
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Comparison of Apache JSP and React for Online Books/Comics

Reader Implementation

Kyrylo Ponomarov

Ing. Marek Suchánek

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Single-Page Application (SPA) is gradually replacing traditional server-side template 

rendering technologies in web applications. However, SPA also brings with it a number of 

drawbacks that must be eliminated using other techniques such as Server-Side 

Rendering or Progressive Web Apps. The goal of this work is to develop a system for 

online book/comic reading and to thoroughly compare the use of traditional JSP and SPA 

technology in React:  

- Analyze and describe JSP and React (and possibly other related) technologies.  

- Research existing comparisons of traditional and SPA approaches to frontend web 

application development.  

- Establish metrics and a process for comparing the two approaches.  

- Specify functional and non-functional requirements for an online book/comic reader 

according to existing similar and widely used systems.  

- Design an information system that meets the requirements. Divide the architecture into 

a backend with a Java API and two frontend applications (JSP and React).  

- Implement according to the design and test the resulting application. Both frontend 

applications should provide identical functionality and appearance.  

- Compare the approaches according to the specified metrics and summarize the 

resulting findings. 

Electronically approved by Ing. Michal Valenta, Ph.D. on 17 November 2022 in Prague.





Bachelor’s thesis

COMPARISON OF
APACHE JSP AND
REACT FOR ONLINE
BOOKS/COMICS
READER
IMPLEMENTATION

Kyrylo Ponomarov

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Marek Suchánek.
May 10, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2023 Kyrylo Ponomarov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Ponomarov Kyrylo. Comparison of Apache JSP and React for Online Books/-
Comics Reader Implementation. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.



Contents

Acknowledgments vii

Declaration viii

Abstract ix

Introduction 1

1 Analysis 3
1.1 Server-Side Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Client-Side Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Existing comparisons of SSR and CSR . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Comparison between client-side and server-side rendering in the web de-
velopment [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 On the Comparison of Software Quality Attributes for Client-side and
Server-side Rendering [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Online books/comics reader system definition . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Metrics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1 Metrics from the client’s perspective . . . . . . . . . . . . . . . . . . . . . 9
1.5.2 Metrics from the server’s perspective . . . . . . . . . . . . . . . . . . . . . 9

2 Design 11
2.1 Wireframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 API design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Back-end application design . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Architecture of React applications . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 React Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 React Props . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 React State Hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Architecture of Struts2 applications . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Struts2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Struts2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Struts2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Tools used for metrics collecting . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



iv Contents

3 Implementation 23
3.1 Server implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Technology decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Persistence layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Presentation layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 React implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Technology decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Directories structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 API components generation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 React components pre-rendering . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Struts2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Technology decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Directories structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Spring configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Testing 33
4.1 Server application testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Client applications testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 The same appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 The same functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Comparison based on the collected metrics 37
5.1 Collected metrics from the client’s perspective . . . . . . . . . . . . . . . . . . . . 37
5.2 Collected metrics from the server’s perspective . . . . . . . . . . . . . . . . . . . 38
5.3 Final comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Conclusion 41

Contents of enclosed CD 45



List of Figures

1.1 Market position of PHP in terms of popularity and traffic compared to the most
popular server-side programming technologies . . . . . . . . . . . . . . . . . . . . 4

1.2 Sequence diagram showing server and client communication in case of SSR . . . 4
1.3 Sequence diagram showing server and client communication in case of CSR . . . 5
1.4 Online books/comics reader system, use case diagram . . . . . . . . . . . . . . . 8
1.5 Online books/comics reader system, domain model diagram . . . . . . . . . . . . 9

2.1 Online books/comics reader system, add book page wireframe . . . . . . . . . . . 12
2.2 Online books/comics reader system, library page wireframe . . . . . . . . . . . . 12
2.3 Online books/comics reader system, book page wireframe . . . . . . . . . . . . . 13
2.4 Online books/comics reader system, main page wireframe . . . . . . . . . . . . . 13
2.5 Online books/comics reader system, the API endpoints . . . . . . . . . . . . . . 14
2.6 The MVC pattern in Struts2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

List of Tables

5.1 Collected metrics from the client’s perspective . . . . . . . . . . . . . . . . . . . . 37
5.2 Collected metrics from the server’s perspective . . . . . . . . . . . . . . . . . . . 38

List of code listings

2.1 Example of MyApp React component . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Example of props passing in React . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Example of useState hook usage in React . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Example of a model class in MVC . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Example of a simple JSP page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Example of a View-Controller in Struts2: struts.xml . . . . . . . . . . . . . . . 20
2.7 Example of a View-Controller in Struts2: index.jsp . . . . . . . . . . . . . . . . 21
2.8 Example of a View-Controller in Struts2: LoginAction.java . . . . . . . . . . . 21
3.1 Example of a DAO implementing JpaRepository . . . . . . . . . . . . . . . . . . 24
3.2 Code of the ImageService class . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Code of the BookSPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



vi List of code listings

3.4 Code of the PageSPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Code of the ImageController class . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Example of global exception handling for controllers . . . . . . . . . . . . . . . . 28
3.7 Example of the generated BooksApi object usage . . . . . . . . . . . . . . . . . . 30
4.1 Example of unit tests coverage for the ImageController class . . . . . . . . . . . 34
4.2 Definition of the auxiliary NamedByteArrayResource class . . . . . . . . . . . . . 35
4.3 Example of unit tests coverage for the ImageService class . . . . . . . . . . . . . 36



I would like to thank my supervisor Ing. Marek Suchánek for the
guidance and help he provided me in the preparation of this thesis.
Also, I would like to express my deepest gratitude to my family and
friends who have always supported and inspired me.

vii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 10, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viii



Abstract

This bachelor’s thesis describes and compares two approaches to client-side web applications
development: client-side rendering and server-side rendering. React and Struts2 with JSP (Java
Server Pages) technologies were chosen as representatives of each approach, and our own metrics
were defined for the comparison.

The comparison is based on a sample online books/comics reader system, whose implemen-
tations have the same look and functionality in both technologies.

The result of this thesis is the implementation of a server application with API in Java,
two client applications in React and Struts2 with JSP, and then a comparison of the chosen
approaches for client-side applications development.

Keywords web development, SSR, CSR, React, Struts2, JSP, JMeter

Abstrakt

Tato práce popisuje a porovnává dva př́ıstupy pro vývoj klientských webových aplikaćı: ren-
derováńı na straně klienta a na straně serveru. Pro reprezentaci každého z uvedených př́ıstup̊u
byly zvoleny technologie React a Struts2 s JSP (Java Server Pages) a pro srovnáńı byly defi-
novány naše vlastńı metriky.

Porovnáńı je založeno na ukázce systému pro online čteńı knih/komiks̊u, jehož implementace
maj́ı v obou technologíıch stejný vzhled a funkcionalitu.

Výsledkem této práce je implementace serverové aplikace s API v Java, dvou klientských
aplikaćı v React a Struts2 s JSP, a následné porovnáńı zvolených př́ıstup̊u pro vývoj klientských
aplikaćı.

Kĺıčová slova vývoj webu, SSR, CSR, React, Struts2, JSP, JMeter

ix



Acronyms

AJAX Asynchronous JavaScript and XML. 3, 39

API Application Programming Interface. v, 1, 3, 7, 11, 14, 15, 17, 27–29, 33, 39

CPU Central Processing Unit. 9, 22

CRUD Create, Read, Update, Delete. 14, 24

CSR Client-Side Rendering. v, 1, 3, 5–7, 37, 39–41

CSS Cascading Style Sheets. 3, 6, 22, 31, 35

DAO Data Access Object. v, 23, 24

DI Dependency Injection. 17, 23, 31

DOM Document Object Model. 9, 29

DTO Data Transfer Object. 27, 29, 31

HTML HyperText Markup Language. 3, 6, 15, 18, 28, 29, 31, 35, 40

HTTP HyperText Transfer Protocol. 15, 24

IoC Inversion of Control. 17, 23, 31

JSP Java Server Pages. v, 1, 3, 7, 18–20, 28, 31, 35, 41

JSX JavaScript XML. 15, 16

MVC Model View Controller. v, 17–20, 31

ORM Object Relational Mapping. 23

PHP HyperText Preprocessor. v, 3, 4, 6

REST Representational State Transfer. 11, 15

SEO Search Engine Optimization. 3, 5, 9, 39

SPI Service Provider Interface. 24, 31

SQL Structured Query Language. 23, 24

SSR Server-Side Rendering. v, 1, 3–7, 37, 39–41

UI User Interface. 15, 18, 28

x



Acronyms xi

URL Uniform Resource Locator. 29

UX User Experience. 5, 39

XML Extensible Markup Language. 31



xii Acronyms



Introduction

Server-Side Rendering, which will be referred to as SSR in this thesis, is a time-proven
approach for client-side applications development that is still used in some commercial projects.
Like any technique, this approach has advantages and disadvantages, some of which are solved by
Client-Side Rendering, which is a relatively new approach for client-side applications development
and will be referred to as CSR in this thesis. The natural question is in which case the first or
the second approach should be chosen, or whether it makes sense to consider switching to the
new approach for existing applications.

