
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

SOME/IP Implementation for Testing

Bc. Jakub Hortenský

Supervisor: Ing. Jan Sobotka, Ph.D.
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483471 Personal ID number: Hortenský Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

SOME/IP Implementation for Testing

Master’s thesis title in Czech:

Implementace SOME/IP protokolu pro testování

Guidelines:

1. Familiarize yourself with the SOME/IP protocol (part of AUTOSAR 4.3).
2. Do research for a method of formal description of offered services.
3. Implement import of selected description.
4. Parametrize general client based on the imported description for specific SOME/IP services.
5. The result will be software acting as a client, a server is optional.
6. Don’t forget to document the code.
7. Demonstrate your results by suitable SOME/IP demo communication.

Bibliography / sources:

[1] Matheus, Kirsten, and Thomas Ko nigseder. Automotive Ethernet. Third edition. Cambridge University Press, 2021.
[2] Nicolas Navet, F. and Simonot-Lion, F.: Automotive Embedded Systems Handbook, CRC PressINC, 2009.

Name and workplace of master’s thesis supervisor:

Ing. Jan Sobotka, Ph.D. Department of Measurement FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 16.02.2023

Assignment valid until:
by the end of summer semester 2023/2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jan Sobotka, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I want to express my profound gratitude
to my supervisor, Ing. Jan Sobotka,
Ph.D., for his valuable insight, help, and
feedback. I would also like to thank doc.
Ing. Jiří Novák, Ph.D., for his help with
the project. Additionally, I would like to
thank my parents and friends for their end-
less support throughout my entire studies.

Declaration
I hereby declare, that I have worked on
my master’s thesis separately and that I
have listed all the used literature.

In Prague, 26. May 2023

v

Abstract
The main goal of this master’s thesis is the
implementation of a client capable of com-
munication using SOME/IP according to
AUTOSAR specifications and parametriz-
ing itself based on the imported service
descriptions. An auxiliary virtual test
server was implemented to validate the
client’s functionality. The validation was
conducted on the virtual test server and,
consequently, on the real hardware. The
result of this master’s thesis complies with
the assignment and can be used in further
SOME/IP testing.

Keywords: communication, automotive,
Ethernet, SOME/IP

Supervisor: Ing. Jan Sobotka, Ph.D.

Abstrakt
Tato diplomová práce se věnuje implemen-
taci klienta schopného komunikovat po-
mocí protokolu SOME/IP podle AUTO-
SAR specifikací. Klient je schopen se sám
parametrizovat na základě načtených po-
pisů služeb. Pro validaci správného fungo-
vání klienta byl implementován pomocný
virtuální testovací server. Fuknčnost byla
validována na tomto server a následně na
reálném hardwaru. Výsledek této diplo-
mové práce souhlasí s zadáním a lze být
využit pro další tesování protokolu SO-
ME/IP.

Klíčová slova: komunikace,
automobilový průmysl, Ethernet,
SOME/IP

Překlad názvu: Implementace
SOME/IP Protokolu pro Testování

vi

Contents
1 Introduction 1

2 Background 3

2.1 Ethernet . 4

2.1.1 Automotive ethernet 7

2.2 IP . 8

2.2.1 IPv4 . 9

2.2.2 IPv6 . 10

2.3 Transport protocols 11

2.3.1 UDP . 11

2.3.2 TCP . 12

2.4 SOME/IP 13

2.4.1 SOME/IP-SD 15

2.4.2 SOME/IP Structure 15

2.4.3 SOME/IP-SD Structure 17

2.4.4 SOME/IP Serialization 20

3 Implementation 23

3.1 Packet definitions 23

3.2 VW Resource Protocol 24

3.3 Client . 25

3.3.1 Main thread 25

3.3.2 Asynchronous listener 29

3.3.3 Offer thread 29

3.3.4 Console thread 30

3.3.5 Find thread 31

3.3.6 Send message thread 32

3.3.7 Subscribe thread 33

3.4 Test server 33

3.5 User interface 36

3.5.1 Graphical user interface
control . 36

3.5.2 Console control 38

4 Testing 41

4.1 Virtual server 41

4.2 HIL . 42

5 Conclusion 47

A Bibliography 49

vii

Figures
2.1 OSI model . 3

2.2 Ethernet topologies 5

2.3 Rapid Spanning Tree 5

2.4 Ethernet frame structure 6

2.5 VLAN frame 6

2.6 PTP protocol 7

2.7 IP addressing modes 9

2.8 IPv4 packet structure 10

2.9 IPv6 packet structure 11

2.10 UDP datagram structure 12

2.11 TCP segment structure 13

2.12 SOME/IP message types 14

2.13 SOME/IP message structure . . 15

2.14 SOME/IP-SD message structure 17

2.15 Structure of Service Entry 18

2.16 Structure of Eventgroup Entry 18

2.17 IPv4 Endpoint Option 20

2.18 Data serialization 20

3.1 Scapy packet 23

3.2 Parser structure 24

3.3 Client main thread flowchart . . . 25

3.4 Run command. 26

3.5 Server main thread flowchart . . . 33

3.6 GUI . 37

3.7 Sending message in console 39

4.1 HIL . 43

4.2 HIL schematics 44

4.3 GUI send message 44

4.4 GUI subscribe 45

4.5 Offer log . 45

4.6 Zoomed response data 46

viii

Tables
2.1 Ethernet medium codes 4

2.2 Ethernet preamble bits 6

2.3 Ethernet PAM3 symbols 8

2.4 Sub ID meaning 16

2.5 Individual message type codes . . 16

2.6 Return codes 17

2.7 Base data types 21

2.8 Wire types 21

3.1 Console commands 38

4.1 Test server time measurement . . 42

ix

Chapter 1

Introduction

The automotive industry is responsible for remarkable advancements in
transportation in the last century, shaping societies and dreams worldwide.
But nowadays, vehicles are not only roaring engines and beautiful curves; they
have evolved into complex and sophisticated computers on wheels connected
through elaborate networks. These automotive networks provide the means
for seamless communication, enabling a wide selection of functionalities
for the driver, ranging from safety features to advanced driver-assistance
systems (ADAS). There are many network protocols used in modern vehicles
(CAN, LIN, FlexRay, etc.); this thesis aims to explore and utilize a new
addition, which is gaining prominence, the Service-Oriented Middleware over
IP (SOME/IP). This protocol revolutionizes the way the individual units
communicate and interact with one another.

The structure of this thesis is organized as follows: Chapter 2 provides
a comprehensive overview of the protocols forming the SOME/IP stack,
establishing a solid foundation for the subsequent chapters. Chapter 3
delves into the implementation of the client utilizing the SOME/IP protocol
to connect to the automotive network and communicate with its devices.
Chapter 4 describes the experiments and tests performed by this client. And
finally, chapter 5 summarizes the whole thesis and explores potential areas of
improvement.

The thesis endeavors to familiarize the reader with the protocols used
in the SOME/IP client and its working mechanisms while simultaneously
persuading the person reading this of its benefits and the reasons for its
increasing usage in modern vehicles.

1

2

Chapter 2

Background

The communication between the client and server can be described using
an OSI (Open Systems Interconnection) model [7], where each protocol
corresponds to a specific layer. Each protocol is built upon the previous,
constructing a chain. The chain is then gradually broken down at the receiving
side, layer by layer. Additional information about used protocols is written
in the following sections; additionally, their assigned layers can be seen in
Figure 2.1.

Figure 2.1: OSI model with highlighted protocols

3

2. Background
2.1 Ethernet

Ethernet is a widely-used technology enabling devices in the same local area
network (LAN) to communicate with each other. Ethernet protocol operates
as the first (physical) and the second (link) layer of the OSI model. The link
layer is further divided into two individual layers, the Logical Link Control
layer and the Medium Access Control layer.

Ethernet can operate on twisted pair copper cables, optical fiber, or coaxial
cables, depending on the Ethernet variant. Nowadays, the most common
variants used are 100BASE-TX and 1000BASE-T, where both use twisted
pair cables with a typical termination using 100 Ω resistors. The name of
each specification can be broken down into three segments; the nominal
value, the band, and the medium. The nominal value represents speed in
megabits per second. The band can be either baseband (BASE), broadband
(BROAD), or passband (PASS). In the majority of cases, the baseband is
used. The baseband refers to the range of frequencies enveloping the original
signal, usually ranging from 0 Hz up to an upper limit. The letters after the
dash represent the medium, according to Table 2.1. The optional last letter
represents the data encoding method. This last letter can be skipped for
unique encoding.

