
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Telecommunications Engineering

Monitoring System Based on Telemetry in
Network CESNET3

Bc. Ladislav Loub

Supervisor: Ing. Jan Kubr, Ph.D.
June 2023

ii

Acknowledgements
I would like to thank my supervisor Ing.
Jan Kubr, Ph.D., for all the help and
valuable advice while writing this thesis.
Secondly, I would like to thank the CES-
NET company for inciting this topic and
allowing me to use all the necessary re-
sources needed for this thesis. Enormous
thanks belong to my family for supporting
me throughout my studies and helping me
with everything that was in their capac-
ity. Namely my mother, Jana Loubová,
my father, Ing. Ladislav Loub, and my
brother Mgr. Tomáš Masař, Ph.D.. The
last thanks belong to my girlfriend Tereza
for her patience and support during writ-
ing this thesis.

Declaration
I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the
Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I
hereby grant a nonexclusive authorization
(license) to utilize this thesis, including
any and all computer programs incorpo-
rated therein or attached thereto and all
corresponding documentation (hereinafter
collectively referred to as the “Work”), to
any and all persons that wish to utilize the
Work. Such persons are entitled to use
the Work in any way (including for-profit
purposes) that does not detract from its
value. This authorization is not limited
in terms of time, location and quantity.
However, all persons that makes use of
the above license shall be obliged to grant
a license at least in the same scope as
defined above with respect to each and
every work that is created (wholly or in
part) based on the Work, by modifying
the Work, by combining the Work with
another work, by including the Work in
a collection of works or by adapting the
Work (including translation), and at the
same time make available the source code
of such work at least in a way and scope
that are comparable to the way and scope
in which the source code of the Work is
made available.

iii

Abstract
The thesis focuses on designing and de-
ploying a monitoring system based on
Model-Driven Telemetry technology. This
technology is relatively recent. The RFC
9232, partly describing it, was released in
may 2022. The thesis is the continuation
of my bachelor thesis, in which I have re-
searched Model-Driven Telemetry and its
possible usage in the future.

The goal of the system is to monitor op-
erational state data from network devices
managed by CESNET. Primary informa-
tion is data concerning the condition of
the devices and statistics about their net-
work interfaces.

The system consists of several parts
to be able to fulfill requirements. The
parts are: collectors for assembling data,
a time-series database for storing them, vi-
sualization tools for displaying the data in
a user-friendly way and, finally, manage-
ment of the whole system. The colletors
are deployed Telegraf container instances
in Docker, InfluxDB is used as a time-
series database, Grafana and Nagios are
used as visualization tools, and Ansible is
used for the management of all the sys-
tems.

The result of this work is a system that
serves as monitoring of the CESNET net-
work. The thesis could serve as inspira-
tion for other service providers that are
considering deploying similar monitoring
system.

Keywords: Model-Driven Telemetry,
Streaming Telemetry, monitoring system,
YANG, SNMP

Supervisor: Ing. Jan Kubr, Ph.D.
Department of Computer Graphics and
Interaction,
Resslova 307/9,
12000 Praha 2

Abstrakt
Cílem této práce je návrh a nasazení mo-
nitorovacího systému založeného na tech-
nolgii Model-Driven telemetrie. Tato tech-
nologie je poměrně nová, kdy RFC 9232,
které ji částečně popisuje bylo vydáno te-
prve v květnu 2022. Tato prace navazuje
na moji bakalářskou práci, ve které jsem
zkoumal telemetrii a její možné nasazení
do budoucna.

Navržený monitorovací systém bude
mít za úkol sběr stavových dat ze síťo-
vých zažízení provozovaných sdružením
CESNET. Sbírané informace budou pri-
márně ohledně stavu zařízení samotných
a jejích síťových rozhraní.

Systém se sestává z několika částí. Tyto
části jsou kolektory pro sběr dat, časová
databáze pro uložení dat, visualizační ná-
stroje pro zobrazení statistik v přívětivé
formě a správa celého systému. Kolektory
jsou nasazeny pomocí softwaru Telegraf
jako kontejnery v systému Docker. Ča-
sová databáze je použita InfluxDB. Pro
vizualizaci jsou použity nástroje Nagios a
Grafana. Celá správa systému je udělána
pomocí nástoje Ansible.

Výsledkem práce je monitorovací sys-
tém, který slouží pro dohled sítě ve sdru-
žení CESNET. Práce může sloužit jako
inspirace pro ostatní poskytovatele síťo-
vých služeb.

Klíčová slova: Model-Driven telemetrie,
Streamovaná telemetrie, monitorovací
systém, YANG, SNMP

Překlad názvu: Monitorovací systém
založený na telemetrii v síti CESNET3

iv

Contents
1 Introduction 1
2 Analysis 3
2.1 Current monitoring technologies . 3
2.2 Network devices 4
2.3 Telemetry term explanation 5
2.4 Automation tools 9
2.5 Network documentation by

Netbox . 10
2.6 Network management by

NETCONF . 11
2.7 gRPC Network Management

Interface . 13
2.8 YANG models 13
2.9 Virtualization tools 15
2.10 Database and collector selection 16
2.11 Visualization tools 17
2.12 Data processing 18
2.13 Monitoring systems 19
3 Design 21
3.1 System requirements 21
3.2 Current monitoring systems in

CESNET . 22
3.3 System design 23

3.3.1 Collector design. 24
3.3.2 Database design 25
3.3.3 Visualization design 26
3.3.4 Management design 26

4 Implementation 27
4.1 Configuration of network devices 27
4.2 Collector setup 32
4.3 Ansible management setup 35
4.4 Database setup 38
4.5 Visualization setup 39
4.6 Data rewriting 41

4.6.1 Python scripts 43
4.6.2 Telegraf 46

5 Testing 49
5.1 Fulfilling system requirements . . 49

5.1.1 Collector selection. 50
5.1.2 Data retention 52
5.1.3 Security 55
5.1.4 Logging 56
5.1.5 Resiliency to failure 56

5.2 Statistics about collected data . . 57
5.3 Visualization testing 58

6 Conclusion 59
A Bibliography 61
B Glossary 65
C Attachments 67
D Project Specification 69

v

Figures
2.1 CESNET2 topology 6
2.2 DWDM and IP/MPLS layers 6
2.3 OSI Model of Telemetry 8
2.4 The Model-Driven Manageability

Stack . 8
2.5 View of the Netbox system. 10
2.6 NETCONF protocol layers 12
2.7 NETCONF Client-Server

connection . 12
2.8 Architecture of Cisco lab 20

3.1 Basic overview of Model-Driven
Telemetry monitoring 23

3.2 Production and development parts
of system . 24

3.3 Visualization of collectors 25

4.1 Visualization certificate 40
4.2 Interface dashboard in Grafana . 42
4.3 Device dashboard in Grafana . . . 42

5.1 IOS XE - show gnxi state detail 51
5.2 IOS XR - show telemetry

model-driven destination MDTC1 . 52
5.3 Netbox - router R1 53
5.4 IOS XE - show telemetry ietf

subscription 101 detail 54
5.5 InfluxDB check sources 54
5.6 InfluxDB data retention 55
5.7 Firewall on MDTC1 56
5.8 Log folder on CESNET syslog

server . 56
5.9 tcpdump on MDTC1 57
5.10 tcpdump on MDTC2 57
5.11 tcpdump on HYDRA 58
5.12 Router R1 in Nagios 58

Tables
4.1 Used YANG models IOS XR . . . 29
4.2 Possible expansion of YANG

models IOS XR. 30
4.3 Used YANG models IOS XE . . . 31

vi

Chapter 1
Introduction

This thesis directly follows my bachelor thesis, "Network traffic monitoring
using Model-Driven Telemetry" [16]. I have focused on a new way of monitor-
ing network devices named Model-Driven Telemetry. The main reason for
researching this technology was the problem that started to appear during
the bachelor thesis. All currently used monitoring systems in CESNET are
SNMP based and reaching their limits. SNMP stands for Simple Network
Management Protocol. It is a protocol used to manage and monitor devices
on a network. SNMP is widely used in network management systems to
collect information about network devices such as routers, switches, servers,
and printers [22]. One system would need a significant architecture overhaul
to suffice current trends. The other is paid software, which would require
considerable investment. In that order, it was decided to explore options of
Model-Driven Telemetry. Based on the results, the decision was made to
continue on this path and deploy a functional monitoring system.

Since finishing my bachelor’s thesis, some things regarding Model-Driven
Telemetry technology have changed. When I started researching it, it was
only in the early draft [23], but since then, it has matured into full RFC 9232
[24]. This RFC is not for any particular technological solution but attempts
to specify telemetry and all related terms and technologies. In later chapters,
I will review the changes this RFC brings, where the term telemetry will be
explained.

My bachelor thesis aimed to research and deploy a Model-Driven Teleme-
try collector. This collector was designed for testing purposes but not for
production monitoring. Deployment of the collector was managed by the
bash script, which installed all needed parts. Since the goal of the thesis
was not any production system, the script constantly deployed an entirely
new monitoring stack. The collector’s purpose was to measure the differences
between SNMP and Model-Driven Telemetry.

The testing offered valuable performance data on differences between SNMP
and Model-Driven Telemetry. Based on the results, it was decided to continue
with the MDT1 path. Nevertheless, as with most new systems, it must be
backward compatible. The restriction then must be included in the system’s
design. The final system must be able to collect data using SNMP and

1MDT (Model-Driven Telemetry)

1

1. Introduction
simultaneously using MDT.

In the testing setup, the collector consisted of four parts. The data collection
part was handled by Telegraf and Pipeline tools. This data was then saved
into the InfluxDB database. The last part was the visualization of collected
data. The Grafana software was used for this purpose. All tools were available
as open-source software, so no purchases was necessary. This thesis’ primary
analysis task will be to evaluate the tools used in the testing setup for the
new monitoring system. The biggest challenge will probably be the scalability
of the collector. The collectors must be able to handle traffic from hundreds
to thousands of devices in the network. Also, the monitoring system must be
easy to deploy and automated as much as possible.

On the previous collector, I measured the impacts of SNMP and Model-
Driven Telemetry in the old network CESNET2 with Cisco CRS platform
devices. Even though these devices had relatively low RAM2, implementing
a monitoring system based on Model-Driven Telemetry was decided to be
beneficial. Recently the old CESNET network is being upgraded to newer
devices. These new devices have abundant memory, so MDT usage makes
more sense. This technology is becoming a preferred way and gets much more
updates on the manufacturer side.

The new CESNET3 network currently consists inclusively of Cisco devices.
Regardless, the collector must be able to handle data from multiple vendors.
To achieve this requirement, the data collecting part of the system will
receive data using SNMP and Model-Driven Telemetry. Since these two
technologies are quite different, data normalization will be needed. This task
can be achieved by writing a script or finding another possible tool. Incoming
data using SNMP and MDT are different in structure. The system must
have means to unify similar data structures based on the administrator’s
description.

2One of the disadvantages of MDT compared to SNMP is its higher usage of RAM.

2

Chapter 2
Analysis

2.1 Current monitoring technologies

Network monitoring is one of the essential parts of keeping the network opera-
tional and providing services for customers with adequate quality. Throughout
time there were many methods and technologies used for monitoring.

One of the well-known technology today is SNMP. This protocol went
through three major versions, which filled in missing features or fixed its issues.
But as network management moves more and more toward programmability,
the SNMP can no longer provide adequate options.

The new way of monitoring is called Model-Driven Telemetry or Streaming
Telemetry. Precise details and explanations of these terms will be in the next
chapter. The situation progressed so far that some monitored data are no
longer available using SNMP.

Another technology that monitoring systems can use is CLI3. The system
can initiate an SSH 4 session to the network device and execute basic show
commands. This way is very inconvenient for any machine processing as
data received by this method can have various forms and formats. The
CLI access is still used mainly by network engineers, but even this access
is supposed to be very rare, and the network should be managed from the
central management system rather than from the command line.

Next, technology also considered part of device monitoring can be syslog.
The primary use of syslog is sending device logs, but in terms of state
monitoring, it lacks in various ways. Syslog messages are limited in terms
of the information they can convey. While syslog messages can contain
basic information such as severity level and timestamp, they do not provide
detailed context about the event that triggered the message. The messages
are typically sent in a fixed format without any deeper structure, which
limits their usefulness for monitoring and analysis. The last disadvantage

3Command Line Interface (CLI) is a method of interacting with a network device using
text commands typed into a command line interface instead of a graphical user interface
(GUI).

4Secure Shell (SSH) is a network protocol used for secure remote access to devices over
unsecured networks. SSH provides a secure, encrypted communication channel between
two devices.

3

2. Analysis
is the scalability of syslog. As the number of network devices and syslog
messages increases, it can become challenging to manage and analyze the
data generated by syslog. This can result in slower response times, increased
storage requirements, and other performance issues.

The current trend is to make the network manageable as much as possible
programmatically. The way to achieve this is by using the YANG models.
It’s essential to explore these new technologies as more vendors implement
them. Also, we can observe more common ground between vendors as most of
them use at least OpenConfig YANG models. The more significant vendors,
such as Cisco, Juniper, Huawei, Arista, and Alcatel-Lucent, all have YANG
model usage options.