Having a constructive comparison of SSR and CSR would be useful both for developers
who want to expand their knowledge of these software development approaches and for project
managers who need to decide which approach is the best choice for their particular project.
Currently, there exist some comparisons of SSR and CSR concepts, however, not many of them
cover the actual performance results based on system implementations with identical appearance
and functionality developed using each approach. Moreover, no objective comparison based on
the technologies we will use for implementation has been found.

The aim is to describe and compare the basic concepts of SSR and CSR on the example
of Struts2 with Java Server Pages (JSP) and React technologies. The comparison should be
done according to predefined criteria and metrics. As an example task, a system for online
reading books/comics has to be implemented. This system must consist of a Java-based back-
end application with Application Programming Interface (API), and two client applications.
Each part of the system should be tested, which means that the back-end application must be
covered by unit tests and that the manual testing must be performed to ensure that both client
applications have the same appearance and functionality.

This thesis is split into 5 chapters. The analysis chapter covers a description of the general
concepts of SSR and CSR, examples of existing comparisons of these approaches, the definition
of metrics that are used for our own comparison, and the definition of requirements for our online
books/comics reader system according to already existing similar systems. The design chapter
defines the architecture of the system in the chosen technologies, whilst the implementation
chapter goes into more detail about the development process of the system. The testing chapter
describes how each part of the system is tested. Finally, our own comparison of SSR and CSR
is done in the last chapter.

1



2 Introduction



Chapter 1

Analysis

In this chapter we will describe the general concepts of SSR and CSR, look at some exist-
ing comparisons of these approaches, and then define the metrics we will use for our own
comparison. Finally, we will define functional and non-functional requirements for an online
books/comics reader system, which will be used as a sample task for our comparison.

1.1 Server-Side Rendering
SSR was the first approach used for serving dynamic content in web applications. It appeared

in the early 1990s, while the first public version of HyperText Preprocessor (PHP) was released
in 1995. According to the W3Techs - World Wide Web Technology Surveys report [1], PHP is
still the most popular SSR technology, used by 77.4% of websites. Other popular technologies
used for SSR are ASP.NET, Ruby on Rails and Java Server Pages (JSP). The popularity of these
technologies is demonstrated in Figure 1.1.

As the approach’s name implies, the resulting view of the page that will be later delivered to
a customer is rendered directly on the server, which means that every time the customer needs
to get a new page view he has to send a new request to the server. Figure 1.2 demonstrates
communication between a server, an API providing the data needed for rendering, and a client
in case of SSR. That being said, at least the following statements can be made:

1. The websites developed using SSR are easily accessible to Search Engine Optimization (SEO)
crawler bots because the server returns fully rendered pages.

2. If SSR is used, then the server will be requested quite often, whenever a new page is needed.
However, the number of requests can be reduced by using different caching techniques.

1.2 Client-Side Rendering
The CSR approach was the successor to SSR. With the growing popularity of JavaScript for

adding interactive client-side behavior, such CSR frameworks as AngularJS, React, and Vue.js
have emerged.

In contrast to SSR, the rendering of web pages is primarily done on the client side in CSR.
Clients receive a bundle containing HyperText Markup Language (HTML), Cascading Style
Sheets (CSS) and JavaScript code that will later be used to render all pages view by the browser.
Any additional content that is required to render a page will be delivered later by doing Asyn-
chronous JavaScript and XML (AJAX) calls to some API. Unlike in SSR, communication between

3



4 Analysis

Figure 1.1 Market position of PHP in terms of popularity and traffic compared to the most popular
server-side programming technologies

Server-Side Rendering 

Client Server API

GET /book-1.html

Retrieve content

Rendered /book-1.html page

GET /book-2.html

Retrieve content

Rendered /book-2.html page

Figure 1.2 Sequence diagram showing server and client communication in case of SSR



Existing comparisons of SSR and CSR 5

Client-Side Rendering 

Client Server API

GET bundle.js

Retrieve book-1 content

Retrieve book-2 content

Figure 1.3 Sequence diagram showing server and client communication in case of CSR

client and server happens only once, which is demonstrated in Figure 1.3. In conclusion, at least
the following statements can be made:

1. The websites developed using CSR are difficult for SEO crawlers to access because the server
returns “raw” and unrendered data to clients, whose responsibility is to take care of rendering
later.

2. If CSR is used, then the server will be requested to deliver a bundle with the code necessary
to render any page of our web application only once. However, it means that the rendering
job is delegated to the client, which can increase the load on the clients’ side and affect his
User Experience (UX).

1.3 Existing comparisons of SSR and CSR
The comparison of CSR and SSR is an interesting topic from the perspective of development

and project management, that is why there already exist some comparisons of these approaches.
By using Google Scholar search, we managed to find some of them. Having these examples, we
will be able to define what is already done and what new can our thesis bring.

1.3.1 Comparison between client-side and server-side ren-
dering in the web development [2]

Goals As the authors mentioned in the abstract: “The purpose of this paper is to analyse the
comparison between client side and server side method in the respect of technical aspects in



6 Analysis

term of first content paint, speed index, time to interactive, first meaningful paint, first idle
CPU and estimated input latency that present better performance”.

Metrics It turned out that the chosen metrics are exactly the same as those provided by Google
Lighthouse [3], which is understandable because this tool was used for the metrics generation
in that work: “For the website testing, it used Google Audit, which can look the score of
performance, accessibility, best practice, search engine optimization and progressive web app”.

Sample task As the sample task, the authors decided to implement a login page: “In this test,
the study implemented simple login page with the test case of wrong password input”.

Used technologies Talking about the technologies stack, the authors decided to use HTML,
CSS, PHP for SSR, and JavaScript, HTML, CSS for CSR: “On the other hand, in Server
side rendering have been used PHP, HTML and CSS while the client side rendering have been
used Java script, HTML and CSS because Java script can implement OOP”.

Conclusion This paper is noteworthy, however, it would be interesting to compare the CSR and
SSR methods not only from the client’s perspective, but also from the server’s perspective.
It might also be interesting to compare the metrics collected based on some more complex
sample task, not just on the login page.

1.3.2 On the Comparison of Software Quality Attributes
for Client-side and Server-side Rendering [4]

Goals As the author of this master’s thesis mentioned in its abstract: “The main goal of this
study is to investigate the differences between client-side rendering and server-side rendering
and to advise developers on making the choice between those two rendering paradigms”.

Metrics The author decided to create a pool of metrics, based on which respondents could
later vote for those that were the most important to them. As a result, the following metrics
were selected: “The following software quality attributes will be investigated in this research:
performance (page loads, throughput and bandwidth), development effort, scalability, avail-
ability”.

Sample task As a sample task, the author decided to implement a simple content management
system: “The web application written for this research is a simple implementation of content
management system. It contains simple pages which can be read/browsed like on a real-world
website”. It is worth mentioning that the author decided to collect the defined metrics not
only from his sample project, but also from some larger open-source projects.

Used technologies Regarding the technologies that were chosen as the representatives of CSR
and SSR in this thesis, the author decided to have two implementations of SSR in PHP and
Go, while Vue.js was used for CSR.

Conclusion This master’s thesis is a very worthwhile work, especially its theoretical part. Un-
like the previous paper, it takes into account not only metrics from the perspective of clients’
experience, but also from the perspective of servers’ performance. However, it was not de-
scribed in details how the author managed to guarantee that all implementations of his
application would be executed in environments with the same amount of resources during
metrics collecting.



Online books/comics reader system definition 7

1.3.3 Summary
Even though there already exist some comparisons of CSR and SSR, the result of this thesis

will bring something new as we will use different technologies and several new metrics. However,
before collecting any metrics, we need to implement a sample system. The definition of metrics
and system requirements will be made in the following sections.

1.4 Online books/comics reader system definition

In this section, we will define how the implementations of a sample system should look like.
This definition consists of requirements (functional and non-functional) and use cases. At the
end of this section, we will be able to create a domain model for our sample system.

1.4.1 Requirements
This subsection describes the functional and non-functional requirements for our sample

system. When defining the requirements, our goal was neither to make them too simple, which
would not lead us to an illustrative example from real-world web development, nor to complicate
them with features that would not be used for the representative metrics collecting (e.g. user
account management).

In order to get a rough idea of what requirements an online books/comics reader system
might have, we decided to look at the already existing implementations of such systems1. Based
on what we have seen, we came up with the following requirements:

Functional requirements clarify what needs to be done and identify the necessary activities.

F1: Library management The system should provide a web page for adding new books.
The user should also be able to delete already existing books.

F2: Library overview The system should provide a list of the available books to read. It
should be possible to search through the available books by book title. The system should
also track what was the last read page when the user stopped reading the book. Otherwise,
if the book has not yet been opened, it should be indicated with the corresponding label.

F3: Book reading The system should allow its users to read books. Pagination should
be implemented on the book reading web page, which means that the book pages must
be split into bundles with a fixed size. Navigation through the bundles should also be
implemented in the form of moving to the next/previous bundle or to a bundle with a
defined number.

Non-functional requirements are all requirements that are not functional, which usually
relates to the performance, usability, and user experience aspects of the system.

N1: Clients Two client applications with identical appearance and functionality should be
implemented, one written in Struts2 with JSP, and the other in React.

N2: Responsiveness Both client applications should have a responsive design.

N3: Server A back-end application with a provided API written in Java should be imple-
mented.

