
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Requests Status Overview Web Application based on Existing

Task System

Lukáš Nymsa

Ing. David Šenkýř

Informatics

Information Systems and Management

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

This work is focused on companies using a task system to process client requests. The

goal of this thesis is to design and develop a web application displaying the status of

requests from the client's point of view.

Steps to follow:

1. Model an illustrative process for a company that:

 a. processes requests from a client in an existing task system, and

 b. communicates with a client only via e-mail messages.

2. Design a web application that should:

 a. communicate with an existing task system,

 b. display both unresolved and resolved requests of the verified client,

 c. add comments to tasks representing unresolved requests.

3. Update the process from the first point following the proposed web application design

in the second point.

4. Implement a prototype web application using .NET for YouTrack as a task system.

5. Evaluate and summarize the achieved results, including the economic-managerial

evaluation.

Electronically approved by Ing. David Buchtela, Ph.D. on 10 January 2023 in Prague.

Bachelor’s thesis

REQUESTS STATUS
OVERVIEW WEB
APPLICATION BASED
ON EXISTING TASK
SYSTEM

Lukáš Nymsa

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. David Šenkýř
11th May 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Lukáš Nymsa. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Nymsa Lukáš. Requests Status Overview Web Application based on Existing Task
System. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of Abbreviations x

1 Introduction 1

2 Analysis 3
2.1 Task Systems . 3

2.1.1 Task Systems API . 3
2.1.2 YouTrack . 4
2.1.3 Asana . 4
2.1.4 Jira . 4

2.2 Common Processes of Communication Between Customers and Organizations . . 5
2.2.1 E-mail Communication Without Task System 6
2.2.2 E-mail Communication Using Task System 7

2.3 Web Application Analysis . 8
2.3.1 Requirements . 8
2.3.2 System States . 10
2.3.3 Analysis of Usage from a User’s Point of View 11
2.3.4 Analysis of Usage from an Employee’s Point of View 12

2.4 Analysis of Competitors . 12

3 Design 13
3.1 Application Technologies . 13
3.2 Back-end and Front-end Communication . 13
3.3 Back-end . 13

3.3.1 Application’s Design Pattern . 14
3.3.2 Interface Mechanism for Different Task Systems 15
3.3.3 YouTrack Connection . 15
3.3.4 Task State Mapping . 15
3.3.5 Configurable Connections and Settings . 15
3.3.6 Authentication . 16

3.4 Front-end . 16
3.4.1 Application’s Design Pattern . 17

3.5 UI Design . 17
3.5.1 Welcome View . 18
3.5.2 List of Requests View . 18
3.5.3 Request’s Detail View . 19

iii

iv Contents

4 Implementation 21
4.1 Back-end . 21

4.1.1 Directory Tree . 21
4.1.2 Mediator Pattern . 22
4.1.3 Commands . 22
4.1.4 Controllers . 22
4.1.5 Handlers . 23
4.1.6 Services . 23
4.1.7 Configuration Mapping . 24
4.1.8 State Mapping . 25
4.1.9 Authentication . 26
4.1.10 Exceptions . 27
4.1.11 Generated API Documentation . 28

4.2 Front-end . 29
4.2.1 State Management . 29
4.2.2 Communication With Back-end . 29
4.2.3 Error Handling . 30
4.2.4 Authentication . 30
4.2.5 Routing . 32
4.2.6 Views . 33
4.2.7 Dialogs . 33
4.2.8 Light and Dark Mode Toggle . 33
4.2.9 Responsive Design . 34
4.2.10 Screenshots of the Implemented Web Application 35

5 Testing 37
5.1 Automated Testing . 37

5.1.1 Unit Testing . 37
5.1.2 Functional Testing . 39

5.2 User Testing . 40
5.2.1 Testing Process . 40
5.2.2 Testing Results . 41
5.2.3 Testing Summary . 42

6 Economic-Managerial Aspects 43
6.1 Workflow Comparison . 43

6.1.1 Evaluation of Steps to Produce . 44
6.2 SWOT Analysis . 44
6.3 Financing the Web Application . 45
6.4 Future Outlook . 46

7 Summary 47

Contents of the Attached Medium 51

List of Figures

2.1 E-mail communication without using task system 6
2.2 E-mail communication using task system . 7
2.3 System states . 10
2.4 Communication from user’s point of view . 11
2.5 Communication from employee’s point of view 12

3.1 UML class diagram of communication between task system services and handlers 15
3.2 Wireframe of welcome view . 18
3.3 Wireframe of list of requests view . 18
3.4 Wireframe of request’s detail view . 19

4.1 State management Vuex [16] . 29
4.2 A list of requests on desktop (dark mode) . 35
4.3 Detail of request on desktop (light mode) . 35
4.4 A list of requests on mobile device on the left (light mode), detail of request on

mobile device on the right (dark mode) . 36

List of Tables

6.1 Cloud hosting services pricing comparison . 45

List of code listings

1 Example of command – CreateTaskItemCommand 22
2 Example of endpoint – POST /tasks . 23
3 Example of handler – ChangeTaskStateCommandHandler 23
4 Example of YouTrackService – GetTaskAsync 24
5 Example of Program.cs – MailSettings Singleton 25
6 EnumExtensions – GetStringValue . 25
7 Adding user to cache . 26
8 Searching for a user in cache . 26
9 Authorization filter method . 27

v

vi List of code listings

10 Example of exception handling middleware . 28
11 Dispatching an error in actions.ts . 30
12 Authentication data stored in Vuex . 30
13 Auto login function in actions.ts . 31
14 Vue routes . 32
15 Authentication guard . 32
16 Light and dark mode color setup . 33
17 Mock of IProjectManagementService with method setup 38
18 Calling createTaskItemCommandHandler with command 38
19 Verification of data and mocked method . 39

I would like to thank my supervisor Ing. David Šenkýř for providing
me with valuable advice throughout the whole process of creating the
application and writing this thesis. I would also like to thank my
family and partner for supporting me during my studies.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on 11th May 2023 .

viii

Abstract

This thesis aims at analyzing and developing a prototype web application (using .NET and Vue.js)
that connects customers with organizations using task systems. The web application aims at
allowing customers to create requests, view the status of created requests and communicate with
organizations. At the same time, it allows organizations to communicate with customers only
using task systems.

In the introduction of the thesis, the processes of the mentioned communication between
the customer and the organization are illustrated with and without the use of the supporting
application. In the conclusion, the economic-managerial aspects of the deployment and use of
the implemented application are considered.

Keywords web application, task system, request status overview, .NET, Vue.js, API, YouTrack

Abstrakt

Tato práce se zaměřuje na analýzu a implementaci prototypu webové aplikace (v technologíıch
.NET a Vue.js), která propoj́ı zákazńıky s organizacemi využ́ıvaj́ıćımi systémy pro správu úkol̊u.
Ćılem této webové aplikace je umožnit uživatel̊um vytvořit požadavky, sledovat jejich stav a ko-
munikovat s organizacemi. Zároveň umožňuje organizaćım komunikovat se zákazńıky pouze
pomoćı systémů pro správu úkol̊u.

V úvodu práce jsou ilustrovány procesy zmı́něné komunikace zákazńıka a organizace s využit́ım
i bez využit́ı podp̊urné aplikace. Závěr práce zvažuje ekonomicko-manažerské aspekty nasazeńı
a využit́ı implementované aplikace.

Kĺıčová slova webová aplikace, systém pro správu úkol̊u, přehled stavu požadavk̊u, .NET,
Vue.js, API, YouTrack

ix

List of Abbreviations

API Application Programming Interface
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation

ID Identity
URL Uniform Resource Locator

HTML HyperText Markup Language
CSS Cascading Style Sheets

DTO Data Transfer Object
SWOT Strengths, Weaknesses, Opportunities, and Threats

CPU Central Processing Unit
GB Gigabyte

RAM Random Access Memory
SSD Solid-state Drive

x

Chapter 1

Introduction

Many organizations are confronted with the difficulties in communicating with users or customers
who remain in contact while processing their requests. They usually communicate via e-mail,
which can lead to the complexity of handling the individual requests. Employees can accidentally
overlook a new e-mail from users or they are required to pass the e-mails to other employees
so they can provide their answers to the requests. For organizations that use task systems,
the difficulty lies in the fact that employees have to manually transcribe the content of e-mails
from the conversations with users into individual tasks in the task system of the organization.
These problems can lead to delays and user dissatisfaction which may have many unforeseen
consequences for the organization.

A web application that could be connected to an organization’s task system and communicate
with a user could solve or at least simplify these common problems. The web application would
be suitable for organizations that already use task systems. For these organizations, the web
application would simplify the communication process between employees and users by connect-
ing communication directly to the organization’s task system. Users would not have to write
e-mails but only provide their request in the web application. Employees would then be able to
communicate directly with users through the task system, without sending an e-mail.

I chose this topic because I am interested in web application development and this has been
a great opportunity to develop a larger-scale application with new technologies. At the same
time, I personally struggle with poor communication of organizations, so I decided to develop
this web application to simplify and improve organizations’ communication with users.

The goals of this thesis are to analyze current processes, design and implement a web appli-
cation that simplifies these processes, and finally to evaluate economic-managerial aspects of the
proposed web application. The goals are listed and detailed in the following statements:

G1 – Analyze the current processes of communication between organizations and users using
task-based systems and using only e-mail clients.

G2 – Design a web application that communicates with existing task systems, shows the cur-
rent status of all created requests – processed and unprocessed, and allows sending messages
as comments to each task in the task system.

G3 – Update the process from the first goal G1 to use the proposed design of the web
application in G2.

G4 – Implement a open-source prototype web application using the ASP.NET framework for
the YouTrack task system from the proposed design.

G5 – Evaluate economic-managerial aspects of implemented prototype web application.

1

2 Introduction

Chapter 2

Analysis

This chapter is devoted to an analysis of task systems, an analysis of the current common
processes of communication between organizations and users with its drawbacks, an analysis of
a web application to be implemented, and finally an analysis of competitors.

2.1 Task Systems

Task management systems, such as YouTrack1, Asana2 or Jira3, allow organizations to plan,
schedule and collaborate on any processes, such as software development or product management.
It allows users to organize work to simplify work processes.