2.2 Network devices

The essential part is the identification of network devices from which we are
going to collect data. As I’ve already mentioned, all the devices are network
devices, such as routers and switches. The collection of data from servers is
not the goal of this system. Other monitoring systems are in place in CESNET
for this purpose. The majority of machines are from Cisco. Although there is
mostly only one vendor, devices still need to be differentiated into groups.

I’m going to use several groups. The CESNET3, CESNET2, DWDM and
Other. The goal of this thesis is the monitoring of devices in group CESNET3,
but I will be designing this system to be able to cover the rest of the groups
as well.

The CESNET3 network devices group consists only of Cisco devices. This
group is also considered as the IP/MPLS layer of the network 5. All devices
in this group are new and are currently being installed as the next generation
of the CESNET network for customers. The core routers in this group are
Cisco 8000, ASR9000, and NCS540 series. These devices are running the
IOS-XR operating system with the current version 7.5.2. The second part
of the network is aggregation switches, which are Cisco Catalyst 9000 series.
These are running the IOS-XE system with version 17.06.03. The last part
of the network is OOB 6 routers that are ISR1100 series, also running the
IOS-XE operating system at version 17.06.03. The OOB routers are used to
manage the CESNET3 network. The whole CESNET3 network is designed
on private IP addresses, limiting access to the devices.

The CESNET2 group could be considered as older devices that are
currently in use. It is also part of the IP/MPLS layer, and its design can be
seen in figure 2.1. These devices are being replaced with new ones. Some of the

5Internet Protocol Multi-Protocol Label Switching (IP/MPLS) is a routing system that
enables fast data switching from one node to the next based on labels. Commonly, the
packets in IP networks need to consider the destination addresses to control the function of
the routers, which takes time. IP/MPLS finds an alternative to this process by switching
packets based on the label [6].

6Out-of-Band (OOB) refers to a separate management network that is used to control
and monitor devices such as routers, switches, and servers.

4

.............................. 2.3. Telemetry term explanation

old devices probably aren’t going to be replaced but will be incorporated into
the new network. These devices are, in some cases, limited in functionality
regarding connection with this newly designed monitoring system. Some of
them are not Model-Driven Telemetry capable, and SNMP remains the only
option for monitoring.

Devices in this group are routers Cisco CRS series with IOS-XR 6.6.3
version. I tested Model-Driven Telemetry on some of these devices during
my bachelor thesis [16]. Other devices are Alcatel-Lucent routers Nokia 7750
SR with TiMOS-C-16 operating system. These devices have only the SNMP
option and are not MDT-capable. However, it doesn’t matter, as all Cisco
CRS and Nokia 7750 routers are being replaced. The devices in this network,
which have some level of probability of staying active, are various portions
of Cisco Catalyst switches. Many of these run only on the IOS operating
system and are only SNMP capable.

The next group is DWDM 7. The DWDM group consists of devices used
in the optical part of the network. To better understand this layer, figure
2.2 visualize both IP/MPLS and DWDM layers. The lowest layer of figure
represents physical layer. In case our case this layer is DWDM system. Above
this system is then built IP/MPLS layer on figure represented by "Logical
Layer (data network)". This layer represents routers and switches in network.
The top layer of figure is users layer that represents services provided by
whole network to customers.

The DWDM layer serves as an underlay and, in ISO/OSI 8 terms, as the
network’s physical layer. This part of the network is also relatively new
in CESNET. It consists of Cisco NCS 2000 devices. Unfortunately, these
devices don’t support Model-Driven Telemetry yet. But according to Cisco
presentations, this feature is being considered and probably will be released
in the future. As of now, these devices support SNMP.

The last group is named Other. The probability of these devices being
monitored by this system is relatively low. It consists of various laboratory
switches, WiFi controllers, access points, etc. The monitoring capabilities of
these devices can vary and will be considered only with the request to be
monitored. The fallback solution is considered SNMP.

2.3 Telemetry term explanation

Since May 2022, RFC 9232 Network Telemetry Framework has been available,
which gives more information about used terms. The purpose of this RFC
is not any technological implementation but an overview of different parts
that can be considered Network Telemetry. In recent times it’s possible

7Dense Wavelength Division Multiplexing (DWDM) is a technology used in optical
fiber networks to increase the network’s capacity by allowing multiple data signals to be
transmitted simultaneously over a single fiber optic cable [19].

8ISO/OSI, also known as the OSI model, is a conceptual framework for understanding
computer network communication protocols. It stands for Open Systems Interconnection
reference model.

5

2. Analysis

Figure 2.1: CESNET2 topology (Source: [1])

Figure 2.2: DWDM and IP/MPLS layers (Source: [4])

to see many uses of the term telemetry, which are entirely valid uses. In
section 2.1. Telemetry Data Coverage is specified: "Any information that
can be extracted from networks (including the data plane, control plane, and

6

.............................. 2.3. Telemetry term explanation

management plane) and used to gain visibility or as a basis for actions is
considered telemetry data." [24]. According to this definition, almost all data
pulled from a device can be considered as Network Telemetry data.

This thesis result won’t be using technologies such as Flow Telemetry [27]
or Sflow Telemetry [20], which focuses on exporting flow data from network
devices 9. Another not used term is In-band Telemetry [28] as that also
revolves around data flow and not state monitoring of devices.

On the other hand, valid terms used in this context are Model-Driven
Telemetry, Streaming Telemetry, and Network Telemetry. Model-Driven
Telemetry is based on YANG models. Streaming Telemetry describes when
devices stream data to the collector without the need of a received event.
Another term is Event-Driven Telemetry which is a subset of Streaming
Telemetry. The difference is that in an Event-Driven scenario sends data
based on events in the network, such as when one interface changes state.
Streaming Telemetry transmits this data continuously 10. Next is Open
Telemetry [9]. This is almost synonymous with Model-Driven Telemetry, only
that YANG models are developed by OpenConfig.

The context in which the term telemetry is used in this thesis is simply
about collecting state data from network devices (such as switches and
routers) using YANG data models. The term Model-Driven Telemetry (MDT)
is then a type of telemetry that uses a data model to define the structure
of the data that is collected and transmitted from a network device. The
primary goal of Model-Driven Telemetry is to replace the SNMP. The reason
for this goal is to make state monitoring of devices more automated and
simplified.

Visualization of the telemetry stack can be seen in pictures 2.3 and 2.4.
The first one provides a basic overview of layers of Telemetry. Raw data are
modeled on the device into YANG data format. Then are exported using
transport protocol to the collector based on the device’s configuration.

The second figure visualizes the protocols used. This figure needs expla-
nation since it visualizes two parts in Transport, Encoding, and Protocol
sections. The NETCONF protocol, XML encoding11, SSH, and TCP trans-
port are part of the Model-Driven Configuration rather than Model-Driven
Telemetry. It’s the element of Closed-loop automation named by Cisco. The
main principle is that Model-Driven Configuration should be able to change
device configuration based on data received by Model-Driven Telemetry, and
vice-versa MDT should be configured using Model-Driven Configuration.

9These technologies are also commonly referred to as Netflow data [18].
10Further explanation of differences between Streaming Telemetry and Event-Driven

Telemetry is explained in my bachelor thesis [16, Sec. 2.3].
11Extensible Markup Language (XML) is a markup language and file format for storing,

transmitting, and reconstructing arbitrary data. It defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable [30].

7

2. Analysis

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

OSI Model of Telemetry

Data store

Data model

Producer

Exporter

Collector

Native (raw) data inside a router’s
database

Raw data mapped to a model
(YANG native, OpenConfig, etc)

Sending requested data in model format
to the “Exporter” at defined intervals

Encoding and delivering data to the
collector(s) destination(s)

Information collection for processing
(e.g., data monitoring, automation, analytics)

DataLayer

Te
le

m
et

ry
 e

nd
-t

o-
en

d

Figure 2.3: OSI Model of Telemetry (Source: [10])

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

The Model-Driven Manageability Stack

Controller
Orchestrator

Network Device

Model-Driven
Configuration

Model-Driven
Telemetry

Closed-loop
automation Encoding

Protocol

Models

SDK

Apps

XML JSON GPB

NETCONF gRPC

Model-Driven SDKs
YANG Development Kit (YDK)

YANG Models
(native, open)

App App App

SSH HTTPTransport TCP

Figure 2.4: The Model-Driven Manageability Stack (Source: [10])

8

...................................2.4. Automation tools

2.4 Automation tools

One of the vital requirements of monitoring system management will be its
automation options. The system will handle a large number of devices, and
the option to configure everything by hand won’t be a possibility. Also, it’s
much easier to share the management of the system between administrators
if it’s well-automated and documented. For that reason, an appropriate
automation tool must be chosen.

The job of the automation tool will be deploying and configuring Model-
Driven Telemetry data collectors on servers. The second task will be the
configuration of network devices. Data needed for the automation tool to
work will be fetched from the network documentation system. Three tools
were considered for this task: Puppet, Terraform, and Ansible.

The first option, Puppet, is an open-source tool that uses declarative
language to define the desired state of infrastructure resources and applies
changes to achieve that state. This means that you determine how you want
your infrastructure to be configured, and Puppet will handle the changes
required to make it happen. Puppet has an agent-based architecture, which
means that a lightweight agent is installed on each node being managed,
allowing it to be easily handled at scale. Some of the disadvantages could
be its steep learning curve, as it may require a significant investment of time
and resources to become proficient in using the tool effectively [13] [21].

The second option is Terraform. It is also an orchestration and provisioning
tool that is open-source. With Terraform, it is possible to define infrastruc-
ture resources in code, create version-controlled configurations, and manage
infrastructure as if it were a software application. The best use of Terraform
is for provisioning software in the cloud, which is different from this designed
monitoring system [15][14]. Detailed functioning of Teraform can be found
on their website [29].

The last option is Ansible, an open-source automation tool that enables
users to automate IT infrastructure tasks. It is agentless and manages nodes
with SSH protocol. Complete documentation and more details are available
here [11]. Ansible is easy to set up and use, with a low learning curve, making
it an ideal tool for small and medium-sized organizations without a dedicated
IT infrastructure team.

The decisive factor in choosing an automation tool was its simplicity to use.
In that regard, the Ansible seems to be the tool for this purpose. Ansible
is also already used for the deployment of some parts of the configuration
of network devices in the CESNET3 network. It would be much easier to
use the same tool for compatibility later. Also, many system administrators
in CESNET use Ansible as an automation tool, which means a much larger
knowledge base and possible experience sharing.

9

2. Analysis
2.5 Network documentation by Netbox

The best option for the automation tool was decided Ansible system. Since
this system is primarily used by CLI, the GUI for managing this tool would
be useful. For this purpose, it’s best to use the already existing system,
currently deployed and under development in CESNET.

Netbox is a network documentation system that has complete documenta-
tion of all network devices from the CESNET3 network 12. It’s also being
extended to hold all network devices which CESNET manages as a Service
provider. All of this means that this system already has support within
CESNET and is easily extendable. Complete documentation of this tool is
available on the website [26].

Netbox is also an open-source system, which is free and has an active
community around the world, that is still working on new features and bug
fixes. The great benefit of it is its comprehensive API, which covers all data
that are stored within Netbox. Only minor changes need to be made to use
this system as GUI for Ansible.

The system is currently filled with more than 400 devices seen in the Netbox
dashboard in figure2.5 and many more pieces of information regarding the
network state. Every device has its management IP address stored. The view
of the device will be extended by Custom fields with information about the
data collector and service TCP port.

Figure 2.5: View of the Netbox system

12Due to ongoing migration of network is possible that not all devices are immediately
added to Netbox, with all parameters.

10

.......................... 2.6. Network management by NETCONF

2.6 Network management by NETCONF

The Network Configuration Protocol could be considered as a new approach
to maintaining networks and deploying configurations. As shown in figure
2.4 in section 2.3, network management done by modeling language is a
significant part of the new approach. The NETCONF protocol was published
as early as December 2006 in RFC 4741 [8] by IETF (Internet Engineering
Task Force) 13. NETCONF stands for Network Configuration Protocol and
is used to manage network devices such as routers, switches, and firewalls.

Although CLI configuration can be somewhat automated, its templatization
is challenging and time-consuming. Also very different among various vendors.
The advantage of using NETCONF is that it provides a programmatic way
of configuring network devices, which can help reduce errors and increase
efficiency compared to the CLI option.

NETCONF uses XML (Extensible Markup Language) to format messages
between clients and servers. A client can send a request to a server to modify,
retrieve, or delete network configuration data. The server responds to the
request with a confirmation or error message. NETCONF is often used in
conjunction with YANG, which is a data modeling language used to describe
network configuration data. NETCONF and YANG provide a powerful and
flexible framework for managing network devices. More information on YANG
will be provided in section 2.8.

The parts of the NETCONF protocol can be seen in figure 2.6. "The
NETCONF protocol can be conceptually partitioned into four layers:.The Content layer consists of configuration data and notification data..The Operations layer defines a set of base protocol operations to retrieve

and edit the configuration data..The Messages layer provides a mechanism for encoding remote procedure
calls (RPCs) and notifications..The Secure Transport layer provides a secure and reliable transport of
messages between a client and a server." [17]

In the second figure 2.7 can then be seen encapsulation of the mentioned
layers as an SSH connection is used.

NETCONF protocol is already in use for some parts of the configuration of
CESNET3 network devices. That provides me with a basic framework that I
will extend. The protocol will be used for the configuration of Model-Driven
Telemetry on devices.

