during the
implementation process and how they were carried out. Furthermore, this section covers the au-
tomated tests that were conducted to ensure the functionality and reliability of the implemented
system. By the end of this chapter, readers will gain an understanding of the technical aspects
of the project.

4.1 Classes of the “manta-connector-jdbc-model”

4.1.1 JdbcResolverEntitiesFactory interface
The interface called JdbcResolverEntitiesFactory is used to create resolved objects that represent
a database.

The interface contains several methods for creating different types of database objects, such
as catalogs and schemas, and for getting information about the database structure and built-in
data types. The createCatalog method creates a new catalog object with the specified name in
the dictionary and source type. The createSchema method creates a new schema object with the
specified name in the given catalog object and source type. Other create*** entity methods are
created already. They are located in the interface ResolverEntitiesFactory. The JdbcResolverEn-
titiesFactory interface implements the interface ResolverEntitiesFactory. The getDbStructure
method returns a description of the database structure. Finally, the getBuiltinDataType
method returns a built-in dictionary data type that corresponds to the provided constant from
the java.sql.Types class.

4.1.2 JdbcDictionaryFactory interface
The interface is used to create a memory dictionary for a database. The interface contains a
single method called createMemoryDictionary that returns an instance of JdbcResolverEnti-
tiesFactory.

4.2 Classes of the “manta-connector-jdbc-dictionary”

29

30 Implementation

4.2.1 JdbcDialect class
The JdbcDialect class is located in the dialect package. The purpose of this class is to define
which entity types and relationships are legal in a database system. The class extends the
AbstractDialect class.

The JdbcDialect class contains a private field called dbStructure, which is an instance of the
DbStructureImpl class. This field is used to store the structure of the database system and is
used by the various methods in the class to define the legal entity types and relationships.

The JdbcDialect creates database structure during the constructor invocation using a Db-
StructureImpl class and its methods that define the various entity types and relationships that
are legal in a database system. These include the allows method, which specifies which entity
types are allowed to be children of a parent entity, and the policy method, which specifies
the policy for duplicate children, and the mismatchPolicy method, which specifies policy for
inserting an unauthorized type of child

The class also contains a detectBuiltinSymbols method, which is used to detect the presence
of built-in entities in the given dictionary. The method is called during the dictionary object
creation. The initBuiltinSymbols method is used to add built-in entities to the given dictionary
if they are not detected. The built-in entities become the standard, persist-able part of the data
dictionary.

4.2.2 JdbcDictionaryFactory class
The class is located in the “jdbc” package. It provides static methods for creating and accessing
a JDBC data dictionary. The class contains four static methods. openDictionary for opening
an existing dictionary, reinitDictionary for creating a new initialized dictionary and deleting
any existing data, and two overloaded versions of both methods that take either a JdbcDic-
tionaryDataSource or a DataSource instance. The class creates a dictionary in the H2 database.

4.2.3 JdbcDictionarySource class
The class is located in the “jdbc” package. This is a Java class that implements the Dictio-
narySource interface. It contains methods for obtaining an input stream, an output stream, and
a JDBC data dictionary object.

The DictionarySource interface is used later by the ConnectorTask, as it is documented in
the code.

4.2.4 MemoryDictionaryFactory class and JdbcMemory-
DictionaryFactoryImpl class

The class MemoryDictionaryFactory is located in the “memory” package. It provides static
methods for creating and accessing a JDBC data dictionary. The class contains two static
methods. openDictionary for opening an existing dictionary, reinitDictionary for creating a
new initialized dictionary and deleting any existing data.

The class JdbcMemoryDictionaryFactoryImpl creates a dictionary in the in-memory database
with the Jdbc dialect.

4.2.5 JdbcDataDictionary class
JdbcDataDictionary is a class that extends AbstractDataDictionary and also implements Jd-
bcResolverEntitiesFactory. Its purpose is to store and persist data in the data dictionary, which
needs to be maintained between the extraction and analysis phases. In AbstractDataDictionary,

Classes of the “manta-connector-jdbc-dictionary-extractor” 31

the create*** methods are used to store dictionary objects. JdbcDataDictionary’s constructor
has four parameters: the EntityDAO class, the Dialect class, a String representing the global
namespace1 (dictionary id), and a boolean value that indicates whether the dictionary should be
initialized. Initialization involves deleting all data in the data store, creating built-in symbols if
any exist, and persisting the current state.

To create a specific database dictionary, there are mandatory constructor and methods that
need to be implemented.[15] The constructor must call setCaseSensitive to set the case-
sensitivity of the dictionary, and createDatabase and createSchema methods are necessary
for saving a catalog and schema, respectively. JdbcDataDictionary’s getItemType method de-
cides the generic dictionary item type for an entity. It may return null for non-persistent entities.
Finally, the getDbStructure method should be implemented.

4.3 Classes of the “manta-connector-jdbc-dictionary-extractor”

4.3.1 Entity package
There is an “entity” package that includes DTO classes. They are used as temporary storage for
the extracted data.

The Catalog class is a DTO that represents a catalog, which contains a name field and a list
of schemaNames. The list of schemaNames represents schema names in the catalog with the name
that is represented with the field name.

The Entity class is an abstract class that serves as a base for other entity DTOs. It has three
fields: catalog, schema, and name.