As is stated in [1], there are many benefits of using task management. One of them is
the possibility of keeping all data in one place, such as documents, tasks or any other information.
Moreover, it simplifies the process of communication between each employee. Employees can
simply assign other employee to specific task and write a comment without the need to write
an e-mail or call them. Task systems also allow the organization to select issues that are more
important than the others. It allows to manage the employees what their work plan will be for
upcoming period. In addition, task systems give employees an overview on current processes
the organization is working on – it allows them to see plans, projects, current work and much
more.

In task systems, tasks can be created and managed. Tasks usually have many data that are
stored. It differs across all different task system platforms but each task usually has these data in
common – title, description, project, assigned user, time tracking and comments. Task systems
can have many projects, so each task must have specified a project the task belongs to. The state
of a task shows the current state – each task system have their own naming for different states.
Each task has assigned user – the assigned user is a user that currently deals with this task. [1]

2.1.1 Task Systems API
Task systems YouTrack, Asana and Jira, which have been mentioned in previous Section 2.1,
provide their own APIs that allow developers to use it and connect to it.

1https://www.jetbrains.com/youtrack
2https://asana.com
3https://www.atlassian.com/software/jira

3

https://www.jetbrains.com/youtrack
https://asana.com
https://www.atlassian.com/software/jira

4 Analysis

2.1.2 YouTrack
YouTrack is a task management system developed by JetBrains4. YouTrack’s API [2] is free to
use and allows developers to create, modify, and delete tasks, projects and much more.

YouTrack meets all previously mentioned features in this Section 2.1. However, in YouTrack,
tasks have different naming, they are called issues. Each YouTrack’s issue has fields which
contain some of the already mentioned features – project, assigned user and time tracking, yet
they contain many more fields and YouTrack even allows the organization to create new custom
fields. [3]

YouTrack can either be run on YouTrack’s cloud server or YouTrack provides an installation
package that allows installing it on the organization’s own server. YouTrack offers different
pricing plans and these plans differ for both platforms. For organizations of size of a maximum
10 people all features are for free on both platforms. If an organization requires more than 10
people in the task system, the pricing differs between these platforms. The cloud version is paid
monthly or annually while the server version requires one-time license payment. [4]

2.1.3 Asana
Asana is a task management system developed by the same named company Asana, Inc5. Asana’s
API [5] is free and also allows developers to create, modify and delete tasks, projects and much
more.

Asana likewise meets all mentioned features in this Section 2.1. Just like in YouTrack, data
are stored in fields and Asana allows the organizations to create own custom fields.

Asana offers many pricing plans – Basic, Premium and Business. The Basic plan is free
and allows up to 15 users and provides the organization with managing tasks, projects, mes-
sages and more features. The Premium plan can be paid monthly or annually and apart from
the features from Basic plan it offers many more – unlimited users, timeline, workflow builder,
custom fields and more. The Business plan can also be paid monthly or annually and on top
of the features included in the previous plans it offers portfolios, workloads, time tracking and
more. [6]

2.1.4 Jira
Jira is a task management system developed by Atlassian6. Jira offers free API that also allows
developers to create, modify and delete tasks, projects and many more features.

Just like YouTrack and Asana, Jira meets all mentioned features in this Section 2.1 and data
can also be stored in fields with the possibility to create custom ones.

Jira offers many plans Free, Standard, Premium and Enterprise. The Free plan can have
a maximum of 10 users and is paid monthly or annually. This plan offers managing tasks, projects
and more. The Standard plan can have up to 35 000 users and is also paid monthly or annually. It
includes all features from the Free plan and also offers user roles, permissions, logs and more. The
Premium plan contains all previously mentioned features, also offers a maximum of 35000 users
and is paid monthly or annually. On top of that, it offers advanced road maps, archiving and
more features. The Enterprise is paid annually and contains all previously mentioned features.
It offers analytics, better support and can have unlimited users. The more users, the higher the
price is.

4https://www.jetbrains.com
5https://asana.com
6https://www.atlassian.com

https://www.jetbrains.com
https://asana.com
https://www.atlassian.com

Common Processes of Communication Between Customers and Organizations 5

2.2 Common Processes of Communication Between
Customers and Organizations

Organizations could be made up by a few people or it could be a global organization of many
employees. These global organizations usually have a department of people called help desk.
Help desk is usually a group, but it could also be a single person, whose purpose is to help
customers with a problem concerning their organization. [7]

In [7], there are described many ways how the customers can communicate with the help desk
and how a help desk can deal with requests created by the customers. A list of examples of these
communication ways follows:

Phone – customers call the help desk and ask for real-time help.

E-mail – customers contact the help desk via e-mail.

Online forms – customers fill out an online form, for example on organization’s website.
They would usually provide e-mail or phone so the help desk can contact them in the future.
This online form can then send these data to organization’s database or to a task system
where the help desk can deal with it.

In the following sections, some of these common communication processes are described.
Firstly, the e-mail communication without using any task system is described in Section 2.2.1,
then the e-mail communication with using task system is described in Section 2.2.2.

6 Analysis

2.2.1 E-mail Communication Without Task System
The firstly described process is by using e-mails only. Users write an e-mail with a request
and then have to wait for a response from an organization. The employees do not always know
how to answer the described request immediately and have to contact other employee with more
knowledge about such a request via e-mail. This can take additional time. The employee then
responds and the communication continues until a solution is provided and the user is satisfied
with the answer. This process can be seen in Figure 2.1.

2.2.1.1 Advantages
For issues that could be solved immediately, it can take less time since the communication is
direct via e-mail.

2.2.1.2 Drawbacks
User’s e-mail can go unnoticed by the employees.

Providing a response and whole solution for larger requests can take a longer time.

Figure 2.1 E-mail communication without using task system

Common Processes of Communication Between Customers and Organizations 7

2.2.2 E-mail Communication Using Task System
Organizations often use task systems which means they create new tasks for each user’s request.
A user sends an e-mail, the employee then creates a new task and assigns it to another respon-
sible employee or themselves. The whole communication is done via e-mail, so the user has no
idea whether the requests’ resolution is in progress. Once the task gets solved in the system,
the employee can then respond to the user. After that, the user and the employee communicate
via e-mail until a solution is provided, while each question in the communication is also updated
in the task system. This process can be seen in Figure 2.2.

2.2.2.1 Advantages
Allows organizations to track all requests sent by users with its history and status.

2.2.2.2 Drawbacks
User’s e-mail can go unnoticed by the employees.

Requires manual e-mail’s content conversion into a new task in the existing task system.

Figure 2.2 E-mail communication using task system

8 Analysis

2.3 Web Application Analysis
From the analysis in the previous Section 2.2 (Common Processes of Communication), require-
ments are created for a web application that would simplify these processes. This web application
would allow customers to create requests, see the statuses of these requests and send messages
to the organization. All these requests would create new tasks in organization’s task systems
and the employees of the organization would be able to communicate with the customers only
via the task system.

2.3.1 Requirements
In order to run a web application, it requires a back-end server for data. The server should also
be connected to the task system for providing and sending data. The web application requires
a user interface that communicates with the back-end server. The following sections describe
functional and non-functional requirements of the web application.

2.3.1.1 Functional Requirements
In this section, functional requirements are described. These requirements determine what
the application should do and without them the application would not work as intended. [8]

FR-1: Login

The user will be able to login using just his/her e-mail.
The user will provide his/her e-mail address on which a one-time code will be sent. The user
will then provide that code to the application and become authenticated.

FR-2: Authorization

The application will only allow access to tasks that are assigned to the logged in user.
Unauthenticated users will not be allowed to see anything other than the welcome page.

FR-3: Access control

The application will only provide tasks to the user from projects that are allowed in
the configuration of the application.
Newly created tasks will be added to the main project that is set in the configuration.

FR-4: Task states

The application will work with the defined states of each task in the system so the users
can see the progress of the request.
A list of states with explanation:
∗ New: A user created a new task
∗ Open: An employee noticed a newly created task
∗ In Progress: The employee started solving the request
∗ Retry: The employee sent the request back to the user because of incomplete information
∗ Processed: The employee responded with an answer
∗ Rejected: The user rejected the proposed answer
∗ Resolved: The user is satisfied with the proposed answer
∗ Reopened: The use corrected the information that were missing

Web Application Analysis 9

FR-5: Create a new task

The application will allow authenticated users to create a new task.
A task will contain a title and description.
The application will automatically pair the newly created task with the user’s e-mail.

FR-6: Add messages to an existing task

The user will be allowed to add messages to an existing task.
The messages will contain just a text.

FR-7: View all existing tasks

The application will allow users to see all tasks which are assigned to them and list through
them.

FR-8: View an existing task

The application will allow users to see the specific task which is assigned to them.
Title and description will be provided as well as date of creation and all messages.

2.3.1.2 Non-functional Requirements
In this section, non-functional requirements are described. These requirements describe the qual-
ity of the web application, such as the extensibility or security, and the user’s experience using
this application. [8]

NFR-1 A task system extensibility

The application should be extensible – it should allow developers to connect it to task
systems that provide API.

NFR-2 Encryption of communication

The application’s communication should be encrypted.

NFR-3 Device compatibility

The application should be available and usable on traditional web browsers as well as
mobile devices.

NFR-4 Open-source application

The application should be open-source meaning that the code is publicly available and any
organization could use this code.

10 Analysis

2.3.2 System States
The web application should use states which would allow the users to see the progress of each
created request. In the following Figure 2.3, there is a workflow of states defined in FR-4 2.3.1.1.

Figure 2.3 System states

Web Application Analysis 11

2.3.3 Analysis of Usage from a User’s Point of View
Users should communicate only via the web application. They should be able to create a new
request that will be created in the task system. Then they have to wait until the state of created
request is changed to either Processed or Retry. If the state is Retry, the users have to send
additional information in the message because, according to the employee, the information given
is not enough. However, if the state of the task is Processed, users then can proceed to either
resolve the request or reject it. If the answer in the response message is sufficient, the task state
is changed to Resolved state with an optional final message as an answer to the resolution. If
the answer in the response message is not sufficient, the task state is changed to Rejected with a
required message as an explanation of why it is rejected. The process then gets back to waiting
until the state is changed to Processed or Retry. The process of user’s point of view is shown in
the following Figure 2.4.

