
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Department of Physical Electronics

Nonlinear laser absorption under high-energy-density
conditions

Doctoral thesis

Sviatoslav Shekhanov

Ph.D. programme: Applications of Natural Sciences
Branch of study: Physical Engineering
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man̊uv rozptyl, stimulovaný Brillouin̊uv rozptyl, porézńı terče
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Abstract

This thesis presents theoretical and numerical studies of high intensity laser interaction
with plasmas in the context of shock ignition approach to inertial confinement fusion for
energy production. Two key subjects are considered: i) the control of nonlinear laser
absorption in plasma, mitigating laser backscattering due to the competition between
stimulated Brillouin (SBS) and Raman (SRS) scattering, and ii) the interaction of laser
radiation with low-density porous materials and their transformation into a hot homoge-
neous plasma.

The studies of nonlinear laser-plasma interaction demonstrate the necessity of miti-
gating SBS to achieve efficient laser absorption under shock ignition conditions. Several
methods of SBS suppression are evaluated, including the use of multiple ion species,
plasma expansion, and laser bandwidth. Theoretical analysis of trapped modes in plasma
cavities is confirmed in numerical simulations, showing efficient absorption of laser energy
exceeding 30% and ion acceleration in the expanding cavities. Theoretical and numerical
analysis of laser interaction with porous materials sheds new light on the physics of high-
intensity laser interaction with structured low-density materials and provides valuable
input for constructing a sub-grid model describing foam heating and homogenization.

The results obtained in this work open further perspectives in laser-plasma interac-
tion studies in application to the shock ignition and to the laser-driven inertial fusion
in general. The investigation of SBS mitigation methods in two-dimensional geometry
is essential for developing a comprehensive understanding of the laser-plasma interac-
tion dynamics. Further investigation of foam targets is necessary to fully understand the
nonlinear interaction between high-intensity lasers and structured materials.
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Abstrakt

Tato disertace prezentuje teoretické a numerické studie interakce vysoce intenzivńıho
laserového zářeńı s plazmatem v kontextu inerciálńı fúze pro výrobu energie zapálené
rázovou vlnou. Jsou zde studována dvě kĺıčová témata: i) nastaveńı úrovně nelineárńı
absorpce laserového zářeńı v plazmatu a omezeńı zpětného rozptylu laserového zářeńı
v d̊usledku vzájemné interakce stimulovaného Brillouinova (SBS) a Ramanova (SRS)
rozptylu a ii) interakce laserového zářeńı s porézńımi materiály o ńızké středńı hustotě a
jejich transformace v horké homogenńı plazma.

Studie nelineárńı interakce laserového zářeńı ukazuj́ı na nutnost omezeńı SBS k dosažeńı
účinné absorpce laserového zářeńı za podmı́nek odpov́ıdaj́ıćıch zapáleńı inerciálńı fúze
rázovou vlnou. Je posuzováno několik metod potlačeńı SBS včetně využit́ı v́ıce druh̊u
iont̊u, expanze plazmatu a širokospektrálńıho laserového zářeńı. Teoretická analýza mód̊u
zachycených v plazmových kavitách, potvrzená v numerických simulaćıch, ukazuje účinnou
absorpci laserového zářeńı přesahuj́ıćı 30% a na urychlováńı iont̊u v expanduj́ıćıch kavitách.
Teoretická a numerická analýza interakce laserového zářeńı s porézńımi materiály přináš́ı
nový pohled na fyziku interakce se strukturovanými materiály o ńızké hustotě a poskytuje
cenné informace pro konstrukci modelu se zanořenou detailńı podśıt́ı popisuj́ıćıho ohřev
a homogenizaci pěny.

Výsledky źıskané v této práci otv́ıraj́ı daľśı perspektivy pro studie interakce laserového
zářeńı s plazmatem zaměřené na rázové zapáleńı inerciálńı fúze a na laserovou inerciálńı
fúzi obecně. Výzkum metod pro omezeńı SBS v dvourozměrné geometrii je zásadńı pro
úplné porozuměńı dynamiky interakce laserového zářeńı s plazmatem. Daľśı studium
pěnových terč̊u je nezbytně pro porozuměńı nelineárńı interakce vysoce intenzivńıho laserového
zářeńı se strukturovanými materiály.
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Chapter 0

Introduction

This thesis focuses on the theoretical and numerical examination of laser-target interac-

tion in relation to inertial confinement fusion. The research concentrates on two crucial

areas of study. The first aspect involves investigating the occurrence of parametric in-

stabilities in the long corona during laser-plasma interactions. Additionally, this thesis

explores the effects of hot electrons on ICF system performance, which are also phenom-

ena that occur during laser-plasma interactions. The second area of study pertains to the

use of low-density foams as outer layers of ICF targets. These foams have demonstrated

advantageous properties, including their ability to smooth laser beams and serve as effi-

cient sources of x-rays, energetic electrons, and ions. However, the understanding of the

interaction between intense laser radiation and structured materials, like foams, is not

complete. This research aims to address some of the unresolved problems and challenges

that require further exploration.

0.1 General context

With the advent of a new generation of powerful lasers, the research in high-energy den-

sity physics has attracted a widespread interest. One of the applications that has made a

strong contribution to the development of high-energy density physics is inertial confine-

ment fusion (ICF).

ICF is a promising approach for achieving controlled thermonuclear fusion with the

potential to provide a virtually limitless source of clean and abundant energy. In ICF, a

small pellet of fuel is compressed and heated to extremely high temperatures and pres-

sures, leading to the fusion of atomic nuclei and the release of energy.

The fusion process occurs when the nuclei of two light atoms, such as hydrogen, come

close enough together that the strong nuclear force can overcome the Coulomb repulsion,

which is the force that pushes the nuclei apart due to their positive charge. This requires

1



CHAPTER 0. INTRODUCTION 2

the fuel to be heated to extremely high temperatures (tens of millions of degrees) and

compressed to extremely high densities (millions of times denser than solid matter).

Controlling thermonuclear fusion requires meeting a specific condition to sustain a

fusion reaction. This is known as the Lawson criterion [1], which states that the fusion

rate must be higher than the energy loss rate in order for a fusion reaction to be sustained.

Meeting this criterion requires the fuel to be confined for a sufficient amount of time at

the necessary temperature and density.

The ICF power plant will operate in the pulsation mode [2], which can be assimilated

to ordinary combustion engines. The ICF reactor operation consists of periodic cycles

that proceed in four major steps:

i) Preparation: in this step, the fusion fuel is carefully prepared and loaded into a

small, spherical capsule, which can be placed inside a cylindrical case ”hohlraum”

made of a high-density material, such as gold, lead or uranium. The hohlraum with

a capsule or the capsule alone are then placed inside the ICF reactor.

ii) Compression: in this step, the capsule or the hohlraum containing the capsule is

irradiated by the laser beams or ion beams, which vaporize the outer layer of the

capsule and compress the fuel by ablation pressure. This process can be achieved

through either direct drive, where the laser beams or ion beams directly irradiate the

capsule, or indirect drive, where the beams first strike the hohlraum, producing X-

rays that then drive the implosion of the capsule. The fuel is imploded, compressed,

and heated to the conditions found in the core of a star, where hydrogen atoms fuse

together to form helium.

iii) Ignition: in this step, the compressed fuel reaches a critical temperature and density

needed to excite a self-sustaining chain of fusion reactions. This produces a large

amount of energy, which is released in the form of high-energy charged particles,

neutrons and radiation.

iv) Heat extraction: in this step, the energy released in the fusion reactions is trans-

formed into a heat in the walls of the reactor chamber. This heat is directed out of

the ICF reactor to generate electricity or power other applications.

One of the key challenges in ICF is the need to generate and maintain extremely

high temperatures and densities in the fuel, in order to achieve the conditions necessary

for fusion reactions to occur. This requires precise control of the energy delivery to the

capsule, as well as a thorough understanding of the complex physical processes involved

in the capsule implosion and heating.

The laser intensity needed for the capsule implosion is so high that the target ma-

terial is transformed in a high temperature, dense plasma. Laser energy absorption in

such a plasma is a strongly nonlinear process, which involves collisional dissipation and
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excitation of secondary plasma waves through the parametric instabilities. Such nonlin-

ear processes as Stimulated Raman Scattering (SRS) and Stimulated Brillouin Scattering

(SBS) are primary instabilities that can significantly affect the performance of ICF cap-

sule. These instabilities occur in the outer part of capsule where the laser light interacts

with the plasma outflow. They can lead to reflection of a significant part of laser energy,

thus reducing the energy available for the implosion. Additionally, SRS and Two Plas-

mon Decay (TPD) instability [3]–[5] lead to the generation of copious energetic electrons

that penetrate in a central part of the target, preheat it and reduce the fuel compres-

sion. Moreover, laser filamentation instability (FI) [6]–[8] and cross beam energy transfer

(CBET) [9]–[11] may induce inhomogeneities in the laser energy deposition at the target

surface and destroy the symmetry of capsule implosion.

SRS is a nonlinear scattering process that occurs when laser light interacts with a

plasma and transfers energy to plasma Langmuir waves [12]. This process can lead to

reflection of a significant fraction of the incident laser energy in plasma, thus reducing

the energy available for the target implosion and heating. SBS is a nonlinear scattering

process that occurs when laser light interacts with the plasma and transfers energy to

plasma ion acoustic waves [12]. Like SRS, SBS can lead to the reflection of a significant

fraction of the laser energy from the plasma.

TPD, CBET and FI are nonlinear laser-plasma interaction processes that can occur

in the context of ICF. TPD is a decay of a high-frequency electromagnetic laser wave into

two lower-frequency Langmuir waves, while the filamentation instability is characterized

by the formation of filamentary structures in the distribution of laser radiation in plasma.

Both TPD and SRS can lead to a conversion of a significant fraction of laser energy into

hot electrons. CBET and FI lead to the formation of nonuniformities in the distribution

of laser radiation in plasma, which can negatively affect the symmetry of ablation pres-

sure and target implosion, and thus reduce the fusion yield. Therefore, understanding

and mitigating the negative effects associated with these instabilities is critical for the

successful implementation of ICF.

Improved characterization of laser plasma interaction processes is accomplished through

the use of advanced diagnostic techniques, such as Thomson scattering and interferome-

try, which can provide insight into the physical processes involved in these instabilities.

It can also be achieved through the development of advanced simulation tools, such as

particle-in-cell (PIC) codes, which can help to predict the evolution of these instabilities

under different conditions.

Recent investigations in the domain of laser plasma interaction have been focused on

improving the performance of ICF experiments through the improvement of the quality

of laser beams and mitigation of nonlinear processes. However, the extreme conditions
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required for laser-driven fusion present significant challenges, such as the need to achieve a

high laser absorption efficiency, control the generation of hot electrons and the symmetry

of laser energy deposition.

Despite these challenges, the potential benefits of high energy density physics and ICF

are enormous. In addition to providing a clean and virtually limitless source of energy,

laser plasma interactions could also play a crucial role in advancing our understanding

of fundamental physics and the behavior of matter at extreme conditions. In this intro-

duction, we review the recent developments in the field of ICF, including the direct and

indirect drive approaches, shock ignition, and the role of laser-plasma interactions and

foams in ICF research. We then discuss the current state of theory and experiments re-

lated to the excitation of parametric instabilities and generation of hot electrons, with the

focus on unresolved problems. Finally, we explore the use of foams in ICF, including their

potential benefits and challenges, and outline areas for future research and development.

0.2 Direct and indirect drive in ICF

Nuclear fusion research has already more than 80-year history. In 1938, Carl Friedrich von

Weizsäcker and Hans Bethe have proposed a first model for the nuclear fusion reactions

occurring inside stars as a source of their energy release. According to their analysis, the

fusion of light nuclei may release a significant amount of energy even larger than splitting

of heavy nuclei [13], [14].

The actual idea of using the fusion reactions for the energy production was born in the

late 1940s, when physicists have measured the cross section of deuterium-tritium (DT)

reaction and aimed at recreating the mechanism of nuclear fusion on Earth, however in

an uncontrolled manner. On October 31, 1952, the US detonated their first nuclear bomb

based on the fusion reaction releasing over ten megatons of TNT equivalent [15]. In this

scenario, the fission reaction was used as an energy source for compression and ignition

of the DT fuel. The energy yield in this explosion was 800 times the larger the Hiroshima

fission bomb.

It is not possible to use such explosions as a source of clean and safe energy. One needs

to achieve ignition with less powerful explosions and adapt the fusion energy release to the

electrical energy production. To do that in a controllable way, first of all the mass of DT

fuel should be small and it should be compressed to the very high densities. Laser drivers

that compress energy in space and time are required to produce such extreme conditions

in the laboratory.

In direct drive ICF, laser beams are focused directly onto the fuel pellet, delivering the

energy needed for fuel implosion and heating. The energy of the laser beam is absorbed
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by the outer layers of the capsule, causing it to expand and to compress the inner dense

shell by the force of reaction. This approach has the advantage of being more efficient, as

the energy is delivered directly to the capsule, but it is also more challenging to implement

due to the high level of homogeneity of energy deposition required.

In the direct drive (DD) approach [2], [11], [16], [17], the laser energy deposited at the

outer surface of the target because laser radiation cannot penetrate deeply in plasma: it

is reflected from the critical density ncr, which is inversely proportional to the square of

the laser wavelength λ (in microns):

ncr = 1.115× 1021λ−2
µm cm−3.

This density for the laser wavelength in optical range is about hundred times smaller

than the solid density. So, the energy to the ablation surface is transported by electron

heat conductivity. This additional step in the energy transfer affects the efficiency target

implosion. Ablation pressure plays a critical role in the ICF performance, as it is used

to compress the fuel to the necessary density and temperature for the fusion reaction to

occur.

Ablation pressure can be calculated using the following formula [2], [18]:

pabl ≃ 57(ηabsI15/λµm)
2/3Mbar,

where pabl is the ablation pressure in megabars, ηabs is the laser absorption coefficient, I15

is the laser intensity in units of 1015 W/cm2, and λµm is the laser wavelength in microns.

The laser energy has to be absorbed uniformly over the surface of the target so that

the ablated material expands spherically and produces a symmetric implosion. Laser

absorption coefficient and wavelength are important factors in producing the ablation

pressure, as they determine the amount of energy that is absorbed in the target and the

depth where the energy is deposited.

Understanding and controlling the ablation pressure is crucial for optimizing the per-

formance of a direct drive ICF target. It is an active area of research and development,

with ongoing efforts to improve the accuracy of laser propagation calculations and the

design of target structure that can mitigate the inhomogeneity of laser energy deposition.

To achieve the necessary conditions for fusion, the fuel must be compressed to a density

about thousand times higher than the solid density. This can be achieved on the high-

energy, multi-beam laser facilities, such as the Laser Mégajoule (LMJ) in France [19]–

[21] and the National Ignition Facility (NIF) in the United States [22]–[24]. However,

these facilities are designed for indirect drive ICF scheme and cannot provide a required

implosion symmetry for the direct drive.
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In indirect drive ICF, the energy is first absorbed by a surrounding cylindrical case

called ”hohlraum,” and then transferred to the pellet through thermal radiation. This

approach has the advantage of providing a more symmetric ablation pressure, but it is

also less efficient, as large fraction of the laser energy is lost in the conversion process and

enhanced radiation losses.

The hohlraum is typically a thin, hollow cylindrical container made of a high-density

material such as gold, lead or uranium. It is designed to absorb energy of the laser

pulse and convert it into thermal radiation, which is then transferred to the pellet. The

hohlraum is irradiated with many laser beams, which penetrate inside through two holes

at the ends of the cylinder, heat the inner surface and generate a strong near-thermal

radiation.

The fuel capsule is a shell made of a fusible material such as deuterium-tritium (DT)

ice and covered by an outer shell of light material, such a berillium or carbon, serving as

ablator. It is irradiated from the hohlraum walls, causing ablation of the outer layer and

compression of the inner layer containing fuel.

The efficiency of the indirect drive approach depends on the ability of the hohlraum

to absorb and convert the laser energy into thermal radiation, as well as the ability of the

fuel pellet to absorb the thermal radiation and reach the necessary conditions for fusion.

By using a high-Z material, such as gold, for the hohlraum cavity, it is possible to achieve

a high efficiency in the conversion of laser energy into X-rays, with more than 60− 70%

of the laser energy being converted. The radiation temperature of the hohlraum depends

on the laser energy and the volume of the hohlraum. According to Stefan-Boltzmann’s

law, the radiation temperature can be estimated using the equation IX = σSBT
4
X , where

IX is the intensity of the thermal radiation, σSB is the Stefan-Boltzmann constant, and

TX is the radiation temperature. A radiation temperature of 300− 400 eV is needed for

the fuel implosion. It corresponds to an intensity of approximately 1015 W/cm2.

Despite the lower efficiency of indirect drive, it has several advantages over direct drive.

It allows for the use of lower quality laser beams, which are easier to produce and more

readily available. It is also more robust, as irradiation in the hohlraum is less sensitive to

laser mis-pointing, thus reducing the risk of hydrodynamic instabilities during the shell

implosion.

However, indirect drive also has its challenges. The accuracy of the temperature and

density calculations depends on a number of factors, such as the accuracy of the hohlraum

radiation model and the reflectivity of the fuel pellet. In addition, the transfer of energy

from the hohlraum to the fuel pellet is limited in its efficiency. Estimates suggest that the

energy coupling into the capsule cannot be more than 0.2, indicating that a significant

portion of the energy can be lost in the process. So, the direct drive approach is preferred
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for energy production with fusion reactions.

One promising approach for achieving controlled thermonuclear fusion for energy pro-

duction is the shock ignition scheme [19], [23], [25], [26], which is a two-stage process. The

first laser pulse enables a more stable shell compression at a lower implosion velocity. Fuel

ignition is achieved with the second high-intensity laser spike that launches a strong shock

wave, which converges to the center and heats the fuel at the moment of stagnation. This

approach has the advantage of being more flexible to achieve the necessary fuel densities

and temperatures in a two-step process, rather than relying on temporal profiling of a

single laser pulse as in the traditional ICF approach.

The important aspects of the shock ignition scenario are the amplitude and timing of

the shock wave, which must be carefully controlled in order to achieve the fuel ignition

conditions. The shock wave must be generated at the right time and with the right

amplitude in order to effectively compress and heat the fuel [25]. However, it is important

to note that in this scenario, the additional shock is primarily used for heating rather

than compressing the fuel. In addition, the shock wave must be carefully matched to the

fuel density in order to ensure that it is absorbed in the center and does not reflected off

it.

The shock ignition scenario has been studied both theoretically and experimentally.

It has been demonstrated experimentally that it is possible to achieve the shock pressures

in excess of 300 Mbar needed for ignition and increase the neutron yield [27]. Numerical

simulations demonstrated an improved shell stability during the implosion due to a smaller

implosion velocity and acceleration.

Despite the promising features of the shock ignition scenario, there are still several

challenges that need to be addressed in order to make it a viable approach for fusion

energy production. These include the need for precise control of the shock wave timing

and intensity, as well as the need for a better understanding the complex physical processes

involved in the laser absorption and the role of hot electrons in the energy transport. It

is important to note that in shock ignition, the interaction of the laser peak intensity

significantly above the threshold of parametric instabilities with long corona cannot be

avoided. Further research and development is needed to address these challenges and to

optimize the performance of shock ignition scheme.

0.3 Use of foams in high energy density physics

The use of foams in the high energy density physics and ICF has gathered significant

interest in recent years due to their potential to improve the performance of ICF targets

and secondary radiation sources. Foams can be used in a variety of ways, as a material for
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laser beam smoothing and target design, as a source of bright x-rays, energetic electrons,

and ions.

Foams can be used in both direct and indirect drive ICF approaches to improve the

target performance. In direct drive ICF, foams are used for reducing the laser imprint and

improving the shell stability with respect to hydrodynamic instabilities. In the indirect

drive, foams are used for lining the inner surface of hohlraum in order to prevent premature

wall expansion and distortion of the implosion symmetry.

Laser beams irradiating the target can be significantly distorted due to the aberrations

in the laser optics elements and amplifiers and due to the plasma instabilities. Laser

beam smoothing aims at removing the laser imprint at the ablation surface, improving

the uniformity of energy delivery and implosion symmetry. In laser beam smoothing

with foam, the foam material is used as a medium for laser absorption. This approach

enhances lateral transport and mitigates inhomogeneities in laser energy deposition. This

allows to reduce the pressure modulations at the ablation surface, which provide a seed

for the Rayleigh-Taylor hydrodynamic instability during the shell acceleration. Foams

have shown their efficiency in smoothing laser beams and reducing the laser imprint in a

number of experiments [28]–[32]. Another advantage of using foam is that it can absorb

radiation with high incidence angles, allowing for wider laser spots on the target and

reducing the number of required laser beams.

Low density foams irradiated by intense laser pulses can also serve as sources of bright

x-rays, energetic electrons, and ions. The x-rays produced by foam [33] can be used for di-

agnostic purposes, such as imaging of the implosion process of a fuel pellet. The energetic

electrons and ions produced in laser-irradiated foams [34]–[37] can be used for diagnostic

purposes providing high resolution images of the imploding shell and compressed core.

However, there are many unresolved questions and challenges that need to be addressed

in order to fully realize the potential of foams in ICF. Among them are the time of homog-

enization of the foam structure [38] and its contribution to the laser imprint, the velocity

of propagation of the laser-driven ionization wave in foam [39]–[41], the energy partition

between different particle species and the radiation effects.

The advantage of foams compared to homogeneous materials consists in their flexibil-

ity and possibility of controlling their density and geometrical shape. Several techniques

have been designed to optimize the properties of foams, such as density, pore size, shape

and structure of solid elements. However, theoretical understanding and numerical mod-

eling of laser interaction with foams is insufficient. Modeling of foams with a homogeneous

material of equivalent density underestimates the laser energy deposition and ionization

time. Further research is needed to fully understand the mechanisms of structural transi-

tions in the foam, the role foam microstructure in the laser energy absorption and energy
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transport. This will help to improve the efficiency of foam applications in high energy

density physics.

0.4 Statement of the problem

The goal of this research is to investigate the effects of laser plasma interaction in applica-

tion to ICF. Two aspects are considered. The first one is the competition between different

parametric instabilities, namely SBS and SRS, in the context of shock ignition. To this

end, we have performed one- and two-dimensional kinetic simulations with the goal to

define conditions optimizing the laser energy deposition and controlling the hot electron

production. The second aspect is theoretical and numerical modeling of laser interaction

with a foam target, the foam transformation in a plasma and its homogenization.

In the first part of this study, we examine how one can control the level of nonlin-

ear laser absorption and scattering in a hot, weakly collisional plasma by manipulating

plasma parameters such as ion acoustic wave damping, divergence of the plasma expan-

sion velocity, and laser bandwidth. In the second part of this study, we investigate the

microscopic processes of laser absorption and scattering from structural elements of a

sub-wavelength size and foam transformation in a plasma through a combination of ex-

pansion and ablation. A theoretical analysis is completed with two-dimensional numerical

simulations.

Overall, this research aims at improving our understanding of the role of laser-matter

interaction processes under the ICF conditions needed for the design of a new generation

of more efficient fusion targets.

0.5 Organization of the manuscript

The present work consists of four Chapters, which focus on the study of nonlinear laser

absorption in an underdense plasma and in a low density foam under the ICF conditions.

• In Chapter 1, we provide a short review of known results related to parametric

instabilities in ICF and their role in the context of shock ignition. We begin by

discussing collisional absorption in inhomogeneous plasmas and its implications for

ICF. Next, we delve into SBS, including its temporal gain, theory and experiments,

and the role of ion acoustic waves in two species plasmas. We also explore the

convective SBS, spatial gain, the role of two ion species, and flow divergence, and

provide examples of practically interesting parameters for ICF. We then turn our

attention to SRS, covering its temporal gain, theory and experiments, and the spa-

tial gain and absolute instability. We also consider the role of collisional absorption,
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hot electrons, and cavitation. Finally, we discuss TPD, including its general charac-

teristics and competition with SRS in relation to laser absorption and hot electron

production.

• Chapter 2 is focused on numerical simulations of SBS and SRS and on analysis

of the results obtained. We begin by discussing the methodology of numerical sim-

ulations of plasma dynamics using particle-in-cell (PIC) code Smilei, a massively

parallel fully relativistic electromagnetic simulation tool. This approach involves

coupling hydrodynamic and PIC simulations for interpretation of experiments and

setting the input parameters. Next, we explore methods for controlling SBS, includ-

ing the role of ion damping, laser bandwidth, collisions, and flow velocity divergence

in particle energy evolution. We then consider laser backscattering and transmis-

sion, including the intensity and spectra of the scattered light. We also analyze

the hot electron flux, including the two-temperature parametrization and tempo-

ral dependence. We discuss ion heating and acceleration, including the processes

that contribute to these phenomena and their impact on SBS and SRS. Finally,

we compare the results of one- and two-dimensional simulations, exploring the ad-

vantages and limitations of each approach. In conclusion, this chapter provides a

comprehensive analysis of numerical simulations of SBS and SRS.

• Chapter 3 delves into the interaction of laser radiation with a single elementary

cell or pore in a foam. The pore contains a solid cylinder with initial radius a0

and density ρs. To model the laser absorption and scattering from a cylinder with

a radius comparable to the wavelength, the Mie theory can be used. However,

this standard approach considers homogeneous scattering objects, while the radial

inhomogeneity of the cylinder plays a crucial role in our study as it enables reso-

nance absorption near the critical density. Therefore, in this study, we examine a

scenario that can be mathematically analyzed with two simplified physical assump-

tions. Firstly, we explore the case of an infinitely long straight cylinder exposed to a

plane wave incident at an oblique angle. Secondly, we consider a cylindrical object

with radial density distribution that is axially symmetric. Despite the anisotropic

nature of laser energy deposition and resulting cylinder expansion, this example

offers valuable insights into the physics of laser interaction with a foam. Through

mathematical analysis, we investigate the absorption and scattering of laser radia-

tion from the cylindrical object, leading to the development of a model that explains

the resulting cylinder expansion. Additionally, we study the characteristics of laser

radiation absorption in a single sub-wavelength cylinder and explore the factors af-

fecting it. Our findings reveal the significance of the radial inhomogeneity of the



CHAPTER 0. INTRODUCTION 11

cylinder in enabling resonance absorption near the critical density, which plays a

crucial role in laser absorption in a foam.

• Chapter 4 is focused on the use of PIC simulations for studying the kinetics of

plasmas in underdense foam targets. The chapter confirms and evaluates the charac-

teristics of laser interaction with sub-wavelength cylinders predicted by the analytic

theory, using the code Smilei. The simulations investigate the laser absorption

efficiency in solid elements, which strongly depends on their structure, shape and

orientation with respect to the laser polarization. We find that laser polarization

perpendicular to the cylinder axis leads to enhanced laser absorption due to plasma

resonance, while for the laser polarization parallel to the cylinder axis absorption

occurs due to electron collisions. The evolution of the cylinder density over time is

described by a bell-shaped exponential function characterised by three parameters:

central density, radius and steepness. Two distinct phases of cylinder evolution are

observed: the radius of the cylinder decreases in the first phase, while in the second

phase, the cylinder expands and initially solid material transforms in a plasma. The

simulation is stopped when the cylinder maximum density drops below the critical

density and the ablated plasma fills the pore. We find that the ion temperature at

the end of homogenization process obtained in the simulation is significantly larger

than the electron temperature, which is consistent with available experimental data.

The small size of the solid element in comparison to the pore size leads to small

laser absorption in a single pore. Hence, laser heating and foam homogenization

involve many pores, resulting in a homogenization layer thickness that is inversely

proportional to the pore size. These findings provide an input for the development

of a multi-scale model for foam heating by laser radiation.

The main results obtained in this work are summarized in Chapter 5.



Chapter 1

Laser plasma interaction and

parametric instabilities

This chapter provides an overview of the parametric instabilities that can occur in the

context of ICF, including Stimulated Brillouin Scattering (SBS) and Stimulated Raman

Scattering (SRS). We first discuss the basics of laser propagation in an inhomogeneous

plasma, including the role of collisional absorption. We then focus on SBS, discussing

its temporal and spatial gain and how factors such as flow velocity and laser bandwidth

can affect its performance. In addition, we consider the potential impact of multiple ion

species on SBS. Next, we discuss SRS, examining its temporal and spatial characteristics

and the role of cavitation and hot electrons. We briefly mention two plasmon decay, noting

that it is generally less important than SRS in the context of shock ignition ICF. This

chapter is concluded with the discussion of processes of generation of energetic electrons

and their role in laser energy absorption in plasma.

1.1 Laser propagation in plasmas and collisional ab-

sorption

Laser propagation in an inhomogeneous plasma is a complex phenomenon that has a

significant impact on the performance of inertial confinement fusion (ICF) experiments.

The evolution of the laser light as it travels through plasma is determined by the inter-

action between the laser field and the plasma electrons, which can be described using

the Maxwell equations complemented in the linear approximation by the plasma response

characterized by the dielectric permittivity.

Dielectric permittivity, ϵ(ω, r) describes the plasma response – a relation between the

electric field induced in plasma and the external electric field. It enters the macroscopic

Maxwell’s equations, which govern the behavior of electromagnetic fields in space and

12
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time. In the frequency domain representation, the electric and magnetic fields are pro-

portional to exp(−iωt), and the Maxwell’s equations in an inhomogeneous and isotropic

media can be written as:

∇ · E = −1

ϵ
∇ϵ · E,

∇ ·H = 0,

∇× E = i
ω

c
H,

∇×H = −iω
c
ϵE, (1.1)

where E and H are the electric and magnetic field, and c is the speed of light.

