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ABSTRACT 
 

This diploma thesis presents a novel approach for optimizing handovers in mobile networks by 

combining reinforcement learning-based Cell Individual Offset (CIO) optimization and deep learning-

based channel quality prediction for Flying Base Stations (FlyBS) to User Equipment (UE) channels. The 

proposed solution is part of a two-step workflow, where the FlyBS-UE channels are predicted based 

on the known Ground Base Station (GBS) to UE channels, followed by a reinforcement learning agent 

setting CIO values for the network base stations based on the immediate network state, including the 

predicted channel qualities. This diploma thesis also discusses the reinforcement learning-based 

reward function and its relationship to handovers, highlighting the overall trend of the function. The 

function value increases with the number of FlyBSs, indicating potential network quality 

improvements. The performance of the proposed solution is compared with state-of-the-art 

approaches. In terms of network capacity, the proposed solution achieves superior results, 

outperforming other state-of-the-art approaches. Additionally, the proposed solution effectively 

reduces the number of all handovers as well as ping-pong handovers compared to other approaches. 

This diploma thesis demonstrates the potential of combining reinforcement learning and deep learning 

techniques for optimizing handovers in next generation mobile networks with reduced signaling 

overhead for channel quality acquisition. 

 

Keywords: mobile network, handover, reinforcement learning, deep learning, 

flying base station, cell individual offset  
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ABSTRAKT 
 

Tato diplomová práce představuje nový přístup k optimalizaci handoveru v mobilních sítích pomocí 

kombinace optimalizace parametru Cell Individual Offset (CIO), založené na zpětnovazebním učení a 

předpovědi kvality kanálu, založené na hlubokém učení, pro kanály mezi létajícími základnovými 

stanicemi (FlyBS) a uživatelským vybavením (UE). Navrhované řešení je součástí dvoufázového 

procesu, kde jsou kanály FlyBS-UE predikovány na základě známých kanálů mezi pozemními 

základnovými stanicemi (GBS) a UE, po nichž následuje zpětnovazební učení nastavující hodnoty CIO 

pro základnové stanice mobilní sítě na základě okamžitého stavu této sítě, včetně predikovaných kvalit 

kanálu. Diplomová práce také pojednává o funkci odměny zpětnovazebního učení a jejímu vztahu k 

handoverům, přičemž zdůrazňuje celkový trend této funkce. Hodnota funkce roste s počtem FlyBS, což 

naznačuje možné zlepšení kvality sítě. Výsledky navrženého řešení jsou porovnány s nejmodernějšími 

přístupy. Z hlediska kapacity sítě dosahuje navrhované řešení vynikajících výsledků a překonává ostatní 

nejmodernější přístupy. Kromě toho, v porovnání s ostatními přístupy, navrhované řešení účinně 

snižuje počet všech handoverů, včetně ping-pong handoverů. Tato diplomová práce demonstruje 

potenciál kombinace zpětnovazebního a hlubokého učení pro optimalizaci handoverů v sítích nové 

generace s redukcí signalizace při zjišťování kvality kanálu. 

 

Klíčová slova:  mobilní síť, handover, zpětnovazební učení, hluboké učení, létající 

základnová stanice,  cell  individual offset  
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1 INTRODUCTION 
New generations of mobile networks tries to build upon the older generation networks to improve 

performance. With the introduction of next generation of mobile networks, this is achieved via the 

implementation of flying base stations (FlyBS) carried by drones, or more generally speaking, 

unmanned aerial vehicles (UAV) [1]. The FlyBSs, connected via wireless link to the conventional ground 

base station (GBS), allow to extend the network coverage [2], boost quality of service or even provide 

mobile services altogether in a certain area, unreachable by the conventional GBSs [3], for example 

due to the natural disaster [4]. However, the introduction of FlyBSs to the mobile network poses new 

challenges of its own for modern technology to solve. To name a few, we need to solve the problem 

of optimal positioning of FlyBSs [5], find a solution to optimizing their trajectory [6] and also associating 

User Equipment (UE) with FlyBSs [7]. If FlyBS serves as a transparent relay, the problem complicates 

even more, as UEs have no way of measuring the FlyBS to UE channel quality  on their own. UEs then 

must rely on other methods of learning the channel quality, e.g., channel prediction from data already 

available to the network [1]. 

As said in [8], another challenge in next generation of mobile networks with FlyBSs is to provide a 

seamless mobility for the UEs connected to the FlyBSs. This means that to work properly as a base 

station (BS)1, transparent or not, FlyBS perform handovers. The FlyBS mobility is not unlike the mobility 

of UEs in a conventional mobile network, which is also managed by the handover procedure [9]. In 

conventional mobile networks, handover is initiated when a potential neighboring GBS provides a 

higher channel quality than the current serving GBS. However, to avoid frequent ping-pong handovers, 

more parameters than just channel quality are needed. In the next generation mobile networks, with 

FlyBSs included, the same principle can be utilized. The same rules and parameters as in conventional 

handover procedure can be applied to handovers performed by the FlyBSs. With this principle in mind, 

we can apply a unified solution to both the conventional UE mobility and FlyBS mobility. However, with 

the addition of FlyBSs into the network, the overall number of BSs increase substantially. Even if we 

presume only few FlyBSs per single GBS, the amount of computation required by traditional methods 

and even some more complex machine learning-based methods, grows quickly [10]. Thus, there is a 

need for a more refined solution, which is applicable to both the conventional handovers and FlyBSs 

handovers and is not so strongly dependent on the number of actors in the mobile network. 

To solve both the FlyBS to UE channel prediction and handover decision optimization described above, 

this diploma thesis focuses on the optimization of Cell Individual Offset (CIO), present with every BS, 

while simultaneously predicting the channel quality for every in the FlyBSs in the network. This is 

achieved via the newly proposed solution, which works by combining two different machine learning 

approaches into a single unified framework. The two combined machine learning approaches are the 

reinforcement learning-based CIO setting proposed by the work of A. Madelkhanova et al., 2022 [8] 

and deep learning-based FlyBS to UE channel prediction proposed by M. Najla et al., 2020 [1]. However, 

instead of two separate solutions working independently, the approach proposed in this diploma thesis 

takes advantage of both solutions at once and incorporates them into a single framework. This 

framework is usable in any mobile network model regardless of the used scenario. 