1For example, https://www.marvel.com/comics and https://www.dc.com/comics

https://www.marvel.com/comics
https://www.dc.com/comics


8 Analysis

Figure 1.4 Online books/comics reader system, use case diagram

1.4.2 Use cases
This subsection describes the use cases that are derived from our system’s requirements. The

use cases are depicted in Figure 1.4.

UC1: Adding a new book to the library Users should be able to add new books to their
library by entering information about a new book and attaching images of its pages.

UC2: Remove an existing book from the library Users should be able to remove a book
from their library.

UC3: Show the library Users should be able to view a list of books that are in their library.

UC4: Search through the library Users should be able to search through their library by
book title.

UC5: Read a book Users should be able to read the books they choose.



Metrics definition 9

Figure 1.5 Online books/comics reader system, domain model diagram

1.4.3 Domain model
Having the definition of the requirements and use cases, we can create the domain model of

our system. The resulting model is illustrated in Figure 1.5

1.5 Metrics definition
In this subsection, we will define the metrics against which we will be able to compare two

client implementations of our sample system. We will be interested in metrics from both the
client’s and server’s perspective.

1.5.1 Metrics from the client’s perspective
There are several tools for collecting different metrics on client’s side. One of them is Chrome

DevTools kit [5], which also includes Google Lighthouse [6]. These tools are open-source and
can provide us with a lot of information about our application, such as audits for performance,
accessibility, progressive web apps and Search Engine Optimization (SEO), that is why it was
decided to use Chrome DevTools in this thesis.

After analyzing what information we can get from Chrome DevTools, the following metrics
were chosen:

First Contentful Paint measures how long it takes the browser to render the first piece of
Document Object Model (DOM) content after a user navigates to a page.

Largest Contentful Paint measures when the largest content element in the viewport is ren-
dered to the screen. This approximates when the main content of the page is visible to
users.

Total Blocking Time measures the total amount of time that a page is blocked from respond-
ing to user input, such as mouse clicks, screen taps, or keyboard presses.

Speed Index measures how quickly content is visually displayed during page load.

Packets Size measures the size of network packets received by clients. We will not include the
size of such external resources as images in this metric.

1.5.2 Metrics from the server’s perspective
From the server’s perspective, we would like to know which of our implementations is more

computationally demanding. One of the main resources that can be monitored in this case is the
usage of Central Processing Unit (CPU), which leads to the following metric:

Average CPU Usage measures what the average CPU usage was while processing requests
from clients.



10 Analysis



Chapter 2

Design

We will start this chapter with creation of wireframes based on the requirements we defined
in Section 1.4 to get a rough idea of what our application will look like. After that, we
will discuss the design of our server, which consists of an API and a back-end application.
Afterward, we will take a closer look at the architecture of applications based on React and
Struts2. Finally, we will describe the process of metrics collecting and the additional tools we
will need for that.

2.1 Wireframes
In order to have a rough idea of what our application will look like, wireframes of individual

web pages were created based on the requirements and use cases we defined in Section 1.4:
Figure 2.1 demonstrates the page for adding a new book to the library, which covers the use
case UC1.

Figure 2.2 shows the library page where we have an overview of available books. On this
page, we can also search through the library by book title and delete books we see. This
covers the use cases UC2, UC3 and UC4.

Figure 2.3 illustrates the book page where we can read a book by navigating through the
bundles with its pages. This covers the use case UC5.

Figure 2.4 displays the main page, which serves as the entry point to our website and which
contains links to the other pages we described earlier.

By implementing these wireframes, we make sure that our application covers all the defined use
cases.

2.2 Server architecture
In this section, the back-end application with its API design will be described.

2.2.1 API design
Both of our client implementations will reach the back-end application using its API to get

data for rendering. We will adhere to Representational State Transfer (REST) standards when
designing the API endpoints. We will also use the OpenAPI Specification [7] to help us create a
well-documented API with code generation capabilities.

11



12 Design

Dune: Messiah

Book name

Dune: Messiah

Author’s name

page-1.png, page-2.png, ...Choose Files

Attach book's pages

Dune is based on a complex imagined society 

set roughly 20,000 years in the future...

Book description

Please, fill this form out to add a new book to your library

© Copyright

BI-BAP

BI-BAP 
...

Links 
...

Save

Figure 2.1 Online books/comics reader system, add book page wireframe

© Copyright

BI-BAP

BI-BAP 
...

Links 
...

Enter a book name, e.g. 'Dune: Messiah'

Description of the book: Lorem ipsum dolor sit amet, consectetur 
adipiscing elit, sed do eiusmod tempor incididunt ut labore et  
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud  
exercitation ullamco laboris nisi ut aliquip ex ea commodo  
consequat.

Book title

- Author’s name

Description of the book: Lorem ipsum dolor sit amet, consectetur 
adipiscing elit, sed do eiusmod tempor incididunt ut labore et  
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud  
exercitation ullamco laboris nisi ut aliquip ex ea commodo  
consequat.

Book-2 title

- Author’s name

Figure 2.2 Online books/comics reader system, library page wireframe



Server architecture 13

Bundle X, Pages A - B  

© Copyright

BOOK_NAME

BI-BAP

BI-BAP 
...

Links 
...

Previous NextGo to a bundle: 1..n

Figure 2.3 Online books/comics reader system, book page wireframe

Welcome! You're looking at the bachelor's thesis project of Kyrylo Ponomarov 

(ponomkyr)

© Copyright

BI-BAP

BI-BAP 
...

Links 
...

Here you can find the books which were previously added, 

the descriptions of these books, 


search through those books...

Library

Library page

Here you can add a new book to your library

Add a new book

Add a new book

Figure 2.4 Online books/comics reader system, main page wireframe



14 Design

Figure 2.5 Online books/comics reader system, the API endpoints

Resources definition
Based on the use cases we defined in Section 1.4.2, the following resources were identified:

Books The endpoints for this resource start with “/books” prefix and provide basic Create,
Read, Update, Delete (CRUD) operations for books, a more complex GET operation that
returns books whose titles match the passed value, GET operations for pages and page bundles
contained in some particular book.

Pages The endpoints for this resource start with “/pages” prefix and provide basic CRUD
operations for pages, along with GET operations for bundles in which some particular page
is contained.

It is worth to mention that we do not have a separate entity for page bundles, so we had
to implement retrieval of bundle number and bundle content as two different endpoints. The
resulting endpoints of our API are depicted in Figure 2.5.



Architecture of React applications 15

const MyApp = () => {
return (

<div>
<h1>Welcome to my app</h1>
<MyButton />

</div>
);

}

const MyButton = () => {
return (

<button>I am a button</button>
);

}

Code listing 2.1 Example of MyApp React component

2.2.2 Back-end application design
Using of multi-layered architectures in application development brings such benefits as sepa-

ration of concerns, scalability, maintainability, flexibility, reusability and testability, that is why
our back-end application adheres to a multi-layered approach with three main layers:

Presentation layer is responsible for exposing the server’s functionality through the REST API.
It consists of REST controllers that manage communication over the HyperText Transfer Pro-
tocol (HTTP).

Application layer contains the business logic and rules that define the application’s function-
ality. This layer acts as an intermediary between the presentation and persistence layers,
receiving requests from the presentation layer, processing them, and fetching or updating
data from the persistence layer as needed.

Persistence layer is responsible for managing data storage and retrieval. In our application,
the PostgreSQL database will be used as a persistent data storage.

2.3 Architecture of React applications

In this section, we will describe the basic architecture and concepts used in React applications.
For more detailed information, please refer to the official documentation [8].

2.3.1 React Components
Client applications written in React follow the so-called component-based approach. React

component is defined as a piece of User Interface (UI) that has its own logic and appearance.
Using this definition, we may say that any page can be recursively described as a component.

Imagine a web page that consists of a header and a button. Listing 2.1 demonstrates how this
page can be implemented as a component called MyApp that includes another component called
MyButton. As we can also mention from the code example, React uses its own markup syntax
called JavaScript XML (JSX) which allows us to inject HTML elements directly in React code.



16 Design

const ParentComponent = () => {
const name = 'Karel';
const age = 21;
const city = 'Prague';

return (
<div>

<h1>Parent Component</h1>
<ChildComponent name={name} age={age} city={city} />

</div>
);

};

const ChildComponent = (props) => {
return (

<div>
<h2>Child Component</h2>
<p>Name: {props.name}</p>
<p>Age: {props.age}</p>
<p>City: {props.city}</p>

</div>
);

};

Code listing 2.2 Example of props passing in React

2.3.2 React Props
The nested structure of React components would not make much sense if we could not share

data between components somehow, typically from a parent component to a child. In React
applications, information passed from a parent component to a child component is called props,
which stands for properties.

In Listing 2.2 we can see an example of passing props, where the ParentComponent renders
a ChildComponent and passes it three props: name, age, and city. The ChildComponent
receives these props as an object named props, which can then be accessed using dot notation
to display the values in the child component’s JSX.

2.3.3 React State Hook
React hooks allow us to use different React features, but in this section we will only cover

the useState hook, which is probably the simplest and most used one.
Sometimes we may want our components to remember and then display some information.

This can be done using the useState hook, which allows us to define state variables (also known
as states) for our components. We can manipulate with these state variables, and, what is the
most important feature of states, our components will re-render every time any of their state
variables changes.