The wave equations for electric and magnetic field separately can be derived from the

(1.1) by taking the curl of the electric and magnetic fields:

△E+∇(∇ ln ϵ · E) +
(ω
c

)2
ϵ(ω, r)E = 0,

△H+∇ϵ(ω, r)×∇×H+
(ω
c

)2
ϵ(ω, r)H = 0. (1.2)

In the case of light wave propagation in a homogeneous and uniform plasma, the gradient

of the dielectric permittivity∇ϵ is equal to zero and the divergence of the electric field∇·E
is equal to zero. This means that electric and magnetic field satisfy identical equations:

∆E+
(ω
c

)2
ϵ(ω)E = 0,

∆H+
(ω
c

)2
ϵ(ω)H = 0. (1.3)

The propagation of light waves in such plasmas can be described by the Helmholtz equa-

tion (1.4), which is a scalar equation that applies to each component of the electric and

magnetic fields separately. This equation, named after Hermann von Helmholtz, was orig-

inally derived from the Maxwell equations and predicts the propagation of electromagnetic

waves in a free space where ϵ = 1. These waves were first observed by Heinrich Hertz, a

student of Helmholtz, several years after the publication of Helmholtz’s theoretical paper.

The homogeneous Helmholtz equation is given by:[
△+

(ω
c

)2
ϵ(ω)

]
u(ω, r) = 0 (1.4)

where u(ω, r) is the scalar wave amplitude, written in the frequency domain, that repre-

sents any component of the electric or magnetic field. In the most simple case of isotropic
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collisionless media, the dielectric constant can be written:

ϵ(ω) = 1−
ω2
pe

ω(ω + iνei)
, (1.5)

where ωpe is the plasma frequency and νei is the electron-ion collision frequency. The

dielectric permittivity ϵ(ω) can be decomposed into a real and an imaginary part as

ϵ = ϵ′+ iϵ′′. In the case where the electron-ion collision frequency νei is much smaller than

the laser frequency ω, that is, ω ≫ νei, we have:

ϵ′ ≃ 1−
(ωpe

ω

)2
,

ϵ′′ ≃ νei
ω

(ωpe

ω

)2
. (1.6)

The frequency-dependent nature of the dielectric permittivity is a direct result of the

dispersive property of plasmas.

The dispersion relation for electromagnetic waves can be obtained by assuming that

u has the form of u0 exp(−ik · r). Then the Helmholtz equation reduces to a dispersion

equation given by:

−k2 +
(ω
c

)2
ϵ(ω) = 0. (1.7)

It provides a relation between the wavevector k and the angular frequency ω of the

electromagnetic wave. Neglecting collisions, that is, setting the imaginary part of the

permittivity to zero, ϵ′′ = 0, the dispersion relation (1.7) for electromagnetic waves is

given by:

k2c2 = ω2 − ω2
pe, (1.8)

This equation shows that wave propagation can only occur when ω > ωpe, in which case

the wavevector k is real. If ω < ωpe, the plasma electrons are shielding the light wave field.

In a vacuum, ωpe = 0, the free-space wavevector of the electromagnetic wave is k0 = ω/c.

Since the plasma frequency depends on electron density ne as ωpe =
√
4πe2ne/me, where

me and e are the electron mass and charge, the condition ω = ωpe defines the critical

density beyond which a light wave does not propagate:

ncr =
ϵ0ω

2me

e2
. (1.9)

Critical density defines the plasma region that can be accessed by a laser. Plasma densities

higher than the critical density, where the dielectric permittivity is negative, cannot be

reached by the laser.
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Laser collisional absorption in inhomogeneous plasma

Exact solutions to the Helmholtz equation in inhomogeneous media can be found only

in certain special cases. We consider here a general approach for obtaining approximate

solutions to Eq. (1.2) using a small parameter λ/Ln ≪ 1. This small parameter represents

a ratio of the laser wavelength λ = 2π/k to the local plasma scale length Ln, which is

defined as Ln = ne/|∇ne|. Let us assume that the wave propagates in the z-direction

parallel to the gradient of electron density and the electric field is of the form E =

{Ex(z), Ey(z), 0}. The z-component of electric field is zero for the transverse wave. It is

sufficient to solve Eq. (1.4) for one field component:

d2Ex,y

dz2
+
(ω
c

)2
ϵ(ω, z)Ex,y = 0. (1.10)

The electric field is expressed as a product of a slowly varying amplitude A(z) and a

rapidly varying phase ψ(z),

E = A(z) exp[ik0ψ(z)]. (1.11)

This approach is known as the eikonal or WKB (Wentzel-Kramers-Brillouin) approxima-

tion. Substituting this expression into Eq. (1.10) and separating the real and imaginary

parts, we obtain the following system of equations:

2
dA

dz

dψ

dz
+ A

d2ψ

dz2
= 0,

dψ

dz
=

√
ϵ, (1.12)

which yields:

Ex,y(z) =
E0

ϵ1/4
exp

[
ik0

∫ z

0

dz
′√
ϵ(ω, z′)

]
, (1.13)

where the E0 is the free space electric field. This result illustrates that the amplitude of

the electric field increases as E0ϵ
−1/4 as the wave propagates towards the critical density

and ϵ decreases. The validity of WKB approximation can be determined by comparing the

relative magnitude of the second derivative term of the field amplitude, d2A/dz2, which

is neglected in Eq. (1.12), with the retained first order terms in the Helmholtz equation.

This ratio is represented mathematically as:

ω

c

( ϵ
2

)3/2
≫
∣∣∣∣dϵdz
∣∣∣∣ . (1.14)

We now examine the collisional damping of a light wave propagating in an inhomoge-

neous plasma. This process of collisional absorption is also called the inverse Bremsstrahlung.

Electron collisions with ions disrupt the regular motion of electrons in a laser field, leading

to the transfer of a portion of the electron quiver energy to a chaotic thermal energy. The
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dielectric permittivity (1.5), which accounts for these collisions, affects the wave vector

kz = k0ψ(z) as described by the complex expression in the second equation in (1.12).

When considering normal incidence and assuming the collision frequency to be small,

νei ≪ ω, the imaginary part of the z-component of the wave vector can be expressed as:

Im kz =
νei
2c

(ωpe

ω

)2(
1−

ω2
pe

ω2

)−1/2

. (1.15)

The intensity of an electromagnetic wave in plasma decreases exponentially, following

the imaginary part of the eikonal, I ∝ |E2| ∝ exp(−2 Imψ). The collisional absorp-

tion is defined by the integral of expression (1.15) over the wave trajectory. Since the

electron collision frequency is proportional to the plasma density, it can be expressed as

νei = ν∗ei (ωpe/ω)
2, where ν∗ei is the electron-ion collision frequency evaluated at the critical

density. Then the intensity of the laser field in plasma can be expressed as:

I(z) = I0 exp

[
−ν

∗
ei

c

∫ z

0

dz′
(ωpe

ω

)4(
1−

ω2
pe

ω2

)−1/2
]
, (1.16)

where I0 = (c/8π) |E2
0 | is the incident laser intensity. To find the total collisional ab-

sorption coefficient, one must integrate (1.16) from the plasma entrance at z = 0 to the

turning point at z = z0, and then multiply the result by 2 to account for the absorption

of both the incident and reflected waves.

fcoll.abs = 1− exp

[
−2

ν∗ei
c

∫ z0

0

dz
′
(ωpe

ω

)4(
1−

ω2
pe

ω2

)−1/2
]
. (1.17)

The integrand in the exponential of this expression is proportional to the square of the

electron density, as the square of the plasma frequency is proportional to the density. As

a result, the dominant part of collisional absorption occurs in the vicinity of the reflection

point, with approximately 95% of the absorption occurring within the interval between the

density at the reflection point and half of that value. Some examples for the practically

interesting parameters for the ICF are presented in Sec. 1.4.2.

1.2 Model of the finite bandwidth laser

Theoretical studies have shown that spreading laser power over a wide frequency range can

significantly decrease the growth rates of parametric instabilities. Thomson and Karush

analyzed the suppression of parametric instabilities driven by a broadband laser with a

discrete spectrum [42]. This model was later extended to continuous spectrum by Pesme

et al. [43]. It was found that the growth rates of parametric instabilities decrease as the
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bandwidth of the laser increases in the linear stage. In recent years, numerical simulation

tools have been used to study the interaction of broadband lasers with plasmas. Zhao et

al. numerically investigated several parametric instabilities driven by broadband lasers

[44] and proposed a new laser model, the decoupled broadband laser, which is more

efficient in suppressing these instabilities [45]. Follett et al. found that the increase of

laser bandwidth significantly increases the thresholds of absolute SRS and TPD [5], [46].

Zhou et al. focused on the dynamics of non-linear stage of SRS [47] and found that a

higher frequency shift tolerance can enhance SRS on this stage.

There are several methods for modeling laser bandwidth, such as the Kubo-Anderson

process (KAP) and the use of a mosaic of beamlets [48]. The Kubo-Anderson process

(KAP) is a widely used method for modeling broadband lasers in early studies on the sup-

pression of laser-plasma instabilities due to its analytical tractability. The KAP describes

a laser as having a constant amplitude and frequency, but with random phase jumps that

occur at Poisson-distributed intervals with a mean jump time τc:

τc ≡
∫ +∞

−∞
dτ |g(τ)|2, (1.18)

where

g(τ) ≡ ⟨E∗
0(t)E0(t+ τ)⟩
⟨|E0(t)|2⟩

, (1.19)

is the correlation function and angular brackets ⟨...⟩ define the time average. The am-

plitude of these phase jumps is uniformly distributed over the range (0, 2π). The time-

enveloped KAP laser, represented by g(τ) = exp(−|τ |/τc), describes the probability that

no phase jump occurs within the time interval [t, t+ τ ].

The Wiener-Khinchin theorem can be applied to a laser with a KAP bandwidth to

obtain its power spectrum:

I(ω) =
I0
2π

∫ +∞

−∞
dτ g(τ) exp(iωτ) =

I0
π

1/τc
ω2 + (1/τc)2

, (1.20)

which demonstrates that the power spectrum of a laser with a KAP bandwidth corre-

sponds to a Lorentzian spectrum. Full width at half maximum (FWHM) of the KAP

spectrum is related to the correlation time as ∆ω = 2/τc.

In this study, we adopt a numerical approach where the broadband laser is represented

as a phase modulated driver:

E0 = a0 sin[ω0t+ ϕ(t)], (1.21)

where a0 is normalized laser amplitude, ω0 is the laser frequency and ϕ were randomly
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selected from a uniform distribution over (0, 2π) within a given time interval τc.

1.3 Stimulated Brillouin scattering

This section describes the process SBS in plasma: the temporal and spatial gains, the

role of multiple ion species on the ion wave dispersion and damping, and the effects of

the plasma flow divergence on convective SBS. We also provide examples of practically

interesting parameters.

1.3.1 Temporal gain: theory and experiments

In 1922, Léon Brillouin proposed the idea of a combination scattering [49], which occurs as

a result of an interaction between an electromagnetic wave and an acoustic wave (phonon)

in a solid. Kroll [50] gave a treatment of SBS in the context of a high-intensity electro-

magnetic wave interacting with a solid, where the nonlinear coupling happens through the

elasto-optic effect. He also acknowledged a similarity between SBS and optical parametric

amplification. Comprehensive treatments of SBS in plasmas have been given by Liu et

al. [51] and Forslund et al. [52]. Forslund et al. [53], [54] also described early numerical

simulations of SBS in plasma, as well as Kruer et al. [55]. Galeev et al. [56] provided

a treatment of side scattering and found a maximum gain for scattering at 90 degrees.

Experimental evidence for the large angle SBS scattering was reported by Neuville et al.

[57].

Stimulated Brillouin scattering is a three-wave parametric instability corresponding

to a decomposition of the pump electromagnetic wave with a frequency ω0 and wave

vector k0 into a scattered electromagnetic wave, ωs, ks, and an ion acoustic wave with a

frequency ωIAW ≪ ω0 and wave vector kIAW. The three-wave matching conditions for the

SBS parametric instability read:

(ω0,k0) = (ωs,ks) + (ωIAW,kIAW), (1.22)

The characteristic temporal growth rate γ for SBS can be expressed as [12]:

(γ + γIAW)(γ + γs) = γ20 , (1.23)

where γIAW and γs are the amplitude damping rates of the ion-acoustic and scattered

light waves, respectively, and γ0 is the growth rate in the absence of damping. From this

equation, we can see that the condition γ0 =
√
γIAWγs represents the threshold for the

SBS instability. In the case of backward scattering, ks ≈ −k0, the characteristic temporal
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growth rate of SBS reads [12], [51]:

γ0 =
1

4
ωpivos

√
kIAW
ω0vIAW

, (1.24)

where kIAW ≈ 2k0, k0 = (ω0/c) (1−ne/ncr)
1/2, ωpi is the ion plasma frequency, vIAW is the

ion acoustic wave phase velocity, and vos is the amplitude of the electron quiver velocity

in the laser field.

The temporal gain is reduced if the pump wave has the finite spectral bandwidth

∆ω0 ≳ γ0 [42], [43], [58], [59]. The growth rate can be estimated with an approximate

expression [43], [58]:

γ∆ω0 =
γ20√

γ20 + ξ2∆ω2
0

, (1.25)

where the numerical coefficient ξ in the right hand side depends on the pump wave power

spectrum. The temporal gain is also affected by the ion acoustic wave damping γIAW,

which is of particular importance in a multi-ion species plasma considered in Sec. 1.3.2.

1.3.2 Ion acoustic waves in two species plasmas

Considering fully ionized, neutral non-magnetized plasma, the frequencies and damping

rates of ion acoustic waves are given by a zeros of the dielectric function, i.e. ϵ(ω, k) = 0

[60]–[62]. The longitudinal component of the dielectric function is given by:

ϵ(ω, k) = 1 + χe + χi = 0, (1.26)

where χj denotes the susceptibility of electrons (e) or ions (i). It could be expressed as:

χj = (kλDj)
−2 [1 + ξj Z(ξj)], (1.27)

where ξj = ω/(
√
2 k vTj) is a complex variable, ω and k are the frequency and wave

number of given mode, vTj =
√
Tj/mj, Tj and mj are the temperature and mass of

particle, respectively, λDj =
√
Tj/4πnjZ2

j e
2 is the Debye length, nj and Zj are the density

and charge of specie j, respectively, and Z is the Fried-Conte Z-function [63]:

Z(ξ) =
1√
π

∫ +∞

−∞
dv

e−v2

v − ξ
= i

√
π e−ξ2 [1− erf(−i ξ)], (1.28)

where erf(−i ξ) is an error function defined by:

erf(ξ) =
2√
π

∫ ξ

0

dη e−η2 .
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Plastics are often used as ablators in ICF target designs. Made of light ions, these

materials are ablated at high velocities, creating high ablation pressure. For these reasons,

hydrocarbon (CH) plasmas are often used for studies of laser-plasma interactions [62],

[64]–[67]. Additionally, low-Z materials are often used to create foams [32], [37], [39]–[41].

In hydrodynamic simulations, the plasma is modeled with two-temperature, single-

fluid equations. Consequently, a CH plasma is described with one ion species with an

effective charge, Zeff = (ZC + ZH)/2 = 3.5, and mass mi = Aeffmp, where Aeff =

(AC + AH)/2 = 6.5 and mp is the proton mass. A similar approach is often used in

kinetic simulations, as it allows for reducing the required computational resources. This

approximation, however, may significantly underestimate the damping of ion acoustic

waves and, consequently, the characteristics of SBS, as demonstrated in Sec. 1.3.3.

Dispersion equation for ion acoustic waves (1.26) in a single ion species plasma can be

written as:

1 + (kλDe)
2 + i

√
π

2

me

mp

+
ZeffTe
Ti

[
1 + x

√
AeffTe
2Ti

Z
(
x

√
AeffTe
2Ti

)]
= 0, (1.29)

where the second and third terms represent the electron contribution to the dielectric

function, x = ω/(k cs,H) is the ratio of the phase speed to the hydrogen sound speed

cs,H =
√
Te/mp. The phase velocity, vIAW = ω′/k, and the damping rate of ion waves,

γIAW = −ω′′/ω′, are shown in Figure 1.1. Using the single ion approximation, we see

that the phase velocity is approximately constant and the damping rate is very low. The

damping rate increases linearly with the ion temperature. This can be attributed to the

large ratio of the wave phase velocity to the thermal velocity of ions. For example, at

Ti/Te = 0.3, we have vT i/vIAW ≃ 0.2.

Figure 1.1: Dependence of the phase velocity, vIAW = ω′/k, (a) and the damping rate,
γIAW = −ω′′/ω′, (b) on the temperature ratio Ti/Te for two wavelengths, kλDe = 0.1 (red)
and 0.3 (blue), in a plasma with a single species. The average charge and mass of this
species are Zeff = 3.5 and Aeff = 6.5, respectively.

Approximation of an effective ion does not account for detailed ion kinetics and may
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produce a significant error in evaluation of the ion acoustic damping rate and consequently

the level of SBS. Ion waves in multi-species plasmas were considered in references [68],

[69]. In the case of a two-component CH plasma containing fully ionized carbon (ZC = 6)

and hydrogen ions, equation (1.26) reads:

1 + (kλDe)
2 + i

√
π

2

me

mp

+
cHTe
Ti

[
1 +

x√
2Ti/Te

Z
( x√

2Ti/Te

)]
+ (1.30)

+
6(1− cH)

Ti/Te

[
1 + x

√
6

Ti/Te
Z
(
x

√
6

Ti/Te

)]
= 0,

where cH and 1− cH are the hydrogen and carbon concentrations; both ion species have

the same temperature Ti.

There are two acoustic waves in this two-ion system, fast and slow, their phase velocity

and damping rate are shown in Figure 1.2. The phase velocities differ approximately two

times and they increase with the ion temperature. Damping rates of both modes are higher

than in the average species case because of a stronger interaction with hydrogen ions.

Damping of the slow mode is almost independent on the ion temperature, while damping

of increases significantly. It is larger than the slow mode damping for Ti/Te > 0.35.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ti [Te]

0.5

1.0

1.5

v I
AW

[c
s,

H
]

fast, k De = 0.3
slow, k De = 0.3
fast, k De = 0.1
slow, k De = 0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ti [Te]

0.2

0.3

0.4

0.5

0.6

Da
m

pi
ng

 d
ec

re
m

en
t

fast, k De = 0.3
slow, k De = 0.3
fast, k De = 0.1
slow, k De = 0.1

Figure 1.2: Dependence of the phase velocity, vIAW = ω′/k, (a) and the damping rate,
γIAW = −ω′′/ω′, (b) on the temperature ratio Ti/Te for two wavelengths, kλDe = 0.1
(red) and 0.3 (blue), in a fully ionized CH plasma. The case of two species, hydrogen
and carbon, with charges and masses ZH = 1, AH = 1, ZC = 6, AC = 12, respectively, is
considered.

Moreover, in CH plasmas, there is a stronger damping of IAWs compared to single ion

plasmas because of the presence of light H ions. The threshold of the parametric decay

is proportional to the IAW damping rate. In the case of a high IAW damping (with H),

the threshold is higher and the SBS-produced signal is lower. The fast mode, which has

a smaller damping increment, can accelerate thermal ions more efficiently since its phase

velocity is closer to the ion thermal velocity [67]. Consequently, the EPW amplitude

can grow to higher levels, producing a stronger SRS signal and a larger number of hot
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electrons, as was also confirmed experimentally [64]. These particular features will be

considered in more detail in Sec. 1.3.3.

The ion-ion collisions can also contribute to the ion acoustic wave damping. Their

contribution is determined by the collisionality, which is a ratio of the ion mean free

path to the wavelength, denoted as kλii. When kλii is small, ion collisions dominate

and contribute to the wave damping through the ion viscosity [69]. Collisions between

electrons and ions may also play a role, but their effect is typically small. On the other

hand, when kλii is larger than 1, as is the case of SBS in ICF plasma, collisions are not

important and Landau damping dominates.

1.3.3 Convective SBS: spatial gain

In an inhomogeneous plasmas, resonance conditions can be fulfilled only in one resonance

point xres, where the wavenumber detuning is zero, κ(xres) ≡ k0 − ks − kIAW = 0. The

resonance conditions thus define for a specific frequency the matching wavenumber of the

unstable mode and the resonance position in plasma. The wave vector mismatch κ(x)

defines the width of the resonance zone. It is influenced by the inhomogeneity of the

density, characterized by the local scale length Ln = ne (dx/dne), and the inhomogeneity

of expansion velocity, characterized by the local scale length Lu = cs (dx/du). This means

that SBS is primarily sensitive to variations in ion density and ion velocity. Temperature

gradients are typically much smaller, because of a high electron thermal conductivity in

an underdense plasma, and can be neglected.

The plasma parameters, such as density and velocity or temperature profiles, which

are shown in Figure 1.3, can be calculated using hydro codes. These profiles typically

include specific points of special interest, such as the critical ncr and quarter critical ncr/4

densities. A detailed description of coupling kinetic and hydrodynamic simulations in

application to experiments is described in Sec. 2.1.2.

SBS is a convective instability, the amplitude of scattered wave in an inhomogeneous

plasma is amplified spatially along its propagation direction near the resonant point cor-

responding to the perfect wave matching. The spatial growth rate for SBS reads [12],

[51], [71]:

GSBS =
1

4

k2IAW v2os
vs ωs

∫
dx Im

χe (1 + χi)

1 + χe + χi

, (1.31)

where the integral is taken over the resonance region, vs is the group velocity of scattered

wave and χe,i is the electron/ion susceptibility (1.27) corresponding to the ion acoustic

wave. The position of the resonance is defined by the frequency of the scattered wave,

which for the case of backscattering reads as ω0−ωs = ωIAW(xres) = 2k0[cs(xres)+u(xres)].

The phase velocity and damping decrement, vIAW = ωIAW/k and damping coefficient



CHAPTER 1. PARAMETRIC INSTABILITIES IN ICF 23

Figure 1.3: Typical profiles of density (a), ion velocity (b), electron (c) and ion (d) tem-
perature obtained from the hydro code (dots) and their fits (red lines). Hydro simulations
were conducted with the code CHIC [70] for the laser pulse of intensity 2.1× 1016 W/cm2

and wavelength 0.35 µm interacting with a solid target made of copper.

γIAW, are calculated in Sec. 1.3.2. The width of resonance region is proportional to the

ion acoustic wave damping, ∆xres ≃ γIAW/(dωIAW/dx). Near the resonance, Eq. (1.31)

can be written as

GSBS =
1

8

(
vos
vTe

)2

ωIAW
ω0

c

∫
dx Im

ne(x)/ncr

∆ω(x)− iγIAW
, (1.32)

where ∆ω(x) = ω0 − ωs = ωIAW(x). In two limiting cases, the integral in Eq. (1.32) can

be calculated analytically. If the resonance width is significantly smaller than the size of

the plasma, ∆xres ≪ Ln (we refer to it as a ”weak” regime) one can take integral over

the resonance and expression for the gain GSBS has the form

GSBSweak =
π

4

(
vos
vTe

)2

k0Ln. (1.33)

In a general case where both the velocity and density gradients contribute, the gain

exponent GSBS has the form

GSBSweak =
π

4

(
vos
vTe

)2

k0Ln

(
1 + 2

ω2
0

ω2
pe

Ln

Lu

)−1

. (1.34)
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According to this equation, the density scale length, Ln, is the dominant factor if it is

smaller than 0.5Lu ne/ncr [12].

Conversely, if the resonance width is comparable to the size of the plasma, ∆xres ≳ Ln

(we refer to it as a ”strong” regime) we obtain a different expression for GSBS

GSBS strong =
1

8

(
vos
vTe

)2
ωIAW

γIAW

ω0

c

∫
ne

ncr

dx, (1.35)

Note that in Eq. (1.33) the convective gain of SBS is independent on the damping rate.

This case corresponds to a local SBS amplification of each scattered frequency. In the

“strong” the resonances are overlapped and all scattered waves are amplified in the whole

plasma.

In the case of two ion species, there are two ion acoustic modes: the slow and fast

mode as it shown in Figure 1.4b by red and blue lines. Both modes are much stronger

damped due to the resonant interaction with light ions – protons. SBS amplification of

each mode takes place over a large zone near the corresponding resonant point, and the

gain is strongly suppressed (see Section 1.3.4). While formula (1.33) could be useful for

calculating approximate values of GSBS in the case of ∆xres ≪ Ln, the actual ∆xres may

be comparable to the size of the plasma. In this situation, numerical integration of Eq.

(1.31) is required, as it is shown in Figure 1.4b.

1.3.4 Example of parameters relevant to shock ignition

By substituting (1.24) into (1.23) and considering both the damping of the scattered

γs and ion acoustic waves γIAW (calculated in Section 1.3.2), we obtain the complete

expression for the temporal growth rate γ. As demonstrated in Figure 1.4a, the SBS

temporal growth rate is depicted as a function of plasma density for a set of parameters

that are relevant in practical applications. This graph illustrates the dependence of the

electron density, which increases linearly with the coordinate x according to the relation

ne/ncr = 0.05 + 0.23x/ln. The use of linear density profiles in the study of parametric

instabilities such as SRS, SBS, and TPD is a common choice. The reason for this is that

the instabilities that occur in ICF are resonant and local in nature. They are generated

and amplified by the laser-plasma interaction, and the resulting instability growth is

largely determined by the local plasma conditions, such as density and temperature. As

a result, a linear approximation of the density profile (shown in Figure 1.3a) is often

sufficient to capture the essential physics of the instability. It should be noted that when

the ion temperature (Ti) is significantly smaller than the electron temperature (Te), it

corresponds to a reduced damping rate of IAW as it shown in Figure 1.2b, which in turn

facilitates the excitation of SBS.
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Here, the laser wavelength is λ0 = 0.351µm and ln = 300λ0 is the length of the linear

density profile (while corresponding density scale length is Ln(x) = (ne/ncr)(ln/0.23)).

The red, green and blue lines show the SBS growth rates in a plasma with fully ionized

carbon and hydrogen ions of equal concentration, nC = nH = 1
7
ne. The green line

shows the case where two ion species are replaced by one species with an average mass

Aeff = 6.5 and charge Zeff = 3.5. There is a significant difference from the case where two

ion species are considered separately. In the case of a single ion species, the damping of

ion acoustic wave is rather small, γIAW/ωIAW = 0.013, and the SBS gain is quite large.

In the case of two ion species, there are two ion acoustic modes: the slow and fast mode.

Both modes are much stronger damped due to the resonant interaction with light ions –

protons: γIAW/ωIAW = 0.24 for the fast mode and 0.28 for the slow mode. Consequently,

SBS amplification takes place over a large zone near the resonant point, and the gain is

strongly suppressed (blue and red lines).

0.05 0.10 0.15 0.20 0.25
ne/nc

0 20 40 60 80 100
xres [ m]

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

SB
S

[
0]

fast mode
slow mode
single ion
bandwidth

0.05 0.10 0.15 0.20 0.25
ne/nc

0 20 40 60 80 100
xres [ m]

0

2

4

6

8

10

12

G S
BS

fast mode
slow mode
single ion
expanding

Figure 1.4: Dependence of the growth rate (a) of SBS on the resonance position and
spatial gain (b) on the coordinate for the case of a plasma with inhomogeneous density
profile with the length of the linear density profile ln = 300λ0 and length of the linear
velocity profile lu = 300λ0. Here, the laser intensity is 6× 1015 W/cm2, laser wavelength
is 0.351µm, electron temperature is 3.4 keV and ion temperature is 1 keV.

The purple line represents the growth rate for a phase-modulated laser pulse with a

Lorentzian power spectrum with a correlation time τc = 2/∆ω0 ∼ 0.5 ps in the case of

a single average ion species. The laser bandwidth ∆ω0 ≃ 4 ps−1 is comparable with the

growth rate γSBS ∼ 5− 10 ps−1 for the monochromatic pump shown in Figure 1.4a (green

line) and, according to equation (1.25), the growth rate is suppressed.

Ion acoustic wave damping has a smaller effect on the spatial SBS gain as shown in

Figure 1.4b. There is practically no difference between the spatial gains for slow and

fast modes, but the gain for a plasma with a single average ion species is higher. The

golden line in Figure 1.4b represents the spatial gain for an inhomogeneous plasma with

the ion flow velocity u depending on coordinate. Here we consider a single ion model

and a linear flow velocity profile, u(x) = us (x/lu − 1) where lu = 300λ0 is the length
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of the linear velocity profile and us = 0.75µm/ps is approximately twice the ion sound

velocity cs ≃ 0.47µm/ps. In this case, the frequency of ion acoustic wave is Doppler-

shifted, ωIAW = kIAW(cs + u), and the resonance condition, κ(x) = k0 − ks − kIAW ≈ 0, is

fulfilled in a narrow zone depending on the density, Ln, and velocity, Lu, scale lengths.

Consequently, amplification of SBS-driven waves is suppressed if the plasma expansion is

considered. This can be seen by comparing the golden line in Figure 1.4b with the green

line corresponding to zero flow velocity. This is the regime in which Ln dominates and

the characteristic velocity scale length Lu is considered to be infinite.

These examples demonstrate the feasibility of controlling SBS through laser bandwidth

and ion species ratio.