13Even though NETCONF has been known since the year 2006, I still consider it as
a new approach since many providers still didn’t fully adopt it and many configuration
changes are done by CLI.

11

2. Analysis
Noteworthy to mention in this context is the RESTCONF protocol. NET-

CONF and RESTCONF are two protocols used for managing network devices.
The very simplified description of RESTCONF is that it’s a NETCONF pro-
tocol, but instead of SSH as transport, it uses HTTP or HTTPS 14 [5, pp.
190].

While both protocols are designed to provide a programmatic way of
configuring network devices, they differ in several key ways. NETCONF uses
XML to format messages between a client and server, whereas RESTCONF
uses JSON. Although both protocols are used for managing network devices,
they are often used in different contexts. NETCONF is typically used in
traditional network environments, while RESTCONF is often used in cloud-
based environments that rely heavily on APIs and microservices.

Figure 2.6: NETCONF protocol layers [17]

Figure 2.7: NETCONF Client-Server connection [5, Fig 4-2, pp. 162]

14Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer
Protocol (HTTP). It uses encryption for secure communication over a computer network
and is widely used on the Internet [12].

12

..........................2.7. gRPC Network Management Interface

2.7 gRPC Network Management Interface

If we are discussing new approaches to the management of networks, one
technology cannot be forgotten. That technology is gNMI. The gNMI rep-
resents gRPC Network Management Interface and is similar to NETCONF
and RESTCONF regarding network configuration.

The gNMI is defined only by the OpenConfig community in comparison
to NETCONF, with the definition in RFC by IETF. It is an open-source
protocol developed by Google. The gNMI relies heavily on gRPC.

The gRPC is an open-source, high-performance remote procedure call
(RPC) framework originally developed by Google. It uses Protocol Buffers
as the data serialization format and provides a simple and efficient way to
connect and call methods on remote servers across distributed systems. One
of the key advantages of gRPC is its performance. Because it uses binary
serialization and HTTP/2, it is more efficient than traditional web APIs that
use text-based formats like JSON or XML. This means that gRPC can handle
a higher volume of requests and responses with lower latency, making it ideal
for building high-performance and scalable applications.

The gNMI interface utilizes YANG models as well. It consists of a few
similar operations to the ones offered by NETCONF/RESTCONF. The
options from gNMI: CapabilityRequest, GetRequest, SetRequest, and Sub-
scribeRequest correspond to hello, get/get-config, and edit-config from NET-
CONF [5, pp. 215]. With regards to Model-Driven Telemetry, gNMI is
primarily used in dial-in mode. Dial-in mode is when the collector initiates
a TCP connection to the network device. The opposite method is called
dial-out.

2.8 YANG models

YANG is a modeling language used for describing data models and man-
agement protocols for network devices. It stands for "Yet Another Next
Generation" and was developed by the IETF to define data models for net-
work configuration and management in RFC 6020 [3].

YANG is a human-readable, machine-parsable language that allows network
administrators to define the data structure used to configure and manage
network devices. The structure of the YANG definition file can be seen on
listing 2.1 [16, pp. 21].

YANG models consist of a hierarchical tree structure of data elements that
define the components and attributes of network devices, such as interfaces,
IP addresses, routing protocols, and other network services. The hierarchy of
the YANG model Cisco-IOS-XR-pfi-im-cmd-oper can be seen in figure 2.2
[16, pp. 33].

Overall, the YANG modeling language plays an essential role in network
automation and orchestration, enabling the development of standardized and
interoperable network management systems.

13

2. Analysis
module Cisco-IOS-XR-pfi-im-cmd-oper {

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-pfi-im-cmd-oper";
prefix pfi-im-cmd-oper;

import Cisco-IOS-XR-types {
prefix xr;

}
include Cisco-IOS-XR-pfi-im-cmd-oper-sub2 {

revision-date 2017-06-26;
}
...
organization

"Cisco Systems, Inc.";
contact

...
description
...

revision 2017-06-26 {
description

"Change identifiers to be more readable.";

...

container interfaces {
config false;
description

"Interface operational data";
container interface-xr {

list interface {
key "interface-name";
leaf interface-name {

type xr:Interface-name;
}

}
}
...

}
}

Listing 2.1: YANG module Cisco-IOS-XR-pfi-im-cmd-oper

14

.................................. 2.9. Virtualization tools

module: Cisco-IOS-XR-pfi-im-cmd-oper
+--ro interfaces

+--ro interface-xr
+--ro interface* [interface-name]

+--ro interface-name xr:Interface-name
+--ro mac-address
| ...
+--ro arp-information
| ...
+--ro ip-information
| ...
+--ro encapsulation-information
| ...
+--ro interface-type-information
| ...
+--ro data-rates
| ...
+--ro interface-statistics
| ...
+--ro l2-interface-statistics
| ...
+--ro interface-handle? string
+--ro interface-type? string
+--ro state? Im-state-enum
+--ro line-state? Im-state-enum
+--ro encapsulation? string
+--ro encapsulation-type-string? string
+--ro mtu? uint32
+--ro last-state-transition-time? uint32
+--ro speed? uint32
+--ro crc-length? uint32
+--ro duplexity? Im-attr-duplex
+--ro bandwidth? uint32
+--ro max-bandwidth? uint32
+--ro keepalive? uint32
+--ro parent-interface-name? xr:Interface-name
+--ro loopback-configuration? Im-cmd-loopback-enum
+--ro description? string
+--ro transport-mode? Im-attr-transport-mode
+--ro fast-shutdown? boolean
+--ro if-index? uint32

Listing 2.2: Tree view of YANG module Cisco-IOS-XR-pfi-im-cmd-oper

2.9 Virtualization tools

Since the most probable usage of the system will be that every network device
will have its collector instance, it’s necessary to explore viable options. Similar

15

2. Analysis
tools in this context are often named Docker, Kubernetes, or LXC.

Docker is OS-level virtualization software that allows one to install and
deploy multiple containers [7]. Containers are lightweight, portable, and
isolated environments that contain all the necessary components to run an
application, including the application code, libraries, and dependencies. These
containers are enclosed from the host OS and allow connection through several
interfaces.

Kubernetes is a container orchestration platform that automates container-
ized applications’ deployment, scaling, and management. It provides a way
to manage and coordinate many containers across multiple nodes, ensuring
that the suitable containers run on the right nodes at the right time.

LXC is a lightweight containerization technology that provides a system-
level interface for managing containers.

In summary, Docker is a containerization platform that allows developers
to create and manage containers, Kubernetes is a container orchestration
platform that provides advanced features to automate the deployment and
management of containers at scale, and LXC is a lightweight containerization
technology that provides a system-level interface for managing containers.
Each technology has its own strengths and weaknesses, and the choice of
which one to use depends on the specific use case and requirements.

Part of my bachelor thesis was testing the deployment of Model-Driven
Telemetry collector in Docker containers compared to hosting it directly on a
server. Testing proved that using Docker mostly doesn’t matter performance-
wise, so I’ve decided to use it for collectors in this monitoring system. Also,
I’m more familiar with its structure and configuration.

2.10 Database and collector selection

Basically, every monitoring system needs a database to function properly.
Requirements are always to store and visualize data with its history. The
best way is to use a time series database for this purpose.

A time series database is a specialized database designed to store and
retrieve data organized by time. In a time series database, data is typically
stored in a series of rows, with each row representing a specific time period.
Each row may contain multiple data points, such as temperature readings
or data throughput, and these data points are associated with a particular
timestamp.

One of the key benefits of using a time series database is that it is optimized
for time-based queries, allowing for efficient and fast retrieval of data over
specific time periods. Time series databases also often include specialized
features such as data compression and automatic data aggregation, which
can help to reduce storage costs and improve performance. Some popular
time series databases include InfluxDB, Elasticsearch, and OpenTSDB.

Analysis of different databases was also done in my bachelor thesis [16, Ch.
3]. The comparison was made between InfluxDB and Elasticsearch. Both
are popular time-series databases used for storing and analyzing time-series

16

..................................2.11. Visualization tools

data. While both databases are designed for similar use cases, they have
some significant differences in terms of their architecture, query language,
and features.

The choice between InfluxDB and Elasticsearch will depend on the specific
needs of the project. If we are primarily dealing with time-series data,
InfluxDB may be the better choice, while Elasticsearch may be a better fit if
we need to search and analyze a wide variety of data types.

InfluxDB has been chosen in this particular case as the system will be
dealing with a large quantity of time-series data. Also, InfluxDB was used
and tested during the bachelor thesis, so I’m familiar with its configuration.

For the data collector tool, two options were considered. I analyzed both
in my bachelor thesis. Since then, Pipeline development has been stopped, so
it is not a viable option. The other option is Telegraf.

Telegraf is a plugin-driven server agent for collecting and reporting metrics
and data from various sources. It is part of the TICK (Telegraf, InfluxDB,
Chronograf, Kapacitor) stack, which is an open-source platform for processing
time-series data. Integration with InfluxDB is then simple. Telegraf has a
wide range of built-in input plugins that allow it to collect data from various
sources, including system metrics, logs, databases, and network devices. It
includes MDT and gNMI plugins developed in cooperation with Cisco.

Chosen tool for the role of collector is Telegraf. Due to using it during my
bachelor thesis an fulfilling all requirements it seems as best option.

2.11 Visualization tools

The significant task from a user experience standpoint to consider is data
visualization. This part of the system was one of the longest in testing, and
its development is the most dynamic. Since my bachelor thesis, I tested
several options and tried to find the best solution. Finally, the most probable
choices ended up being Grafana, Kibana, and Nagios.

Grafana is an open-source software platform that allows users to visual-
ize and analyze data in real-time. It provides a way to create interactive,
customizable dashboards that display data from various sources such as
databases, web services, and other applications.

With Grafana, users can create panels that display data in various formats,
including graphs, tables, and heatmaps. Users can also configure alerts to
notify them when certain conditions are met, and they can create annotations
to provide context to their data. Although alerting option is built in Grafana,
after some testing, I decided that it was not usable for our needs.

Similar to Grafana is Kibana software. Kibana is part of the Elastic Stack,
which includes Elasticsearch, Logstash, and Beats, and offers integrations
with other tools in the stack. Regarding visualization, both tools are pretty
similar and provide comparable tools. Grafana has a more user-friendly
interface that is designed for non-technical users, whereas Kibana’s interface
is more geared toward data analysts and developers.

17

2. Analysis
Overall, Grafana is better suited for general-purpose data visualization and

analysis, while Kibana is more focused on log analysis and monitoring.
Although Nagios is a bit different type of visualization from the other two,

I will explain why I did incorporate it in these options. Grafana and Kibana
are both data visualization and analysis platforms for real-time data. On the
other hand, Nagios is best used for displaying alerts. As I already mentioned,
the handling of alerts in Grafana was insufficient. Because of this, I decided
to split visualization into two parts. One will display graphs and long-term
statistics, and the other will handle alerts. Alternatives for Nagios are also
plenty. In this regard, Nagios has been chosen as an already deployed and
functioning system in CESNET that currently displays alerts from servers
and old network devices.

2.12 Data processing

After completing testing in my bachelor thesis, a question concerning data
normalization arose. Even though YANG models are well-defined, they
sometimes differ from different devices. Also, if we are about to combine
MDT with SNMP protocol, some data normalization would be beneficial. For
this part, several options were considered. The possibilities are:. Use built-in processors in Telegraf.. Use Apache Kafka system..Write Python script to normalize data.

According to documentation Apache Kafka could be used for this purpose,
but I didn’t have the opportunity to test it. It’s one of the things to consider
testing with the system, but it probably wouldn’t be part of the system from
the start. Apache Kafka is a comprehensive software and requires a lot of
testing.

Another option is to use the internal processors of the Telegraf collector.
This solution was tried on a testing system deployed during my bachelor
thesis. It could be used, but it also needs more testing, as it is unclear what
the collector’s performance will be in this scenario. During regular operation,
Telegraf only does a little processing with incoming data, but with this plugin
turned on, the hardware requirements need to be clarified. With this data
processing Telegraf can become a bottleneck of the system.

The last option I tried was implementing a Python script to normalize data.
The details of the script will be shown in a later chapter, but after evaluation,
I’ve decided not to progress with this solution at this moment. This solution
doesn’t have any performance concerns but development concerns. As I would
be the single developer of this script, it would create obstacles in the future
for maintenance and development.

18

................................. 2.13. Monitoring systems

2.13 Monitoring systems

As a part of my research, I’ve tried to find currently available systems that
utilize MDT for monitoring. But as I’ve described in section 2.3, this term
can still be quite vague. Also, some vendors of these monitoring systems
claim they are using "telemetry" to monitor, but this can even mean SNMP,
as described previously. The problem with these claims is that I’ve very little
chance to verify which form of telemetry they are using, as often the systems
are closed and paid.

What I’ve managed to verify is the monitoring system developed by Cisco.
During the Cisco Live conference in February 2023, I had a chance to attend
a lab focused on this system. The solution consisted of some similar parts as
will be part of my monitoring system. Figure 2.8 shows that visualization and
database have used the same tools: Grafana and InfluxDB. The difference is
in the collector and automation tools. Cisco uses its own Crosswork Platform
Infrastructure and Crosswork Data Gateway. This solution provides GUI to
automate data collection through Crosswork Infrastructure. It’s definitely a
viable and functional option. Deployment through GUI was relatively easy.
This solution also provides API for more machine-based deployment. But
its huge drawback is the price. Cisco doesn’t post any pricing publicly, but
based on discussions with the engineer leading the lab, this solution started to
make viable sense from tens of thousands of monitored devices in the network.
Considering that it is only part of the solution, where it’s still needed to
maintain the database and create views in Grafana, which isn’t a small task,
it has been rejected CESNET networking team.