One of the tasks we can use React states for is handling of user input. Listing 2.3 demon-
strates how state variables can be used to handle user input in React applications. In that
example, we define a component called InputForm that uses the useState hook to manage the
state of userInput. The useState hook returns an array with two elements: the current state



Architecture of Struts2 applications 17

const InputForm = () => {
const [userInput, setUserInput] = useState('');

const handleInputChange = (event) => {
setUserInput(event.target.value);

};

return (
<form>

<label>
User Input:
<input

type="text"
value={userInput}
onChange={handleInputChange}

/>
</label>
<p>Input: {userInput}</p>

</form>
);

};

Code listing 2.3 Example of useState hook usage in React

value (userInput) and a function to update the state (setUserInput). We use array destruc-
turing to assign these values to the userInput and setUserInput variables, respectively. Then
we render a form with an input field, and bind the userInput value to the input field. We also
pass a callback function handleInputChange to the onChange event handler of the input field.
This function updates the state variable using setUserInput whenever the user types something
into the input field.

2.4 Architecture of Struts2 applications
In this section, we will describe the basic architecture and techniques used in applications

based on the Apache Struts 2 (also known as Struts2) framework. For more detailed information,
please see the official documentation [9].

The Struts2 framework is based on Java Servlet API [10] and follows the Model View Con-
troller (MVC) architectural pattern, which helps developers separate the application logic into
distinct components for better organization and maintainability. Figure 2.6 shows the relation-
ships of MVC components in terms of the Struts2 framework. The following subsections describe
how each of these components is implemented in Struts2.

2.4.1 Struts2 Models
In the MVC paradigm, the model is a component that represents data and business logic of

our application. We can say that it is a central component of the MVC pattern and it should not
depend on the view or the controller. In Figure 2.6, the model component is called as “Business
Services”. Struts2 does not define any specific ways of creating models, however, it is considered
good practice to use Inversion of Control (IoC) and Dependency Injection (DI) in their imple-
mentation. For more information on IoC and DI, please refer to the official documentation [11].



18 Design

Client Struts XML

Action Class

JSP Tags

Business Services

req

res

map req to action

method

pass processed 

data to view

return rendered

page

Figure 2.6 The MVC pattern in Struts2

In Listing 2.4 we can see an example of the UserService class that can be considered as
a model class in the MVC pattern. This class includes methods for implementing business
logic, such as getFullName(User user) and isAdult(User user), as well as methods for data
persistence, such as saveToDatabase(User user) and loadFromDatabase().

2.4.2 Struts2 Views
We can say that the view in the MVC pattern is any component that is responsible for

rendering the UI and displaying data to users. There can be several different views for the same
data, and the MVC views usually depend only on the models, but not on the controllers. Struts2
provides support for several view technologies, including FreeMarker, Velocity, Thymeleaf and
JSP, which is one of the most widely used. We will use JSP as the view technology in our Struts2
application.

JSP technology allows us to dynamically generate HTML or other types of text-based doc-
uments by embedding Java code directly into HTML pages. In the internal workings, JSPs are
compiled into Java Servlet classes at some point, which means that they can be cached and
reused instead of processing templates at runtime for every new request, as Thymeleaf does [12].
On the other hand, it means that JSPs cannot be served without an application server.

As shown in Figure 2.6, JSP pages receive data for rendering from action classes, which
play the role of controller components in MVC terminology and will be described in the next
subsection. We can also see on the diagram that JSPs have an association to something called
tags, which are libraries that allow us to encapsulate complex logic and functionality into reusable
elements that can be used inside our JSP pages. For more information on JSP, please check the
official documentation [13].

Listing 2.5 demonstrates an example of a simple JSP page which embeds Java code to display
the current date using the java.util.Date class. A more complicated and realistic looking
example of a JSP page will be provided in the next subsection once we define action classes in
Struts2.



Architecture of Struts2 applications 19

public class UserService {
// Business logic
public String getFullName(User user) {

return user.getFirstName() + " " + user.getLastName();
}

public boolean isAdult(User user) {
return user.getAge() >= 18;

}

// Data persistence
public void saveToDatabase(User user) {

// Code to save the user data to a database
// ...

}

public User loadFromDatabase(Long userId) {
// Code to load the user data from a database based on the userId
// ...

}
}

Code listing 2.4 Example of a model class in MVC

<!DOCTYPE html>
<html>
<head>

<title>Hello JSP</title>
</head>
<body>

<h1>Hello, World!</h1>
<p>This is a simple JSP example.</p>
<p>Today's date is: <%= new java.util.Date() %></p>

</body>
</html>

Code listing 2.5 Example of a simple JSP page



20 Design

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 2.5//EN"
"http://struts.apache.org/dtds/struts-2.5.dtd">

<struts>
<package name="default" extends="struts-default">

<action name="login" class="com.myapp.actions.LoginAction">
<result name="success">/index.jsp</result>

</action>
</package>

</struts>

Code listing 2.6 Example of a View-Controller in Struts2: struts.xml

2.4.3 Struts2 Controllers
The MVC pattern defines controllers as components that are responsible for handling of user

input, managing application state, and coordinating the interactions between models and views.
Controllers act as intermediaries that receive input from users, update the model accordingly,
and then update the view to reflect the changes in the model. This way, MVC controllers usually
depend on views and models.

In Struts2, controllers are defined by using so-called action classes. Action classes must either
implement the Action interface or extend the ActionSupport class. By doing so, they will be
obliged to implement the execute() method, which is the action method that will be called by
default when the controller is triggered. Although we can define several different action methods
for a single action class to be invoked, we will assume for now that we have an action class with
one default action method.

Every action method returns a string value that represents its resulting state, this value can
later be used for mapping to some JSP page depending on the result of the action. As we already
mentioned before, action classes provide JSP pages with data for rendering. This can be achieved
by defining instance variables with getters and setters inside our action classes. Using the defined
getters, our resulting JSP pages will be able to access the corresponding instance variables.

Below, we can see an example of code with a Struts2 action and view. To transform this
example into a MVC pattern example, we would need to add some model classes and use them in
our actions, but we decided to leave them out for simplicity’s sake. Listing 2.6 demonstrates an
example of the struts.xml file, which is a configuration file used by Struts2. We can configure
many things in our struts.xml, but one of its main purposes is to define the mapping of
application endpoints to action classes and the mapping of actions results to corresponding
views. Listing 2.7 and Listing 2.8 complete our example with the view and action class code.

2.5 Tools used for metrics collecting

We have already defined metrics from the client’s perspective in Section 1.5.1 and from the
server’s perspective in Section 1.5.2, but we also need to define the tools we will use to collect
these metrics. In addition, we need to think about the environment in which we will collect the
metrics, because it is important that both implementations run under the same “fair” conditions
so that the results are not affected by other tasks running on the host machine.



Tools used for metrics collecting 21

<!DOCTYPE html>
<html>
<head>

<title>Struts Example</title>
</head>
<body>

<h1>Hello, Struts!</h1>
<p>Message: <s:property value="message" /></p>
<form action="/myApp/login" method="post">

<input type="submit" value="Login" />
</form>

</body>
</html>

Code listing 2.7 Example of a View-Controller in Struts2: index.jsp

public class LoginAction extends ActionSupport {
private String message;

public String execute() {
message = "Welcome to Struts!";
return SUCCESS;

}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}
}

Code listing 2.8 Example of a View-Controller in Struts2: LoginAction.java



22 Design

Client’s perspective
As it was mentioned in Section 1.5.1, we will use Chrome DevTools kit [5] to collect metrics

from the client’s perspective because it is an open-source tool that can provide us with most of
the information we need for our comparison. Google Lighthouse tests run in a headless browser
environment, but we still should not overload our machine with heavy external tasks while
collecting metrics to avoid a shortage of system resources that could affect the results.

We will also use the React Developer Tools [14] browser extension because it can provide us
with important information about our React application, such as components’ re-rendering time.

Server’s perspective
There are many tools that can be used for servers load and performance testing, for example

Gatling, LoadRunner and WebLoad, but in this thesis we will use Apache JMeter [15] as it is a
powerful, extensible, and flexible open-source testing tool with good plugin support. One of its
plugins is called PerfMon [16] and it allows us to monitor server resources usage, including CPU
load. This is exactly what we need to collect the metrics that we have defined. It is important
to mention that for the PerfMon plugin to work properly, we need to run a special ServerAgent
application on the monitored systems.

Since configuring Apache JMeter is not a trivial task, we need to take a closer look at its
concepts. Apache JMeter introduces the following terms to create test scenarios:

Test Plan is the main building block of a JMeter test script. Basically, it is a container that
holds all the information about actions that need to be performed during testing. In our case,
we will have 2 test plans: for our implementations in React and Struts2, respectively.

Thread Group represents a group of virtual users that will execute a series of testing actions
against our tested web application. In other words, it simulates user behavior and generates
load on the application. This load can be configured using the following parameters:

Number of threads defines the number of virtual users that will execute the defined test
plan. We set this value to 1500 users.
Ramp-up period represents how long it will take JMeter to “ramp-up” to the full number
of threads. In other words, this parameter defines the interval with which our threads will
start. We set the ramp-up period value to 60 s, which means that the interval between
creation of new threads is 60/1500 = 0.04 s.
Loop count defines the number of times a Thread Group will execute its set of testing
actions (so-called samplers, which are defined below). We set this value to 1, which means
that every virtual user will execute his testing action only once.