1.4 Stimulated Raman scattering

This section delves into the intricacies of the SRS process and its key features. We

begin by examining the role of collisions in the development of SRS. We also explore the

distinctions between convective and absolute instabilities and the impact of bandwidth

on the process. The section is supplemented with recent research in the field, including

the connection between SRS and the generation of hot electrons through electron plasma

waves, as well as the link to Landau damping and wave breaking. Additionally, we examine

the competition between SRS and SBS, and discuss the observational features that can

be used to differentiate between the two.

1.4.1 Temporal gain: theory and experiments

In the early years of quantum mechanics, it was discovered that a molecule could scat-

ter a photon inelastically, leading to a transition of the molecule to a higher-frequency

vibrational state and a decrease in the photon’s frequency by the same amount. This

phenomenon, now known as Raman scattering, was first predicted by Smekal [72] in 1923

and later observed in liquids by Raman [73] and in crystals by Landsberg and Mandelstam

[74] in 1928. The probability of this transition increases with the number of downshifted

photons present, which leads to the formation of a coherent wave through stimulated

emission. This effect, known as stimulated Raman scattering (SRS), was proposed as a

potential foundation for a laser by Hellwarth [75] in 1963.

Stimulated Raman scattering is the parametric instability corresponding to a decom-

position of the pump wave ω0 into a scattered electromagnetic wave ωs and an electron

plasma (Langmuir) wave ωEPW. As the frequencies of plasma and scattered waves are

comparable, SRS can be excited only in a plasma with electron density smaller than the

quarter of critical density. Additionally, the plasma wave should not be suppressed by
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Landau damping [76], which necessitates kEPWλDe ≤ 0.25, where λDe = vTe/ωpe is the

Debye length. The Landau damping becomes more restrictive as the density decreases

and temperature increases, with backscattering being suppressed first as kEPW is largest

in this case. Although collisional damping can also suppress SRS, it is usually not the

main suppression mechanism in direct-drive coronas. In direct-drive laser plasmas, density

inhomogeneity is usually the main factor that determines SRS thresholds (Sec. 1.4.2).

Theoretical studies of the amplification growth rates and thresholds for SRS in ho-

mogeneous plasmas were conducted in the 1960s [77]–[79], but it only in the 1970s when

lasers became powerful enough to allow experimental observation of SRS. In the 1970s,

a significant effort was made to understand SRS in inhomogeneous plasmas through a

combination of theoretical analysis and computer simulations. In inhomogeneous plas-

mas, the distinction between absolute and convective instabilities becomes crucial. The

SRS gain for a specific pair of daughter waves is limited to a specific spatial area where

the matching conditions for the decay are met. As soon as the waves move out of this

region, they stop growing, leading to a finite amplification as the waves travel through

the resonance area.

The three wave-matching conditions for the SRS parametric instability read:

(ω0,k0) = (ωs,ks) + (ωEPW,kEPW), (1.36)

where the plasma wave (ωEPW,kEPW) satisfies the Bohm-Gross dispersion relation ω2
EPW =

ω2
pe + 3v2Tek

2
EPW. The characteristic temporal growth rate γ can be expressed as [55]:

(γ + γEPW)(γ + γs) = γ20 , (1.37)

where γEPW and γs are the amplitude damping rates of the electron-plasma and scattered

light waves, respectively, and γ0 is the growth rate in the absence of damping.

SRS is an electronic instability characterized by a high growth rate [12], [51]:

γ0 =
kEPWvos

4

√
ωpe

ω0 − ωpe

, (1.38)

where kEPW = k0 −ks is the plasma wave vector. In difference from SBS, as the frequen-

cies of the scattered and plasma waves are comparable, SRS corresponds to a significant

nonlinear laser energy deposition in plasma. Temporal growth rate γSRS is shown in

Figure 1.5a. The SRS growth rate attends its maximum in a ∼ 10µm wide region corre-

sponding to the plasma densities ne/ncr ≳ 0.15 slightly below the quarter critical density.

In the lower density part of plasma, SRS is suppressed due to a strong Landau damping

because the characteristic parameter kEPWλDe increases.



CHAPTER 1. PARAMETRIC INSTABILITIES IN ICF 28

The effect of laser bandwidth in SRS in the analytical model [42] is given by γSRS ∼
γ20/∆ω0 when the bandwidth ∆ω0 is significantly larger than the linear growth rate γ0 in

the absence of bandwidth. This suggests that in order to suppress SRS a bandwidth of

∆ω0 ≳ γ0 is needed. For the parameters shown in Figure 1.5a, this corresponds to the

bandwidth of ∆ω0/ω0 ∼ 10−2. This criterion was confirmed with a more detailed analysis

in Refs. [5], [46].

The suppression of instability by using a broadband laser was experimentally con-

firmed by Obenschain et al. [80]. However, the technology limitations at the time of the

experiment limited the bandwidth to ∆ω0/ω0 = 3 × 10−3. In 1991, Guzdar et al. con-

ducted a study on the impact of laser bandwidth on instabilities in inhomogeneous plasmas

[81]. They found that, when the homogeneous growth rate γ0 is much smaller than the

bandwidth ∆ω, the bandwidth has no effect on the convective amplification because av-

erage amplification factor is independent of bandwidth contrary to [58]. This conclusion

was established both analytically and numerically. In 2001, Dodd and Umstadter [82]

discovered that a linear frequency chirp with a bandwidth of 12% could eliminate Raman

forward scattering in a plasma density of 1% of the critical density. In 2018, Palastro et al.

[83] demonstrated that while laser bandwidth is ineffective in reducing linear resonance

absorption, it is effective in suppressing nonlinear enhancement. Folett et al. conducted

studies in [5], [46] to determine the thresholds of the absolute SRS and TPD instabilities

using a 3D LPSE code. They calculated the scaling of these thresholds with the density

scale length, temperature, and wavelength and found that while the thresholds were sim-

ilar to existing analytical models, there is a quantitative difference. They also discovered

that multi-beam TPD and SRS backscatter are easier to mitigate with laser bandwidth

compared to single-beam instabilities.

1.4.2 Spatial gain and absolute SRS instability

SRS in an inhomogeneous plasma could be either convective or absolute instability. In

difference from SBS, which is sensitive to the plasma density and velocity inhomogeneities,

convective SRS gain depends only on the density gradient [84]–[86]. Spatial gain of SRS

in the backward direction is

GSRS =
π

8

v2os
c2
k2EPWLn

ks
. (1.39)

It is shown in Figure 1.5b as a function of plasma density. Convective SRS modes can

develop in a wide range below the quarter critical density. When considering SRS in

inhomogeneous plasmas, it is crucial to understand the difference between absolute and

convective growth. In these types of plasmas, the SRS gain for a specific pair of daughter

waves is only present in a specific spatial region where the conditions for decay are met.
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Once the waves move out of this region, they stop growing, resulting in a finite ampli-

fication as the waves travel through the resonance region. However, there are situations

where energy is transferred to the growing waves faster than they can move out of the

resonant region, leading to growth that is only limited by nonlinear effects.

There is also an absolute SRS instability [46], [51], [87], which develops near the turning

point of the scattered wave. Near the quarter critical density this absolute instability

corresponds to scattering in the backward direction. It has a rather low threshold

vos/c ≃ (k0Ln)
−2/3, (1.40)

and it often dominates the interaction.
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Figure 1.5: Dependence of the SRS temporal growth rate (a) and spatial gain (b) on the
coordinate of the resonance point for the case of a plasma with in-homogeneous density
profile. The density scale length Ln = 300λ0 in case (a) and varies from 300 to 450λ0 in
case (b). The laser intensity is (2− 6)× 1015 W/cm2 in case (a) and 6× 1015 W/cm2 in
case (b). Here the laser wavelength is 0.351µm, electron temperature is 3.4 keV and ion
temperature is 1 keV.

The SRS instability could significantly contribute to the laser absorption via gener-

ation of supra-thermal electrons with energies about ten times higher than the thermal

energy. They could lead to fuel preheat in the inertial confinement fusion, so their energy

distribution has to be controlled.

Collisional damping may be an important issue for the SRS-driven plasma waves. The

scattered light group velocity, vs ≃ c (1−ω2
pe/ω

2
s)

1/2, could be small near the corresponding

critical surface, and electron-ion collisions may contribute to the plasma wave damping

[88], [89]. The minimal scattered wave group velocity near the turning point is defined

by the limit of applicability of the WKB approximation, that is, ks ≳ (Ln λ
2
De)

−1/3. The

WKB theory of SRS was revisited near these turning points in Refs. [51], [87]. Absorption

of the scattered wave propagating from the quarter critical zone to the plasma edge reads:
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fs,coll.abs = 1− exp
[
−16

15

ν∗ei
c
Ln

]
, (1.41)

where ν∗ei is the electron-ion collision frequency evaluated at the quarter critical density.

1.5 Plasma cavitation and trapping of the scattered

wave

Numerical simulations described in Section 2 demonstrate that the absolute SRS insta-

bility can result in significant absorption of laser energy in plasma. This is due to the

formation of density cavities near the quarter critical density, where some of the scattered

wave energy is trapped and absorbed by electrons. Ponderomotive pressure causes the

cavity to expand and transfer energy to ions. We estimate the efficiency of wave energy

absorption in these cavities.

1.5.1 Electromagnetic waves in a semi-infinite plasma

We start from the analysis of the surface waves in a half-infinite space x > 0. The

characteristics of surface waves are fundamentally determined by the properties of the

plasma surface, particularly the boundary conditions required to supplement the field

equations. In the case of a plasma with a well-defined surface, where the size of the region

of density variation near the surface is much smaller than other plasma length scales such

as the laser wavelength, Debye length and the particle’s mean free path, the properties of

the surface play a crucial role in determining the behavior of surface waves.

We consider a surface wave incident on an isotropic, collisionless plasma with a

sharp boundary. As the unperturbed distribution function, we consider a non-relativistic

Maxwell distribution function of particles of species α = e, i:

f0,α =
n0,α

(2πmαTα)3/2
exp

(
−mαv

2

2Tα

)
. (1.42)

Here, n0,α = const if x > 0 (plasma), see Figure 1.6, and n0,α = 0 if x < 0 (vacuum).

We are interested in finding solutions of the kinetic equation for the distribution func-

tion δfα perturbed by the incident electromagnetic wave:

∂δfα
∂t

+ (v · ∇)δfα +
eα
mα

E
∂f0,α
∂v

= 0. (1.43)

The wave has components Ex, Ey and Bz and is incident in the x, y plane. Assuming the

fields depend periodically on y and time as exp(−iωt+ ikyy), we seek the solution in the
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Figure 1.6: Schematic diagram of an electromagnetic wave incident on a semi-infinite
plasma.

form of δfα = δfα(x) exp(−iωt+ ikyy). Equation for δfα(x) reads:

−iωδfα + ikyvyδfα + vx
∂δfα
∂x

+
eα
mα

E
∂f0,α
∂v

= 0. (1.44)

To solve Eq. (1.44) we impose a reflective boundary condition for δfα(x) at x = 0

δfα(0, vx > 0) = δfα(0, vx < 0), (1.45)

and introduce the distribution functions δf±
α for the incident and reflected particles:

δf±
α (x, vx) =

{
δfα(x, vx > 0),

δfα(x, vx < 0).
(1.46)

The boundary condition for incoming particles is: δf−
α (x→ +∞) → 0. Solving then Eq.

(1.44) for δf−
α for x > 0 we find:

δf−
α (x, vx) =

eα
mαvx

∂f0,α
∂v

∫ +∞

x

dx′ E(x′) exp

[
i
(x− x′)

vx
(ω − kyvy)

]
. (1.47)
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To find δf+
α for x > 0 we use the condition δf+

α (0, vx) = δf−
α (0,−vx) at x = 0:

δf+
α = − eα

mαvx

∂f0,α
∂v

{∫ x

0

dx′E(x′) exp

[
i
(x− x′)

vx
(ω − kyvy)

]
+

+

∫ +∞

0

dx′E(x′) exp

[
i
(x+ x′)

vx
(ω − kyvy)

]}
. (1.48)

From now we consider the case of normal incidence, Ex = 0 and ky = 0 and introduce

a current density along the plasma surface induced by the electric field Ey:

jy(x) =

∫ +∞

0

dx′ [K(|x− x′|) +K(x+ x′)]Ey(x
′), (1.49)

where

K(x) = −
∑
α

e2α
mα

∫
vx>0

dp
vy
vx

∂f0,α
∂vy

exp

(
iω

|x|
vx

)
. (1.50)

By using the Maxwell equations (1.1) we obtain a relation between the electric and

magnetic field:
∂Ey

∂x
− i

ω

c
Bz = 0,

∂Bz

∂x
− i

ω

c
Ey +

4π

c
jy = 0. (1.51)

The boundary conditions for the electric and magnetic fields Ey and Bz at the vacuum-

plasma interface are determined by integrating Eqs. (1.51) along an infinitely narrow

transition layer at x = 0. This implies a continuity of these fields:

Ey(0−) = Ey(0+), Bz(0−) = −Bz(0+). (1.52)

Combining Eqs. (1.51) for fields with Eq. (1.49) we obtain an integral-differential equation

for Ey(x). To solve this complicated equation, we employ the following mathematical

technique: the plasma is extended to the region x < 0 and the fields are extended across

the boundary x = 0 as follows:

Ey(x) = Ey(−x), Bz(x) = −Bz(−x). (1.53)

Note, that in contrary to Eq. (1.52), the magnetic field in Eq. (1.53) is discontinuous.

This corresponds to a surface current Jy(0) flowing along the discontinuity.

Using condition (1.53), relation (1.49) between the current jy(x) and electric field

Ey(x) can be extended in the entire region −∞ ≤ x ≤ +∞ and written as a convolution

integral:

jy(x) =

∫ +∞

−∞
dx′ σ̂(x− x′)Ey(x

′), (1.54)
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where kernel

σ̂(x) = −
∑
α

e2α
mα

∫
dv

vy
vx

∂f0,α
∂vy

exp

(
iω

|x|
vx

)
(1.55)

is the electric conductivity in coordinate representation. Its Fourier transform,

σ(ω, kx) =

∫ +∞

−∞
dx σ̂(x) e−ikxx = −i

∑
α

e2α
mα

∫
dv

vy
ω − kxvx

∂f0,α
∂vy

, (1.56)

is the conductivity of an isotropic plasma.

Therefore, for a semi-infinite plasma with a specular reflection of particles from its

surface, the constitutive equation

jy(kx) = σ(ω, kx)Ey(kx) (1.57)

relating the Fourier components of current density and electric field has the same form

as for a spatially unlimited isotropic plasma. This is because the motion of particles

in such a plasma is similar to that in an unbounded plasma, and thus the perturbation

resulting from an electromagnetic field is independent of the presence of a surface. This

simplification, however, is achieved by introducing discontinuity (1.53) for Bz at x = 0.

By substituting Eq. (1.54) into Eq. (1.51) and integrating over x = 0, this discontinuity

can be verified.

However, using Eq. (1.49) with jy(x) = 0 for x < 0 and integrating Eq. (1.51) over

the transition layer near the plasma surface we obtain the continuity condition for the

tangential field components Ey and Bz at x = 0 in the boundary conditions (1.52). This

is expected since Eqs. (1.51) and (1.54) are only valid for x > 0 within the plasma

region, and the continuation conditions (1.53) are used a mathematical tool for solving

the integro-differential equation for the electric field Ey.

This equation with kernel in a form of a convolution integral is solved by applying a

Fourier transform:

A(x) =

∫ +∞

−∞
dkxA(kx)e

ikxx,

A(kx) =
1

2π

∫ +∞

−∞
dxA(x)e−ikxx, (1.58)

that takes into account a discontinuity of Bz at x = 0. By performing a Fourier transform

on system (1.51) and taking into account the continuity of the function Ey(x) and the
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discontinuity of the function Bz(x) at x = 0, we arrive to the following set of equations:

kxEy(kx)−
ω

c
Bz(kx) = 0,

kxBz(kx) +
i

π
Bz(x = 0)− ω

c
ϵtEy(kx) = 0, (1.59)

where the conductivity is expressed through the transverse dielectric permittivity, σ =

−(iω/4π) (ϵt−1). According to this set of equations, the fields in plasma can be expressed

via the value of magnetic field at the boundary:

Ey(kx) =
iωc

π
Bz(x = 0)

1

ϵtω2 − c2k2x
. (1.60)

By performing the inverse Fourier transform of this expression we obtain spatial distri-

bution of the electric field in plasma:

Ey(x) =
iωc

π
Bz(x = 0)

∫ +∞

−∞

dkx e
ikxx

ϵtω2 − c2k2x
. (1.61)

In particular, setting x = 0, we obtain a ratio of the electric and magnetic field at the

boundary, which is called surface impedance:

ζ(ω) ≡ Ey(x = 0)

Bz(x = 0)
=
iωc

π

∫ +∞

−∞

dk

ϵt(ω, k)ω2 − c2k2
. (1.62)

This relation is used in Section 1.5.2 for defining the cavity modes.

Expression for the impedance can be simplified in two limits by using an integral

representation for the dielectric permittivity in a Maxwellian plasma

ϵt(ω, k) = 1 +
ω2
pe

ω2
ξZ(ξ), (1.63)

where ξ = ω/
√
2|k|vTe and Z is Fried Conte function (1.28) [63]. In the limit of a low

frequency and low plasma temperature ω ≪ ωp,t and kvTe ≪ ω, the dielectric permittivity

is ϵt ≈ 1− ω2
pe/ω(ω+ iνei) and ζ ≈ (ω/ωpe) (−i+ νei/2ω). Then, according to Eq. (1.61),

electric field in plasma decays exponentially:

Ey ∝ Bz(x0) exp(−ωpex/c),

where c/ωpe = λs is the collisionless skin depth.

In the opposite limit of a hot plasma and strong spatial dispersion, kvTe ≫ ω, the
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dielectric permittivity reads:

ϵt(ω, k) = 1 + i

√
π

2

ω2
pe

ω|k|vTe
. (1.64)

By introducing a dimensionless variable κ = kc/ω and parameter α =
√
π/2(ωpe/ω)

2(c/vTe),

the surface impedance (1.62) can be written as

ζ(ω) = −2i

π

∫ ∞

0

κ dκ

κ3 − κ− α
. (1.65)

It can be calculated analytically in the limit of α ≫ 1:

ζ(ω) =
2

3

(
1√
3
− i

)
α−1/3. (1.66)

In this limit, electric field decays inside the plasma non-exponentially according to a power

law [90], [91].

1.5.2 Trapped electromagnetic modes in a cavity

In this section, we investigate electromagnetic waves at normal incidence that are trapped

in a cavity, which is defined as a homogeneous low density layer enclosed by sharp and

dense plasma walls, as shown in Figure 1.7. The cavity is characterized by a width ∆xw,

top density ne,t, and bottom density ne,b. The trapped modes (Ey, Bz) are defined as

stationary localized solutions [92] that have an oscillatory behavior inside and evanescent

outside. According to Eqs. (1.51), expressions for the electric and magnetic field inside

the cavity are:

Ey(x) = E0 cos(kx), Bz(x) = i
ck

ω
E0 sin(kx), (1.67)

where E0 is a constant, k = (ω/c)
√
ϵb is the wave number and ϵb = 1 − ω2

p,b/ω
2 is the

dielectric permittivity inside the cavity. Evanescent field outside the cavity is defined

by Eq. (1.61). The electric and magnetic fields at the boundaries are related by the

impedance (1.62). By satisfying these boundary conditions one finds an equation for a

specific set of frequencies ωw, called eigenfrequencies or proper modes of the cavity. The

number of these frequencies depends on the depth of the well. The well has to be deep

enough to enable at least one mode.

To obtain the dispersion relation defining eigenfrequencies, ωw, the impedance bound-
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Figure 1.7: Schematic diagram of a square plasma well. Here, np,t(b) is a top (bottom)
plasma density, ∆xw is a width of the well, ζ is a surface impedance and Ey is a solution
inside the well.

ary condition (1.62) is applied at the cavity edge at x = x0:

ζ(ω) =
Ey(x0)

Bz(x0)
= −i ω

ck
cot(kx0). (1.68)

Because of the field symmetry (1.67), the same boundary condition at the other cavity

edge, x = −x0. Then, setting x0 = ∆xw/2, the dispersion equation reads:

iζ(ωw) = R(ωw) = (1− ω2
p,b/ω

2
w)

−1/2 cot
[
(∆xw/2c)

√
ω2
w − ω2

p,b

]
, (1.69)

where ωp,b is the plasma frequency corresponding to the bottom well density ne,b. The

eigenmode that we are interested in corresponds to ω ≃ ωp,t because the scattered SRS

light forms a cavity near the quarter critical density. Maximum absorption is achieved

when the frequencies are close to each other.

The eigenfrequencies are calculated numerically for a representative set of parameters,

∆xw/λ0 = 7.7 and ωp,t/ω0 = 0.49, ωb,t/ω0 = 0.255 and for electron temperatures 3 − 5

keV. The real and imaginary parts of impedance (1.62) are shown in Figure 1.8 in function

of frequency. The top plasma frequency corresponds to the quarter critical plasma density

region where SRS occurs. In the temperature range of a few keV, the imaginary part of

impedance dominates. Correspondingly, the trapped modes are weakly damped. The

choice of parameters, vTe/c = 0.1 and k ≃ π/∆xw = 0.06ω0/c, in principle corresponds

to a very cold case kvTe/ω ∼ 0.003. In this case, the cold expression for ζ is valid:

ζ = (ω/ωp,t) (−i+ νei/2ω).
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Figure 1.8: Real (a) and imaginary (b) parts of the surface impedance for a representa-
tive set of parameters: ∆xw/λ0 = 7.7, ωp,t/ω0 = 0.49 and ωb,t/ω0 = 0.255 for electron
temperatures Te = 3.4 keV (red line), 4.4 keV (blue line) and 5.4 keV (green line).

Equation (1.69) has multiple solutions with frequencies bounded between the bottom

and top plasma frequencies. The lowest frequency mode ωw ≳ ωp,b is of main interest.

As the real part of impedance is much smaller than the imaginary part, the real part of

the lowest proper frequency ωw/ω0 = 0.258 can be found from equation (1.69) with only

imaginary part of ζ retained,

−Im ζ(ωw) = R(ωw).

By using the fact that Imωw ≪ Reωw one can use the perturbation theory to solve the

dispersion equation (1.69). Thus,

ζ(ωw) = Re ζ(ωw) + iIm ζ(ωw) ≃ R(Reωw) + iImωw ∂ωR(ωw). (1.70)

Then, by taking the imaginary part of Eq. (1.70) one can find expression for the imaginary

part of the eigenfrequency, Imωw = Re ζ(ωw)/∂ωR(ωw).
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Figure 1.9: Dependence of the real (a) and imaginary (b) parts of the frequency of the
trapped electromagnetic wave on the cavity width ∆xw for electron temperature Te =
3.4 keV (red line), 4.4 keV (blue line) and 5.4 keV (green line).

Dependence of the real and imaginary parts of the first proper mode ωw on the width

of the density well ∆xw is shown in Figure 1.9. As shown in panel a, for a very narrow
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well, ∆xw ≲ λ0, the mode frequency is close to the top plasma frequency ωw1 ≃ 0.5ω0.

The mode frequency is decreasing down to the bottom plasma frequency ∼ 0.2ω0 when

the well width is increasing.

Mode damping is shown in Figure 1.9b. It corresponds to the collisionless absorption

in a stationary cavity due to the interaction of the wave with plasma electrons in the skin

layers at both sides of the well. The damping coefficient is of the order of −Imωw/ω0 ≃
(3 − 5) × 10−4, and it increases with the temperature, while the real part of ωw remains

approximately unchanged.
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Figure 1.10: The absorption coefficient fcav.abs dependence on the cavity width ∆xw for
electron temperature Te = 3.4 keV (red line), 4.4 keV (blue line) and 5.4 keV (green line).

An increase of the well width can be qualitatively assimilated to the process of cavity

formation. In the simulation presented in Section 2, after the short transient period of

3 − 4 ps. A decrease of the mode frequency with time corresponds to the wave energy

absorption. It is transferred to the work of cavity formation.

The absorption coefficient, averaged by a laser period, is defined as:

fcav.abs = −4π Imωw/Reωw. (1.71)

This is shown in Figure 1.10. It is approximately constant in the range of (6− 10)∆xw,

which corresponds to the later stage of the cavity evolution. The coefficient has a tem-

perature dependence and tends to increase. The value of fcav.abs is of the order of 0.1%

for ∆xw/λ0 = 7.7 and electron temperature of 3.4 keV.

SRS provides a flexible way for controlling the nonlinear laser absorption. The colli-

sional and collisionless processes compete each other since the damping rate of the trapped

electromagnetic wave is compatible with the collision absorption.
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1.6 Two-plasmon decay

The TPD (two-plasmon-decay) instability was first identified by Goldman [93], who stud-

ied the Green’s function for the longitudinal electric field in a laser irradiated plasma.

Jackson [94] also identified it by adopting an approach based on the Vlasov equation.

Galeev et al. [95] and Rosenbluth [96] argued that the collisional damping of the plasma

waves produced in the decay would transfer energy to thermal electrons and provide an

anomalous absorption mechanism. It was also acknowledged that the resulting electro-

static turbulence or wave breaking would lead to energetic electrons, resulting in the

possibility of target preheat, which could decrease the fuel compressibility and target

gain. Experimental evidence shows [97] that TPD can produce hot electrons.

From a theoretical perspective, it can be demonstrated that a linear inhomogeneity

in plasma density can lead to convective instability, a result obtained by Rosenbluth [96]

in 1972. This introduced a threshold known as the convective threshold, which can be

higher than the collisional threshold found previously for a homogeneous plasma.

The TPD instability is a decay of a coherent electromagnetic wave into two electron

plasma waves, plasmons or Langmuir waves, with a frequency of ωEPW ≃ ω0/2, which are

in close proximity to the local electron plasma frequency ωpe.

The three wave-matching conditions for the TPD parametric instability read:

(ω0,k0) = (ωEPW1,kEPW1) + (ωEPW2,kEPW2). (1.72)

The TPD instability occurs at plasma densities slightly below quarter critical, since the

plasma wave (ωEPW,α,kEPW,α) satisfies the Bohm-Gross dispersion relation (for α = 1, 2),

ω2
EPW,α = ω2

pe + 3v2Tek
2
EPW,α.

The TPD process is similar to SRS in its physics, but with an important difference in

the direction of wave propagation. Unlike SRS, where the daughter waves can propagate

in the same direction, momentum conservation and coupling conditions in TPD result in

the optimal excitation of plasma wave vectors lying in the plane of the pump wave polar-

ization. The TPD instability has been studied in depth in Ref. [98] and it is characterized

as a 2D process with a different k-space domain compared to SRS. The SRS plasma wave

propagates in the forward direction, while the TPD waves propagate obliquely.

The growth rate of TPD instability

γ0 =
k0vos
4

− γEPW, (1.73)

where k0 = ω0/c
√
1− ne/ncr is the laser wave vector and γEPW is the damping rate

of EPW. The growth rate of TPD is comparable to that of SRS (1.38). However, the
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frequencies of the TPD waves are slightly different from half of the plasma frequency.

This difference is due to the momentum transfer from the plasma wave to the plasmons,

where the plasma wave propagating in the direction of the pump wave has a larger wave

vector and thus carries more momentum.

The threshold of the absolute TPD instability is given by

vos
vTe

≃
(

12

k0Ln

)1/2

, (1.74)

where Ln is the local density scale length at ncr/4. In inhomogeneous plasmas, the

threshold for TPD is typically lower than that of SRS at ncr/4 until the plasma is quite

hot.

The density range where TPD develops coincides with the plasma domain where SRS

and SBS can be excited. Their mutual interaction under conditions of large scales and

high temperatures is not well understood. SRS-SBS competition has been already studied

with one-dimensional (1D) particle-in-cell (PIC) simulations [88]. The prime mechanism

of strong suppression of SBS and efficient laser energy absorption was identified as plasma

cavitation under the ponderomotive pressure of SRS-excited plasma waves. Our 1D sim-

ulations confirm the presence of a cavitation [67] process and remind us of collisionless

absorption in a cavity as a method for controlling SBS-SRS competition, as discussed in

previous Sec. (1.4.2).

However, the 1D geometry does not allow for the consideration of TPD. Various works

have already taken into account the 2D geometry, which includes the TPD for SI condi-

tions. These studies can be found in references such as [99].

1.7 Hot electron generation

The direct drive scheme of laser fusion is susceptible to the hot electron preheat. These

hot electrons are produced in a long scale length near quarter-critical density plasma.

The parametric instabilities, such as SRS and TPD, create electrostatic plasma waves

capable of accelerating electrons. As discussed in Section 1.4, SRS can occur near and

below the quarter-critical density and generate electron plasma waves propagating in the

forward direction. TPD, see Section 1.6, takes place near the quarter-critical density and

generates plasma waves propagating obliquely with respect to the laser wave. The energy

of these plasma waves is eventually transferred to electrons that penetrate into the dense

fuel and cause its premature heating.

The relationship between SRS and TPD instabilities and the generation of energetic

electrons was first demonstrated in the 1970s and 1980s. The first observation of hot
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electron generation caused by the TPD instability was reported in 1980 by Ebrahim et

al. [100] using a CO2 laser. Keck et al. [101] and Mead et al. [102] later demonstrated

hot electron generation by TPD in single-beam experiments using 0.35-µm laser light.