  

 
1 Throughout the work, the abbreviation BS is used as an umbrella term for both GBS and FlyBS, when the 
distinction is not important for the context or used solution. 
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The remainder of this diploma thesis is organized as follows. Section 2 presents the communication 

model of the mobile network used in this diploma thesis. Section 3 formulates the problems, which 

are then addressed by the approach presented in this diploma thesis. Section 4 proposes the solutions 

to the problems formulated in Section 3. Section 5 presents a way to evaluate the performance of the 

proposed solution against other state-of-the-art approaches. Section 6 presents the performance 

evaluation data of the proposed solution via the simulations results. Finally, Section 7 concludes this 

diploma thesis and gives directions for future improvements and the following works. Sections are 

followed by Appendix A, which lists all digital media included with this diploma thesis, meaning 

custom-made functions and simulation scripts.  
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2 SYSTEM MODEL 
In this section, the communication model of the network is presented, designed in a fashion similar to 

the work of A. Madelkhanova et al., 2022 [8]. This is then followed by the description of the channels 

between BSs, both flying and ground and UEs. Lastly, the adopted handover procedure is defined with 

its trigger conditions for both the UEs and FlyBSs. 

2.1 Network Model 
In the presented network model, there are N UEs deployed in the area covered with G GBS and F 

FlyBSs. This makes the total number of base stations equal to B = G + F. Specific numbers of UEs, GBSs 

and FlyBSs are listed in the later sections. 

The UEs move over time to simulate user movement while maintaining a connection to either GBS or 

FlyBS. The position of the FlyBSs is influenced by the UEs connected to them. Each FlyBS is deployed in 

the center of gravity of their connected UEs. However, the proposed approach is independent of the 

movement and position of both UEs and FlyBSs and can be applied in all possible scenarios. Specifics 

of the used UE movement model are listed in the later sections. 

For each UE, the required communication capacity is defined. For additional accuracy of the proposed 

network model the required capacity is set differently for each UE. To always maintain a good 

connection, and subsequently, a good channel capacity, the UEs and the FlyBSs perform conventional 

handovers and FlyBS handover, respectively, to satisfy the required UE capacity. The presence of 

handovers in the proposed model means that the connections of UEs to the BSs, either flying or 

ground, or FlyBSs to the GBSs change over time. To this end, we define a binary matrix β which 

indicates if the n-th UE is connected to the b-th BS (βn,b = 1) or not (βn,b = 0). Same matrix is also 

defined for the FlyBSs, to indicate which FlyBS is connected to which GBS. 

To remove an unnecessary variability from the network model, the UEs are always connected to the 

network, meaning that there is no possibility of UEs disconnecting from the network due to the 

distance, line of sight or an overall poor channel quality. Similarly, every FlyBS always maintain a 

connection to GBS.  

2.2 Channel Model 
For our model only the downlink communication is considered either from GBS or FlyBS. For the sake 

of simplicity, the communication channel between each BS and UE or GBS and FlyBS, is defined by 

parameter Free Space Loss (FSL) [dB], which is defined as: 

 FSL =  (
4𝜋𝑑𝑓

𝑐
)

2

, ( 1 ) 

where 𝑑 [m] is distance, 𝑓 [Hz] is frequency and 𝑐 [m/s] is the speed of light.  

Another channel parameter is Signal-to-Interference-Plus-Noise Ratio (SINR) [-] defined as: 

 SINR =  
𝑆

𝐼 +  𝑁
 , ( 2 ) 

where 𝑆 [dB] is the received signal level, 𝐼 [dB] is an interference, representing the signals from other 

UEs or BSs in the same band2, and 𝑁 [dB] is the background noise. SINR is measured from GBS to UE, 

 
2 In this work, we presume that all UEs and BSs share the same band, meaning the interference 𝐼 is from all other 
UEs and BSs in the simulation. 
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FlyBS to UE and GBS to FlyBS, where the measured channel is degraded by interference from other 

communications and the background noise. 

Channel parameter SINR is then used to obtain the channel capacity C [bits/s], which is defined as: 

 C =  𝐵 log2(1 + 𝑆𝐼𝑁𝑅), ( 3 ) 

where 𝐵 [Hz] is the channel bandwidth and 𝑆𝐼𝑁𝑅 [-] is the signal-to-interference-plus-noise ratio 

defined by Equation ( 2 ). 

Based on the required communication capacity the bandwidth Bn for the n-th UE is allocated at the 

start of the simulation to satisfy the UEs requirements. All subsequent bandwidth allocations and 

releases are managed by the handover procedure. All UEs, connected to the b-th BS, impose total load 

ρb on b-th BS. However, the proposed solution is not dependent on the way the bandwidth is allocated 

or the way the channel gain and capacity are calculated. 

2.3 Handover Procedure 
Handover between the serving BS and the target BS is triggered according to the common 3GPP 

handover event A3 [8]. This means that handover is performed if the following is satisfied at least for 

the period of Time-To-Trigger (TTT): the signal strength to the target BS plus target BS CIO is higher 

than the signal strength to the serving BS plus serving BS CIO plus handover hysteresis. In this case 

the signal strength is defined as signal power plus channel gain in decibels. To put all this in an 

equation, we define the condition for handover in mobile networks as: 

 Handover Condition (valid for TTT):  Pt +  Gt +  CIOt >  Ps + Gs +  CIOs +  Hys, ( 4 ) 

where  Pt [dB] and  Ps [dB] is the received signal strength at the target and serving BSs, respectively, Gt 

[dB] and Gs [dB] is the channel gain to the target and serving BS, respectively and CIOt [dB] and CIOs 

[dB] is the cell individual offset of the target and serving BS, respectively. The last term Hys [dB] is the 

hysteresis value to prevent quick back-and-forth, i.e., ping-pong handovers. The handover itself is 

triggered when the condition ( 4 ) is true for the whole duration of the TTT value. 

With the introduction of FlyBSs into the next generation network, we define a new type of handover, 

namely the FlyBS handover. Unlike the conventional handover, this new type of handover is done by 

FlyBS between GBSs. Same as the UEs in conventional mobile networks, FlyBSs also measure the 

channel quality from all the neighboring GBSs. This channel quality is then reported periodically to the 

GBSs in the same way the UEs report their own channel quality to their neighboring GBSs. The 

handover procedure for the FlyBSs is triggered according to the same A3 3GPP event as the 

conventional UE handovers. 
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3 PROBLEM FORMULATION 
In this section, the main problem is defined, which is addressed by this diploma thesis. Main objective 

is divided into two categories, each solved by a different machine learning approach. The first part is 

the CIO optimization addressed via the reinforcement learning. The second part is the problem of the 

channel quality prediction. 

3.1 CIO Optimization 
The primary objective of this diploma thesis is to optimize handover decision in the mobile networks 

for both UEs and FlyBSs, which serve the UEs. This is done via the CIO optimization. The CIO setting has 

a direct impact on the handover decision, as stated above. Handovers and their number have an 

impact on the sum capacity of the network. By moving the UE via handover to a less loaded BS, the 

overall stability of the network is increased as it prevents a potential problem with peak loads and/or 

insufficient bandwidth on particularly high-traffic BSs. 