The Routine class is a subclass of the Entity class and represents a database routine, such
as a stored procedure or function. In addition to the fields inherited from Entity, the class has
three additional fields: parameters, returnColumns, and unknownColumns. These fields are lists
of routine columns that express the signature of a routine and the existence of undetermined
columns.

The Function class is a subclass of the Routine class and represents a database function. It
does not add any additional fields or methods. The class is used to enhance the code’s readability.

The Procedure class is a subclass of the Routine class and represents a database procedure.
It has a hasReturnValue field, which is a Java Boolean value indicating whether or not the
procedure returns a value. The hasReturnValue field can be set to null if it is unknown, false
if it does not return a value, or true if it does return a value.

The Table class is a DTO that represents a table or a view. It extends the Entity class. The
Table class has two additional fields: type and columns. The type field is of an enumeration
type2 TableType. The columns field is a list of Column objects representing the columns in the
table or view.

The TableType class represents an enumeration type. It contains two constants, TABLE and
VIEW, which represent the types that can be extracted from a database. Each constant has
a corresponding string value that can be used to identify the type. The constructor of the
TableType enumeration takes a string parameter that is used to initialize the type field of the
constant. The TableType enumeration is used to specify the type of a Table entity.

The Column class is a DTO for a database column. It has four private fields: name repre-
senting the name of the column, dataType representing the data type of the column stored as
a constant from java.sql.Types, canBeNull representing if the column allows null values, and
typeName representing the database-specific type name of the column. There are three possibil-
ities for the field canBeNull: the column can contain null values, the column cannot contain

1global namespace is a top level name of the database hierarchy. Catalogs are saved under the global namespace
2represents a set of predefined constants

32 Implementation

null values, or the nullability is unknown. These three possibilities are assigned values of true,
false, and null, respectively.

The ColumnType class represents an enumeration of column roles in a database. It contains
a set of constants representing different roles that a column can have, such as "IN", "OUT",
"RETURN_VALUE", "RESULT_SET", and "UNKNOWN". It has a constructor that takes a String
parameter to set the name of the role. The class also includes a map that associates integer
values with the corresponding column roles.

The RoutineColumn class is a DTO used to represent a column in a database procedure or
function. It extends the Column class and adds an additional field role of type ColumnRole
that represents the role of the column in the routine.

The ColumnInformativeAttributes class is just a placeholder for the constants that are used
to store the information about the nullability of the column into the dictionary using the Dic-
tionaryWriterImpl class.

4.3.2 MetaDao interface
This is an interface called MetaDao, which stands for “metadata access object”. It defines
methods for extracting metadata about various objects from a database and storing them as
DTOs.

The interface includes methods for extracting catalogs, tables, views, procedures, and func-
tions from a database, as well as methods to filter extracted data.

The getTables, getProcedures, and getFunctions methods take two parameters: the name
of the catalog and the name of the schema. These methods return a list of DTOs for the cor-
responding type of object that exists within the specified catalog and schema. The method
getAllCatalogs has no parameters. It creates a list of catalog DTOs. The
getFilteredCatalogsWithSchemas method returns a filtered list of Catalog DTOs, where the
filter criteria are specified by the includeFilter and excludeFilter properties.

4.3.3 MetaDaoImpl class
The class MetaDaoImpl is an implementation of the MetaDao interface with various methods to
extract metadata information about a database using the DatabaseMetaData class.

The MetaDaoImpl class uses a DataSource instance to establish a connection to the database.
Moreover, include and exclude filters are fields of the class.

4.3.4 DictionaryWriter interface
The DictionaryWriter interface is responsible for writing entities into a dictionary within a specific
global namespace. The interface defines several methods for writing different types of objects
into the dictionary, such as catalogs, schemas, procedures, tables, views, and functions.

The interface has several methods for writing objects into the dictionary. These methods
have the name structure write*. The interface has a method called writeCatalog that takes
a String argument as a catalog name and writes the catalog into the dictionary. The interface
has a method called writeSchema that takes a schema name and an IResDataType argument,
which expresses a dictionary object of the saved catalog. The method writes the schema into
the dictionary. Both writeSchema and writeCatalog return a dictionary object representing
the saved entity. The writeProcedure and writeFunction methods both take in a dictio-
nary schema object and a procedure or function DTO, respectively, and save the routine. The
writeProcedureWithoutParams and writeFunctionWithoutParams methods are similar to the
writeProcedure and writeFunction methods, but they generate a routine signature without
any parameters or return values. The writeTableOrView method receives a dictionary object of

Classes of the “manta-connector-jdbc-dictionary-extractor” 33

a schema and a table DTO and writes a table or view into the dictionary based on the type of
the table. Finally, the persistChanges method persists the changes made to the dictionary.

4.3.5 DictionaryWriterImpl class
DictionaryWriterImpl class implements all the methods of the DictionaryWriter interface.

The purpose of the DictionaryWriterImpl class is to write database objects and their data
types into a dictionary. The DictionaryWriterImpl class uses a JdbcResolverEntitiesFactory
object to represent the dictionary.

4.3.6 JdbcExtractor interface
This is an interface called JdbcExtractor. It defines methods for extracting entities and saving
them to a dictionary. The main method is extract() which extracts all the entities and saves
them to the dictionary. It is the main method of the whole project.

When all the important parameters and fields are initialized, the extract() method can be
invoked to produce the desired scenario.

4.3.7 JdbcExtractorImpl class
The JdbcExtractorImpl class is a Java class implementing the JDBC extractor interface.

The class has a MetaDao and a DictionaryWriter instance, which are used to extract metadata
and save objects to the dictionary, respectively. It also has a dictionaryId instance variable, which
is a global namespace for all the extracted entities.

