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Abstract

This thesis describes the implementation
of machine learning-based fault detection
on an edge device. The main part of the
system is built on an STM32F413ZH
microcontroller that performs data
acquisition and processing and inference

by a pre-trained machine-learning model.

A gearbox was 3D printed for
demonstration of this device with
interchangeable undamaged and damaged
wheels. Apart from this, the designed
demonstration unit is composed of an
electric motor, a microcontroller to
control it, a separate microcontroller to
enable Ethernet communication and a
display.

The proposed system collects data
from an incremental rotary encoder,
preprocesses the signal, and extracts
features based on both its frequency and
time domain characteristics. Various
models trained in NanoEdge AI Studio
were tested and compared, and the limit
where the system can still reliably detect
faults was determined. With anomaly
detection, a true positive rate of 1 and a

true negative rate of 0.74 were achieved.

With multiclass classification, a perfect
score was obtained when considering only
the healthy state and two large faults.

Keywords: edge device, machine
learning, fault detection, anomaly
detection, incremental rotary encoder,
gear damage, Industry 4.0, NanoEdge Al
Studio
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Abstrakt

Tato praca sa zaoberd realizdciou
koncového zariadenia s detekciou portich
zalozenou na strojovom uceni. Hlavnou
sucastou systému je mikrokontrolér
STM32F413ZH, ktory vykondava zber a
spracovanie dat a vyhodnotenie pomocou
dopredu nauceného modelu.

Pre demonstraciu tohto zariadenia
bola 3D tlacou vyrobenad prevodovka
s vymenitelnymi neposkodenymi a
poskodenymi  ozubenymi  kolesami.
Okrem toho demonstracna jednotka
obsahuje elektromotor, mikrokontrolér,
ktory ho ovlada, osobitny mikrokontrolér
zabezpecujuci ethernetovi komunikaciu a
displej.

Navrhnuty systém zbiera data =z
inkrementalneho rota¢ného enkodéru,
predspracovava signdl a extrahuje
priznaky zalozené na jeho frekvencénych
aj casovych charakteristikich. Boli
otestované a porovnané rdzne modely
natrénované v NanoEdge Al Studio a
urc¢eny limit, pri ktorom systém este
dokéze spolahlivo detekovat chyby. S
projektom zalozenom na detekcii anomalii
boli dosiahnuté hodnoty 1 pre mieru
skutocéne pozitivnych detekcii a 0.74 pre
mieru skuto¢ne negativnych detekeii.
Model Kklasifikujuci viacero tried mal
bezchybné vysledky, ked bol vstup
obmedzeny iba na normaélny stav a dve
velké poskodenia.

Klucové slova:
strojové ucenie, detekcia chyb, detekcia
anomalii, inkrementalny rota¢ny enkodér,
poskodenie prevodov, priemysel 4.0,
NanoEdge Al Studio

koncové zariadenie,

Preklad nazvu: Detekcia poriuch v
priemysle s pouzitim strojového ucenia v
koncovom zariadeni
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Chapter 1

Introduction

B 1.1 Motivation and Task Description

The motivation behind this work is the growing popularity of machine learning
(ML) and artificial intelligence (AI) algorithms in general and the growing
need for precise identification of faults in industrial machinery. As shown
in Figure [I.1] it is estimated that one-quarter of all manufacturing costs in
the United States. can be traced to the time when production is stopped
because of machine downtime. Accurate and early detection that a machine

| THE COST OF DOWNTIME

Unplanned downtime has a steep cost for manufacturers—and preventingitis a
major goal of the technologies that will define industry 4.0 manufacturing.

23.9%

PERCENTAGE OF TOTAL MANUFACTURING COSTS CAUSED BY DOWNTIME

= &)

LOST PRODUCTION LOST CAPACITY
o
) 1M
" [l Il
COST OF LABOR PER UNIT COST OF HOLDING INVENTORY

Figure 1.1: Estimation of downtime costs in the United States. Image adapted
from Analog Devices, source: The Costs and Benefits of Advanced Maintenance
in Manufacturing, U.S. Department of Commerce, April 2018.

is going to require maintenance or repair allows for careful scheduling and
management and thus reducing the final cost. With many Internet of Things
(IoT) devices already in use, a large amount of data needs to be transferred
to the cloud for processing because a large number of these devices only serve
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to collect data. It is apparent that the volume of data and, thus, load on the
internet infrastructure will increase in the coming years with more devices
being deployed. Figure shows that in a few years, almost one-third of all
Internet traffic will be made up of IoT communication. To address this issue,

Figure 1.2: Estimation of IoT internet traffic. Image adapted from
STMicroelectronics, source: [IJ.

devices that need to transfer as little data as possible should be designed.
Industry 4.0 aims to incorporate smart automation and faster and more
accurate devices into manufacturing infrastructures, and this work should
contribute to that goal.

Paired with advances in the computing power of microcontroller units
(MCUs), the consequence is that more intelligent and capable edge devices
are being created. Edge devices are units that can collect data or act on their
surroundings (or both) and are connected to a central unit that unifies them
and can make decisions based on data. This architecture is covered by the
Industry 4.0 concept.

Apart from collecting data, many devices also evaluate what has been
collected, interpret the results of computations, and communicate with their
central device only to indicate a state or report on an action, etc. One of
the advantages of this approach is that the communication bandwidth is
considerably reduced as only a small number of results need to be transferred
instead of all the collected data. This is strongly related to the saving of
energy consumption since if the device uses wireless communication, the energy
expended for transmission can be an important part of its overall consumption.
Another benefit is privacy; if the collected data are not transmitted between
devices and stored in a database, there is a lower risk of an attacker gaining
sensitive information. The time delay between a change in conditions and a
critical action taken by the system can also be shortened because everything
runs locally. Combining these factors, intelligent edge devices can operate
fully independently at all times, without increasing risks or operating costs.
In these devices, ML is used to interpret data and make decisions about the
state of the observed system.

An important subcategory is made up of devices that implement predictive
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maintenance of industrial or other types of machinery. Detecting faults in
this context is important, for example, to avoid unscheduled downtime in
manufacturing. These devices can often perform some kind of real-time
monitoring while sending all the data to a database, where they are processed
further by cloud computing techniques. A detailed description of parts of
this architecture is provided in article [2].

Using signal processing combined with AI directly on the edge device, fault
detection systems can avoid the need for a central server and benefit from
the advantages listed above. This is, in part, the aim of this work, to show
how well the entire system can function without any input from other devices.
The focus will be on detecting faults in rotating machinery that incorporates
gears. These faults can include more or less pronounced damage to gear teeth,
issues with bearings, or motor defects. The state of such systems can be
monitored using various sensors, including accelerometers or microphones to
observe vibrations or sounds originating in the gearbox or the motor itself. In
this work, however, an incremental rotary encoder (IRC) will be used, which
is already incorporated in a large portion of more complex motor control
applications for the purposes of speed and position estimation. Thus this
approach eliminates the need for additional sensors, which can save costs and
complexity of the final design. Apart from this, IRC is much less susceptible
to noise, which can affect other types of sensors, vibrations, or sound from
external sources. And its direct connection to the drive shaft or even inclusion
in the motor itself means that the signal travels only a short path from the
source (e.g., the degraded tooth), as opposed to accelerometers which sense
overall vibrations that can be influenced by the surrounding non-relevant
sources.

. 1.2 Related Work

There has been a number of works that dealt with similar topics and resulted
in prototypes or evaluation software that were more or less functional. Many of
these works either utilised a computer for signal processing and Al algorithms
implementation (and only used an MCU to collect data from a physical set-up)
or their system worked completely on an MCU but the proposed methods
were too simple, and they could not achieve substantial accuracy of detection.

In [3], the authors used a complex ML approach based on convolutional
neural networks (CNN). They collected data from two IRCs (to get a
measurement called transmission error) and from accelerometers. They
used various methods for signal processing (denoising, enhancement, and
segmentation) before using it as an input for their CNN. Several CNNs of
different types were trained to classify three states of a gear wheel. The
authors achieved near-perfect results when testing with the transmission error
signal, but the trained networks had a considerable number of layers, and
the software was designed to work on a computer with more resources than

3
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an MCU.

A team of authors in [4] analysed vibration signals and computed a
representation called a Poincaré plot. They extracted several features from
this, which were then used for classification by Support vector machines.
They obtained accuracy in the range of 90% to 100% when classifying gear
faults and roller bearing issues with various methods and settings. Although
the algorithms are simple enough to implement on an MCU, the limitation of
this work is that an external sensor was used.

A much more simplistic approach was taken in [5], where a team from France
attempted to classify gear and bearing faults in a gear reducer system based
purely on the three-phase current signals which are, in general, measured
in all alternating current motors. This mitigates the need for any sensor,
even an IRC, which does not need to be used in every application. After
signal processing, they employed Fast Fourier transform to obtain a frequency
spectrum from which they exported various features. Then, these were used
for classification with an Adaptive Neuro-Fuzzy inference system with almost
100% accuracy. Even though a computer was used for computations in this
work, a similar approach should be possible to employ on an MCU.

One of the many state-of-the-art solutions which have recently been
introduced for practical use in the industry is the ADI OtoSense Smart
Motor Sensor (described in [6]), created and sold by the company Analog
Devices. This product won the Digitalization Automation Award in 2021. It
uses signal analysis with AI algorithms to detect and classify nine different
mechanical and electrical faults (including misalignment, bearing problems,
etc.). Similarly to the system proposed in this work, it is a single-sensor
solution but uses accelerometers instead of an IRC. This makes it potentially
vulnerable to external noise, which the system needs to deal with. A system
using an IRC should be more independent of the mechanical qualities of the
motor’s construction. An IRC can also be placed on any rotating shaft in a
gearbox without losing any advantages or needing to reconfigure the system.
In contrast, with an accelerometer, the placement affects signal properties
due to different signal paths.

. 1.3 Aims

This work aims to develop a unit that would demonstrate the usage of ML
algorithms in an edge device, particularly for detecting faults in a gearing
system. Spur gears are used as the simplest type of gear. Other kinds
(for example, herringbone gears) offer significant advantages, including less
emitted noise or more efficient transfer of torque, but they are harder to
assemble and would not be suitable for a demonstration where gear wheels
need to be changed often.

From the wide range of faults that can occur in a gearbox, missing teeth

4
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(due to overloading or crack), an extreme case of mechanical damage, will
be targeted for detection. Tests will also be performed to try to detect more
minor faults represented by pitted teeth. An IRC sensor will be used as the
only information source about the gearbox’s state. This sensor is built-in to
the brushless direct current motor, which will be used.

The whole detection pipeline will be implemented exclusively on an
STM32F413ZH MCU from the acquisition of data from an IRC, signal
processing, and feature extraction to inference using a pre-trained Al model.
Training will be done in NanoEdge Al Studio (a product of STMicroelectronics)
using real data collected by the MCU. The particular MCU was chosen to
verify and show that such a system can work even on an older, less powerful
device (compared to other available MCU series).

Various types of ML models will be trained and compared to each other -
models that classify multiple states into corresponding classes and models
whose output is only an indication of whether the system is in a healthy or
damaged state. For models with multiple classes, a comparison with results
achieved on a computer (with similar ML algorithms) will also be provided.