Figure 2.4 Communication from user’s point of view

12 Analysis

2.3.4 Analysis of Usage from an Employee’s Point of View
Employees should communicate with users only via a organization’s task system. Once a new
request is sent by a user, a new task is created in the task system and the task state is set to New.
As soon as this task gets assigned to any employee, the state should be changed to Open and
then the assigned employee can start working on the request. Once the employee resolves the
request and provides an answer or solution, the state is changed to Processed. If the request is not
complete and the employee needs more information, the state is changed to Retry. The employee
starts working on request once the task is assigned to him/her or the already assigned task’s
state has been changed to Reopened. The process from the point of view of the assigned employee
is shown in the following Figure 2.5.

Figure 2.5 Communication from employee’s point of view

2.4 Analysis of Competitors
We were not able to find any other applications that would at least partially address the require-
ments mentioned in Section 2.3.1. As mentioned in Section 2.2, organizations can use online
forms which customers can fill out and then the organizations process these requests. We do
not consider this form of communication as a direct competition because the customers have no
real-time feedback and can only rely on an e-mail or phone call back from the organization.

Since task systems often provide public APIs as mentioned in Section 2.1.1, organizations can
implement their own applications that are not public and are used only inside the organization
or they can build this communication directly into their own applications customers use.

Chapter 3

Design

The web application is designed according to the requirements from the previous Chapter 2
(Analysis). Since it is a web application, it is accessible to users through a web browser on both
a computer and a mobile phone. It also allows the application to be updated and maintained
without the users having to download or update the application themselves.

3.1 Application Technologies

We decided to split the web application into two separate applications, front-end and back-end.
The front-end application is used for user interface and it is the application users interact within
the web browser, while the back-end application is used to handle data – it processes data from
the front-end and sends them to the task systems and vice versa.

3.2 Back-end and Front-end Communication

These two applications communicate with each other using HTTP requests. The front-end
communicates with the back-end via its API. These requests contain JSON bodies which then
get processed either in the back-end or front-end.

3.3 Back-end

For the back-end C# programming language was chosen as stated in Chapter 1 (Introduction)
and in the assignment of this thesis. Since the application is for the web, we have chosen
the ASP.NET framework, which is a free and open-source framework created and maintained by
Microsoft. This framework is regularly updated to fix bugs and bring new functionalities as can
be seen on the GitHub repository1.

The back-end does not need to store any data since it only works as a provider of data from a
task system. For that reason, user’s data, such as authorization tokens, are stored only in cache.
In our selected approach, we do not use passwords for the user signup action. The application
allows users to log in using only e-mail. First, a user provides an e-mail address, and the back-end
then sends a one-time code to the provided e-mail address. The user can then authenticate using
the one-time code.

1https://github.com/dotnet/aspnetcore

13

https://github.com/dotnet/aspnetcore

14 Design

The back-end application provides an API. It allows other applications to retrieve or send data
to the application via HTTP requests. The application has many endpoints for authentication
and data management. Each endpoint is listed and detailed in the following statements:

POST /users/request-code – Requires a valid e-mail address, the application then sends a
one-time code to the provided e-mail address.

POST /users/login – Requires a valid e-mail address and provided one-time code. After
validation, it provides a token to authorize the user with each request.

POST /users/logout – Logs out the user in the application.

GET /tasks – Provides all tasks that are assigned to the user.

GET /tasks/id – Returns one task with provided ID.

POST /tasks – Creates a new task with data provided in the body.

POST /tasks/id/comments – Adds a new message to the task with the provided ID.

POST /tasks/id/approve – Changes the state of task with provided ID to Resolved.

POST /tasks/id/reject – Changes the state of task with provided ID to Rejected and re-
quires message in the body.

POST /tasks/id/reopen – Changes the state of task with provided ID to Reopened. This
requires an explanatory message in the body.

3.3.1 Application’s Design Pattern
“Design patterns are typical solutions to commonly occurring problems in software design. They
are like pre-made blueprints that you can customize to solve a recurring design problem in your
code.” [9]

We have chosen to use the mediator behavioural pattern for the core of this web application.
The purpose of this pattern is to have only one class Mediator that handles all dispatched com-
mands. These commands are then redistributed to specific handlers that handle such commands.
Each endpoint creates new commands that are dispatched to the mediator. The mediator then
sends these commands to its handlers which proceed to do the desired action, such as sending a
HTTP request to YouTrack’s API. This can be seen in the Figure 3.1.

In the application, we also decided to use singleton classes. As is stated in [10] “Ensure a
class only has one instance, and provide a global point of access to it.” Singleton classes allow
the application to access them anywhere in the application. These classes can be set at the build
with static data and then accessed. Singletons are used in this web application for caching as
will be further described in Section 3.3.6 (Authentication).

Back-end 15

3.3.2 Interface Mechanism for Different Task Systems
The web application is designed to support many task systems that have available API. For
that reason, the code design is unified and the application communicates with only one interface
IProjectManagementService as is visible in Figure 3.1. For each task system, a new service
can be implemented. This service must implement the interface IProjectManagementService.
The interface has 5 different methods – to retrieve one or many tasks, create a new task, edit
an existing task or add comments to an existing task. With this design, adding a service for
another task system does not change the functionality of the web application. The application
works the same and sends and retrieves data from another API only.

Figure 3.1 UML class diagram of communication between task system services and handlers

3.3.3 YouTrack Connection
In our prototype, following the thesis assignment, we use YouTrack as a task system. As men-
tioned in 2.1.1 the application connects to YouTrack via its API. To connect the application to
the API, an user in YouTrack needs to be created and the user’s connection token is used by
the web application. To recognize the author of each created task, a custom field needs to be set
up in YouTrack which holds the user’s e-mail. The setup of the token and custom field is done
in a configuration which is further discussed in Section 3.3.5.

3.3.4 Task State Mapping
The web application uses 8 different states to show current progress. However, the used task
system might have different states naming or the organization uses already its naming that is
different from the state names of our implemented web application. For that reason, a mapping
is used. Each state is mapped in the configuration to desired state name. How such configuration
works is further described in the following Section 3.3.5. The usage of mapping also means that
the visible task’s state for the user might differ from the naming used in the task system.

3.3.5 Configurable Connections and Settings
The web application allows configuring connections and other settings. The application requires
setting up a connection to YouTrack’s API and own mail provider. It also needs to set up
a custom field for user recognition as mentioned in Section 3.3.3 and mapping of states mentioned
in Section 3.3.4.

16 Design

The connection to YouTrack’s API requires a URL to the server and the access token of user
that will be marked as the creator of all the tasks created by users of this web application.

Connecting to a mail server or provider requires these details – host, port and authentication.
Setting up the custom field requires creating the field in YouTrack. Then, the name of such

created field needs to be set in the configuration. Each created request then creates a task in
the task system with the user’s e-mail in this custom field.

Mapping of states only requires to define all state names in the configuration. First, the name
of the state that is used in the application followed by the desired name that is used in the task
system.

3.3.6 Authentication
The web application requires users to be logged in to get and send data. Since the web application
is without a database, it uses a cache to store user data. Users can log in using just e-mail and
a one-time code that is sent to provided e-mail. For that reason, the cache stores the user’s
e-mail, created one-time code, and token after successful login.

For data storing, a singleton class is used that allows the class to be accessible anywhere in
the application. This class provides the application with methods to authenticate users and it
also allows to validate each request.

3.4 Front-end
The front-end application is written in TypeScript which is a super-set of JavaScript with many
more features. The advantages and disadvantages of TypeScript [11]:

Advantages

Static typing – allows adding types to variables which means that once a variable is created
with a certain type, the type cannot be changed and only values with the same type can
be assigned to this variable.
Predictability – thanks to static typing, the code is much more predictable about what
will happen and what can be the outcome of, for example, a function.
Error detection – TypeScript produces more notifications and exceptions directly in IDE
which leads to fewer bugs, and more issues can be predictable. Using only JavaScript,
many errors are found only during execution.

Disadvantages

More code – Since TypeScript is a static language, it requires more code such as validation,
invalid type prevention and much more.
Complexity – TypeScript needs to be compiled with every build which means it takes
longer time, for example, in pipelines on GitHub.

Since the advantages outweigh the disadvantages, TypeScript is chosen for the front-end
application, mainly because of typing. Other technologies that are used are HTML and CSS.
HTML defines the structure of rendered content and CSS is used for design.

We decided to make the front-end application a single page. Single-page applications do not
require reloading the whole page – when being redirected to the website, only one HTML file is
being loaded and changed. This makes the application lot faster once loaded. [12]

Many frameworks simplify making such applications. The most known are React, Angular,
and Vue.js. We have decided to use Vue.js for its simplicity. Vue.js is an open-source framework
created in 2014. Vue.js is not as used or popular as React or Angular. According to Stackoverflow

UI Design 17

2022 survey [13] which asked developers around the world what is their favourite language for web
development, 19.9% responded with Vue.js, while 44.31% said React and 23.06% answered with
Angular. Many well-known websites use Vue.js for the front-end, such as GitLab, Grammarly
or Alibaba. One of the advantages that Vue.js has over other mentioned frameworks is a short
learning curve – Vue.js does not require high prior experience with TypeScript, it is designed to
be simple and fast without having to deal with complex setups. Another advantage is the size of
the final application. The size of Vue.js applications is not huge, thus making it faster to load.
[12]

3.4.1 Application’s Design Pattern
The front-end application is split into views. Each view is then inserted into the page when
accessed. Since web applications usually use the same parts of code (same visual parts) more
than once, we use components. Components can be used for buttons, alerts and many more.
These components are accessible in all views and can be used repeatedly.

Web applications need to store data, especially data about the user, such as for how long
the user is still logged in. We decided to use a state management pattern that holds these data.
It allows storing these data in one place, so these data do not have to be stored in each view or
component. It not only improves code readability but also reduces risks of potential errors since
the data are modified only at one place.