4.3.8 JdbcExtractorReader class
The JdbcExtractorReader class is located in the scenario package and implements the Inpu-
tReader interface for JdbcResolverEntitiesFactory. The purpose of this class is to extract the
Jdbc dictionary using the JdbcExtractor and save the entities from the data source.

The class has four public methods. The canRead() method returns true as it is always
able to read input. The read() uses the JdbcExtractor instance to extract the dictionary and
return it. The close() has an empty implementation as there are no resources to release. The
getInputName() returns the name of the global database in the extracted dictionary.

These four public methods override methods of the InputReader interface, which is used in
other parts of Manta’s application.

4.3.9 Auxiliary classes
The ConvertUtils class provides static methods to convert certain metadata information, ex-
tracted from a database, into values that are used to fill the fields of the corresponding DTOs.
Specifically, columnNullableIntToBool method converts a nullable value of a column from
an integer, retrieved from metadata, into a Boolean, used in the column DTO. The method
returns true if the column can be null, false if it cannot be null, and null if it is unknown.
procedureTypeIntToBool converts the type of a procedure from an integer into a Boolean, in-
dicating whether the procedure has a return value. The method returns true if the procedure
has a return value, false if it does not have a return value, and null if it is unknown. The class
has a private constructor, indicating that it is not meant to be instantiated.

34 Implementation

Code listing 4.1 Part of the getAllCatalogs() method

while (resultSet.next ()) {
String catalogName = resultSet.getString("TABLE_CAT");
Catalog catalog = new Catalog(catalogName);
catalogs.add(catalog);

}
if (catalogs.isEmpty ()) {

Catalog catalog = new Catalog("");
catalogs.add(catalog);

4.4 Other packages

4.4.1 Categories package
The “categories” package has a Category class inside. What’s more, it has an errors sub-package,
which has classes for generating error messages for the logger.

Manta uses its own logging API. The special plugin should be installed for generating error
classes out of the methods introduced in the error package classes. Methods in the Category
class create new instances of the error classes in order to use them for logging.

You can find the Category package implemented in the “manta-connector-jdbc-dictionary-
extractor” and “manta-connector-jdbc-dictionary” modules.

4.5 Implementation decisions

4.5.1 Generic extraction of catalogs and schemas
There are different hierarchies and structures of schemas and catalogs inside the database. Usu-
ally, there is a three-segment hierarchy structure: catalog, schema, and other entities. However,
there can be a two-segment hierarchy structure with no schemas, as in the Teradata DBMS, or
with no catalogs,as in the Oracle DBMS. The extraction of catalogs and schemas in Oracle and
Teradata can be found in Section 2.8.6 and Section 2.8.1, respectively.

In order to omit retrieving packages in Oracle and other potential redundant data in other
two-segment hierarchy databases, the methods with the catalog name parameter put the value
“” empty string as a catalog name. That makes the extraction possible only for schemas and
entities inside it with the catalog name equal null.

In order to know when the database does not have either catalogs or schemas, the output
of the method getCatalog() should be considered. If getCatalog() returns empty Result Set,
there are no catalogs or schemas. For saving the two-segment hierarchy, it occurs to me to use
the same approach as for excluding potentially redundant data. The empty string for the catalog
name is used. Schemas are representing a top level hierarchy in the saved database with one
catalog with the empty string name.

For PostgreSQL and MSSQL databases, catalogs are retrieved using getCatalog() method of
the DatabaseMetaData class and all the schemas are retrieved using
getSchemas(catalog_name,null) are assigned to the related catalog.

Taking into account everything written in the current section, the part of the public method
getAllCatalogs() in Listing 4.1 is implemented in MetaDaoImpl class. It extracts data about
the catalogs from the given connection. If there are no catalogs, it adds a catalog with an empty
string in order to write the schemas in the catalog.

It is worth mentioning that schemas with the null catalog name are saved for every catalog
due to issue in Section 2.8.5.

Implementation decisions 35

4.5.2 Filtering of the catalogs and schemas
There are two public static overloaded methods named includeExclude in the class called
DatabaseSchemaFilter. They are listed in Figure 4.1. The first is a static method that de-
termines whether a given database and schema combination should be included in the extraction
or excluded from it based on provided include and exclude filters. That method is useful for
a DBMS with a three-segment hierarchy. The second is another static method that does the
same as the first method, but instead of the combination, it takes a schema or a database name.
Regardless of the parameter named “database” in the second method in Figure 4.1, the schema
name can be put as an argument and filtered accordingly. That method is useful for a DBMS
with a two-segment hierarchy.

The include and exclude filters must be initialized beforehand.

Figure 4.1 Methods for filtering extraction of schema and database entities

includeExclude(DatabaseSchemaFilter includeFilter, DatabaseSchemaFilter excludeFilter,
String database, String schema);

includeExclude(DatabaseSchemaFilter includeFilter, DatabaseSchemaFilter excludeFilter,
String database);

Three-segment hierarchy DBMSs can be filtered using a catalog name and schema name.
The first method shown in Figure 4.1 is applied. Only the schema name is supplied as the
parameter for two-segment hierarchy databases, including Teradata, Oracle, and others. The
second method shown in Figure 4.1 is applied.