The main output of this work should be a demonstrator with added
functions such as a graphical user interface and Ethernet communication to
better illustrate how such a device could be implemented in a natural industrial
setting. A secondary contribution will be an evaluation of the NanoEdge Al
Studio tool, showing if the created models can produce satisfactory results in
a complex scenario.






Chapter 2

Methods for Fault Detection Using Edge
Computing

In this chapter, a general description will be provided of the systems and
methods that were used to create an edge device capable of detecting gearbox
faults. The theory of the target sensor and how its signal is obtained and
processed will be discussed. Then several ML algorithms that can be used to
evaluate the state of the gears will also be outlined.

Figure [2.1] shows the overall flowchart of the system. The gear state reflects
the gearbox’s physical condition. This is transferred through the gears onto
the motor shaft, whose rotation can be monitored using an IRC sensor.
Fluctuations in the IRC signal are caused by irregular motor movement,
which can be traced back to an abnormal state of one of the gear wheels.

A hardware timer (an MCU peripheral) is used to collect data from the
sensor. After gathering enough data points, signal processing is done, and
features are computed. These features enable us to distinguish between
various gear states using inference by an ML model. The result is then
communicated to the system’s operator (using an LCD) and to a central
device via Ethernet.

More details on individual blocks will be given in the following sections,
and details of the practical implementation will be provided in Chapter [3|

Signal path Acquisition by hardware
> Gearbox —>» Motor > IRC :) Timer )—») Memory)
Software part No—< Complete?
[ Communication ](—[ . Model ](—[ProcessingL Yes
inference ]

Figure 2.1: Flowchart of a gear state’s propagation through the system



2. Methods for Fault Detection Using Edge Computing

B2 Signal Acquisition

This section describes the IRC sensor and the method employed to acquire
its signal.

B IRC Sensor

The principle of IRC sensors is quite simple compared to other popular sensors,
such as accelerometers. At the same time, they can be manufactured on a
larger scale, which makes them typically cheap, reliable, and widely used.
Figure shows the typically produced signals. The type of output depends
on the sensor. The first type offers better resolution after calculating the
motor position using trigonometry but requires fast and precise sampling and
additional computation time. However, a pulse signal can be fed into a timer
peripheral of an MCU. This provides a more straightforward but slightly
less accurate measurement. Usually, there are two output signals (channels)
physically shifted by 45 degrees. By measuring which channel rises first, the
control system can determine the direction of rotation.

Pseudo sine wave
Phase:A

AN

Threshold
Digital pulsc%e signal E !
Phase:A
Phase:B |
» 1iMe

Figure 2.2: Output signals of a rotary encoder, courtesy of [7]

There are other advantages to these sensors besides their price and robustness.
They are often already incorporated into the motor control applications, so
there is no need to use additional external sensors. An IRC is connected
directly to the motor’s drive shaft. In contrast, accelerometers and similar
sensors are mounted to an enclosure or a part of a support structure close to
the gears. Because of this, an IRC is positioned much closer to the motor
in the drivetrain and, therefore, should have lower susceptibility to external
vibrations and noises. Because of this, the argument can also be made that
an IRC does not provide as much information as an accelerometer positioned

8



2.2. Detection of Fluctuations in IRC Signal

close to a gear far from the motor (with a high gear ratio). In this work, the
results of fault detection will be compared with faults located both close and
farther from the motor using an IRC.

Of course, there are disadvantages to this kind of sensor. They are not as
informative about vibrations and movement in the gears because they only
register a change in one dimension. On the contrary, accelerometers usually
measure movement in all three axes. Also, to successfully record a fault with
an IRC, the change in speed needs to last a sufficiently long time to be above
the sensor’s resolution. An IRC has a fixed resolution, in this case, given by
the number of pulses it produces per revolution. When using other types
of sensors, the time resolution can generally be increased by increasing the
sampling rate.

B Timer Input Capture

To track the sensor signal with the MCU, its timer is used in input capture
mode. The timer keeps increasing its internal counter, and at every edge of
the external signal, the current value is saved to a register, and an interrupt
is generated. Only rising edges are used, as explained later in Section (3.4.
This is illustrated in Figure |2.3| The timer values can be transferred directly
to a defined memory location using direct memory access (DMA) by the
peripheral’s hardware without any input (and thus delay) from the MCU
core.

External signal

CC2Rtn-1 CC2Rtn
Capture Capture Capture Capture
interrupt interrupt interrupt interrupt

Figure 2.3: Input capture mode of a timer, taken from [g]

B 2.2 Detection of Fluctuations in IRC Signal

In this section, the output signal of an IRC sensor is described in relation to
the given application. It also outlines how capturing the signal with a timer

9



2. Methods for Fault Detection Using Edge Computing

compares to doing acquisition with an ADC. The principle will be explained
on an ideal signal.

For the following analysis, a binary signal was created in Matlab with a
sample rate of 1 Hz. It is made up of ten long pulses (each with a period
of 20 seconds) and two slow ones (with a ten-second period); this pattern
is repeated 100 times. The length of the signal is 2300 s, and it is shown
in Figure [2.4. It can represent a case where the damage to a gear covers
one-sixth of its circumference. In a scenario without mechanical faults, the
gears would mesh perfectly, and the motor would rotate at a constant speed,
thus resulting in a fixed length of pulses. Damage to a gear tooth creates a
free space where the motor can move faster. This, of course, depends on the
torque the controller produces, which increases with the applied load. As a
result, there is a periodically repeating part of the signal where the pulses are
shorter. This signal section in the time domain, combined with a known IRC
resolution, corresponds to the fault location in the space domain. Commonly
used ways to measure instantaneous angular speed (IAS) from a given IRC
signal are described in article [9]. Here, the simplest timer-based method will
be employed by measuring the time between successive pulses because the
MCU timer can run with a clock frequency that is high enough not to create
a considerable error.

When creating a system that is supposed to run on an MCU, an essential
factor to consider is limited memory space. For signal analysis, multiple
occurrences of an event must be recorded to properly determine its existence.
This can lead to an excessively long signal when a high resolution is used
together with the need to register rare faults - a damaged cog located directly
on the shaft will produce more frequent signal changes than one farther away.
This leads to a necessary trade-off between high resolution (which provides
better accuracy in model creation) and adhering to memory constraints and
lowering the computation time. As the sensor has a fixed resolution, only
memory and time requirements must be considered.

Considering the memory and computation time constraints, only one output
channel of the IRC will be used throughout this work. The second channel
would increase the spatial resolution twice but also multiply the required
memory by the same factor. Generally, the main advantage of using both
channels is that the direction of rotation can be easily found - which do not
need to be considered for this application.

For the same reason, it is enough to capture only rising edges with the
timer. Based on the assumption that the IRC resolution is high enough, the
output signals should always have a duty cycle of 50 %. This means that
complete information about the signal is obtained by measuring the signal
time period between two rising edges. The theoretical exception to this would
be a condition where the damage is minimal and covers only one pulse of
the IRC. In such a case, capturing both rising and falling edges or using an
IRC with a higher resolution would be necessary. However, it can be argued
that such a slight change in signal (only one short pulse) would be below

10



2.2. Detection of Fluctuations in IRC Signal

the level of measurement noise. This gives rise to possible modifications in a
final application based on the necessary precision and the smallest detectable
faults.

As mentioned in Section one possible way to record such a signal would
be with an ADC. Using the defined sample rate, it would directly acquire the
signal as it is shown (at discrete points). Figure shows the frequency
spectrum of this signal. The signal will not be perfectly square in a real
scenario, but the examined faults do not influence this type of fluctuation. So
this method would not provide additional information while requiring more
memory space.

AMUATAENRAERIAHIG 0L
1 L L L L
0 200 400 600 800 1000
Time [s]

(a) : Signal
05 T T T T T T T T T T

0.4 7

.
w
T
1

Amplitude [-]
o
N

0.1

H“Hll‘ ! |H|H||H|“|“II|| |I|. ! 1I|‘||ll||l|||l|||||ll||l|“||. ! .IIHIIHIIH“

0
0 0.05 01 015 02 025 03 035 04 045 05
Frequency [Hz]

(b) : Frequency spectrum

Figure 2.4: Idealised output of an IRC (one channel) and its frequency spectrum
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On the other hand, as has been explained, the IAS signal computed from
timer data should sufficiently reflect the desired phenomenon. This was
confirmed, for example, by the authors of article [10], who found that changes
in frequency components of the IAS signal correlate to variations in the
dynamics of the rotor blades caused by damage, looseness, or misalignment.

Figure[2.5alillustrates the times a timer would detect rising edges. Deviations
of the signal slope can be seen at samples corresponding to intervals with
higher speeds in the original signal. By calculating the differences between
the timestamps, an IAS representation is obtained, as shown in Figure [2.5b|
Several peaks can be clearly seen in its frequency spectrum in Figure [2.5¢. In
this idealised scenario, a gearbox without faults would produce a perfectly
constant TAS, and so the frequency spectrum would only contain one non-zero
component at zero frequency.

When comparing Figures |2.4b and [2.5¢|, it can be seen that, in the case of
the timer acquisition method, the resulting spectrum contains considerably
fewer peaks. They correspond to the base frequency of changes (errors)
in the signal at % of the sampling frequency and its harmonics. This can
be attributed to the fact that the values are sampled at a constant angle
frequency given by the IRC resolution. Therefore, it is not influenced by the
motor’s rotation speed, because the signal is always sampled at the same
fixed points. It provides a kind of modulation to the resulting signal, which
can be seen in the spectrum. This kind of sampling is beneficial because the
sampling points are tied to the signal properties. In contrast, sampling points
in the time domain are not related (in this case) to the measured signal, and
so can produce additional noise and redundant information.

A combination of these approaches is termed synchronous sampling, where
the sampling of one signal is triggered by another signal with additional
information compared to sampling based on time. In the web article [11],
the authors describe the differences between synchronous and fixed-time
sampling. They explain that the frequencies, which are multiples of the base
sampling frequency, are more well-defined when using synchronous sampling;
this same conclusion can be seen from the example. It has been exploited
in several works, namely [12] and [13] which both used software resampling
of an acquired vibration signal from accelerometers. Article [12] also used
other gearbox measurements, such as transmission error, to create features
with which they later trained a multilayer perceptron algorithm. They also
used true angular sampling for some features. With additional pre-processing,
the success rate of their trained network was near 100 % in detecting several
gearbox problems, such as gear failures (worn/chipped/missing tooth, crack),
mechanical imbalances, misalignments, or bearing faults. They highlight the
increased precision when using angular sampling. The authors of [I3] worked
similarly with frequency analysis and succeeded in showing how the spectrum
changes dramatically when the correct type of sampling is used.

12
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Figure 2.5: Ideal signal as captured by a timer
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B 23 Signal Processing and Analysis

This section will explain the theoretical steps of the signal processing method.
Figure [2.6| shows the individual stages together with illustrations of their
outputs. It also contains the acquisition of the IRC signal, as explained in
Section 2.2 After creating the feature vector, it is used to train an ML model
or to infer a result with an already trained one.

............