Code Description Code Description

T twisted pairs H plastic optical fiber
T1 single twisted pair C twinaxial cable
S short wavelength (850

nm)
E extra long wavelength

(1500 nm)
L long wavelength (1300

nm)
F fiber with various wave-

lengths

Table 2.1: Ethernet medium codes

The topology of the Ethernet network has changed throughout its existence.
The original idea was to use a singular bus to which all the devices would be
connected. This topology, while reliable and effective for small networks, is
not suited for more extensive networks. In later variants, devices are hidden
behind switches that communicate with each other. Switches are devices
operating on the second layer of the OSI model, forwarding data only to its
destination. However, the connected grid creates loops where frames may run
endlessly. This issue is handled by the Spanning Tree Algorithm [3] or by the
improved Rapid Spanning Tree algorithm [4]. This algorithm transforms the
grid or star topology into the tree network topology. First, a root bridge is
selected, which becomes a reference to determine the connection cost between
each node and the root. This cost is usually computed using communication
speed. After each node has evaluated all its connections, the cheapest route

4

...................................... 2.1. Ethernet

is preserved, while all the others are terminated (the ports are deactivated
for forwarding), as visualized in Figure 2.3.

(a) : Bus topology (b) : Star topology

Figure 2.2: Ethernet topologies

Figure 2.3: Rapid Spanning Tree algorithm visualization

To ensure collision-free communication on a shared medium, Ethernet
uses a protocol called Carrier Sense Multiple Access with Collision Detection
(CSMA/CD). Before transmitting any data, a node waits and listens to the
network for a random amount of time. If the network remains idle for the
entire duration, the node begins transmitting while simultaneously listening
for any sign of a collision. If a collision is detected, the transmitting stops,
and the node returns to the waiting state. The more recent Ethernet variants
abandon the use of this protocol in favor of full-duplex switches.

Each Ethernet frame begins with a 7-byte Preamble and a 1-byte Start
Delimiter. The bits in each byte of the Preamble switch their value, as
showcased in Table 1. This bit alternating allows for bit-level synchronization.

5

2. Background

Figure 2.4: Ethernet frame structure

Start Delimiter looks like any other byte of the Preamble apart from the
last bit, which is inverted. Following are two 6-byte MAC address fields.
The 2-byte length field covers the length of the entire frame. The newer
specifications of the ethernet frame change this field to EtherType, which
keeps the information about the length, but adds an option to express the
type of payload. The padding ensures a minimal frame length of 64 bytes.
The last four bytes are occupied by the frame check sequence (FCS). A cyclic
redundancy check (CRC) is implemented here with a CCIT-32 generating
polynomial.

Field 1-byte value

Preamble 10101010
SD 10101011

Table 2.2: Ethernet preamble bits

Nodes in automotive Ethernet networks are often grouped together into
virtual local area networks (VLAN) with shared physical infrastructure. This
virtual mask is managed and implemented by the active switches. Frames are
tagged according to the VLAN to which they belong. These tags are given
to the frame either by the node or the switch they trespass through. Tag
is a 4-byte long field fitted between the source address and the length. The
information about the frame priority can be a part of the VLAN frame.

Figure 2.5: VLAN frame

.TPID - a 16-bit field indicating that the VLAN tag is present.PCP - a 3-bit field containing the priority of the frame.DEI - a 1-bit field signaling the relevance of the frame.VID - a 12-bit VLAN identifier

6

...................................... 2.1. Ethernet

The time synchronization is managed by the Precision time protocol (PTP).
The PTP master sends a Sync message at time t1 and a Follow_up message
with a record of t1. The Sync message is received by the PTP slave at t2.
This process is repeated for t3 and t4, only this time transaction is initialized
by the PTP slave. The transmission delay D and offset O are calculated as
shown in Equations 2.1. The delay represents the time it takes the frame
to reach the receiver, while the offset is caused by switches and is negative
in the reverse direction. It is assumed both of these values to be constants.
This process is repeated frequently.

t2 = t1 + D + O

t4 = t3 + D −O
(2.1)

Figure 2.6: PTP protocol

2.1.1 Automotive ethernet

The Ethernet specifications used in the automotive environment are 100BASE-
T1 and 1000BASE-T1, enabling the transmitting speeds of 100 Mbit per
second and 1000 Mbit per second respectively. To be as lightweight as
possible, these versions transmit using only one twisted pair cable while still
maintaining full-duplex functionality. This is possible by implementing echo
cancellation and decision feedback equalization techniques [13]. The former
removes the echo by subtracting the sent signal from the received. The latter
is a necessity providing jitter and noise immunity made highly relevant due
to the used signal modulation. It uses a 3-level pulse-amplitude modulation
(PAM3). The signal is encoded into three levels (-1, 0, 1), each called a

7

2. Background
symbol. Bits are grouped together into 3-bit batches, which are mapped onto
the pair of symbols defined by PAM3. This process is showcased in Table 2.3.
The null pair (0, 0) is used for the beginning and the end of a frame.

3-bit batch ternary A ternary B

000 -1 0
001 0 1
010 -1 1
011 0 1

Reserved 0 0
100 1 0
101 0 -1
110 1 -1
111 0 -1

Table 2.3: Ethernet PAM3 symbols

The connection between nodes can be only peer-to-peer with an impedance
matching of 100 ohms. The distance between nodes cannot exceed 15 meters,
which is a sufficient range for use in cars. One of the nodes claims the role of
a master, and the other the role of a slave. This distribution is relevant only
for the beginning of the communication.

2.2 IP

IP (Internet Procol) was introduced as a network layer in the Internet protocol
suite [9]. Its establishment predates the OSI model by a few years, but it can
be safely associated with the third OSI layer, the network layer. Its main
responsibility is to address and route data packets across the network. It
manages this task by inserting an IP header in front of the packet with a
record of the source and destination address; therefore, any recipient of this
packet knows where the packet came from and where it is heading. This
addressing relies on the fact that in the given network, IP addresses are
unique for all devices.

IP is a connectionless protocol (message-oriented), e.i., each packet is
treated as a single independent unit, and prior to the transmission, no com-
munication channel or stream is created. IP is commonly used in conjunction
with transport protocols, such as TCP and UDP, depending on the communi-
cation needs.

IP addressing can work in four different modes, depending on the number
of devices inside the network and the purpose of the communication. The
modes in question are:

8

... 2.2. IP

.Unicast - the connection is peer-to-peer, e.i., only between two devices.Anycast - the message is intended only for one recipient.Broadcast - the message is sent to all recipients inside a network.Multicast - the message is sent to an arbitrary number of recipients

(a) : Unicast (b) : Anycast

(c) : Broadcast (d) : Multicast

Figure 2.7: IP addressing modes

Currently, two versions of IP are used, IPv4 and IPv6. The primary
difference between these two versions is their address space, where IPv6 uses
128-bit addresses instead of 32-bit addresses.

2.2.1 IPv4

IPv4 addresses are 32-bit integer values consisting of four octets separated
by periods, e.g., 192.168.1.1. In theory, there are 232 (nearly 4.3 billion)
possible addresses; however, many of these are reserved or private. According
to IETF (Internet Engineering Task Force) [10], the number of reserved IPv4
addresses is slightly over 324 million. That means the number of available
IPv4 addresses is nearly 4 billion. As of this year (2023), the global population
is slightly above 8 billion [2]. Even if each person had only one device, there
would be a great deficit of addresses. The IPv6 addressing solves this problem.

9

2. Background

Figure 2.8: IPv4 packet structure

The IPv4 header, visualized in Figure 2.8, consists of 13 mandatory fields
and one optional field, Options. The first 32 bits represent the version, the
length of the header (IHL), the previous Type of Service field, now DSCP
and ECN improving the quality of service, and the total IP packet length.
Subsequent 32 bits manage the IP packet fragmentation. The time to live field
(TTL) prevents any failures in the event of a routing loop by decrementing this
field by one for each arrival at a router. When the value of this field drops to
zero, the packet is discarded. The protocol field determines the encompassed
protocol carried by the IP packet by assigning each viable protocol a code
[1]. The checksum is present in the IP packet for error-checking the header.
The subsequent protocols should have error-checking mechanisms of their
own. The last 64 mandatory bits belong to the source and the destination IP
addresses, respectively.