Samplers generate requests to the tested web application, recording the response time and other
performance metrics. In our case, a sampler will send GET requests to the book reading page.
The sampler’s “Retrieve All Embedded Resources” option is enabled to retrieve some of the
external resources included in our web page, such as CSS and JavaScript files.

Environment isolation
In order to provide some level of isolation, we will containerize both of our client implemen-

tations along with the ServerAgent application using Docker containers. Unfortunately, Docker
containers share the host machine’s CPU resources with other applications, therefore we will not
have truly isolated environments. However, if we execute the performance tests multiple times
with approximately the same number of external tasks running on the host machine, then the
average value of the metrics will be sufficient for our comparison.



Chapter 3

Implementation

In this chapter, we will go into more detail about the development process of our online
books/comics reader system. First, we will discuss the server implementation, looking at the
main technologies we used in the development process and the components that are included in
each layer of our back-end application. After, we will mention the decisions we made regarding
the tools and libraries used to implement the client applications in React and Struts2. We will
also describe the main components contained in each implementation according to their design,
which we defined in the previous chapter.

3.1 Server implementation

3.1.1 Technology decisions
Java 17 was chosen as the implementation language for our back-end application because it is

the latest released version of Java with long-term support.

Spring Framework was chosen as the core tool for our application. It provides us with such
essential features as DI and IoC, not to mention that Spring Framework Ecosystem has
many subprojects that can help us solve any task a regular back-end developer may face.
For instance, we will use the Spring Boot tool as it has an embedded Tomcat server, which
relieves us of having to worry about manual application deployment.

PostgreSQL was chosen as a persistent data storage because it is a relational database that
will be enough for the purposes of our system.

Hibernate was chosen as an Object Relational Mapping (ORM) framework that provides a
convenient way to map Java objects to relational database tables and perform database oper-
ations using Java code, without writing explicit Structured Query Language (SQL) queries.

Maven was used as a dependency management tool in our project.

3.1.2 Persistence layer
The persistence layer of our server application will consist of Entity Objects (also known

as entities or domains) and Data Access Objects (DAOs), which are commonly referred to as
repositories.

Entities are objects that are stored in some persistent storage, in our case they are Java objects
that are mapped to database tables. Esentially, entities are implemented based on domain model

23



24 Implementation

public interface BookJpaRepository extends JpaRepository<Book, Long> {
Collection<Book> findBooksByNameContaining(String name);

}

Code listing 3.1 Example of a DAO implementing JpaRepository

diagrams, the one for our system is illustrated in Figure 1.5. That being said, we will have two
entities in our persistence layer: Book and Page.

DAOs operate with entities and provide us with access and retrieval functionality, such as
querying, inserting, updating, and deleting data in the persistent storage. They often encap-
sulate the logic for interacting with the underlying database or storage system, and provide
an abstraction layer between the application’s business logic and the actual storage medium.
Spring Data, which is part of Spring Framework Ecosystem, provides us with a quick way to
define DAOs using the JpaRepository interface. By implementing this interface and specifying
the model type with its identifier type, Spring will automatically generate CRUD operations on
the specified entity. Also, we can now define new queries in a declarative way, without having
to write SQL queries explicitly. Listing 3.1 shows us an example of a DAO object for a Book
entity. As we can see, besides CRUD operations, that DAO provides us with a method for books
retrieving by their names, and this method is defined in a declarative way. For more information
about Spring Data JPA, please refer to the official documentation [17].

3.1.3 Application layer
At the application layer, we will implement the business logic of our system by creating service

classes. Based on the use cases, defined in Section 1.4.2, all the business logic of our application
will only concern books and pages, that is why it makes sense to create our service classes in two
separate Java packages: service.book and service.page.

However, there is one service class that is too general to be created inside service.book or
service.page package, and it is called ImageService. Basically, this service works as a simple
image server. By using its getImageFromPath(path) method, we can get an image resource
that is located under the given path, which is relative to some base directory. The path of the
base directory can be configured in the application.properties file. The implementation of
ImageService is shown in Listing 3.2.

It is considered good practice to define the business logic of our applications using Service
Provider Interface (SPI) as it helps us to create easily replaceable service modules. This way we
can have several different implementations of a single SPI, and we can easily switch between them
in case if other parts of our system depend on the SPI, but not on its concrete implementation.
Listing 3.3 and Listing 3.4 demonstrate the SPIs for book and page services, respectively.

3.1.4 Presentation layer
The presentation layer of our application is responsible for handling incoming HTTP re-

quests from users, triggering the required business logic by calling the appropriate method of
our service classes, and returning the result to users. It is worth to mention that we need to
distinguish between the data we receive as request parameters and the data we operate with
in our service classes. There are several reasons for distinguishing them. The first reason is
that it is usually unreal to get a complete model object as a request parameter because users
simple do not have all the necessary data to create a model object. The second reason is that
sometimes we do not want to expose the entire model object in our response. That is why we



Server implementation 25

@Service
public class ImageService {

@Autowired
private ResourceLoader resourceLoader;

@Value("${bi-bap.images.defaultBaseDirPath}")
private String imagesBaseDirPath;

public Resource getImageFromPath(String path) {
return resourceLoader.getResource("file:" + imagesBaseDirPath + path);

}

public void setResourceLoader(ResourceLoader resourceLoader) {
this.resourceLoader = resourceLoader;

}
}

Code listing 3.2 Code of the ImageService class

public interface BookSPI {
Collection<Book> getAll();

Collection<Book> getAllContainingName(String name);

Book getById(Long id) throws NoEntityFoundException;

Book create(Book book, Collection<Resource> bookImages) throws
EntityStateException;↪→

Book update(Long id, Book book) throws EntityStateException;

void deleteById(Long id) throws NoEntityFoundException;
}

Code listing 3.3 Code of the BookSPI interface



26 Implementation

public interface PageSPI {
Page getById(Long id) throws NoEntityFoundException;

Page getByNumber(Long bookId, Long pageNumber) throws
NoEntityFoundException;↪→

Collection<Page> getPageBundle(Long bookId, Long bundleNumber);

Collection<Page> getPageBundleContaining(Long pageId);

Long getPageBundleNumberContaining(Long pageId);

Long getNumberOfPageBundlesByBook(Long bookId) throws
NoEntityFoundException;↪→

Page create(Page page) throws EntityStateException;

Collection<Page> persistImages(Collection<Resource> images);

void removeImagesByBookId(Long id);

Page update(Long id, Page page) throws EntityStateException;

void deleteById(Long id) throws NoEntityFoundException;
}

Code listing 3.4 Code of the PageSPI interface



Server implementation 27

@RequiredArgsConstructor
@CrossOrigin
@Controller
public class ImageController {

private final ImageService imageService;

@GetMapping("/images")
public ResponseEntity<Resource> getImage(@RequestParam("path") String

path) {↪→

String decodedPath = URLDecoder.decode(path, StandardCharsets.UTF_8);
Resource resource = imageService.getImageFromPath(decodedPath);
if (!resource.exists()) {

throw new NoEntityFoundException("File not found: " +
decodedPath);↪→

}

return ResponseEntity.ok()
.header(HttpHeaders.CONTENT_DISPOSITION,

"attachment; filename=\"" + resource.getFilename() + "\"")
.body(resource);

}
}

Code listing 3.5 Code of the ImageController class

will use Data Transfer Objects (DTOs), which are basically miniature versions of our models,
and mappers, which allow us to convert DTOs to models and vice versa.

Spring Web, which is part of Spring Framework Ecosystem, provides us with annotations for
defining presentation layer components that are called controllers. Controllers consist of handler
methods that are mapped to our API endpoints and are called when a particular endpoint is
triggered. For more details about Spring Web, please check the official documentation [18].

Listing 3.5 shows us an example of the ImageController class. That controller has only one
handler method called getImage(String path). This handler method is triggered when users
send GET requests to the “/images” resource along with the path parameter. That parameter
will later be decoded and passed to the service method, which will try to find the image resource
according to the given path. If there is no resource under the given path, then an exception is
thrown1, otherwise an image resource object is returned in a response entity.

Exception handling in controllers
Instead of handling all possible exceptions within individual controllers, we can use a more

general approach by utilizing the @RestControllerAdvice annotation. It allows us to define a
single class with methods that handle specific exceptions across multiple controllers, providing
centralized exception handling logic.

In Listing 3.6 we can see an example of global controllers exception handling by using
GlobalExceptionHandler, which is a @RestControllerAdvice-annotated class. It contains
two exception handlers, handleException() and handleNotFoundException(), which handle
Exception and NotFoundException respectively. These exception handlers can have custom

1The mechanism for handling exceptions in our controllers will be described later in this section



28 Implementation

@RestControllerAdvice
public class GlobalExceptionHandler {

@ExceptionHandler(Exception.class)
public ResponseEntity<String> handleException(Exception ex) {

String errorMessage = "An error occurred: " + ex.getMessage();
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)

.body(errorMessage);↪→

}

@ExceptionHandler(NotFoundException.class)
public ResponseEntity<String> handleNotFoundException(NotFoundException

ex) {↪→

String errorMessage = "Resource not found: " + ex.getMessage();
return ResponseEntity.status(HttpStatus.NOT_FOUND).body(errorMessage);

}
}

Code listing 3.6 Example of global exception handling for controllers

error handling logic to return appropriate HTTP response codes, error messages, and other error
details to the client.