What is more to take into account is that entities have the ability to throw an exception with
a message indicating a lack of privileges for reading inside the specific catalog. The catalogs
should be filtered before extracting other entity types in order to avoid accessing entities inside
the catalog with specific rights. The two-segment hierarchy follows a similar pattern. However,
in that circumstance, the schemas ought to be filtered. The filtering of catalogs or schemas is
done using the second method shown in Figure 4.1.

Additionally, system schemas are extracted. By utilizing the exclude and include filters, the
user is responsible for their exclusion.

Taking into account everything written in the current section, the public method in Listing 4.2
is implemented in the MetaDaoImpl class. Firstly, it uses the public method getAllCatalogs()
for extracting all catalogs. If the database has both catalogs and schemas, it filters the catalogs,
retrieves the schemas of the filtered catalogs, and then filters the schemas. If the database has
either catalogs or schemas, it stores schemas under one catalog with the name “” empty string
and filters them afterward.

4.5.3 Routines with the same name
If a database has two functions or procedures with the same name in the same schema and catalog,
their columns are extracted without any information about which column belongs to which rou-
tine. These routines are referred to as overloaded. An illustration would be when the first function
has the name “function name” and the column name is “first column”. The second function in the
same location has the name “function name” likewise. The column name of the second function is
“second column”. The “first column” and “second column” columns are extracted for both func-
tions, as there is no parameter to specify in the method getFunctionColumns to extract only one
of these functions. The getFunctionColumns(catalog_name,schema_name,function_name,null)
method has the same arguments specified for both of the columns.

36 Implementation

Code listing 4.2 Filtering of the catalogs and schemas

@Override
public List <Catalog > getFilteredCatalogsWithSchemas () {

List <Catalog > catalogs = getAllCatalogs ();
if (hasCatalogs(catalogs)) {

List <Catalog > filteredCatalogs =
getFilteredCatalogs(catalogs);
storeSchemasInCatalogs(filteredCatalogs);
List <Catalog > doubleFilteredCatalogs =
getFilteredSchemas(filteredCatalogs , true);
return doubleFilteredCatalogs;

} else {
storeSchemasInCatalogs(catalogs);
List <Catalog > filteredCatalogs = getFilteredSchemas(catalogs ,
false);
return filteredCatalogs;

}
}

A comparison of values of the “SPECIFIC NAME” column from the Result Set of the
getFunctionColumns and getProceudureColumns methods may be the answer to solving the
problem for the PostgreSQL database. We can learn more about the unique name of the rou-
tine from “SPECIFIC NAME” column. This solution, however, only works with PostgreSQL.
“SPECIFIC NAME” has always null value in the tested data for the Oracle database, and the
column does not exist in the Result Set of the MSSQL database.

The general approach is to properly record routines with unique names, including their
parameters and return values. However, no information regarding the parameters or return
type should be stored for overloaded procedures and functions. It is unknown how many
overloaded routines there are in a database. Therefore, we simply record one routine with-
out parameters for them. The implementation of the above-mentioned problem is carried out
in the JdbcExtractorImpl class and can be observed in the method in Listing 4.3. A similar
method is implemented for the procedures. The method retrieves database functions and di-
vides functions that are overloaded and those that are not overloaded into two groups using
the routinesWithUniqueNames method. The functions that are not overloaded are passed to
writeFunction of the DictionaryWriter class, and they are written with all the information re-
trieved. Otherwise, writeFunctionWithoutParams of the DictionaryWriter class is used. The
function is written without any parameters or return type in that situation.

4.5.4 Avoiding naming patterns
There are a few patterns, like “%” and “ ”. It signifies that any occurrence of “%” and “ ”
characters in the name of a table, schema, procedure, or function will violate the meaning of
such a name during the extraction of its children.

An example would be a table with the name “vo%”. We wish to extract columns from the
“vo%” table. However, the method getColumns(catalog_name, schema_name, "vo%", null)
retrieves all columns from tables whose names begin with “vo”. Overly many columns can be
extracted.

The solution to the problem is presented in Listing 4.4. The method of the MetaDaoImpl class
compares a given schema name and a given table name with a retrieved schema and table name
for every column. If the given and retrieved names are equal, the column is stored. Otherwise,
the column is not stored in the table’s DTO.

Implementation decisions 37

Code listing 4.3 Method for the extraction and saving functions

private void extractAndWriteFunctions(IResDataType dictSchema ,
String catalogName , String schemaName) {

List <Function > functions =
metaDao.getFunctions(catalogName , schemaName);
List <Function > uniqueFunctions = new ArrayList <>();
List <Function > notUniqueFunctions = new ArrayList <>();
routinesWithUniqueNames(functions , uniqueFunctions ,
notUniqueFunctions);
for (Function function : uniqueFunctions) {

dictionaryWriter.writeFunction(dictSchema , function);
}
for (Function function : notUniqueFunctions) {

logger.log(Categories.extractionErrors ().
routineColumnsNotStored ()

.catalog(function.getCatalog ())

.schema(function.getSchema ())

.name(function.getName ()));
dictionaryWriter
.writeFunctionWithoutParams(dictSchema , function);

}
}

In general, the name of an ancestor we have and the name of an ancestor retrieved using the
Result Set are compared. The same solution can be applicable for procedures, functions, and
schemas. Every time the pattern parameter exists in the method of the DatabaseMetaData class
and it is desired to retrieve children of the specific database entity, it is important to compare
the parent’s name with the parent name that was taken from the child.