3.5 UI Design
UI design is an important part of every web application that is going to be accessed by people
with different computer experiences. It makes the first impression and it could discourage users
from using it. That’s why it is important to design it properly. Each view should be clear
and consistent – similarly organized as the others. Since this web application is only for creating
requests and subsequent communication, it should be as simple as possible and every step should
be clear. The users of this web application vary, thus it is needed to be simple due to the user’s
experiences with computers differ.

The web application consists of 3 views. The welcome view, the list of requests view and
lastly the request’s detail view.

On top of that, a navigation bar is visible in all views. This navigation bar holds information
about logged users. It shows the web application’s title, login button and dark/light mode switch.
The login button allows users to log in and if they are already logged in, it allows them to log out
at any time. Each view is described in the following sections. Each section contains a wireframe
– the blueprint of desired view design.

18 Design

3.5.1 Welcome View
The welcome view consists of an explanation of the application, what steps the users have to
do to resolve their issue and the login button. The welcome view is shown in the following
Figure 3.2.

Figure 3.2 Wireframe of welcome view

3.5.2 List of Requests View
This view shows a list of all user requests and also allows users to create a new request.

Just below the view title, a button to create a new request is shown. Then there is a list with
all user’s requests. Each request contains a title, state with its description, request’s description,
date of creation and count of messages sent. According to these requirements, we designed this
view as shown in the next Figure 3.3.

Figure 3.3 Wireframe of list of requests view

UI Design 19

3.5.3 Request’s Detail View
Detail view of a request displays all accessible information to the user: title, description, date of
creation, current state and all messages. It also allows users to send new messages, and approve
and reject solutions.

At first, the state with its description is shown. Then the date of creation and request
description that was provided by the user. Below the description, a chat is displayed with all
previous messages – date of creation and message’s content. Users can also send new messages
so below the chat there is input for messages with send button. The proposed design can be seen
in the following Figure 3.4.

Figure 3.4 Wireframe of request’s detail view

20 Design

Chapter 4

Implementation

This chapter contains all information about the implementation of the proposed design of
the open-source web application. It is split into two sections: one is dedicated to the back-
end development and one is dedicated to the front-end development.

4.1 Back-end
The application’s back-end is implemented in ASP.NET 6 with the use of NuGet packages to
simplify the application. These used packages are detailed further in this chapter.

4.1.1 Directory Tree
The back-end application is divided into multiple directories. Each directory contains classes
with a different purpose. Some of these directories are further discussed in this chapter such as
Commands in Section 4.1.3, Controllers in Section 4.1.4, Exceptions in Section4.1.10, Extensions
in Section 4.1.8, Filters in Section 4.1.9.2, Handlers in Section 4.1.5, Services in Section 4.1.6.

The Config directory contains singleton classes that are loaded and mapped from a configu-
ration file. The DTO directory contains Inputs and Queries classes. These are used for request
mapping in endpoints or mapping for the response of a request. The Enums directory contains
enums that are used in this application, mainly for mapping data from task systems. The Models
directory contains classes that represent some complex data, such as Task, User or Comment. For
example, the Task class represents a task. To keep the code unified for all possible task systems
connections, tasks from task systems are mapped to this class.

TaskSystem
Commands
Config
Controllers
DTO
Enums
Exceptions
Extensions
Filters
Handlers
Models
Services

21

22 Implementation

4.1.2 Mediator Pattern

To implement the mediator pattern, we used an open-source NuGet package called MediatR1.
It meets the description and functionality of the mediator pattern. It is popular since it has
almost 10 000 stars on GitHub and it is regularly updated to meet with new updates in the
ASP.NET framework. How is MediatR used in this application will be described in the following
Sections 4.1.3 (Commands), 4.1.4 (Controllers), and 4.1.5 (Handlers).

4.1.3 Commands

To use MediatR we need to have commands that implement IRequest interface. Commands have
the required class properties that are needed to handle such a command. It is a good practice to
have these properties read-only (accessible via getters only) and provide them in the constructor.

Code listing 1 Example of command – CreateTaskItemCommand

public class CreateTaskItemCommand : IRequest<TaskItem>
{

public string Name { get; }
public string Description { get; }

public CreateTaskItemCommand(string name, string description)
{

Name = name;
Description = description;

}
}

4.1.4 Controllers

Controllers are used to define actions. In our case, it exposes the API on the server. The appli-
cation has 2 controllers, TaskController and UserController. Each method in controllers dis-
patches new commands that are then processed by the injected mediator instance of IMediator.

The TaskController is used for task handling – new requests from users, a listing of requests,
sending messages and more. The UserController is used for authentication – requesting one-
time code for the specific e-mail address, login and logout.

1https://github.com/jbogard/MediatR

https://github.com/jbogard/MediatR

Back-end 23

Code listing 2 Example of endpoint – POST /tasks

[HttpPost]
public async Task<ActionResult<TaskItem>> Create([FromBody] TaskItemInput input)
{

var command = new CreateTaskItemCommand
(

name: input.Name,
description: input.Description

);

return Created(nameof(Get), await _mediator.Send(command));
}

4.1.5 Handlers
Once a command is dispatched using the MediatR mediator, it searches for handlers that imple-
ment IRequestHandler<command, returned variable>.

Each handler implements IRequestHandler and also has a Handle method which is executed
after dispatching a command. The Handle method then executes wanted code, such as a call to
a service (see the next Section 4.1.6).

Code listing 3 Example of handler – ChangeTaskStateCommandHandler

public async Task<TaskItem> Handle(
ChangeTaskStateCommand command,
CancellationToken cancellationToken)

{
var task = await _projectManagementService.GetTaskAsync(command.Id);

if (task.TaskState != TaskStateEnum.Processed
&& task.TaskState != TaskStateEnum.Retry)

{
throw new UnprocessableDataException(

$"Could not change state to {command.State} from {task.TaskState}");
}

return await _projectManagementService.EditTaskAsync(new TaskItem(command));
}

4.1.6 Services
Services are classes that could be described as parts of code that do the main part of the ap-
plication – change the state of the application, send an e-mail or send requests to an external
API.

The first described service is MailService which is only used to send e-mails with setting from
the configuration file. It requires configuration data such as mail host and port, username and
password. How is the configuration mapped is further discussed in Section 4.1.7 (Configuration
Mapping).

24 Implementation

According to the design proposition in Design chapter Section 3.3.2, an interface is imple-
mented for different task systems. The interface is made up by 5 method – GetTasksAsync,
CreateTaskAsync, GetTaskAsync, EditTaskAsync, AddCommentAsync. Since it is an inter-
face, each class that implements such an interface needs to have these 5 methods implemented.
This thesis aimed to create an application that would connect to YouTrack. For that reason,
YouTrackService is implemented and discussed in Section 4.1.6.1 (YoutrackSevice).

For handling authentication, UserService is used. It consists of methods to request a code,
login, logout and currently logged-in users. It is mainly used by handlers that work with the au-
thentication process.

4.1.6.1 YouTrackService
As already mentioned, the YouTrackService implements IProjectManagementService with
5 required methods. This service is used for communication with the YouTrack API. YouTrack
provides the NuGet package YouTrackSharp that allows developers to use this library to send
and retrieve data from the YouTrack server without needing to implement any API request
manually. To set up a YouTrack connection a server URL and permanent token are needed.
Then with the method Connect from the library, the application connect to the YouTrackServer.
YouTrackSharp also provides IssueService that allows developers to load and create issues
(different naming for the task). We used this class to retrieve and send data to YouTrack as can
be seen in the following Code listing GetTaskAsync.

Code listing 4 Example of YouTrackService – GetTaskAsync

public async Task<TaskItem> GetTaskAsync(string id)
{

var issue = await _issuesService.GetIssue(id);

if (issue is null)
{

throw new EntityNotFoundException($"Unknown entity: {id}");
}

var authField = (List<string>)issue.GetField(UserFieldKey).Value;

var projectId = GetProjectId(issue);

if (!Projects.Contains(projectId)
|| !authField.Contains((await _userService.GetLoggedUserAsync()).Email))

{
throw new EntityNotFoundException($"Unknown entity: {id}");

}

return YouTrackTaskItem.ConvertToTaskItem(
issue, GetTaskStateFromIssue(issue), GetProjectId(issue));

}

4.1.7 Configuration Mapping
The ASP.NET framework allows us to create an appsettings.json file that contains all configura-
tion settings. This configuration can be accessed by IConfiguration by dependency injection.

Back-end 25

To access the property from the IConfiguration, we can use GetValue method and then specify
which variable to get like this:

configuration.GetValue<string>("Config:TaskSystem:YouTrack:Url")
This would retrieve a variable from objects Config, then TaskSystem, then YouTrack and fi-

nally the variable itself.
The ASP.NET framework uses Program.cs which is a code that runs during the build of

the application. In this file, we can set up the whole application. Using that, we can set up a
singleton class for MailSettings which loads settings from the configuration file and sets them
to the class properties.

Code listing 5 Example of Program.cs – MailSettings Singleton

builder.Services.Configure<MailSettings>(
builder.Configuration.GetSection("Config:MailSettings"));

builder.Services.AddSingleton<MailSettings>();

4.1.8 State Mapping
As already discussed in Section 3.3.4, it is possible to map states with different naming to
the states used in this application. These states are saved in TaskStateEnum which is an enum
that holds these state names. For mapping, EnumExtensions class is implemented. It takes states
from the configuration file and saves them into EnumExtensions’ private variable EnumValues
which holds at index the state naming used in the application and value is a naming used in
the configuration file. It is also designed to be expandable for the future – the EnumValues is
a dictionary within a dictionary for a case when more enums would need mapping to the task
system’s fields. The following Code listing 6 shows GetStringValue that is used when sending
data to the task system’s API. The function expects Enum as a parameter and returns a string
that is used in the task system’s field.