Hot electron preheat can negatively impact target adiabat and performance in full-

scale, direct-drive ignition experiments if more than 0.15% of the laser energy is transferred

to the cold fuel [103]. The amount of preheat depends on several factors, including the

radial displacement of the quarter-critical surface and the angular size of the cold shell.

With a near-2π angular divergence of hot electrons, it is estimated that only 25% of them

will reach the cold shell and cause preheating [104].

Both SRS and TPD produce large amplitude plasma wave with high phase velocities

and thus lead to energy transfer from the laser to the hot electrons. It is demonstrated

theoretically [88], [105] and experimentally [27], [64] that SRS generates suprathermal

electrons with energies 40− 60 keV that a stopped in the shell and can be used to drive

the shell compression [106], while TPD can produce “too-hot” electrons with energies

exceeding 100−200 keV and lead to the fuel preheat. Fortunately, despite the importance

of TPD, it has not been observed in experiments under the SI conditions [18], nor in our

2D simulations [65]. For this reason, in this study we focus on the SRS generated electrons.

1.7.1 Mechanisms of hot electron generation

To comprehend the development and outcomes of laser light coupling into electrostatic

waves such as EPW and IAW, it is essential to understand how plasma electrons interact

with the electron plasma waves. The energy of these waves does not escape the plasma,

it is ultimately transferred to the supra-thermal electrons through linear or nonlinear

damping mechanisms.

In this section, we provide a short description of three main processes responsible for

the electron acceleration in the laser plasma interaction. These are: Landau damping,

particle trapping, and wavebreaking. These phenomena are crucial to understanding the

energy dissipation in plasmas and generation of hot, suprathermal electrons, which may

penetrate deep into the dense target, preheat the fuel and thus reduce the fusion yield.

Landau damping

Landau damping is a phenomenon where the collective oscillations of charged particles in

a plasma are damped due to the energy transfer from the wave to the particles propagating

with the velocity close to the wave phase velocity. This process was first predicted by

Landau in 1946 for Langmuir oscillations [76], but has since been observed in various other

modes of collective plasma oscillations. Over the years, modifications have been made to
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account for non-Maxwellian particle distributions, plasma inhomogeneity, magnetic fields,

multiple plasma species, and nonlinear effects, making Landau damping a crucial aspect

of modern plasma physics.

According to the linear theory, the damping rate of the electrostatic plasma wave

(EPW) is given by:

γEPW = −
√
π

8

ω2
peω

2
EPW

|kEPW|3v3Te
exp

(
− ω2

EPW

2k2EPWv
2
Te

)
, (1.75)

where kEPW is the wave number of the EPW and ω2
EPW = ω2

pe+3k2EPWv
2
Te is the frequency

of the electrostatic wave.

Landau damping transforms energy of electron plasma wave into the kinetic energy

of electrons. However, the rate of Landau damping decreases strongly with on the phase

velocity of the EPW. The damping rate is substantial when vph = ωEPW/kEPW ≲ 3vTe,

meaning that kEPWλDe ≳ 0.4, so the linear interaction of electrons with a monochromatic

plasma cannot lead to acceleration of a large number of electrons to large energies.

Dawson presented a clear and intuitive interpretation of Landau damping and related

nonlinear effects in 1961 [107]. He explained the phenomenon as the rate of energy ex-

change between the wave and particles having velocity close to the wave phase velocity.

Electrons are moving in the wave periodic potential and the damping time is limited by pe-

riod of oscillations in the wave trough, known as the bounce time, tb = (me/eE0kEPW)1/2,

where E0 is the plasma wave amplitude.

Electrons moving with velocity as close to vph as vb = 1/kEPWtb are trapped in the

wave. They can gain in addition to their energy 1
2
mev

2
ph in the laboratory reference frame

a trapping energy ∼ mevphvb, which is relatively small. Electron resonance acceleration

becomes much more efficient if there is a continuous spectrum of plasma waves in a large

range of phase velocities. Such a situation can be created if a convective SRS is excited in

an inhomogeneous plasma. Since the phase velocity of the daughter plasma wave increases

with the plasma density and its direction is parallel to the density gradient, electrons can

be accelerated successively in several plasma waves of small amplitudes with increasing

phase velocities and eventually attain velocities on the order of the light velocity.

Electron trapping in plasma wave

A large amplitude monochromatic plasma wave characterized by the bounce velocity com-

parable to the electron thermal velocity can itself trap a significant amount of electrons.

The concept of particle trapping has motivated theoretical studies of nonlinear Bernstein-

Greene-Kruskal (BGK) modes. Trapped particles lead to a reduction of Landau damping,

nonlinear frequency shift, and a sideband instability.
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The role of electron trapping in the long time evolution of SRS driven Langmuir waves

was reported in [108], [109]. Excitation of the sideband instability causes electrons to

escape from the trap with a larger velocity. Electron acceleration through trapping occurs

when the wave has high enough amplitude and a large number of particles are captured

in the wave potential. Trapped particles can also be released if the wave amplitude or

phase is disrupted by a fast spatial or temporal perturbation resulting in a wavebreaking.

Wavebreaking of plasma waves

Langmuir waves driven by parametric instabilities such a SRS and TPD can grow to

so large amplitudes that the bounce velocity becomes comparable to the phase velocity,

vb ≲ vph. Under such conditions, accelerated electrons can escape the wave taking with

them a significant amount of energy and thus destroying the wave. The wave amplitude

at which breaking occurs in a cold plasma was first obtained by Dawson in 1959 [110]:

eE0 = meωpevph.

Coffey in 1971 [111] calculated the wavebreaking by using a waterbag distribution of

electrons and a fixed background of ions, and derived an expression for the maximum

amplitude of oscillations in function of the plasma temperature. As the ratio of the

electron thermal velocity vTe to the wave phase velocity increases, the maximum amplitude

decreases. Schroeder et al. [112] extended the wavebreaking analysis to relativistic plasma

waves in a warm plasma. Their calculation determined the maximum wave amplitude and

the distribution function of trapped electrons. Wavebreaking leads to a destruction of the

plasma wave and transforming plasma into a turbulent state.

1.7.2 Two-temperature approximation

Electron acceleration through SRS-generated plasma waves is a key process in the laser

plasma interaction where a significant amount of laser energy can be transferred to a

small group of supra-thermal electrons. The role of this collisionless absorption process

is demonstrated in our simulations through the electron energy flux:

Fe =

∫
dp vx εe fe(p), (1.76)

where vx = px/meγe represents the component of electron velocity in the direction of laser

propagation, εe = mec
2(γe−1) is the electron kinetic energy and γe is the relativistic factor.

The differential electron energy flux integrated over the transverse components of electron



CHAPTER 1. PARAMETRIC INSTABILITIES IN ICF 44

momentum is given by:
dFe

dpx
=

∫
dp⊥ vx εe fe(p), (1.77)

where p⊥ represents the components of momentum in the plane perpendicular to the x

axis. This function is typically calculated in the quasi-steady state of the simulation, in

a dense plasma behind the quarter critical density.

Since we are interested in the energy flux into the dense plasma, it is desirable to

eliminate the backward energy flux. To this end, various techniques may be employed,

such as the use of absorbing boundary condition for the electrons that cross the virtual

boundary in dense plasma with artificially enhanced collision frequency [88], [113], or by

subtracting the backward energy flux [67].

According to the numerical simulations and experiments, the energy distribution of

electrons in laser plasma interactions can often be represented by a two-temperature

Maxwellian distribution: the bulk distribution fe,i and the hot suprathermal particles fh,

each of them characterized by their own densities and temperatures. Consequently, the

electron differential energy flux in our simulations is represented as :

dFe

dpx
=
∑
j=e,h

nj vx√
2πmeTj

( p2x
2me

+ Tj

)
exp
(
− p2x
2meTj

)
, (1.78)

where j refers to either the bulk (e) or hot (h) electrons, nj is the density and Tj is the

temperature. The density fraction of hot electrons is defined as nh/ne.

Numerical simulations concerning the hot electron generation and transport are dis-

cussed in Section 2.5.

1.8 Conclusion for Chapter 1

This chapter provides a brief description of the parametric instabilities that occur in the

context of ICF, including Stimulated Brillouin Scattering (SBS) and Stimulated Raman

Scattering (SRS). Through an analysis of laser propagation and collisional absorption

in Section 1.1, we derived Helmholtz equation for the electric and magnetic fields (1.4)

and calculated the dispersion relation for electromagnetic waves (1.7). Using the WKB

technique, we solved this equation and examined the collisional damping of a light wave

propagating into an inhomogeneous plasma, ultimately finding the total collisional ab-

sorption coefficient (1.17).

Analysis of SBS and SRS has provided important insights into their performance in the

context of shock ignition ICF. Our study of SBS in Section 1.3 reveals the crucial impact

of flow velocity and laser bandwidth on its development, as well as the significance of
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multiple ion species. We derived the dispersion equation for ion acoustic waves in the

case of two ion species (1.30) and solved it, determining the wave phase velocities and

damping rates. The results show that damping rates of both modes are higher than in

the average species case due to a stronger interaction with hydrogen ions. Damping of the

slow mode was found to be almost independent on ion temperature, while damping of the

fast mode increases significantly with the ion temperature, see Figure 1.2. Utilizing these

phase velocities and damping rates, we calculated the convective amplification factor of

SBS, which is integrated numerically in the case where the width of resonance ∆xres is

comparable to the size of the plasma. Furthermore, we provided examples of practically

interesting parameters for ICF.

Our exploration of SRS examined its temporal and spatial characteristics and the role

of plasma cavitation in the nonlinear laser energy absorption and hot electron generation.

In particular, we develop a theoretical model describing trapping of electromagnetic waves

in cavities and calculated the frequencies and damping of trapped modes and surface

impedance either analytically in limiting cases or numerically by solving Eq. (1.69). We

also calculated the absorption coefficient (original result). We revised mechanisms of hot

electron generation, including Landau damping, particle trapping, and wavebreaking and

their relationship to SRS and TPD. We noted that SRS presents the main concern in the

context of shock ignition ICF.



Chapter 2

Numerical simulations of SBS and

SRS under the shock ignition

conditions

This chapter is dedicated to discussion of the use of Particle-in-Cell (PIC) simulations for

studying the kinetics of plasmas. PIC codes are powerful numerical tools that are based

on the Vlasov-Maxwell system of equations and are widely used for modeling collisionless

and weakly collisional plasmas. They use the concept of macro-particles to capture the

essential features of the plasma dynamics. In this chapter we also discuss the principle

of using PIC simulations for the interpretation of experiments by using hydrodynamic

simulations as an intermediary that provides input data.

2.1 General principles of PIC simulations

The Particle-In-Cell method was initially developed for fluid dynamics studies [114], but

has since gained widespread popularity due to its advantages, including conceptual sim-

plicity and efficient implementation on massively parallel computers. It has become a

crucial simulation tool for a wide range of physics studies, such as semiconductors, cos-

mology, accelerator physics, and particularly plasma physics. Today, the kinetic simula-

tion of plasmas in various settings, from laboratory to astrophysics, heavily relies on PIC

codes [115].

The kinetic description of a collisionless plasma is achieved through the Vlasov-Maxwell

system of equations. In this description, the various types of particles that make up the

plasma are represented by their distribution functions fs(r,p, t) of the species s with

the charge qs and mass ms at the position r and momentum p in the phase-space. The

46
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distribution function fs follows Vlasov’s equation:(
∂

∂t
+

p

msγs
· ∂
∂r

+ Fs ·
∂

∂p

)
fs = 0, (2.1)

where γs =
√

1 + p2/(msc)2 is the (relativistic) Lorentz factor, c is the speed of light in

vacuum, and

Fs = qs

(
E+

v

c
×H

)
, (2.2)

is the Lorentz force acting on a particle s with velocity v = p/(msγ). The collective

electric E(r, t) and magnetic H(r, t) fields in plasma satisfy Maxwell’s equations (2.3):

∇ · E = 4πρ,

∇ ·H = 0,

∇× E = −1

c

∂

∂t
H,

∇×H =
4π

c
J+

1

c

∂

∂t
E. (2.3)

The Vlasov-Maxwell system of equations (2.1)-(2.3) describes the self-consistent dy-

namics of the plasma, where the constituents of the plasma are affected by the Lorentz

force, and in turn, the collective electric and magnetic fields are modified by the charge

and current densities of the plasma:

ρ(r, t) =
∑
s

qs

∫
dp fs(r,p, t),

J(r, t) =
∑
s

qs

∫
dpv fs(r,p, t), (2.4)

One of the key features of PIC simulations is the use of quasi-particles. These are

macro-particles that represent a group of real particles with similar properties, such as

position, momentum, and charge. By using quasi-particles, PIC simulations are able to

capture the essential features of the plasma dynamics while avoiding the need to track

the motion of each individual particle.

fs(r,p, t) =
Ns∑
α=1

wα

Vc
S [r− rα(t)] δ [p− pα(t)] , (2.5)

here wα is a quasi-particle weight, rα is its position, pα is its momentum, Vc is the

hypervolume of the cell, S is the shape-function of all quasi-particles, and δ is the Dirac

distribution.

Maxwell’s equations are solved using the Finite Difference Time Domain (FDTD)
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method and its refined algorithms. In these methods, the electromagnetic fields are dis-

cretized on a staggered grid, known as the Yee-grid, which allows for spatial centering of

the curl operators in Maxwell’s equations. The time-derivative in Maxwell’s equations is

time-centered by defining electric fields at integer time-steps (n) and magnetic fields at

half-integer time-steps (n + 1/2). Magnetic fields are time-centered for diagnostic pur-

poses and computing the Lorentz force on quasi-particles. A leap-frog scheme is used to

update particle positions and velocities, which are defined at integer (n) and half-integer

(n− 1/2) time-steps, respectively.

After all the particles in the simulation domain have been created, the total charge

density ρ(t = 0, r) and current densities J(t = 0, r) are calculated on the grid using a

straightforward projection method:

ρ(t = 0, r) =
∑
α, s

qswα

Vc
S[r− rα(t = 0)]. (2.6)

Next, the initial electric fields are determined by solving Poisson’s equation. This is

done by using the conjugate gradient method. This iterative technique is advantageous

as it can be efficiently implemented on parallel computing systems and mainly involves

exchanging information between neighboring processes.

At the end of the initialization stage, all quasi-particles in the simulation domain

have been loaded, and the electromagnetic fields have been calculated throughout the

simulation grid. The PIC loop then begins, comprising many time steps. Each time-step

consists of four stages:

1. Interpolating the electromagnetic fields to the particle positions.

2. Calculating the new particle velocities and positions.

3. Projecting the updated charge and current densities onto the grid.

4. Computing the new electromagnetic fields on the grid.

PIC codes are widely used in the simulation of plasma physics, as they provide a

powerful tool to study the behavior of charged particles in electromagnetic fields. However,

like any simulation method, PIC codes have both advantages and disadvantages.

Advantages of PIC codes:

• High-Fidelity: PIC codes provide a high-fidelity representation of the plasma,

capturing the collective behavior of the charged particles and their interactions

with the electromagnetic fields;

• Versatility: PIC codes can be applied to a wide range of plasma systems and

configurations, making it a multi-purpose simulation tool;

• Scalability: PIC codes can be run on parallel computing architectures, making it

possible to run large-scale simulations and analyze complex systems.
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Disadvantages of PIC codes:

• Computational cost: PIC codes require large computational resources, making it

difficult to run large-scale simulations with fine spatial and temporal resolutions;

• Numerical noise: PIC codes can introduce numerical noise into the simulation

results, especially in regions with low particle density. This may penalize the studies

of excitation of instabilities and particle acceleration;

• Limited time-step: PIC codes are limited by the stability (CFL) condition, which

restricts the maximum time-step that can be taken, making it difficult to simulate

systems with short temporal scales.

2.1.1 Simulation of plasma dynamics with a code Smilei

Smilei is an open-source, multi-purpose PIC code for plasma simulations, offering physi-

cists a high-performance and user-friendly tool [116]. The development of Smilei was

driven by advancements in the ultra-high intensity (UHI) laser technology and new ini-

tiatives to construct multi-petawatt laser facilities, in particular ELI pillars. UHI laser-

plasma interaction is used to study matter under extreme temperature and pressure,

leading to potential applications such as charged-particle acceleration, ultra-bright short-

duration light sources, and electron-positron pair production.

The code is written in C++ and includes various options for geometries, laser/plasma

profiles, Maxwell solvers, particle pushers, interpolators, projectors, advanced boundary

conditions and more. The input is written in Python and includes run-time diagnostics

and post-processing tools. Smilei is designed for high-performance on parallel super-

computers, with a hybrid MPI/OpenMP parallelization and SIMD vectorization, and

has been tested on several architectures including Intel Cascadelake and Fujitsu A64FX.

The code uses the Yee mesh method and a charge-conservation scheme for Maxwell’s

equation solving and charge deposition. Smilei includes additional physics modules such

as field ionization, binary collisions, and QED processes and is used in a wide range of

applications, including laser-plasma interaction and astrophysics.

The PIC method has been designed originally to simulate the self-consistent evolution

of a collisionless plasma by solving the coupled system of Vlasov-Maxwell equations (2.1)-

(2.3). However, modern PIC codes incorporate additional modules to account for various

kinetic processes including collisions. In the code Smilei, the relativistic collisions have

been implemented using a scheme based on Nanbu’s approach [117], with improvements

such as the ability to handle relativistic particles, a correction for low-temperature collision

rates, and a variable Coulomb logarithm [118].

Collisions play a crucial role in PIC simulations of plasmas. They are important for

achieving thermal equilibrium between ions and electrons, which is necessary for accu-
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rately modeling the plasma’s temperature. Additionally, ion-ion collisions are crucial for

achieving thermal equilibrium within the ion population, particularly in the case of foam

plasmas as discussed in Section 4. Collisions are also important for understanding the

damping of plasma waves, which is discussed in Section 1.4.2. This is crucial for under-

standing the processes of growth and decay of SRS-driven waves and for understanding

nonlinear absorption processes.

2.1.2 Coupling hydrodynamic and PIC simulations for interpre-

tation of experiments

PIC codes provide a detailed information of the particle dynamics in the phase space,

but their application is limited to relatively small plasma volumes and relatively short

time intervals corresponding to hundreds of microns and tens of picoseconds. These scales

are significantly smaller than the realistic plasmas produced in the laser interaction with

solid or gaseous materials. Large plasmas are described with hydrodynamic codes using

simplifying approximations about the particle distribution in the phase space. The PIC

codes are used for obtaining a more detailed information about kinetic processes taking

place within limited volumes and time intervals. In this section we describe the principles

of coupling kinetic and hydrodynamic simulations and experiments by taking as example

the hydrodynamic code CHIC [70].

Figure 2.1: a) Laser pulse shape and the selected representative points for the kinetic
simulations, b) 2D plot of density and temperature obtained from the CHIC code showing
the volume chosen for kinetic simulations.

The radiation hydrodynamic code CHIC [70] is widely used for simulating laser-plasma

experiments. It can model large-scale hydrodynamic behavior of the plasma over the time

scales of a few nanoseconds or more. The code includes two-dimensional axially symmetric
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hydrodynamics, ion and electron heat conduction, thermal coupling of electrons and ions,

and detailed radiation transport. The laser propagation is described using the paraxial

complex geometrical optics approximation, and it includes simplified models for resonance

absorption and hot electron generation due to the TPD and SRS. However, these models

have been tested only at low laser irradiances and short wavelength lasers; they may not

be adequate for the conditions of shock ignition studied in this thesis. The nonlinear

absorption, reflection and hot electron generation are added in hydro simulations with

simplified ad hoc formulations deduced from detailed kinetic simulations.

Nonlinear laser plasma interactions are described with PIC simulations on a time

interval of a few picoseconds and on a spatial scale of a few hundred microns with initial

conditions calculated with the hydro code. These initial conditions include the profiles

of plasma density ne, electron and ion temperatures Te,i and plasma flow velocity u.

Examples of the profiles are shown in Figure 1.3. These profiles can be taken at different

time moments of laser pulse in order to evaluate the contribution of nonlinear and kinetic

effect. The choice of time points is shown in Figure 2.1 where the continuous line represents

the laser pulse temporal profile. Duration of the PIC simulation is defined by the time

needed for nonlinear processes to develop and to attain a quasi-stationary state. For the

case of our interest, SRS and SBS, the characteristic time is in the range of 5− 10 ps.

The spatial domain for the PIC simulation is chosen to cover the plasma volume where

these nonlinear processes can develop. The PIC simulation provides detailed information

on nonlinear absorption processes, such as the absorption coefficient, nonlinear reflectivity,

spectrum of scattered waves and the number and energy of hot electrons. This information

can be used to improve the accuracy of the interaction model introduced in the hydro

codes, and can also be compared with the experimental data for validation.

A similar approach is used in the second part of the our study described in Chapter 3,

which is dedicated to the laser interaction with foams. A multi-scale model of laser pulse

absorption in porous materials is developed and realized in the arbitrary Lagrangian-

Eulerian hydro-code PALE [119] and Eulerian code FLASH [120], [121]:

• micro-scale: expansion of solid elements in a pore is described in 1D model ac-

cording to the cell characteristics supplied by the 2D macroscopic model;

• macro-scale: the plasma homogenization in the ionization front is controlled by

the microscopic dynamics.

This approach shown schematically in Figure 2.2 combines a large-scale hydrodynamic

description of homogenized cells with a more detailed sub-grid representation of the cells

undergoing homogenization. The micro-scale model describing the cell homogenization

is governed by several empirical parameters, which are determined through a comparison

with kinetic simulations of laser interaction with a single pore and with experiments of
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Figure 2.2: Multi-scale modeling of micro-structured targets (left), scheme of laser inter-
action with a single cell (right).

laser interaction with foam targets. The multi-scale model is described in Ref. [122]

and results are compared with several experiments showing good agreement in terms of

plasma parameters and the speed propagation of the ionization front.

2.2 Setup of numerical simulations of SBS and SRS

In order to evaluate the SBS-SRS competition and its role in the efficiency of laser energy

absorption under the shock ignition conditions, we consider six representative cases:

i) the reference case of the interaction of a monochromatic laser pulse with a collision-

less plasma with zero fluid velocity and a single ion species having effective charge

Zeff = 3.5 and mass Aeff = 6.5 corresponding to the equimolar mixture of hydrogen

and carbon;

ii) the reference case is repeated with the electron-ion collisions switched on;

iii) the same as case i) but with expanding plasma with a fluid velocity linearly increas-

ing with the coordinate, u(x) = us(x/lu− 1), with lu = 300λ0 and us = 0.75µm/ps;

iv) the case iii) of expanding plasma is repeated with the electron-ion collisions switched

on.

v) the same as case i) but with two ion species, fully ionized carbon and hydrogen of

equal concentrations;

vi) the same as the reference case i) but with a phase-modulated laser pulse with a

correlation time τc ∼ 0.5 ps.
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To further analyze the results, we also investigate the spatial and temporal evolution

of the laser intensity, electron and ion density, temperature and particle velocity distri-

butions. Additionally, we compare the growth rates and spatial gains of SBS and SRS

in each case, which are presented in Sections 1.3.4 and 1.4.2. The results are presented

in a series of figures and tables for easy comparison and discussion. Overall, the first

part of this study aims to provide a comprehensive understanding of the role of SBS-SRS

competition in laser energy absorption and the influence of various plasma parameters on

this process.

2.2.1 Input parameters

In order to demonstrate the possibilities of controlling nonlinear laser energy absorption,

we consider the interaction of an intense laser pulse incident normally on an expanding

underdense inhomogeneous plasma made of a plastic (CH) with parameters relevant to

the shock ignition scenario [18], [25]. Plasma has a linear density profile, ne/ncr = 0.05+

0.23x/ln, increasing from 0.05 to 0.28ncr over a length ln = 286λ0 for the laser wavelength

λ0 = 0.351µm. The initial electron temperature, Te = 3.4 keV, and ion temperature,

Ti = 1.0 keV, are assumed to be homogeneous in space. These are representative values

reported in numerical simulations and experiments [18], [65] and shown in Figure 1.3.

The laser pulse intensity, I0 =
1
2
cϵ0E

2
0 = 6× 1015 W/cm2, is maintained constant during

the simulation time of 8 ps, that is, about 104 laser periods, after a linear ramp during

first ten laser periods. This time is sufficient for achieving a quasi-steady state in the

simulation.

The simulation box length is 314λ0 with 14λ0 vacuum margins at the front and rear

sides of the box in order to enable a free plasma expansion. Boundary conditions are open

for electromagnetic waves, the particles reaching front and rear boundaries are re-injected

with a Maxwellian distribution corresponding to the initial temperature. These boundary

conditions, however, do not describe ejection of hot electrons into a dense plasma as it

happens in the experiment. Instead, we evaluate the distribution of the energy flux carried

by electrons and ions in the denser plasma near the right boundary.

In the following sections we analyse the particle energy evolution, spectra of scattered

light and hot electron generation. The bulk temperature of species j = e, i at the position

x is defined via the distribution function fj:

Te,i =
2

3ne,i

∫
dp εfe,i(p, x, t). (2.7)

The distribution functions obtained from simulations are fitted by a sum of two Maxwellian

functions (1.42) corresponding to the bulk and hot particles. For example, the electron
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distribution function is approximated as:

fe(p) =
∑
j=e,h

nj√
2πmeTj

exp
(
− p2

2meTj

)
, (2.8)

While analysing temporal evolution of the distribution functions of electrons and ions in

the simulations, we define effective temperatures averaged over the length of simulation

box as shown in Figure 2.3. In addition, we approximate the distribution functions of

electrons and ions with two Maxwellian functions with different densities and temperatures

as described in Section 1.7.2, and evaluate the energy flux carried with hot electrons

according to Eq. (1.78).

2.3 Role of SBS in the particle energy evolution

In the absence of collisional damping, which can be a minor effect under the conditions of

interest, the energy transfer between the laser and the particles is mediated by electrostatic

fields. In the case of SRS, the laser energy is transferred to an electron plasma wave,

which then transfers it to electrons. In addition, in the case of cavitation, the scattered

electromagnetic wave is trapped and transfers a part of its energy to ions. The energy

transfer in the case of SBS is weaker because of the smallness of the ion acoustic wave

frequency, but then, ion acoustic wave transfers its energy directly to ions.
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Figure 2.3: Temporal evolution of the space averaged bulk temperature of electrons (a)
and ions (b) in the runs described in the legend. Parameters are given in Section 2.2.1.

The particle energy starts evolving at t = 0.7 ps when the laser pulse enters the plasma.

The first fast increase of electron temperature, same in all simulations in Figure 2.3a, is

related to the excitation of SRS near the quarter critical density. After that, two different

evolution paths are observed. In the reference case of a single species plasma with zero

velocity, the electron temperature gradually decreases independently on the presence (red)

or absence (blue) of electron collisions. A comparison of the collisional and collisionless
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runs confirms the minor role played by collisions in the reference case. By contrast, the

ion temperature shown in Figure 2.3b increases at a later time of ∼ 3.5 ps when the SBS

instability is excited.

In the cases i) and ii) of a plasma with zero velocity shown in Figure 2.3 with red

(collisional case) and blue (collisionless case), SBS dominates the interaction. After a

short delay of ∼ 3 ps a strong backscattering prevents the laser radiation to penetrate to

the quarter critical density where SRS can be excited. Consequently, SRS is suppressed

and electron temperature decreases. A small peak in the electron temperature near t = 3.5

ps is explained by the collisional absorption of SRS reflected light excited near the quarter

critical density. As shown in Table 2.1, only about 2% of laser energy is absorbed in the

reference case i) and distributed between electrons and ions. The level of SBS reflectivity

is very high, about 93% at the late stage of interaction (t > 5 ps).

# Simulation Reflected Transmitted Absorbed

i) Reference, collisionless plasma 91% 4% 5%

ii) Reference, collisional plasma 88% 10% 2%

iii) Expanding collisionless plasma 36% 37% 27%

iv) Expanding collisional plasma 37% 27% 36%

v) Two ion species, collisionless 36% 30% 34%

vi) Phase-modulated pump, collisionless 81% 16% 3%

Table 2.1: Averaged values of reflected and transmitted light for the last 4 ps of simulation
time for the six considered cases.

In the cases iii) and iv) of expanding plasma shown in Figure 2.3 with green (collisional

case) and gold (collisionless case) lines, electron and ion temperatures are increasing to

higher levels, thus demonstrating a much better laser absorption. As discussed in Section

1.3.3, divergence of the plasma velocity suppresses SBS as the amplification length of the

scattered wave is shorter. Consequently, laser absorption is dominated by SRS near the

quarter of critical density and plasma cavitation. Similar effect has been already observed

by Klimo et al. [88]. In our case about 9% of laser energy is absorbed and deposited into

electrons and ions. The electron energy rises to 4.5 keV during first 4 − 5 ps and then

remains approximately constant when the interaction enters in a quasi-stationary regime.

The role of electron collisions is more important in the expanding plasma. Switching

the collisions on results in the increase of the average electron temperature from 4.5 to

4.7 keV (Figure 2.3a), which corresponds to a difference of more than 20% compared to the

total temperature increment ∼ 1 keV with respect to the initial temperature of 3.5 keV.

By contrast, collisions have an opposite effect on the average ion temperature. It increases

by 40% in the collisionless case but only by 30% in the collisional case. Explanation of

the effect of collisions on particle heating is given in the next section.
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In the case v) of two ion species shown in Figure 2.3 with a purple line, the increase of

electron temperature is similar to in the case of expanding plasma without collisions. The

improved laser absorption in this case is also explained by the SBS suppression, but it is

related in this case to a stronger ion acoustic damping on light (hydrogen) ions. The level

of SBS reflectivity in this case is 36%. Consequently, less laser radiation penetrates to the

quarter critical density and produces a stronger electron heating. The effect of hydrogen

ions on SRS saturation and hot electron production was reported in several experiments

[64], [123], [124].