It is worth mentioning that catalog names cannot be compared. In some databases, if a
catalog exists and an entity is located inside it, the catalog name, after retrieving the entity’s
data, can be equal to null. It is considered in Section 2.8.5.

4.5.5 Supporting names with crash-prone substrings
As mentioned earlier in Section 2.8.2, there are some error-prone substrings inside the entity
names that can abort the extraction. The entity names with such strings are extracted. However,
their children are not extracted, as it is not possible to use such substrings as parameters.

For determining whether a string contains an error-prone substring, the method validateName
is used. The method is created inside the inner static class called ValidateUtils. The class is
located inside the MetaDaoImpl. The method returns a name if the name is valid for sending as
a parameter to narrow down the search for the extraction. Otherwise, returns null. If the string
contains an error-prone substring, the null is used as the parameter instead of the ancestor’s
name in the methods of the DatabaseMetada class. Moreover, the name of the ancestor we have
and the name of the ancestor retrieved using the Result Set are compared. It adopts the same
idea as in Section 4.5.4.

The solution is present in Listing 4.4. Its table and schema names are validated. The null
values or their names are used as arguments of the getColumns method. Then only columns that
are located in the table and schema that are sent as arguments of the method getTableColumns
are stored.

The same solution is applicable for procedures, functions, procedure columns, and function
columns. Every time we want to retrieve children of a database entity, the names of all the
ancestors should be validated using the method validateName and compared with the names

38 Implementation

Code listing 4.4 The method for extracting columns of the table

private List <Column > getTableColumns(String catalog , String schema ,
String table) {

String tableNameAsPattern = ValidateUtils.validateName(table);
String schemaNameAsPattern = ValidateUtils.validateName(schema);
List <Column > columns = new ArrayList <>();
try (Connection connection = dataSource.getConnection ();

ResultSet resultSet = connection.getMetaData ()
.getColumns(catalog , schemaNameAsPattern ,
tableNameAsPattern , null)) {

while (resultSet.next ()) {
if (resultSet.getString(ColumnLabels.TABLE_SCHEMA)
.equals(schema) &&
resultSet.getString("TABLE_NAME"). equals(table)) {

Column column = new Column ();
column.setName(resultSet
.getString(ColumnLabels.COLUMN_NAME));
column.setDataType(resultSet
.getInt(ColumnLabels.DATA_TYPE));
column.setTypeName(resultSet
.getString(ColumnLabels.TYPE_NAME));
column.setCanBeNull(ConvertUtils
.columnNullableIntToBool(resultSet
.getInt("NULLABLE")));
columns.add(column);

}
}

} catch (SQLException e) {
...

}
return columns;

}

Implementation decisions 39

Code listing 4.5 Validation of the unknown procedure information.

@Override
public void writeProcedure(IResDataType dictSchema ,
Procedure procedure) {

...
List <RoutineColumn > unknownColumns = procedure
.getUnknownColumns ();
if (! unknownColumns.isEmpty ()) {

writeProcedureWithoutParams(dictSchema , procedure);
logger.log(Categories

.extractionErrors ()

.routineColumnsAreUnknown ()

.columns(unknownColumns)

.catalog(procedure.getCatalog ())

.schema(procedure.getSchema ())

.name(procedure.getName ()));
return;

}
if (procedure.getHasReturnValue () == null) {

writeProcedureWithoutParams(dictSchema , procedure);
logger.log(Categories

.extractionErrors ()

.unknownProcedureReturnValue ()

.catalog(procedure.getCatalog ())

.schema(procedure.getSchema ())

.name(procedure.getName ()));
return;

}
...

}

that are sent as parameters afterward.
It is worth mentioning that a catalog name cannot be validated because it cannot be compared

after the validation. It is mentioned in Section 4.5.4.

4.5.6 Save routines with unknown information
There is some information about a procedure and a function that can be unknown. The absence
of some information can give as a wrong entity saved at the end.

Procedure type information can be unknown. The information is stored in the
“PROCEDURE TYPE” attribute. In that situation, the best way is to save only the names
of these procedures with unknown “PROCEDURE TYPE” and log an error, but do not abort a
program.

A function or procedure column can have an unknown type. The information is stored in the
“COLUMN TYPE” attribute. The decision is to save only the names of these routines where a
column with the unknown type exists and log an error, but do not abort a program.

The implementation of solutions to the problems can be found in the method writeProcedures
in the DictionaryWriterImpl class in Listing 4.5. If any unknown information is found, the method
transfers responsibility for saving the procedure to the writeProcedureWithoutParams method.
Similar approach is introduced in the writeFunctions method of the DictionaryWriterImpl
class.

40 Implementation

Code listing 4.6 The method for creating a return type of the routine.

private IResDataType getReturnType(Routine routine) {
List <RoutineColumn > returnColumns = routine.getReturnColumns ();
if (returnColumns.size() == 1) {

return dictionary.getBuiltinDataType(returnColumns.get(0)
.getDataType ());

} else if (returnColumns.size() > 1) {
IResDataType dictTableType = dictionary
.createTableType(getDictName("ReturnTypeOf_"
+ routine.getName ()), EntityProps.DB_DYNAMIC_RESULTSET_TYPE ,
SOURCE_TYPE , null);
for (RoutineColumn column : returnColumns) {

IResDataType columnDataType = dictionary
.getBuiltinDataType(column.getDataType ());
dictionary.createColumn(getDictName(column.getName ()),
dictTableType , columnDataType , SOURCE_TYPE , null);

}
return dictTableType;

}
return null;

}

4.5.7 A function and a procedure with identical names
Functions with the same name or procedures with the same name located in the same schema
are not saved due to the solution that is implemented and explained in Section 4.5.3. However, a
function and a procedure with the same name and similar signature can be extracted due to an
invalid extraction of the PostgreSQL database. In the PostgreSQL database, similar procedures
are extracted for all functions. It means that all functions are procedures too. Nevertheless,
sometimes the signatures of the procedure and function representing the same entity may vary. In
PostgreSQL, functions having “out” parameters are extracted as functions with “out” parameters
and as procedures where “out” parameters are extracted as columns of the return type.