However, capacity alone is not the only critical parameter for CIO optimization as a pure maximization 

of capacity can lead to an excessive number of redundant handovers. Redundant handovers increase 

the signaling overhead and consequently the energy consumption of both the network and 

communicating UEs. The increase of the signaling overhead can even lead to a decrease in 

communication capacity. Thus, the number of handovers should be controlled to find the right balance 

between the cost of network operation and sum capacity.  

In other words, we optimize the handover decision by setting a CIO value to each BS and then we 

observe the goal metrics like number of handovers and sum capacity. The goal is to decrease 

the number of handovers, more specifically to avoid quick ping-pong handovers while increasing the 

sum capacity. 

3.2 Channel Prediction 
To fulfill the primary objective, we first need to find a way to work with FlyBS. In conventional mobile 

networks, the UEs periodically report their channel quality to the corresponding serving GBS to 

perform handovers, thus fulfilling their capacity requirements. With the addition of FlyBSs as 

transparent relays, we not only need to know the channel quality from GBSs to UEs but also from 

FlyBSs to UEs.  

One way of approaching this problem would be to utilize the same concept as in conventional mobile 

networks with only GBSs and make UEs periodically measure the channel quality to their neighboring 

FlyBSs as well as GBSs. However, this would add unnecessary signaling messages to the network and 

thus increase the energy consumption of UEs while lowering the capacity. Also, such channel 

measurements would be impossible with FlyBSs acting as transparent relays. 

Another, more suitable approach, would be to use already known information, such as the channel 

quality between the GBSs and the UEs, which UEs already periodically measure and use these data to 

train a deep neural network to predict channel quality between FlyBSs and UEs. The channel prediction 

approach generates no additional signaling messages. All the work is done on the network side, so it 

poses no additional energy cost for the UEs. As the FlyBSs are in the center of gravity of its multiple 

connected UEs, it is presumed that the predictions are possible with only a little prediction error. The 

prediction accuracy for a FlyBS to UE channel quality should also increase with the number of UEs 

connected to the network. 
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However, we still need to consider the possible prediction error, which might render the proposed 

approach unsuitable for use in real mobile networks. The prediction error, in this diploma thesis 

defined as Root Mean Square Error (RMSE) [dB], should remain as low as possible. RMSE is defined as: 

 RMSE = √
1

𝑛
∑|𝐴𝑖 − 𝐹𝑖|2 

𝑛

𝑖=1

, ( 5 ) 

where 𝑛 [-] is number of realizations, 𝐴𝑖  [dB] is the measured channel quality and 𝐹𝑖 [dB] is the 

predicted channel quality. 

However, due to the time constraints the influence of certain parameters on the prediction error is 

not fully explored in this diploma thesis. The considered parameters are length of the data sets, the 

number of data sets, number of training epochs, batch size or learning rate3. The optimizing of the 

prediction error remains a candidate for future works. 

 
3 The best RMSE values achieved in this work during the DNN training were between 1.5 to 1 dB after 750 to 
1000 epochs with batch size equal to 20 training samples and learning rate set to 0.001. 
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4 PROPOSED SOLUTION 
In this section a solution to the problems described in the previous section is proposed. First, a way to 

predict the FlyBS to UE channel quality is utilized to even be able to implement the proposed solution 

itself [11]. Next, the handover decision is improved by optimizing the CIO parameter of each BS in the 

network [8]. 

4.1 Channel Quality Prediction based on Deep Learning 
As stated in the previous chapter, we need a way to predict the channel quality between FlyBSs and 

UEs based on the channel quality from GBSs to UEs. This task is not a matter of simple prediction from 

past data, but a real-time prediction of desired data from other, unrelated set of data. To achieve this, 

we utilize a part of Deep Learning called Deep Neural Network (DNN). Unlike other, more simple forms 

of neural networks, DNN is equipped with a higher number of different and sometimes specialized 

layers. This makes DNN more suited for channel quality prediction. To achieve an accurate prediction, 

we first need to prepare a neural network and training data. 

The proposed neural network is created by combining several types of layers, namely sequence input 

layer, which accepts whole sequences of data, like measured channel quality over time. The input layer 

is then followed by hidden layers. The hidden layers are a combination of three Long Short-Term 

Memory (LSTM) [12] layers and three Fully Connected [13] layers that alternate with each other. The 

last layer is an output regression layer to make the final prediction sequences. The combination and 

number of these layers is selected based on the trial-error approach during the DNN design phase. 

To train the DNN in a supervised manner [14], training data sets from simulations are needed. In 

contrast with a real-life mobile network, in simulations, desired output data can easily be obtained, 

meaning channel quality from FlyBSs to UEs. The FlyBSs to UEs channel quality data as Targets, 

together with the UEs to GBSs channel quality data as Predictors create a training data set for the used 

model. Theoretically, some training data could be obtained from a real mobile network, like UEs to 

GBSs channel quality. However, the main problem would be to get real FlyBSs to UEs channel quality 

data to train the proposed DNN. For that end, a real-life experiment with one, or preferably, multiple 

FlyBSs and UEs, which would measure the channel quality, would have to be orchestrated. This would 

deviate from the main goal of this diploma thesis, which is to prove that the proposed solution even 

works. For that end, the simulation data are suitable. However, such an experiment is a potential 

candidate for future works.  

The sub-goal is to train the neural network to output predicted channel quality from FlyBSs to UEs 

based on the input, which is channel quality from neighboring GBSs to UEs, which is known in real-life 

mobile networks. Quality of such training is then measured in RMSE, which represents the difference 

between predicted channel quality and the input data set. 

Deep neural network trained in such manner can be deployed in a real mobile network, meaning 

without the prior knowledge of channel quality between FlyBSs and UEs. 

4.2 CIO Adjustment based on Reinforcement Learning 
The problem defined in the previous section is overly complex. It stems from the fact that the 

environment of the mobile network is highly randomized. This is caused by the movement of both the 

UEs and FlyBSs, which follow their connected UEs. Random movement patterns can be hard to predict. 

However, to be able to optimize the handover decision, we need to be able to work with such a random 

environment at the real time without prior knowledge of the UEs movement or their potential future 

position. Prior information would certainly make the work much easier but in a real-life mobile 

network, such information is often unavailable, mostly due to privacy concerns or simply because of 
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the sheer impracticality of such measurements. Thus, we need to deploy an algorithm that is able to 

work in real time without any prior knowledge or data which leads us to the use of Reinforcement 

Learning.  

Unlike other machine learning approaches, which require prior knowledge of environment, 

reinforcement learning can make decisions based on immediate data from the environment without 

prior extensive training [15]. In this diploma thesis, the reinforcement learning is used to set the CIO 

value of individual base stations, both flying and ground, based on the immediate information from 

the network such as the sum capacity or in this case a custom-defined Reward (R) function. 