The case vi) of a phase-modulated laser pulse shows a smaller increase of electron

and ion temperatures compared to the cases iii) and v). This particle heating is also

explained by a partial SBS suppression related to spectral bandwidth of the laser driver.

However, the considered pump correlation time of 0.5 ps is of the same order as the SBS

growth time 1/γSBS as described in Section 1.3.1. Consequently, the laser bandwidth is

not sufficient for a strong suppression of SBS and the level of SBS reflectivity in this case

is maintained on a high level of 81%. The energy partition in Table 2.1 shows that laser

energy absorption in plasma increases significantly when SBS is suppressed.

2.4 Laser backscattering and transmission

The reflection of incident laser light and the roles of SRS and SBS are confirmed through

analysis of the reflected light spectrum in Figure 2.4a. In simulation cases i) and vi),

the peak near the laser frequency dominates the spectrum. This peak is downshifted by

∆ωIAW ≃ 0.0028ω0, which corresponds to the frequency of a driven ion wave ωIAW = 2k0cs.

In simulation case v), the downshift in the spectrum ∆ωIAW ≃ 0.0032ω0 matches the

excitation of the fast wave as described in Section 1.3.2.
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Figure 2.4: Overall view (a) and a detailed structure (b) of the spectrum of the light
reflected from the plasma for the reference case (i, red), expanding collisionless (iii, green)
and broadband (vi, blue) cases.
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A particular feature of SRS spectrum shown in Figure 2.4 is that it extends to the

frequencies smaller than 0.5ω0. It contains several spectral components but the strongest

one is downshifted by ∆ωs = ωs−ω0/2 ≈ −0.01ω0. This shift was predicted theoretically

in Ref. [87]. It is explained by thermal electron motion, which leads to effective increase

of the plasma wave frequency and to a correspondent decrease of the scattered wave

frequency. According to equation (56) in Ref. [87], expression for the frequency shift of

the scattered wave reads:

∆ωs

ω0

=
ωs − ω0/2

ω0

≃ − 9Te
8mec2

+
1

4k0Ln(vos/c)1/2
. (2.9)

The first term in the right hand side of this equation is negative and it is on the order

of 0.01 under our conditions, which agrees very well with the observed shift. The second

term is much smaller, it is on the order of 0.001. A similar negative shift was observed in

several other publications [65], [105], but its origin was not explained.

An additional peak in left side of the spectrum shown in Figure 2.4a near the quarter

of the laser frequency is attributed to the secondary SRS process, which is excited by the

backscattered SRS daughter wave near the one-sixteenth of the critical density. Such effect

was already reported in the previous publication [88] and manifested itself in formation

of secondary density cavities at ne/ncr ≃ 1/16. This feature is stronger in the cases iii)

and vi) where the SBS suppressed and the amplitude of the backscattered SRS wave is

enhanced.
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Figure 2.5: Spatial and temporal evolution of the backscattered light (top row) and
electrostatic field Ex (bottom row) for the reference case (i, left column), expanding
collisionless plasma (iii, central column) and broadband laser pulse (vi, right column).

Both SBS and SRS contribute to the backscattered signal. Their contributions can be

distinguished in the spatio-temporal plots in Figure 2.5. Excitation of Raman scattered

electromagnetic waves, shown in the top row plots, is correlated with the excitation of large

amplitude plasma waves shown in the bottom row. Dynamics of the Raman scattered

electromagnetic wave is rather different in the three cases presented in this figure: in the

left and right columns corresponding to cases i) and vi), the SBS reflectivity is high, which
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leads to the inhibition of SRS near the quarter critical density and to suppression of the

cavitation process. By contrast, in the central column corresponding to case iii) SBS is

suppressed resulting in a stronger SRS and cavitation.

The first short SRS burst comes from the region near the quarter critical density at

t ∼ 0.7 ps. The SRS instability develops very fast, the Langmuir waves are excited in a

region near the point x ≃ 100µm, corresponding to ne/ncr = 0.23− 0.25, where temporal

and spatial gains plotted in Figure 1.5 are maximized. At this time, reflected SRS wave

is strong enough to excite secondary SRS near the plasma density of ncr/16 at x ≈ 12µm

manifested by short-lived bursts of plasma waves. This, however, has a very weak effect

on the laser reflection and absorption. A steady excitation of SRS is produced later in

time t > 4 ps in the cases iii) and vi), and it is manifested by formation of cavities

– narrow localized packets of electromagnetic field trapped in deep density depressions.

There is practically no electrostatic field in the cavities because the electrons are expelled.

Formation of plasma cavities near the quarter and one-sixteenths of the critical density

due to Raman backscattering was reported by Klimo et al. [88].

In the case i) (left column in Figure 2.5), the SRS instability is excited near the quarter

critical density only at the transient stage. It produces one or two bursts of scattered light

with frequency ∼ 0.5ω0 as shown in Figure 2.4a, which could be partially absorbed via

collisional damping while propagating through the plasma. Later in time, for t > 4 ps,

the scattered light originates from a plasma with density less than 0.1ncr, and it is due to

SBS. Similar effect is observed in the case vi) of a broadband laser pulse (right column

in Figure 2.5). However, here SBS is partially suppressed and the absolute SRS excited

at later time, t > 4 ps, which is manifested in formation of two cavities and stronger

backscattering in Figure 2.4.

By contrast, SBS is much stronger suppressed in the case iii) of expanding plasma,

which is shown in the central column in Figure 2.5. Here, in addition to the absolute SRS,

excited near the quarter critical density and produced multiple cavities, a convective SRS

is excited in a lower density plasma. The latter is manifested by excitation of Langmuir

waves in a plasma with density ≳ 0.15ncr and a broad spectrum of backscattered waves

in Figure 2.4.

Formation of cavities is considered in Section 1.5. It is related to the fact that the group

velocity of the scattered electromagnetic wave near the quarter critical density is close to

zero and thereby it stays a relatively long time in the resonance with the pump wave [51],

[87]. Consequently, a strong ponderomotive force produced by the daughter electromag-

netic and plasma waves induces a density depression where they are self-trapped. The

plasma wave disappears when electrons are expelled from the cavity, while electromag-

netic waves are weakly damped and persist for a long time. Ions are accelerated under the
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ponderomotive pressure of trapped light as discussed in Section 2.6. The cavity formation

is manifested by a strong reduction of backscattering level to ∼ 25%.

In the Section 1.5, the mode damping is discussed in detail. It is attributed to the

interaction of the wave with plasma electrons in the skin layers at both sides of the

well, which is known as collisionless absorption. The damping coefficient −Imωw/ω0 is

estimated to be in the range of (3− 5)× 10−4 and increases with temperature as shown

in Figure 1.9b.

The formation of a cavity is a gradual process and can be described as a gradual

increase in the well width. During this process, the wave energy is absorbed, leading to a

decrease in the mode frequency with time. This process is quantified by the absorption

coefficient, defined as the ratio of the imaginary part of the wave frequency to its real

part, as described by (1.71). The absorption coefficient is approximately constant during

the later stages of the cavity’s evolution, with a temperature dependence that tends to

increase.

The cavity formation is terminated when the ponderomotive pressure of trapped waves

is equalized with the thermal pressure of the ambient plasma. So, the energy stored in the

cavity can be estimated as 0.25ncrTe∆xw, which corresponds to about 1 kJ/cm2 for our

conditions. The cavity life time is defined by the damping of the trapped mode, which is

about 1 ps according to equation (1.71). Therefore, cavitation and subsequent collisionless

absorption of trapped electromagnetic waves could be an important mechanism of laser

energy absorption as one can see in Table 2.1. We estimate the value of fcav.abs in Section

1.5 to be approximately 0.1% for the cavity width ∆xw/λ0 = 7.7 and electron temperature

of 3.4 keV. This estimate is in agreement with the similar value observed in our PIC

simulations.

The mode damping in a cavity is an important aspect of the nonlinear laser absorp-

tion process, with a flexible way of controlling the absorption via SRS. The collisional

and collisionless processes compete with each other, as the damping rate of the trapped

electromagnetic wave is compatible with the collisional damping rate.

Collisional damping rate of the scattered electromagnetic wave is proportional to the

electron-ion collision frequency evaluated at the quarter critical density ν∗ei, which is∼ 1−2

ps−1 for the conditions of interest. This value corresponds to the ratio ν∗ei/ω0 ≃ 4× 10−4,

which is an order of magnitude smaller than the SRS temporal growth rate shown in

figure 1.5a, but could be comparable or larger than the collisionless damping rate of the

electromagnetic wave trapped in the cavity (1.71). For the chosen plasma parameters the

value of absorption coefficient is fcol.abs ≈ 0.3. Thus about 30% of the scattered wave

energy could be absorbed in plasma due to collisions.

Moreover, the collisional absorption of the scattered electromagnetic wave makes also
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a notable contribution to the absorption process. This can be seen in Figure 2.3 when

comparing the cases with and without collisions. In the reference case, there is no differ-

ence between the runs i) and ii): since the SRS is suppressed by a strong SBS in a low

density plasma. By contrast, there is a notable electron and ion heating in the case of

expanding plasma: in the run iii) without collisions, both electrons and ions are heated

due to SRS excitation and energy absorption in cavities. In the run iv) with collisions,

there is less ion heating and more electron heating due to the collisional absorption of the

SRS scattered wave.

2.5 Hot electron generation

The energy fluxes for both electrons and ions are shown in Figure 2.6. The electron energy

flux is almost zero for densities below the quarter critical density. A dramatic increase

in the electron energy flux near the quarter critical density indicates the location of SRS

activity and the zone where electrons and ions are accelerated. A correlation of strong

electron and ion energy fluxes is due to the formation of a cavity, where a trapped strong

electromagnetic field ejects electrons and ions in both directions. Electrons dominate the

energy flux, with ion contributions being less than 10%. The electron energy flux through

the rear boundary is maintained at a level of 6-7% in the quasi-stationary regime, in

agreement with the overall energy balance discussed above in Section 2.3.

Figure 2.6: Electron (a) and ion (b) energy flux in the simulation box as a function of
initial plasma density for the case i) of a collisionless plasma at time of 0, 4 and 8 ps. The
curves are normalized to the incident laser intensity.

In the case of strong SRS excitation iii), the electron acceleration in Langmuir waves

leads to the formation of a two-temperature distribution, as shown in Fig. 2.7a. This

distribution can be fit with a Maxwellian two-temperature distribution Eq. (1.78) with

temperatures Te,bulk ≃ 3.5 keV for the bulk component and Te,hot ≃ 35 keV for the hot

component, with a relative concentration ratio nh/nbulk of 10.7%. The high energy tail of
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the distribution function corresponds to px > 0.3mec.

In case v) of two ion species, the electron energy flux density contains only the bulk

part, without a notable high energy tail at px ≃ 0.3−0.4mec as it is shown in Figure 2.7a.

Despite the lower hot electron concentration compared to case iii), the distribution is still

fitted with a two-temperature Maxwellian function, with temperatures of bulk Te,bulk ≃ 3.4

keV and hot Te,hot ≃ 35 keV and a ratio of concentrations nh/nbulk of 3.3%. The temper-

ature of hot electrons is similar to the case iii), but the concentration of hot electrons and

total flux are 2.5 times lower.

In case vi) of broadband laser the electron energy flux is similar to the case v) with

two ion species, but with a small plateau near px ≃ 0.15mec, which is probably related

to a collisional absorption. The energy flux is fitted with a Maxwellian two-temperature

distribution, with temperatures of bulk electrons Te,bulk ≃ 3.4 keV and hot electrons

Te,hot ≃ 10 keV and a ratio of concentrations nh/nbulk of 8.8%. These parameters are

presented in Table 2.2.

The two-temperature approximations observed in the cases iii) and v) provide valuable

insights into the dynamics of the electron acceleration in Langmuir waves. However, the

presence of density cavities, as discussed in Section 1.5, may contribute in shaping the

distribution.
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Figure 2.7: Distribution of the electron energy flux density near the quarter critical plasma
(ne ∼ 0.25ncr) on the parallel momentum, dF/dpx averaged over the first (blue) and last
0.5 ps (red) for the case iii) of expanding plasma (a), for the case v) with two ion species
(b) and for the case vi) of broadband laser pulse (c). Black/gray dashed line is an
electron energy flux fitted with a Maxwellian function (1.78) for px > 0, corresponding
to temperatures of 3.4/34 keV (a), 3.4/10 keV (b) and 3.4/10 keV (c). All curves are
normalized to the incident laser energy flux density F0.

The electron distribution function, represented in Figure 2.9, can be approximated

by a sum of two Maxwellian functions (2.8). A closer look at the figure reveals that

the relative concentration of hot electrons is higher for the case iii) near quarter critical

density as compared to cases v) and vi), and the relative temperature is also higher.

The Maxwellian two-temperature fit, used to determine bulk temperatures for all cases,

indicates that these temperatures are slightly lower than the initial temperature of 3.4 keV,

which is due to a relatively large noise level. The correct value of the bulk temperature
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Figure 2.8: Electron distribution function fe on the parallel momentum near the quarter
critical plasma ne ∼ 0.25ncr, at t = 0 ps (blue) and t = 8 ps (red) for the case iii) of
expanding plasma (a), the case v) with two ion species (b) and the case vi) of broadband
laser pulse (c). Black/gray dashed line is an electron distribution function fitted with
Maxwellian function (2.8) for px > 0, corresponding to the bulk/hot temperatures of
3.3/35 keV (a), 3.3/11 keV (b) and 3.3/10 keV (c). All curves are normalized to unity.

is calculated from the distribution function averaged over the entire simulation box, i.e.

f̄e =
∫
dxfe(px, x)/ln. The effect of spatial averaging can be seen from comparison Figures

2.8 and 2.9.
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Figure 2.9: Electron distribution function fe on the parallel momentum averaged over the
simulation box at t = 0 ps (blue) and t = 8 ps (red) for the case iii) of expanding plasma
(a), for the case v) with two ion species (b) and for the case vi) of broadband laser pulse
(c). Black/gray dashed line is an electron distribution function fitted with Maxwellian
function (2.8) for px > 0, corresponding to the initial/current bulk/hot temperature of
3.4/4.75/35 keV (a), 3.4/4.5/11 keV (b) and 3.4/3.9/10 keV (c). All curves are normalized
to unity.

At t = 8 ps, the temperatures of the bulk plasma are consistent with the values shown

in Figure 2.3. In terms of the generation of hot electrons, the relative contribution of SRS

in cases iii) and v) are estimated to be roughly equal. However, the instantaneous electron

energy distribution near a quarter of critical density cannot provide an accurate picture

of the entire simulation box. Electrons with energies of ∼ 35 keV may appear slightly

below a quarter of critical density due to convective SRS amplification, which is observed

in the cases iii) and v). The relative timing of the appearance of these electrons may also

differ, as the SRS-SBS competition is a complex process, with SRS sometimes suppressing

SBS and vice versa. Table 2.2 illustrates this interplay. The relative concentrations and

temperatures of the hot electrons are calculated by averaging them over the entire box,
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and the total flux is computed using (1.78) by selecting particles with |p| > 0.3mec.

Although cases iii) and v) are quite similar, the total amount of hot electrons and their

temperature are higher compared to the case vi).

# Simulation nh/nbulk Th Total flux F/F0

iv) Expanding collisional plasma 10% 35 keV 10%

v) Two ion species, collisionless 10% 35 keV 9%

vi) Phase-modulated pump, collisionless 7% 10 keV 6.1%

Table 2.2: Hot electron concentration, temperature and total flux averaged over the last
0.5 ps of simulation time and over the simulation box for the three representative cases.

2.6 Ion heating and acceleration

Excitation of parametric instabilities leads also to the ion heating. It is related to two

processes: damping of ion acoustic waves excited by SBS in a low density plasma, ne/ncr ≲

0.2, and expansion of cavities created at nonlinear stage of SRS evolution near the quarter

critical density. A negative ion energy flux in a low-density plasma (ne < 0.22ncr) shows

two specific features. First, a steady ion flux linearly increasing with time is due to plasma

expansion. From the expression for the ion energy flux related to the plasma expansion,

Fi =
3
2
niTivi, and the increase rate dFi/dt presented in Figure 2.6b of 4×10−5F0 over 4 ps,

we can evaluate the ion acceleration, dvi/dt = −10−3µm/ps2. Another particular feature

of the ion energy flux is its increase in the low-density region (ne/ncr = 0.10− 0.15). This

corresponds to forward ion acceleration by SBS-driven ion acoustic. This effect is weak

at t = 4 ps and becomes much stronger at t = 8 ps, indicating that SBS is excited later,

after 3− 4 ps, and creates a strong ion flux on the order of 0.1F0.

A comparison of the ion temperature evolution for different cases in Figure 2.3b shows

that cavitation makes a strong contribution with ion temperature increase by more than

30% during the simulation time.

A more detailed analysis of the ion dynamics is presented in Figures 2.10 and 2.11

showing distribution of the ion energy flux on the momentum px near the quarter critical

density. Figure 2.10 shows the case v) of two ion species. According to [60], [61], for

the temperature ratio, Ti/Te ≃ 0.3, the fast mode has a smaller damping increment,

ImωIAW/ReωIAW ≃ 0.24, and it is excited in the SBS process. The phase velocity of this

mode ≃ 0.76µm/ps is approximately two times the hydrogen thermal velocity and it is

approximately eight times the carbon thermal velocity. Consequently, a comparison of

the left and right panels in Figure 2.10 shows that hydrogen ions are gaining much more

energy than carbon ions from the ion acoustic waves.
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Figure 2.10: Distribution of the ion energy flux density near the quarter critical plasma
on the parallel momentum, dF/dpx averaged over the first (blue) and last 0.5 ps (red) for
the case v) with two ion species: a) hydrogen and b) carbon. Black dashed line is an ion
energy flux fitted with Maxwellian function (1.78) for px > 0 corresponding to the initial
temperature of 1 keV. All curves are normalized to the incident laser energy flux density
F0. Total ion energy flux through the quarter critical plasma is about 1.6 × 10−3F0 for
hydrogen and ∼ 10−4F0 for carbon.

SBS develops in the case v) near the quarter critical density. Indeed, the distribution

function of both ion species is modified essentially for positive velocities and in the range

larger than the ion acoustic velocity. The cutoff of the proton distribution at px ≃
5×10−3mpc corresponds to the proton energy of 12 keV and velocity approximately three

times the phase velocity of the slow mode. Velocity of carbon ions is about 5 times smaller

than the hydrogen velocity and they are carrying an order of magnitude smaller energy

flux.
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Figure 2.11: Distribution of the ion energy flux density entering the quarter critical plasma
on the parallel momentum, dF/dpx averaged over the first (blue) and last 0.5 ps (red) for
broadband laser pulse vi) a) and for expanding plasma iii) b). Black dashed line is an ion
energy flux fitted with Maxwellian function (1.78) for px > 0 corresponding to the initial
temperature of 1 keV. All curves are normalized to the incident laser energy flux density
F0.

Figure 2.11 shows the ion energy flux for two other simulations with a single ion species

with an expanding plasma iii) and a broadband laser pulse vi). SBS is suppressed in these
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two runs and modification of the ion distribution function is completely different. The ions

are accelerated symmetrically in the positive and negative directions and their velocities

are 1.5 times larger than the ion acoustic velocity cs ≃ 0.5µm/ps, which corresponds to

the ion momentum ∼ 10−2mpc. This symmetric ion acceleration is explained by their

expansion from the cavities produced at the nonlinear stage of SRS evolution. This

interpretation is confirmed by the reduction of backward reflectivity and electron heating

observed in these runs.

The overall comparison of cases is presented below.

• In case v), two ion species are considered, and the ion temperature evolution is shown

in Figure 2.3b. The results show that cavitation makes a significant contribution

to ion temperature increase during the simulation time, by more than 30%. The

distribution function of both ion species is modified by SBS, and the hydrogen ions

are gaining much more energy than carbon ions from the ion acoustic waves.

• In case iii), a single ion species is considered, and the plasma expands due to the

cavities produced at the nonlinear stage of SRS evolution. The ions are acceler-

ated symmetrically in the positive and negative directions, and their velocities are

1.5 times larger than the ion acoustic velocity. The reduction of backward reflec-

tivity and electron heating observed in this case confirms that this symmetric ion

acceleration is explained by their expansion from the cavities produced by SRS.

• In case vi), a broadband laser pulse is used, and the total amount of hot electrons

and their temperature are lower than in cases iii) and v). The ion energy flux

shows a steady linear increase with time due to plasma expansion, but there is no

significant increase in the low-density region. The ion temperature evolution shows

that cavitation makes a smaller contribution to ion temperature increase than in

case v).

Furthermore, these cases demonstrate that the excitation of parametric instabilities

leads to ion heating, and the specific characteristics of the ion dynamics and heating

depend on various factors such as the plasma density, the presence of multiple ion species,

and the type of laser pulse used. In particular, the presence of SBS leads to significant

ion heating through the excitation of ion acoustic waves and modification of the ion

distribution function. The expansion of plasma due to cavities produced by SRS also

contributes to ion acceleration and heating.
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2.7 Comparison of one- and two-dimensional simula-

tions

The simulations of SBS-SRS competition presented in this chapter in one-dimensional

(1D) geometry are representative for the shock ignition scenario. This is demonstrated

in this section, where we present the results of simulations performed in 2D geometry

for the similar interaction conditions. Although 2D simulations require much larger com-

putational resources, the results not much different from the corresponding 1D case. In

particular, we do not observe TPD in the 2D simulations and the characteristics of hot

electrons driven by SRS are similar.

The methodology of 2D simulations is described in Section 2.1.2, where we discuss the

use of hydrodynamic simulations for producing the initial conditions for PIC simulations.

The large scale laser plasma interaction is modeled with a radiation hydrodynamic code

CHIC [70]. We characterized the plasma corona by four parameters: the laser intensity

in the center of focal spot Ilas, the density scale length Ln at the quarter critical density,

assuming an exponential density profile ne(x) = ncr exp(x/Ln) along the target normal,

and the electron and ion temperatures Te and Ti, respectively. The plasma of plastic

(CH) is modeled as a combination of electrons and a single species of ions with a charge

of Zeff = 3.5 and atomic mass of Aeff = 6.5. Figure 2.1a displays the temporal profile of

the laser pulse, with five representative points marked by circles.

2.7.1 Energy balance

In each simulation point, the interaction process enters a quasi-stationary regime after

5−6 ps, when the internal energy in the simulation box remains roughly constant. In this

analysis, we only consider the asymptotic stage of each simulation. The energy balance

averaged over the last 1 ps of the simulation is presented in Table 2.3.

pulse time
tp, ps

backscattered
fraction
SBS/SRS

sidescattered
fraction

transmitted
fraction

hot electron
temperature,

keV

bulk electron
temperature,

keV

-200 0.40/0.001 0.55 0.05 48 2.9

-100 0.33/0.02 0.58 0.07 62 4.6

0 0.12/0.03 0.64 0.21 90 5.7

100 0.12/0.04 0.6 0.24 93 5.0

200 0.35/0.02 0.6 0.07 57 4.4

Table 2.3: Energy balance in the simulation box observed in PIC simulations.

The data presented in Table 2.3 reveal that most of the scattered energy is carried

by slightly frequency-shifted light. This can be attributed to the specular reflection and
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SBS. The fraction of scattered light due to these processes gradually decreases from 95%

at the start of the laser pulse, where the reflection from the critical density dominates,

to approximately 80% at the maximum of the laser pulse, where SBS dominates. The

strongly shifted light only contributes a relatively small portion, reaching only 3-4% at

the maximum of the laser pulse.

Figure 2.12: Dependence of the longitudinal component of the electron energy flux Fx

(1.76) on the plasma density averaged over the transverse coordinate and last 1 ps of the
simulation time. All curves are normalized to the incident laser energy flux density Flas.
The five lines correspond to the pulse times tp given in Table 2.3: black tp = −200 ps,
blue tp = −100 ps, red tp = 0, green tp = 100 ps and pink tp = 200 ps.

The energy flux transmitted beyond the critical density is carried by thermal and

suprathermal electrons. In the quasi-stationary state, the energy flux of these electrons

equals the absorbed laser energy flux. As indicated in Table 2.3, the average energy of

the suprathermal electrons is 10 times higher than the plasma temperature. The origin of

these hot electrons is illustrated in Figure 2.12. The left panel of the figure displays the

dependence of the longitudinal component of the electron energy flux Fx on the plasma

density averaged over the transverse direction. The electron energy flux Fex is defined by

Eq. (1.76).

According to the results presented in Figure 2.12 and Table 2.3, the coupling of laser

energy to plasma is negligible in the density range below 0.2ncr, as the electron energy

flux is almost zero. At the quarter critical density, there is a significant increase in the

electron energy flux in the density interval of 0.2ncr to 0.3ncr, indicating a significant

absorption of the laser energy through parametric instabilities. However, in the region

before the critical density of 0.85ncr to 0.95ncr, there is also an increase in electron flux

in early times at tp = −200 and −100 ps, but not in later times. This is likely due to the

absence of collisions in the simulation, and the observed laser energy absorption is fully
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nonlinear. Further analysis reveals that SRS is the dominant absorption process.

Figure 2.13: a) Distribution of the electron energy flux entering in the overcritical plasma
ne ≥ ncr on the parallel momentum, dFx/dpx. All curves are normalized to the total
electron energy flux at that position. Five lines in both panels correspond to the pulse
times tp given in Table 2.3. The color code is the same as in Figure 2.12. Distribution of
electrons in the plasma near the critical density in function of the energy ε and the polar
angle θ. The laser pulse time tp = 0 and the quasi-steady phase of the simulation are
considered. Color bar is in logarithmic scale.

Compared to 1D simulations, the behavior of hot electrons in the 2D case is more

intricate. Despite the bulk electron temperatures being similar to those in 1D simulations,

the effective temperature of hot electrons is higher in some cases and similar in others.

The effective temperature of hot electrons gradually increases from 48 keV at tp = −200

ps to 93 keV at tp = 100 ps, representing an increase of at least 1.5 − 2.5 times. The

hot electron flux of 5 − 20% is comparable to that observed in 1D simulations. The

primary absorption mechanism is linked to the excitation of side scattered SRS, which is

an absolute instability similarly to backward SRS near the quarter critical density. The

obliquely propagating scattered daughter waves experience difficulty escaping the plasma

due to their small group velocity and large amplitude. They are partially trapped near the

excitation zone. The daughted electron plasma waves drive a secondary parametric decay

instability (PDI), which corresponds to the excitation of pairs of electron plasma and ion

acoustic waves with equal and opposite wave vectors. However, we did not observe PDI

in our 1D simulations, instead we observed a stronger cavitation.

The distribution of hot electron flux on the parallel momentum, dFx/dpx corresponds

to the effective temperatures of hot electrons presented in Table 2.3 is similar to the one

presented in Section 2.5. The angular distribution of hot electrons is shown in Figure 2.13,

and it is observed to be rather broad with a characteristic opening angle of approximately

50 degrees. This broad distribution is explained by the broad angular spectrum of plasma

wave turbulence excited in the zone of laser energy absorption.

Based on this comparison, we observe many similarities for the case of a single species
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static plasma. The role of additional effects such as two species or plasma flow in 2D case

needs further studies. However, based on 1D simulations, we expect the suppression of

SBS and a larger contribution of SRS in the nonlinear laser absorption.

2.8 Conclusion for Chapter 2

This chapter presents the results of PIC simulations for studying the competition of SRS

and SBS processes in laser plasma interaction for shock ignition conditions. The use of

PIC codes has proven to be a powerful tool for modeling collisionless and weakly collisional

plasmas, and allows us to capture the essential features of plasma dynamics. We begin

this chapter by describing the Maxwell-Vlasov system of equations used for modeling

the dynamics of a plasma. We then introduce the concept of macro-particles, which are

used to capture the essential features of the plasma dynamics in PIC simulations. We also

discuss how the Maxwell’s equations are solved using the PIC method and the advantages

and drawbacks of using PIC codes for plasma simulations.

To interpret experiments that involve laser-plasma interactions, it is often necessary

to use both hydrodynamic simulations and PIC simulations. Coupling of these two ap-

proaches is discussed in Section 2.1.2. Hydrodynamic simulations are effective for mod-

eling the plasma dynamics on longer time and larger length scales, but are limited in

their ability to accurately capture the details of the nonlinear processes that occur in

the plasma. On the other hand, PIC simulations can accurately capture the nonlinear

processes, but are computationally expensive and can only model a small region of the

plasma. We discuss the principle of using PIC simulations to inform the input data for

hydrodynamic simulations, which can then be used to model the interaction between the

laser and the plasma on larger scales. The hydrodynamic simulations provide the initial

conditions (Section 2.1.2) for the PIC simulations, which then provide detailed informa-

tion on the nonlinear absorption processes and the resulting plasma dynamics.

The competition between SBS and SRS and their role in laser energy absorption under

shock ignition conditions is considered by choosing six representative cases described in

Section 2.2. Spatial and temporal evolution of various plasma parameters are analyzed,

and the growth rates and spatial gains of SBS and SRS in each case are compared. The

results are presented in figures and tables for easy comparison and discussion. The study

provides a comprehensive understanding of the SBS-SRS competition in laser energy

absorption and the influence of various plasma parameters on this process.