=]
Feature : Normalization
vector . ' ‘

< Li‘ bl J m

Signal
characteristics

(_. ,,,,, : Average
L

Figure 2.6: Flowchart of the proposed signal processing method

When trying to determine an appropriate approach, the Matlab software
was employed to examine signals collected from the IRC and apply common
processing techniques - practical results of this part and implementation
details will be shown in chapter |4. Building on the memory savings, which
were explained previously in Section 2.2, the computation time of the designed
signal processing scheme also needs to be kept in mind. In practice, this
means that complex analysis cannot be used as compared to other works that
use computers for processing. Also, for this reason, while frequency features
are included in the pipeline, only several predetermined frequency coefficients
will be computed instead of the whole spectrum. Works showing that the use
of computers for advanced processing can lead to excellent results include the
article [I2], in which the authors calculated the entire frequency spectrum
and extracted features extracted from the spectrum and power spectrum
density. They used these features in a multilayer perceptron model and
achieved almost 100% successful classifications of several gearbox problems.

B 2.3.1 Time Differences and Normalisation

After acquiring the timestamps from the IRC signal, the differences between
successive points are computed. By doing this, an approximation of the TAS
signal is obtained that expresses the speed at each time. To get a proper
representation of speed, the differences would need to be converted from timer
ticks to real time (through the timer’s sampling frequency) and divided by
the fixed physical distance of pulses. But this is not necessary in this case as

14
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it only scales the values and does not provide additional information.

A similar signal is created by passing the timer data through a digital filter.
This results in a low-pass filtered version of the IAS signal, which is shorter
by k — 1 samples (where k is the filter’s length). A diagram of such a filter
(here with k£ = 3) is shown in Figure 2.7. Both of these are then used to
construct a normalised signal according to the following equation:

Diyr1
7D,

N; = (2.1)

where D; is a time difference value, F'D; is the filtered value, and C is a
constant - this division helps to keep the resulting normalised values N; large
and better utilise the floating point range. The purpose of normalisation is
to remove very low frequencies (around 0) and transform the values into the
same range for all speeds tested.

|X1|X2|X3|X4|...|XN|

[vi]ve|vs | [wef

Figure 2.7: Block diagram of the proposed difference filter

B 2.3.2 Frequency-domain Features

The spectral analysis provides a unique perspective of a given signal. It is
used to compute the signal’s frequency spectrum, which can, for example, be
useful when the application needs to determine if there is a component which
creates a known particular pattern in the signal.

The basic mathematical tool for computing the frequency components is
the Fourier transform. Notably, for finite sequences of discrete samples, the
discrete Fourier transform (DFT) is used. When a series of samples zo._ n_1
is given, each frequency coefficient X, is defined by the relation:

N-1

—127
X, = :
k 7;0 Ty, - exp( N kn)
= (2.2)
e 27 27
Xy = nzz% T [cos(ﬁk‘n) — - sin(ﬁk:n)]
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There are several advanced implementations derived from this definition,
the most prominent being the Fast Fourier transform (FFT) - formulated
by the authors of [I4]. Despite the generally low computation time of this
version, it involves the manipulation of the whole input signal and can only
compute all the frequency coefficients, not just a few selected ones. That is
why the choice was made to implement Equation [2.2] directly in the code.

As seen in equation 2.2, DFT works with complex input and produces
complex numbers as output. It yields NV equally spaced values, in the closed
interval <—%; %> (fs denotes the sampling frequency). For real-valued input
signals, the algorithm can use the fact that the values for negative and positive
frequencies are symmetric with respect to the y-axis. Therefore, to obtain

the true values for the positive (real) coefficient k, simplification can be used
Xi = 2| Xy (2.3)

where the absolute value operation is used to get the real amplitude of a
complex number given by its phase and magnitude. Figure |2.8 shows the
input and output of DFT and how the presence of a specific signal can be
detected by its frequency in the spectrum. If only some frequencies need to
be expressed, the values of £ can be computed based on fs; and N.

After normalising the signal, DFT is applied to it with several selected
frequencies. The calculated values are used directly as features for an ML
model.

B 2.3.3 Time-domain Features

As opposed to frequency features, time-domain parameters are computed on
the basis of the signal shape and other characteristics in its original form,
without computing another representation. They express, for example, the
shape or statistical qualities of a given signal. To reduce noise and reduce
computation time, an average signal is calculated from the normalised signal
specified in section [2.3.1. For an input given by samples z;  n and a desired
output length M, this can be represented by the following relation:

R =

==

1 Rl (2.4)
Xm == me+T.R, m=1...M
R r=0

B Peak-to-RMS

The peak value of a signal is defined as the maximum absolute value that
it reaches. Root-mean-square (RMS) is described as the effective stationary
value of a nonstationary signal. By dividing these two measured parameters,
a characteristic called peak-to-RMS is obtained. When many peaks occur in
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Figure 2.8: Example of spectral analysis by DFT

a signal with a relatively wide shape and similar amplitudes, they contribute
to the RMS value, and therefore the ratio will not be high. But if the peaks
are infrequent, they do not have a reasonable impact on the RMS, and the
ratio will be higher. The computation is given by the following formulas:

Tpeak = MAX ||

__ Tpeak
TRMS
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B Shape Factor

Shape factor is an indication of a signal’s effective value in relation to the
mean absolute value, representing its shape but is independent of the absolute
dimensions. It is simply the RMS compensated by the mean value. Because
RMS is based on the absolute value of a signal, it will increase depending on
the peaks and also the mean value. Division by mean removes this effect and
leaves a representation of the value variability. Equations for this parameter
are:

1 N
Tara :N;M

TRMS
TMA

(2.6)

ISk =

B Kurtosis

Kurtosis is a measure of the number of outliers a signal contains. From a
statistics point of view, it represents the size of side tails in the distribution
(or histogram) of values compared to a normal Gaussian distribution. When
a signal is perfectly periodic, and so its values repeat without any new ones
being introduced (for example, a pure sine wave), its distribution will be
narrow. After adding other signal components (noise or peaks caused by a
recurring fault), the new values will be located on the sides of the distribution,
with fewer occurrences. In this way, it can be seen how much of the signal
is composed of irregular data points. Kurtosis increases with an increasing
number of outliers. It is given by the relation:

1 N
n=1
1 N ~\4 (2.7)
Thourt = N Zn:l(‘rn - l’)
urt — —
&5 (- 2P

A normal distribution with different kurtosis values is shown in Figure [2.9bl

B Skewness

Similarly to kurtosis, skewness is a characteristic of the signal value distribution.
More specifically, it measures the symmetry of the distribution. It can be
useful, for example, when a mechanical fault leads to a value similar to
one that is already present because of normal operation. In this case, this
value would have an increased number of occurrences and the peak in the
distribution would start moving to one side, as opposed to the presumed
original normal distribution. The skewness of a signal is expressed as:

% Zfzvzl(l‘n - f)g

[& St (n — 7)?)
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The effect of the skewness value is visualised in Figure
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Figure 2.9: Normal distributions with various Zsgew and Ty

B 24 Learning Models and Algorithms

In this section, the basic theory of several ML models that were used and
tested is covered. It is not a complete list of all models available in NanoEdge
AT Studio, only those that were tested in this work. Because NanoEdge Al
Studio is licensed as an intellectual property of STMicroelectronics’ partner,
particular implementation details are not known. A general description will
be provided where possible.

B 2.4.1 Support Vector Machines

The support vector machines (SVM) method was introduced in [I5]. It
was designed as a binary classifier which learns from a given training data
divided into two categories and then assigns one of these classes to new data.
Because each training sample has a known label, SVM belongs to the group
of supervised ML algorithms.

The component that is learnt is a hyperplane that best separates the two
sets of data. A hyperplane is a geometric expression, meaning a subspace
whose dimension is one less than that of its ambient space, a line in 2D, a
plane in 3D, etc. They can be represented by affine equations in the form:

a1T1 + aoTo + ap_1Lp—1 =0 (2.9)

for n-dimensional space (where a; and b are the hyperplane’s parameters and
at least one of a; must be different from 0). Apart from binary classification,
it can be used with multiple classes by determining hyperplanes for either
each pair of groups or each group and the rest.

In the most simplistic form, this problem could be seen as finding a line
separating two sets of points in a 2D plane. If there is such a line, one (or
more) points can be defined from each set that is closest to the line. Then the
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distance between an arbitrary line and its corresponding nearest points can
be measured to find the line that maximises this criterion while still dividing
the classes. The two points are called support vectors because, when a line is
set, removing either of them leads to changing the value of the criterion and
potentially altering the best line.

If the points are not linearly separable, as is the case in most problems, the
authors proposed a non-linear function (called a kernel) that maps the input
vectors into a higher dimensional space where they can be separated. This
can also involve warping of the original Euclidian space - for example, a circle
can be seen as a linear object when viewed through polar coordinates. They
also implemented the idea that the hyperplane does not have to divide two
sets of vectors precisely, if it is not possible without transforming them into a
space whose dimension is too high. In such a case, a soft-margin hyperplane
is introduced. This is found by minimising the number of training errors
(vectors that are separated from their corresponding set) while maximising
the distance between the hyperplane and its support vectors.

Training and testing data can generally be of any type. However, in this
case, simply the numerical representation of the signal parameters which were
described in Section 2.3 can be used. In Figure 2.9, several data sets are
shown with their separating hyperplanes.

B 2.4.2 Random Forest

The basic part of the random forest (RF) algorithm, proposed in [I7] and
later improved in [18], is a decision tree. Similarly to SVM, this is also a
supervised ML algorithm.

In decision trees, the input vector (a set of numbers) is subjected to a series
of comparisons. Each node in the tree compares one of the input values to
its learnt parameter. Based on the result, the following tree branches are
explored until a decision about the input class is reached. Not all input values
need to be used. It can naturally be used for multiclass as well as binary
classification. Figure [2.11]shows the structure of a simple decision tree. In
the learning stage, the input values and the fixed parameters are determined.

In RF learning, many decision trees are created, and each is assigned a
random group of training data. Additionally, every tree uses a randomly
specified subset of the input vector. This improves accuracy and prevents
overfitting. The overall output prediction is given by a majority vote scheme
of the individual predictions.

B 2.4.3 Multilayer Perceptron

A perceptron is the simplest ML model, which multiplies the input vector
by a vector of learnt weights, optionally adds a bias, and passes the result
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(b) : Nonlinear hyperplane

Figure 2.10: Examples of SVM hyperplanes, courtesy of [16]

Figure 2.11: Example of a decision tree, from [19]

through an activation function. The last step is usually a linear function that
serves to change the output’s range. By comparing the output to a defined
value, for example, using a step function, the input’s class can be determined.
During learning, backpropagation is used to update the weights based on the
prediction compared to the actual class. The structure of a perceptron is
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illustrated in Figure [2.12]

()

Figure 2.12: Schema of a single perceptron

As an extension of this, several perceptrons can be combined in layers
to create a multilayer perceptron (MLP), which is described in [20]. MLP
typically uses fully connected layers, meaning that the input vector is the same
for each perceptron in the first layer, outputs of this layer are then connected
to each input of the second layer, etc. As opposed to single perceptrons, MLP
uses non-linear activation functions - if all the steps were linear, it would be
possible to reduce the model to just one perceptron. The final layer can be
composed of several perceptrons for multiclass problems.

B 2.4.4 Fast Incremental Support Vector Data Description

Support vector data description is a modification of SVM which can be used
for single-class classification (also known as outlier detection). Single-class
classification refers to the process of determining whether it is statically
probable that a given sample is part of the same distribution as the learnt
data.