Reinforcement learning itself has several variants. Some are based on Q-learning while others are 

focused on deep learning, such as the Actor-Critic Reinforcement Learning approach. In the work [8] it 

is proven, that for the CIO setting optimization the Actor-Critic, i.e. deep reinforcement learning 

approach is superior to the Q-learning-based reinforcement learning and hence, the Actor-Critic 

approach was chosen, which utilizes two deep neural networks working in tandem, working as a 

reinforcement learning agent. 

4.2.1 Reinforcement Learning Agent 
A distinctive feature of the Actor-Critic approach is the presence of two deep neural networks, one 

serving as the Actor and the other as Critic. As the name suggests, actor network acts on 

the environment itself, like setting the CIO parameter, chosen from a predefined set of CIO values. The 

critic network evaluates the action, like checking whether the new CIO parameter increased or 

decreased defined reward function. This is represented as Temporal Difference (TD) error, which serves 

as feedback for the Actor-Critic deep neural networks. Next action is then taken based upon the 

increase or decrease in the TD error. Both neural networks also update their internal weights based on 

this error. The goal of this approach is to set the optimal CIO of all the base stations to maximize the 

defined R function, which serves as a representative of more common parameters like the sum 

capacity of the network or a number of handovers and handover cost. 

4.2.2 Reward Function  
The custom-defined R function , taken from the work [8] with only a slight change, represents the 

objective of the problem formulated above. The R function is a combination of several key parameters 

like sum capacity, number of handovers and their cost or the BS load. In terms of equation, it is defined 

as: 

 R =  
∑ 𝑐𝑛

𝑁𝑓

𝑛=1

𝑁𝑓𝑐𝑟𝑒𝑞,𝑛
− (∑ 𝜌𝑖

𝜌𝑡,𝑖

𝜌𝑠,𝑖

𝑛ℎ

𝑖=1

+ 𝑛ℎ𝜇𝑢) + 𝑐𝑜𝑛𝑠𝑡., ( 6 ) 

where 𝑁𝑓  [-] is the number of UEs connected to the FlyBS, 𝑐𝑛 [bits/s] is a channel capacity for the n-th 

UE and 𝑐𝑟𝑒𝑞,𝑛 [bits/s] is the required capacity of the n-th UE. The term 𝜌𝑖 [-] corresponds to the load, 

which is implied by the UE performing handover. The terms 𝜌𝑡,𝑖 [-] and 𝜌𝑠,𝑖 [-] correspond to the load 

of the target and serving BSs, respectively. Lastly, to prevent unnecessary handovers, the 𝜇𝑢 [bits] 

corresponds to the handover cost and 𝑛ℎ [-] to the number of UEs performing handover in the same 

time slot. When compared with the R function in [8], the R function in this diploma thesis has a 

constant added at the end. This constant is set to a value 1. This was done via trial-error during the 

model implementation to improve the R function stability and human readability. The possible 

negative values of the R function were causing errors with the used MATLAB Reinforcement Learning 

Toolbox [16]. Value 1 was added to keep the R function always in non-negative values without 

changing the original R function too much. 



9 
 

4.2.3 Reinforcement Learning Environment 
The agent defined above, meaning the actor and critic deep neural networks, operates on the custom-

defined environment. The reinforcement learning environment is a set of Objects and Actions which 

emulate the workings of a mobile network, working as a mobile network model. 

In the model there are two types of Objects: UEs and BSs, which are divided into FlyBSs and GBSs. 

The Actions represent different interactions within the network like UE movement, handovers or 

measurements of different signals and parameters. 

4.3 Naming Convention 
Throughout this diploma thesis, words model and environment are mentioned frequently. However, 

for clear understanding of the proposed solution, it is necessary to establish a firm naming convention. 

This is due to the fact that in this diploma thesis, the defined network model, meaning the mobile 

network itself, serves two different purposes, depending on its position in the proposed solution 

workflow. 

4.3.1 Model 
The first use case for the network model is to obtain simulation data, which are needed for additional 

steps, for example GBSs to UEs or FlyBSs to UEs simulated channel quality data. The measured channel 

quality data obtained from the model are used to train the prepared DNN. In this case the network 

model is referred to simply as model. 

4.3.2 Environment 
The second use case for the network model is to serve as an action space for the reinforcement 

learning agent. In this case, the agent is changing the network parameters, namely the CIO of each 

base station, to optimize the handover decision process. More specifically, the task of 

the reinforcement learning agent is to select a CIO value for each base station, both ground and flying, 

from a predefined set of discrete CIO values. In this step of the workflow, the network model is referred 

to as an environment, as per the official MATLAB naming convention set by the Reinforcement Learning 

Toolbox [16]. Unlike the model, the output of the environment are not channel quality data but 

performance data like capacity, number of handovers or the R function. 

4.3.3 Key Differences 
The key differences in the inner working of the model and the environment are narrowed down to two 

key aspects, the reinforcement learning usage and the deep learning usage. 

4.3.3.1 Reinforcement Learning 

The general difference between model and environment  in terms of the reinforcement learning is that 

in the model, the CIO values are selected randomly from a predefined set of CIO values and remain 

fixed for the duration of the simulation. On the other hand, the environment has the CIO values set by 

a reinforcement learning agent. In each time step, the CIO values are chosen from the predefined set 

by the agent based on the observations received from the environment in real time 

4.3.3.2 Deep Learning 

From the perspective of the DNN channel prediction, the model channel qualities, namely GBS to UE, 

FlyBS to UE and GBS to FlyBS, are measured and not predicted. In other words, the DNN is not part of 

the model in any way. This contrasts with the environment, where the FlyBS to UE channel is specifically 

predicted, not measured, by the integrated DNN. Other channels, namely the GBS to UE and GBS to 

FlyBS are still measured as in the model. 
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Other inner workings of the model and environment like movement or handover trigger procedure 

remains the same., i.e., are not influenced by the changes in the agent or DNN. 

4.4 Workflow of the proposed solution  
As already mentioned in the introduction, this diploma thesis builds on the works of A. Madelkhanova 

et al., 2022 [8] and M. Najla et al., 2020 [1] by combining two different machine learning approaches 

into a single new solution. The connection of the two approaches is done via the network model. As 

mentioned in the previous subsection, the network model, as described by the Algorithm 1, is modified 

by the proposed solution into the environment, which represents the connection of the two machine 

learning approaches. However, the environment itself is part of the entire solution workflow. Before 

defining the proposed solution, the solution workflow is described. The entire solution workflow is in 

Algorithm 2 and Figure 2. 

The first major step in the workflow, aside from defining the necessary input variables, is at the line 5 

of the Algorithm 2. A more detailed description of the first step, i.e., the model, is in Algorithm 1.  