Another solution that claims to use telemetry is Spotlight - Network
Telemetry System [25]. Unfortunately, I didn’t find any documentation for
this tool, so the only information is from their website. But based on this
quote: "An in-house designed analysis engine contacts devices on a round-
robin basis using a wide variety of protocols including, but not limited to,
SNMP, HTTP API, SSH." it’s doubtful that this system uses Model-Driven
Telemetry (MDT) as is the goal of my system.

The system which seems to be working with required telemetry is SigNoz
[2]. According to the documentation, this tool uses a gRPC call to collect data.
But it doesn’t fulfill the second part of the defined Model-Driven Telemetry
term. It doesn’t work with Yet another next generation (YANG) models, and
the tool is not designed to communicate with network devices.

19

2. Analysis

Figure 2.8: Architecture of Cisco lab

20

Chapter 3
Design

3.1 System requirements

The first task to do in system design is to specify requirements that the
system should be capable of meeting. For simplicity, I’ve created an item list
that can be later checked in the testing part.

. Collector selection

□ MDT Dial-in capable
□ MDT Dial-out capable
□ SNMP capable
□ Database interoperability. Data retention

□ Archive at least half-year-old data
□ Database must have backups. Security

□ Collector can accept data only from registered devices
□ All publicly exposed parts must have appropriate firewall rules. Logging

□ All parts must send logs to defined points. Resiliency to failure

□ System must retain some monitoring capability even with some
parts in shutdown

The collector selection part was partially discussed in 2.10 section. The
collector must be able to collect data using Model-Driven Telemetry dial-in

21

3. Design..
and dial-out methods. This requirement is essential as the whole system
is based on this technology. The SNMP requirement is due to backward
compatibility. Some of the old network devices are not MDT capable and
will remain in the network.

The data retention requirement is for a database. Firstly it defines the
need for a database, as theoretically, monitoring can be done without memory,
but that system would be useless. Secondly, according to some regulations,
CESNET must store data for a defined time. Another requirement is to
backup the database to a remote location in case of failure.

The system’s security is a significant part as a portion of the system will
be exposed on public IP addresses. The system will be storing sensitive data
about clients and need to be secured accordingly. The setup of a firewall on
all nodes is vital. Also, all system management will be done from a secure
network and only using public key authentication SSH protocol.

The logging requirement comes from internal CESNET regulations. Part
of the infrastructure is the Syslog server on which all systems are required to
send logs.

Resiliency to failure is essential in order to minimize monitoring availability.
When part of the system fails, the overall functionality should be minimal. In
case of collector failure, it’s probable to lose some data, but the whole system
shouldn’t be affected. In conclusion, some system parts should be duplicates,
doing the same tasks.

3.2 Current monitoring systems in CESNET

I did research about currently deployed monitoring systems during my bachelor
thesis. I included two systems that perform monitoring of network devices.
These systems were HP Network Node Manager and G3.

HP Network Node Manager (NNM) is a network management tool devel-
oped by Hewlett-Packard that provides real-time monitoring, fault detection,
and device configuration management capabilities for complex, multi-vendor
networks. NNM uses SNMP to discover and monitor network devices such as
routers, switches, servers, and printers. NNM includes features such as event
correlation, root-cause analysis, and threshold-based alerting to help network
administrators quickly identify and respond to network issues.

The currently deployed version is quite obsolete. It was decided that due
to the high cost, the newer version isn’t going to be purchased.

Another described system was G3. The G3 is an internally developed
system also based on SNMP. The purpose of this system isn’t to provide
network alerts but to provide long-term statistics. The development of this
system wasn’t wholly abandoned, but the leading developer moved to other
projects. As a result, it was decided to leave this development altogether and
replace this system.

The following monitoring system currently deployed in CESNET to monitor
is Nagios. I’ve already mentioned this system as it’s planned to utilize it for
visualization of alerts from the Model-Driven Telemetry monitoring system.

22

.................................... 3.3. System design

As part of the tender for network modernization, Cisco Evolved Pro-
grammable Network Manager was bought. EPNM is a network management
tool that provides end-to-end network visibility and control for multi-vendor,
multi-domain networks. It is designed to simplify network management tasks
and improve operational efficiency. The most important part of this system
in a modernized network will be the management and provisioning of the
DWDM network. This system also provides monitoring options. But after
testing, it was decided it doesn’t meet the criteria for replacement of both
G3 and HP NNM. EPNM will be used as a provisioning tool but not as a
monitoring tool. Also, this system lacks the ability to collect data using
Model-Driven Telemetry.

3.3 System design

The Model-Driven Telemetry monitoring system will comprise of several parts.
The simplest overview of the system can be seen in figure 3.1. The system has
three main parts: collectors, database, and visualization. Another additional
part is management.

During design, it was necessary to think ahead about possible upgrades or
significant system changes. Therefore the system basically has two branches.
The production and development branches are deployed on different machines.
The visualization of these branches is in figure 3.2. The production servers
are dark blue, and the development servers are orange. The figure shows that
database, visualization, and management have their development part, but
the collectors don’t. The reason for this is based on the collector’s design.

Figure 3.1: Basic overview of Model-Driven Telemetry monitoring

23

3. Design..

Figure 3.2: Production and development parts of system

3.3.1 Collector design

The open-source Telegraf has been chosen as the collectors software based on
analysis. The collectors will need to handle additional data processing. Every
network device will have its own Telegraf instance to satisfy this condition.
These instances will be deployed as Docker containers for simplicity of design
and management. The design can be seen in figure 3.3.

Due to security reasons and the fact that all of the CESNET3 network
has management interfaces on the private network, which is not routed
globally, two collectors have been deployed. The mdtc1.vm.cesnet.cz is
routed publically and can be accessed globally via its IPv4 address. The
mdtc2.vm.cesnet.cz is routed only locally and accessible only in the manage-
ment network. The MDTC1 is supposed to collect data from older devices
that don’t have access to the private network. MDTC2 collects data from
new devices in the CESNET3 via the management network.

To satisfy reliability conditions, both MDTC1 and MDTC2 are virtual ma-
chines located in the Czech Education and Scientific NETwork virtualization
platform. This platform is geographically distinct, and virtual machines are
automatically migrated to the following location if one location fails.

Since Telegraf instances are deployed in Docker, there is no need to deploy
a testing collector. Updating Docker doesn’t break its containers, and all
other parts of the collectors are deployed using Ansible. Also, testing newer
versions of Telegraf can be done by deploying another Docker container.

24

.................................... 3.3. System design

Th
Figure 3.3: Visualization of collectors

3.3.2 Database design

For the database, the InfluxDB software has been chosen. The database
will also be deployed in a virtualization platform, the same as collectors. In
order to provide an upgrade of the database without problems, a development
branch will be deployed along with the production one.

The production database hydra.cesnet.cz will store all data from production
Telegraf instances deployed on MDTC1 and MDTC2 into CESNET3 bucket.
The development database mdto.vm.cesnet.cz will collect data from testing
Telegraf instances into the special testing bucket.

The reliability conditions should be satisfied again by automatically mi-
grating the virtualization platform. To provide safety for data, an everyday
backup of the database will be made, and also, a weekly backup of the

25

3. Design..
database from HYDRA to MDTO will be made. This will safeguard data in
case of unexpected system failure.

The data retention will be handled yearly. The database has the option
to retain data in buckets for a limited period of time. For this purpose, 365
days have been chosen. Older data will be available in the form of database
backup, probably in aggregated form.

3.3.3 Visualization design

Grafana will handle statistics about devices and their interfaces. The virtual
machine atlas.cesnet.cz will be deployed as production. Development visu-
alization will be on server telemetry.vm.cesnet.cz. The main reason for the
development part is to have a place for creating new dashboards and upgrade
testing of Grafana.

In the first version of the system, there will be two dashboards. One
displays statistics about device interfaces, and the second shows the device
status itself.

The alert from devices will be handled by the Nagios system. In CESNET,
there is already deployed Nagios system for monitoring of servers. Only
additional probes will be added.

3.3.4 Management design

The management part will have several components. Netbox as the source of
data. Two virtual servers with Ansible for configuration deployment.

Netbox itself already has two instances done.cesnet.cz and netbox.done-
test.cesnet.cz. The done.cesnet.cz will serve as the data source for production.
The main pieces of information for Ansible will be:. Device name. Device location. Device source IPv4 address. IPv4 address of the collector.TCP port number of the collector

Virtual servers for Ansible are also in development and production. The
server spof.bb.ces.net will serve as a production branch. On this server, there is
also deployed NETCONF management of network devices. The development
branch is on server mdto.vm.cesnet.cz. This machine is unable to configure
network devices, as the NETCONF Ansible configuration deployment is
managed by another team that has its own testing machine.

The part of management could be considered the syslog servers and data
storage. Every server in the CESNET infrastructure must send its internal
logs to a syslog server. The MDT monitoring system will send syslog data to
vinovago.cesnet.cz and zarovka.cesnet.cz. The database backup destination
for long-term use will be on CESNET storage department hardware.

26

Chapter 4
Implementation

4.1 Configuration of network devices

The first parts of the pipeline of the monitoring system are the configurations
of network devices. As was already designed, this part will be handled by
NETCONF protocol. I have utilized the already existing NETCONF Ansible
repository 15 , which does have the ability to configure network devices.
Part of the implementation was to extend the repository with configuration
specifically for Model-Driven Telemetry.

Configuration of devices with Cisco IOS-XR software has three parts:
Destination-group, Sensor-group, and Subscription. Used YANG model for
configuration is Cisco-IOS-XR-um-telemetry-model-driven-cfg.

Reference configuration of Destination-group can be seen in listing 4.1.
The template file is relatively long as NETCONF configuration uses XML
modeling language. In the example, I’ve marked the important parts that are
parametrized. Values: telemetry.server_name, telemetry.server_ip, teleme-
try.server_port and telemetry.protocol are collected for every device from
Netbox. This configuration sets to which collector will the network device
send MDT data. Encoding of data is selected self-describing-gpb 16.

15This repository is located on an internal CESNET Gitlab server.
16Different options for data collection were described in my bachelor thesis [16, pp. 19].

27

4. Implementation....................................
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<telemetry xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-
telemetry-model-driven-cfg">

<model-driven>
<destination-groups>
<destination-group>
<destination-group-id>
{{ telemetry.server_name }}/

</destination-group-id>
<destinations>
<destination>
<destination-name>
{{ telemetry.server_ip }}/

</destination-name>
<port-number>
{{ telemetry.server_port }}/

</port-number>
<encoding>
<self-describing-gpb/>

</encoding>
<protocol>
<{{ telemetry.protocol }}/>

</protocol>
</destination>

</destinations>
</destination-group>

</destination-groups>
</model-driven>

</telemetry>

Listing 4.1: Model-Driven Telemetry configuration teplate for IOS-XR -
Destination-groups

The next part of the configuration is Sensor-group. Sensor-group is used
internally on network devices to select which data should be collected and
sent to the collector. Configuration template can be seen on 4.2. This
section defines which YANG models should be used. On IOS XR is limited
to a maximum of 16 sensor-paths in a single sensor-group-id. Due to this
restriction, the configuration of this part is not dynamic but statically set.
The automation of this functionality is planned to be implemented in further
versions of the monitoring system, and YANG models will be selected based
on Netbox.

Used YANG models on IOS XR devices can be seen in table 4.1. Most
of these models are filtered for particular fields. For example, in Cisco-IOS-
XR-pfi-im-cmd-oper, only operational-status, admin-status, and MTU are
used.

Following table 4.2 shows possible modules for expansion in the future. Most
of them are focused on routing. The reason for not including them right away

28

............................ 4.1. Configuration of network devices

is that, for example, Cisco-IOS-XR-ip-rib-ipv4-oper and Cisco-IOS-XR-ip-
rib-ipv6-oper contain whole routing table, that can be pretty large on peering
routers. Including these models will require more testing and will take longer
time. Another interesting data can be Cisco-IOS-XR-platform-inventory-oper,
which could serve for automatic inventarization.