2.2.2 IPv6

IPv6 is the most recent version of the Internet Protocol, intended to replace
IPv4 due to its limited address space. Instead of 32-bit addresses, IPv6
uses 128-bit addresses, capable of accommodating 2128 unique addresses
(approximately 340 undecillion or 3.4·1038). A small portion of these addresses
is already reserved, almost three undecillion (circa 0.88 %), which still leaves
a vast quantity of addresses vacant. Another major change is fragmentation,
where the IPv6 protocol leaves the fragmentation solely to the application
due to security reasons.

The changes in the IPv6 header structure, visualized in Figure 2.9, begin
with the omission of the IHL field and the conjunction of DSCP and ECN
into one field, the Traffic class. Next is the replacement of the total length

10

..................................2.3. Transport protocols

Figure 2.9: IPv6 packet structure

with the payload length (discarding the length of the header) and placing
it after the Flow label field. Flow label introduces an opportunity to label
a sequence of IPv6 packets. The Next header field specifies the type of the
expanding header, e.i., the type of an encapsulated protocol. The last change
to the IP header, excluding the address sizes, is the Hop limit field. This field
replaces the TTL field, having practically the same function.

Despite its many advantages, IPv6 adoption is very slow, with many still
relying on publically more utilized IPv4. This may be due to the fact that
the transition from IPv4 to IPv6 can be complex and demanding. Thankfully,
the automotive industry utilizes only the IPv6 protocol.

2.3 Transport protocols

Transport protocols belong to the fourth layer of the OSI model (Figure 2.1).
The main purpose of these protocols is to provide services to the application.
The most significant areas of these provided services are reliability, flow
control, and muxing.

The best-known and most widely-used protocols are UDP (User Data-
gram Protocol) and TCP (Transmission Control Protocol). A more detailed
overview of these protocols follows in upcoming sections.

2.3.1 UDP

User Datagram Protocol is a message-oriented transport protocol. Its main
advantage and also disadvantage compared to other protocols is its simplicity.

11

2. Background
UDP is connectionless, meaning it does not establish any connection stream
to the receiver and treats a single packet, or a datagram, as a beginning and
an end. This means each datagram must contain all the information for its
delivery, usually enclosed in a header. Because of the simple design, UDP
does not guarantee packet delivery, therefore, is branded as unreliable. The
managing of reliability is left to the application.

Apart from the payload itself, UDP carries information about the source
port and the destination port. These ports are 16-bit integers ranging from
0 to 65 535. Naturally, many of these ports are reserved or forbidden. The
size of the UDP header and the payload is summarized in the length. The
length field comprises of the size of the UDP header and the carried payload.
To check for errors, a checksum field is added to the end of the header. The
sender sums together all 16-bit segments of the packet, inverts all the bits
of the sum, and places the resulting 16 bits inside the checksum field. The
receiver computes the checksum similarly, but instead of inverting the bits,
the receiver’s checksum is added up to the sender’s checksum. If the result
contains any zeros, an error is detected, and the receiver discards the packet.

Figure 2.10: UDP datagram structure

In theory, the maximum length of the UDP payload is 65 527 bytes.
However, the UDP packet is often encompassed within the IP protocol, which
imposes a stricter limitation of 65 507 bytes (20 bytes of the IP header).

2.3.2 TCP

Unlike UDP, TCP (Transmission Control Protocol) is a connection-oriented
protocol, e.i., the connection between the two units is established before the
actual data transmission begins. TCP transport protocol is well-praised for
its reliability, error-free operation, and data protection. Instead of sending
data in a self-contained datagram like UDP, TCP creates a stream where
numbered segments are transmitted. Each data segment is given a segment
number, which is increased by one from the previous data segment. Thanks
to this segment numbering, both sides keep track of all the segments, and in
case any segment number is missing, a replacement is immediately sent.

12

...................................... 2.4. SOME/IP

The communication starts with a three-way handshake. In the first segment,
the client sends a SYN (Synchronize Sequence Number) request. In this first
message, the client selects an arbitrary number as a sequence number, and
the acknowledgment number is set to zero. The server, after receiving the
SYN request, responds with a SYN-ACK message. The sequence number is
again arbitrary; however, the acknowledgment number is a previous sequence
number iterated by one. This iteration is repeated for each upcoming message
of a TCP stream. The last segment in a TCP handshake is the client’s
acknowledgment. The same iterating principle applies to this message. The
structure of a TCP segment is more complex than its UDP counterpart, as
seen in Figure 2.11.

Figure 2.11: TCP segment structure

2.4 SOME/IP

SOME/IP (Scalable service-Oriented MiddlewarE over IP) [5] is a protocol
used for communication between individual units in a distributed system. It
is designed to enable secure, efficient, and reliable communication between
devices of different sizes and operating systems that are connected over IP
networks, such as Ethernet. Its most prominent utilization is in the road
vehicles, where it can serve as a replacement for various traditional automotive
protocols like CAN, MOST, LIN, or FlexRay. Two major disadvantages, or
rather limitations, of these traditional protocols, are limited bandwidth and
the inability to adjust to any change in the network’s topology, software
updates, or address changes. SOME/IP approaches communication from a
different direction; instead of being signal-based like the protocols mentioned
above, it is service-oriented [12]. The data exchange between the client and
the server happens only when requested by the client or notified by the server

13

2. Background
answering a pre-agreed subscription. This alone prevents any bandwidth
wasting because the data is transmitted only when requested and where
required.

As the name suggests, this protocol is a middleware. It sits upon the
Ethernet and IP packet and forms a general foundation for a more specific
and narrow protocol to deal with a particular application. One more protocol
lies between the IP and SOME/IP, the transport protocol. Two options are
available, TCP and UDP. Both have advantages and disadvantages, discussed
in Section 2.3, but generally, the UDP protocol is preferred for its flexibility, as
there are situations where TCP cannot be used. The data can be transmitted
over UDP using unicast, multicast, or even broadcast.

Both transport protocols can include several SOME/IP messages. The
payload in the TCP data stream can be of arbitrary size; this does, however,
not apply to the UDP protocol. The maximum size of the segment is 1392
bytes. Payloads of greater size than the defined maximum must be fragmented
into multiple packets. Handling these oversized packets is the responsibility of
SOME/IP Transport Protocol (SOME/IP-TP). The fragmentation is signaled
by a TP flag, set to one for all fragments apart from the last.

Figure 2.12: Standard SOME/IP message types

What makes the SOME/IP stack so flexible is its wide selection of message
types. Remote procedure call (RPC) is a necessity in a distributed system,
and SOME/IP is well equipped to handle it. Apart from standard message
types, SOME/IP defines an extension solving the scalability of the network,
the Service Discovery (SOME/IP-SD) [6]. The following standard messages
are supported:

. Fire&Forget - the client sends a request with no response coming back
from the server

14

...................................... 2.4. SOME/IP

.Request/Response - the client sends a request, and a response is sent
back from the server.Notification - a periodic message sent from the server to the client

2.4.1 SOME/IP-SD

As stated above, SOME/IP is a service-oriented middleware; for that, SOME/IP-
SD offers many features. This extension allows the client to find services and
subscribe to them dynamically.

.Offer - the client broadcasts a request to find a unit offering a service,
and the server managing the particular service replies with an offer. Find - the client establishes a subscription for a predefined time; the
server periodically sends notifications. Subscribe - the server broadcasts an offer containing information about
the service, address, and port

2.4.2 SOME/IP Structure

The SOME/IP message consists of a header and a payload. The header
contains all the necessary data for a correct interpretation, while the payload
carries the actual data. The structure of the message is depicted in Figure 2.13.
The 32-bit length field covers the whole payload and header, excluding only
the Service ID, Sub ID, Method ID, and the Length field itself. The missing
17th bit in Figure 2.13 is a Sub ID, often included in the Method ID. The
most notable fields of the header are analyzed below.