When omitting basic procedures like UE position update, which has no influence over the solution, the 

first major lines in Algorithm 1 are lines 6 and 7. These lines depict the way the channel quality is 

obtained. The channel quality data are calculated, i.e., measured using only the data available 

internally to the model. After the channel quality is measured, the condition for the handover is 

checked at line 8. If the conditions are satisfied, the handover is performed. At the end of the 

algorithm, every necessary output variable is obtained like capacity or the number of handovers. The 

output variables are then returned back to the workflow as training data for the DNN. The training 

data are separated into the GBS to UE channel quality data sets, serving as predictors and FlyBS to UE 

channel quality data sets, serving as targets. 

Another major step in the workflow is at the line 9 of the Algorithm 2, which represents the supervised 

training of the DNN network. The prediction data sets are fed as an input to the DNN. The output of 

the DNN is then compared to the target data, with the difference between the DNN output and target 

data measured as RMSE. 

Algorithm 1 High level description of the model4 

1 input variables Varsin = CIO 

2 counters Count = counters for HOs5, FlyBS HOs, HOpp, other variables 

3 for number of time slots ts do 

4 for number of UEs i do 

5 for number of GBSs, FlyBSs g, f do 

6 channel quality GGBS_UE = calculate(FSL, i, g) 

7 channel quality GFlyBS_UE = calculate(FSL, i,  f) 

8 if A3 event handover condition = true 

9 perform_handover(CIO) 

10 Count = number of UE HOs, FlyBS HOs, HOpp, other variables 

11 SINR, capacity C = calculate(G, Count) 

12 output variables Varsout = Count, C 

13 return Varsout as training data 

 
4 For simplicity, listed algorithm follows Python convention, ending the loops and if-statements with indents. 
5 HO stands for Handover, HOpp stands for ping-pong handover 
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Algorithm 2 High level description of the solution workflow 

1 input variables Varsin = number of GBS, FlyBS, CIO set, observations, steps 

2 model M = initialize_model(Varsin) 

3 for number of observations o do 

4 for number of steps n do 

5 training data Dtrain (o) = run_model(M, n), see Algorithm 2 

6 targets T, predictors P = separate_data(Dtrain) 

7 empty DNNempty = initialize_dnn(layers) 

8 for number of observations o do 

9 trained DNNtrained = train_dnn(T,P, DNNempty) 

10 RL environment RLE = M + DNNtrained 

11 RL A-C6 agent RLAempty = initialize_agent(RLE) 

12 for number of steps n do 

13 trained RLAtrained = train_dnn(RLE, RLAempty) 

14 for number of simulations s do 

15 reset_environment 

16 for number of steps n do 

17 CIO = select_cio(RLAtrained, CIO_set, Varsout(n-1) ) 

18 output variables Varsout = run_environment(RLE, RLAtrained, CIO, n), see Error! R

eference source not found. 

19 return Varsout as performance data 

 

4.4.1 Proposed Solution 
The line 10 of the Algorithm 2 is the beginning of the proposed solution. Line 10 describes the creation 

of the environment discussed in the previous subsection. After performing generic, although necessary 

[16] reinforcement learning-based steps7 in the workflow at line 11 and line 13 of the Algorithm 2, the 

last part of the proposed solution is at line 17 and line 18 of the Algorithm 2. At line 17 of the Algorithm 

2, the defined environment is subject to the Actions taken by the reinforcement learning agent, which 

sets the CIO values for the environment. The Action is based on the environment output variable from 

the previous time step called State, as per the official MATLAB naming convention for the 

Reinforcement Learning Toolbox [16]. In the proposed solution, the State variable is equal to the 

custom-defined R function, see Figure 2. This whole process is described in detail in Algorithm 3.  

The Algorithm 3 works in the same way as the Algorithm 1, except for the lines 7, 8 and 13. The 

difference in line 7 is the way the channel quality is obtained. As described in previous sections, the 

channel quality data for the FlyBS to UE channel is predicted and not measured. The predicted channel 

quality is multiplied by a Reward Difference parameter, which is obtained at line 13. The Reward 

Difference represents the change in R function value obtained in the current time step and the previous 

time step. After the DNN-based prediction is done, the DNN update its internal weights based on the 

 
6 A-C stands for Actor-Critic 
7 These steps include creation and training of the A-C DNN-based RL Agent in a similar fashion to the training of 
the channel prediction DNN  
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predicted channel quality. The DNN weights update helps to maintain the necessary prediction 

accuracy, i.e., the low prediction error. 

For better illustration of the proposed solution, Figure 1 depicts a high-level overview of the core of 

the proposed solution. More detailed diagram with all variables included in the solution is in Figure 2. 

 

Figure 1 High-level diagram of the proposed solution 

 

Algorithm 3 High level description of the environment 

1 input variables = RLE (contains CIO and DNN), ts as time step from Error! Reference source not found. 

2 counters Count = counters for HOs, FlyBS HOs, HOpp, other variables 

3 for number of time slots ts do 

4 for number of UEs i do 

5 for number of GBSs, FlyBSs g, f do 

6 channel quality GGBS_UE = calculate(FSL, i, g) 

7 channel quality GFlyBS_UE = (1 + dR) × predict(DNN, i,  f) 

8 DNNupdated = update_network_weights(DNN) 

9 if A3 event handover condition = true 

10 perform_handover(CIO) 

11 Count = number of UE HOs, FlyBS HOs, HOpp, other variables 

12 SINR, capacity C, reward R = calculate(G, Count) 

13 reward difference dR = 1 – (R(ts-1)/R(ts)) 

14 output variables Varsout = Count, C, R, DNNupdated 

15 return Varsout as performance data 
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Figure 2 Diagram of the proposed solution workflow. For clarity, each distinct part of the solution is shown in a different 
color. 
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5 PERFORMANCE EVALUATION 
In this section, the simulation parameters are defined. Some of these parameters are then used as the 

performance metrics for the evaluation of the simulations. First, all the parameters are divided into 

three categories. Each of the categories is tied to a different element within the simulation: BSs, UEs 

and handover procedure. After simulation parameters, important metrics for the performance 

evaluation are defined. Lastly, different simulation scenarios are presented, which will be compared 

with one another. 

5.1 Simulation Parameters 
To obtain enough data for the performance evaluation we run 25 different simulations, each running 

for 1000 steps, with 1 step being equal to 0.01 seconds. Some simulation parameters are randomized 

across simulations, like the starting position of each UE or their speed, while another set of parameters 

remains the same across all simulations. These constant parameters are mostly GBS-related like 

transmission power or bandwidth. Every important simulation parameter is listed in the Table 1. 