A routine signature may vary depending on whether the routine is extracted as a function or
as a procedure. Considering all the information above, the decision is to compare routines only
by their names. If a procedure or a function with an identical name has been stored, the storage
of the new routine is omitted.

A procedure is similar to a function, and it is not recommended to store the routine twice.
Therefore, a verification of routines with similar signatures in the methods writeProcedure,
writeFunction, writeProcedureWithoutParams, and writeFunctionWithoutParamsis imple-
mented.

4.5.8 Return type of the routine
The function or procedure can have multiple return value columns or multiple Result Set columns.
If there is one such column, it is saved as a primitive return data type. If there is more than one
return column, it is saved as a table data type, which saves every column of the return type to
the table.

Listing 4.6 shows how the DictionaryWriterImpl class’s private method for defining the return
type of the routine to save into the dictionary is implemented.

Automated tests 41

Code listing 4.7 SQL script for creating a function in an Oracle database

CREATE OR REPLACE FUNCTION MyFunction(input1 IN INTEGER ,
input2 IN INTEGER , output1 OUT INTEGER , output2 OUT INTEGER)
RETURN INTEGER IS
BEGIN

output1 := input1 + input2;
output2 := input1 * input2;
RETURN 1;

END;

4.5.9 Return types and out parameters interconnection
What can be extracted as a return type from the routine is limited by the DatabaseMetaData
class. The limitations include that a one-column table type and a basic data type cannot be
distinguished from one another, and we are unable to implement a record data type since the
API does not give us any information about its columns. Information about how the record data
type is extracted can be found in Section 2.7.14.

In PostgreSQL, it is possible to recreate a record data type using columns that express out
parameters of a routine. However, it is not possible for Oracle. In Oracle, out parameters and
return type are not interconnected. The example of the script in Listing 4.7 is valid for Oracle
but not for PostgreSQL because of the difference between return type and out parameters.

4.6 Automated tests
In order to ensure the correct functionality of the JdbcDialect class and to verify that it saves
only permitted entities, automated testing has been conducted.

Similarly, automated testing has been performed for the MetaDaoImpl class to ensure proper
extraction and storage of all entities in DTOs for the PostgreSQL database. Additionally, catalog
and schema extraction and filtering for four different DBMSs (Teradata, Oracle, PostgreSQL,
and MSSQL) have been tested to ensure compatibility with various database structures.

The DictionaryWriterImpl class has also been subject to automated testing to verify the
successful saving of DTOs.

The JdbcExtractorImpl class has undergone testing for the PostgreSQL database and, to a
lesser extent, for the Teradata, Oracle, and MSSQL databases to ensure the complete scenario
from extraction to saving is functional. Though the extent of testing was not as comprehensive
for the non-PostgreSQL databases, the absence of errors was confirmed.

The automated tests encompass both integration and unit testing and rely on the Manta
development environment. Changes made to the databases used for JDBC Scanner testing must
be reflected in the automated tests. Code coverage is at 70%.

4.7 The JDBC Scanner performance with an unsupported
DBMS

To test the JDBC Scanner with an unsupported DBMS, we chose to use MySQL. The purpose
of this test is to evaluate Scanner’s performance with untested dialects.

Testing with a MySQL database showed that the JDBC Scanner does not extract data prop-
erly due to incorrect extraction and filtering of databases.

MySQL has a two-segment database structure with no schemas, similar to Teradata. However,
the implementation differs as Teradata extracts databases using the getSchemas method, while

42 Implementation

MySQL extracts databases using the getCatalogs method of the DatabaseMetaData class.
In conclusion, the test of the JDBC Scanner with an unsupported DBMS such as MySQL has

highlighted some limitations and issues in its performance. The improper extraction and filtering
of data from MySQL database revealed the Scanner’s lack of compatibility with certain dialects.
This highlights the importance of thorough testing and validation of software components with
various database management systems to ensure their proper functionality.

Chapter 5

Conclusion

The feasibility of implementing a generic extractor for RDBMSs has been demonstrated. The
initial implementation has been completed and tested, demonstrating its ability to retrieve details
about the database structure. The extractor has the ability to collect a range of information,
including procedure, function, table, and view names, and catalog and schema details. Moreover,
it offers insights into the parameters and return types in these routines, as well as the columns
and its data types associated with the tables and views. Implementing the JDBC API presents
various challenges due to the unique limitations and atypical behaviors that arise with different
database management systems. These factors include variations in database structure, issues
with incorrect extractions, and variations in the information that can be extracted for each
DBMS.

The implementation of the JDBC metadata extractor adheres to Manta standards, and ex-
tracted entries are stored using the Manta dictionary. Additionally, the generic dictionary struc-
ture has been implemented.