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<telemetry xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-

telemetry-model-driven-cfg">
<model-driven>
<sensor-groups>
<sensor-group>
<sensor-group-id>XR-ifstatus</sensor-group-id>
<sensor-paths>
<sensor-path>
<sensor-path-id>Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/

interface-xr/interface</sensor-path-id>
</sensor-path>

</sensor-paths>
</sensor-group>

</sensor-groups>
</model-driven>

</telemetry>

Listing 4.2: Model-Driven Telemetry configuration teplate for IOS-XR - Sensor-
groups

Model Description
Cisco-IOS-XR-pfi-im-cmd-oper Interface information (status,

admin-status)
Cisco-IOS-XR-infra-statsd-oper Interface statistics
Cisco-IOS-XR-wdsysmon-fd-oper CPU utilization
Cisco-IOS-XR-nto-misc-oper RAM utilization
Cisco-IOS-XR-ipv4-io-oper Interface IPv4 information
Cisco-IOS-XR-ipv6-ma-oper Interface IPv6 information
Cisco-IOS-XR-telemetry-model-driven-
oper

Model-Driven Telemetry sta-
tus

Cisco-IOS-XR-controller-optics-oper Interface optical data

Table 4.1: Used YANG models IOS XR

The last part of the configuration is Subscription. The subscription part
merges Destination-groups and Sensor-groups together. This configuration
can be seen in listing 4.3. Parts of this configuration are templatized, but
most of them are static. In the listing is shown only part of the subscriptions.
The important part is the sample-interval. This parameter sets in milliseconds
difference between data collections. If we set this to zero, then the subscription

29

4. Implementation....................................
Model Description
Cisco-IOS-XR-wd-oper Watchdog information
Cisco-IOS-XR-segment-routing-srv6-oper Segment Routing with IPv6

dataplane
Cisco-IOS-XR-policy-repository-oper Routing policy operational

data
Cisco-IOS-XR-platform-inventory-oper Inventory operational data
Cisco-IOS-XR-mpls-vpn-oper L3VPN operational data
Cisco-IOS-XR-l2vpn-oper L2vpn operational data
Cisco-IOS-XR-evpn-oper EVPN operational data
Cisco-IOS-XR-ip-rib-ipv4-oper IPv4 RIB operational data
Cisco-IOS-XR-ip-rib-ipv4-oper IPv6 RIB operational data

Table 4.2: Possible expansion of YANG models IOS XR

will work on change 17. For this purpose, two subscriptions were configured.
An interesting part of a subscription is source-interface. The initial intention

was to use a management interface that is in a special VRF 18. But during
testing, I came across a probable bug on Cisco ASR 9903. If I configured
the router to send data in this management VRF, the router didn’t send
anything. The same configuration on Cisco NCS 540, which is also IOS XR,
is behaving as expected and sends data to the collector in the management
VRF. This seems to be a bug and has been reported to Cisco engineers. As a
workaround to this problem, I decided to send data from all IOS XR devices
in global VRF, which is working. The result is that the collector for all IOS
XR devices is MDTC1 instead of MDTC2.

17Diferences between these two options were described in my bachelor thesis [16, pp.
12-13].

18Virtual Routing and Forwarding is a technology used in computer networking to create
separate virtual routing tables within a single physical router or switch. Each VRF instance
is isolated from other VRF instances and has its own unique routing table, allowing multiple
virtual networks to coexist on the same physical infrastructure.

30

............................ 4.1. Configuration of network devices

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<telemetry xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-

telemetry-model-driven-cfg">
<subscriptions>
<subscription>
<subscription-id>101</subscription-id>
<sensor-groups>
<sensor-group>
<sensor-group-id>XR-ifstatus</sensor-group-id>
<sample-interval>30000</sample-interval>

</sensor-group>
</sensor-groups>
<destinations>
<destination>
<destination-id>{{ telemetry.server_name }}</destination-id>

</destination>
</destinations>
<source-interface>MgmtEth0/RP0/CPU0/0</source-interface>

</subscription>
</subscriptions>

</model-driven>
</telemetry>

Listing 4.3: Model-Driven Telemetry configuration teplate for IOS-XR -
Subscriptions

The Cisco IOS-XE configuration is somewhat more straightforward 4.4.
All needed parts are in a single <subscription> block. A slight drawback
is worse readability, but this language is designed for devices and not to be
human-readable. The next drawback is that IOS-XE doesn’t allow configuring
multiple sensor-group in comparison with IOS-XR. It can be bypassed by
configuring multiple <subscription>.

Parts of the file are templatized. The <receivers> block is taken from
Netbox. Most of the IOS-XE devices are collected at the MDTC2 collector
that is located in the management network. The <source-vrf> has to be
configured to Mgmt-vrf to ensure connection.

Used YANG models can be seen in table 4.3:

Model Description
Cisco-IOS-XE-interfaces Interface information (status,

admin-status)
Cisco-IOS-XE-process-cpu-oper CPU utilization
Cisco-IOS-XE-memory-oper RAM utilization
Cisco-IOS-XE-mdt-oper Model-Driven Telemetry sta-

tus
Cisco-IOS-XE-transceiver-oper Interface optical data

Table 4.3: Used YANG models IOS XE

31

4. Implementation....................................
Every model is collected using two subscriptions 19. First, collects data

in predefined intervals and second on change. Based on the use of IOS-XE
devices in the CESNET3 network as aggregation switches, there is no need
to collect any data on routing.

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<subscription-config xmlns="urn:ietf:params:xml:ns:yang:ietf-event-

notifications">
<subscription operation="replace">

<subscription-id>101</subscription-id>
<stream xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

yp:yang-push</stream>
<encoding xmlns:cyp="urn:cisco:params:xml:ns:yang:cisco-xe-ietf-

yang-push-ext">cyp:encode-kvgpb</encoding>
<xpath-filter xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push

">/interfaces-ios-xe-oper:interfaces/interfaces-ios-xe-oper:
interface</xpath-filter>

<receivers>
<receiver>

<address>{{ telemetry.server }}</address>
<port>{{ telemetry.port }}</port>
<protocol xmlns:cyp="urn:cisco:params:xml:ns:yang:cisco-xe-

ietf-yang-push-ext">cyp:grpc-tcp</protocol>
</receiver>

</receivers>
<source-vrf>Mgmt-vrf</source-vrf>
<period xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push

">6000</period>
</subscription>

</subscription-config>
</config>

Listing 4.4: Model-Driven Telemetry configuration teplate for IOS-XE

4.2 Collector setup

The collector design is based on Docker containers. The first task is to
install and configure Docker on collector nodes. Installation is relatively
straightforward, and instructions are available on many websites based on
the desired host machine. Since Docker has no unique configuration in my
system, I won’t go into any more details.

The next task of devices setup was to secure access to them. The obvious
thing is to deny access to nodes through SSH password and allow only public
key authentication. Another part is to set up a basic firewall. Since both nodes
have host OS Ubuntu 22.04.2 LTS, UFW (Uncomplicated Firewall) package
was already installed. Although some administrators would have reservations

19Both in format X01 and X02, where X is replaced with numbers.

32

....................................4.2. Collector setup

about using UFW and argue for using another firewall like nftables, I’ve
decided that for collector use, UFW is sufficient. The important advantage is
its easy management through Ansible.

The security of nodes was easier to do on MDTC2 since this node has a
private address (IPv4: 10.7.1.11) and is already located behind the firewall.
The collector MDTC1 has a public address (IPv4: 78.128.211.217 and IPv6:
2001:718:1:1f:50:56ff:feee:217) and is potentially more vulnerable. Despite
this, security on both nodes is handled similarly. The rules of the firewall are
divided into global and Ansible parts. The global part allows traffic only on
TCP port 22 from specific address ranges. The second part is handled by the
management node of the system through Ansible.

To ensure consistency of installed software packages and more straight-
forward updates, etckeeper was installed on all nodes. It enables a simple
rollback to the previous software version in case of a problem during an
update.

Based on the design, data collection is handled by Telegraf containers.
Every network device has its own instance. This enables the pass of tags
from network documentation done by Netbox to the monitoring system. The
configuration of each instance is parameterized. The Telegraf configuration
file is a template that is being filled by the Ansible playbook.

In listing 4.5 are shown variables setup of tags for each device. The purpose
of these tags is to filter devices in the monitoring system the same way as in
Netbox. For example, site tag enables filtering devices on the same location.

Next part of configuration 4.6 is the connection to the database InfluxDB.
Access to the database is done using a token which is also passed from the
Ansible playbook.

The last part of the configuration is focused on data collection. In listing
4.7 can be seen Model-Driven Telemetry collecting Telegraf. As transport
protocol grpc is used. This parameter is static since all MDT-capable devices
in the CESNET3 network can use it. The only variable is service_address
which defines the TCP port the collector should run on. The remaining part
is aliases which are entirely voluntary. I’ve decided to use them to rename
the original YANG models to a more understandable form.

The configuration of SNMP is also included 4.8. The monitoring system
will also collect data from old network devices, which is part of long-term
development. The system is ready for this monitoring, but Model-Driven
Telemetry monitors all CESNET3 devices.

33

4. Implementation....................................
[global_tags]

deviceid = "{{item.key}}"
site = "{{item.value.site.name}}"
siteid = "{{item.value.site.id}}"
device_role = "{{item.value.device_role.name}}"
device_type = "{{item.value.device_type.model}}"
device_manufacturer = "{{item.value.device_type.manufacturer.name

}}"
status = "{{item.value.status.value}}"

Listing 4.5: Telegraf configuration - Tags

[[outputs.influxdb_v2]]
urls = ["https://mdtd.vm.cesnet.cz:8086"]
token = "{{ database_token }}"
organization = "CESNET"
bucket = "CESNET3"

Listing 4.6: Telegraf configuration - InfluxDB

Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS
XE and NX-OS platforms

[[inputs.cisco_telemetry_mdt]]
transport = "grpc"

Address and port to host telemetry listener
service_address = ":{{item.value.custom_fields.telemetry_port}}"

[inputs.cisco_telemetry_mdt.aliases]
if-counters = "Cisco-IOS-XR-infra-statsd-oper:infra-statistics/

interfaces/interface/latest/generic-counters"
ipv4-stats = "Cisco-IOS-XR-ipv4-io-oper:ipv4-network/nodes/node/

interface-data/vrfs/vrf/details/detail"
ipv6-stats = "Cisco-IOS-XR-ipv6-ma-oper:ipv6-network/nodes/node/

interface-data/vrfs/vrf/details/detail"
if-status = "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-

xr/interface"
optics-info = "Cisco-IOS-XR-controller-optics-oper:optics-oper/

optics-ports/optics-port/optics-info"
cisco-cpu = "Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-

utilization"
cisco-memory = "Cisco-IOS-XR-nto-misc-shmem-oper:memory-summary/

nodes/node/detail"

Listing 4.7: Telegraf configuration - Model-Driven Telemetry

34

.............................. 4.3. Ansible management setup

Retrieves SNMP values from remote agents
[[inputs.snmp]]

agents = ["udp://195.113.144.70:161"]
Timeout for each request.

timeout = "300s"
SNMP version; can be 1, 2, or 3.

version = 3
SNMPv3 authentication and encryption options.

sec_name = ":{{ snmp_user }}"
auth_password = ":{{ snmp_passwd }}"

[[inputs.snmp.table]]
name = "snmp"
oid = "IF-MIB::ifXTable"

[[inputs.snmp.table.field]]
name = "ifName"
oid = "IF-MIB::ifName"
is_tag = true

Listing 4.8: Telegraf configuration - SNMP

4.3 Ansible management setup

In order to make system management automated as much as possible, Ansible
software has been used. Ansible deploys configuration based on prewritten
playbooks.

As this playbook is distributed via SSH protocol, a management node had
to be chosen. For this purpose, I decided to use the existing virtual server
spof.bb.ces.net, which already has Ansible installed and has access to both
network devices and Netbox API. Ansible playbooks that configure devices
automatically are deployed on this management server, as described in the
previous chapter. This server is hidden behind a firewall, and members of
the networking department in CESNET manage security.

Ansible playbook consists of tasks that are making described actions. The
playbook to manage the networking system consists of several of these tasks.
The first part handles fetching data from Netbox system 4.9. This task makes
a query to Netbox API with a proper access token that has been deleted from
the listing for security reasons. According to filters, in this example, based
on tag cesnet3 fetches data and saves them into dictionary variable using
set_fact directive. The task consists of other keywords, such as delegate_to,
that overwrite the destination of execution of the playbook. In this case, to
localhost since collectors don’t have a connection to Netbox API. Keyword
when is used in most tasks. It ensures that the task will be done only on
the proper collector. Otherwise, task would be done on both collectors and

35

4. Implementation....................................
applied only on desired. This would result with Telegraf containers on all
collector nodes for every device.

The next part of the pipeline done by the playbook is creating Telegraf
templates 4.10. The template file has been mostly described in the previous
chapter. This task only fills missing values in the curly brackets of the
template and saves configs to the desired location. A noteworthy part is
backup: true, which keeps older configuration files with timestamps if they
have been changed. This helps with possible error tracebacks.

The critical task is creating Telegraf containers on the desired collector. It
exposes the port of the container to the host machine. Netbox defines this
port, and Telegraf receives data from network devices on it. Containers are
set always to restart.

The last part of the playbook is setting of firewall on colletors 4.12. As
was described, colletors have minimum exposed ports for better security. To
be able to collect data, it needs to listen at least on some ports. Based on set
IP addresses and ports in Netbox, ports are open to specific devices. Thanks
to that, no other device can send data to a particular collector who isn’t the
supposed receiver.