5.1.1 Environment 
We consider the simulation area of 4 km2 (2 × 2 km). Within this area, three conventional GBSs are 

deployed at random positions. The average distance between each GBS is 500 meters. In addition to 

the GBSs, there are F FlyBSs. The position of each FlyBS is determined as the center of gravity of all UEs 

connected to the FlyBS. However, the positioning of these FlyBSs is indifferent to the proposed 

solution. This approach was chosen solely for its simplicity, meaning that the movement of both the 

UEs, and subsequently their serving FlyBSs, is unimportant for the simulations overall. The main 

purpose of this diploma thesis is to propose a new handover optimizing solution, not to assess the 

movement patterns of all involved objects. 

5.1.2 User Equipment 
The number of UEs in a simulation is defined as 45 UEs per GBS and 15 UEs per FlyBS. These UEs start 

the simulation uniformly distributed in the simulation area, connected to the closest base station. The 

UEs move in a custom-defined randomized manner. The position of each UE is updated every time 

step. The position update ∆𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is calculated as:  

 ∆𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛=  𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ×  𝑆𝑝𝑒𝑒𝑑 ×  sin(𝐴𝑛𝑔𝑙𝑒) + 𝑅𝑎𝑛𝑑𝑜𝑚 𝑉𝑎𝑙𝑢𝑒,  ( 7 ) 

where 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 [-] is the value from set {-1, 1} denoting whether the UE is going in the direction the 

axis or in reverse , 𝑆𝑝𝑒𝑒𝑑 [m/s] is a value from set {1.5, 3, 4.5}, which denotes the speed of the UE. The 

set of speed values is loosely based on different types of urban transportation, meaning pedestrians 

walking, running, or riding e.g., a bicycle. Each UE retains their speed for the entire duration of the 

simulation. Parameter 𝐴𝑛𝑔𝑙𝑒 [rad] has a value from range 〈0, 2𝜋〉, which is iterated over the course of 

the simulation. Parameter 𝑅𝑎𝑛𝑑𝑜𝑚 𝑉𝑎𝑙𝑢𝑒 [-] has value from range 〈0, 5〉, which pseudo-randomizes 

the movement of each UE. ∆𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  is calculated for both the X and Y axis of the simulation area. The 

proposed movement model is based on movement model generally present in 2D video game 

simulations [17]. 

5.1.3 Handover 
The handover is triggered according to A3 event as defined by 3GPP standards with parameter TTT set 

to 0.05 s and Hysteresis being equal to 3 dB. Parameter CIO is chosen from the set {-6, -3, 0, 3, 6} [dB] 

[8]. The handover trigger condition remains the same for both the conventional handover and the 

FlyBS handover. 
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5.2 Performance Metrics 
The following performance metrics are defined to evaluate the performance of the proposed solution.  

Main metric is a mean capacity of all UEs. The capacity is obtained from the maximum channel capacity 

defined by Equation ( 3 ). In this diploma thesis we presume no losses due to the signaling overhead, 

transmission errors or protocol inefficiencies, thus the loss coefficient L [
%

100
] is set to 0. 

Another performance metric is the number of handovers, both UE-based handovers and FlyBS-based 

handovers, performed over the course of all the simulations and time steps. However, the number of 

handovers itself is not the only indicator of network performance.  

Another performance indicator is the number of ping-pong handovers. Ping-pong handovers are 

defined as frequent handovers from one BS to another and then back to the original BS in a short 

amount of time. Ping-pong handovers are best to be avoided as every handover generates a certain 

amount of signaling messages, which lowers overall capacity and increase energy costs for the involved 

UEs. Handover is labeled as ping-pong handover if the UE connects to the target BS and then back to 

its original serving BS in less than a critical time, labeled as minimum time-of-stay. To be able to 

compare the number of ping-pong handovers between different simulation scenarios, we define the 

handover ping-pong ratio (HPR) [
%

100
], which is defined as:  

 𝐻𝑃𝑅 =
𝑁𝑃𝑃

𝑁𝑡𝑜𝑡𝑎𝑙
, ( 8 ) 

where 𝑁𝑃𝑃 [-] is the number of ping-pong handovers and 𝑁𝑡𝑜𝑡𝑎𝑙 [-] is the number of all handover. 

All this is followed by the R function. While not applicable for approaches, which do not take advantage 

of the reinforcement learning, it can serve as a miscellaneous metric, which shows the relation 

between number of handovers and capacity. 

Table 1 Simulation Parameters 

Parameter Value 

Simulation Area 2 × 2 km 

Carrier Frequency 1800 MHz 

Tx Power of GBS/FlyBS 23/15 dBm 

Bandwidth of GBS/FlyBS 100 MHz 

Number of UEs8 165 

Hysteresis 3 dB 

TTT 0.05 s 

Time Step 0.01 s 

CIO Set {-6, -3, 0, 3, 6} dB 

  

 
8 This number of UEs is valid for 3 GBS and 2 FlyBS. The total number of UEs is calculated as 45 per GBS and 15 per FlyBS. 
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5.3 Simulation Scenarios 
In this diploma thesis, the proposed handover decision optimizing algorithm is compared with other 

state-of-the-art approaches in different simulation scenarios. 

5.3.1 Fixed CIO 
This approach, based on the work of M. Najla et al., 2020 [1] is different from the proposed solution 

by setting the CIO to fixed integer value, thus circumventing the reinforcement learning all together. 

This applies to both ground and flying base stations. The CIO value is selected randomly from the set 

of CIO values at the start of each simulation and retained for the remainder of simulation. With the 

addition of FlyBSs to the mobile network, we still need to utilize the deep learning algorithms and DNN. 

As described in the previous sections, this is for the purpose of predicting the channel quality between 

flying and ground base stations based on the channel quality between GBSs and UEs. This approach 

should yield lower capacity values than the proposed solution as the reinforcement learning is not 

present and CIO values are fixed. 

5.3.2 No Machine Learning 
This approach, based loosely on the network model presented in the work of T. Sap, 2022 [4] is 

different from the proposed solution by the absence of machine learning altogether. At the start of 

each simulation the CIO parameter of all the BSs is set to a fixed integer value selected randomly from 

a predefined set of CIO values. The CIO value remains the same for the duration of the simulation, as 

in the previous Fixed CIO approach. However, in this approach the deep learning and DNN are absent. 

The channel quality between FlyBSs and UEs is measured, not predicted, by the UEs in the same 

manner as the channel quality between GBSs and UEs in a conventional network. This approach should, 

theoretically, yield higher capacity than the proposed solution, but as described in the earlier chapter, 

it is compensated by a higher energy cost for the UEs, thus making it a less desirable option. 