Controllers code generation from the OpenAPI specification

As we could notice from the previous examples, the declaration of controllers strongly depends
on how the API endpoints are defined. We will use the code generation capabilities of the
OpenAPI Specification that we defined in Section 2.2.1. It will free us from the need to declare
our handler methods manually, all we will need to do is to implement them. Code generation
from the OpenAPI specification is managed by the openapi-generator Maven plugin. For more
details, please check the official documentation [19].

3.2 React implementation

3.2.1 Technology decisions
TypeScript was chosen as the programming language for our React client application. The

main benefit that it brings comparing to plain JavaScript is type checking at compile-time,
which can save us a lot of time and effort.

Bootstrap was chosen as the main UI library as it has a lot of predefined components and styles
for creation of responsive websites. We will use the React-Bootstrap library that provides a
set of pre-built React components that are based on Bootstrap.

React-Snap library was used to pre-render our React components into static HTML files. The
generated HTML files can be used to speed up the JSP pages creation process for our Struts2
client implementation.



Struts2 implementation 29

3.2.2 Directories structure
As we mentioned in Section 2.3.1, the core concept of React applications is components.

However, we still need to structure our components into some hierarchy. In this subsection, we
will describe the hierarchy of components in our React application.

src/index.tsx is the entry point of our application. This file is responsible for rendering of the
root component, which is called <App/>, and mounting it to the DOM of our resulting HTML
file.

src/App.tsx contains the definition of the <App/> component. It uses the React-Router library,
which provides a way to handle client-side routing in a declarative manner, allowing us to
define the routes of our application as view components and render them based on the Uniform
Resource Locator (URL) of the current page.

src/views directory contains the view components of our application. Basically, we can say
that every view component represents some web page, which consists of smaller components
that can be used in multiple different view components.

src/components/ directory contains the smaller components that can be used on different web
pages of our website.

src/generated-sources/ directory contains the automatically generated utility files. We will
discuss the generation of these files in more detail in the following subsection.

3.2.3 API components generation
Just like we managed to generate server controllers based on our OpenAPI specification

in Section 3.1.4, we can generate the React components used for accessing the server API. We
will use the openapi-generator-cli tool to do this. As a result, the tool will generate API and
DTO objects for the resources defined in our OpenAPI specification, these objects will be placed
in the src/generated-sources/openapi/ directory.

In Listing 3.7 we can see a simplified example of the <LibraryPage/> view component that
uses a BooksApi object generated from the OpenAPI specification to fetch available books and
pass them to the <BooksList/> component, which will take care of the rendering of these books.

3.2.4 React components pre-rendering
As we already mentioned in Section 3.2.1, the React-Snap library can be utilized to pre-

render our React components into static HTML files. It uses a headless browser environment to
crawl all the accessible routes, starting with the root component. For this to work, we need to
add a postbuild script in our package.json file and change the way our application is booted in
the src/index.tsx file. For more details, please check the official documentation [20].

3.3 Struts2 implementation

3.3.1 Technology decisions
Java 17 was chosen as the programming language for our Struts2 application. The reason was

the same as for the choice of Java version for our server implementation in Section 3.1.1: it
is the latest released version of Java with long-term support.



30 Implementation

const LibraryPage = () => {
const [books, setBooks] = useState<BookDTO[]>([]);

const booksApi = new BooksApi();

useEffect(() => {
booksApi.getBooks()

.then((books: BookDTO[]) => setBooks(books))

.catch(() =>
log.debug('Sth went wrong while fetching available books'));↪→

}, []);

return (
<Body>

<Row className="w-100 justify-content-center">
<Col className="col-lg-8 col-md-10 col-sm-12">

<BooksList books={books}/>
</Col>

</Row>
</Body>

);
}

export default LibraryPage;

Code listing 3.7 Example of the generated BooksApi object usage



Struts2 implementation 31

Struts 2.5.30 was chosen as the main framework for our client implementation. So far, no
publicly known vulnerabilities have been found in it and it does not contain any features that
we would miss compared to newer versions of the Struts framework.

Spring Framework was used mainly because of its IoC and DI features, which will be used to
create the MVC model components in our Struts2 application.

Tomcat 9 was chosen as the application server for our project. We originally wanted to use
Tomcat 10, as it is the latest released version, but we soon discovered that it was incompatible
with the Struts framework. The thing is that even the latest version of Struts2 still depends
on some packages from Java 8. However, Tomcat 10 supports only Java 11 or later. That
means that in order to use the Struts framework in our application, we are forced to use
Tomcat 9 or lower. This is a known issue [21], but it is still not fixed in the latest versions of
the Struts framework.

3.3.2 Directories structure
As we already know from Section 2.4, the Struts2 framework adheres to the MVC architectural

pattern. The following subsection describes where the individual components of the MVC pattern
are located in our Struts2 project.

src/main/webapp/ directory contains the web application’s static resources, such as HTML
files, CSS files, JSP files, JavaScript files, images, and other client-side assets. In other words,
this directory contains the MVC view components of our application, except the DTOs, which
are located in the src/main/java/cz/cvut/fit/bap/ponomkyr/struts/dto directory. It is
worth to mention that the src/main/webapp/index.jsp file is used as the entry point of our
Struts2 application.

src/main/java/cz/cvut/fit/bap/ponomkyr/struts/service/ directory contains the MVC
model components of our Struts2 application. Like the service classes from the application
layer of our back-end application, which were described in Section 3.1.3, our models will
implement the corresponding SPIs for better modules’ replaceability.

src/main/java/cz/cvut/fit/bap/ponomkyr/struts/action/ directory contains the action
classes of our application, which along with the src/main/resources/struts.xml file can
be interpreted as the MVC controller components of our application.

3.3.3 Spring configuration
There are two different approaches to configure the Spring framework: annotation-based

configuration and XML-based configuration. Annotation-based configuration is considered to
be more readable and easier to maintain than XML-based configuration, that is why we used
the annotation-based approach to configure the Spring framework for our back-end application.
However, some difficulties were encountered when we tried to use the annotation-based approach
to configure the Spring framework for our Struts2 application. No mention of the annotation-
based approach was found in the official documentation, only the XML-based configuration was
used [22], that is why the Spring configuration for our Struts2 framework is provided in the
src/main/resources/applicationContext.xml file.

2As of today, it is Struts 6.1.1



32 Implementation



Chapter 4

Testing

Testing is the crucial part of software development, even if we are only implementing a sample
system. That is why we will describe how our server and client applications were tested in
this chapter.

4.1 Server application testing

We need to test the server application to make sure that both of our client implementa-
tions receive the correct data using the provided API. To achieve this, we covered our server
implementation with unit tests.

Unit testing is a software testing technique that checks individual units or components of
a software system in isolation from the rest of the system. The purpose of unit testing is to
verify that each unit of code performs as expected and meets its design specifications. Unit tests
provide us with an efficient way of testing the isolated parts of our system, even though they do
not verify the way these parts interact with each other.

All classes from the presentation and business layers, which form the core of our server
application, were covered by unit tests. It is considered good practice to test all layers of our
application, but in the presentation layer we tested only the ImageController1 class, because
it could contain an obvious and dangerous vulnerability. We needed to make sure that users
could not access any file with sensitive data on our system by passing its absolute path to the
controller. For example, a user could easily try to request the /etc/passwd file, but his request
had to be declined.

Listing 4.1 shows an example of unit tests for the ImageController class that cover the
scenarios when we request for an existing and a non-existing image resource. Also, in Listing 4.2
we can find a definition of the auxiliary NamedByteArrayResource class, which is used during
testing of the ImageService class in Listing 4.3.

4.2 Client applications testing

One of the important things to remember when testing our client implementations is that
we have defined a non-functional requirement in Section 1.4.1 that says that both of our client
implementations must have the same appearance and functionality. These two points will be
discussed below.

1For recalling the logic of the ImageController class, please check Section 3.1.4

33



34 Testing

@WebMvcTest(ImageController.class)
class ImageControllerTest {

@Autowired
private MockMvc mockMvc;

@MockBean
private ImageService imageService;

@Test
void getImage_shouldReturnImageResource() throws Exception {

String path = "/path/to/image.jpg";
Resource resource = new NamedByteArrayResource(new byte[]{1, 2, 3},

"image.jpg");↪→

when(imageService.getImageFromPath(path)).thenReturn(resource);

MvcResult result = mockMvc.perform(get("/images").param("path", path))
.andExpect(status().isOk())
.andReturn();

assertThat(result.getResponse().getContentAsByteArray())
.isEqualTo(new byte[]{1, 2, 3});

assertThat(result.getResponse()
.getHeader(HttpHeaders.CONTENT_DISPOSITION))
.isEqualTo("attachment; filename=\"image.jpg\"");

↪→

↪→

}

@Test
void getImage_shouldThrowExceptionWhenFileNotFound() throws Exception {

String path = "/path/to/nonexistent/image.jpg";
when(imageService.getImageFromPath(path)).thenReturn(new

ClassPathResource("nonexistent"));↪→

mockMvc.perform(get("/images").param("path", path))
.andExpect(status().isNotFound());

}
}

Code listing 4.1 Example of unit tests coverage for the ImageController class



Client applications testing 35

static class NamedByteArrayResource extends ByteArrayResource implements
WritableResource {↪→

private final String filename;

public NamedByteArrayResource(byte[] byteArray, String filename) {
super(byteArray);
this.filename = filename;

}

@Override
public String getFilename() {

return filename;
}

@Override
public OutputStream getOutputStream() throws IOException {

return null;
}

}

Code listing 4.2 Definition of the auxiliary NamedByteArrayResource class

4.2.1 The same appearance
As it was mentioned in Section 3.2.4, we managed to pre-render our React components

into plain HTML and CSS files. These generated files were later used to create the JSP files
in our Struts2 client implementation. That being said, we can state that both of our client
implementations have the same appearance.