Currently, the script must be initiated manually, but the plan is to enhance
Netbox with a simple button that would trigger this playbook. Nevertheless,
in the meantime, to automate it, the Ansible playbook is started every night
with Cron job. This ensures the deployment of a new device to monitoring
even if the administrator forgets to run the playbook after installing the new
device.

tasks:
query a list of devices
- name: Obtain list of devices from NetBox

delegate_to: localhost
set_fact:

netbox: "{{ netbox + [item] }}"
loop: "{{ query(’netbox.netbox.nb_lookup’,

’devices’,
api_endpoint=’https://done.cesnet.cz’,
api_filter=’tag=cesnet3’,
token=’’) }}"

when: " item.value.custom_fields.telemetry_server == hostvars[
inventory_hostname][’ansible_env’].SSH_CONNECTION.split(’ ’)[2]
"

loop_control:
label: "{{ item.value.name }}"

Listing 4.9: Ansible playbook - Netbox data

36

.............................. 4.3. Ansible management setup

tasks:
- name: Generate configuration files for telegraf instances

template:
src: telegraf-template.j2
dest: "/root/configs/telegraf.{{ item.value.name }}.conf"
backup: true
mode: 0640

with_items:
- "{{ netbox }}"
when: " item.value.custom_fields.telemetry_server == hostvars[

inventory_hostname][’ansible_env’].SSH_CONNECTION.split(’ ’)[2]
"

loop_control:
label: "{{ item.value.name }}"

Listing 4.10: Ansible playbook - Telegraf template

tasks:
Create four containers on each managed host using default image

and command.
- name: Create default containers

community.docker.docker_container:
name: "{{ item.value.name }}"
image: "{{ default_container_image }}"
published_ports: "{{ item.value.custom_fields.telemetry_port

}}:{{ item.value.custom_fields.telemetry_port }}"
restart_policy: "always"
volumes: "/root/configs/telegraf.{{ item.value.name }}.conf:/

etc/telegraf/telegraf.conf:ro"
with_items:
- "{{ netbox }}"
when: " item.value.custom_fields.telemetry_server == hostvars[

inventory_hostname][’ansible_env’].SSH_CONNECTION.split(’ ’)
[2] "

loop_control:
label: "{{ item.value.name }}"

Listing 4.11: Ansible playbook - Docker containers

37

4. Implementation....................................
tasks:

- name: Allow ports for devices
community.general.ufw:

state: enabled
rule: allow
src: "{{ item.value.custom_fields.telemetry_source_ip }}"
port: "{{ item.value.custom_fields.telemetry_port }}"
proto: tcp
comment: "CESNET3 {{ item.value.name }}"
log: true

with_items:
- "{{ netbox }}"
when: " item.value.custom_fields.telemetry_server == hostvars[

inventory_hostname][’ansible_env’].SSH_CONNECTION.split(’ ’)
[2] "

loop_control:
label: "{{ item.value.name }}"

Listing 4.12: Ansible playbook - UFW rules

4.4 Database setup

The setup of the database server was similar to other parts of the system. From
a security standpoint firewall has been set up that allows communication
only from the collectors. The addition to this was generating of a TLS
certificate for the server. Since the communication between collectors and
the database can be encrypted, the certificate has been generated and signed
by the CESNET Certification Authority.

The InfluxDB is divided based on organizations and buckets. The organi-
zation can represent multitenant database use, where a bucket distinguishes
data. CESNET organization was created with the bucket CESNET3. On
the bucket, data retention of 365 days has been set. Any older data will be
removed from the database. This setup is important in order to keep the
database query reasonably long.

Another part of the database setup was to create simple scripts that
are periodically run by Cron. The purpose of these scripts is to back up
the database by command influx backup. The destinations of backups are
two. One is on server mdtd.vm.cesnet.cz, which runs testing instance of the
InfluxDB database. The other destination is in CESNET Storage Department,
which serves as a long-term archive. The Cron job is run weekly.

The last part of the database setup was syslog logging to CESNET servers.
Additional software syslog-ng was installed. The configuration isn’t com-
plicated 4.13. The exact setup is used on the collector nodes as well as
management and visualization nodes.

38

.................................. 4.5. Visualization setup

Configure the remote destination
destination d_net { tcp("vinovago.cesnet.cz"

port(514)
tls(

key_file("/etc/ssl/tcs/sectigo-key.pem")
cert_file("/etc/ssl/tcs/sectigo-cert.pem

")
ca_dir("/etc/ssl/trusted_ca")
trusted_dn("CN=vinovago.cesnet.cz, *")

)
flush_lines(100)
flush_timeout(5000)

);
};

Listing 4.13: Syslog configuration

4.5 Visualization setup

The configuration of visualization consisted of several parts. First was a basic
server setup similar to other servers of the system. The etckeeper, syslog-ng,
and firewall tools.

Another important part was generating certificates. As this is the entire
system’s front end, which will be accessed from the web browser, the appro-
priate certificates need to be created to ensure secure HTTPS traffic. For
this purpose, I have used the CESNET TCS certificate, which is validated by
GEANT Vereniging 4.1.

The primary system to install for visualization was Grafana. Installation
guides for various host systems are available, so I won’t describe it as no
deviations were made.

The only thing to set up was the authentication of users. As this system is
available to the world, simple authentication must be made. Since the free
version of Grafana is used, there is no option to handle users by Grafana
itself. One option would be to create user accounts locally, but this solution
is not scalable. Instead, Grafana was setup to display dashboards without
any user authentication, an Apache2 software was put in front of Grafana.
The Apache2 server runs on the same server on TCP ports 80 (HTTP) and
443 (HTTPS). The Apache2 proxy setup consists of two parts.

The first is for protocol HTTP 4.14. The configuration is simple as this
part only redirects all requests to HTTPS.

The second part is for HTTPS protocol 4.15. The OIDC options are
configured with hidden parameters. This ensures that anyone with a CESNET
identity is able to see Grafana dashboards. Next is the configuration of Proxy.
As Grafana natively runs on TCP port 3000, Apache redirects accepted users
to this port. The last part is the setup of encryption for HTTPS protocol.

39

4. Implementation....................................
The keywords SSL are used as the location for server private keys.

The Grafana setup is mostly default. An important part was the setup
of dashboards. For the first version of the system, two dashboards were
made. These dashboards are still relatively simple as more focus was made
on the whole system’s design. Additionally, this will require more work in
the following versions based on user feedback.

The first dashboard displays simple interface data 4.2. The details about
interface description,IPv4 address, IPv6 address, optical wavelength, and
optical power can be seen. Selection of interfaces can be made by defined
variables Site, Device, and Interface. These variables are queries into the
same database and allow users to navigate to the correct interface.

The second dashboard monitors state data about the devices themselves
4.3. On this dashboard, we can see statistics about used RAM memory and
CPU usage in the last five seconds.

The last part of the visualization is the Nagios setup. This system is
managed by other workers in CESNET, and this system only provides access
to the InfluxDB database. I won’t describe the setup as it wasn’t done by
me.

Figure 4.1: Visualization certificate

<VirtualHost *:80>
ServerName atlas.cesnet.cz
Redirect permanent / https://atlas.cesnet.cz

</VirtualHost>

Listing 4.14: Apache2 - HTTP setup

40

.................................... 4.6. Data rewriting

<VirtualHost _default_:443>
ServerName atlas.cesnet.cz
DocumentRoot /var/www/html

OIDCProviderMetadataURL https://login.cesnet.cz/oidc/.well-
known/openid-configuration

OIDCClientID <OIDC_client_id>
OIDCClientSecret <OIDC_secret>
OIDCScope "openid profile email eduperson_entitlement"
OIDCRedirectURI https://atlas.cesnet.cz/oauth2callback

OIDCCryptoPassphrase <OIDC_crypto_passphrase>

OIDCResponseType code
OIDCPassClaimsAs environment
OIDCSessionInactivityTimeout 3600
OIDCSessionMaxDuration 86400

<Proxy *>
AuthType openid-connect
Require all denied
Require valid-user
Require claim "preferred_username~.+"
Options FollowSymLinks
AllowOverride None

</Proxy>
ProxyPreserveHost On
ProxyPass "/.well-known" !
ProxyPass / http://localhost:3000/
ProxyPassReverse / http://localhost:3000/

SSLEngine on
SSLProtocol All -SSLv2 -SSLv3 -TLSv1 -TLSv1.1
SSLHonorCipherOrder On
SSLCertificateFile </path/to/servercert>.pem
SSLCertificateKeyFile </path/to/serverkey>.key

</VirtualHost>

Listing 4.15: Apache2 - HTTPS setup

4.6 Data rewriting

Although YANG data models are often represented as future data models for
monitoring and configuring network devices, they still have some disadvan-
tages. One disadvantage is the immense differences between models, which
should collect the same data.

For example, this system collects data about the interface status from the
network. This collection is done on several types of Cisco devices. Even though

41

4. Implementation....................................

Figure 4.2: Interface dashboard in Grafana

Figure 4.3: Device dashboard in Grafana

the vendor is the same, the operating systems are different. In one case, it is
IOS XR, and in another, IOS XE. This wouldn’t be that much of a problem
if the YANG models were similar. But in the case of IOS XR, I’m using
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface" model, and
in the case of IOS XE, "Cisco-IOS-XE-interfaces-oper:interfaces/interface".
Again even different paths are understandable, but the problem starts with
data tags and values that are sent from the device. One example is that IOS
XR uses as tag interface_name, but the IOS XE model uses only name for

42

.................................... 4.6. Data rewriting

interface name. Other mismatches are plenty. Some of them are not much of
a problem as they can be easily hidden by using the correct database query.
In any case, these complicate queries, and it is better to normalize data to
the same data structure.

4.6.1 Python scripts

During analysis, several options were considered. Firstly I will describe the
option that has been researched the longest.

The need for data normalization was obvious during testing in my bachelor
thesis. For this purpose, I’ve started to develop a Python script that would
be able to process incoming data. The script was divided into two main parts.
The init_convertor.py and data_convertor.py.

The first part is init_convertor.py. The development of this script began
before the Netbox was used as the primary source of truth for the network.
Its purpose was then dual. One was to create a template file for each YANG
data model that served as a controller for data processing. The second was
to create a list of devices that should be monitored. The design was that a
single Telegraf was supposed to run on TCP port 57000 with the following
configuration 4.16. The main difference was that the exec as output was
utilized instead of using the InfluxDB plugin.

OUTPUT PLUGINS
Send metrics to command as input over stdin
[[outputs.exec]]

command = ["/etc/telegraf/data_convertor/init_convertor.py"]
data_format = "influx"

SERVICE INPUT PLUGINS
[[inputs.cisco_telemetry_mdt]]
transport = "tcp"
service_address = ":57000"

Listing 4.16: Telegraf configuration - Python script

The noteworthy parts of this script are the following functions 4.17. The
function fill_model_file creates a template file for each YANG model. The
result of this function is the template file 4.18. Generally, the function takes
every tag and field from the YANG model measurement and generates a tem-
plate. It consists of several keywords that are later used by data_convertor.py.
It sets for each value action, rename, and translation_table. The actions
were:. NONE - remove this value.KEEP - keep value in an unchanged state.ADD - adds new value.MODIFY - modify the value based on subsequent actions

43

4. Implementation....................................
Options rename and translation_table are used only with the keyword

MODIFY. One enables to rename tag or field as is seen with tag source. The
other one enables to remap of some values. An example is mapping of state
from string representation to an integer.

The second function generate_source_list was supposed to be a list of
monitored devices, but this functionality has been replaced with the Netbox
system.

The next part of Python scripts to rewrite data was the script to convert
incoming data and store them to InfluxDB. The source files of this script are
attached to this thesis. I won’t show any parts as these scripts are lengthy,
and all essential functionalities were already described. These scripts work
based on template files generated by init_convertor.py.

The advantages of this solution were its universality and that it was designed
specifically for the use case in CESNET. Unfortunately, disadvantages were a
bigger problem for production implementation. As I was the single developer
of this scripts and there wasn’t a possibility of adding more developers, the
decision to use something simpler was made. Development of a program such
as this requires a larger team of developers, and development by a single
programmer would make it a great single point of failure in the concept of
the whole system.

44

.................................... 4.6. Data rewriting

def fill_model_file (self, measurement_name):
logging.info("Writing config file for " + measurement_name + ".")
with open(MODEL_PATH + measurement_name, "w") as file:

file.write("measurement_input: " + measurement_name + "\n")
file.write("measurement_output: " + "\n")
file.write("\n")
file.write("translation_tables: " + "\n")
file.write(" " + "basic_translation_table: &

basic_translation_table" + "\n")
file.write(" " + "tmp: tmp_value" + "\n")
file.write("\n")
file.write("tags: " + "\n")
for key in self.data_input.get(’tags’).items():

file.write(" " + key[0] + ":\n")
file.write(" " + "action: " + "KEEP" + "\n")
file.write(" " + "rename: " + "~" + "\n")
file.write(" " + "translation_table: " + "{}" + "\n")

file.write("fields: " + "\n")
for key in self.data_input.get(’fields’).items():

file.write(" " + key[0] + ":\n")
file.write(" " + "action: " + "KEEP" + "\n")
file.write(" " + "rename: " + "~" + "\n")
file.write(" " + "translation_table: " + "{}" + "\n")

def generate_source_list(self):
source = self.data_input.get(’tags’).get(’source’)
file_check(SOURCE_PATH)
with open(SOURCE_PATH, "r+") as file:

for line in file:
if source in line:

logging.info(source + " already exist in source_list
file. Skipping.")

break
else: # not found, we are at the eof

file.write(source) # append missing data
file.write("\n")
logging.info("Writing " + source + " in source_list file

.")