5.3.3 Association 
The Association approach replaces the conventional handover decision with a pure association 

process, with respect to the base station load. Every UE is connected to GBS with the highest channel 

quality, either directly or through FlyBS. If the target GBS is at its maximum load, UE connects to the 

GBS with the second highest channel quality and so on. This approach uses no reinforcement learning 

to optimize the BS CIO values, as the association uses no CIO values during handover. To use the deep 

learning to predict the FlyBS to UE channel quality also has no real advantages, as this approach is 

mainly demonstrative. Thus, the FlyBS to UE channel quality in this approach is measured and not 

predicted. This approach serves mainly as proof that the defined network model works correctly. This 

scenario sets the upper limit to the capacity values of all the state-of-the-art approaches as it 

eliminates the variance brought to the simulations by the handover decision process. However, its use 

in real mobile networks is highly improbable as the number of handovers while using this approach 

should increase dramatically. Due to the increased energy costs and signaling, the increased number 

of handovers in the mobile network is undesirable. 

5.3.4 Other possible approaches 
Another possible approach to consider would be approach presented by A. Madelkhanova et al., 2022 

[8] with measured channel quality from FlyBSs to UEs and CIO parameter set by the Actor-Critic 

reinforcement learning. However, this comparison seemed unnecessary. The only relevant difference 

between the approach proposed in this diploma thesis and the approach from [8] is the FlyBS to UE 

channel quality. As the channel quality in [8] is fully measured, thus not affected by prediction error, it 

is bound to perform better in terms of capacity than the approach proposed in this diploma thesis. On 

the other hand, the solution proposed in this diploma thesis should theoretically perform better in 
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terms of energy cost. This is due to the fact that the FlyBS to UE channel quality is predicted and thus 

pose no additional energy costs to the UEs.  

However, as mentioned in the previous sections, both the DNN training optimization and UE energy 

consumption are beyond the scope of this diploma thesis. With this in mind, the comparison between 

proposed solution and the approach proposed in [8] make little sense. It remains a candidate for future 

works, where energy costs or DNN training optimization might be considered. 

Main differences between all considered approaches are highlighted in the Table 2 

5.4 Used Equipment 
Simulations were done in the MATLAB R2022a Computing Environment by MathWorks with MATLAB 

Parallel Computing Toolbox [18] enabled. Simulations were done on the Personal Computer equipped 

with the CPU Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, GPU NVIDIA GeForce GTX 1050 Ti and 16 

GB of RAM. 

Table 2 State-Of-The-Art Approaches 

Approach Channel Quality CIO Setting 

Proposed Solution Predicted by DNN Set by RL Agent 

Fixed CIO Predicted by DNN Fixed, selected randomly 

No Machine Learning Measured Fixed, selected randomly 

Association Measured N/A 

 



19 
 

6 SIMULATION RESULTS 
In this section, the results of the simulations of the proposed solution are discussed. The proposed 

solution is also compared to other state-of-the-art approaches, while discussing the impact it has on 

the network and UEs. The section is divided into several subsections based on used metric i.e., capacity, 

handovers and R function. 

6.1 Capacity 
One of the main metrics to consider in mobile networks is the average capacity. Figure 3 depicts the  

main performance metric, the average capacity across all simulations and connected UEs with the 

number of FlyBSs as a parameter. The proposed solution is then compared with other mentioned 

approaches. 

As we predicted in the previous section, the proposed solution is not the best in terms of the average 

capacity. However, it is important to note that the only better performing approach, namely the 

Association approach serves only as an upper bound to all simulation results. Despite that, the 

proposed solution is on average only 5 % below the Association approach and works the best out of all 

competitive state-of-the-art approaches. 

The No Machine Learning approach, while useable in real networks, with only an average decrease of 

3.9 % compared to the proposed solution, is not deemed ideal, because it imposes higher energy 

consumption to the UEs in the network. However, the measuring of energy costs is not in the scope of 

this diploma thesis, but it might be discussed in the next works. In addition to the higher energy costs, 

another obstacle in the use of this approach in real networks is the usage of FlyBS as a transparent 

relay. When the FlyBS works as a transparent relay, measuring the channel quality is impossible, as the 

FlyBS is not visible to the UE. 

Lastly, the proposed solution is also better than the Fixed CIO approach. The average capacity of the 

proposed solution has increased by 9.2 % when compared to the Fixed CIO approach. This result is to 

be expected, as the Fixed CIO approach lacks the CIO optimization the proposed solution achieves via 

the reinforcement learning. 

   

Figure 3 Impact of number of flying base stations on an average capacity. Capacity is averaged across all simulations and 
connected UEs. In this figure we compare different approaches. 
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6.2 Ping-Pong Handovers 
When dealing with the handover optimization, the number of handovers itself can be misleading. 

When we deal with CIO optimization, the especially important performance metric is the number of 

ping-pong handovers or better yet the HPR ratio, which is more comparable among the different 

approaches. Figure 4 depicts the HPR ratio with the number of FlyBSs as a parameter. 

The proposed solution boasts the lowest value of HPR of all the compared approaches. This shows that 

the proposed solution is truly working as intended as it lowers the number of redundant handovers 

when compared to other simulated approaches.  

On the other hand, the No Machine Learning approach has on average the highest HPR ratio, more 

than double that of the proposed solution, with Fixed CIO approach being the second highest and 

Association approach the third. This is to be expected as all three approaches use fixed CIO values and 

lesser degree of machine learning-based optimization than the proposed solution.  

  

Figure 4 Impact of number of flying base stations on HPR. The value of the HPR is averaged across all simulations and 
connected UEs. In this figure we compare different approaches. 
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6.3 UE Handovers 
Another network performance metric to consider is the number of handovers, in this case UE 

handovers. Although not as important as HPR ratio, the number of handovers is useful as well, as lower 

number of handovers means less energy spent on the UE side. These are the conventional handovers 

as we know them from older generations of mobile networks. However, it is important to note that 

this metric includes the UEs which did not perform handover on their own but rather were handed 

over to other GBS by the FlyBS handovers. Figure 5 depicts the number of UE handovers with the 

number of FlyBSs as a parameter. 

As we expected, the Association approach has by far the highest number of handovers. The increase 

in handovers is in the hundreds of per cent compared to the proposed solution. However, as 

mentioned in the previous subsection, this approach is not really applicable in the real mobile network.  

As for the other approaches, their values are comparable with one another. The proposed solution 

comes on top with an average 8 % decrease in the number of handovers when compared to the Fixed 

CIO and No Machine Learning approaches. This is to be expected, as the proposed solution is designed, 

among other things, to prevent redundant handovers. 

Another thing to notice is the overall increase in the number of handovers across all approaches. 

However, this is an expected behavior. As the number of FlyBS increases, the chance for a FlyBS 

handover increases as well, which is projected in the overall increase of the number of handovers. 