The authors of [21] proposed a quick learning variation called fast incremental
support vector data description (FISVDD). The advantage of this method is
that, in each learning step, it focuses on the current support records, not all
data points. It also utilises only matrix operations, which can be implemented
quickly even with limited hardware options. This learning method can be
described as unsupervised because the whole dataset is presumed to be part
of one class, so individual labels do not need to be considered.

B 2.4.5 Z-score Model

In NanoEdge AI Studio, an algorithm called the Z-score model is used for
anomaly detection. This task is similar to single-class classification. The
difference is that, generally, the data which is considered abnormal can be
part of the same distribution but with a different magnitude. The practical
implication is that (for models in NanoEdge AI Studio) the model can be
adjusted after learning. During training, the general "shape' of a separation
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function is found, and when new data (which is known to come from a correct
class) is obtained, the dimension of this function can be moved.

For this algorithm, specific details about its function are unavailable
because of its proprietary licence. But it is probably based on the statistical
measurement of z-score - two normal distribution functions are built based
on means and standard deviations of a good and an anomalous class. When
dividing by a standard deviation, the score is normalised - this negates possible
differences in the measured units or magnitudes. This is an unsupervised
technique.
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Chapter 3

Demonstrator Design and Realisation

In the following chapter, a description is provided of the implementation of
the theory presented in Chapter 2| and the designed system. The individual
components, such as a motor, MCUs or processing software, will be discussed.
For the ML part of the system, the models that were used together with the
basic usage of NanoEdge Al Studio will be outlined.

. 3.1 Used Software

In this work, the following STMicroelectronics development tools were used:
CubeMX (version 6.6.1) for MCU configuration, CubeIDE (version 1.7.0)
for code editing and compilation, Motor Control Software Development Kit
(version 6.0.0) for creating and configuring the motor control firmware, and
finally NanoEdge AI Studio (version 3.3.0) for training and exporting machine
learning models. NanoEdge AI Studio and its features will be discussed in
more depth in Section The firmware packages for F4 (version 1.27.1),
G4 (version 1.5.0), and H7 (version 1.10.0) MCUs were used in CubeMX. All
tools are available at https://www.st.com/|

For gearbox design, Autodesk Fusion 360 was used (with an educational
licence available on https://www.autodesk.com/)) together with a free community-made
plugin called GF Gear Generator (https://apps.autodesk.com/FUSION/
len/Detail/Index?id=1236778940008086660)). Several simple scripts were
written in the Python programming language (https://www.python.org/)
for communication with the MCU and data collection. Matlab software
(version R2021a, with an educational licence, https://www.mathworks.com/|
products/matlab.html) was used for initial signal processing and analysis
after collecting samples using the MCU.
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3. Demonstrator Design and Realisation

B 3.2 Hardware Setup and Drivers

Here, a description of the hardware chosen and the proposed demonstrator
will be provided.

B 3.2.1 Motor and Microcontrollers

The motor used is a Shinano LA052 brushless direct current (BLDC) electric
motor with a built-in optical incremental rotary encoder (IRC). It is connected
to an STM32 Nucleo-G431RB board (with an STM32G431RB MCU) through
an X-NUCLEO-THM16M1 power board. The power board features a BLDC
driver, sensing resistors, protections, etc., and enables the MCU to work with
high voltage levels. It is also equipped with an adapter to connect an external
power supply to the motor. The motor is shown in Figure [3.1, and its basic
parameters are summarised in Table

Figure 3.1: Shinano LA052 motor

Motor rated parameters
Power Torque Speed Voltage Current | Pole-pairs
80 W | 0.25 Nm | 3000 r/min 24V 4.6 A 2
Motor dimensions
Width, height Length Mass
56.4 mm 86.1 mm 0.6 kg
Encoder (optical)
Voltage | Current Signals Resolution
5V 50 mA 2 square | 400 pulse/r

Table 3.1: Motor properties

A separate STM32 F413 Discovery kit (with an STM32F413ZH MCU) is
connected to the motor’s IRC. This MCU was chosen for the fault detection
part of the project because of its relatively low price and computing power
compared to some newer models available. It is part of STMicroelectronics’
high-performance access line. Table[3.2)summarises several important characteristics
of this MCU. Apart from the MCU itself, another important requirement
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for this work was external RAM memory - the memory that is mounted on
the Discovery kit (with a size of 4 Mb) was used. The AI libraries (and
the entire proposed system) could be implemented on one MCU, along with
motor control software. But the decision was made to use two MCUs to
better demonstrate the ability to add a similar unit to an already established
system.

For the purposes of the final demonstrator, an LCD display that is a part
of the Discovery kit was also used. Because the F4 MCU does not support an
Ethernet interface, an STM32 Nucleo-H753ZI board (with an STM32H753Z1
MCU) to enable Ethernet communication was added.

Core Voltage Current Clock speed
Arm 32-bit Cortex-M4 | 1.7-3.6 V | 112 yA/MHz 100 MHz
Floating point unit Flash RAM Price (approx.)
32-bit 1.5 MB 320 kb 9%

Table 3.2: Basic parameters of STM32F413ZH MCU

B 3.2.2 IRC Sensor

As mentioned in Table 3.1, the LA052 motor has a built-in optical IRC sensor
with a square wave output signal. Figure [3.2] shows the basic structure of
an optical IRC. As the code wheel rotates, a light source shining through
the slits creates two sine waves on the photosensors below the wheel. These
signals can be sampled directly by an analogue-to-digital converter (ADC) or
passed through a subsequent comparator circuit, which creates digital pulse

signals.
“ LED

Lens
Code wheel
Fixed Slit J
A
Photo sensor . b o

Figure 3.2: Function of an optical rotary encoder, courtesy of [7]
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B 3.2.3 3D Printed Gearbox

After selecting the motor, a support structure was designed to which it can
be attached from the inside with screws. The shafts located at the top are
printed together with the support as one piece. Gear wheels of defined sizes
can be mounted on these shafts. After the motor is fixed in place, the driven
gear is installed using a simple coupling mechanism with a pinch bolt. Figures
and [3.4 show how the printed gearbox looks.

The whole development process was done using this gearbox, and then a
second, slightly different, piece was designed and printed for the purpose of
the final demonstration unit. This is described in Section [3.7.

Figure 3.3: Close view of a gear

All gear wheels were designed as spur gears with a module of 0.3 mm, a
pressure angle of 14.5 degrees and a height of 5 mm. Overall, the gearbox
contains five wheels. The first one is connected to the motor, and the last
one has a plate attached to it, which creates air resistance and therefore
load for the motor. These two wheels have one gear ring each, and the other
three have two rings each. This creates a larger overall gear ratio, which
makes it possible to determine the limit of the trained models in terms of the
distance of a fault to the sensor - the higher the gear ratio between them, the
more information is lost in transmission. The numbers of teeth on individual
wheels are shown in Table The resulting ratio of 0.05 means that the
motor has to turn 20 times, while the last wheel only turns once. In addition
to the original undamaged gears, cogs with two types of faults were printed:
a missing tooth and a dented one. To do this, a tooth was simply removed in
the 3D sketch or used an ellipse-shaped cutout. Figure 3.5 shows the resulting
drawings in the Fusion software. It also illustrates how the gears should mesh
(in the case of ideal printing).

The supporting box has a length of 20 ¢cm, a width of 18 cm, and a height
of 10.7 cm. The top wall is 7 mm thick, while the sides are thinner at 3 mm.
Everything was printed on an HP Multi Jet Fusion 3D printer with a layer
height of 0.2 mm and 100% infill (no free space inside the structure). The
material used for printing was PA12 nylon filament.
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Figure 3.4: Printed gearbox parts

Wheel 1 2 3 4 5
N; - 31 43 37 39
No 13 19 22 17 -
Gear ratio to motor | 1 | 0.42 | 0.19 | 0.11 | 0.05

Table 3.3: Gearing ratios. N is the number of teeth on the ring connected to
the previous gear, Ny to the next one.
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Figure 3.5: Design of gear faults. Dimensions in mm.
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. 3.3 Basic Firmware

Before moving on to the description of how data is collected and other more
complex parts of the software, this section describes this work’s approach to
motor control. This section will also characterise communication between the
MCUs and several MCU peripherals, which will later be used to carry out
the signal acquisition.

B 3.3.1 Field Oriented Control

One of the readily available motor control schemes was used in the Motor
Control Software Development Kit (MCSDK). In particular, it uses Field
Oriented Control ([22]), a method that uses mathematical transformations to
convert three stator currents into two orthogonal components of a vector. The
components represent the magnetic flux and torque of the motor at each time
moment. These values are continuously used as input to proportional-integral
(PI) controllers ([23]) that use feedback regulation to keep the values as close
as possible to the set references. The flux reference point is fixed to be
constant at zero. The torque controller’s reference is given by the output
of another PI controller whose input is the motor’s instantaneous speed,
and reference is set by the application. The outputs of the torque and flux
regulators are mathematically transformed and then used to generate three
pulse-width-modulated (PWM) signals that drive the motor.

To achieve good speed stability, 20 kHz is used as the frequency for the
torque and flux regulators, which means that motor currents are measured,
and PWM values are recomputed every 50 us. The speed regulator works
similarly at a frequency of 1 kHz. The real speed of the motor is estimated
using the encoder. Figure 3.6/ shows how the resulting speed is regulated using
this method. The stability of the motor’s rotation speed and its implications
will be discussed in Section 4.1l

After setting the necessary parameters in the MCSDK, most of which have
already been determined for this motor by STMicroelectronics, the MCSDK
provides a compiled library that encapsulates the controller and all necessary
measurements. It enables the user to control the motor with several simple
instructions, for example, to rotate it to a certain degree or spin at a desired
frequency. The higher-level application code is a simple state machine that
supplies commands to the Motor Control.

B 3.3.2 Used Peripherals and Connections

To ensure there is enough memory space for other needs, the data captured
by the MCU’s timer are stored in an external pseudo-static random-access
memory (PSRAM), which is a part of the F4 Discovery kit. A peripheral of
the MCU called the Flexible static memory controller (FSMC) works as an
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Figure 3.6: Measured speed of the motor controlled by the FOC algorithm.
Reference set to 840 rpm.

interface between the MCU and the memory. All peripheral and hardware
connections are symbolically shown in Figure

To send commands to the G4 MCU, the Inter-integrated circuit interface
(I2C) peripheral is used. Stop and run commands (with an appropriate
speed) can be sent. This is shown in Figure The connected button is
used to start detection by a user action. Communication with a computer
(transferring gathered data for logging purposes) is done with the help of the
Universal synchronous/asynchronous receiver transmitter peripheral.

The I2C bus is also used to communicate with the H7 MCU, which then
forwards the detected gearbox state to a website using its Ethernet interface.
Apart from memory, FSMC is connected to a display embedded in the F4
Discovery kit.