Overall, the successful implementation and testing of the generic metadata extractor using
the JDBC API, along with its potential benefits, make it a valuable contribution to the field
of database analysis and data lineage. Further development and optimization of the extractor
could lead to even more efficient and powerful database analysis.

43

44 Conclusion

Chapter 6

Future Work

The implementation of the JDBC metadata extractor provides important information about the
structure of the database. However, there are many things to do in the future to enhance its
capabilities and usability.

Better generalization of filtering and extracting of catalogs and schemas is one of the most
crucial and urgent improvements that must be made in order to reduce the possibility of incorrect
extraction of unsupported DBMS.

One of the improvements that can be done is better realization of the array data type.
Currently, it is stored as an array without any information about the array elements’ data type.
Adding this information will provide a more complete understanding of the data type array in
the database.

Another important aspect that needs to be addressed is the extraction of information about
primary and foreign keys. This information is crucial for understanding the relationships between
tables in the database and can be used for optimizing queries and improving performance.

In addition to primary and foreign keys, the extraction of more attributes of columns is also
essential. This includes information such as default values, length, precision, and other relevant
information.

Although the testing of the PostgreSQL database extraction is already implemented, it is
essential to test the JDBC Connector more thoroughly. This includes testing classes with other
dialects, especially the MetaDaoImpl class. Testing these dialects will ensure that the JDBC
metadata extractor is robust and can handle different databases.

Another important aspect that needs to be addressed is the creation of the
“manta-connector-jdbc-dictionary-mapping” module and relevant classes for storing informa-
tion about the connection in a CSV file. This will provide an easy way to store and retrieve
information about the database connection.

Finally, collecting the time of database calls and printing statistics at the end using the
DbCallStatistics class of Manta can provide important insights into the performance of the
extractor.

45

46 Future Work

Bibliography

1. MCKENZIE, Cameron. What is Java Database Connectivity (JDBC)?: Definition from
TechTarget [online]. TheServerSide.com, 2019 [visited on 2023-02-21]. Available from: https:
//www.theserverside.com/definition/Java-Database-Connectivity-JDBC.

2. Connecting with DataSource objects [online]. Oracle.com, [n.d.] [visited on 2023-03-05].
Available from: https://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.
html.

3. DAVID-ENGEL. Building the connection URL - JDBC driver for SQL server [online].
Microsoft.com, [n.d.] [visited on 2023-02-18]. Available from: https://learn.microsoft.
com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-
ver16.

4. Client-side Authentication [online]. Oracle.com, [n.d.] [visited on 2023-02-20]. Available
from: https://docs.oracle.com/cd/A97335_02/apps.102/a83722/secure4.htm.

5. Initializing the driver [online]. Postgresql.org, [n.d.] [visited on 2023-02-20]. Available from:
https://jdbc.postgresql.org/documentation/use/.

6. HOW TO: Connect to SSL enabled DB2 through the JDBC V2 connector in IICS [on-
line]. Informatica.com, [n.d.] [visited on 2023-02-20]. Available from: https://knowledge.
informatica.com/s/article/000176431?language=en_US.

7. SSL Connection to Oracle DB using JDBC, TLSv1.2, JKS or Oracle Wallets (12.2 and
lower) [online]. Oracle.com, [n.d.] [visited on 2023-02-20]. Available from: https://blogs.
oracle.com/developers/post/ssl-connection-to-oracle-db-using-jdbc-tlsv12-
jks-or-oracle-wallets-122-and-lower.

8. Teradata JDBC Driver Reference [online]. AmazonAws.com, [n.d.] [visited on 2023-02-20].
Available from: https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/
reference/current/frameset.html.

9. Interface DatabaseMetaData [online]. Oracle.com, 2020 [visited on 2023-02-20]. Available
from: https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.
html.

10. Retrieving and modifying values from Result Sets [online]. Oracle.com, [n.d.] [visited on
2023-02-24]. Available from: https://docs.oracle.com/javase/tutorial/jdbc/basics/
retrieving.html.

11. SQL Server Synonyms and PostgreSQL Views, Types, and Functions [online]. Amazon.com,
1989 [visited on 2023-03-01]. Available from: https://docs.aws.amazon.com/dms/latest/
sql-server-to-aurora-postgresql-migration-playbook/chap-sql-server-aurora-
pg.tsql.synonyms.html.

47

https://www.theserverside.com/definition/Java-Database-Connectivity-JDBC
https://www.theserverside.com/definition/Java-Database-Connectivity-JDBC
https://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.html
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver16
https://docs.oracle.com/cd/A97335_02/apps.102/a83722/secure4.htm
https://jdbc.postgresql.org/documentation/use/
https://knowledge.informatica.com/s/article/000176431?language=en_US
https://knowledge.informatica.com/s/article/000176431?language=en_US
https://blogs.oracle.com/developers/post/ssl-connection-to-oracle-db-using-jdbc-tlsv12-jks-or-oracle-wallets-122-and-lower
https://blogs.oracle.com/developers/post/ssl-connection-to-oracle-db-using-jdbc-tlsv12-jks-or-oracle-wallets-122-and-lower
https://blogs.oracle.com/developers/post/ssl-connection-to-oracle-db-using-jdbc-tlsv12-jks-or-oracle-wallets-122-and-lower
https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/frameset.html
https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/frameset.html
https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
https://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/retrieving.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/retrieving.html
https://docs.aws.amazon.com/dms/latest/sql-server-to-aurora-postgresql-migration-playbook/chap-sql-server-aurora-pg.tsql.synonyms.html
https://docs.aws.amazon.com/dms/latest/sql-server-to-aurora-postgresql-migration-playbook/chap-sql-server-aurora-pg.tsql.synonyms.html
https://docs.aws.amazon.com/dms/latest/sql-server-to-aurora-postgresql-migration-playbook/chap-sql-server-aurora-pg.tsql.synonyms.html

48 Bibliography

12. Types (java platform SE 8) [online]. Oracle.com, [n.d.] [visited on 2023-03-12]. Available
from: https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html.