4.2.2 The same functionality
To make sure that both of our client implementations have the same functionality, we per-

formed manual testing. During this manual testing, we checked all the use cases of our system
that were defined in Section 1.4.2.



36 Testing

@SpringBootTest
class ImageServiceTest {

@Autowired
private ImageService imageService;

@MockBean
private ResourceLoader resourceLoader;

@Value("${bi-bap.images.defaultBaseDirPath}")
private String imagesBaseDirPath;

@BeforeEach
void setup() {

imageService.setResourceLoader(resourceLoader);
}

@Test
void getImageFromPath() {

String path = "/Dune/image.jpg";
Resource resource = new ByteArrayResource(new byte[]{1, 2, 3},

"image.jpg");↪→

Resource emptyResource = new ClassPathResource("nonexistent");

when(resourceLoader.getResource(any())).thenReturn(emptyResource);
when(resourceLoader.getResource("file:" + imagesBaseDirPath +

path)).thenReturn(resource);↪→

assertEquals(imageService.getImageFromPath(path), resource);
}

@Test
void getImageFromPath_shouldThrowExceptionWhenTryingToGetExternalFile()

throws Exception {↪→

String path = "/etc/passwd";
Resource resource = new ByteArrayResource(new byte[]{1, 2, 3},

"passwd");↪→

Resource emptyResource = new ClassPathResource("nonexistent");

when(resourceLoader.getResource(any())).thenReturn(emptyResource);
when(resourceLoader.getResource(path)).thenReturn(resource);

assertEquals(imageService.getImageFromPath(path), emptyResource);
}

}

Code listing 4.3 Example of unit tests coverage for the ImageService class



Chapter 5

Comparison based on the
collected metrics

In this chapter, we will collect the metrics defined in Section 1.5.1 and Section 1.5.2. As
a test scenario for both implementations, the loading of the book reading web page will be
analyzed. For fairness, browser caching will be disabled during metrics collection. With the
collected metrics, we will be able to do the comparison of CSR and SSR approaches.
First, we will look at the results from the client’s perspective. Afterward, we will look at the
results from the server’s perspective. Finally, we will be able to draw some conclusion about
the conditions under which one approach performs better than the other one.
The containerized versions of our client applications, which will be used for metrics collection,
are available in the “metrics capturing” branch of the project’s GitLab repository.

5.1 Collected metrics from the client’s perspective

In this section, we will collect and analyze all the metrics from the client’s perspective that
were defined in Section 1.5.1. The results are shown in Table 5.1 and some comments on the
individual metric results will be provided below.

Metric name React Struts2 with JSP
First Contentful Paint 1.8 s 2.4 s
Largest Contentful Paint 6.3 s 3.7 s
Total Blocking Time 0 ms 0 ms
Speed Index 1.8 s 2.4 s
Packets Size 480 kB 270 kB

Table 5.1 Collected metrics from the client’s perspective

First Contentful Paint time result is better in case of the React implementation. This may
be caused by internal optimizations of React.

Largest Contentful Paint time result is now significantly better in case of the Struts2 imple-
mentation. The explanation of this observation comes from the basic idea of CSR: the entire
page rendering is a client-side responsibility and it costs some time, while in case of SSR
clients receive already rendered pages.

37



38 Comparison based on the collected metrics

Total Blocking Time metric results are the same in case of both implementations. The zero
value of this metric means that we do not have any long-running tasks that take more than
50 ms to execute in both of our implementations. Generally, it is a desirable result, and in
our case it may be caused by the specific requirements of our system, which were not that
complex in terms of performance.

Speed Index metric result is better in case of our React implementation, which means that its
perceived loading speed is higher than in case of the Struts2 implementation.

Packets Size metric results show us that we send significantly less data to our clients in case of
the Struts2 implementation, rather than in the React implementation. This can be explained
by the fact that the received React bundle contains all the information needed to render any
page of our application, while our Struts2 implementation only provides us with the data of
one specific page.

It is also important to mention that the re-rendering time of the book reading page in React
took us only 3.2 s, which is an even better result on the Largest Contentful Paint metric than
the one shown in Table 5.1. This is explained by the fact that we do not need to send additional
requests to the server to render next pages, all the necessary rendering instructions are already
contained in the bundle we received in response to our very first request.

Implication

Based on the results from the client’s perspective, we cannot say that one of our client
implementations has significantly better performance on all the defined metrics. On some metrics
our Struts2 implementation shows better results (Largest Contentful Paint and Packets Size),
and on some other metrics our React implementation performs better (First Contentful Paint
and Speed Index).

5.2 Collected metrics from the server’s perspective

Following the collection of client’s metrics in Section 5.1, in this section we will collect and
analyze the metrics from the server’s perspective, which were defined in Section 1.5.2. As it was
mentioned in Section 2.5, we will use the Apache JMeter tool for our purposes. A more detailed
look at its configuration is also provided in Section 2.5.

The results from the server’s perspective are provided in Table 5.2, while some comments can
be found below.

Metric name React Struts2 with JSP
Average CPU Usage 7.22% 14.64%

Table 5.2 Collected metrics from the server’s perspective

Average CPU Usage metric result is significantly better in case of the React implementation.
To get more representative data, we ran our JMeter tests several times and calculated an
average value based on these results. Moreover, the React results start to appear even better
when we realize that with the served React bundles users will be able to render any page of
our web application without having to send additional requests to the React server, while the
Struts2 implementation only provides users with the rendered data of a single web page.



Final comparison 39

Implication

Looking at the results from the server’s perspective, we can say that the React implementation
of our online books/comics reader system seems to be much more advantageous. Not only
was the server load significantly lower when processing the same test scenarios, but the React
implementation also provided us with a bundle containing all the necessary data to render any
page of our web application, while the Struts2 implementation returned us only a single rendered
web page. This means that with the CSR approach we would reduce the load on the server not
only in terms of performance, but also in terms of the number of incoming requests.

5.3 Final comparison

After implementing our system using both CSR and SSR technologies, and collecting the pre-
defined metrics based on these implementations, we can finally make some comparison between
these two approaches. Since it would be completely wrong to say that one approach is always
better than the other one, our final comparison will be based on criteria that we can follow to
determine what approach is better according to our needs.

Initial page load time
In case if we need to have a really short initial page load time, then the SSR approach will

be a better choice than CSR. However, we need to keep in mind that the significant difference
in load time can only be observed when the website is accessed for the first time. One of the
real-world examples, where we can use SSR to significantly change the UX of our users in terms
of the website’s initial page load time, are landing pages. Otherwise, websites will most likely
consist of several web pages, so a short initial page load time can easily be counterbalanced by
a longer subsequent page load time.

Subsequent page load time
If we are interested not only in the initial page load time, but rather in the average load time

of all our web pages, then the CSR approach will be a better option for us. To render subsequent
pages in case of CSR, there is no need to send additional requests to the server, as the user has
already received a bundle with the code necessary to render any page of our web application.
This way, it is only needed to re-render the relevant React components with possibly making
some AJAX calls to the API, which takes less time than requesting an entirely new page in case
of the SSR approach.

Search Engine Optimization (SEO) rankings
In case if the SEO ranking of our website is a crucial point to us, then we need to be aware

of the possible SEO struggles that may be faced in the web applications developed using the
CSR approach. Crawler bots, which are responsible for assigning the SEO rankings to websites,
usually expect to receive an already rendered web page from the server. This means that websites
created using CSR may appear incomplete to crawler bots, which will most likely degrade their
SEO ranking. If it is a big deal for us, then we should consider using SSR or some other approach
instead.



40 Comparison based on the collected metrics

Accessibility
Accessibility of the CSR approach can be a concern as it uses JavaScript to render content on

the client side, which can cause delays and potential issues for users who rely on screen readers
or who have other accessibility needs. We can say that the SSR approach has better accessibility,
because in this case users receive already rendered HTML pages without need to run JavaScript
code on the client side. However, even in case of SSR, it is important to follow the best practices1

to ensure that our web application is accessible to all possible types of users.

Interactiveness
Since the SSR approach does not assume that any JavaScript code is executed on the client

side, applications based on this approach will end up being less interactive. As a result, there
are a lot of features that would not be possible to implement without using CSR techniques. For
example, we can mention the Data Layer tracking, which is a popular technique used by web
analytics to collect the information about users’ interactions with a website, such as pageviews,
clicks, and form submissions.

Transparency of source code
In some cases, we may wish not to share the source code of our website rendering logic with

clients. If this is an important point to us, then chances are that we will prefer to use the SSR
approach. In SSR, we generally do not share any JavaScript code containing rendering logic.
Instead, our clients only receive the results of rendering. It is important to mention that many
CSR frameworks use various techniques to complicate reading of the source code contained in
the served bundles. However, we can also get around it with help of special tools called code
beautifiers.