Used pins of the F4 MCU and associated peripherals are listed in Table
3.4
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3.3. Basic Firmware
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Figure 3.7: Symbolic diagrams of connections and communication between units

PE3 PFO PF1 PF2 PF3 PF4 PF5
Output AF AF AF AF AF AF
Led FSMC__AO0 FSMC_ A1l FSMC__A2 FSMC__A3 FSMC__A4 FSMC__A5
PAO PA1 PC5 PF12 PF13 PF14 PF15
EXTI, PD AF, PU Output AF AF AF AF
Button TIM2_ CH2 Led FSMC__A6 FSMC__A7 FSMC__A8 FSMC__A9
PGO PG1 PE7 PES PE9 PE10 PE11
AF AF AF AF AF AF AF
FSMC__A10 FSMC__A1l FSMC_D4 FSMC__D5 FSMC_D6 FSMC_D7 FSMC__D8
PE12 PE13 PE14 PE15 PB10 PB11 PD8
AF AF AF AF AF AF AF
FSMC_D9 FSMC_DI10 FSMC_D11 FSMC_D12 12C2__SCL 12C2__SDA FSMC_D13
PD9 PDI10 PDI11 PD12 PD14 PD15 PG2
AF AF AF AF AF AF AF
FSMC_D14 FSMC_D15 FSMC__A16 FSMC__A17 FSMC_DO FSMC_D1 FSMC__A12
PG3 PG4 PG5 PA15 PDO PD1 PD4
AF AF AF Output, PD AF AF AF
FSMC_A13 FSMC_Al4 FSMC_A1l5 ETH_SS FSMC_D2 FSMC_D3 FSMC_NOE
PD5 PD7 PG9 PG10 PG14 PEO PE1
AF AF AF AF AF AF AF
FSMC_NWE FSMC_NE1 USART6__RX FSMC_NE3 USART6__TX FSMC__NBLO FSMC__NBL1

AF - alternate function

PU/D - pull-up/down resistor

Table 3.4: Used pins of STM32F413ZH MCU, their modes and functions
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B 3.4 Timer Parameters and Real IRC Signal

The timer used in the F413 MCU has a 32-bit counter register. That means
that every time a pulse from the motor is registered, it saves (through DMA)
a 32-bit unsigned integer representing the current timestamp. The available
4 Mb of memory can store Nyem = 4194304b = 222b = 219 B = 217 integers.
Assuming a rotation speed of 1500 rpm and 400 pulses per rotation, the pulses
will have a frequency f, = % = 10kHz and a period T}, = i = 100pus.
To properly determine the timestamp of a pulse when an error occurs, the
sampling frequency fs needs to be at least 10 times higher than f,. This
is the low limit for f, i, = 100kH 2. The high limit for fs is given by the
need for the timer not to overflow during collection. Based on the previous
assumption, it can also be seen that to collect the maximum number of
samples 217, the motor must spin for Tspin = % ~ 13s. At its maximum
frequency fsmax = 100M Hz, the timer will overflow in % ~ 43s. If the
timer overflows during collection, the data get corrupted, and either the
samples recorded after the overflow would need to be thrown away or larger
(64-bit) integers could be used. For verification of lower speeds, the minimum
speed can be 500 rpm. Then f, ~ 3.33kHz and T, ~ 39s. To have a
certain safety, fs = 10M Hz will be used. This means that time shifts as
small as i = 100ns can be recorded, and overflow occurs after approximately
429 s. So, there is no risk of the timer overflowing in the given conditions,
even during low-speed operation.

An estimate was made that to correctly detect an event; it should be
registered at least five times in one input signal. So when aiming to recognise
a fault on a given gear wheel, the signal needs to be long enough to cover
five whole rotations of that wheel. Based on this, the number of pulses per
motor revolution (400) and the overall gearing ratio of the designed system
(20), signal length was set to N =5 -400 - 20 samples.

A real signal measured on the gearbox and its frequency spectrum are
shown in Figure [3.8/ It should be compared with Figures|2.5b| and [2.5¢.

In contrast to the analysis of an idealised signal, it can be seen that the
signal’s shape is quite dissimilar. The most obvious difference is the presence
of a harmonic component, which causes near-sinusoidal changes in the signal
with a period of 400 samples - which corresponds to one rotation of the motor.
This is probably caused by the motor control algorithm and can make it
difficult to precisely identify changes in the signal at this frequency. There
are also many other frequencies, most of which are probably associated with
measurement noise.
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to keep the graph readable, and the y-axis is clipped as well.

Figure 3.8: Example of a real signal captured by a timer without a gearbox fault

B 35 Processing Implementation on MCU

To implement the algorithms described in Section only the standard
maths library in the C language was used. The MCU’s Floating point unit
(FPU), which is a part of the MCU core, also provides an advantage and
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enables the application to perform calculations with floating point numbers
natively on the hardware instead of using the basic core operations. This
offers a significant reduction in computation time.

In Section [2.3.1, a difference filter was defined - the specific length of this
filter was k = 400, corresponding to the sensor resolution. The normalising
constant in Equation 2.1 was set to C = 10'°. This proved effective in
increasing the used floating point range while still avoiding overflow. For
the averaged signal length, specified by equation 2.4, M = 3600 was used,
which is equal to nine motor rotations. When computing the kurtosis and
skewness values, overflows were encountered, caused by the multiplication
of C' and the power operations in their definition. This was subsequently
avoided by dividing the number under the power operator by 10%, so the
expression z,, —  in Equations 2.7 and 2.8 would become xfoji . The output
values were then multiplied by 10° to obtain a larger value closer in range to
the frequency parameters.

The normalised signal is computed in place from the originally captured
data to avoid the need to create two additional signals and save memory
space. Pseudocodes of the implemented functions can be seen in the code
snippets |1] - |5l

Algorithm 1 Definitions for the processing algorithm

RECORD_LEN =5 -20-400

FILTER N = 400

NORM__LEN = RECORD_LEN — FILTER_N
MEAN_LEN =9 -400

MEAN_PERIODS = NORM_LEN/MEAN__LEN
NORM_MULT = 10'°

(float) FEATURE_DIV = 10*

(float) FEATURE_NORM = 10°
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3.5. Processing Implementation on MCU

Algorithm 2 Signal normalisation

function NORMALISE(signal)
(float) sum_long =0, sum_ short = 0, value = 0

# First round of filter, fill up buffer
fori=1... FILTER N do
sum_long += signalli] — signal[i — 1]
end for
sum__short = signal[FILTER _N| — signal[FILTER N — 1]

value = sum_ short- NORM _MULT - FILTER _N/sum_long

# Rest of filter
j=0
for i = FILTER_N... RECORD_LEN — 1 do
sum__short = signal[i| — signalli — 1]
sum__long += sum__short
prev = signal[i — FILTER _N|] — signal[i — FILTER N — 1]
sum__long —= prev
signal[j] = value
j+=1
value = sum__short - NORM _MULT - FILTER__N/sum__long
end for
signal[j] = value
end function
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Algorithm 3 DFT implementation

function DFT(signal, dft_coef f[])
(float) Xre =0, Xim =0
(float) k2pi_const = 0, k2pinN_const =0
dft_n = length(dft_coef f)
(float) output[dft_n]

fort=0...dft n—1do
k = dft_coef fli]
Xre=20
Xim=0
k2pi_const =2-k-m

forn=0...NORM LEN —1do
k2pinN_const = k2pi__const -n- NORM_LEN
Xre += (signal[n] - cos(k2pinN _const))
Xim —= (signal[n] - sin(k2pinN__const))

end for
output[i]| = vV Xre? + Xim? -2/ NORM _LEN
end for

return output
end function

Algorithm 4 Average signal calculation

function AVERAGE(signal)
(float) output[ M EAN _LEN)]
fori=0... MEAN LEN —1do
for j=i...NORM LEN —1,j += MEAN LEN do
output[i| += signallj]
end for
outputli] /= MEAN_PERIODS
end for
return output
end function
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Algorithm 5 Features calculation

function FEATURES(signal)
(float) rms_v = 0,mean_v = 0,peak_v = Owalue = 0
(float) skew_n = 0,skew_d = 0,kurt_n =20
fori=0.. MEAN LEN —1do
x = signalli]
if x > peak_v then
peak_v=x
end if
rms_v+=2x
mean_v +=<x
end for
rms_v=+/rms_v/MEAN_LEN
mean_v /= MEAN_LEN
shape_f =rms_v- FEATURE_NORM /mean_v
peak2rms = peak_v- FEATURE_NORM/rms_v

2

fori=0... MEAN LEN —1do
x = (signal[i] — mean_v)/FEATURE DIV

skew n += a3

skew d+= 2
kurt n += z*
end for

skew_n /= MEAN_LEN
kurt_n /= MEAN_LEN
kurt d = (skew_d/MEAN_LEN)?
skew_d = \/skew_d/MEAN_LEN
skew d = skew d*
skew = skew_n- FEATURE_NORM /skew_d
kurt = kurt_n- FEATURE_NORM /kurt_d
return shape_ f, peak2rms, skew, kurt
end function
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B 36 NanoEdge Al Studio

In this section, the basic usage of NanoEdge Al Studio will be shown. It is not
an exhaustive manual or a list of components but rather a brief description
of the functionalities that were used in this work.

Direct data logging was not used as it is not available for the chosen MCU
kit. After importing data into the software, it is possible to see statistical
characteristics of signals, for example, minimum and maximum values, mean
and standard deviation along with a frequency spectrum. This analysis is
more useful for raw measured data and not really significant for already
computed features.

The length of imported signals is limited to 2!4, which is probably set
because the algorithm implementations use libraries made by ARM specifically
for each MCU core that work with this limit as well. The learnt models can
then include signal processing, for example, frequency spectrum calculation.

This limit would not be enough for importing the whole signal, which is
40000 samples. For this reason, all features were computed in code, and only
the ML part of NanoEdge software was used.

B 3.6.1 Project Types

The software offers four types of ML projects for different detection purposes.
Their main features, necessary input data, and possible models will be
described. A project category called extrapolation will not be covered as this
is used for inferring numerical values, not class labels, and was not relevant
to this work.

B Anomaly Detection

An anomaly detection project uses signals of two types for training: regular
and abnormal. After training from these signals on a computer, the exported
model can continue learning on the target hardware (MCU) - this is done
by passing signals from normal conditions to the model. It is even expected
that the MCU will go through a number of learning iterations to achieve the
correct results. The suggested amount is specified after training.

The general advantage of this type of project is that a model can be trained
centrally and then uploaded to many machines of the same type, each with
slightly different parameters. The model then adapts to each particular
machine. Another aim of anomaly detection can be seen as detecting sudden
mechanical changes in a machine. By learning from new signals at regular
intervals, the model can adjust to machine wear or similar slow effects. If
there is a fault causing an abrupt alteration of the parameters, it is detected
by inference. Of course, after completing the initial learning phase, it is not
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necessary to continue learning, in which case the system would be similar to
1-class classification.

A screen with the results of training an anomaly detection model is shown
in Figure The accuracy of the model and its 95% confidence interval can
be seen along with the memory requirements and the classification of the
training samples. The suggested number of learning iterations is visible on
the right side.
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Figure 3.9: Anomaly detection training results in NanoEdge AI Studio

Algorithms such as the Z-score model (discussed in Section are used
here. Their output is a single number representing the input signal’s similarity
to the regular class. This is influenced by a parameter called sensitivity, which
can be modified on the MCU between individual inferences. A sensitivity
value between 0 and 1 (excluded) decreases the sensitivity of the model, while
a value between 1 and 100 increases it. A higher value tends to decrease
the percentages of similarity returned (the algorithm is more sensitive to
perturbations), while the opposite is true for lower sensitivity values. To
obtain a class label (regular or abnormal) for the signal, the output can be
compared (by the user) to a defined threshold.