In the collisional and collisionless simulations of a plasma with zero flow velocity,

SBS dominates and suppresses SRS, resulting in a low laser absorption, see Section 2.3.

In the case of expanding plasma, SBS is suppressed, and laser absorption is dominated
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by SRS near the quarter of critical density and plasma cavitation, resulting in a much

better absorption. The role of electron collisions is more important in the expanding

plasma, resulting in an increase of electron temperature. In the case of two ion species,

the improved laser absorption is explained by the SBS suppression related to a stronger

ion acoustic damping on light ions. We conclude that laser energy absorption in plasma

increases significantly when SBS is suppressed.

The use of a phase-modulated laser pulse can also lead to SBS suppression and favor

SRS, but the specific case considered in the study has a correlation time of τc ∼ 0.5 ps,

which is relatively large and results in only a small reduction of reflectivity. To achieve a

more efficient SBS suppression, it is recommended to increase the laser bandwidth by at

least 2− 3 times.

In the cases of strong SRS excitation discussed in Section 2.5, the electron acceleration

in Langmuir waves leads to the formation on an suprathermal tail, which is fitted with

a Maxwellian two-temperature distribution with temperatures of bulk and hot electrons

and corresponding concentrations. The electron acceleration in Langmuir waves and the

resulting two-temperature distribution provide valuable insights into the dynamics of this

process. The findings can be utilized in the improvement of models for SRS and electron

acceleration in plasmas.

In addition, these cases show a significant modification of the ion distribution func-

tions. As shown in Section 2.6, the excitation of parametric instabilities induces ion

heating and acceleration. The distinctive features of ion dynamics are influenced by such

factors as plasma density, multiple ion species, and laser pulse intensity. Notably, SBS

triggers considerable ion heating through ion-acoustic wave Landau damping, and ion

acceleration is facilitated by the plasma expansion caused by SRS-induced cavities.

In summary, we have reviewed a range of adaptable techniques for managing the

competition between SRS and SBS in inertial fusion plasmas. Reducing SBS reflectivity

promotes the occurrence of absolute and convective SRS excitation, electron acceleration,

and cavitation. The latter effect has the potential to significantly enhance laser absorp-

tion by capturing the backscattered light. A comparison with the 2D simulation of a

collisionless, single species plasma shows that the conclusions related to other cases can

be relevant to large dimensions and to experiments in the shock ignition conditions.



Chapter 3

Studies of laser interaction with low

density foams

3.1 Introduction

The use of low-density foams in laser-plasma interaction experiments and in applications,

such as inertial confinement fusion and bright sources of x-rays and charged particles

[125]–[128], has gained attention due to their attractive properties. However, the process

of transforming a cold foam into hot plasma remains complicated and poorly understood.

Through experiments and numerical simulations, it has been observed that the ionization

of foam by laser occurs slower compared to that of a homogeneous material with the same

average density. The reason behind this lies in the additional energy needed to transform

foam solid elements into plasma and fill the spaces between them.

The transformation of a cold heterogeneous foam into a hot homogeneous plasma is a

complex process including laser ionization and heating of solid elements, their expansion

and mixing. Experiments and numerical simulations have shown that the ionization of

foam by laser occurs slower than the ionization of a homogeneous material with the same

average density, thus enabling more laser energy to be stored in the same plasma volume.

This can be explained by the time required for the foam’s solid elements to expand and

mix.

Direct numerical modeling of the laser-foam interaction and foam homogenization us-

ing hydrodynamic codes [129], [130] is computationally intensive and requires excessive

computational resources. This is due to the need to accurately resolve the density dif-

ferences within the foam micro-structure. Additionally, the phosics in the conventional

hydrodynamic models is limited and does not account for all micro-physics processes that

occur at such small sub-wavelength spatial scales.

The process of laser interaction with foam is complex and requires a comprehensive

71
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approach to capture the dynamics of the foam micro-structure. Analytical models [36],

[39], [131], while useful in describing idealized one-dimensional interactions, have limita-

tions in their ability to capture the interaction between an inhomogeneous laser beam

and a real-sized target. A more advanced approach consists in using a two-scale model,

which combines a micro-scale description of the solid element dynamics with a conven-

tional radiation-hydrodynamic description of a plasma produced as a result of mixing of

structural elements and foam homogenization. This way, the transformation of a cold

foam into a hot plasma can be captured, including effects that may be overlooked in

simplified analytical models.

The first sub-grid model proposed by Velechovsky et al. [132] used numerical calcu-

lations to determine the laser absorption and expansion of solid foam elements having a

planar shape, based on the theory presented by Gus’kov et al. [39]. Belyaev et al. [36],

[133] from the Lawrence Livermore National Laboratory proposed an analytical model of

foam homogenization based on self-similar isothermal expansion of foam elements having

planar, cylindrical or spherical shape. This model is specifically designed for foams with

small pores, around 1 µm, and with a small average density of approximately 2 mg/cm3.

The model is implemented in the three-dimensional electromagnetic paraxial code pF3D

and was shown to slow down the propagation of the ionization front. However, the results

of the model have been found to overestimate the ionization velocity when compared to

other experiments with underdense foams [38], [134], [135].

The models mentioned above have a limitation in determining the cross-section of laser

absorption in the solid elements based solely on the geometrical size of the overcritical

region within the foam. This is particularly problematic for under-critical foams where

the width of the solid elements is often smaller or comparable to the laser wavelength.

To address this issue, the second part of our study focuses on the analysis of laser in-

teraction with sub-wavelength-sized objects using the wave-based analytical description

and detailed 2D PIC simulations. This approach is aimed at providing a more accurate

understanding of the laser absorption process, which is highly dependent on laser polar-

ization and the internal structure of the solid elements. Our findings indicate [37] that the

geometrical models may either overestimate the absorption rate or severely underestimate

the scattering cross-section, in comparison to the data obtained from the Mie theory of

electromagnetic scattering on cylindrical particles.
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3.2 Theory of laser interaction with sub-wavelength

structures

The focus of this research is on the interaction of laser radiation with low-density foams

made of plastic materials that contain low-Z elements such as hydrogen, carbon, and

oxygen. These foams are dielectrics with energy gaps of 4− 6 eV and are transparent to

low-intensity light. The interaction process involves the following stages: (i) ionization

of solid elements under intense laser radiation, (ii) heating, expansion, and ablation of

dense, opaque elements, and (iii) mixing of hot plasmas between neighboring cells and

their homogenization. This interaction takes place within the range of laser intensities

from 1013 to 1015 W/cm2.

The laser intensities under consideration result in a multi-photon ionization process

that occurs in sub-picosecond time frames [136]. For laser pulses of duration longer than

100 ps, ionization happens almost instantaneously and solid structural elements become

opaque when the laser intensity exceeds 1012 − 1013 W/cm2. Hence, in this study, we

concentrate on the second step of interaction, which assumes that the solid element in the

pore is already opaque and has reached an initial temperature of approximately T0 ≃ 1 eV.

The exact value of T0 has a small impact on our results.

Our focus is on the interaction of laser radiation with a single elementary cell or pore

in a foam, modeled as a parallelepiped with length lc and square cross-section of side lp

as shown in Figure 3.1. The pore contains a solid cylinder with an initial radius a0 and

density ρs. Since the cylinder length lc is much larger than its radius and equal to the

pore length, the interaction is effectively two-dimensional. The average foam density ϱ̄

is related to the cylinder radius and pore size through mass conservation: πa20ϱs = l2pρav.

We are interested in sub-critical foams, where the fully ionized foam density is lower than

the critical density, resulting in a transparent pore after homogenization.

The mathematical treatment of laser absorption and scattering on a cylinder with

a radius comparable to the wavelength can be performed using the Mie theory [137],

[138]. However, this standard approach considers homogeneous scattering objects, while

the radial inhomogeneity of the cylinder plays a crucial role in our study as it enables

resonance absorption near the critical density.

In this study, we examine a scenario that can be mathematically analyzed with two

simplified physical assumptions. Firstly, we examine the case of an infinitely long straight

cylinder that is exposed to a plane wave, which is incident at an oblique angle. Sec-

ondly, we consider a cylindrical object with radial density distribution that is axially

symmetric, and consider the case of a normal incidence of electromagnetic wave. Despite

the anisotropic nature of laser energy deposition and resulting cylinder expansion, this
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Figure 3.1: Scheme of laser interaction with a cylinder in the case of P (red) and S (blue)
polarization.

example offers valuable insights into the physics of laser absorption in a foam.

3.2.1 Theory of laser absorption and scattering

The study of electromagnetic wave absorption and scattering by sub-wavelength objects

has a rich history dating back to the 19th century and includes notable names such as

Young, Fresnel, Stokes, Rayleigh, and Mie. In the monograph by Van de Hulst [137],

the interaction of a plane electromagnetic wave with a solid object is quantified by the

absorption and scattering efficiency factors Qabs and Qsca, which are ratios of the corre-

sponding cross-section to the geometrical cross-section of the obstacle. The sum of two

processes involved, scattering and absorption, is referred to as extinction. The scattering

center is characterized by the dielectric permittivity ϵ and the dimensionless parameter

ka, where a is the cylinder radius, k = ω/c is the wave number of the laser, and ω is

the frequency. The calculations are performed in cylindrical coordinates r, θ, z, with the

cylinder aligned along the z axis.
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Incident laser field

We examine the case of oblique incidence, which can be separated into two representative

cases: linear polarization in the plane of incidence (P-polarization) and polarization per-

pendicular to the plane of incidence (S-polarization), see Figure 3.1. The former can be

described by the electric field vector Ep = (− sinα, 0, cosα), while the latter is described

by the electric field vector Es = (0, 1, 0). To determine magnetic field, we apply the Fara-

day equation, which gives us the relationship k×E0 = (ω/c)B0. Specifically, the magnetic

field components for P-polarization and S-polarization are: Bs = (− sinα, 0, cosα) and

Bp = (0,−1, 0), respectively. These polarizations correspond to the cases I and II, re-

spectively, as defined in Ref. [137].

The coordinate dependence of electric and magnetic fields on the incident wave can be

expressed as a function w0(x, z) = exp(ikzz + ikxx), which can be written in cylindrical

coordinates as an expansion in a series of Bessel functions of the first kind, Jn:

w0(r, θ) = eikzz
∑
n

ineinθJn(kxr). (3.1)

To calculate the scattered field, we must determine the tangential components of the

electric and magnetic fields, which can be obtained using the following expressions:

w0 cos θ = −ieikzz
∑
n

ineinθJ ′
n(kxr),

w0 sin θ = − 1

kxr
eikzz

∑
n

ineinθnJn(kxr).

Thus, the components of the incident field in the cylindrical coordinates for the case of

P-polarization are given by:

{Ez, Er, Eθ} = {cosαJn, i sinαJ ′
n,−

n

ξ
sinαJn},

{Bz, Br, Bθ} = {0, n
ξ
Jn, iJ

′
n}. (3.2)

Here, ξ = kxr = kr cosα is the argument of the Bessel functions and the common factor

in all expressions, eikzz
∑

n i
neinθ, is omitted. Similarly, for the case of S-polarization, the

electric and magnetic fields are inverted:

{Ez, Er, Eθ} = {0,−n
ξ
Jn,−iJ ′

n},

{Bz, Br, Bθ} = {cosαJn, i sinαJ ′
n,−

n

ξ
sinαJn}. (3.3)
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Scattered fields

Scattered fields for P and S-polarization can only be separated in the case of normal

incidence of an electromagnetic wave (α = 0). In the general case, they contain both

polarizations. The scattered fields can be determined by using the Ampere and Faraday

equations:

−iωϵE = c rotB,

i(ω/c)B = rotE. (3.4)

If we exclude either the magnetic or electric field and use the other pair of Maxwell’s

equations, i.e., div(ϵE) = 0 and divB = 0, we can express them as two separate equations:

△E+
(ω
c

)2
ϵE = −∇

(
∇ϵ
ϵ

· E
)
,

△B+
(ω
c

)2
ϵB = −∇ϵ

ϵ
× rotB. (3.5)

In our case, the dependence on the axial coordinate is given by the incident wave in the

form of eikzz, and we need to determine the scattered field in the polar coordinates r and

θ. One approach is to use Eqs. (3.5) for the axial components of the electric and magnetic

fields, and Eqs. (3.4) to solve the coupling terms in the right-hand side of Eqs. (3.5). To

do this, we introduce two auxiliary functions u and v such that

Ez = u(r, θ) cosα eikzz,

Bz = v(r, θ) cosα eikzz, (3.6)

which verify the following equations:(
∂2ru+

1

r
∂ru+

1

r2
∂2θu+

ω2

c2
(
ϵ− sin2 α

)
u

)
cosα eikzz = −ikz

ϵ′

ϵ
Er(

∂2rv +
1

r
∂rv −

ϵ′

ϵ
∂rv +

1

r2
∂2θv +

ω2

c2
(
ϵ− sin2 α

)
v

)
cosα eikzz = −ikz

ϵ′

ϵ
Br

The radial and azimuthal components of the fields can be expressed in terms of the

auxiliary functions using Eqs. (3.4):

Er =
i cosα

ϵ− sin2 α

c

ω

(
1

r
∂θv + sinα∂ru

)
, Eθ =

i cosα

ϵ− sin2 α

c

ω

(
sinα

r
∂θu− ∂rv

)
(3.7)

Br =
i cosα

ϵ− sin2 α

1

ω

(
− ϵ
r
∂θu+ sinα∂rv

)
, Bθ =

i cosα

ϵ− sin2 α

1

ω

(
sinα

r
∂θv + ϵ∂ru

)
. (3.8)
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In these expressions, we have omitted the common factor eikzz on the right-hand side.

Therefore, the scattering process is governed by a system of two coupled equations for the

functions v and u. As the coefficients in these equations do not depend on the azimuthal

angle, they can be expanded in a series of angular harmonics, similar to the equation

(3.1):

u(r, θ) = eikzz
∑
n

ineinθun(ρ), v(r, θ) = eikzz
∑
n

ineinθvn(ρ). (3.9)

The expansion coefficients un and vn depend on the dimensionless radial coordinate ρ =

kr, and satisfy the ordinary differential equations:

u′′n +

(
1

ρ
− sin2 α

ϵ− sin2 α

ϵ′

ϵ

)
u′n +

(
ϵ− sin2 α− n2

ρ2

)
un =

in

ρ

sinα

ϵ− sin2 α

ϵ′

ϵ
vn, (3.10)

v′′n +

(
1

ρ
− ϵ′

ϵ− sin2 α

)
v′n +

(
ϵ− sin2 α− n2

ρ2

)
vn = −in

ρ

ϵ′ sinα

ϵ− sin2 α
un. (3.11)

The coefficients un and vn for negative n can be defined using the relations u−n = (−1)nun

and v−n = (−1)nvn, similar to the Bessel functions. Equations (3.10) and (3.11) can be

solved numerically for each angular harmonic separately. When the incidence angle α

non-zero, the equations are coupled. However, in the special case of normal incidence,

the equations are decoupled, and the function u describes the scattering of p-polarized

waves, while the function v describes the scattering of s-polarized waves. In the case of

a piecewise constant dielectric permittivity, such as a homogeneous cylinder, Eqs. (3.10)

and (3.11) are also decoupled. We will consider these two limits in the following sections.

The boundary conditions for Eqs. (3.10) and (3.11) require them to take finite values

at the origin, ρ = 0, and describe the incoming plane wave of unit amplitude far away

from the cylinder. The condition at the origin can be expressed as:

u′0(0) = v′0(0), un(0) = vn(0) for n > 0. (3.12)

The conditions at ρ→ ∞ can be expressed as follows: if the scattering cylinder is localized

on a radius r ∼ a, then far away from the cylinder, r ≫ a, we can set ϵ = 1 and Eqs.

(3.10) and (3.11) are reduced to the standard Bessel equation. The scattered wave can

be described by the Hankel function of the first kind, H
(1)
n = Jn + iNn. As a result, the

solution can be written as a sum of the incident wave of unit amplitude and an outgoing

scattered wave:

un = σJn(ρ cosα)− bnH
(1)
n (ρ cosα), vn = (1− σ)Jn(ρ cosα)− anH

(1)
n (ρ cosα), (3.13)

where the scattering amplitudes an and bn introduced in the same way as in [137], σ = 1
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for the p-polarized incident wave and σ = 0 for the S-polarization. One can use the

asymptotic expressions (3.13) to continuously connect the functions un and vn and their

derivatives at some point ρm ≫ ωa/c. This serves two purposes. Firstly, by eliminating

coefficients an and bn, we obtain the second boundary condition:

un(ρm cosα)H(1)′
n (ρm cosα) cosα− u′n(ρm cosα)H(1)

n (ρm cosα) =
2iσ

πρm
, (3.14)

vn(ρm cosα)H(1)′
n (ρm cosα) cosα− v′n(ρm cosα)H(1)

n (ρm cosα) =
2i(1− σ)

πρm
. (3.15)

Secondly, we define the scattering amplitudes

bn = −iπρm
2

[un(ρm cosα)J ′
n(ρm cosα) cosα− u′n(ρm cosα)Jn(ρm cosα)] , (3.16)

an = −iπρm
2

[vn(ρm cosα)J ′
n(ρm cosα) cosα− v′n(ρm cosα)Jn(ρm cosα)] . (3.17)

Absorption and scattering coefficients

By using the asymptotic expression for the Hankel function,

H(1)
n (z → ∞) =

√
2/πz exp(iz − inπ/2− iπ/4),

the scattered field far away from the cylinder can be expressed as shown in Eq. (3.13).

This allows for to calculate the fraction of incident energy that is scattered and absorbed.

The fields of the outgoing wave take on a simple form as follows:

{Eθ, Ez} = −eikzz+ikxx−iπ/4

√
2

πkxr
{Ta(θ), cosαTb(θ)},

{Bθ, Bz} = eikzz+ikxx−iπ/4

√
2

πkxr
{Tb(θ),− cosαTa(θ)}.

The radiated field components that decrease as r−1/2 with the coordinate are kept, and

are described by the functions Ta and Tb, which represent the angular dependence of the

scattered field:

Ta(θ) =
∑
n

ane
inθ, Tb(θ) =

∑
n

bne
inθ. (3.18)

The above equations provide information about the distribution of the radial compo-

nent of the Poynting vector with respect to the angle:

Pr(θ) = Re (EθB
∗
z − EzB

∗
θ ) =

2 cos θ

πkxr
(|Ta|2 + |Tb|2). (3.19)

The scattering cross section per unit length of the cylinder can be obtained by dividing the

expression for the radial component of the Poynting vector given in the previous equation
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by the radial component of the Poynting vector of the incident wave, Pr0 = cosα, and

then integrating over a large circle with r ≫ a:

σsca =
4

kx
(|Ta|2 + |Tb|2), (3.20)

where overline indicates the angle average,

|Ta|2 = |a0|2 + 2
∞∑
n=1

|an|2, |Tb|2 = |b0|2 + 2
∞∑
n=1

|bn|2. (3.21)

Normalized angular distribution of the scattered light reads:

I(θ) = (|Ta|2 + |Tb|2)/(|Ta|2 + |Tb|2). (3.22)

A similar method can be used to calculate the absorption coefficient, but it would

require integration of the dissipated power over the volume of the cylinder, which can be

a complex process. A more direct approach is based on the energy conservation, which

states that the sum of scattered and absorbed power is equal to the incident power minus

the power scattered in the near-forward direction (i.e., θ ≃ 0). By combining the incident

and transmitted fields, we can obtain an expression for the total energy flux in the forward

direction. For P-polarization, this expression is:

Pr tot(θ ≃ 0) = −Re [Ez0 + Ez(0)][B
∗
y0 +B∗

θ (0)]. (3.23)

We can simplify the expression for the forward energy flux by only considering linear

terms in the scattered field, which decreases with the coordinate x as x−1/2. Thus, we

have Pr tot = cosα − Pp ext, where the first term on the right-hand side represents the

radial component of the incident Poynting vector, and the second term corresponds to

the extincted flux:

Pp,ext = 2 cos θ

√
2

πkxx
ReTb(0) e

−ikxx+ikxr−iπ/4. (3.24)

At large distances x ≫ |y|, the difference r − x can be expressed as y2/2x. Thus,

the factor in the exponential can be simplified. Integrating Pext(y) over the transverse

aperture of a sufficiently large width h ≫ (2x/kx)
1/2, we obtain an expression for the

total extincted power:∫
dy Pp,ext = 2 cos θ

√
2

πkxx
ReTb(0)

∫
dy eikxy

2/2x−iπ/4. (3.25)
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After performing the integration
∫
dy eiy/2−iπ/4 = 2π, dividing the resulting expression by

the incident energy flux Pr0 = cosα yields the extinction cross section:

σp,ext =
4

kx
ReTb(0). (3.26)

Expression for the extinction cross section in the case of S-polarization is similar to

that of P-polarization, but contains Ta instead of Tb. Dividing the cross sections (3.20) and

(3.26) by the geometrical cross section of the cylinder, 2a, gives us the efficiency factors

for extinction and scattering. The absorption factor can be obtained as the difference

between the two:

Qp,ext =
2

ka cosα
ReTb(0), Qs,ext =

2

ka cosα
ReTa(0), (3.27)

Qsca =
2

ka cosα
(|Ta|2 + |Tb|2), Qabs = Qext −Qsca. (3.28)

Taking an average over the orientation of the cylinder with respect to the laser polar-

ization corresponds to calculating an arithmetic mean of the efficiency factors for S- and

P-polarization. The average over the angle of incidence is computed separately for each

polarization as follows:

Q =

∫ π/2

0

dαQ cosα. (3.29)

3.3 Laser absorption and scattering from a homoge-

neous cylinder

For a homogeneous cylinder with radius a, the solutions to Eqs. (3.10) and (3.11) can

be explicitly written in terms of Bessel functions. By applying the boundary conditions

(3.12), the solution for r < a is given by:

vn(ρ) = (s/ cosα) cnJn(sρ), un(ρ) = (s/ cosα) dnJn(sρ), (3.30)

where s =
√
ϵ− sin2 α, and ϵ is the dielectric permittivity of the cylinder defined by

(3.39) below. The solution for r < a can be written explicitly in terms of Bessel functions

by applying the boundary conditions (3.12), and it reads as follows. The solution outside

the cylinder (r > a) is given by expressions (3.14)-(3.15), and four coefficients A =

an, bn, cn, dn are defined by the continuity conditions of the tangential components of the
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electric and magnetic fields at r = a. For P-polarization, the outer solution is given by:

{Eθ, Ez} = {ianH(1)′
n (ξa)− (n/ξa) sinα[Jn(ξa)− bnH

(1)
n (ξa)], cosα[Jn(ξa)− bnH

(1)
n (ξa)]},

{Bθ, Bz} = {(n/ξa)an sinαH(1)
n (ξa) + +i[J ′

n(ξa)− bnH
(1)′
n (ξa)],−an cosαH(1)

n (ξa)}, (3.31)

where ξa = ka cosα. The inner solution reads:

{Eθ, Ez} = {−icnJ ′
n(ζ)− (n/ζ)dn sinαJn(ζ), sdnJn(ζ)} ,

{Bθ, Bz} = {−(n/ζ)cn sinαJn(ζ) + iϵdnJ
′
n(ζ), scnJn(ζ)} , (3.32)

where ζ = ska. Similar expressions can be obtained also for the S-polarization.

The continuity conditions of the field at the surface of the cylinder r = a can be

expressed in the matrix form as:

M(ka, α) · As,p = Ss,p(ka, α), (3.33)

where As,p are the coefficients for the scattered fields in the case of S-polarization and

P-polarization, respectively and the vectors Ss and Sp on the right-hand side represent

the contribution of the incident wave:

Ss = {−iJ ′
n (ξa) , 0,− (n/ξa) sinαJn (ξa) , cosαJn (ξa)} ,

Sp = {− (n/ξa) sinαJn (ξa) , cosαJn (ξa) , iJ
′
n (ξa) , 0} ,

(3.34)

and M is 4× 4 matrix coupling the incident and scattered fields:

M =


−iH(1)′

n (ξa) − (n/ξa) sinαH
(1)
n (ξa) −iJ ′

n(ζ) −(n/ζ) sinαJn(ζ)

0 cosαH
(1)
n (ξa) 0 sJn(ζ)

− (n/ξa) sinαH
(1)
n (ξa) iH

(1)′
n (ξa) −(n/ζ) sinαJn(ζ) iϵJ ′

n(ζ)

cosαH
(1)
n (ξa) 0 sJn(ζ) 0


(3.35)

We consider a simplified case of normal incidence of a laser beam on a cylinder,

where the laser propagates in the x direction and the cylinder axis is aligned with the z

direction, as shown in Figure 3.1. In this configuration, the two polarizations, S and P,

can be analyzed independently. The plane of incidence is defined by the laser propagation

direction x and the cylinder axis z. The P-polarization corresponds to an electric field in

the plane of incidence, with Ez0 = ReE0e
ikx−iωt, while the S-polarization corresponds to

an electric field directed along the y axis.
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In the case of normal incidence (α = 0), the inner solution reads:

vn(ρ) = s cnJn(sρ), un(ρ) = s dnJn(sρ), (3.36)

where s =
√
ϵ. The scattering coefficients are defined by the conditions of continuity

of tangential components of electric and magnetic fields at the cylinder surface. That

gives the following system of equations for the scattering coefficients in the case of P-

polarization: (
H

(1) ′
n (ka) s2J ′

n(ska)

H
(1)
n (ka) sJn(ska)

)
×

(
bn

dn

)
=

(
J ′
n(ka)

Jn(ka)

)
. (3.37)

For S-polarization, the continuity conditions for the tangential components of electric

and magnetic fields at the cylinder surface yield the following system of equations for the

coefficients an and cn:(
H

(1) ′
n (ka) J ′

n(ska)

H
(1)
n (ka) sJn(ska)

)
×

(
an

cn

)
=

(
J ′
n(ka)

Jn(ka)

)
. (3.38)

Figure 3.2: Dependence of the efficiency factors for scattering (a) and absorption (b) for
the p (red) and s (blue) polarized light on the radius of a homogeneous cylinder. Dielectric
permittivity is given by Eq. (3.39) with ωpe/ω = 6 and νei/ω = 1.

In what follows we consider the dielectric permittivity in the form

ϵ = 1−N(r) (ωpe/ω)
2/[1 + iN(r) νei/ω], (3.39)

where ωpe and νei represent the electron plasma frequency and electron collision frequency

at the cylinder axis, respectively, and N(r) is a dimensionless function that describes the

density profile in the cylinder. For a homogeneous cylinder, N(r) is a Heaviside function:



CHAPTER 3. LASER INTERACTION WITH FOAMS 83

N(r) =

{
1 if r ≤ a

0 if r > a
(3.40)

An illustration of the dependence of the scattering and absorption efficiency factors

on the radius of a homogeneous cylinder is shown in Figure 3.2 for ωpe/ω = 6 and

νei/ω = 1. The scattering factor is greater for P-polarization and increases with the

radius for both polarizations. The absorption factor is greater for P-polarization when

ka is small, and it decreases as ka increases. In contrast, the absorption factor for S-

polarization increases with the radius. As the electromagnetic wave penetrates deeper

into the cylinder, the absorption factor becomes greater since it is proportional to the

electron collision frequency and increases as the cylinder density decreases. The scattering

factor, on the other hand, is less dependent on the collision frequency and the density.

Figure 3.3: Laser power deposition over the volume of the cylinder, Wabs =
(ω/4π) Im ϵ |E|2, normalized by kI0 for the case of P (a) and S (b) polarization for
ωpe/ω = 6 and νei/ω = 1. White circle shows the position of cylinder boundary, ka = 1.5.
Laser comes from the left.

A difference between absorption rates for P and S polarization is further presented

in Figure 3.3, which shows the distribution of absorbed power, Wabs = (ω/4π) Im ϵ |E|2,
throughout the cylinder volume. The absorption is concentrated in a narrow skin layer

on the front side of the cylinder, and the absorption rate is similar for both polarizations.

However, the difference lies in the larger extent of the absorption zone to the sides of the

cylinder in the case of S-polarization, due to the normal component of the laser electric

field.

Angular distribution of the scattered light I(θ) = |T (θ)|2/π|T |2 is shown in Figure 3.4.

For narrow cylinders, there is a notable difference in the angular distributions, which arises

from the interference of the angular harmonics. However, for large values of ka, scattering

is dominated in the forward direction for both polarizations.
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Figure 3.4: Angular distribution of the scattered light from a cylinder of radius, ka = 1
(a) and 3 (b) for the case of P (red) and S (blue) polarization. Dielectric permittivity is
given by Eq. (3.39) with ωpe/ω = 6 and νei/ω = 1.

3.3.1 Laser absorption and scattering from a radially inhomo-

geneous cylinder

Here, we consider a representative case of a bell-shaped density profile

N(r) = exp [−(r/a)p ln 2], (3.41)

where parameter p controls the steepness of the density profile and a is the cylinder radius

at a half of density maximum. The dielectric function is given by Eq. (3.39). Solution

to Eqs. (3.10) and (3.11) is found numerically by using Wolfram Mathematica package

[139]. In difference from a homogeneous cylinder, there is now the possibility for plasma

resonance, ω = ωpe(r), which has a strong effect on absorption of the S-polarized wave

where the normal component of the electric field, Er is present. This effect is demonstrated

in Figure 3.5 showing the shape of zone of energy deposition Wabs = (ω/4π) Im ϵ |E|2 for

the case of a Gaussian density profile corresponding to p = 2 in Eq. (3.41).