13. Introduction - Apache Maven [online]. Maven.org, [n.d.] [visited on 2023-02-15]. Available
from: https://maven.apache.org/what-is-maven.html.

14. Spring Framework Documentation [online]. Spring.io, 2002 [visited on 2023-03-21]. Available
from: https://docs.spring.io/spring-framework/docs/current/reference/html/.

15. TOUSEK, Jiri. Data Dictionary (manta-connector-common-dictionary) [online]. Manta,
[n.d.] [visited on 2023-03-15]. Available from: https://manta-io.atlassian.net/wiki/
spaces/MT/pages/1939243042.

https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html
https://maven.apache.org/what-is-maven.html
https://docs.spring.io/spring-framework/docs/current/reference/html/
https://manta-io.atlassian.net/wiki/spaces/MT/pages/1939243042
https://manta-io.atlassian.net/wiki/spaces/MT/pages/1939243042

The content of the attached
media

src
thesis......................................source form of the thesis in LATEX format

text .. text of the thesis
thesis.pdf..text of the thesis in PDF format

49

	Acknowledgments
	Declaration
	Abstract
	Abbreviations
	Introduction
	Requirements analysis
	Problem statement
	Functional requirements
	Non-functional requirements

	Analysis
	Entities to be extracted
	Understanding the capabilities of the JDBC
	Limitations of the JDBC API

	DataSource interface and BasicDataSource class
	Connecting to the database

	DatabaseMetaData interface
	Excluded methods
	Filtering database metadata

	Result Sets of the methods of the DatabaseMetaData class
	Closing ResultSet object

	Differences in Result Sets in distinct databases
	Comparison of the retrieved catalogs metadata
	Comparison of retrieved schemas metadata
	Comparison of retrieved procedures metadata
	Comparison of retrieved procedure parameters and return type metadata
	Comparison of retrieved functions metadata
	Comparison of retrieved function parameters and return type metadata
	Comparison of retrieved tables metadata
	Comparison of retrieved synonyms metadata
	Comparison of retrieved views metadata
	Comparison of retrieved table columns metadata
	``SPECIFIC_NAME'' and ``COLUMN_DEF'' columns absence
	Not enough information about the database synonyms
	Summary and additional information

	Relevant columns of the Result Sets
	Useful columns of the retrieved catalog information
	Useful columns of the retrieved schema information
	Useful columns of the retrieved procedure information
	Useful columns of the retrieved procedure column information
	Useful columns of the retrieved function information
	Useful columns of the retrieved function column information
	Useful columns of the retrieved table information
	Useful columns of the retrieved table column information
	``TABLE_TYPE'' column
	``PROCEDURE_TYPE'' column
	``COLUMN_TYPE'' column
	``NULLABLE'' column
	``DATA_TYPE'' column
	``TYPE_NAME'' column
	Ancestor name columns
	Column and Schema names accept null values
	Excluded columns
	Summary

	Examples of specific JDBC API extractor behavior
	Extraction of the catalogs and schemas in the Teradata database
	Crash-prone substring in the Teradata database
	Extraction of the system schemas
	Incorrect Extraction using methods with null arguments
	Incorrectly extracted information about the PostgreSQL database's schemas
	Incorrect Extraction of the Oracle database hierarchy
	Retrieval of columns containing referential data types

	Filtering database and schema entities to be extracted

	Design
	Design constraint
	Tecnnologies
	Maven
	Spring framework
	Junit 5

	Modules interconnection
	Modules structure
	POM files hierarchy

	Common Manta modules

	Implementation
	Classes of the ``manta-connector-jdbc-model''
	JdbcResolverEntitiesFactory interface
	JdbcDictionaryFactory interface

	Classes of the ``manta-connector-jdbc-dictionary''
	JdbcDialect class
	JdbcDictionaryFactory class
	JdbcDictionarySource class
	MemoryDictionaryFactory class and JdbcMemoryDictionaryFactoryImpl class
	JdbcDataDictionary class

	Classes of the ``manta-connector-jdbc-dictionary-extractor''
	Entity package
	MetaDao interface
	MetaDaoImpl class
	DictionaryWriter interface
	DictionaryWriterImpl class
	JdbcExtractor interface
	JdbcExtractorImpl class
	JdbcExtractorReader class
	Auxiliary classes

	Other packages
	Categories package

	Implementation decisions
	Generic extraction of catalogs and schemas
	Filtering of the catalogs and schemas
	Routines with the same name
	Avoiding naming patterns
	Supporting names with crash-prone substrings
	Save routines with unknown information
	A function and a procedure with identical names
	Return type of the routine
	Return types and out parameters interconnection

	Automated tests
	The JDBC Scanner performance with an unsupported DBMS

	Conclusion
	Future Work
	The content of the attached media