B 1-class Classification

A 1-class classification project needs only regular signals for training. It is
similar to anomaly detection, except that the model’s parameters are fixed
after training, and it cannot learn on an MCU. It should detect all changes,
sudden or slow, as long as they are pronounced enough.

Methods such as FISVDD (described in Section 2.4.4) are used. The output
of a learnt model is a class label, either regular or abnormal.

41



3. Demonstrator Design and Realisation

B N-class Classification

With n-class classification, the user can specify the number of classes that
should be trained.

ML algorithms such as SVM or RF (detailed in Section 2.4) are trained.
The model output is a set of probabilities corresponding to each class. A
signal gets a label assigned based on the class with the highest probability.
The output can also be a so-called "unknown" state, which means that the
signal does not properly resemble any of the trained classes.

B 3.6.2 Creating a Model

After starting a benchmark, the software looks for suitable libraries and
parameters and outputs the models that performed the best.

After training, the user can select a model to continue working with based
on memory requirements, accuracy, etc. NanoEdge software also offers an
emulator, which enables users to better estimate a model’s performance. The
emulator shows what results the model should provide for input data that
were not seen during training. This is related to how the collected data should
be split by the user. When training, the software uses all the available data.
K-fold cross-validation (described in article [24]) is used to internally evaluate
the performance of each model during training. The number of folds K is
determined by the software based on the size of the dataset and project type.

A general recommendation was followed to save 30 signals from each
class that were not included in the training set. These were then used to
compare the models in both the emulator and the MCU. It is also important
to compare several models that use various algorithms and have different
memory requirements, as they can vary in accuracy when transferred to an
MCU. When these metrics were combined, the most appropriate models (for
this given scenario) for each type of project were selected. The summary
of the data collected and the results of the evaluation on the MCU will be
presented in Chapter [5.

Figure [3.10a) shows the software’s display of training results for a particular
model. In Figure |3.10b|, the emulator window can be seen for the selected
anomaly detection model with the sensitivity set to 0.8 and after learning
from 63 samples. The input data consisted of 30 signals of each state: without
fault, fault on the first and second wheels. Only three of the regular signals
were misclassified.
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Figure 3.10: Model performance evaluation in NanoEdge AI Studio

B 3.7 Final Demonstration System

In this section, the proposed demonstration system will be described, together
with its implemented software and communication. Figure shows the
components of this system - the gearbox and microcontrollers. This only
serves as a demonstration; no testing was done on this unit. But most of its
components and parameters are the same as in the first gearbox.

Compared to the original development gearbox, one less wheel is used as
successful detection of faults on the fourth wheel was not possible during
tests. The wheels are also placed in a line rather than optimising space. The
structure contains additional shafts that can hold damaged wheels and was
printed using the same process and material as explained in Section
The thickness of the walls is also the same. The gears were used from the
original gearbox, and the numbers of their teeth are summarised in Table
(apart from the unused fourth wheel).
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(a) : Top view

(b) : Front view

Figure 3.11: Demonstration gearbox

An extension is added to the side of the main box that supports the F4
MCU. The other two MCUs are laid below this, and all the connecting cables
(between the MCUs and the motor) are routed inside this compartment. Only
one USB cable is necessary to supply power to the F4 board as the remaining
MCUs are supplied from the F4’s 5 Volt output. Apart from this cable, a
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power supply for the motor and an Ethernet cable are connected from the
back of the unit. Figure [3.12| shows a diagram of the connections made
between the pins of the MCUs and the motor. The motor’s supply voltage is
not shown here, as it is provided by the extension board.
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Figure 3.12: Simplified diagram of connections between the MCUs and the motor

B 3.7.1 Software and Display

The F4 MCU is programmed with a 3-class classification model, which can
distinguish a regular gearbox state and large faults on the first and second
wheels. The performance of this model is described in Section [5.3.1L

In addition to the detection system, a simple graphical application runs on
the MCU. The user is asked to start data collection (by pressing the button).
After that, the F4 MCU sends a command to the G4 to start the motor. The
motor is stopped, the whole signal has been acquired, and inference starts
automatically. The motor spins at 850 rpm, and 40000 edges of the IRC
signal are collected the same way as in the original system.

After inference is completed, a message is displayed based on the result.
The application can signal a healthy state, faults on the first or second wheel,
and an unknown state. The last one should only be obtained when the model
cannot, with enough confidence, classify the signal. This should happen when
a fault is used that was not part of the training set, for example, with a
damaged third wheel or if there is some other mechanical dissimilarity or
issue. The possible messages are shown in Figure |3.13.
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Result: Result: Result:
Healthy Fault on Unknown
wheel 1
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Figure 3.13: Inference result in the graphical application

B 3.7.2 Ethernet Communication

As an example of how it is possible to store and visualise the collected
data, an Internet of Things (IoT) analytical platform called Thingspeak
(https://thingspeak.com/)), which is available as part of the Matlab licence,
was employed for this purpose.

After inference, the gearbox state is transmitted to the H7 MCU via
12C. This then forwards the data via its Ethernet interface to a Thingspeak
server. Hypertext Transfer Protocol (HTTP) is used to encode the necessary
parameters of the target channel and the data. Figure shows how the
data can be visualised on a chart.

Field 1 Chart B O & =

Gearbox measurement

State

- - d *—

15:15 15:30 15:45 16:00
Date

ThingSpeak.com
Figure 3.14: Thingspeak chart of data

Of course, other data could be sent to such an IoT service apart from
the final gearbox state- individual computed features, whether the motor is
currently running, etc.
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Chapter 4

Analysis in Matlab and Selected Features

In this chapter, the results of the analysis of the collected signals will be
shown. The goal was to confirm the validity of the theory from Chapter
- whether a gearbox fault can be distinguished from a correct state based
on the proposed features. It also serves to display examples of real signals
collected through this work and to illustrate the differences between classes of
the obtained data. This was done using the Matlab software, mainly to avoid
the need to implement all necessary tools on an MCU - this both simplifies
the process and provides significant time savings. Those frequencies that
showed the best distinction between classes were also identified and then used
to train ML models in the NanoEdge AI Studio.

The signals were acquired with the timer parameters described in Section
and processing was performed using the various constants specified in
Section Of the two types of tooth damage, only gears with missing teeth
were used to record signals for training. Later, during testing, both versions
of damaged cogs were used.

B a1 Signal Processing

In the following sections, examples will be listed to show the individual steps
of the processing pipeline. Based on the analysis of several testing speeds,
ranging from 600 rpm to 2000 rpm, it was concluded (mainly from the tests
in Section that the best results should be possible with a motor speed
of 850 rpm. The signals and features shown here were generated from data
recorded at this speed. Due to the poor results in detecting faults on the last
wheel, will not be shown signals and features recorded with these faults.

B 4.1.1 Normalised Signal

The time difference signal, which is the basis of further calculations, was
previously depicted in Figure Figure then shows the statistical
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distribution of time differences in the form of histograms, calculated over
100 signals from two classes. It can be seen that they are nearly normally
distributed. This fact is beneficial for some of the employed methods, as
they make this assumption to make the computations more effective and
accurate. Moreover, it confirms a necessary prerequisite - the data are not
random, so further analysis is possible. There is a notable difference between
the standard deviations of the two data sets, where the class with a fault has
almost twice the value of the fault-free state.
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Figure 4.1: Histograms of time differences with means and standard deviations.

From the original values, normalised signals were computed. Examples of
these can be seen in Figure There are certain differences visible, mainly
the more pronounced higher frequencies in the faulty signal.

B 4.1.2 Frequency-domain Features

Figure 4.3 shows the spectra corresponding to the signals in Figure They
are limited to just above the motor frequency. This is because the main
interesting events are those that occur at each rotation of the motor (in case
of a fault on the first wheel) or less often (in case of other faults), so these
low frequencies should be focused on. The farther the fault is from the sensor,
the lower the frequency it generates. The higher frequency components of the
signals are considered noise and are not taken into account for the analysis.

Clear dissimilarities can be seen between the two spectra. In a case where
a fault is present, the peak at the motor frequency has a lower amplitude,
and other peaks appear - namely, at orders 0.42, 0.69 and 0.84.

Figure then provides a view of the spectra of all collected signals.
Similarly to the comparison above, distinctions can be seen between the
spectra of individual classes. Apart from a peak at the motor frequency,
which is present in every signal, different combinations of peak locations arise.
Differences between some signals of the same class are probably caused by
changes in the gearbox’s physical condition, the driven gear being tightened
more or less, and a slightly shifted placement of the box .... This contributes
to the so-called interclass variation, meaning that the individual data vectors
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Figure 4.2: Examples of normalised signals

are noticeably different but belong to the same class. Commonly, having data
that cover as many states of each class as possible can improve a model’s
quality because it is forced to generalise and learn well enough to deal with
this.

It should be noted that, theoretically, there should be meaningful changes
in the frequencies corresponding to the gear ratios listed in Table But at
the same time, these frequencies will also be present in signals without faults.
This is caused by mechanical impacts of the gear teeth. So in Figure a
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Figure 4.3: Examples of normalised signal spectra

notable change in frequency order 1 should be seen for a fault on the first
wheel, 0.42 on the second wheel, etc. On order 1, there is an overwhelming
amplitude caused by the motor regulator, but it is influenced by the fault.
Similarly, order 0.42 has comparable amplitudes for signals without faults
and with a fault on the first and second wheels. 0.19, 0.11 and 0.05 do not
have a noteworthy presence. This is most likely caused by the mechanical
distance of the corresponding faults to the sensor and the dampening and
noise of the signals. This means that it would presumably not be possible to

50



4.1. Signal Processing

] No faults ~x10’
-5
362
] Fault on the 1st wheel
-4
168
] Fault on the 2nd wheel
= 3
©
c
=2
%)
160

Fault on the 3rd wheel

120
Fault on the 4th wheel

124
N OO D N D b P D QAR D o © D 9
0909 o o er’ Q(‘b Q('b QP‘ Q° 0?3 QC‘D QQ? 0’~\ Q;b 0?’ Qg NS AN

Frequency order [-]

Figure 4.4: Spectra of the collected signals. Amplitudes clipped to one-fifth of
the maximum value to improve readability.

create a successful model simply by relying on these basic frequencies.

Interestingly, the frequency order 0.84, which is the second multiple of the
second wheel’s gear ratio, appears distinctively for faults on the first and
second wheels. This may be derived from certain mechanical properties that
were not, explored.

The histograms of the values at four frequencies are shown in Figure 4.5
This visually reinforces the hypothesis that the classes are separable on the
basis of these frequency features.

B 4.1.3 Time-domain Features

Figure shows a normalised signal and its averaged version. The effect
of averaging is clearly visible, as the peaks are less pronounced, and the
individual periods (nine in total) have shapes more resembling each other. In
this part, the frequency parameters that would be influenced by fluctuations
in the signal’s periods, like different peak locations, are not important. With
time-domain features, the focus is more on the general shape of the signal.