Figure 3.5: Map of the laser energy depositionWabs/kI0 at normal incidence for a Gaussian
density profile (p = 2) in a cylinder of radius ka = 1.5 for the case of P (a) and S (b)
polarization for ωpe/ω = 6 and νei/ω = 1. White circle shows the position of effective
radius, r = a (solid line), and the critical density, Re ϵ = 0, dashed line.

In contrast to the case of a homogeneous cylinder shown in Figure 3.3, the energy

deposition zone is displaced to the low-density plasma. In the case of P-polarization, the
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zone of absorption is situated between the critical density and the cylinder effective ra-

dius as a trade-off between the screening of the laser field in the evanescent zone and the

increase of the collision frequency. In the case of S-polarization, the energy deposition is

much larger and the maximum is shifted to the critical density. This figure demonstrates

the efficiency of resonance absorption, which is a transformation of the laser electromag-

netic wave into a longitudinal electron plasma oscillations. This collisionless process does

not exist in the case of a homogeneous cylinder, but it becomes a dominant process when

the density scale length is larger than the skin depth.

Figure 3.6: Dependence of the efficiency factors for scattering (a) and absorption (b) for
the p (red) and s (blue) polarized light on a radius of a cylinder with a Gaussian density
profile p = 2. Dielectric permittivity is given by Eq. (1.69) with ωpe/ω = 6 and νei/ω = 1.

The role of density inhomogeneity on the laser scattering and absorption is further

evidenced in Figure 3.6 showing the dependence of the efficiency factors on the radius

of the cylinder having a Gaussian density profile. Compared to similar graphs shown

in Figure 3.2 for the case of a homogeneous cylinder, both scattering and absorption

factors are increased in the case of S-polarization. By contrast, the absorption efficiency

is decreased in the case of P-polarization. An increase of the scattering efficiency for both

S and P-polarization is explained by the fact that the radius of opaque zone is larger than

the effective cylinder radius.

The increase of absorption in the case of S-polarization is a consequence of the plasma

resonance. This is confirmed by calculation of the dependence of Qabs on the electron

collision frequency. In the case of P-polarization, absorption efficiency is proportional to

the electron collisional frequency. It decreases in an inhomogeneous cylinder because

laser field cannot reach the center of cylinder and absorption takes place at a lower

density. By contrast, the S-polarization absorption efficiency increases due to the efficient

resonance absorption near the critical density layer. It is independent on the collision

frequency and depends weakly on the cylinder maximum density and the profile steepness.

Angular distribution of the scattered light shown in Figure 3.7 depends weakly of the

cylinder density profile and is very similar to the case of a homogeneous cylinder shown

in Figure 3.4.
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Figure 3.7: Angular distribution of the scattered light from a cylinder of radius with a
Gaussian density profile p = 2, ka = 1 (a) and 3 (b) for the case of P (red) and S (blue)
polarization. Dielectric permittivity is given by Eq. (1.69) with ωpe/ω = 6 and νei/ω = 1.

Absorption efficiency presented in Figure 3.6 can be compared with the estimate given

in Appendix 3 in Ref. [36], where no polarization was specified and the authors assumed

total absorption of the laser light incident within the distance smaller than the position

of the critical density. For a cylinder having a Gaussian density profile, this hypothesis

corresponds to the value Qabs = (ln(ωpe/ω)
2/ ln 2)1/2 = 2.3, which is larger that the one

shown in Figure 3.6(b).

3.3.2 Resonance absorption

A contribution of the plasma resonance to the laser absorption can be described as follows.

Total energy absorption can be calculated as an integral of Wabs over the cylinder cross

section. By taking an integral over the azimuthal angle and dividing by the geometric

cross section, we obtain the following expression for the absorption efficiency factor:

Qp,abs =
π

ka

∫ ∞

0

ρ dρ Im ϵ
∑
n

|un|2 , Qs,abs =
π

ka

∫ ∞

0

ρ dρ
Im ϵ

|ϵ|2
∑
n

(
|v′n|

2
+
n2

ρ2
|vn|2

)
.

In difference from Qp,abs, which just proportional to the imaginary part of dielectric per-

mittivity, Qs,abs contains in addition the absolute value of dielectric permittivity in the

denominator. So, the integral over the resonance Re ϵ(ρres) = 0, assuming Im ϵ(ρres) ≪ 1,

can be taken analytically:∫ ∞

0

ρ dρ
Im ϵ

|ϵ|2
≈ ρres

|dRe ϵ/dρ|

∫
dRe ϵ

Imϵ

Re ϵ2 + Im ϵ2
=

πρres
|dRe ϵ/dρ|

.

It does not depend on the collision frequency, in contrast to the case of a homogeneous

cylinder. The resonance absorption is inversely proportional to the derivative of ϵ in

the resonant point and it is decreases as the steepness of the cylinder density profile

increases. This is shown in Figure 3.8, where the integrands in Qp,abs and Qs,abs are
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Figure 3.8: Radial distribution of the laser energy deposition at normal incidence for a
Gaussian density profile (p = 2, left) and a steep profile with p = 20 (right) in a cylinder
of radius ka = 1.5 for the electromagnetic wave of P (red) and S (blue) polarization, for
ωpe/ω = 6 and νei/ω = 1.

plotted for two scenarios: a Gaussian density profile p = 2 and a steep profile with

p = 20. For the P-polarization, the energy deposition curve has a simple bell-like shape

in both cases, corresponding to collisional absorption in the bulk. However, for the S-

polarization, the energy deposition curve is more complex. It includes two contributions:

collisional absorption in the bulk and resonance absorption at the critical density. The

two contributions are clearly separated in the case of a steep profile, p = 20, but overlap

in the case of a Gaussian profile.

To demonstrate dependence of absorption and scattering on the steepness of the den-

sity profile, we show in Figure 3.9 distribution of the absorbed energy across the cylinder

cross section for a steep density profile p = 20. In the case of a steep density profile,

the energy deposition occurs at the front edge of the cylinder for the P-polarization and

at the flanks of the cylinder for the S-polarization, which agrees well with the energy

deposition in a homogeneous cylinder. On the other hand, for a Gaussian density profile

shown in Figure 3.5, the energy deposition zone shifts to a lower density plasma. For

P-polarization, the absorption zone is between the critical density and the effective radius

of the cylinder, while for S-polarization, the maximum absorption occurs at the critical

density. This indicates that resonance absorption, which is not present in a homogeneous

cylinder, becomes the dominant process.

Figures 3.6a and 3.10a illustrate a comparison between the absorption efficiency factors

for two different density profiles, a Gaussian profile with p = 2 and a steeper profile with

p = 20, for the same parameters. The results show that for a steep density profile, the

absorption efficiency factor is similar to that of a homogeneous cylinder. However, for a

smoother density profile, the absorption efficiency factor increases by approximately two

times. This outcome is expected because the wave energy is deposited near the critical

density at a radius approximately two times larger than a.
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Figure 3.9: Map of the laser energy deposition Wabs/kI0 at normal incidence for a steep
density profile (p = 20) in a cylinder of radius ka = 1.5 for the case of P (a) and S (b)
polarization for ωpe/ω = 6 and νe/ω = 1. White circle shows the position of effective
radius, r = a (solid line), and the critical density, Re ϵ = 0, dashed line.

Figure 3.10: Dependence of the efficiency factors for scattering (a) and absorption (b) for
the p (red) and s (blue) polarized light on a radius of a cylinder with a steep density profile
p = 20. Dielectric permittivity is given by Eq. (1.69) with ωpe/ω = 6 and νei/ω = 1.

3.4 Conclusion for Chapter 3

Theoretical analysis of the laser interaction with a sub-wavelength cylinder shows a strong

dependence on the laser polarization and density profile of the cylinder. The results show

that the assumption that the absorption cross section is equal to the geometrical cross

section leads to a severe overestimate of the absorption rate. In Section 4, by using

detailed 2D PIC simulations, we confirm the analytical theory and consider the temporal

evolution of the plasma in the pore due to expansion and ablation of solid element due

to laser absorption.

We extend the Mie theory to the case of hot plasma and intense laser pulse. We deter-

mine the efficiency factors Qabs and Qsca in function of the cylinder dielectric permittivity

and the dimensionless radius ka. This theory can be directly applied to simulations de-

scribed in Section 4 by extracting required parameters such as density and temperature,

as described in Section 4.2.1. The Q factors calculated for the simulation parameters are

shown in Section 4.5.

Our analysis of laser absorption in small high density cylinders leads to several con-
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clusions:

• In a homogeneous cylinder, absorption cross section weakly depends on the laser

polarization and angle of incidence. Electron collisions are responsible for absorp-

tion, which decreases as the imaginary part of the dielectric permittivity decreases.

For a collision frequency appropriate to our interaction conditions, the absorption

cross section is of the same order as the geometric cross section, and the typical ab-

sorption efficiency factor is about 0.5, but it decreases dramatically with a decrease

in collision frequency.

• For cylinders with a radially inhomogeneous density, the absorption cross section is

larger than that of a homogeneous cylinder with the same geometric cross-section.

This is due to two reasons: collisional absorption occurs at distances where density

is above the critical density, and the radius of critical density is larger than the

geometrical radius, leading to an increase in the absorption cross-section. Addi-

tionally, an absorption due to the plasma resonance, which is not considered in the

case of a homogeneous density, contributes to the increase in absorption. Resonance

absorption is proportional to the value of the component of electric field parallel to

the density gradient and does not depend on the imaginary part of the dielectric

permittivity. For Gaussian density profiles, resonance absorption is responsible for

over 90% of the absorption cross section.

• Resonance absorption occurs in the case of S-polarization at any angle of incidence

and in the case of P-polarization at oblique incidence. Taking an average over laser

polarization and angle of incidence, we can assume the absorption efficiency factor

to be in the range of Qabs ∼ 1.5− 2.



Chapter 4

Numerical simulations of laser

interaction with under-dense foams

This chapter focuses on the use of Particle-in-Cell simulations to study the kinetics of

plasmas in foam targets. We confirmed and evaluated the characteristics of laser inter-

action with sub-wavelength cylinders predicted by the analytic theory using the Smilei

code [116], a massively parallel fully relativistic electromagnetic particle-in-cell simulation

tool, which is described in detail in Section 2.

4.1 Setup of numerical simulations

Simulations for both laser polarizations at normal incidence are performed in a two-

dimensional geometry in the plane x, y perpendicular to the cylinder axis as it shown in

Figure 3.1. The size of a square computing box lp was chosen such that the plasma density

after the cylinder ablation and expansion is smaller than the critical density, which is the

case of under-dense foams. Boundary conditions are open for electromagnetic waves in the

propagation direction x and reflecting in the transverse direction y. Boundary conditions

for the particles are reflecting. The number of particles per cell is 1000, which is sufficient

for resolving the processes of interest. The simulations are performed for the cases of

P and S-polarization with electron–ion collisions taken into account including non-ideal

effects [118] in a cold and dense material of cylinder. The case with ion-ion collisions is

considered only for S-polarization. Ionization is not considered, and ion charge is taking

a constant value.

We simulate the interaction of an incident plane wave with constant intensity, I0 =

1014 W/cm2, at a wavelength of λ = 0.35µm. The initial radius of the cylinder is

a0 = 0.1 µm, corresponding to ka0 = 1.8, and the density is ϱs = 1 g/cm3, resulting in an

electron density ratio of ne/ncr ≃ 35 and ωpe/ω ≃ 5.9, assuming an ion effective charge

90
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of Zeff = 4.54 and atomic mass Aeff = 8.73. These parameters correspond to the TMPTA

plastic foams used in experiments [31], [38], [140]. The size of the computational box is

Lx = Ly = lp = 2.7µm, the time step is dt = 0.02λ/c, and the cell size dx = 0.03λ

is smaller than the skin depth of the laser field penetration in a cylinder. The initial

electron and ion temperatures are set to Te = Ti = 1 eV. An additional simulation is

performed without the laser pulse to evaluate the role of cylinder expansion at the initial

temperature. The simulation results are analyzed in the following order: particle density

and energy evolution and then the laser energy absorption and scattering.

The particle distribution energy functions in this section are fitted by a combination

of power and exponential functions,

fh(ε) =
nh

T k+1
h Γ(k + 1)

εkh exp

(
− ε

Th

)
, (4.1)

where nh is the number of hot particles (h = e, i) with respect to the total number of

particles in the simulation box and Γ(z) is the gamma function:

Γ(z) =

∫ ∞

0

dt e−t tz−1. (4.2)

4.2 Plasma density distribution

Figure 4.1 displays the cylinder density distribution at three time moments of 1.6, 10.9,

and 15.6 ps for the S-polarization case. At t = 1.6 ps (panel a), a rarefaction wave is

formed at the cylinder edge and propagates towards the center. This wave converges to

the cylinder axis at t ≃ 11 ps (panel b), causing a decrease of the maximum plasma density

at later times due to the cylinder expansion. Despite the asymmetric absorption shown in

Figure 3.5, the cylinder maintains its axial symmetry, and its shape can be approximated

with a two-parameter exponential function given by Eq. (3.41) and a central density ϱc.

This quasi-symmetric expansion is due to lateral electron transport, which spreads the

absorbed energy over the cylinder surface.

The simulation results for the P-polarization case shown in Figure 4.2 present similar

density distributions but delayed in time. The convergence of rarefaction wave occurs

at a time t ≃ 15 − 16 ps (panel d). This slower temporal evolution indicates a smaller

absorption of the P-polarized laser compared to the S-polarized one.

4.2.1 Parametrization of plasma density distribution

To construct a model of the evolution of the cylinder density profile, we use a non-

linear least square minimization approach with a function ρcN(r), where N is defined
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Figure 4.1: Cut of the electron (blue), ion (green) and charge (red) density along the x
axis through the center of the cylinder y = 1.35 at time 0.0 ps (a), 1.6 ps (b), 10.9 ps (c)
and 15.6 ps (d), in the case of S-polarization. Dashed gray lines mark the initial position
of a cylinder. Simulation parameters are given in the text; Laser propagates from the left
to the right.

by Eq. (3.41). It contains three time-dependent parameters: the on-axis density ρc, the

width of the profile at a half maximum a, and the steepness factor p that varies with time

from very large values at earlier times (t ≤ 2 ps) to intermediate values (p ∼ 2 − 4) at

later times.

Figure 4.3 schematically shows the accuracy of parametrization, where the coordi-

nate xc = x − Lx/2 is defined with respect to the center of the simulation box. This

parametrization is useful for calculation of the total cylinder mass (4.3) and defining the

ablation and expansion velocities discussed in Section 4.4.

The time-dependent nature of these parameters is shown in Figure 4.4(a-c) for both

P and S-polarization cases. The evolution of the cylinder can be separated into two

distinct phases. In the first phase, lasting about 8 ps, the cylinder radius decreases by

approximately 30%, and the power index of the density profile decreases significantly

to p ≃ 2 − 4, while the central density remains constant. This phase corresponds to

the converging rarefaction wave moving from the edge of the cylinder to its center, as

demonstrated by the density profiles shown in Figure 4.1. In the case of S-polarization,

the cylinder radius decreases even more due to the involvement of the ablation process in

addition to the converging rarefaction wave.

The estimated velocity of the converging wave is about 2−4 nm/ps, in agreement with
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Figure 4.2: Cut of the electron (blue), ion (green) and charge (red) density along the x
axis through the center of the cylinder y = 1.35 at time 0.0 ps (a), 1.6 ps (b), 10.9 ps (c)
and 15.6 ps (d), in the case of P-polarization. Dashed gray lines mark the initial position
of a cylinder. Simulation parameters are given in the text; Laser propagates from the left
to the right.
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Figure 4.3: Parametrization of plasma density using a non-linear least square minimization
method with a function ρcN(r). The red line represents the plasma density at t = 14 ps,
the green line represents the fitted plasma density, and the blue line represents the initial
(t = 0 ps) plasma distribution. The initial density is ϱs = 36ϱcr.

the acoustic velocity at a cylinder temperature of approximately 1 eV (see Section 4.3

for temperature evaluation). After 8 ps, the second phase commences, where the cylinder

undergoes rapid expansion accompanied by a fast decrease in the central density and an

increase in the cylinder radius. This phase is observed in both P and S-polarization cases.
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Figure 4.4: Temporal evolution of the parameters characterizing the cylinder density
profile in the case of S (blue) and P (red) polarization: (a) radius a, (b) maximum density
ϱm normalized to the initial density ϱs, (c) power factor p and (d) mass mc normalized to
the initial mass m0 = πa20ϱs. Initial density ϱs = 36 ϱcr.

There is, however, a significant difference in the cylinder mass evolution, which is

shown in Figure 4.4a-c. It is defined as

mc = 2π

∫ ∞

0

ϱ(r) r dr = πa2ϱcg(p), (4.3)

where g(p) = Γ(1 + 2/p) (ln 2)−2/p and Γ is the gamma function defined in (4.2).

For P-polarization, the cylinder mass remains constant with time, whereas for S-

polarization, the mass continuously decreases, indicating ablation induced by laser ab-

sorption at the surface. Approximately 80% of the plasma is estimated to have been

ablated during the 14 ps period, as confirmed by using the particle energy distribution

function described in Section 4.3. In Section 4.4, we evaluate the relative contributions

of the ablation and expansion processes.

4.3 Particle energy evolution

The processes of ablation and expansion of the cylinder are further analyzed by considering

distribution of electrons and ions on energy and in space. Figure 4.5 presents evolution

in time of the distribution of average energy of electrons and ions along the x axis, which
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is defined as:

ε̄(x) =

[∫
∆y

dy

∫ εmax

0

dε f(ε)

]−1

·
∫
∆y

dy

∫ εmax

0

dε ε f(ε), (4.4)

where f(ε, x, y) is the energy distribution function of electrons or ions. The integral over y

is taken over a narrow strip of a width ∆y ∼ 0.1µm centered at the cylinder axis. Similar

analysis has been performed in the perpendicular direction confirming a quasi-isotropic

plasma expansion.
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Figure 4.5: Cut of the electron (a, c), and ion (b, d) average energy along the x axis
through the center of the cylinder y = 1.35 at a time t = 1.0 ps (blue), t = 4 ps (green)
and t = 10 ps (red) for the case of S (a, b) and P (c, d) polarization. Simulation parameters
are given in the text. Dashed gray lines mark the initial position of a cylinder.

Figure 4.5 confirms that the cylinder expansion is quasi-neutral, the electrons and

ions expand with the same average velocity. However, the average energies of electrons

and ions are very different. In the case of P-polarization, the maximum ion expansion

velocity of ∼ 50 nm/ps at t = 10 ps corresponds to the kinetic energy of 120 eV, which is

comparable with the average ion energy shown in Figure 4.5d. By contrast, the electron

total energy in panel c) is much larger than the kinetic energy, which is ∼ 4 eV at t = 1 ps.

This fact indicates that plasma expansion is driven by the thermal energy of laser heated

electrons. In the case of S-polarization, the average ion energy in Figure 4.5b is about

∼ 20 keV at time of 1 ps. This value agrees with the ion expansion velocity estimated to

be ∼ 0.8µm/ps, thus confirming a much more efficient ion acceleration. This is attributed
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to a laser absorption at the surface of cylinder. After 4 ps, the ablated plasma fills the

pore and energy distribution of electrons and ions becomes homogeneous.
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Figure 4.6: Time dependence of electron (a, c) and ion (b, d) energy averaged over the
volume inside cylinder (red) and outside cylinder (blue) for the case of S (a, b) and P (c,
d) polarization.

These observations are further confirmed in Figure 4.6 showing time dependence of

electron and ion energies averaged over the cylinder (red) and outside the cylinder (blue)

in the ablated plasma. The electron and ion energy dynamics in the case of P-polarization

is consistent with the expansion process driven by laser heating of electrons in the bulk of

cylinder. Laser absorption takes place in a narrow skin layer of thickness of ∼ 30 nm at

the surface of cylinder. It is proportional to the electron collision frequency. The energy

transport inside the cylinder is suppressed due to a very large electron collision frequency,

and the electron and ion temperatures in the cylinder remain very low for a long time of

10 ps or more.

In the case of S-polarization, absorption is dominated by the plasma resonance. In

agreement with the theory, see Figure 3.6, absorption is much larger, and the absorbed

energy is transferred from electrons to ions more efficiently by the ablation process at the

surface of the cylinder. Ablated plasma fills the pore at t ≃ 4 ps and after that time

reflected ions mix with incoming ions, thus converting their kinetic energy into internal

energy. The ion energy is stabilized at a level of 5 keV, while the electron energy in the

ablated plasma increases due to inverse Bremsstrahlung laser absorption.
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Figure 4.7: Distribution function of electrons (a) and ions (b) at a time t = 1.0 ps (blue),
t = 4.0 ps (green) and t = 10.0 ps (red) for the case of S-polarization.

Particle distribution on energy in the hot ablated plasma is shown in Figure 4.7. It

can be approximated by a combination of power and exponential functions (4.1). Fitted

parameters for electrons and ions are shown in Table 4.1.

t, ps Te, keV Ti, keV ne, % ni, % ke ki
1 0.5 2.2 11.7 7.6 -0.3 1.4

4 0.4 2.2 30.3 33.6 -0.3 1.3

10 1.1 1.3 73.4 75.0 -0.4 2.8

Table 4.1: Fitting parameters for the distribution function of hot electrons and ions
obtained in the simulation at 1 ps, 4 ps and 10 ps. The case of S-polarization. Simulation
parameters are given in the text.

A slight difference between the number of hot electrons and ions at t = 1 ps indicates

that some electrons are spatially localized in a narrow region at the periphery of the

cylinder and create an electrostatic field accelerating ions. The hot electron distribution

shown in Figure 4.7a is well-approximated by an exponential function and the temperature

agrees with the data shown in Figure 4.6a.

The number of hot ions shown in Table 4.1 is in good agreement with the number of

ablated ions shown in Figure 4.4d. Therefore, the ion distribution shown in Figure 4.7b

represents all ablated plasma. The maximum of the ion distribution at 2.5 − 3 keV

indicates that a significant amount energy remains in the form of a radial flow. A decrease

of effective temperature Ti and increase of power index ki with time corresponds to the

ion distribution being more peaked around the maximum with an average energy of ε̄i =

(ki+1)Ti ≈ 5 keV independent of time. This value is in good agreement with the blue line

in Figure 4.6(b). The simulation time of 10−15 ps is shorter than the ion relaxation time.

It is expected that the ion distribution function will converge to a Maxwellian function

within the next 10− 20 ps due to the ion-ion collisions and flow-driven turbulence.
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4.4 Characterization of the ablation/expansion pro-

cess

By characterizing the cylinder density with three time-dependent parameters as discussed

in Section 4.2.1, we can assess the relative roles of expansion and ablation processes.

Taking the time derivative of the right hand side of Eq. (4.3) and using the definition of

the ablation velocity:

vabl = − ṁc

2mc

a. (4.5)

where mc is the cylinder mass (4.3), we can derive the time derivative of the cylinder

radius as follows:

ȧ = −vabl − a
ġ

g
− a

ϱ̇c
2ϱc

≡ −vabl + vexp. (4.6)

where vexp represents the expansion velocity.

The ablation velocity steadily increases during the first 8 ps to 4 nm/ps, and it further

increases to 10 − 12 nm/ps at later time, see Figure 4.8. Interestingly, this ablation

velocity corresponds to the mass ablation rate ϱcvabl ≃ (5 − 10) × 105 g/cm2s, which is

in qualitative agreement with the theory of stationary laser ablation [2], [141] assuming

laser absorption of ∼ 20%. However, in our case the process is strongly non-stationary

and the plasma is accelerated over a distance smaller than 1µm. By contrast, in the case

of P-polarization, the ablation velocity is practically zero during the first 10 ps, and it

slightly increases at later time.

The cylinder radius changes due to two processes, ablation and expansion. The abla-

tion velocity is identified as the first term in the right-hand side of Eq. (4.6), while the

last two terms in that equation represent the expansion velocity. Figure 4.8 shows the

temporal evolution of the ablation and expansion velocities, which reveals two distinct

regimes of cylinder expansion. During the first 7− 10 ps, the negative expansion velocity

corresponds to the propagation of the rarefaction wave to the center of the cylinder, with

a magnitude on the order of 2− 4 nm/ps, which is comparable to the cylinder expansion

velocity without laser. At later times t > 8 ps, the expansion velocity increases to around

∼ 15 nm/ps for S-polarization. However, because a significant fraction of the initial mass

is spread out over the simulation cell, the definition of the cylinder radius at later times

is less precise.

For S-polarization, the ablation process dominates throughout the simulation, which

is consistent with a smaller homogenization time estimated as th ≃ a0/vabl ≃ 30 ps. On

the other hand, for P-polarization, the ablation velocity is negligible, and we estimate

the homogenization time as the time for the cylinder to expand to the pore edges: th ≃
lp/2vexp ≃ 100 ps.
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Figure 4.9: Cut of the electron density (blue), ion density (green) and absolute value of
charge density (red) ablated plasma outside the cylinder along the x axis at y = 1.35
at time 1.6 ps (a), 10.9 ps (b) and 15.6 ps (c), in the case of S-polarization. Simulation
parameters are given in the text. Dashed gray lines mark the initial position of a cylinder.

Ablation of the cylinder is responsible for generating the ambient plasma within the

pore. Figure 4.9 illustrates the plasma density distribution resulting from ablation at three

different time intervals of 1.6, 10.9, and 15.6 ps for S-polarization. As time progresses,

the plasma rapidly fills the pore outside the cylinder, leading to an increase in plasma

density. The charge separation zone is localized near the cylinder, and it arises due to the

electrostatic field that accelerates the ablated plasma.

The process of cylinder ablation is quasi-neutral, as evidenced by the negligible and
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predominantly negative charge density nq = Zni − ne (red line) shown in Figure 4.9

except at the boundary of the cylinder. The underlying mechanism of ion acceleration is

associated with the electrostatic ablation [142], where the laser energy is transferred to

electrons in the resonance layer at which the laser frequency matches the plasma frequency,

as depicted in Figure 3.5. Due to the resonance enhancement of the incident laser field at

this layer, electrons acquire a substantial amount of energy on the order of ∼ 0.5 keV, see

Figure 4.6a, and escape from the cylinder. The ions are then accelerated by the sheath

electric field in a similar manner to the target normal sheath acceleration process [143],

[144], which typically occurs at higher laser intensities.

The magnitude of the radial electrostatic field at the surface of the cylinder can be

estimated based on the ion acceleration time and energy. According to Figure 4.5b, the

ions gain an energy of εi ∼ 20 keV in less than 0.5 ps while traveling a distance of

lacc ∼ 0.3, µm from the cylinder. Hence, the velocity of these ions can be approximated

to be vi ∼ 0.7 µm/ps, which corresponds to an energy of 1
2
miv

2
i ∼ 20 keV. The ion

acceleration rate is g = vi/tacc ∼ 2 × 1018 m/s2, and this corresponds to an electrostatic

field of Es = mig/Ze ≃ 40 kV/µm, which is comparable to the laser electric field. This

value is supported by another estimate based on the ion energy and acceleration length,

which gives Es ≃ εi/Zelacc ≃ 20 kV/µm.
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Figure 4.10: Cut of the electrostatic field Ex (left) and corresponding potential φ along
the x axis through the center of the cylinder y = 1.35 µm (right) at time t = 0.31 ps
(top), t = 0.62 ps (middle) and t = 1.24 ps (bottom). Simulation parameters are given in
the text.

The estimates presented above are consistent with the electrostatic field measured

directly in the simulation, which is illustrated in Figure 4.10. The maximum value of the

electric field is around 60 kV/µm and is confined to a region of 0.2µm. The potential

of the cylinder φ reaches approximately ≃ 10 kV, which, for an ion charge of Z = 4.5,

corresponds to an ion energy of εi ≃ 40 keV.

The electrostatic field responsible for ion acceleration is generated by electrons accel-
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erated by the laser, which create a space charge. The thickness of the sheath layer is

determined by the density profile of the cylinder, as illustrated in Figure 4.4, where the

density scale length Lϱ = ϱ/|ϱ′| ≃ 15 nm at t ∼ 1 ps. To maintain this field, a character-

istic electron energy is required, which can be obtained from the force balance equation,

eEs + εe∂rϱ/ϱ ≃ 0. This equation yields an electron energy of εe ∼ eEsLϱ ≃ 600 eV.

This energy range is consistent with the electron energy in the ablated plasma, as shown

in Figures 4.5a and 4.6a. At the critical density, this electron temperature corresponds

to the Debye length λDe of a few nm, which is 10 times smaller than the density scale

length. This estimate confirms that ion acceleration proceeds in the quasi-neutral regime,

where λDe ≪ Lϱ. At later times, the cylinder density scale length increases faster than

the electron temperature, resulting in a smaller energy for the accelerated ions.

4.5 Energy balance in the pore

Figure 4.11 shows the instantaneous distribution of the x-component of Poynting vector,

S = (c/4π)E × H, in the simulation box for the case of S-polarization. The Poynting

vector is modulated with a period of a half laser wavelength. The incident laser field

before the cylinder is weakly perturbed, indicating a weak backscattering. Transmitted

light shows modulations in the cone with opening angle of ∼ 30◦, which provides the

characteristic angle of propagation of the scattered light. This angle is in qualitative

agreement with the scattering diagram shown in Figure 3.4. The field is enhanced near

the cylinder due to the interference of incident and scattered waves.
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Figure 4.11: Top: distribution of the x-component of Poynting vector in the simulation
box at time 0.02 ps. Case of S-polarization. Laser comes from the left. Bottom: zoomed
part near the cylinder showing the interference of the incident and scattered light.