Code listing 6 EnumExtensions – GetStringValue

public static string GetStringValue<T>(this T? value) where T : struct, Enum
{

if (!value.HasValue)
{

return "";
}

var type = typeof(T);
var name = Enum.GetName(type, value.Value);
if (EnumValues.ContainsKey(type)

&& name is not null
&& EnumValues[type].ContainsKey(name))

{
return EnumValues[type][name];

}
return name ?? "";

}

26 Implementation

4.1.9 Authentication
For authentication, there are 3 different endpoints implemented – user/request-code,
user/login, and user/logout. Since the application does not have a database, a cache is used.
For that, we created the UserCache model which contains the cached users.

4.1.9.1 Caching
To log in, the request-code endpoint must be first called which sends a code to an e-mail that needs
to be then provided to log in. The request-code endpoint requires only e-mail while the login
endpoint requires e-mail and the code sent in the request-code. For caching, we used MemoryCache
from Microsoft.Extension.Caching. The code for login and searching in cache is shown in the
following Code listings 7 and 8.

Code listing 7 Adding user to cache

public async Task<User> AddUserToTokenCacheAsync(User user)
{

var cacheEntryOptions =
new MemoryCacheEntryOptions().SetSlidingExpiration(

TimeSpan.FromMinutes(TokenTtlMinutes));
var createdUser = _tokenCache.Set(user.Token, user, cacheEntryOptions);
await RemoveCodeFromCodeRequestCacheAsync(user.Email);
return createdUser;

}

Code listing 8 Searching for a user in cache

public async Task<User?> FindUserInTokenCacheAsync(string token)
{

return await Task.Run(() =>
{

_tokenCache.TryGetValue(token, out User? user);
return user;

});
}

When adding a new user to the cache, sliding expiration is set. By default, it is set
to 30 minutes but it can be modified in the configuration file. When the user is accessed
in FindUserInTokenCacheAsync, the sliding expiration is reset and set again to 30 minutes.
That means the user is logged in for 30 minutes since the last request.

The cache for requesting a code is the same but it does not use _tokenCache but rather uses
_codeRequestCache. It is split for faster searching. For the one-time code cache, the index in
the cache is an e-mail address. For the token cache, a token is the index since every request
that is sent to API contains the token and not the user’s email. For the request code, the index
in the cache is e-mail while for the token cache token is the index since every request that is sent
contains the token and not the user.

Back-end 27

4.1.9.2 Authorization

To simplify validating if the user is authorized, we use filter. This filter can be set up in controllers,
either for each endpoint or globally for all endpoints in the controller. UserAuthorizationFilter
is implemented for the authorization. This filter is set up in TaskController with annotation
[ServiceFilter(typeof(UserAuthorizationFilter))].

With every HTTP request to any endpoint in this controller, the filter’s method
OnActionExecutionAsync is executed. This method checks the Authorization header and val-
idates if the provided token is valid using UserCache as can be seen in Code listing 9. If
the authorization fails, the UnauthorizedAccess exception is thrown.

Code listing 9 Authorization filter method

public async Task OnActionExecutionAsync(
ActionExecutingContext context,
ActionExecutionDelegate next)

{
if (context.HttpContext.Request.Headers.TryGetValue(

"Authorization", out var tokenHeader)
&& tokenHeader.Any()
&& await _userCache.IsTokenValidAsync(tokenHeader[0]))

{
await next();

}
else
{

throw new UnauthorizedAccessException("Unauthorized");
}

}

4.1.10 Exceptions

The application uses exceptions to signal errors. These exceptions can be thrown anywhere in
the application and it is needed that these thrown exceptions are caught.

We use the GlobalExceptionHandlingMiddleware class which is a class that is invoked with
an HTTP request. This means that if an exception has been thrown and not caught, the appli-
cation does not fail but the GlobalExceptionHandlingMiddleware catches this exception in its
InvokeAsync method. The Invoke method calls next which passes the request to the next com-
ponent and if it fails, an exception is about to be caught depending on its type. If an exception
occurs that is not expected, the global Exception catch block catches it. After catching these
exceptions, a response is generated with the corresponding status code and context of the error.
[14]

In the following Code listing 10, a part, since there are many exceptions handled, of the mid-
dleware’s InvokeAsync method is shown.

28 Implementation

Code listing 10 Example of exception handling middleware

public async Task InvokeAsync(HttpContext context)
{

try
{

await _next(context);
}
catch (UnauthorizedAccessException e)
{

await HandleExceptionAsync(
context,
e.Message,
HttpStatusCode.Unauthorized

);
}
catch (UnprocessableDataException e)
{

await HandleExceptionAsync(
context,
e.Message,
HttpStatusCode.UnprocessableEntity

);
}

// More catch blocks

catch (Exception)
{

await HandleExceptionAsync(
context,
"Internal Server Error",
HttpStatusCode.InternalServerError

);
}

}

4.1.11 Generated API Documentation
The ASP.NET framework offers documentation generation. We used Swagger2 by using another
NuGet package Swashbuckle3. In Startup.cs, we set up the configuration of this documentation
generation using builder.Services.AddSwaggerGen().

After starting up the application, a page on the URL defined in the configuration is created,
the default URL is <url>/swagger/index.html. This page contains all endpoints the application
exposes and also allows us to send HTTP requests to these endpoints via this page, mainly to
test the functionality.

2https://swagger.io/
3https://github.com/domaindrivendev/Swashbuckle.AspNetCore

https://swagger.io/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore

Front-end 29

4.2 Front-end
The front-end application is implemented in TypeScript using the Vue.js framework as well as
HTML and CSS. To simplify the development, many libraries were used and they are discussed
further in this section. To design the user interface, Vuetify [15] is used. Vuetify is based on
Material Design4 and offers many pre-made icons, components, and templates which simplify
the development of the front-end application.

4.2.1 State Management
For state management, we used Vuex. “Vuex is a state management pattern + library for Vue.js
applications. It serves as a centralized store for all the components in an application, with rules
ensuring that the state can only be mutated in a predictable fashion.”[16]. Vuex has a state store
which holds all data that are needed to be stored. To access these data from the store, getters
are used to keep the same output throughout the application. These getters can be used in
Vue components which render the page’s content. To modify data in the store, mutations are
used, same as getters – to preserve the same behaviour throughout the application. The Vuex’s
functionality can be seen in the Figure 4.1.

4.2.2 Communication With Back-end
To communicate with the back-end, the back-end’s API is used. Vuex provides actions.ts file,
where all API HTTP requests are implemented using JavaScript’s fetch5. In these actions, data
are loaded and then using mutations, committed to the store.

Figure 4.1 State management Vuex [16]

4https://m3.material.io
5https://www.w3schools.com/jsref/api_fetch.asp

https://m3.material.io
https://www.w3schools.com/jsref/api_fetch.asp

30 Implementation

4.2.3 Error Handling
In the web application, many errors can occur. Errors are dispatched via Vuex’s actions.ts
function setError. This function sets store’s property error to a desired error text. By default,
the property is empty and no error is being shown. Once the error is set to any text, pop-up
appears. This error is set to be visible for 3 seconds and can be closed by user with close button.

Errors are usually dispatched when a HTTP request to the API fails, for example, the user is
no longer authenticated or if there has been a problem with processing the request. The setError
can be seen in the following Code listing 11.

Code listing 11 Dispatching an error in actions.ts

async setError(context: any, payload: any) {
store.commit('setError', {error: payload.error});
setTimeout(() => {

store.commit('unsetError');
}, 3000)

},

4.2.4 Authentication
Authentication is done via simple forms. After opening the web application, the user is required
to log in to access other parts of the application. To log out, the user menu is located in the top
right corner where a logout button is shown.

All user data are saved in Vuex’s store. The store contains information about the user and
also has a property error which was discussed in Section 4.2.3 (Error Handling). These data
stored in the Vuex are shown in the following Code listing 12.

Code listing 12 Authentication data stored in Vuex

export interface State {
email: string|null,
token: string|null,
error: string|null

}

To make sure that the user logs out after expiration time, a timer is used. Once the user logs
in or sends a request, the timer is reset.

To keep the user logged in if he leaves the page and then comes back within the expiration
time, Local Storage6 is used. Once the user opens the application, the code to check if the data
in the Local Storage are still valid is executed as can be seen in the Code listing 13. If these data
are still valid, the user is then automatically authenticated.

6https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Front-end 31

The saved data to Local Storage are:

email – User’s email that is set in login

token – User’s token that is set in login.

tokenExpiration – Timestamp of date time when the validity of the token ends. With every
new HTTP request, the timestamp of the date time is extended by the expirationTtl.

expirationTtl – Timestamp of the duration of the token’s validity that is being reset with
every new HTTP request.

Code listing 13 Auto login function in actions.ts

async autoLogin(context: any) {
const email = localStorage.getItem('email');
const token = localStorage.getItem('token');
const tokenExpiration = localStorage.getItem('tokenExpiration');
const expirationTtl = localStorage.getItem('expirationTtl');

let expiresIn: number = 0;

if (tokenExpiration) {
expiresIn = +tokenExpiration - new Date().getTime();

}

if (expiresIn < 0 || expirationTtl === null) {
await store.dispatch('logout');
return;

}

await store.dispatch('resetTimer', {
expiresIn: parseInt(expirationTtl)

});

if (email && token) {
context.commit('setUser', {

email: email,
token: token

})
}

}

32 Implementation

4.2.5 Routing
For routing, we used Vue Router. It allows us to split the content into different views. For each
route, a view is inserted that contains all page’s data. [17]

Code listing 14 Vue routes

const routes = [
{

path: '/',
name: 'Home',
component: () => Home,
meta: { requiresUnauth: true }

},
{

path: '/requests',
name: 'TaskList',
component: () => TaskList,
meta: { requiresAuth: true },
props: false

},
{

path: '/requests/:id',
name: 'TaskDetail',
component: () => TaskDetail,
meta: { requiresAuth: true },
props: true

}
]

To prevent unauthorized access, a guard is used. This guard is executed with every route
redirect and it checks if a user is authenticated and if the target route requires authenticated user.
The authentication for each route can be seen on the Code listing 14 with a flag requiresAuth.
How such a guard is implemented is shown in the following Code listing 15.