Similarly to frequency characteristics, the histograms of the characteristics
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Figure 4.5: Histograms of amplitudes at several chosen frequencies

computed in Figure 4.7 show certain distinctions between the data classes.
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Figure 4.7: Histograms of values of the time-domain features
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Analysis in Matlab and Selected Features

B 4.1.4 Comparison to MCU Processing

Figure [4.8)illustrates how the processing results on the MCU deviate from the
computations executed in Matlab, which is considered to be far more precise.
The two methods differ significantly in their computing capabilities. Whereas
Matlab uses 64-bit representation, the FPU in the MCU core works only
with 32-bit numbers. This reduces accuracy as the shorter format has a lower
resolution. It is one of the reasons why multiplication by a large constant
was employed in the proposed pipeline to avoid situations where changes in
values would be under the MCU'’s resolution level. At the same time, Matlab
uses proprietary algorithms, which probably include general enhancements
and are more precise than the simple computations implemented here.
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Figure 4.8: Processing in Matlab and MCU comparison

Figure shows the difference in normalised signal computation. The
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peak values of around 103( mean that the maximum error in the MCU
implementation is close to 110% = 10"" = 0.1ppm (where 10'° is the approximate
mean value of the normalised signal). In Figure |4.8d}, the deviation of the
averaged signal reaches 5 - 105. This would be translated as 11(% =10"% =
100ppm error. The error of several computed frequency values, shown in
Figure |4.8€l, reaches a maximum of 1270.1, while its mean value is —401.4.
In terms of relative error, the maximum is at 101ppm, and the mean is at
45ppm. For time-domain characteristics, the average error computed over
several signals was equal to 115ppm, with the error being generally lowest for
the peak-to-RMS value and highest for kurtosis - which is expected because

kurtosis calculation involves raising values to the power of four.

These values demonstrate (even when computed from one signal each) the
numerical accuracy of the MCU implementation approaches that which is
achieved on a computer with larger resources and more advanced algorithms.

B a2 Frequency Feature Selection

To determine which features are suitable for use in classification, their ranking
was first calculated using the RELIEFF algorithm. RELIEFF was introduced
in article [25]. It works by randomly selecting a vector of features with its
corresponding class label, finding K nearest neighbours (in the sense of vector
distance) from each class and updating the weights for all these neighbours.
The update procedure is designed so that it penalises the features that have
different values to neighbours of the same class and rewards those that give
different values to neighbours of different classes. It is an iterative algorithm
where the number of iterations should be fixed, but Matlab does not provide
a way to set this value. K = 10 was used in the analysis. Although this
algorithm is used primarily to work with classification models, the selected
features were used with anomaly detection.

20 frequency features with the highest RELIEFF score can be seen in
Figure 4.9al For reference, sorted signal characteristics are also shown in
Figure 4.9b. From the frequencies, ten orders were chosen (0.84, 1, 0.68,
0.33, 0.42, 0.36, 0.27, 0.74, 0.65, 0.52 and 0.87) based on this ordering and a
visual inspection of the spectra in Figure |4.4| - for example, 0.17 was viewed
as redundant because it was only significantly visible with the fault on the
first gear wheel, which is better distinguished by frequency 0.84. A few other
factors were also considered - not picking frequencies too close to each other
(0.42 and 0.43), too low or high frequencies (0.07).

Eight frequencies were picked (while keeping all of the four time-domain
characteristics) to keep the complexity low and avoid overfitting the model.
This was done by training an SVM model for each set of parameters: a
combination of eight frequencies together with four fixed characteristics. The
used data set used for both of these analyses is summarised in Table [4.1
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Figure 4.9: Features ordered by RELIEFF algorithm

When comparing their results on the testing data set, one of the models
with the best accuracy was trained with frequencies 0.84, 1, 0.33, 0.42, 0.36,
0.74, 0.65, 0.52. Confusion matrices for this model are shown in Table It
is visible that states without faults and faults and the first and second wheels
can be classified correctly most of the time. But for faults on the third and
fourth wheel, the results are worse, even on training data which should be
classified correctly because it was seen in training.
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4.2. Frequency Feature Selection

Fault on wheel - 1 2 3 | 4
Training signals | 162 | 168 | 160 | 30 | 31
Testing signals | 15 | 15 | 15 | 5 | 5

Table 4.1: Summary of the data set used for feature selection. Fault "-" signifies
a state without faults. Only the larger faults were used.

Predicted class Predicted class

NoF | F1 | F2 | F3 | F4 NoF | F1 | F2 | F3
No F | 159 0 0 0 3 No F 15 0 0 0 0
F1 0 168 | 0 0 0 F1 0 151 0 0 0
True class | F2 0 0 160 | O 0 True class | F2 0 0 |15 0 0
F3 1 0 0 29| 0 F3 1 0 0 4 0
F4 10 0 0 0 |21 F4 1 0 0 0 4

(a) : On training data (b) : On testing data

Table 4.2: Confusion matrices of the best SVM model. "No F" signifies a signal
without faults, "F1" a fault on the first wheel, etc.
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Chapter 5

Detection Performance

This chapter covers the achieved results of detecting faults on the designed
gearbox using three approaches and trained models from NanoEdge AI Studio.
This evaluation was done on the gearbox detailed in Section |3.2.3.

. 5.1 Collected Data

Table [5.1] shows how many signals were collected for each gearbox state. As
explained in Section 4.1, the faults on the last wheel were not used after
analysing the signals in Matlab. So this type of signal is not present for
evaluation. All signals were recorded with the motor running at 850 rpm.

To have a more balanced data set when creating an anomaly detection model
(which only classifies regular and abnormal states), more signals without faults
were collected, and all the faulty signals were used as a representation of the
abnormal state. For anomaly detection, 62 signals were also left out for later
learning on the MCU and used 300 for training in the NanoEdge AI Studio.
For 1-class classification, only signals without faults were used. Naturally, all
five classes were used to train n-class classification models.

For testing, samples with smaller faults were also collected individually on
the first and second wheels and with both faults present at the same time.
This should more closely represent a real-life scenario, where a chipped tooth
on one wheel would cause damage to a tooth on the neighbouring wheel.

Fault on wheel - 1 2 3 4 | 1S | 25 | 1S+2S
Training signals | 362 | 168 | 161 | 121 | 124 | 0 | O 0
Testing signals | 30 | 30 | 30 | 30 | 30 | 30 | 30 30

Table 5.1: Summary of the collected data set. Fault "-' signifies a state without
faults, "1S" a smaller fault on the first wheel, "1S42S" a small fault on both
wheels.
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5. Detection Performance

. 5.2 Evaluation Approach and Metrics

After training in NanoEdge Al Studio, models were selected based on their
training and validation performance, both of which can be seen, for example,
in Figure [3.10a. Further exploration was done only for the models that
had achieved the highest scores. These were then evaluated both using the
emulator in NanoEdge AI Studio and on the MCU.

In the following sections, metrics used to describe anomaly detection and
1-class classification models are true positive count (TP), which is the number
of signals correctly identified as being without faults, and false positive count
(FP), which is the number of faulty signals classified as faultless. True negative
count (TN) represents those faulty signals that were correctly identified, and
false negative count (FN) those without a fault classified as faulty. From these,
the true positive rate (TPR, also called sensitivity) and the true negative
rate (FNR, also called specificity) are calculated as TPR = TP:‘Q% and

TNR = %. Confusion matrices are employed to better visualise these

numeric results.

To find the best-performing model of each type, the emulator was used
first with features computed on the MCU. For anomaly detection models,
a suitable value for sensitivity was also estimated. Then this model was
exported and used for evaluation on the MCU - previously collected testing
data were transferred back to the MCU from a computer using USART
communication.

During this evaluation, the time requirements were observed by measuring
the time on a computer starting after the transfer had finished and ending
at the reception of the MCU’s output. Average execution times, which
include both signal processing and class inference, are listed for each project
in the corresponding sections below. Processing time alone was measured
in the same way, except that the MCU was programmed to perform only
the processing part of the pipeline. The MCU was set to run at its highest
possible clock frequency, 100 MHz.

All models were trained on features extracted from signals with larger faults.
Smaller faults were used to test anomaly detection and 1-class classification.

. 5.3 Evaluation Results

Table 5.2 shows the measured processing time. This test was carried out on
50 signals.

Average time [ms] | Standard deviation |[ms]
8277.2 7.01

Table 5.2: Processing time measurement
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5.3. Evaluation Results

B 5.3.1 N-class Classification

For classification, the focus was on larger faults. This was done because there
was a lack of a substantial training data set containing signals with smaller
faults, which would be necessary for their classification.

Table 5.3 shows the results obtained when an n-class classification model
was trained on all five signal classes. The trained model produced identical
confusion matrices when the classification was simulated in the NanoEdge Al
Studio emulator and when it was physically implemented on the MCU.

Predicted Predicted
NoF | F1 | F2 | F3 | F4 NoF | F1 | F2 | F3 | F4
No F 16 0 0 2 |12 No F 16 0 0 2 | 12
F1 0 30| 0 0 0 F1 0 30| 0 0 0
True F2 0 30 0 0 0 True F2 0 30| O 0 0
F3 10 0 1 112 7 F3 10 0 1 12 | 7
F4 7 0 3 1416 F4 7 0 3 |14 6

(a) : In emulator (b) : On the MCU

Table 5.3: Confusion matrices for 5-class classification. "No F" signifies a signal
without faults, "F1" a fault on the first wheel, etc. Matrices a) and b) are
identical.

The accuracy of this model is quite low, especially compared to what can
be achieved with the same data on a computer (as seen in Table 4.2). Most
obviously, many errors are tied to faults on the more distant gear wheels.

To try and get around this issue, a similar model with only three classes
was trained: faultless and a fault on the first and second wheels. Confusion
matrices for this model are shown in Table 5.4, Again, the classification in
the emulator matched the real results. But in this case, a perfect score was
achieved, which shows that the differences between the undamaged gearbox
state and damage on the third or fourth wheel are too small for the 5-class
model to properly distinguish.

Predicted Predicted
NoF | F1 | F2 NoF | F1 | F2
No F 30 0 0 No F 30 0 0
True | F1 0 301 0 True | F1 0 30 | O
F2 0 0 | 30 F2 0 0 | 30
(a) : In emulator (b) : On the MCU

Table 5.4: Confusion matrices for 3-class classification. "No F" signifies a signal
without faults, "F1" is a fault on the first wheel, etc. Matrices a) and b) are
identical.

Table |5.5| then lists the classification time and memory required by the

model. The overall time needed is only approximately 20 ms longer than the
processing duration seen in Table 5.2
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Average time [ms| | Standard deviation of time [ms] | Model type
8294.78 8.36 RF
RAM [kB] Flash [kB]
3-class 0.1 25.9
d-class 0.1 69.3

Table 5.5: N-class classification time and memory requirements and metrics.
Time measured on the MCU.

It should also be noted that a model with three classes was tested (from
the selection trained by NanoEdge AI Studio) which was ranked higher than
the one presented here, based on the validation score during testing and
the memory size. But in the evaluation, it classified signals with a fault on
the second wheel as belonging to the class with a damaged second wheel.
Therefore, it was not able to make a distinction between these two states.
This underscores the importance of testing the models on clean data. An
interesting difference between the models was that the worse-performing one
needed significantly less flash memory space - 3.5 kB compared to 25.9 kB of
the chosen model.