Figure 2.13: SOME/IP message structure

15

2. Background
. Service ID - a 16-bit field responsible for identifying services. Sub ID - a 1-bit field determining whether the message is a standard

SOME/IP or SOME/IP-SD

Value Description

0 SOME/IP
1 SOME/IP-SD

Table 2.4: Sub ID meaning

.Method ID - a 15-bit field identifying individual methods.Client ID - a 16-bit field unique for each client communicating with a
server. Session ID - a 16-bit field describing a flow of communication.Message Type - an 8-bit field determining the type of message according
to Table 2.5

Basic Types SOME/IP-TP
Value Description Value Description

0x00 Request 0x20 Request TP
0x01 Fire&Forget 0x21 Fire&Forget TP
0x02 Notification 0x22 Notification TP
0x40 Request ACK 0x60 Request ACK TP
0x41 Fire&Forget ACK 0x61 Fire&Forget ACK TP
0x42 Notification ACK 0x62 Notification ACK TP
0x80 Response 0xa0 Response TP
0x81 Negative response 0xa1 Negative response TP
0xc0 Response ACK 0xe0 Response ACK TP
0xc1 Negative response ACK 0xe1 Negative response ACK

TP

Table 2.5: Individual message type codes

.Request Code - an 8-bit field indicating a status of an operation

16

...................................... 2.4. SOME/IP

Value Description

0x00 OK
0x01 NOT OK
0x02 Unknown service
0x03 Unknown method
0x04 Not ready
0x05 Not reachable
0x06 Timeout
0x07 Wrong protocol version
0x08 Wrong interface version
0x09 Malformed message
0x0a Wrong message type

Table 2.6: Return codes

2.4.3 SOME/IP-SD Structure

SOME/IP-SD message structure keeps the header of the standard SOME/IP
message, even though it does not use all its features, and extends it with its
own headers. The SOME/IP fields like service ID, method ID, or client ID
remain constant for all service discovery messages and hold no added value.
Moreover, the extension does not differentiate between message types, so
0x02 (notification) is always used.

Figure 2.14: SOME/IP-SD message structure

17

2. Background
After the standard header follows a 32-bit padding consisting of flags and

reserved bits. The first bit of the padding holds a significant value; it is called
a Reboot bit. This bit is set to a logical one when the unit has been rebooted
so that all other units communicating with this one know of the reboot and
adjust accordingly. The bit is flipped back to logical zero when the Session
ID overflows. The added value of this extension is the inclusion of entries and
options.

Entries

Entries are basic units of the SOME/IP-SD extension. Each message must
contain at least one entry. Regarding structure, there are two types of
entries, e.i., Service entries and Eventgroup entries. The former entries offer
information about services, while the latter manages subscriptions. Each
entry may have up to two sets of options associated with it. The structure of
the former entry is depicted in Figure 2.15, the latter in Figure 2.16. The
main difference in the message structure is in the last 32 bits. Service entry
defines a 32-bit field containing the minor version. This is changed in the
Eventgroup entry where the first 12 bits are reserved bits set to zero, followed
by a 4-bit counter, and ending in a 16-bit eventgroup ID. The 9th bit in the
reserved field is called Initial Data Request Flag and is set to one if the client
requests the data immediately. All the shared fields are described below.

Figure 2.15: Structure of Service Entry

Figure 2.16: Structure of Eventgroup Entry

18

...................................... 2.4. SOME/IP

.Type - an 8-bit field describing a type of entry, the first three belonging
to Service entry and the other two to Eventgroup entry. Find Service (0x00).Offer Service (0x01). Stop Offer Service (0x02). Subscribe (0x06). Subscribe ACK (0x07). Index 1st options - an 8-bit integer index of the first option associated
with the entry in question. Index 2nd options - an 8-bit integer index of the second option
associated with the entry in question.# of opt 1 - an 8-bit integer defining the number of options in the first
set..# of opt 2 - an 8-bit integer defining the number of options in the
second set.. Service ID - a 16-bit field identifying a service. Instance ID - a 16-bit field identifying an instance of a service.Major Version - an 8-bit field containing the main version of a service.TTL - (time to live) a 24-bit field describing the time of validity of the
message in seconds

Options

Options are units providing additional information about an entry. All the
options begin with the same three fields, e.i., length, type, and reserved.

. Length - a 16-bit field containing the option’s length without the length
and type fields.Type - an 8-bit field describing the type of the option.Configuration (0x01) - carries an additional ASCII data. Load Balancing (0x02) - sets priorities for entries. IPv4 Endpoint (0x04) - carries information about an endpoint

such as IPv4 address, transport protocol, and port. IPv6 Endpoint (0x06) - similar to IPv4 Endpoint but carrying
the IPv6 address in a 128-bit field instead of the 32-bit IPv4 address
field

19

2. Background
. IPv4 Multicast (0x14) - carries information on where to send no-

tifications with multicast; defines IPv4 address, transport protocol,
and port. IPv6 Multicast (0x16) - IPv6 version of IPv4 Multicast. IPv4 SD Endpoint (0x24) - provides information on where to
reach a SOME/IP-SD instance; defines IPv4 address, transport
protocol, and port. IPv6 SD Endpoint (0x26) - IPv6 version of IPv4 Multicast.Reserved - an 8-bit reserve containing zeros

Figure 2.17: IPv4 Endpoint Option

2.4.4 SOME/IP Serialization

Serialization is the process of converting data structures into a binary format
that can be transported as a payload of a SOME/IP message. This process is
necessary because a computer typically represents data structures as complex
objects with interdependent fields and methods. In contrast, network protocols
like SOME/IP require a flat binary format for transmission.

Figure 2.18: Data serialization

In SOME/IP, the data is aligned to an 8-bit format. All the base data
types are described in Table 2.7. Structures made of these base data types
are flattened consecutively, as shown in Figure 2.18. Fields with a dynamic
length, such as a string, require a length definition fitted in front of the value.

This base serialization can be expanded into an extensible serialization. It
envelops each element of a structure in a frame called TLV (tag/length/value).
TLV frame is unique for each element in a particular structure; two different
structures may share an identical TLV frame. The tag part consists of two
parts; wire type and data ID. Wire type is a 4-bit field defining a default

20

...................................... 2.4. SOME/IP

Value Description Size

Boolean TRUE/FALSE value 8
uint8 unsigned integer 8
uint16 unsigned integer 16
uint32 unsigned integer 32
uint64 unsigned integer 64
sint8 signed integer 8
sint16 signed integer 16
sint32 signed integer 32
sint64 signed integer 64
float32 floating point value 32
float64 floating point value 64

Table 2.7: Base data types

length of elements. Individual values are described in Table 2.8. The data ID
is a unique part of the TLV tag; the value is encoded in 12 bits.

Value Description

0x0 8-bit data base type
0x1 16-bit data base type
0x2 32-bit data base type
0x3 64-bit data base type
0x4 complex data type with length field of static size
0x5 complex data type with length field of 1 byte
0x6 complex data type with length field of 2 bytes
0x7 complex data type with length field of 4 bytes

Table 2.8: Wire types

21

22

Chapter 3

Implementation

With the theoretical background covered, a client capable of SOME/IP com-
munication can be implemented. This client must strictly adhere to the
AUTOSAR specifications [5, 6], meeting specified criteria and guidelines.
This chapter describes the necessary components of the client, the implemen-
tation of the client itself, and the implementation of the virtual test server
consecutively.

3.1 Packet definitions

Individual bits of a packet can only make sense with a middleware that is
able to recognize the protocol and dissect it using the predefined set of rules.
One such middleware is the Scapy project [8].

Scapy is a library written in Python that defines each layer of a packet
as a class object. These classes are then layered on top of each other to
construct a complete packet, as seen in Figure 3.1. With these class objects,
creating a new packet or dissecting one received is effortless. Scapy has a
wide variety of protocols already defined, but implementing a new one is
pretty straightforward. Fortunately, SOME/IP is already implemented in an
automotive contribution directory.

packet = Ethernet()/IP()/UDP()/SOMEIP()

Figure 3.1: Scapy packet creation pseudocode, layering SOME/IP on top of
UDP, IP and Ethernet.

It is important to keep in mind that Scapy is only responsible for dissecting
the header of a packet, sending the payload for additional processing. This

23

3. Implementation....................................
means that the encoding and decoding of raw data is left to the user, and so
is left to be implemented.

However, Scapy can do much more than define layers. Scapy offers tools to
send and receive the packet both on the second and the third layer of the OSI
model, thus serving as a backbone for a whole communication framework.