Listing 4.17: Python script - Init configuration

45

4. Implementation....................................
measurement_input: Cisco-IOS-XR-pfi-im-cmd-oper-interfaces-interface-

briefs-interface-brief.yaml
measurement_output: interface-brief

translation_tables:
basic_translation_table: &basic_translation_table

tmp: tmp_value
tags:

subscription:
action: KEEP
rename: ~
translation_table: {}

source:
action: MODIFY
rename: "router"
translation_table: {}

fields:
bandwidth:

action: KEEP
rename: ~
translation_table: {}

state:
action: MODIFY
rename: ~
translation_table:

"im-state-down": 0
"im-state-up": 1

Listing 4.18: YANG template file

4.6.2 Telegraf

Another option was to use Telegraf’s internal processing. This option was
decided to be a good enough option. Telegraf processor plugins are well-
documented and relatively simple. Though they don’t offer as many options
as custom scripts, they are more viable in long-term sustainability.

To return to the initial problem. Telegraf processor can resolve this situation
by using the following configuration 4.19. We can normalize the name tag
between several models using rename functionality. The Telegraf provides
much more processing, and more of them are used in the monitoring system.

46

.................................... 4.6. Data rewriting

PROCESSOR PLUGINS
[[processors.rename]]

namepass=["if-status-XE"]
[[processors.rename.replace]]

tag = "name"
dest = "interface_name"

Listing 4.19: Telegraf - Processor plugin

47

48

Chapter 5
Testing

5.1 Fulfilling system requirements

The first part of testing the whole system was a resolution of system require-
ments from section 3.1.. Collector selection

□✓ MDTDial-in capable
□✓ MDTDial-out capable
□✓ SNMP capable
□✓ Database interoperability. Data retention

□✓ Archive at least half-year-old data
□✓ Database must have backups. Security

□✓ Collector can accept data only from registered devices
□✓ All publicly exposed parts must have appropriate firewall rules
□✓ Visualization must be accessible via HTTPS. Logging

□✓ All parts must send logs to defined points. Resiliency to failure

□✓ System must retain some monitoring capability even with some
parts in shutdown

49

5. Testing
5.1.1 Collector selection

The first section of the requirements was the setup of the collector part. As
the Telegraf software was chosen for the role of collector, all conditions were
fulfilled.

The collector can initiate the Model-Driven Telemetry Dial-in setup. Al-
though this setup is not used in the current configuration of the monitoring
system, it’s possible, and for purposes of this thesis, have been tested. The
input plugin gNMI (gRPC Network Management Interface) needs to be used
on the Telegraf part. Following the documentation on the Cisco guide and
enabling gNMI on one device, I was able to test it successfully. The en-
abled gNMI interface on the device then displays the following 5.1. The
configuration on the device is simply about executing commands 5.1.

gnxi
gnxi server
gnxi port 57500

Listing 5.1: Cisco IOS-XE gNMI configuration

Next was the MDT Dial-out setup. This configuration is used and described
in the implementation sections. The check of functioning Model-Driven
Telemetry subscription on IOS-XR can be used command 5.2, which output
is seen in figure 5.2. On this show command, it can be easily checked
configuration from Ansible. The destination port is set to 57017, which
corresponds with the port defined in Netbox 5.3.

sh telemetry model-driven destination MDTC1

Listing 5.2: Cisco IOS-XR check MDTsubscrition

Similar testing was done on the IOS-XE. The command 5.3 can be executed
based on subscription number. The result is then following 5.4.

show telemetry ietf subscription 101 detail

Listing 5.3: Cisco IOS-XE check MDTsubscrition

The previous parts serve great to check if Model-Driven Telemetry is
correctly configured on devices, but unfortunately not always show if any
data are being sent. For this purpose, we can use the database itself. If
the device sends data and collecting Telegraf receives data correctly, it will
appear in InfluxDB. The command 5.4 will show some of the network devices
that send data to the collector. In the moment of testing, the list consists of
all devices set in Netbox 5.5.

50

............................. 5.1. Fulfilling system requirements

Figure 5.1: IOS XE - show gnxi state detail

import "influxdata/influxdb/schema"

schema.tagValues(bucket: "CESNET3", tag: "source")

Listing 5.4: Cisco IOS-XE check MDTsubscrition

The SNMP capable point has been shown in Telegraf configuration 4.8.
Unfortunately, any further testing wasn’t done during the writing of this
thesis as SNMP is no longer the preferred way of monitoring, and all new
devices are monitored by Model-Driven Telemetry. Although many other

51

5. Testing

Figure 5.2: IOS XR - show telemetry model-driven destination MDTC1

users use Telegraf for monitoring using SNMP and guides are available. In
that order, I consider this requirement as fulfilled.

The Database interoperability point was about the capability of writing
data from the collector to the database. The functionality of this point has
already been shown in previous paragraphs.

5.1.2 Data retention

Since time series databases can grow into enormous proportions, a data
retention policy had to be made. The Influxdb itself provides data deletion
after some specified time. For the monitoring system, I’ve chosen a data
retention interval of 365 days 5.6. This setup should be sufficient to keep the

52

............................. 5.1. Fulfilling system requirements

Figure 5.3: Netbox - router R1

database running smoothly and retain enough data.
Most of the time, data older than one year are useless. But a small

percentage of use cases still exist when this data could be needed. In that
order, a shell script was written to back up the database 5.5. This script is
run by cron in specified intervals. It backups database locally and also sends
data to CESNET Data storage for long-term archive. Thanks to this script
point, Archive at least half-year-old data and Database must have backups
can be checked. The archived data can then be simply recovered in case
of unexpected problems on the virtualization platform by command influx
restore.

53

5. Testing

Figure 5.4: IOS XE - show telemetry ietf subscription 101 detail

Figure 5.5: InfluxDB check sources

#!/bin/bash
DATE=$(date ’+%F_%H:%M:%S’)
influx backup /var/db_backup/$DATE -t $DB_TOKEN
scp -r /var/db_backup/$DATE loub@ssh.du5.cesnet.cz:~/

Listing 5.5: Shell script to backup database

54

............................. 5.1. Fulfilling system requirements

Figure 5.6: InfluxDB data retention

5.1.3 Security

The security section consisted of several tasks. The first one was that the
collector would only accept data defined in Netbox. This was achieved by
setting up of firewall. Figure 5.7 shows an example from one of the collectors.
A specific TCP port accepts traffic only from one host IP address.

The next point was about setting firewall rules for all nodes. All show
commands from nodes can be seen in the attachments. But mostly, this point
was about securing the SSH port. On database to secure its endpoint TCP
port 8086. The visualization was the only part that can have somewhat loose
rules, but still, only CESNET IP addresses are allowed to access it.

The last part was about Grafana being exposed on TCP port 443 with the
correct certificate. This has been proven in the Implementation section 4.5.

55

5. Testing

Figure 5.7: Firewall on MDTC1

5.1.4 Logging

The testing if logging is functional was done through SSH access to the logging
server. All the logs from the system are aggregated into a single folder. The
folder can be seen in figure 5.8.

Figure 5.8: Log folder on CESNET syslog server

5.1.5 Resiliency to failure

This point can be misinterpreted. To ensure complete resiliency, every
part would need to be duplicated. This resiliency is basically provided by
system location. Since all parts of the system are located in the CESNET
virtualization platform, which has two geographically detached nodes, this

56

............................. 5.2. Statistics about collected data

allows resiliency to hardware failures. In case of failure, virtual machines are
migrated to other locations.

The current design with the development branch can be easily switched to
production so that even software problems wouldn’t result in system collapse.

5.2 Statistics about collected data

There are many ways to check that data are being collected from devices and
written into the database. One of the ways was shown in 5.2 command. We
can list statistics about Total bytes sent and Total packets sent using correct
show commands for devices running on IOS-XR OS. The command is helpful
for checking if the device sends data to the collector, but listing the outputs
of this command in this thesis would take up too much space. Also, on the
Cisco IOS-XE platform is no internal statistics of sent data, so no similar
show command can be executed.

Another way to check that collector receives data from devices is using
command tcpdump on the collector. As shown in figures 5.9 for collector
MDTC1 and in 5.10 for MDTC2. The tcpdump command was collecting
packets for one minute. As we can see, both collectors are receiving data
from devices. The way the command was executed doesn’t prove itself that
all devices are sending data to collectors. This could be done by limiting
the filter of tcpdump from collecting packets on the whole subnet to single
devices.

Figure 5.9: tcpdump on MDTC1

Figure 5.10: tcpdump on MDTC2

Another way would be to analyze dump.out files in Wireshark. These files
are added as attachments to this thesis. On both can be seen that during
that one minute, all IP addresses that were supposed to send data did.

This command was also executed on database 5.11, and we can see that
the collectors are sending data to the database. This tcpdump output file is
included in the attachments.

The previous checks are helpful for debugging. We can suffice with a simple
check. If the device is sending data to the collector, it then transfers data to

57

5. Testing
the database, where they are saved. The device will appear in the Grafana
visualization as a possible source. This list can be compared with the list of
devices in Netbox.

Figure 5.11: tcpdump on HYDRA

5.3 Visualization testing

The visualization testing consists of two systems. First is the Nagios software
that has been used primarily for alerting of network outages. The main
reasons for using Nagios were two. Firstly the operators on the CESNET
service desk already work with it and are used to it. Secondly, the alert
handling in Grafana is not that well implemented and would need much more
work.

The Nagios system is handled by other admins, so I didn’t post any
configurations in this thesis. Nagios initiates the communications between
this monitoring system and Nagios. It sends queries to InfluxDB and displays
received data. The alerts for one of the routers are in figure 5.12.

The Grafana tool is used for visualizing statistics about network devices
and their interfaces. The basic dashboards have already been described in
section 4.5. These dashboards have been modeled based on the G3 system
developed by CESNET. Testing regarding visualization is quite limited. Since
Grafana only does queries into InfluxDB, then all devices already in the
database are also visible in Grafana.

Currently, Grafana dashboards are used and being tested by CESNET
NOC team. Unfortunately, I don’t have any feedback yet. I expect that
requests for changes in dashboards will come up throughout time.

Figure 5.12: Router R1 in Nagios

58

Chapter 6
Conclusion

This work is a direct continuation of my bachelor thesis, "Network traffic
monitoring using Model-Driven Telemetry" [16]. I have focused in it on
creating a monitoring stack for testing of new monitoring technology Model-
Driven Telemetry. Based on the results from testing in the thesis, further
research and possible deployment of a monitoring system were considered.

This thesis’s focus was on deploying a monitoring system that would collect
monitoring data from devices using both Model-Driven Telemetry and SNMP
technologies. In that function, the deployed monitoring system is more than
capable, thanks to the use of Telegraf software for the collector part of the
system. The plugins of Telegraf provide many more monitoring options for
the system in the future for possible extensions.

The system fulfills all the requirements which were set before its deployment.
It collects data using Model-Driven Telemetry from devices in the CESNET3
network. The plan is to incorporate all routers and switches into the system
in the future as well as all devices from the DWDM layer of the network.
It’s based entirely on open-source software. The collectors are deployed as
Telegraf containers in Docker. The time-series database InfluxDB is used for
storing data. Visualization of alerts and statistics is handled by Nagios and
Grafana tools. Simple management by the Ansible playbook is used. The
system is capable of storing data for a long time with consideration of the
performance of the database. The critical parts of the system have backups in
case of failure. The development branch of the system provides the continuous
development of the system on its testing servers without affecting production
servers.

The system is currently used by CESNET NOC 20. As of writing this thesis,
I didn’t receive any request for a change of Grafana dashboards. Grafana is
one tool that will need further development as the created dashboards need
more work done. In the current state, they are still relatively simple.

During the last month of development, new agenda from management
emerged. The character of the system design is competent and can be
extended for more uses than simple monitoring. In the future, the system
should calculate and display SLA 21 for CESNET members and clients. This

20Network operation center (NOC)
21Service level agreement (SLA)

59

6. Conclusion......................................
feature is approved, but thanks to a late decision, it will be included in future
system releases.

60

Appendix A
Bibliography

[1] url: https://www.cesnet.cz/sluzby/pripojeni/topologie/ (vis-
ited on 05/02/2023).

[2] Vaishnavi Abirami. Monitor GRPC calls with OpenTelemetry - ex-
plained with a Golang example. Feb. 2023. url: https://signoz.io/
blog/opentelemetry-grpc-golang/ (visited on 02/23/2023).

[3] M. Bjorklund. YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020. http://www.rfc-
editor.org/rfc/rfc6020.txt. RFC Editor, Oct. 2010. url: http:
//www.rfc-editor.org/rfc/rfc6020.txt (visited on 02/21/2023).

[4] Eduardo Canale, Claudio Risso, and Franco Robledo. Optimal design
of an IP/MPLS over DWDM Network. Apr. 2014. url: https://
www.scielo.br/j/pope/a/Hdt4jnDDQ5npgjnVC9f8pdM/ (visited on
05/02/2023).

[5] Benoit Claise, Joe Clarke, and Jan Lindblad. Network programmability
with Yang: The structure of network automation with Yang, Netconf,
restconf, and gnmi. Addison-Wesley, 2019.

[6] Ribbon Communications. What Is IP MPLS? url: https://ribboncommunications.
com/company/get-help/glossary/ip-mpls (visited on 05/02/2023).

[7] Docker. May 2023. url: https://cs.wikipedia.org/wiki/Docker
(visited on 02/23/2023).

[8] Rob Enns. NETCONF Configuration Protocol. RFC 4741. RFC Editor,
Dec. 2006. url: https : / / www . rfc - editor . org / info / rfc4741
(visited on 02/21/2023).