Code listing 15 Authentication guard

router.beforeEach((
to: RouteLocationNormalized,
from: RouteLocationNormalized,
next: NavigationGuardNext

) => {
if (to.meta.requiresAuth && !store.getters.isAuthenticated) {

next({ name: 'Home' });
} else if (to.meta.requiresUnauth && store.getters.isAuthenticated) {

next({ name: 'TaskList' });
} else {

next();
}

})

Front-end 33

4.2.6 Views
The web application consists of 3 views – Home, TaskList and TaskDetail. Each view contains 3
blocks – <script setup lang="ts"></script> for TypeScript code, <template></template>
for Vue template from which an HTML is generated and finally <style lang="sass"></style>
for CSS styling.

4.2.7 Dialogs
For pop-up boxes, we used dialogs. These dialogs are activated in views and are used for forms
to send data. They are used in login and creating new requests.

4.2.8 Light and Dark Mode Toggle
We implemented switching between light and dark modes with a simple icon in the navigation
bar. This is achieved by Vuetify’s option to set default colors in vuetify.ts. These options then
load data from the vuetify.ts and set colors from it. The colors used in this web application
and the setup can be seen in the following Code listing 16.

Code listing 16 Light and dark mode color setup

export default createVuetify({
theme: {

defaultTheme: 'dark',
themes: {

light: {
colors: {

surface: '#cccccc',
primary: '#dadada',
background: '#dadada',
secondary_background: '#e8e8e8',
bar: '#e8e8e8',
text: '#000000',
button: '#3F9E4A',
error: '#cc0000'

},
},
dark: {

colors: {
surface: '#1e1e1e',
primary: '#1e1e1e',
background: '#000000',
secondary_background: '#424242',
bar: '#212121',
text: '#FFFFFF',
button: '#3F9E4A',
error: '#cc0000'

}
}

},
},

})

34 Implementation

4.2.9 Responsive Design
To achieve responsiveness between desktop and mobile environments, we used Vue’s included
function useDisplay().mobile.value which returns a boolean whether the used device is mobile
or not. With this information, we then change the layout of the application in the views.
The responsiveness can be seen in the next Section 4.2.10.

Front-end 35

4.2.10 Screenshots of the Implemented Web Application

This section contains screenshots of the implemented prototype web application. Desktop version
is shown in Figures 4.2 and 4.3. The mobile version is shown in Figure 4.4. For both desktop
and mobile version, dark and light mode is shown.

Figure 4.2 A list of requests on desktop (dark mode)

Figure 4.3 Detail of request on desktop (light mode)

36 Implementation

Figure 4.4 A list of requests on mobile device on the left (light mode), detail of request on mobile
device on the right (dark mode)

Chapter 5

Testing

This chapter is devoted to the testing of implemented prototype web application. First, auto-
mated testing is described. It involves unit testing and functional testing. Then this chapter is
dedicated to user testing and the results of such testing.

5.1 Automated Testing
Automated testing provides developers to test an application without manual work. Automated
testing can test applications as a whole or it can test parts of code, for example, classes or single
methods. We did unit testing to test commands and their handlers and finally functional testing
to test endpoints.

5.1.1 Unit Testing
Unit testing is used to test units of code – one class at a time. Since we use the mediator design
pattern, it allows us to test each handler.

For unit tests, we used the open-source xUnit 1 library from NuGet packages. It allows us to
set up tests for each handler in different files. Each method that is supposed to be run during
unit testing needs to be labelled with the [Fact] annotation. The xUnit library then notices
this method and during unit testing, the method is executed.

To test handlers correctly, we need to use mocking. Mocking provides the developer with an
opportunity to mock other classes – the classes implementing the main logic (workflow/behaviour)
typically depend on other classes, for example, classes that provide data from some persistent
store. However, our goal is to test the logic, and therefore mocking the supporting classes is
useful. For mocking we used another library from NuGet packages called Moq 2.

1https://xunit.net
2https://github.com/moq/moq4

37

https://xunit.net
https://github.com/moq/moq4

38 Testing

5.1.1.1 Handler Unit Test Example
In this section, a unit test example for CreateTaskItemCommandHandler is shown. At first,
a mock of IProjectManagemenetService is needed to set up methods that are called in this
handler. This handler calls CreateTaskAsync method, so it needs to be set up with expected
data that are going to be returned. Then the handler object can be created. This is shown in
the following Code listing 17.

Code listing 17 Mock of IProjectManagementService with method setup

var projectManagementService = new Mock<IProjectManagementService>();

projectManagementService.Setup(x =>
x.CreateTaskAsync(It.IsAny<TaskItem>())).ReturnsAsync
(

new TaskItem
(

"1",
"Test name",
"Description lorem ipsum.",
TaskStateEnum.New,
null,
new List<CommentItem>()

)
);

var createTaskItemCommandHandler =
new CreateTaskItemCommandHandler(projectManagementService.Object);

After that, the command is created and sent to the handler, so the handler then handles this
command and uses the mocked method as can be seen in the following Code listing 18.

Code listing 18 Calling createTaskItemCommandHandler with command

var command = new CreateTaskItemCommand(
name: "Test name",
description: "Description lorem ipsum."

);

var task = await createTaskItemCommandHandler.Handle(
command, new CancellationToken()

);

Automated Testing 39

The task variable contains a newly created task. Now the test checks if the data cor-
respond with the provided data using assertions. Moq also provides the Verify method to
verify what happened in the mocked method. In the following Code listing 19, we verify that
the CreateTaskAsync has been only called once with provided data from the command.

Code listing 19 Verification of data and mocked method

Assert.Equal(command.Description, task.Description);
Assert.Equal(command.Name, task.Name);

projectManagementService.Verify(x =>
x.CreateTaskAsync(It.Is<TaskItem>(taskItem =>

taskItem.Description == command.Description &&
taskItem.Name == command.Name)

), Times.Once);
projectManagementService.VerifyNoOtherCalls();

The testing process of other handlers is similar to this. Every time the tests check that
mocked methods have been called expected times and that the handler returns expected data.

5.1.2 Functional Testing
Functional testing is used for testing the complex functionality of the application. It does not test
parts of code but individual endpoints sequentially. Since the web application requires a user to
log in via e-mail and then pass the one-time code from the e-mail to the application, we created
a testing user with a predefined token directly into the application’s cache. This user is created
only for testing and only if the testing user is set up in the configuration file.

We used Postman3 for this API testing of endpoints. Postman offers a free plan and it allows
users to send HTTP requests, make collections of HTTP requests and test each HTTP request
individually. We created a collection with HTTP requests to test the process of creating a new
request. Since the whole process of a request creation requires operations from the task system,
it would require implementing endpoints for test scenarios, such as the status change, to act as
an employee who changes and responds to created requests. For that reason, the testing collection
only tests creating new requests, listing requests and trying to execute forbidden actions, such
as changing state to Rejected even though the request is in state New.

The testing collection is detailed and explained in the following list of actions that are run
sequentially:

List requests – counts and saves the amount of already existing requests.

Create new request – creates a new request with a randomly generated title and description.
Saves these parameters.

Get lastly created request – checks if the created request contains provided data.

Reopen – tries to change the request’s state to Reopened. It should fail since the request is
in state New and return status code 422.

Reject – tries to change the request’s state to Rejected. It should also fail and return status
code 422.

3https://www.postman.com

https://www.postman.com

40 Testing

Approve – tries to change the request’s state to Rejected. It should fail like in the previous
tests.

Send a message to request – sends a new message to the created requests.

Get created request – checks if the request contains a previously created message.

List requests – counts created requests and compares the number with the previously saved
amount.

Logout – logs the testing user out.

List requests – tries to list requests. Should be denied since the user is no longer authorized.

Get created requests – tries to get created request. Should be also denied.

5.2 User Testing
User testing is a process in which testing subjects test a product, in this case, a web applica-
tion. They have an objective that they need to achieve. The test leader usually provides the
testing subjects instructions which they have to follow but the leader should not intervene with
the subjects.

When deciding how many testing subjects are needed, we decided to follow Nielsen Norman
Group’s article about their usability study [18]. Nielsen mentions in the article: “Elaborate
usability tests are a waste of resources. The best results come from testing no more than 5 users
and running as many small tests as you can afford.”. This statement comes from testing based on
their previous studies. It shows that if we use more than 5 testing subjects, it is very likely that
each additional testing subject is going to report the same things as the first 5 testing subjects.
However, this depends on the scale of the tested projects. If, for example, there are multiple
actions or objectives which the testing subject can achieve, then there should be 5 testing subjects
for each action/objective. In our case, there is only one objective – create a request and get a
solution. For that reason, we decided to perform the user testing with 5 testing subjects.

5.2.1 Testing Process
The testing was done on a local development computer since the application was not publicly
available during the testing phase. Each testing subject has a different experience with comput-
ers, which gave us a view of the web application from different perspectives.

For testing purposes, a fictional organization was created and all the testing subjects were
given the same objective – contact the fictional organization about a problem with their product.
The problem was with the organization’s product – cloud photo storage. They were not able to
upload and access photos on the cloud server.

At first, the testing subject was familiarized with the web application and what is its purpose.
They were given a message from the organization that said they should contact them via a web
application that serves the purpose of a help desk. Then each testing subject was given a sheet
with steps to follow.

1. Login into the application.

2. Create a new request saying you have a problem with the organization’s product – an online
photo editor. You cannot save your photos to the cloud and cannot access them.

3. You forgot to specify the application’s name since the organization offers many of them.
Extend the request with information that you meant a product called PhotoX Cloud.

User Testing 41

4. Wait for the test leader to provide a solution to your problem.

5. You find out that the solution is not helpful, and it still does not work. Let the organization
know that you need another solution to your problem and wait for another solution.

6. You try the provided solution and find out that it works. Let the organization know.

7. Logout.

During the testing, we were acting as an employee of the fictional organization – answering
and changing states of the created task. With each step the testing subject made, notes were
made on whether the testing subject was sure about the process and what to do next or if
the testing subject got stuck on a specific step and hesitated about what to do next. Each
testing subject’s experience with the web application and notes that were taken during testing
are described in the following section.