3.2 VW Resource Protocol

With a middleware for creating SOME/IP packet developed, we have to focus
on the data it is to transport. It is a common practice to define custom
data structures, usually a vector containing simple datatypes such as integers,
floats, or booleans. These structure definitions are generally kept a secret
within a company using them. As we work with Volkswagen Group hardware,
we are interested in their definitions, which are obviously not accessible to the
public. Luckily, we were kindly supplied with .xml and .arxml files containing
the necessary descriptions of selected services for testing.

A parser was developed to load data from these description files and
transform them into a structure that can be used to encode and decode data
by Volkswagen Group standards. This parser uses the lxml library [11] to
load the .xml file as a tree, enabling a fast and easy search. The output of this
parser is a set of machine-generated objects working as templates that allows
us to transform values into bytes and vice versa. Moreover, these objects give
meaning to individual values. As it is not allowed to share data from these
supplied files, we use made-up values for the visualization in Figure 3.2. On
the top of the tree are services; each of these services has a few methods that
can be called, each containing a vector of values.

Figure 3.2: Visualization of the parser’s structure

24

..3.3. Client

For convenience, a second parser was implemented, taking definitions from
files intended for Wireshark use. The structure of these files is entirely
different from the .xml files, thus needing a completely new approach. As
the structure resembles the text file, reading line by line does the trick. This
parser works from the ground up, starting with data codings and working its
way to the services themselves. The output of this parser corresponds to the
output of the first solution, so its utilization remains the same.

The output of these parsers is a set of objects representing individual
services. Each service has at least one attached object representing a method.
By calling on this object, a set of bytes can be either created or decoded,
depending on the use case.

3.3 Client

The client is written as a multi-threaded Python program, controlled by both
to the graphical user interface and the console. The whole project is written
in Python 3.8.10. The client consists of four threads that are run only once
and are in a state of an endless loop, e.i., main, asynchronous listener, offer,
and console; these are called primary threads. The rest of the threads can
be divided into three types, e.i., find, send, and subscribe; these are the
secondary threads. The aforementioned threads are started to manage a
specific task, and multiple instances can run simultaneously. Each thread of
either group is fitted with locks to prevent collisions, as they access the same
memory locations.

3.3.1 Main thread

Figure 3.3: Client main thread flowchart

The main thread is the first thread started, thus, is responsible for the
correct initialization of the whole program. The function of the main thread

25

3. Implementation....................................
can be divided into four phases, as is depicted in Figure 3.3, e.i., parsing,
initialization, GUI, and quitting.

Parsing

Parsing is a process of analyzing text files or input to decode useful data. The
data to parse comes from the bash script the user called to start the client
Python program. The user is expected to supply the machine’s IPv6 address
and the port for the communication and write them in the bash script. The
same must be done with the broadcast IP address and port. Additionally,
the user is expected to supply the client with the communication interface, in
our case, the name of the Ethernet interface. The last set of arguments, the
IP address and port of the test server, is optional. Filling them automatically
runs the program in debug mode, where the communication is expected to be
only with the test server. Leaving them blank runs the program in normal
mode.

python3 client.py --ipc $IPC --pc $PORTC --ipb $IPB --pb
↪→ $PORTB --ic $IFACE

Figure 3.4: An example of a command to run the client in normal mode

An example of a command with arguments running the program in normal
mode is presented in Figure 3.4. The arguments given to the client are
displayed in the following order:

. ipc - the client’s IP address. pc - the client’s port number. pb - the broadcasting IP address. ipb - the broadcasting port number. ic - the interface

The second type of data the program needs to parse is the services from the
available definitions. This process is described in Section 3.2. The program
initializes the Parser class instance and exports the services sorted in an
alphabetical order. Once the set of services is exported, the Parser class
instance is deleted from the memory.

26

..3.3. Client

Initialization

Once the data is parsed, the program is ready to initialize the client class
instance. Its parameters are the IPv6 addresses, ports, and available services.
The client, at this stage, prepares the threading locks and the SOME/IP
parameters such as session ID, message sending timeout, or whether the client
is supposed to wait for the acknowledgments from other units. With the
client class instance set, the program creates the rest of the primary threads
and supplies them with the appropriate functions.

Algorithm 1 Start New Thread
1: e = Event() ▷ create threading Event
2: t = Thread(func, e) ▷ create the thread
3: t.daemon = True ▷ set threat to daemon
4: lock.acquire() ▷ acquire the thread lock
5: th = thread record ▷ contains thread, event, ID, and SD flag
6: threads.append(th) ▷ all threads are recorded in the client
7: lock.release() ▷ release thread lock
8: t.start() ▷ start the thread

GUI

When the main thread enters the GUI phase, it initializes the GUI class
instance, imports the service templates, sets callbacks to the buttons, and
enters the infinite loop until the quit button is pressed. During GUI initial-
ization, individual elements of the window are set, as well as the resolution
and color theme. When the service templates are received, they are displayed
in the tab called "Available Services" and each template is given a callback
function to display available actions, which in turn get the callback to show
methods. In the case of the subscription, the method is replaced by the
eventgroup. The window frame is cleared before the individual items are
displayed, and the previously selected item’s background is darkened. Finally,
each method, or eventgroup, gains a callback to display individual data fields.
The way the data fields are displayed depends on the selected action.

.Get - the form to fill individual values is disabled. Set - the form to fill individual values is enabled, and at least one value
is expected to be filled.Notification - the form to fill individual values is enabled, and at least
one value is expected to be filled. Subscribe - the form to fill individual values is disabled

27

3. Implementation....................................
A similar process takes place in the case the user wishes to display additional

information about a received message. It is treated as a "Get" action. The
individual templates are determined using the message header, and their
respective labels are darkened.

Algorithm 2 Send message callback
1: get service
2: if action is "Subscribe" then
3: ttl = 5
4: get eventgroup
5: session_id± 1
6: start the subscription thread
7: else
8: get method
9: if action is "Get" then

10: response = True
11: else
12: response = False
13: get values
14: end if
15: session_id± 1
16: start the send message thread
17: end if

The GUI interface has two main buttons: the send and quit buttons. The
former’s callback collects all the selected data, increments the session ID, and
starts a send message thread. The latter moves the program to the quitting
phase.

The last two functions defined by the GUI class instance log events and
offers. In both cases, the timestamp in the form of hours, minutes, and
seconds is displayed, followed by the event or offer information. The log
distinguishes between two types of records, the clickable and the unclickable.
To the former, a callback is added to display additional information when
clicked on. The most notable difference between logging events and offers is
the way the refreshing of the window frame is handled. The log simply adds
a record to the end; however, the offer window is cleared and refreshed each
time it is called, as each record has a lifespan.

Quitting

Upon the raising of the quit flag, the main thread gracefully ends all other
running threads, logs this into the console, and ends the program. In case the
program is run in debug mode, the client sends a message to the test server
signaling it to end. The client does not wait for any response from the server
and shuts down.

28

..3.3. Client

3.3.2 Asynchronous listener

The asynchronous listener is a thread monitoring ports for any incoming
packets. These packets are filtered according to the transport protocol used,
permitting only UDP and TCP protocols. For each received packet, a routine
is called to dissect the packet and react appropriately. First, the packet is
checked to see if it is indeed a SOME/IP packet. A SOME/IP message type
can be determined by its message type field value, as in Table 2.5. According
to the message type, the received message can be categorized into four groups,
e.i., ACK, Response, Notification, and SD.

.ACK - a thread with a corresponding session ID is signaled that the
acknowledgment message has been received.Response - a message is first checked for errors, then the individual
values in the payload are processed and displayed in the console as well
as in the GUI log.Notification - in case of notification, the individual values in the payload
are processed and displayed in the console, and the GUI log. SD - an SD message can be either a find service, offer service, or subscribe
to a service message; all is well documented in the console, and the GUI
log

3.3.3 Offer thread

The offer thread is responsible for keeping track of all the offers and removing
the expired ones. It first acquires a lock to access the offers, gets the current
timestamp, and removes the expired offers. Each offer has its own class
instance with the following variables:

.Name - the name of the offered service.Address - the IPv6 address of the ECU providing offered service.Port - the port of the ECU providing offered service.Time - the timestamp of expiration of the offer

The main concern of this thread is the ’Time’ variable. It depicts the
time when the offer becomes expired. This variable is then compared to the
current time value, popped from the list if the current time value is greater
than the saved variable. This check is repeated four times a second; however,
this parameter can be easily tuned. The remaining offers are rerendered in
the GUI offer log.