Server performance
If performance of the server that hosts our client application is crucial for us, then we should

consider using the CSR approach. Not only will the number of requests to the server be lower,
but also its workload will not be so high as in case of the SSR implementation.

1For more details, please visit https://www.w3.org/standards/webdesign/accessibility

https://www.w3.org/standards/webdesign/accessibility


Conclusion

The goal of this thesis was to compare Client-Side Rendering (CSR) and Server-Side Ren-
dering (SSR) approaches to client-side web applications development. React and Struts2 with
Java Server Pages (JSP) technologies were selected as representatives of each approach. It was
necessary to define our own metrics and implement a sample online books/comics reader system
using each approach to do the comparison.

At first, we did the analysis that consisted of describing the basic concepts of CSR and SSR,
studying the already existing comparisons, defining our own metrics and defining the require-
ments for a sample system.

After that, the design of our system was carried out. This required a creation of wireframes
for our application, a description of the server-side and client-side applications’ architecture and
concepts of the chosen technologies. As the last topic in the design chapter, we discussed the
tools and environments that would be used to collect our metrics.

Based on the defined design, our system was implemented. The code was covered with unit
tests and the manual testing was performed to ensure that our system behaves as expected and
that both of our client implementations have the same appearance and functionality.

Finally, we had two different client implementations of the system that allowed us to collect
the defined metrics and make our own comparison, which is exactly what was done in the last
chapter of this thesis.

It is worth to mention that this work does not take into account the existence of the “sym-
biotic” approaches to client-side web applications development, such as Next.js, which allows us
to create React-based web applications with server-side rendering and static website generation
support. A study of that third approach to client-side web applications development could be
done in the future.

41



42 Conclusion



Bibliography

1. Q-SUCCESS. Usage statistics of PHP for websites [online]. Q-Success, 2019-11 [visited on
2023-04-13]. Available from: https://w3techs.com/technologies/details/pl-php.

2. ISKANDAR, Taufan Fadhilah; LUBIS, Muharman; KUSUMASARI, Tien Fabrianti; LU-
BIS, Arif Ridho. Comparison between client-side and server-side rendering in the web de-
velopment. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing,
2020, vol. 801, p. 012136. No. 1.

3. GOOGLE. Performance audits [online]. Google [visited on 2023-04-13]. Available from:
https://developer.chrome.com/docs/lighthouse/performance/.

4. BEKE, Mathias. On the Comparison of Software Quality Attributes for Client-side and
Server-side Rendering. June, 2018.

5. GOOGLE. Chrome DevTools [online]. Google [visited on 2023-04-16]. Available from: https:
//developer.chrome.com/docs/devtools/.

6. GOOGLE. Lighthouse [online]. Google [visited on 2023-04-13]. Available from: https://
developer.chrome.com/docs/lighthouse/.

7. SOFTWARE, SmartBear. OpenAPI Specification [online]. SmartBear Software, ©2023 [vis-
ited on 2023-04-16]. Available from: https://swagger.io/specification/.

8. SOURCE, Meta Open. Learn React [online]. Meta Open Source, ©2023 [visited on 2023-
04-18]. Available from: https://react.dev/learn/.

9. FOUNDATION, The Apache Software. Getting started [online]. The Apache Software Foun-
dation, ©2000-2022 [visited on 2023-04-19]. Available from: https://struts.apache.org/
getting-started/.

10. GUINDON, Christopher. Jakarta Servlet 5.0: The Eclipse Foundation [online]. Eclipse
Foundation [visited on 2023-04-19]. Available from: https://jakarta.ee/specifications/
servlet/5.0/.

11. JOHNSON, Rod; HOELLER, Juergen; DONALD, Keith; SAMPALEANU, Colin; HAR-
ROP, Rob; RISBERG, Thomas; ARENDSEN, Alef; DAVISON, Darren; KOPYLENKO,
Dmitriy; POLLACK, Mark, et al. Spring Framework: The IoC container [online]. VMware,
Inc., ©2004-2016 [visited on 2023-04-19]. Available from: https : / / docs . spring . io /
spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html.

12. ROSENCRANTZ, Niklas. What kind of solution is Thymeleaf? [online]. Stack Overflow,
2016 [visited on 2023-04-20]. Available from: https://stackoverflow.com/questions/
38806245/what-kind-of-a-solution-is-thymeleaf.

43

https://w3techs.com/technologies/details/pl-php
https://developer.chrome.com/docs/lighthouse/performance/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/lighthouse/
https://developer.chrome.com/docs/lighthouse/
https://swagger.io/specification/
https://react.dev/learn/
https://struts.apache.org/getting-started/
https://struts.apache.org/getting-started/
https://jakarta.ee/specifications/servlet/5.0/
https://jakarta.ee/specifications/servlet/5.0/
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://stackoverflow.com/questions/38806245/what-kind-of-a-solution-is-thymeleaf
https://stackoverflow.com/questions/38806245/what-kind-of-a-solution-is-thymeleaf


44 Bibliography

13. ORACLE et al. The java EE 5 tutorial, JavaServer Pages Technology [online]. Oracle,
2007-09 [visited on 2023-04-20]. Available from: https://docs.oracle.com/javaee/5/
tutorial/doc/bnagx.html.

14. SOURCE, Meta Open. React developer tools [online]. Meta Open Source, ©2023 [visited on
2023-04-30]. Available from: https://react.dev/learn/react-developer-tools.

15. Apache JMeter - Apache JMeter™ [online]. Apache Software Foundation, ©1999–2022 [vis-
ited on 2023-04-23]. Available from: https://jmeter.apache.org/.

16. POKHILKO, Andrey et al. Servers Performance Monitoring [online]. jmeter-plugins.org,
©2009-2023 [visited on 2023-04-23]. Available from: https://jmeter-plugins.org/wiki/
PerfMon/.

17. GIERKE, Oliver; DARIMONT, Thomas. Spring Data [online]. VMware, ©2008-2022 [vis-
ited on 2023-04-24]. Available from: https://docs.spring.io/spring-data/jpa/docs/
current/reference/html/.

18. WEBB, Phillip; SYER, Dave; LONG, Josh; NICOLL, Stéphane; WINCH, Rob; WILKIN-
SON, Andy, et al. Spring Web [online]. VMware, 2023 [visited on 2023-04-26]. Available
from: https://docs.spring.io/spring-boot/docs/current/reference/html/web.
html.

19. Plugins: Openapi generator [online]. OpenAPI-Generator Contributors, 2023 [visited on
2023-04-26]. Available from: https://openapi-generator.tech/docs/plugins/.

20. React-Snap [online]. npm, Inc., 2019 [visited on 2023-04-29]. Available from: https://www.
npmjs.com/package/react-snap.

21. BERRE, Daniel Le. Support for JEE 9+ [online]. ASF JIRA, 2021 [visited on 2023-04-27].
Available from: https://issues.apache.org/jira/browse/WW-5141.

22. FOUNDATION, The Apache Software. Spring and struts 2 [online]. The Apache Software
Foundation, ©2000-2022 [visited on 2023-04-29]. Available from: https://struts.apache.
org/getting-started/spring.

https://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
https://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
https://react.dev/learn/react-developer-tools
https://jmeter.apache.org/
https://jmeter-plugins.org/wiki/PerfMon/
https://jmeter-plugins.org/wiki/PerfMon/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-boot/docs/current/reference/html/web.html
https://docs.spring.io/spring-boot/docs/current/reference/html/web.html
https://openapi-generator.tech/docs/plugins/
https://www.npmjs.com/package/react-snap
https://www.npmjs.com/package/react-snap
https://issues.apache.org/jira/browse/WW-5141
https://struts.apache.org/getting-started/spring
https://struts.apache.org/getting-started/spring


Contents of enclosed CD

implementation....................source codes of the online books/comics reader system
bi-bap api ...................................... source code of the server application
bi-bap react .................... source code of the client application written in React
bi-bap struts..................source code of the client application written in Struts2

thesis ......................................................... the thesis text directory
thesis-sources.............................................source code of the thesis
thesis.pdf............................................ the thesis text in PDF format

45


	Acknowledgments
	Declaration
	Abstract
	Introduction
	Analysis
	Server-Side Rendering
	Client-Side Rendering
	Existing comparisons of SSR and CSR
	Comparison between client-side and server-side rendering in the web development iskandar2020comparison
	On the Comparison of Software Quality Attributes for Client-side and Server-side Rendering beke2018comparison
	Summary

	Online books/comics reader system definition
	Requirements
	Use cases
	Domain model

	Metrics definition
	Metrics from the client's perspective
	Metrics from the server's perspective


	Design
	Wireframes
	Server architecture
	API design
	Back-end application design

	Architecture of React applications
	React Components
	React Props
	React State Hook

	Architecture of Struts2 applications
	Struts2 Models
	Struts2 Views
	Struts2 Controllers

	Tools used for metrics collecting

	Implementation
	Server implementation
	Technology decisions
	Persistence layer
	Application layer
	Presentation layer

	React implementation
	Technology decisions
	Directories structure
	API components generation
	React components pre-rendering

	Struts2 implementation
	Technology decisions
	Directories structure
	Spring configuration


	Testing
	Server application testing
	Client applications testing
	The same appearance
	The same functionality


	Comparison based on the collected metrics
	Collected metrics from the client's perspective
	Collected metrics from the server's perspective
	Final comparison

	Conclusion
	Contents of enclosed CD