5.2.2 Testing Results
5.2.2.1 Subject A
The first testing subject is a male, 26, and a web developer himself, so he is familiar with web
applications. He understood the assignment and followed the steps until step number 5 without
any problems. Once he had to reject the proposed solution, he hesitated about which button to
press since there are two buttons: Resolve and Reject. He said there should be an explanation
of what each button means and do. After that, he resolved the issue and logged out without any
further problems.

5.2.2.2 Subject B
The second testing subject is a female, 23, and she is not familiar with IT at all and could be
considered a usual user of computers and websites. She was able to log in and create new requests
without any issues. Once she had to send a message that she forgot to specify the product’s
name as is stated in number 3, she struggled with finding out how to write a message. After
a while, she managed to open the request’s detail and sent the message without a problem. She
then proceeded to resolve the issue and logged out successfully.

5.2.2.3 Subject C
The third testing subject is a female, 52, and she could be considered an occasional user of
computers. She was able to log in and create a new request without a problem. Then she had
to send the message that she forgot to mention the product’s name, and she managed to do so.
The problem occurred once she had to reject the proposed solution since it did not work as is
stated in number 5, she was not sure which button to press, but in the end, she press the Reject
button as she should. After that, she was able to resolve the issue and log out.

5.2.2.4 Subject D
The fourth testing subject is a male, 52, and he could be considered a casual user of computers.
There were no issues with logging in, creating new requests and sending a message. Once he had
to reject the proposed solution in number 5, he assumed that the green Resolve button would
mean to send the message and the red Reject would close the whole request, so he resolved
the issue even though he should have rejected it. This is an issue because the user is not able
to change the state once the request is resolved. We changed the status to Rejected and he then
managed to resolve the issue and log out.

42 Testing

5.2.2.5 Subject E
The fifth and last testing subject is a male, 23, and he could also be considered a casual user of
computers. He was able to log in, create new requests and send messages without any issues.
He struggled with deciding what button to press once he had to reject the proposed solution but
managed to press the correct one – reject. Then he resolved the issue and logged out without
any problems.

5.2.3 Testing Summary
Overall the testing was successful as there were no issues with the process of testing such as
issues with the testing computer, the application or YouTrack.

The testing revealed some deficiencies in the application. Once the request is in the Processed
state, users have to either resolve or reject the provided solution. This seems to be unclear as
they all struggled with which button to press and one of the testing subjects even pressed the
wrong button. Another imperfection of the application is opening request detail – it can be
opened by clicking on the View button but one of the testing subjects could not find this button
and tried to click everywhere but this button.

5.2.3.1 Possible Solutions to the Found Problems
To improve the problem of resolving and rejecting a request, few possible solutions are provided.
One of these solutions would be a confirmation pop-up window that would specify what action is
the user executing and what would happen. Another possible solution would be to remove these
two buttons and replace them with a question “Are you satisfied with the provided solution?”
with possible answers of yes and no. The user would then clearly decide whether the solution is
sufficient or not. Then it would allow the user to write a message and send it.

The problem with viewing request detail could be improved by allowing the users to click
anywhere on the whole request in the list. By clicking on it, it would open the request detail.
That would mean the users would not have to only click on the view button but anywhere on
the request resulting in a better user experience.

Chapter 6

Economic-Managerial Aspects

This chapter is devoted to economic-managerial evaluation. At first, a comparison between
workflows of using and not using this web application is discussed, then SWOT analysis is
detailed, then finally financing the application is evaluated, and finally the possible enhancements
to the application are detailed.

6.1 Workflow Comparison
In this section, we compare two workflows of organization’s employee in communication with
customers. The first is using this implemented prototype web application and the second one is
without using this web application and using e-mail communication with a task system only.

Workflow 1: The steps of an employee to solve a request using this prototype web application:

1. The employee 1 opens a newly created task in the task system.

2. The employee 1 changes task’s state to Open.

3. The employee assigns the task to the employee 2 who can solve this issue.

4. The assigned employee 2 changes task’s state to In Progress.

5. The assigned employee 2 provides a solution.

6. The assigned employee 2 changes task’s state to Processed.

Workflow 2: The steps of an employee to solve a request without using this prototype web
application:

1. New e-mail received, the employee 1 then creates a new task in the task system.

2. The employee 1 sets custom fields with the user’s e-mail.

3. The employee 1 copies text from the e-mail to the task.

4. The employee assigns the task to the employee 2 who can solve this issue.

5. The assigned employee 2 changes task’s state to Open.

6. The assigned employee 2 changes task’s state to In Progress.

43

44 Economic-Managerial Aspects

7. The assigned employee 2 provides a solution.

8. The assigned employee 2 changes task’s state to Processed.

9. The assigned employee 2 assigns the task to the employee 1.

10. The employee 1 reads the solution from employee 2 and writes an e-mail to the customer.

If we assume that the request has been resolved after the provided solution, the workflow 1
is made by 6 steps, while the workflow 2 is made by 10 steps. The main advantage of workflow
1 is that it does not require reassigning the employees and once the assigned employee processes
the task, the customer is aware of it, while in workflow 2, it requires the employee that has been
communicating with the customer to write an e-mail to the customer.

If the customer rejects the provided solution, in workflow 1, steps 4 to 6 are repeated, that is
3 steps. However, in workflow 2, steps 3 to 10 are repeated apart from step 4 since the employee
copies the e-mail to the already existing task. This means that employees in workflow 2 have to
do 7 steps, which is 4 more steps than employees have to do in workflow 1.

6.1.1 Evaluation of Steps to Produce
To evaluate how much time would a organization save using this web application is a complex
task. It depends on organization’s size, meaning how many employees that deal with customers
does the organization have. However, we are able to evaluate the amount of steps the employees
have to do.

We were able to contact UA Support platform [19] and get data from them. The UA support
platform matches described process of communication in 2.2 – they communicate with users via
e-mail and for each request, they create new task in their task system. They provided how many
requests they usually get weekly on their website. As we can see from the data, in the period
from 9th September 2022 to 4th April 2023 almost 2200 requests have been managed. That is
∼ 70 requests weekly.

For this organization, using the web application proposed in this thesis and assuming that
the provided solution was not rejected, they would have to do weekly 70 · 6 steps, that is 420
steps weekly. Without using this web application, they would have to do 70 ∗ 10 steps weekly,
that is 700 steps weekly. This means, without the web application, the employees have to do
additional 280 steps weekly. For each request that gets rejected, the employee would have to do
4 more steps.

All steps that are in workflow 1 are also in workflow 2. That means this web application
automates 4 steps. These steps are: creating a task, copying the content of an e-mail to the task,
assigning back to the original employee, and sending an e-mail back to the customer.

In conclusion, the web application saves employees 4 steps to do with each request that has
not been resolved. For requests that have been rejected once, the web application saves employees
8 steps. With each rejection, it takes 4 more steps without the web application.

6.2 SWOT Analysis
SWOT analysis is a technique that identifies strengths, weaknesses, opportunities and threats.
The strengths and weaknesses describe the web application itself, such as what the application
can and can not do. The opportunities and threats describe more the outside perception of
the application, such as how much can the application be modified for different organizations or
if the web application would be wanted by organizations. [20]

Strengths:

Simplifies process of communication with customers.

Financing the Web Application 45

Could saves time – many of manual processes are automated.

Weaknesses:

Requires a developer to setup the server and the application’s configuration.
Could discourage some people from contacting the organization – it might be too complex
for them.

Opportunities:

The web application is designed to be expandable. It, for example, allows connecting to
other task systems apart other than YouTrack and also allows to read or modify more
fields than the current ones.
Organizations could save money and time with usage of this web application.

Threats:

Organizations might not be interested in using this web application.
Organizations might already have their own applications developed and do not want to
use third-party options.

6.3 Financing the Web Application
To run the web application, hosting server is needed. Organizations could either use their own
server or they can use a cloud hosting from other companies. There are many companies that
offer cloud hosting available.

These cloud hosting services offer different plans depending on the power of the server. To
choose how powerful the server should be depends on the expected traffic – how many customers
would visit this website monthly. If we take for example the traffic from the previous Section 6.1,
where the company receives ∼ 280 requests monthly, a server with at least 2 core CPU and 3 GB
RAM should be sufficient. These servers also have a maximum storage, in this case, storage is
not that important, since the application does not have its own database and uses only caching.
For that reason, any server with at least 10 GB SSD is enough.

We compared offers from different cloud hosting services (Hostinger1, Snackhost2, Upcloud3,
Hetzner4, Vultr5) that would meet previously defined requirements. We outlined the CPU core
count, RAM size, SSD capacity, and monthly fee as can be seen in the following table 6.1.

Cloud hosting service CPU cores RAM size SSD capacity Monthly fee
Hostinger 2 cores 3 GB 200 GB 16.99 €
Snackhost 2 cores 3 GB 10 GB 10.32 €
Upcloud 2 cores 4 GB 80 GB 26.00 €
Hetzner 2 cores 4 GB 40 GB 4.52 €

Vultr 2 cores 4 GB 25 GB 18.30 €

Table 6.1 Cloud hosting services pricing comparison

1https://www.hostinger.com/cloud-hosting
2https://www.snackhost.com/en/pricing-cloud-server/index.html@currency=eur.html
3https://upcloud.com/pricing
4https://www.hetzner.com/cloud
5https://www.vultr.com/pricing

https://www.hostinger.com/cloud-hosting
https://www.snackhost.com/en/pricing-cloud-server/index.html@currency=eur.html
https://upcloud.com/pricing
https://www.hetzner.com/cloud
https://www.vultr.com/pricing

46 Economic-Managerial Aspects

6.4 Future Outlook
There are many possible enhancements to the implemented web application which could improve
the overall user experience.

The web application could ask the user if he wants to extend the session so the application
would not log the user out automatically. This could be done via a simple pop-up window.

Another possible enhancement could be the possibility to send files when creating a new
request or sending a new message. Photos, for example, could be great addition since sometimes
it is easier to explain a problem with a screenshot.

Sending e-mail notification if a state changes or new message shows in request could also be
a great addition. This could be done in the back-end application with a command that runs in
intervals. This command would save the state of the task to a cache and in each interval the
command would compare it to the current state. If there are any changes, the application would
send an e-mail to the assigned user to notify him.