29

3. Implementation....................................
Algorithm 3 Offer Thread

1: while not Event() is set do ▷ external shut down
2: lock.acquire() ▷ acquire offer lock
3: time = time() ▷ get actual time
4: for each offer in offers do
5: if offer.time ≤ time then
6: offers.pop(offer) ▷ remove offer from offers
7: end if
8: end for
9: lock.release() ▷ release lock

10: display offers in GUI
11: wait() ▷ sleep for specified time
12: end while

3.3.4 Console thread

The console thread is in a state of an endless loop, waiting for the user input.
As with any other thread in this implementation, the loop can be exited
by raising a threading event from a main loop. The control keys are shown
in Table 3.1. Two operations, namely sending messages and subscriptions,
deserve further analysis.

Algorithm 4 Send message via console
Require: input = ”r” or input = ”s”

1: session_id± 1
2: logging = False
3: display services
4: service = input() ▷ wait for user input
5: display methods
6: method = input() ▷ wait for user input
7: if "Set" then
8: while True do
9: display fields

10: field = input() ▷ wait for user input
11: if field is empty then
12: break ▷ ending the input
13: end if
14: value = input() ▷ wait for user input
15: set value
16: display values
17: end while
18: end if
19: start send message thread

30

..3.3. Client

.To send a message, the input is expected to be ’s’ or ’r’ (according to
Table 3.1), the former designating the fire&forget message, the latter
the request/response transaction. When either of these two inputs is
detected, the session ID is incremented and logging is disabled. Available
services are displayed, each designated with an index. The thread then
waits for the user to input the chosen index. The index is checked, and
the service template is obtained. The same process is repeated with the
method. If the original input is ’s’, individual fields are displayed, and
the thread waits for the user’s input for the index of the field and a value.
After each filling, the message is displayed again with the new values. At
least one field must be filled before sending the message. The payload is
then transformed into bytes, and logging is enabled. Finally, the start
message thread is started..The subscribe procedure is designated by the input ’p’ (Table 3.1).
Similarly to the standard SOME/IP message sending, the console stops
logging and waits for the user’s additional input to determine the service
and method. Again the session ID is incremented, and a subscription
thread is started, after which the logging is enabled.

3.3.5 Find thread

When the IPv6 address or port of the ECU providing a requested service
is not known, a find service thread is started. A service discovery message
of type service entry is broadcasted into the network. The unit in question
is expected to immediately broadcast the offer service message. Once the
parameters are known, they are returned to the calling function, and the
thread ends.

Algorithm 5 Find Thread
1: get the service template
2: acquire offer_lock
3: scan offers for address and port
4: release offer_lock
5: if found address and port then
6: return address and port
7: end if
8: construct SOME/IP-SD Find Service entry message
9: broadcast the message into the network

10: wait for offer 5 times for 0.1 seconds
11: if received offer then return address and port
12: else
13: log failure
14: return None
15: end if

31

3. Implementation....................................
3.3.6 Send message thread

In order to send a message, a dedicated thread is created so as not to limit
the client’s responsiveness. First, the service record is checked to determine
whether the destination address and port are known. In case the data about
the unit is missing, all current offers are checked. If these parameters are still
unknown, a find thread is started to send a find service inquiry, as described
in Section 3.3.5. If the address and the port still remain unknown, the failure
is logged in the console and the GUI log, and the send attempt is aborted.

Once all the necessary information is known, a SOME/IP message is
constructed and filled with the supplied parameters from the user input. The
message type is set to request in case of a "Get" action and a fire&forget if the
selected action is "Set". The payload is checked for the need for fragmentation,
and the SOME/IP-TP method is used if required. The created SOME/IP
packet with the payload is embedded into the transporting protocols (Ethernet,
IP, and UDP). The message is sent, and the action is recorded in the console
and the GUI log. The thread is ended if the acknowledgment message is not
expected.

Algorithm 6 Send Message Thread
1: get service address and port
2: if fragmentation needed then
3: TP flag ← 1
4: end if
5: create SOME/IP header
6: if payload then
7: if TP flag then
8: for each fragment without the last do
9: send fragment

10: end for
11: TP flag ← 0
12: end if
13: end if
14: send message ▷ or last fragment if TP
15: if wait for ACK then
16: wait for ACK
17: end if
18: acquire thread lock
19: remove itself from the record
20: release lock
21: end thread

If the acknowledgment message is expected, the message send thread is set
to the waiting state, watching for the signal from the asynchronous listener.

32

..................................... 3.4. Test server

If the acknowledgment message is received within a specified timeout, the
operation is successful. The end is then the same as in the non-waiting
scenario.

3.3.7 Subscribe thread

The subscribe thread is, at its core, very similar to the send message thread.
Again the first action is to find out the address and the port of the unit
providing the wanted subscription. An appropriate service template is looked
up and used to create the SOME/IP-SD packet embedded in the SOME/IP
packet. The IPv6 option is added to the SOME/IP-SD packet with the
information about the client. The message is sent, and the thread is set to
the waiting state, waiting for the eventgroup acknowledgment message. The
ACK signaling is identical to the one implemented in the send message thread.
The result is displayed in the console and the GUI log, after which the thread
ends.

3.4 Test server

A test server was implemented to enable testing and tuning the client without
the need for real hardware. The test server has been written in such a fashion
that extending it and implementing new features is easy. The program works
as a typical server unit, listening to the ports and providing responses to the
individual clients, in this case, only one client. Similarly to the client, the
server is written as a multi-threaded Python program. The main thread can
be divided into three phases: parsing, initialization, and sniffing.

Figure 3.5: Server main thread flowchart

33

3. Implementation....................................
Parsing

In a parsing phase, the server first gets the arguments from the command
line, e.i., the client’s IP address and port as well as its own IP address and
port. The default ports for client-server communication are 30480 for the
server and 30490 for the client. The second data to parse is the set of service
definitions. This process is identical to the service definitions parsing on the
client side, described in Section 3.2.

Initialization

The initialization phase contains the initialization of the Server class instance
and two primary threads. The Server class instance takes as an argument all
the data gained from the parsing phase. It prepares all the locks for the threads
and sets the values of the parameters such as the rate of supplying notifications,
rate of sending offers, and flag, deciding whether an acknowledgment message
is expected.

The first primary thread is the thread manager. It keeps track of each
running thread and deletes the record of those that have ended. It runs its
checking loop each second; however, this can be tuned to the user’s needs.

The second primary thread is the offer thread. This thread offers the
selected service to the client. Multiple instances of this thread can be run, by
default, only one service is offered, meaning a single instance is started. The
rate of sending offers can be tuned in the Server class instance, however, all
offer threads must run at the same rate. When sending an offer, a SOME/IP
packet with an incremented session ID is created, in which a SOME/IP-SD
offer service entry is embedded. A default time-to-live value is five seconds.
An IPv6 endpoint option is added to the SOME/IP-SD frame containing the
server’s IPv6 address and port. Finally, the message is sent to the client.

Sniffing

The primary purpose of the test server is to listen to the messages transmitted
by the client, check them, and provide replies. First, the server checks if the
message contains a SOME/IP header. Using this header, more information
about the message can be found out. The presence of service discovery
extension can be determined using the Sub ID bit. In case the service
discovery extension is present, the message is dismantled into individual
entries, which are processed one by one. The server is expecting only two types
of SOME/IP-SD messages, the find service entry and subscribe eventgroup
entry.