The energy balance in the simulation box is evaluated by measuring the laser reflection
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R and transmission T , which are defined as

R = 1−
∫
dyS̄x(0, y)/I0lp and T =

∫
dyS̄x(lp, y)/I0lp,

where S̄x is the x-component of the Poynting vector averaged over the laser period and

integral is taken over the transverse coordinate y. The time-averaged values of reflection

and transmission are shown in Table 4.2.

Pol. Reflection Transm. Abs. Qabs fbackQsca

S 6% 82% 12% 1.32 0.66

P 10% 88% 2% 0.22 1.1

Table 4.2: Energy balance in the simulation averaged over a time interval of 7 − 15 ps.
Simulation parameters are given in the text.

These quantities can be related to the laser absorption and scattering cross sections

on the cylinder. Laser absorption in the ablated plasma is small in the simulation and

has been neglected in these estimates. A small level of reflection and a high level of

transmission is explained by the fact that the geometrical cross section of the cylinder 2a

is small in comparison to the box size lp.

According to the theory presented in Section 3.2.1, the reflected light is due to laser

scattering in the rear demi-sphere, R = fbackQsca2a/lp, where fback is the fraction of the

total scattered light propagating at angles θ > π/2, 2a is the geometrical cross section

and Qsca is the scattering efficiency factor. The transmitted light is different from the

incident due to absorption and backward scattering T = 1− (Qabs + fbackQsca)2a/lp. The

factors Qabs, Qsca, fback and cylinder radius a are calculated theoretically and compared

with the simulation results for R and T .

Figure 4.12: Temporal evolution of scattering (a), absorption (b) factors and the fraction
of backscattered light (c) for the case of S (blue) and P (red) polarization calculated from
the theory presented in Section 3.2.1 for the simulation parameters shown in Figure 4.4.

Furthermore, by using the model described in Section 4.2.1 and the interpolation of the

cylinder density profile with the function (3.41), we calculate the actual time-dependent

scattering and absorption efficiency factors along with the fraction of total backscattered
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light fback. As shown in Figure 4.12a,b, the scattering and absorption factors for the P-

polarization case remain constant during the first 8 ps of the simulation time, indicating

a slow temporal evolution and small absorption. In the case of S-polarization, both ab-

sorption and scattering factors are increasing with time during the first 8 ps. The increase

of these factors is connected to the increase of effective surface where the absorption and

scattering processes take place as the density profile becomes less steep.

The absorption coefficient A = 1 − R − T = 12% calculated in a homogenization

stage for the case of S-polarization by using the parameters of the cylinder found in the

simulation is in good agreement with the energy balance found in the numerical simulation.

4.6 Role of the ion-ion collisions

In this section, we discuss the importance of ion-ion collisions in foam plasmas and their

role in understanding the homogenization process. As noted in Section 4.3, the simulation

time of 10− 15 ps is shorter than the ion relaxation time. We expect the ion distribution

function to converge to a Maxwellian function within the next 10− 20 ps due to ion-ion

collisions and a flow-driven turbulence.
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Figure 4.13: Distribution function of electrons (a) and ions (b) at a time t = 1.0 ps
(blue), t = 4.0 ps (green) and t = 10.0 ps (red) for the case of S-polarization with ion-ion
collisions included.

In foam plasmas, ions have a much higher temperature than electrons, resulting in

a significant difference in the ion and electron mean free paths and delaying the energy

relaxation. The ion mean free path is much shorter than the electron mean free path,

emphasizing the crucial role of ion-ion collisions in such plasmas. These collisions lead

to the thermalization of the ion energy distribution function, as shown in Figure 4.13,

resulting in a more homogeneous ion population. The ion temperature, calculated by

using the Maxwell two-temperature fit (4.1) described in Section 4.3, is estimated to be

about 4 keV at t = 20 ps. Additionally, the collisional transfer momentum between ions

leads to a more uniform ion velocity distribution. Thus, ion-ion collisions are essential
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for the homogenization process in low-density porous plasmas. At a time t = 15 ps more

than 90% of plasma was ablated and the average plasma density in the pore become

sub-critical.

A comparison of Figures 4.7 and 4.13 shows that the initial conditions for the hot

electrons and ions are similar, with comparable temperatures and populations during the

first 10 ps. The ion temperature at t = 10 ps is 1.4 keV, similar to the value of 1.3 keV

in Figure 4.7, and the ion population is 76%, slightly higher than the 75% in Figure 4.7.

The electron temperature at t = 10 ps is 1.1 keV, which is similar to Figure 4.7, and

the electron population remains the same. However, at later times, some differences are

observed in the ion distribution function, indicating the importance of ion-ion collisions

in modifying the distribution over time. The temperatures of hot electrons and ions at

t = 20 ps are estimated to be 1.4 and 3.8 keV, respectively. The hot electron and ion

populations at the same time of 20 ps are estimated to be 93− 96%.

These observations suggest that ion-ion collisions can play a significant role in modi-

fying the distribution function of ions over time, and highlight the importance of under-

standing collisional processes in foam plasmas.

We estimate the homogenization time for electrons to be approximately th ≃ 14 ps and

for ions to be approximately th ≃ 15 ps. This estimate can be obtained from Figure 4.14,

which shows the time dependence of electron and ion energies averaged over the cylinder

(red) and outside the cylinder (blue) in the ablated plasma under S-polarization. The

time evolution of electron and ion energies is similar to the one shown in Figure 4.6,

where ion-ion collisions are absent. The average energy of the ablated plasma at t = 15

ps is approximately ∼ 0.8 keV for electrons and ∼ 5 keV for ions, but there is a significant

difference in the core energies. At a time of t ≃ 14 ps, the electron core energy is as high

as the ablated plasma energy. This fact is due to more efficient collisional heat transport.
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Figure 4.14: Time dependence of electron (a) and ion (b) energy averaged over the volume
inside cylinder (red) and outside cylinder (blue) for the case of S-polarization.

The difference in homogenization times for electrons and ions is due to the longer elec-



CHAPTER 4. SIMULATIONS OF LASER INTERACTION WITH FOAMS 105

tron mean free path, which slows the homogenization of the electron energy distribution

function, compared to ions. In contrast, the shorter ion mean free path results in more

frequent ion-ion collisions, leading to faster homogenization of the ion energy distribution

function. We estimate the ion-ion collisional rate as νii′ = 0.05 ps−1. This corresponds to

a relaxation time τii′ = 20 ps, which is in good agreement with Figure 4.13.

PIC simulations show that ion-ion collisions play an important role in the homog-

enization process in low-density porous plasmas, leading to a significant reduction in

homogenization time. This reduction is due to energy and momentum transfer between

ions during collisions, resulting in a more homogeneous ion population.

4.7 Implementation of the reduced laser-foam inter-

action model in a hydrodynamic code

The two-scale model aims to capture the dynamics of a foam on both spatial and temporal

scales. At the macro-scale, the foam is treated as a homogeneous medium with average

properties, without resolving the internal dynamics of individual pores. This scale is com-

puted using standard plasma hydrodynamics methods, represented by partial differential

equations, and provides a connection between fully homogenized pores. The micro-scale,

on the other hand, models the laser interaction with individual solid elements, providing

information about the subdivision of mass and energy inside the pore. The micro-scale

computation is isolated to individual elements and relies on the macro-scale to estimate

the state of adjacent pores. This is crucial for accurately estimating the incident laser in-

tensity and energy transferred by heat conductivity. The micro-scale model is formulated

using ordinary differential equations, allowing for efficient and high temporal resolution

computation without affecting the performance of the hydrodynamic code used for the

macro-scale computation.

4.7.1 Macro-scale hydrodynamic model

The macro-scale hydrodynamic model for plasma density ϱ, flow velocity U, and inter-

nal energies of ions and electrons, εi and εe, is described by the two-temperature Euler

equations in Lagrangian coordinates:
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1

ϱ

dϱ

dt
= −∇U, (4.7)

ϱ
dU

dt
= −∇(pe + pi), (4.8)

ϱ
dεi
dt

= −pi∇U+Gei(Te − Ti) +∇(κi ∇Ti), (4.9)

ϱ
dεe
dt

= −pe∇U+Gie(Ti − Te) +∇(κe∇Te)−∇Ilas. (4.10)

These equations include terms specific to plasma, such as ion and electron heat con-

ductivity, laser energy deposition, and electron-ion temperature relaxation. The first

terms on the right-hand side of Eqs. (4.7) - (4.10) describe pure hydrodynamics, while

the second terms on Eqs. (4.9) and (4.10) represent electron-ion temperature relaxation.

The third and fourth terms on Eq. (4.10) describe heat conductivity and laser source,

respectively. The electron/ion pressures pe,i and temperatures Te,i are related to primary

conservative variables using the ideal gas equation of state.

The hydrodynamic equations (4.7) - (4.10) are implemented in a two-dimensional cylin-

drical r, z geometry in the code PALE (Prague Arbitrary Lagrangian Eulerian code)[119]

in Lagrangian form and in the code FLASH [120] in Eulerian form.

The computational cells used in the model can exist in one of three states: cold,

intermediate, or fully homogenized plasma. These states are determined by the homoge-

nization of the solid foam elements within the cells, which are modeled at the micro-scale

level. Initially, all cells are in the cold state, where the solid elements are at room tem-

perature and are surrounded by vacuum or a low-density gas. When a laser or heat wave

reaches a cold cell, it transits to the intermediate state, as determined by the micro-

scale model. In these cells, both micro-scale and macro-scale models run in parallel, with

certain aspects of the foam internal dynamics (such as laser deposition and electron-ion

energy redistribution) handled by the micro-model to avoid duplicating calculations. Dur-

ing the homogenization process, we assume that the macro-scale cells remain stationary

with constant mass and zero flow velocity. Thus, when the micro-scale model is active,

only the equations for laser and heat transport need to be solved in the macro-scale cell.

Homogenization terminates when the foam element density drops below the average foam

density or when it equals the density of the surrounding plasma, causing the correspond-

ing macro-scale cell to transition to the plasma state, for which we solve the complete

hydrodynamic system (4.7) – (4.10).

To model laser energy transport and absorption, we use the ray tracing method. The

laser beam is split into independent rays, and their trajectories are governed by the ray

equation of geometric optics. The power of each ray is attenuated along its path, with
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the absorption rate depending on the cell state. For cells in the plasma state, we use the

standard inverse Bremsstrahlung absorption coefficient, while for cells in the intermediate

state, we employ a microscopic absorption coefficient that combines absorption in the

solid foam element and ambient plasma.

4.7.2 Micro-scale hybrid ablation-expansion model

Each macro-scale computation cell corresponds to a micro-scale cell that has the shape

of a parallelepiped, as shown in Figure 3.1. To ensure that each macroscopic cell has

exactly one solid element and thus corresponds to one foam pore, the initial dimensions

of the macro-scale cell in the radial and axial directions are set to be equal to the pore

size lp, i.e., ∆r = ∆z = lp. The micro-cell has the same mass and volume Vpore = l2plc

as its parent macro-scale cell. In the 2D axially symmetric geometry, the volume of the

macro-cell (obtained by rotating the cell ∆r×∆z around the z axis by 1 radian) depends

on its distance from the z axis, and thus the length lc is equal to the radius of the center

of the macro-scale cell (foam elements are longer further away from the symmetry axis).

In the center of each pore lies a solid foam element, which is modeled as a cylinder

with length lc and radius a. The rest of the pore is filled with low-density background

plasma, which we refer to as the ambient plasma. Initially, the cylinder contains a solid

material with density ϱs, and its radius is determined by the average foam density ϱ̄ as

a0 = lp
√
ϱ̄/(πϱs). The total mass of the micro-scale cell m0 is divided into the mass

of the cylinder mcyl and the mass of the plasma mpl, which sum up to the cell mass

Mcell = Vporeϱ̄, where Vpore = l2plc. The initial mass of the cylinder is 0.97 m0, with the

remaining 0.03 m0 placed in the ambient plasma to avoid nonphysical divergences. The

micro-scale cell volume Vpore is divided into the cylinder volume Vcyl = πa2lc and the

plasma volume Vpl = Vpore − Vcyl = l2plc − πa2lc. The cylinder radius a(t), mass mcyl(t),

density ϱcyl(t) = mcyl/(πa
2lc), and temperature Tcyl(t) are constant in space. The fluid

velocity vcyl inside the cylinder is a linear function of radius and approaches the expansion

velocity at the cylinder edge r = a.

The parameters of the cylinder evolve over time according to a set of ordinary differen-

tial equations. Mass and energy exchange between the cylinder and the ambient plasma

are modeled at the micro-scale. The ambient plasma is characterized by its density ϱpl,

electron temperature Tpe, ion temperature Tpi, and zero flow velocity. Although assuming

zero velocity of the ambient plasma is a simplification, we assume that any relaxation

process due to ion-ion collisions or turbulence is faster than the foam homogenization

time. This hypothesis may not hold for foams with large pores or when ablated plasma

collides with flows from neighboring cells.

As ablation proceeds, the ambient plasma mass increases, leading to an increase in
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plasma density given by ϱpl(t) = (m0 − mcyl)/Vpl. The motion of the cylinder bound-

ary is controlled by radial expansion and mass ablation. Surface energy deposition from

laser absorption and thermal heat flux from the ambient plasma drive the ablation pro-

cess, accelerating the ablated mass and converting absorbed energy into kinetic energy of

accelerated particles such as electrons and ions. Due to collisions with the background

plasma, the kinetic energy of the ablated vapors is eventually converted into a plasma

thermal energy, resulting in a continuous conversion of ablated mass and energy flux into

a homogeneous ambient plasma with increasing mass and internal energy of ions and

electrons. This assumption of continuous energy and mass exchange between two phases

is physically justifiable since the ambient plasma is hot and the ablation flow is subsonic.

The micro-model operation regime is determined by a set of free parameters. Some of

these parameters are obtained from the results of PIC simulations described in Section 4.

The appropriate value of the absorption factor Qabs, averaged over S and P-polarizations,

is in the range of 0.5−1.5 according to the Mie theory. However, kinetic simulations have

narrowed down the value to Qabs = 0.75, which is the value we have used. The ion-electron

energy partition in the ablated plasma is characterized by a dimensionless parameter ζi,

which is set to 0.6 based on the kinetic simulations of a single pore of the foam. Finally,

the value of the ablation velocity is characterized by a dimensionless parameter, which

is set to ξa = 0.5, by comparing the ablation velocity measured in Section 4.4 with the

theory of planar ablation [141].

This hybrid ablation-expansion micro-macro model has been implemented in the code

PALE and in the code FLASH, which is described in details in Ref. [122].

4.8 Conclusion for Chapter 4

By using the Mie theory and numerical simulations, we investigated the interaction be-

tween intense laser radiation and an elementary cell in a foam. The foam solid element is

represented by a cylinder with a sub-wavelength radius. The laser absorption efficiency

in solid element strongly depends on its structure, shape and orientation with respect to

the laser polarization. The theory indicates that S-polarization leads to enhanced laser

absorption due to plasma resonance. As a result of bulk heating and surface ablation,

solid element turns into plasma. Remarkably, the ablation rate is qualitatively consistent

with the theory of stationary laser ablation.

For P-polarization, absorption occurs due to electron collisions, and the conversion of

solid element to plasma occurs due to its heating and expansion. For both polarizations,

absorption occurs at the surface of solid elements, and energy transport inside the element

is suppressed due to the high level of collisionnality, resulting in a much lower plasma
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temperature in the core compared to the ablated plasma. The latter is characterized

by a large difference between kinetic energies of electrons and ions. In the simulation,

approximately 60% of absorbed laser energy is transferred to ions, resulting in an ion

temperature ratio of Ti/ZTe ≃ 1.5 after ion thermalization. This ion overheating makes

the plasma generated from foam different from that produced from homogeneous materials

where electron heating is the dominant process and electron temperature is higher than

the ion temperature.

Following the Mie theory, laser scattering and absorption is described using dimension-

less efficiency factors. However, unlike a homogeneous cylinder, the absorption efficiency

factor is notably higher for S-polarization and does not depend on electron collisionality.

Additionally, both absorption and scattering efficiency factors increase over time due to

cylinder expansion.

The evolution of the cylinder density over time can be described by a bell-shaped

function with three parameters that vary with time: central density, radius, and steepness.

This is expressed in Eq. (3.41). The evolution of cylinder occurs in two distinct phases.

In the first phase, the cylinder radius decreases as the rarefaction wave converges towards

the center. The second phase corresponds to the expansion of the cylinder.

These results can be compared to microscopic models proposed by Gus’kov et al. [41],

[131] and Belyaev et al. [36], [133]. None of these two models provides a description of the

laser absorption mechanism, instead proposing the use of a constant ad hoc absorption

efficiency factor for opaque solid elements. Gus’kov et al. suggest using an absorption

factor of 1/2π ≃ 0.16 for cylindrical solid elements, while Belyaev et al. [36], as discussed

in Section 3.3.1, approximate the cylinder density profile with a Gaussian function (3.41)

with p = 2 and assume that all optical rays incident on the cylinder with an impact factor

smaller than the critical density radius rcr are absorbed. This corresponds to an absorption

efficiency factor equal to the ratio of rcr to the cylinder radius, rcr/a = (ln(ϱs/ϱcr)/ ln 2)
1/2,

which falls within the range of 1.9− 2.3 for the parameters used in our simulations.

Upon comparing the values of Qabs with the absorption factors depicted in Figures

3.5(b) and 4.12(b), it is evident that the model proposed by Belyaev et al. [36], [133]

overestimates the absorption, while the model by Gus’kov et al. [41], [131] significantly

underestimates it. Additionally, both models assume a homogeneous temperature dis-

tribution within the pore, resulting in a shorter homogenization time in the model by

Gus’kov et al. and a higher expansion velocity in the model by Belyaev et al. In contrast,

our model, which accounts for resonance laser absorption and the temperature difference

between the solid element and ambient plasma, is more realistic and versatile in various

applications.

We conducted numerical simulations of laser irradiation on an underdense foam with
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open pores, using a laser intensity of 1014 W/cm2. The electron and ion temperatures

obtained from the simulations are consistent with experimental data [38], [145]. Due to

the relatively small size of the solid element compared to the pore size, the laser absorption

in a single pore is small. Therefore, we infer that laser heating and foam homogenization

involve many pores, resulting in a homogenization layer thickness that is lp/a times larger

than the pore size. Our findings are relevant for the development of a multi-scale model for

foam heating by laser radiation, which is presented in Ref. [122], along with a comparison

to experimental data. Our analysis can also be extended to foams with different shapes

of solid elements and to over-dense foams, where the process of solid element heating and

expansion is controlled by the electron heat flux.



Chapter 5

Conclusion

This work is dedicated to the theoretical and numerical studies of nonlinear, high intensity

laser interaction with plasmas in the context of shock ignition approach to inertial con-

finement fusion for energy production. Two subjects of prime importance are considered:

i) the control of nonlinear laser absorption in plasma mitigation of laser backscattering

due to the competition between stimulated Brillouin and Raman scattering; ii) the inter-

action of laser radiation with low density porous materials and their transformation in a

hot homogeneous plasma.

The studies of nonlinear laser plasma interaction are presented in Chapters 1 and 2.

They demonstrate the necessity of mitigating SBS to achieve efficient laser absorption un-

der shock ignition conditions. Several methods of SBS suppression have been tested and

evaluated, including the use of multiple ion species, plasma expansion, and laser band-

width. By adding hydrogen to the ablator, one can dramatically increase the damping of

ion acoustic waves, thereby suppressing the convective SBS gain and the SBS reflectivity.

Similar effects can be achieved by using laser pulses with bandwidth larger than a few

THz or with steep profiles of plasma flow velocity.

The suppression of SBS opens the way for more efficient laser energy absorption due

to the excitation of SRS. Under the parameters relevant to the shock ignition scheme,

SRS is excited as an absolute instability near the quarter critical density. This enhances

laser absorption through the trapping and absorption of the daughter scattered wave

in the density cavities and electron acceleration by the daughter plasma waves. The

theoretical analysis of trapped modes in plasma cavities in Section 1.5 is confirmed in the

numerical simulations, showing efficient absorption of laser energy exceeding 30% and ion

acceleration in the expanding cavities, as described in Section 2.6. Trapping of electrons

in plasma waves and wave breaking results in transferring up to 10% of laser energy to

hot electrons with an effective temperature of 35 keV. According to shock ignition target

designs [18], such hot electrons may improve the shock ignition performance and do not

111
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present a danger for fuel preheat.

The studies of SBS and SRS competition are performed in a 1D geometry, with the

plasma profiles obtained from hydrodynamic simulations relevant to shock ignition condi-

tions. The results of the 1D simulations are compared with several 2D simulations having

similar plasma density and temperature profiles. The 2D simulation results confirm the

dominance of SBS/SRS competition and electron acceleration near the quarter critical

density. This comparison shows the relevance of our results to realistic experimental con-

ditions, providing important insights for future studies of shock ignition. Overall, our

work advances the understanding of the physics underlying these instabilities, providing

a foundation for further exploration and optimization of ICF systems.

The theoretical and numerical analysis of laser interaction with porous materials in

Chapters 3 and 4 sheds new light on the physics of high intensity laser interaction with

structured low density materials and provides valuable input for constructing a sub-grid

model describing foam heating and homogenization. We address the following three as-

pects: First, we demonstrate that the absorption cross section strongly depends on the

density profile of the solid element and the laser polarization. We have shown that as-

suming the absorption cross section is equal to the geometrical cross section leads to a

severe overestimation of the absorption rate. Applying Mie theory to the expanding sub-

wavelength cylinder, we determine the scattering and absorption cross section. Cylinders

with radially inhomogeneous density show a larger absorption due to the contribution of

collisionless resonance absorption. Second, we investigate the process of transformation of

a solid structural element into hot plasma due to laser absorption and heat flux from the

ambient plasma. We compare two processes: bulk heating and expansion and surface ab-

sorption and ablation. It is shown that the latter process dominates due to the suppression

of heat flux inside the cylinder for the cylinder radius of 0.1µm or larger. The ablation

rate is found to be in agreement with the theory of laser ablation of bulk materials. Third,

we evaluate the energy partition between electrons and ions in the ablated plasma. In

contrast to homogeneous materials, laser ablation of structural elements in underdense

foams results in strong ion overheating with 60% of the absorbed energy transferred to

ions. This efficient ion heating is explained by ion acceleration in the sheath electric field

near the absorption zone and ion-ion collisional relaxation in the ambient plasma. Our

findings provide important insights for designing and optimizing laser-plasma interaction

experiments and simulations involving underdense structural materials.

The results obtained in this work open further perspectives in the laser plasma inter-

action studies in application to the shock ignition and to the laser-driven inertial fusion in

general. To achieve efficient laser absorption under shock ignition conditions, the mitiga-

tion of SBS is of utmost importance. The methods of SBS suppression, including the use



CHAPTER 5. CONCLUSION 113

of multiple ion species, plasma expansion, and laser bandwidth, have been shown to be

effective in our 1D simulations. However, these methods should be considered together,

rather than separately, in full 2D simulations, where the effects of sidescattered SRS,

TPD, or enhanced cavitation can be fully examined. The investigation of SBS mitigation

methods in 2D geometry is essential for developing a comprehensive understanding of the

laser-plasma interaction dynamics.

Further investigation of foam targets is necessary to fully understand the nonlinear

interaction between high intensity lasers and structured materials. One important aspect

that needs to be considered is the pore size of the foam, as it can significantly affect

the absorption and scattering cross sections. Additionally, the overall nonlinearity of

absorption in such circumstances, including collisionless resonance absorption, needs to

be explored in more detail, in particular for structured elements of different forms and

sizes. Moreover, the process of homogenization of the foam due to laser heating and

ion-ion collisions is a crucial factor that should be further investigated in simulations.
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Personal publications and conference presentations

Conferences and workshops:

1. November 2022, Joint ELI User Meeting 2022 (foam target workshop), Prague,

Czech Republic

Oral talk: ”Kinetic modelling of laser absorption in foams”

2. September 2022, European Conference on Laser Interaction with Matter (ECLIM),

Frascati, Italy

Oral talk: ”Kinetic modelling of laser absorption in foams”

3. May 2022, Direct Drive and Fast Ignition Workshop (DDFIW), Madrid, Spain

Oral talk: ”Kinetic modelling of laser absorption in foams”

4. April 2019, IOP Plasma Physics Conference, Loughborough, UK

Oral talk: ”Collective absorption of laser radiation in plasma at sub-relativistic

intensities.”

5. October 2015, Moscow, The International School on Ultra-Intense Lasers

I have experience as an organizer for this school.

6. January 2015, Scientific Session MEPHI, Moscow

Oral talk: ”Modelling of smoothing intensity laser pulses by a random phase plate”

7. January 2014, Scientific Session MEPHI, Moscow

Oral talk: ”Search for the optimal configuration of the dynamic phase plate”

List of personal publications

S. Shekhanov, A. Gintrand, L. Hudec, R. Liska, J. Limpouch, S. Weber, and V.

Tikhonchuk, ”Kinetic modeling of laser absorption in foams”, Phys. Plasmas 30, 012708

(2023), DOI: 10.1063/5.0131786. This article has been chosen to be promoted as an Edi-

tor’s Pick. (Ref. [37])

L. Hudec, A. Gintrand, J. Limpouch, R. Liska, S. Shekhanov, V.T. Tikhonchuk and S.

Weber (2023). Model for foam ionization and heating. Accepted for publication in Phys.

Plasmas. (Ref. [122])

S. A. Shekhanov and V. T. Tikhonchuk, SRS-SBS competition and nonlinear laser en-

ergy absorption in a high temperature plasma. Plasma Phys. Control. Fusion 63, 115016
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(2021), DOI: 10.1088/1361-6587/ac2614 (Ref. [67])

Y. Gu, O. Klimo, Ph. Nicoläı, S. Shekhanov, S. Weber, and V. Tikhonchuk, Collective

absorption of laser radiation in plasma at sub-relativistic intensities. High Power Laser

Sci. Eng. 7, E39 (2019), DOI: 10.1017/hpl.2019.25 (Ref. [65])
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[105] O. Klimo, J. Pšikal, V. T. Tikhonchuk, and S. Weber, “Two-dimensional simu-

lations of laser–plasma interaction and hot electron generation in the context of

shock-ignition research”, Plasma Phys. Control. Fusion, vol. 52, p. 055 010, 2014.

doi: 10.1088/0741-3335/56/5/055010.

[106] E. Llor Aisa, X. Ribeyre, G. Duchateau, et al., “The role of hot electrons in

the dynamics of a laser-driven strong converging shock”, Phys. Plasmas, vol. 24,

p. 112 711, 2017. doi: 10.1063/1.5003814.

https://doi.org/10.1103/PhysRevLett.29.565
https://doi.org/10.1063/1.3309481
https://doi.org/10.1063/1.861591
https://doi.org/10.1103/PhysRevE.85.016403
https://doi.org/10.1103/PhysRevLett.45.1179
https://doi.org/10.1103/PhysRevLett.45.1179
https://doi.org/10.1063/1.864581
https://doi.org/10.1063/1.864746
https://doi.org/10.1063/1.5089890
https://doi.org/10.1063/1.4824008
https://doi.org/10.1088/0741-3335/56/5/055010
https://doi.org/10.1063/1.5003814


BIBLIOGRAPHY 125

[107] J. Dawson, “On Landau damping”, Phys. Fluids, vol. 4, pp. 869–874, 1961. doi:

10.1063/1.1706419.

[108] D. J. Strozzi, E. A. Williams, H. A. Rose, D. E. Hinkel, A. B. Langdon, and J. W.

Banks, “Threshold for electron trapping nonlinearity in Langmuir waves”, Phys.

Plasmas, vol. 19, no. 11, p. 112 306, 2012. doi: 10.1063/1.4767644.

[109] D. Benisti, “Envelope equation for the linear and nonlinear propagation of an elec-

tron plasma wave, including the effects of Landau damping, trapping, plasma inho-

mogeneity, and the change in the state of wave”, Phys. Plasmas, vol. 23, p. 102 105,

2016. doi: 10.1063/1.4963854.

[110] J. M. Dawson, “Nonlinear electron oscillations in a cold plasma”, Phys. Rev.,

vol. 113, pp. 383–387, 1959. doi: 10.1103/PhysRev.113.383.

[111] T. P. Coffey, “Breaking of large amplitude plasma oscillations”, Phys. Fluids,

vol. 14, pp. 1402–1406, 1971. doi: 10.1063/1.1693620.

[112] C. B. Schroeder, E. Esarey, and B. A. Shadwick, “Warm wave breaking of nonlinear

plasma waves with arbitrary phase velocities”, Phys. Rev. E, vol. 72, p. 055 401,

2005. doi: 10.1103/PhysRevE.72.055401.

[113] O. Klimo and V. T. Tikhonchuk, “Laser-plasma interaction studies in the context

of shock ignition: The regime dominated by parametric instabilities”, Plasma Phys.

Control. Fusion, vol. 55, p. 095 002, 2013. doi: 10.1088/0741-3335/55/9/095002.

[114] F. Harlow, “A machine calculation for hydrodynamic problems”, Los Alamos Sci-

entific Laboratory, Tech. Rep. LAMS-1956, 1956.

[115] C. Birsall and A. Langdon, Plasma Physics Via Computer Simulation. New York:

McGraw-Hill, 1985.
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