Chapter 7

Summary

This thesis aimed to analyze current processes of organizations’ communication with users, using
either only e-mail or e-mail with existing task systems. Furthermore, to analyze and design a
prototype web application that communicates with existing task systems, shows the status of
requests, and allows sending messages as comments to each task in task systems. After designing
the web application, another aim was the implementation of a prototype web application using
.NET for the YouTrack task system. After the implementation, another goal was to evaluate
the economic-managerial aspects of the implemented application.

At first, an analysis of existing organizations’ processes was done on which the design of
the proposed web application was based to make the process simpler.

The implemented prototype web application was split into two separate applications (back-
end and front-end) for easier maintainability and mainly for wider usage for potential organi-
zations – it allows potentially interested organizations to use only the back-end and implement
their front-end or connect it to an existing one.

The back-end was designed to be implemented in C# using the ASP.NET framework version
6.0. The back-end application can be connected to task system APIs and the application is
exposed via an API to communicate with other applications such as the front-end application.

The front-end application was designed to be implemented in TypeScript using the Vue.js
framework. Before implementation, the user interface design was done using wireframes for each
page that the web application consists of.

The implemented prototype web application allows users to log in using only an e-mail and
afterwards log out. It also allows users to create new requests, list all assigned requests and view
them individually. Each request allows users to send messages and resolve or reject the proposed
solution.

After the design and implementation stage, a testing was done – automatic testing and user
testing. The back-end application was tested using functional and unit tests. To test the web
application as a whole, user testing was done using 5 testing subjects. The testing showed that
the application does not have any major usability issues either in functionality or in user interface.

The economic-managerial analysis showed that the web application can do many processes
instead of an employee and thus saves a lot of steps to do for the employees. We were also able
to evaluate these steps for an organization that has provided their monthly requests on their
website. In addition, a SWOT analysis was done as well as an evaluation of financing the web
application.

In Chapter 1 (Introduction), a list of goals was provided. In the following statements, each
goal is outlined and decided whether the goal was fulfilled.

G1 – The analysis of both processes was accomplished in Chapter 2 (Analysis).

47

48 Summary

G2 – A web application that communicates with task systems was designed as two separate
applications – front-end and back-end. The web application shows the current status and
allows sending messages. This goal was achieved in Chapter 3 (Design).

G3 – Analysis of the process using the proposed web application were fulfilled in Chap-
ter 2 (Analysis).

G4 – Prototype web application for the YouTrack task system was implemented successfully
and described in Chapter 4 (Implementation). The web application is available on GitHub1

(release 1.0.0).

G5 – The economic-managerial aspects of the proposed web application was successfully
evaluated in the Chapter 6 (Economic-managerial Aspects).

The web application has many possible modifications and enhancements that could be im-
plemented to improve user experience. These enhancements were detailed in Section 6.4 (Future
Outlook).

1https://github.com/lukasnymsa/connect-task-system

https://github.com/lukasnymsa/connect-task-system

Bibliography

1. REITSMA, Tim. What Is Task Management Software And How Can It Help You? [online].
[visited on 2023-01-26]. Available from: https://peoplemanagingpeople.com/articles/
what-is-task-management-software.

2. JETBRAINS. YouTrack REST API [online]. JetBrains s.r.o., 2023-02-24 [visited on 2023-
02-26]. Available from: https : / / www . jetbrains . com / help / youtrack / devportal /
youtrack-rest-api.html.

3. JETBRAINS. Issues [online]. 2023-04-28. [visited on 2023-04-29]. Available from: https:
//www.jetbrains.com/help/youtrack/server/Issues.html.

4. JETBRAINS. Issues [online]. [visited on 2023-04-29]. Available from: https://www.jetbrains.
com/youtrack/buy.

5. ASANA. Overview [online]. [visited on 2023-04-29]. Available from: https://developers.
asana.com/docs.

6. ASANA. Pricing [online]. [visited on 2023-04-29]. Available from: https://asana.com/
pricing.

7. LOSHIN, Peter. Help Desk [online]. 2022-03. [visited on 2023-04-29]. Available from: https:
//www.techtarget.com/searchcustomerexperience/definition/help-desk.

8. CHITRASINGLA2001. Functional vs Non Functional Requirements [online]. 2022-12-02.
[visited on 2023-05-01]. Available from: https://www.geeksforgeeks.org/functional-
vs-non-functional-requirements.

9. REFACTORING.GURU. What’s a design pattern? [online]. [visited on 2023-03-26]. Avail-
able from: https://refactoring.guru/design-patterns/what-is-pattern.

10. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES, John. Design Patterns:
Elements of Reusable Object-Oriented Software. 37th ed. Addison-Wesley, 2009. isbn 0-201-
63361-2.

11. HOLMES, Joe. TypeScript vs. JavaScript: 7 Key Differences [online]. 2023-02-04. [visited on
2023-04-29]. Available from: https://www.sanity.io/typescript-guide/typescript-
vs-javascript.

12. JOSHI, Mohit. Angular vs React vs Vue: Core Differences [online]. 2022-12-23. [visited
on 2023-03-24]. Available from: https://www.browserstack.com/guide/angular-vs-
react-vs-vue.

13. STACKOVERFLOW. Web frameworks and technologies [online]. 2023-01-26. [visited on
2023-03-27]. Available from: https://survey.stackoverflow.co/2022/#most-popular-
technologies-webframe-prof.

49

https://peoplemanagingpeople.com/articles/what-is-task-management-software
https://peoplemanagingpeople.com/articles/what-is-task-management-software
https://www.jetbrains.com/help/youtrack/devportal/youtrack-rest-api.html
https://www.jetbrains.com/help/youtrack/devportal/youtrack-rest-api.html
https://www.jetbrains.com/help/youtrack/server/Issues.html
https://www.jetbrains.com/help/youtrack/server/Issues.html
https://www.jetbrains.com/youtrack/buy
https://www.jetbrains.com/youtrack/buy
https://developers.asana.com/docs
https://developers.asana.com/docs
https://asana.com/pricing
https://asana.com/pricing
https://www.techtarget.com/searchcustomerexperience/definition/help-desk
https://www.techtarget.com/searchcustomerexperience/definition/help-desk
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements
https://refactoring.guru/design-patterns/what-is-pattern
https://www.sanity.io/typescript-guide/typescript-vs-javascript
https://www.sanity.io/typescript-guide/typescript-vs-javascript
https://www.browserstack.com/guide/angular-vs-react-vs-vue
https://www.browserstack.com/guide/angular-vs-react-vs-vue
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe-prof

50 Bibliography

14. ANDERSON, Rick; SMITH, Steve. ASP.NET Core Middleware [online]. 2023-05-03. [vis-
ited on 2023-05-03]. Available from: https://learn.microsoft.com/en- us/aspnet/
core/fundamentals/middleware/?view=aspnetcore-6.0.

15. VUETIFY. Vue Component Framework [online]. [visited on 2023-04-26]. Available from:
https://vuetifyjs.com/en/.

16. YOU, Evan. What is Vuex? [online]. 2023-09-03. [visited on 2023-04-26]. Available from:
https://vuex.vuejs.org.

17. YOU, Evan. The official Router for Vue.js [online]. 2022-10-24. [visited on 2023-04-26].
Available from: https://router.vuejs.org/https://router.vuejs.org.

18. NIELSEN, Jakob. Why You Only Need to Test with 5 Users [online]. 2000-03-18. [visited
on 2023-04-28]. Available from: https://www.nngroup.com/articles/why-you-only-
need-to-test-with-5-users.

19. LINKING HELP; AGILAWYER; HOLUBOVÁ ADVOKÁTI; COPS STUDIO. ABOUT
THE PROJECT [online]. 2023-04-04. [visited on 2023-04-26]. Available from: https://
www.ua.support/project-history/.

20. GUARANA. The Necessities of Running a SWOT Analysis for your App Idea [online]. 2019-
08-15. [visited on 2023-04-29]. Available from: https://www.guarana-technologies.com/
app-development/swot-analysis.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-6.0
https://vuetifyjs.com/en/
https://vuex.vuejs.org
https://router.vuejs.org/https://router.vuejs.org
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://www.ua.support/project-history/
https://www.ua.support/project-history/
https://www.guarana-technologies.com/app-development/swot-analysis
https://www.guarana-technologies.com/app-development/swot-analysis

Contents of the Attached Medium

readme.txt brief description of contents of the attached medium
src

impl........................source code of the implemented prototype web application
thesis...................................... source code of the thesis in LATEX format

text
thesis.pdf..text of the thesis in PDF format

51

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Analysis
	Task Systems
	Task Systems API
	YouTrack
	Asana
	Jira

	Common Processes of Communication Between Customers and Organizations
	E-mail Communication Without Task System
	E-mail Communication Using Task System

	Web Application Analysis
	Requirements
	System States
	Analysis of Usage from a User's Point of View
	Analysis of Usage from an Employee's Point of View

	Analysis of Competitors

	Design
	Application Technologies
	Back-end and Front-end Communication
	Back-end
	Application's Design Pattern
	Interface Mechanism for Different Task Systems
	YouTrack Connection
	Task State Mapping
	Configurable Connections and Settings
	Authentication

	Front-end
	Application's Design Pattern

	UI Design
	Welcome View
	List of Requests View
	Request's Detail View

	Implementation
	Back-end
	Directory Tree
	Mediator Pattern
	Commands
	Controllers
	Handlers
	Services
	Configuration Mapping
	State Mapping
	Authentication
	Exceptions
	Generated API Documentation

	Front-end
	State Management
	Communication With Back-end
	Error Handling
	Authentication
	Routing
	Views
	Dialogs
	Light and Dark Mode Toggle
	Responsive Design
	Screenshots of the Implemented Web Application

	Testing
	Automated Testing
	Unit Testing
	Functional Testing

	User Testing
	Testing Process
	Testing Results
	Testing Summary

	Economic-Managerial Aspects
	Workflow Comparison
	Evaluation of Steps to Produce

	SWOT Analysis
	Financing the Web Application
	Future Outlook

	Summary
	Contents of the Attached Medium