     

          (a)                   (b) 

Figure 5 Impact of number of flying base stations on a number of handovers. Handovers are averaged across all simulations 
and connected UEs. In this figure we compare different approaches. (a) number of handovers across all approaches, 

(b) number of handovers without Association approach for more detail. 
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6.4 FlyBS Handovers 
With the introduction of FlyBSs into the mobile network we also need to consider the number of FlyBS 

handovers for the performance evaluation. These handovers are performed by the FlyBSs between 

their serving GBS and target GBS, while carrying all their connected UEs with them to a new GBS. Figure 

6 depicts the number of FlyBS handovers with the number of FlyBSs as a parameter. 

Here a similar pattern to that of the conventional UE handovers is depicted. The Association approach 

has on average the highest number of FlyBS handovers of all the considered approaches. However, 

unlike the conventional UE handovers, the increase here is not in the hundreds of per cent. The 

increase over the proposed solution is 92 %. Once again it is important to note that the Association 

approach is not applicable in real networks due to the extreme number of handovers and the energy 

costs and signaling that comes with it. 

As for the other approaches, the average number of FlyBS handovers is comparable to one another 

with the proposed approach having on average the lowest number of FlyBS handovers and No Machine 

Learning the highest number of FlyBS handover with the average increase of 14 % over the proposed 

approach. 

The general trend in the number of FlyBS handovers is similar to that of conventional UE handovers. 

The overall number of FlyBS handovers is increasing with the number of FlyBSs. With the increased 

number of FlyBSs, the chance for FlyBS handover has also increased, so this trend is to be expected. 

 

Figure 6 Impact of number of flying base stations on a number of FlyBS handovers. FlyBS handovers are averaged across all 
simulations and connected UEs. In this figure we compare different approaches. 
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6.5 Reward Function 
When compared to other performance metrics like capacity or HPR, the R function is not as important, 

but it helps to complete the whole picture. Another way to look at the R function is an inversion to the 

number of handovers. The way the R function is defined, its value lowers with the increase in the 

number of handovers. The values of the R function are depicted in Figure 7. 

The lowest value of the R function corresponds to the Association approach as it has by far the highest 

number of handovers. The highest values of the R function correspond to the No Machine Learning 

approach. The proposed solution shares similar values with the Fixed CIO approach. However, it is 

worth noting that the R function is truly used only when reinforcement learning is present in the 

simulation scenario. This means that apart from the proposed solution, the R function is only 

illustrative. 

For the proposed solution, No Machine Learning approach and Fixed CIO approach the value of R 

function increases steadily with the number of FlyBSs. While the average capacity decreases with the 

number of FlyBSs, and subsequently the number of UEs, the number of handovers, on the other hand, 

increases. The increase in the values of the R function might indicate that the network quality is actually 

increasing with the number of FlyBSs, despite the decrease in average network capacity. In other 

words, the handover-capacity ratio is increasing, as an analogy to the price-performance ratio. This 

further illustrates the disadvantage of the Association approach as it drops quickly with the increasing 

number of FlyBSs. 

 

Figure 7 Impact of number of flying base stations on an R function. The value of the R function is averaged across all 
simulations and connected UEs. In this figure we compare different approaches. 
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7 CONCLUSION 
In this diploma thesis, a novel approach has been proposed, which combines the reinforcement 

learning-based CIO optimization for management of handovers and deep learning-based channel 

quality prediction for FlyBS to UE channels. The solution is part of an entire proposed workflow, which 

encompasses  two distinct steps. The first step of the solution is predicting the FlyBS to UE channels 

based on the information already known to the network, i.e., the GBS to UE channel. After that, a 

reinforcement learning agent sets CIO values of the network BSs based on the immediate state of the 

network, including the FlyBSs with predicted channel qualities. 

The proposed solution has been compared with several state-of-the-art approaches. In terms of 

capacity, the proposed solution fared very well, being the best of all the state-of-the-art approaches. 

The average network capacity when compared with other approaches has been increased by up to 10 

%, while also lowering the raw number of handovers by up to 15 %. The number of ping-pong 

handovers has even decreased multiple times. 

The only approach with higher average network capacity than the proposed solution is the upper-

bound Association approach. However, this upper-bound approach is plagued by several critical 

disadvantages, which limits its application to real networks due to an extreme number of handovers 

and consequent energy costs. 

When the R function is taken into consideration for performance, the proposed solution is the second 

worst in terms of raw numbers. However, as other compared approaches are not reinforcement 

learning-enabled, the comparison of R function raw numbers carries no useful information. What is 

more important is the overall trend of the R function, which grows with the number of FlyBSs. The 

growing trend might indicate an increase in the quality of the network. 

The diploma thesis can be further enhanced towards a consideration of more parameters, which might 

influence the results of the proposed solution, like handover cost or energy cost. Another future work 

might consider a more complex terrain, like an urban scenario with different density of city 

infrastructure. Future enhancements to this diploma thesis might also focus more on a single element 

of the proposed solution, like deep learning predictions and the associated prediction accuracy, which 

might be influenced by the number and size of the training data sets. 
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APPENDIX A 

A.1 Custom MATLAB Scripts 
Script 1 a_MAIN.m  

Main script for the simulations presented in this thesis. Selection of different approaches is done via script variables 
or in the global_variables.m function. 

Script 2 b_PLOTTER.m  

Script for plotting, i.e., presenting all simulated scenarios. 

A.2 Custom MATLAB Functions 
Function 1 data_for_dnn.m  

This function prepares data sets for the training of the DNN network. 

Function 2 dnn_learning.m   

This function creates the DNN network and trains it using the data from data_for_dnn.m function. 

Function 3 global_variables.m  

This function is the main control function for the solution workflow. It sets all variables needed by every script and 
function in this thesis, like number of UEs, BSs or UE and BS parameters. 

Function 4 reinfocement_learning.m  

This function creates the RL environment and agent. It also trains the Actor-Critic networks of the reinforcement 
learning agent by the MATLAB native function train.m. 

Function 5 reset_model.m  

This function resets the defined model, i.e., sets all needed variables and matrices to default values. 

Function 6 step_model.m  

This function serves as the main function for iterating the model, i.e., it defines the model, movement, channel or 
handover procedure. 

Function 7 step_model_loop.m  

This function serves as the main loop for non-reinforcement learning approaches. The reinforcement learning-
enabled approaches use the step_model.m iterated over by the MATLAB native sim.m function. 

A.3 Others 
File 1 README.pdf 

README file containing all necessary information for running and controlling the simulation functions and scripts. 

A.4 Additional Information 
All the digital media are contained in a ZIP repository, which is included with this thesis. 

Custom scripts included in this thesis were created in the version R2022a of the MathWorks MATLAB 
environment. Other used scripts are also compatible with this version. 
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