[9] Chinmay Gaikwad. Making the most out of OpenTelemetry. Feb. 2023.
url: https://techblog.cisco.com/blog/most-out-of-opentelemetry
(visited on 02/23/2023).

[10] Craig Hill. Evolving Network Automation Techniques for Real-Time
Applications [PowerPoint slides]. url: https://tenica-gs.com/wp-
content/uploads/2019/05/1-11-Evolving-Network-Automation-
Techniques- for- Real- Time- Applications- Craig- Hill- Cisco.
pptx (visited on 02/23/2023).

61

https://www.cesnet.cz/sluzby/pripojeni/topologie/
https://signoz.io/blog/opentelemetry-grpc-golang/
https://signoz.io/blog/opentelemetry-grpc-golang/
http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc6020.txt
https://www.scielo.br/j/pope/a/Hdt4jnDDQ5npgjnVC9f8pdM/
https://www.scielo.br/j/pope/a/Hdt4jnDDQ5npgjnVC9f8pdM/
https://ribboncommunications.com/company/get-help/glossary/ip-mpls
https://ribboncommunications.com/company/get-help/glossary/ip-mpls
https://cs.wikipedia.org/wiki/Docker
https://www.rfc-editor.org/info/rfc4741
https://techblog.cisco.com/blog/most-out-of-opentelemetry
https://tenica-gs.com/wp-content/uploads/2019/05/1-11-Evolving-Network-Automation-Techniques-for-Real-Time-Applications-Craig-Hill-Cisco.pptx
https://tenica-gs.com/wp-content/uploads/2019/05/1-11-Evolving-Network-Automation-Techniques-for-Real-Time-Applications-Craig-Hill-Cisco.pptx
https://tenica-gs.com/wp-content/uploads/2019/05/1-11-Evolving-Network-Automation-Techniques-for-Real-Time-Applications-Craig-Hill-Cisco.pptx
https://tenica-gs.com/wp-content/uploads/2019/05/1-11-Evolving-Network-Automation-Techniques-for-Real-Time-Applications-Craig-Hill-Cisco.pptx

A. Bibliography.....................................
[11] How Ansible works. Red Hat Ansible. url: https://www.ansible.

com/overview/how-ansible-works (visited on 02/23/2023).
[12] HTTPS. May 2023. url: https://en.wikipedia.org/wiki/HTTPS

(visited on 02/23/2023).
[13] Hitesh Jethva. Ansible vs Puppet – What is the Difference? (Pros and

Cons). Cloud Infrastructure Services. url: https://cloudinfrastructureservices.
co.uk/ansible-vs-puppet/ (visited on 02/23/2023).

[14] Hitesh Jethva. Ansible vs Terraform – What is the Diference? (Pros
and Cons). url: https://cloudinfrastructureservices.co.uk/
ansible-vs-terraform/ (visited on 02/23/2023).

[15] Hitesh Jethva. Terraform vs Puppet – What’s the Difference? (Pros
and Cons). url: https://cloudinfrastructureservices.co.uk/
terraform-vs-puppet-whats-the-difference/ (visited on 02/23/2023).

[16] Ladislav Loub. Monitorování provozu síte pomocí Model-Driven Teleme-
try. Czech. Bachelor thesis. ČVUT, Jan. 2021.

[17] Netconf. Dec. 2021. url: https://en.wikipedia.org/wiki/NETCONF
(visited on 02/23/2023).

[18] NetFlow. May 2023. url: https://en.wikipedia.org/wiki/NetFlow
(visited on 02/23/2023).

[19] Optical Fiber Communication: The science behind it. url: https://
yourwebsitedemo.in/hfcl-groups/blog/optical-fiber-communication.
html (visited on 05/02/2023).

[20] Peter. Real-time flow telemetry for routers. Apr. 2022. url: https:
//blog.sflow.com/2022/04/real- time- flow- telemetry- for-
routers.html (visited on 02/23/2023).

[21] Puppet (software). Apr. 2023. url: https://en.wikipedia.org/wiki/
Puppet_(software) (visited on 02/23/2023).

[22] Simple Network Management Protocol. May 2023. url: https : / /
en.wikipedia.org/wiki/Simple_Network_Management_Protocol
(visited on 02/23/2023).

[23] Haoyu Song, Zhenqiang Li, Pedro Martinez-Julia, Laurent Ciavaglia,
and Aijun Wang. Network Telemetry Framework. RFC 4741. RFC
Editor, Dec. 2006. url: https://datatracker.ietf.org/doc/draft-
song-opsawg-ntf/03/ (visited on 02/21/2023).

[24] Haoyu Song, Fengwei Qin, Pedro Martinez-Julia, Laurent Ciavaglia, and
Aijun Wang. Network Telemetry Framework. RFC 9232. RFC Editor,
May 2022. url: https : / / www . rfc - editor . org / info / rfc9232
(visited on 02/21/2023).

[25] Spotlight - network telemetry system. url: https://techex.co.uk/
monitoring / spotlight - network - telemetry - system (visited on
02/23/2023).

62

https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://en.wikipedia.org/wiki/HTTPS
https://cloudinfrastructureservices.co.uk/ansible-vs-puppet/
https://cloudinfrastructureservices.co.uk/ansible-vs-puppet/
https://cloudinfrastructureservices.co.uk/ansible-vs-terraform/
https://cloudinfrastructureservices.co.uk/ansible-vs-terraform/
https://cloudinfrastructureservices.co.uk/terraform-vs-puppet-whats-the-difference/
https://cloudinfrastructureservices.co.uk/terraform-vs-puppet-whats-the-difference/
https://en.wikipedia.org/wiki/NETCONF
https://en.wikipedia.org/wiki/NetFlow
https://yourwebsitedemo.in/hfcl-groups/blog/optical-fiber-communication.html
https://yourwebsitedemo.in/hfcl-groups/blog/optical-fiber-communication.html
https://yourwebsitedemo.in/hfcl-groups/blog/optical-fiber-communication.html
https://blog.sflow.com/2022/04/real-time-flow-telemetry-for-routers.html
https://blog.sflow.com/2022/04/real-time-flow-telemetry-for-routers.html
https://blog.sflow.com/2022/04/real-time-flow-telemetry-for-routers.html
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://datatracker.ietf.org/doc/draft-song-opsawg-ntf/03/
https://datatracker.ietf.org/doc/draft-song-opsawg-ntf/03/
https://www.rfc-editor.org/info/rfc9232
https://techex.co.uk/monitoring/spotlight-network-telemetry-system
https://techex.co.uk/monitoring/spotlight-network-telemetry-system

..................................... A. Bibliography

[26] The Premiere Network Source of Truth. Netbox. url: https://docs.
netbox.dev/en/stable/ (visited on 02/21/2023).

[27] What is flow telemetry? url: https://www.netscout.com/what-
is/flow-telemetry (visited on 02/23/2023).

[28] What is int (in-band network telemetry). July 2022. url: ’https :
//cloudswit.ch/blogs/what-is-int%5C%EF%5C%BC%5C%88in-band-
network-telemetry%5C%EF%5C%BC%5C%89/’ (visited on 02/23/2023).

[29] What is terraform: Terraform: HashiCorp developer. url: https://
developer.hashicorp.com/terraform/intro (visited on 02/23/2023).

[30] XML. May 2023. url: https://en.wikipedia.org/wiki/XML (visited
on 02/23/2023).

63

https://docs.netbox.dev/en/stable/
https://docs.netbox.dev/en/stable/
https://www.netscout.com/what-is/flow-telemetry
https://www.netscout.com/what-is/flow-telemetry
'https://cloudswit.ch/blogs/what-is-int%5C%EF%5C%BC%5C%88in-band-network-telemetry%5C%EF%5C%BC%5C%89/'
'https://cloudswit.ch/blogs/what-is-int%5C%EF%5C%BC%5C%88in-band-network-telemetry%5C%EF%5C%BC%5C%89/'
'https://cloudswit.ch/blogs/what-is-int%5C%EF%5C%BC%5C%88in-band-network-telemetry%5C%EF%5C%BC%5C%89/'
https://developer.hashicorp.com/terraform/intro
https://developer.hashicorp.com/terraform/intro
https://en.wikipedia.org/wiki/XML

64

Appendix B
Glossary

API Application Programming Interface. 12, 13, 19, 35

ASR Aggregation Services Routers. 4, 30

CESNET Czech Education and Scientific NETwork. vi, 1, 2, 4–6, 9–11, 18,
22, 24–27, 32, 33, 35, 38–40, 44, 53, 55, 56, 58, 59

CLI Command-line interface. 3, 10, 11

CPU Central processing unit. 40

CRS Carrier Routing System. 2, 5

DWDM Dense Wavelength-division Multiplexing. vi, 4–6, 23

EPNM Evolved Programmable Network Manager. 23

gNMI gRPC Network Management Interface. 13, 17, 50

gRPC Google Remote Procedure Calls. 13, 19

GUI Graphical user interface. 3, 10, 19

HTTP Hypertext Transfer Protocol. 12, 13, 19, 39

HTTPS Hypertext Transfer Protocol Secure. 12, 39

IETF Internet Engineering Task Force. 11, 13

IOS Internetworking Operating System. 4, 5, 30

IP Internet Protocol. vi, 4–6, 22, 55

IPv4 Internet Protocol version 4. 40

IPv6 Internet Protocol version 6. 40

ISO/OSI International Organization for Standardization/Open Systems
Interconnection model. 5

65

B. Glossary.......................................
JSON JavaScript Object Notation. 12, 13

LXC Linux Containers. 16

MDT Model-Driven Telemetry. iv, vi, 1–3, 5, 7, 9, 11, 13, 16–19, 21–23,
26–29, 31–34, 49–51, 59

MPLS Multi-Protocol Label Switching. vi, 4–6

MTU Maximum Transmission Unit. 28

NCS Network Convergence System. 4, 5, 30

NETCONF Network Configuration Protocol. vi, 7, 11–13, 26, 27

NOC Network operations center. 58, 59

OIDC OpenID Connect. 39

OOB Out-of-Band. 4

RAM Random-access memory. 2, 40

RESTCONF Representational State Transfer Configuration Protocol. 12,
13

RFC Request for Comments. iv, 1, 5, 11, 13

RPC Remote procedure call. 11, 13

SLA Service level agreement. 59

SNMP Simple Network Management Protocol. 1–3, 5, 7, 18, 19, 21, 22, 33,
49, 51, 52, 59

SSH Secure Shell. 3, 7, 12, 19, 22, 32, 55, 56

SSL Secure Sockets Layer. 40

TCP Transmission Control Protocol. 7, 10, 13, 33, 39, 55

TCS Trusted Certificate Service. 39

TLS Transport Layer Security. 38

UFW Uncomplicated Firewall. 32, 33

VRF Virtual Routing and Forwarding. 30

WiFi Wireless Fidelity. 5

XML Extensible markup language. 7, 11–13, 27

YANG Yet another next generation. 4, 7, 11, 13, 18, 19, 27, 28, 31, 33, 41,
43

66

Appendix C
Attachments

src...directory with source files
captured_traffic...............................captured packets
config..configuration files
thesis................................thesis’s source files in LATEX

text..thesis text
thesis.pdf............................. thesis text in PDF format

67

68

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466847 Personal ID number: Loub Ladislav Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Telecommunications Engineering

Electronics and Communications Study program:

Communications Networks and Internet Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Monitoring System Based on Telemetry in Network CESNET3

Master’s thesis title in Czech:

Monitorovací systém založený na telemetrii v síti CESNET3

Guidelines:

Following your bachelor thesis, describe and evaluate the new developments in telemetry and monitoring data collection.
Explore existing monitoring tools and evaluate the possibilities of extending these tools with telemetry.
Build a production monitoring system for data collection using Mode-Driven Telemetry and SNMP. Test the monitoring
system.

Bibliography / sources:

[1] Loub L, Monitorování provozu sítě pomocí Model-Driven Telemetry, Bakalářská práce, ČVUT v Praze, 2021
[2] Song, H., Qin, F., Martinez-Julia, P., Ciavaglia, L., and A. Wang, 'Network Telemetry Framework', RFC 9232, DOI
10.17487/RFC9232, May 2022, <https://www.rfc-editor.org/info/rfc9232>.

Name and workplace of master’s thesis supervisor:

Ing. Jan Kubr, Ph.D. Department of Computer Graphics and Interaction FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 13.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jan Kubr, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

	Introduction
	Analysis
	Current monitoring technologies
	Network devices
	Telemetry term explanation
	Automation tools
	Network documentation by Netbox
	Network management by NETCONF
	gRPC Network Management Interface
	YANG models
	Virtualization tools
	Database and collector selection
	Visualization tools
	Data processing
	Monitoring systems

	Design
	System requirements
	Current monitoring systems in CESNET
	System design
	Collector design
	Database design
	Visualization design
	Management design

	Implementation
	Configuration of network devices
	Collector setup
	Ansible management setup
	Database setup
	Visualization setup
	Data rewriting
	Python scripts
	Telegraf

	Testing
	Fulfilling system requirements
	Collector selection
	Data retention
	Security
	Logging
	Resiliency to failure

	Statistics about collected data
	Visualization testing

	Conclusion
	Bibliography
	Glossary
	Attachments
	Project Specification