B 5.3.2 Anomaly Detection

The anomaly detection model was trained on a regular class with faultless
signals and an abnormal class containing signals with four large faults. Then
it was tested on these testing data with the smaller faults in addition to large
faults and faultless signals. When evaluating it, the classification results were
obtained as summarised in Table 5.6l

Predicted Predicted
Regular | Abnormal Regular | Abnormal
No F 27 3 No F 30 0
F1 0 30 F1 0 30
F2 0 30 F2 0 30
True F3 30 0 True F3 30 0
F4 30 0 F4 30 0
F1S 17 13 F1S 28 2
F2S 8 22 F2S 6 24
F1S+F2S 5 25 F1S+F2S 5 25
(a) : In emulator (b) : On the MCU

Table 5.6: Confusion matrices for anomaly detection. "No F' signifies a signal
without faults, "F1" a fault on the first wheel "F1S" a smaller fault, etc.

When considering large faults, the performance is similar to n-class classification
with five classes - faults on the third and fourth wheels cannot be detected.
But the remaining three states are recognised correctly in all cases. Small
faults on the second wheel (and with a combination of the first and second
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5.3. Evaluation Results

wheels) are classified accurately in most instances. But the model failed to
identify small faults on the first wheel.

The differences between the classifications using the emulator and the MCU
can be in part due to the fact that the emulator has fixed values for model
sensitivity at 1 and threshold at 90 %. For the evaluation on the MCU, a
sensitivity of 0.8 and a threshold equal to 80 % were used.

Table 5.7 shows the model details and the summary of the evaluation. The
measured inference time is 50 ms (after subtracting signal processing time).
Faults on the third and fourth wheels are excluded from the metrics (TP,
etc.).

Average time [ms| | Standard deviation of time [ms]
8327.5 0.63
Model type RAM [B] Flash [kB]
Z-score model 48 1.9
TP FN TPR
30 0 1
TN FP TNR
111 39 0.74

Table 5.7: Anomaly detection time and memory requirements and metrics.
Measured on the MCU.

B 5.3.3 1-class Classification

First, the 1-class classification model was trained with an abnormal class
made up of all four large-fault signals. With this setting, the models found by
NanoEdge AI Studio were not accurate enough (for example, when compared
to the anomaly detection model), particularly for faults on the third and
fourth wheels. Because of this, the model whose results are shown in Table
5.8 was trained only with faultless signals and large faults on the first two
wheels.

The results achieved were then comparable to the anomaly detection model.
Table [5.9 shows that the memory and time requirements of this model are
lower than for anomaly detection. Namely, the inference time, which is only
around 1 ms.
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True

Predicted Predicted
Regular | Abnormal Regular | Abnormal

No F 16 14 No F 25 5
F1 0 30 F1 5 25
F2 0 30 F2 0 30

F3 25 5 Trie F3 30 0

F4 24 6 F4 28 2
F1S 4 26 F1S 5 25
F2S 0 30 F2S 8 22
F1S+F2S 0 30 F1S+F2S 4 26

(a) : In emulator (b) : On the MCU

Table 5.8: Confusion matrices for 1-class classification. "No F" signifies a signal
without faults, "F'1" a fault on the first wheel "F1S" a smaller fault, etc.

Average time [ms] | Standard deviation of time [ms]
8278.37 3.27
Model type RAM [kB] Flash [kB]

FISVDD 0.2 0.5
TP FN TPR
25 ) 0.83
TN FP TNR
128 22 0.85

Table 5.9: 1-class classification time and memory requirements and metrics.
Measured on the MCU.

B 54 Performance Summary

From the evaluation results, it is apparent that there is a limit to the gearing
ratio at which the system recognises faults. For this particular setup, this
limit is after the second gear wheel. So the maximum gearing ratio where
faults could reliably be detected was approximately 1/2.4. In general, this
limit would probably be influenced by factors such as the sensor resolution
used, mechanical load, or physical attributes of the gearbox (like material or
size of teeth) which would determine how well the fault signal travels through
the system.

From a data perspective, this could be interpreted in a way that the models
are not complex enough to learn the shapes of decision boundaries between
individual classes. With fewer classes, the patterns are simpler. But this
same trend could also be seen in the test on a computer with more advanced
models in Table 4.2 although the results there were slightly better.

When classifying multiple classes, the model was able to achieve a perfect
score if only three classes were used. In this scenario, the result is comparable
to the computer test in Table 4.2 This shows that equal accuracy can be
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reached even with simple hardware when the extent of classified states is
limited. Adding more classes led to worse results, even in the classification of
these three states. A large number (almost 50 %) of faultless signals were
classified as faulty, which would not be acceptable in practice.

When excluding those more difficult faults, the anomaly detection model
achieved scores of TPR =1 and TNR = 0.74, which means that when the
model classifies a signal as faulty, this is certainly consistent with the real
state. And when a signal is classified as faultless, there is a chance that it is
faulty, and there should be further investigation. This includes smaller faults,
which are presumably harder to detect.

Some of the good results when detecting smaller faults may be caused by
different physical conditions of the setup. As these signals were collected
at a later time than the original data, the gearbox might have been placed
differently, the motor gear might have been less tightened, etc. This probably
resulted in changed signal properties, namely noise at frequencies significantly
higher than those that were computed when extracting features. Because
of this, the frequency feature should not be affected, but the time-domain
features might have slightly changed values. But, as already explained in
Section 4.1.2, this contributes to the overall generalisation possible by the
model.

The 1-class classification model achieved slightly poorer accuracy with
TPR =0.83 and TNR = 0.85. At the same time, it is limited in its ability
to be fine-tuned when compared to anomaly detection. Although 1-class
classification does not require abnormal signal samples for training, anomaly
detection is probably applicable in more general cases. A fact that can
compensate for this is that it achieved a much better result when classifying
signals with small faults on the first wheel - this caused its TNR score to be
higher than for the anomaly detection model.

To improve performance, a buffer could be established that collects several
inference results. Then the final results would be determined as either an
average value or the state with the most occurrences. Another way is to run
detection using different models and evaluate their outputs.

In all cases, the measured execution time is mainly made up of the signal
processing time. The inference time was, at most, approximately 50 ms (for
anomaly detection). This is insignificant in most practical cases compared to
more than 8 s measured for processing.

In terms of memory requirements, the necessary Flash space was highest
for the n-class classification, at almost 26 kB. Anomaly detection and 1-class
classification took up 1.9 and 0.5 kB, respectively. 0.2 kB of RAM was needed
for 1-class classification and 0.1 kB for the other two projects. This mostly
came from the buffer which needs to be allocated for the computed features
- ten 32-bit floats take up 40 bytes. With 1.5 MB of Flash and 320 kB of
RAM available on the used MCU, this should not be a limitation in most
applications.
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Overall, the anomaly detection approach seems to be the most promising,
if the user is only interested in detecting a fault, in general. It also has the
advantage (over classification) that it does not need to be trained on a specific
kind of fault. Faults that manifest slightly differently than training samples
can also be detected, as proven by the fact that smaller gear damages were
detected. If the aim is to have more information about the fault, then n-class
classification can be used, perhaps in conjunction with anomaly detection.
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Chapter 6

Conclusion and Future Work

. 6.1 Discussion and Conclusion

The objective of this work was to design and build a demonstrator for a
machine-learning system on an edge device that would detect mechanical
faults (specifically damaged or missing teeth) in industrial machinery with
gears.

This was achieved after selecting an STM32F413ZH MCU as the primary
device on which the detection software would be implemented and creating
ML models in NanoEdge Al Studio. This also accomplishes the second goal
of the work of evaluating the performance of the NanoEdge Al Studio tool.
The premise that it can work well even in more complex cases was validated.
The tool itself can produce code for signal processing and feature extraction,
but this component was not relevant for raw IRC signals, as it is limited by
the input length.

A gearbox was designed and 3D printed with three different sets of wheels:
without faults, with small damage to one tooth and a missing tooth. After
collecting data and analysing them in Matlab software, a pipeline was proposed
to process the IRC signal and extract features from it, which was then
programmed into the MCU.

The requirements led us to choose a suitable BLDC motor with a built-in
IRC, an MCU with supplementary hardware which would control the motor,
an MCU to facilitate Ethernet communication.

After testing the models and confirming that such a system is plausible, a
second gearbox was designed with fewer wheels and an additional section to
attach the MCUs. This, combined with the original motor and MCUs, can
work as a complete, standalone demonstration system.

When integrating into existing systems, just one MCU can be added that
will function as the detection unit. For a new system, the separate functions
(detection, motor control, and Ethernet communication) could be implemented
in a single, more powerful MCU, for example, one of the STMicroelectronics’
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H7 line.

Compared to some other available research prototypes or even devices
that have been implemented in practice, the advantage of this design is that
it is a single-sensor solution that works with a sensor that is, already a
part of many motor control projects. The chosen type of sensor leads to a
lower susceptibility to external vibrations and noise as no accelerometers or
microphones are used.

Further requirements for this demonstration unit were that it should work
independently of other devices and so would need to collect and process the
data by itself, the only signal source would be an IRC sensor, and that it should
enable Ethernet communication with a central device to conform to industry
standards. Using Ethernet, communication with an IoT data-collection
platform was established.

From a timing point of view, which is also important for practical applications,
the measured inference times were less than 50 ms. The processing pipeline
took approximately 8 s to execute. The primary limiting factor is the time it
takes to collect a signal of sufficient length. This could lead to a system with
periodical inferences, for example, every second, with the motor still running.

Different ML, models were trained in the NanoEdge AI Studio. They
were evaluated both in the available emulator tool and on the MCU. The
results of the tests show that, for this particular scenario, NanoEdge Al
Studio can produce models with satisfactory results. When detecting faults
(both large and small without distinction) on the first two wheels, scores of
TPR=1and TNR = 0.74 were achieved with an anomaly detection model
and TPR = 0.83 and TN R = 0.85 for 1-class classification. A classification
model with three classes achieved a perfect score when focusing only on
large faults. As expected, when detecting smaller faults, the models did not
perform with such good results.

. 6.2 Future Work

The most beneficial area for future work is probably collecting more data
from various mechanical conditions, which means different tightness of the
motor gear attachment, placement of the gearbox on bases made of different
materials, higher load on the motor, etc. This would help generalise the
trained model.

Experiments with shorter signals could be done to determine the limit at
which a model is able to detect faults.

The array of detected faults could be extended to include, for example,
bearing issues, loose connection of the motor gear (which results in the gear
not rotating with the shaft), and other mechanical problems.

Another interesting line of work would be to try to train an ML model on

68



6.2. Future Work

a computer and transfer it to an MCU with the help of X-CUBE-AI, another
tool from STMicroelectronics. This approach would allow us to see and
control all parameters of the trained model, which is something NanoEdge
AT Studio does not offer.
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Appendix A

Contents of the attached CD

Data Used signals collected at 850 rpm and extracted features.

Datasheets Datasheets of the used MCUs, development kits, and
the motor.

F4 Detect Project and source code for the detection software.

G4 Motor Control Project and source code for the motor control part.

H7 Ethernet Project and source code for Ethernet communication.

STL .stl files for the final demonstrator and individual gear
wheels.

thesis.pdf Full text of the thesis.
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