34

..................................... 3.4. Test server

Algorithm 7 Subscription Thread
1: sleep_time = 60/rpm ▷ rpm is given from Server initialization
2: max_c = ttl/sleep_time ▷ ttl is received from Client
3: c = 0
4: get the method template
5: while c < max_c do
6: fill values randomly
7: construct SOME/IP notification message
8: send notification
9: count± 1

10: wait(sleep_time)
11: end while

Algorithm 8 Server Sniffing
1: while True do
2: sniff 1 packet
3: isolate SOME/IP frame
4: check SUB ID
5: if SD then
6: for every entry do
7: get corresponding option
8: if entry type is Find Service then
9: send offer

10: else if entry type is Subscribe Eventgroup then
11: if service is offered then
12: send Eventgroup ACK
13: start subscribe thread
14: end if
15: end if
16: end for
17: else
18: send ACK
19: check for TP flag
20: decode payload
21: if action is "Get" then
22: get method template
23: fill values randomly
24: send response
25: end if
26: end if
27: end while

35

3. Implementation....................................
. Find service - the service ID is checked, and if available, an offer is

sent to the client. Subscribe eventgroup - the service ID is checked, and if available, the
server responds with a subscribe eventgroup acknowledgment message
and starts the subscription thread

In the absence of the service discovery extension, an acknowledgment
message is returned to the client. The message is checked for the TP flag,
awaiting the following fragment if set. The test server works only for the
"Get" action message, e.i., the fire&forget mode. If the message contains
any payload, it is decoded and checked for test commands from the client.
Standard "Get" action SOME/IP messages do not contain any payload; thus,
it is easy to separate the test messages from SOME/IP ones. For standard
SOME/IP messages, the service and the method are determined, and the
appropriate values are filled with random numbers corresponding to their
codings. The test commands are in the form of a string encoded using the
UTF-8 standard [17]. The following three commands were implemented:

. Start Offer Thread x - a new offer thread is started, offering a service
with ID = x. Stop Offer Thread - all currently active offer threads are ended.Quit Server - all threads are ended gracefully, and the server shuts
down

3.5 User interface

The client is controlled via the built-in graphical user interface. Controllability
via the console has been retained, but usage of the graphical user interface is
preferred.

3.5.1 Graphical user interface control

The graphical user interface is divided into five main sections.

The first section, located in the upper left corner, shows the list of available
services which have been received from the parser. By clicking on a service,
available actions are shown to the right. Depending on the chosen service, up
to four actions appear: Get, Set, Notification, and Subscribe. After choosing
an action, more information is displayed in the information section on the
right. Here the user is expected to select the desired method. If chosen action
is get or subscribe, the send button is enabled, and the message can be sent.

36

.................................... 3.5. User interface

Otherwise, the method’s data is displayed in a form in the right part of the
information section. After at least one value has been set, the send button is
enabled, and the message can be sent.

Above the information section is the section advertising received offers.
Each log consists of the remaining time and the service name. The remaining
time is decremented every 0.25 seconds so to give a rough idea until when
the offer is valid.

In the bottom left corner is the log. The log prints everything that happens
to the client, such as confirmation that the message is sent successfully or
a notification that the client received a message. Messages containing some
data are clickable, and additional information about the message is presented
in the information section. At the moment, only send button and quit button
are situated here. The send button takes the data from the form above and
signals the client to send the message. The quit button shuts down all threads
running for the client and ends gracefully. The layout of the graphical user
interface can be seen in Figure 3.6.

Figure 3.6: GUI layout

In order to send SOME/IP messages from the graphical user interface, a
service has to be chosen in the service section. By clicking on the service,
the label darkens, and the selection of methods appears in the information
section. Select a method, and its data content will be visible in the right part
of the information section. Fill in the form; at least one value has to be filled
in. When the form is filled, press the button with the label "Send" to signal
the client to send the message.

To subscribe to a service, simply choose a service and method with the
subscribe action and click the send button. If the subscription was successful,
a confirmation message appears in the log. After that, the log periodically
displays the subscribed service. Again this message is clickable for additional
information.

37

3. Implementation....................................
3.5.2 Console control

For convenience purposes, the console control has been retained. This ap-
proach’s main drawback is its non-flexibility and difficult user-friendliness.
The control keys are laid-out in Table 3.1.

Commands
Input Description

h Print the help
s Send a fire&forget message not demanding a response
r Send a message demanding a response
a Display all current offers
p Subscribe to a service
u Unsubscribe from a service
q Quit a client

Testing commands
Input Description

m Send a magic cookie
o Signal a test server to start a offer thread
t Signal a test server to stop all offer threads
f Ask a test server if it supports a service
e Quit a client as well as test server

Table 3.1: Description of individual console commands.

To send a message, it is required to press the corresponding key on the
keyboard, choose a service and a method, and fill the fields with values. A
more detailed description is provided in Section 3.3.4. The process of sending
a SOME/IP message is captured in Figure 3.7.

What a graphical user interface does not possess is a testing suite for a
test server. By pressing the corresponding keys, the client can control the
test server and its behavior. Operations such as creating and ending offer
threads, finding certain services, or sending a magic cookie are exclusive to
the console control and the testing suite. To learn more about the testing
commands, see Section 3.4.

38

.................................... 3.5. User interface

----- Select a service from the list -----

0: Service 1
1: Service 2
1

----- Select a method from the list -----

0: Method 1
1: Method 2
1

----- Select a field from the list to set -----

0: Value 1
1: Value 2
1
Input a value for field Value 2
11
[None, 11]

----- Set another value or hit enter to send -----

0: Value 1
1: Value 2

INFO: Sending service Service 2, method Method 2 with
data [None,11]

Figure 3.7: Imitation of the message sending operation via the console, sending
service Service 2, method Method 2 with data Value 2 = 11

39

40

Chapter 4

Testing

At first, the implemented client was tested with a virtual server, described in
Section 3.4. After the validation of its functionality, a testing HIL (Hardware-
in-the-Loop) was built to verify its performance on real hardware, testing the
functionality of the client as well as the behavior of the units.

4.1 Virtual server

The tests with the virtual server aim to prove that the SOME/IP protocol
was well implemented and functions according to the specifications. Apart
from the functionality validation, the client’s parameters can be measured,
primarily the time it takes to complete specific tasks. These tests were
conducted on a single portable computer running Ubuntu 20.04 with a
seventh-generation Intel i7 processor, which may influence the measurement
of the client’s parameters.

But first, the client was tested for functionality defined by AUTOSAR
specifications. The client was tested on how it handles regular SOME/IP,
SOME/IP-TP, SOME/IP-SD, and overall communication. The client passed
all the necessary tasks, clearing the way for testing the client’s features and
qualities.

To test the client’s performance, the operation time was measured for its
critical tasks. For objectivity, each measurement was repeated 25 times and
averaged. The test results are displayed in Table 4.1; all presented values are
in milliseconds.

The first performed action was to send a "Get" message to the server without
knowing the unit’s address. The timer started with a push of a button in the
GUI and ended the moment the message was sent. The measured values varied
substantially, with a standard deviancy of nearly 25 milliseconds (coefficient
of variation over 13 %).

41

4. Testing
The second action was acquiring a subscription. The conditions were

identical to the prior operation; still, the subscription process managed to
overdo the previous action. The deviancy increased to approximately 31
milliseconds (coefficient of variation of 16.3 %).

Description Average Maximum Minimum Deviancy

send "Get" message 184.092 225.979 145.416 24.95
subscribe to a service 190.111 234.097 144.852 30.974
find service 146.056 159.297 129.641 10.103
parsing phase 342.724 370.178 319.1 17.45
initialization phase 1.53 1.944 1.204 0.231

Table 4.1: Measured times for virtual test, displayed in milliseconds

The surprise of this test came in a standard deviancy calculation for the
find service procedure. It was expected that the most significant contributor
to the overall deviancy would be the find service thread, as it must wait
for the response. This thread, however, contributed to the deviancy only
marginally, with just 10.7 milliseconds (coefficient of variation under 7 %).
Without the find address procedure, the send message and subscribe actions
had coefficients of variation of 25.6 % and 39.1 %, respectively.

The parsing phase timing was conducted with the second parser (parsing
from Wireshark definitions), as they include a wider selection of services. The
average time of 343 milliseconds is understandable, considering the data is
parsed from over 18 thousand lines spread over ten files.

4.2 HIL

When the theoretical functionality was confirmed, it was time to move to
more practical tests. For this purpose, a functioning HIL was assembled.
These units were originally intended to be used in Enyaq, Škoda’s first electric
SUV (sport utility vehicle). The units were connected together according to
internal schematics. A broader schematic is shown in Figure 4.2. The full list
of individual units is presented here:

. ICAS1 - (In Car Application Server 1), a primary server offering most
of the services. ICAS3 - (In Car Application Server 3), a secondary server offering some
additional services.OCU - (Online Connectivity Unit), a unit in charge of wireless commu-
nication, such as LTE networks

42

...4.2. HIL

Figure 4.1: Photo of the connected HIL

. SAM - (Signal Acquisition Module), a unit receiving data from sensors
and controllers. ELV - (Electronic Steering Lock), a unit responsible for locking and
unlocking the steering wheel.KESSY - (Keyless Entry Start and Exit System), a unit enabling keyless
access and starting.Button - a standard button often found next to the steering wheel, used
to start the car without the need for an ignition key

The units were connected via the standard wire, colored black in Figure 4.2.
The coloring of additional connections depends on the interface used. The
twisted pair cable transmitting the Ethernet protocol is colored blue, while
the twisted pair cable used for CAN (Controller Area Network) is colored
red. The power supply cables and ground cables were omitted from the
schematic. The Ethernet line between ICAS1 and ICAS3 was split to connect
the computer running the client using a switch. The HIL was supplied with
12 volts and an average current consumption of 1.6 ampers from the Agilent
E3633A power supply.

In order to infiltrate the private network present in the HIL, the client has
to imitate and replace one particular unit. As we split the Ethernet between
ICAS1 and ICAS3, we chose to disconnect the ICAS3 unit and replace it with

43

4. Testing

Figure 4.2: HIL schematics

our client. ICAS1 was manually added to the neighbour table. Finally, the
switch was configured to add a VLAN tag to each packet coming from the
computer running the client. The correctness of the computer’s connection
was verified by carrying out a ping command sent to the ICAS1 unit. The
average time measured between sending and receiving the ping was 0.495 ms.

Figure 4.3: Image of a GUI after sending a "Get" request

With the computer successfully connected to the network, the client was
supplied the necessary arguments and started. Immediately over fifty offers
were displayed in the GUI offer tab. Sending a "Get" message to the unit

44

...4.2. HIL

Figure 4.4: Image of a GUI receiving notifications from a subscription request

correctly returns the default values, as we do not have any sensors and
actuators connected. The time between sending and receiving the message,
measured for ten different services, was 8.22 ms. Little disappointingly,
setting a value results in a successful response; however, requesting them
after returns again the default values. It is unclear whether the values were
set and immediately replaced by default values or whether the values were
never changed. The next step was to try the subscription. After realizing
that all the service discovery messages must be sent from the broadcast port,
a successful subscription acknowledgment was received. The average time of
waiting for this acknowledgment out of 10 measurements was 0.256 ms. This
average value is substantially smaller than the one measured for standard
SOME/IP messages. This makes sense, as, in this case, the unit does not need
to get the values from the memory and search templates for the particular
service. The average time between the subscription request and the first
notification is much closer to the standard request message, 10.063 ms. The
delay between each notification varies from service to service.

Figure 4.5: Zoomed in offer log

Next test aimed to verify the error code implementation inside the unit.

45

4. Testing

(a) : Log (b) : Data

Figure 4.6: Zoomed GUI log and information section

The aim was to malform the packet in some way to trigger the error response.
By malforming the packet, we were not able to observe any unexpected
behavior, and the unit simply returned an error code. It must be added that
this test was only superficial, not proving any invincibility of this protocol.
This remains to be explored in future studies.

Even though the ICAS1 offers more than fifty services, the majority of
them do not return any payload, which probably means they are yet to be
implemented by the manufacturer.

46

Chapter 5

Conclusion

In this thesis, all the protocols needed for SOME/IP communication were
described in detail. All the findings were utilized in writing a SOME/IP
client capable of standard SOME/IP communication, as well as the use of
the service discovery extension. A client using SOME/IP according to the
specified descriptions was implemented, together with a parser used to get
information about individual services. A complimentary virtual test server
was implemented for fundamental testing and debugging. The final SOME/IP
client was run on a real HIL and subjected to a couple of basic tests. It
is unfortunate that the units were not nearly as prepared for a full-scale
SOME/IP communication as the client allows.

Because of its multi-threaded foundations secured by locks, the client is
fast, robust, and equipped to handle an extensive network. During testing,
the client worked as expected, prepared for use in a project examining the
depths of SOME/IP communication or using the SOME/IP protocol for a
specific reason.

Two major areas of improvement were recognized. Firstly, the service
definitions need a bit of a refinement, eliminating mistakes in the source files
and simplifying the description. Secondly, a more responsive and engaging
GUI, or maybe outright an application, would be an excellent tool for easier
testing and use of the SOME/IP protocol.

47

48

Appendix A

Bibliography

[1] Protocol numbers. https://www.iana.org/assignments/protocol-n
umbers/protocol-numbers.xhtml#protocol-numbers-1. Accessed
on May 14, 2023.

[2] The world counts. https://www.theworldcounts.com/challenges/pl
anet-earth/state-of-the-planet/world-population-clock-live.
Accessed on May 13, 2023.

[3] Ieee standard for local area network mac (media access control) bridges.
ANSI/IEEE Std 802.1D, 1998 Edition, pages 58–109, 1998.

[4] Ieee standard for local and metropolitan area networks: Media access
control (mac) bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std
802.1D-1998), pages 137–179, 2004.

[5] AUTOSAR. SOME/IP protocol specification. https://www.autosar.
org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtoco
l.pdf, Nov 2022.

[6] AUTOSAR. SOME/IP service discovery protocol specification. https:
//www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS
_SOMEIPServiceDiscoveryProtocol.pdf, Nov 2022.

[7] Vangie Beal. The 7 layers of the osi model. https://www.webopedia.
com/definitions/7-layers-of-osi-model/, Apr 2022.

[8] P. Biondi. Scapy. [online] Available: https://scapy.net/.

[9] V. Cerf and R. Kahn. A protocol for packet network intercommunication.
IEEE Transactions on Communications, 22(5):637–648, 1974.

[10] Michelle Cotton, Leo Vegoda, Ron Bonica, and Brian Haberman. Special-
Purpose IP Address Registries. RFC 6890, April 2013.

[11] Martijn Faassen. lxml. [online] Available: https://lxml.de/.

49

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml#protocol-numbers-1
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml#protocol-numbers-1
https://www.theworldcounts.com/challenges/planet-earth/state-of-the-planet/world-population-clock-live
https://www.theworldcounts.com/challenges/planet-earth/state-of-the-planet/world-population-clock-live
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.webopedia.com/definitions/7-layers-of-osi-model/
https://www.webopedia.com/definitions/7-layers-of-osi-model/
https://scapy.net/
https://lxml.de/

A. Bibliography.....................................
[12] Simon Frohn and Fabian Rees. From signal to service. https://cdn.ve

ctor.com/cms/content/know-how/_technical-articles/Ethernet
_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticl
e_EN.pdf, Mar 2018.

[13] Wanlin Huang and Xuesong Mao. Decision feedback equalization for en-
hancing plastic optical fiber transmission in automotive optical ethernet.
In Advanced Sensor Systems and Applications XII, volume 12321, pages
227–232. SPIE, 2022.

[14] Teledyne LeCroy. Fundamentals of 100base-t1 ethernet. https://www.
teledynelecroy.com/doc/100base-t1-ethernet-appnote. Accessed
on May 24, 2023.

[15] Kirsten Matheus and Thomas Königseder. Automotive ethernet. Cam-
bridge University Press, 2021.

[16] Nicolas Navet and Françoise Simonot-Lion. Automotive embedded systems
handbook. CRC press, 2017.

[17] François Yergeau. UTF-8, a transformation format of ISO 10646. RFC
3629, November 2003.

50

https://cdn.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/Ethernet_AUTOSAR_Adaptive_Elektronik_Automotive_201803_PressArticle_EN.pdf
https://www.teledynelecroy.com/doc/100base-t1-ethernet-appnote
https://www.teledynelecroy.com/doc/100base-t1-ethernet-appnote

	Introduction
	Background
	Ethernet
	Automotive ethernet

	IP
	IPv4
	IPv6

	Transport protocols
	UDP
	TCP

	SOME/IP
	SOME/IP-SD
	SOME/IP Structure
	SOME/IP-SD Structure
	SOME/IP Serialization

	Implementation
	Packet definitions
	VW Resource Protocol
	Client
	Main thread
	Asynchronous listener
	Offer thread
	Console thread
	Find thread
	Send message thread
	Subscribe thread

	Test server
	User interface
	Graphical user interface control
	Console control

	Testing
	Virtual server
	HIL

	Conclusion
	Bibliography

