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Abstrakt : Tato bakalářská práce se zabývá tvorbou a programováńım algoritmu pro de-

tekci j́ızdńıho pruhu za pomoci záznamu z kamery, který může být použit pro ř́ızeńı

robotického voźıtka, osazeného kamerou a jednočipovým poč́ıtačem. Ćılem práce je

otestováńı vyvinutého algoritmu na voźıtku osazeném poč́ıtačem Nvidia Jetson Nano.

V souladu s ćılem práce bude do textu pr̊uběžně zařazován přehled a vysvětleńı metod

použ́ıvaných pro navigaci autonomńıho voźıtka, jež využ́ıvaj́ı zpracovańı obrazu z kamery.

Pro naprogramováńı algoritmu byl zvolen jazyk Python, jelikož disponuje podporou kni-

hovny OpenCV, jenž poskytuje množstv́ı předdefinovaných funkćı a metod pro zpracováńı

obrazu. Při předzpracováńı obrazu bylo využito perspektivńıch transformaćı, které jsou

v této problematice často použ́ıvány pro usnadněńı detekce. Byla využita známá bi-

narizačńı metoda Otsu, jej́ımž výstupem je binárńı obraz, ze kterého detekuje hranice

j́ızdńıho pruhu metoda zvaná Sliding window.

Výsledkem je kód pro algoritmus, který může být v budoucnu použit jako základ pro

vývoj algoritmu na ovládáńı ř́ıd́ıćı nápravy voźıtka. Vzhledem k okolnostem pandemie

byla oblast testováńı algoritmu zúžena pouze na testovaćı videa z autokamery. Zároveň

byla ověřena a vyhodnocena použitelnost některých koncept̊u pro detekci j́ızdńıho pruhu.

Title: Camera-controlled autonomous robotic vehicle

Abstract : This thesis deals with development and programming of a lane detection algo-

rithm which, based on camera input, can be used for steering a robotic vehicle equipped

with single–board computer and camera. The goal is to test the algorithm developed,

using a vehicle equipped with an Nvidia Jetson Nano computer. Throughout the thesis,

an overview of camera–based navigation methods will be included to correspond with the

goal.

Python is the programming language of choice, thanks to the support of OpenCV library,

which contains many predefined functions and methods used in image processing. The

algorithm will utilize perspective transformations, which are often used in lane detection

algorithms. The Otsu method was the binarization method of choice, which outputs a

binary image. This binary image is then processed by the lane detection method called the

sliding window. The output of the thesis is a source code for the algorithm, which can be

used in future development of an algorithm for vehicle steering. Given the circumstances

during the pandemic, the testing was reduced to sample test videos from a dash cam.

Additionally, the usability of some lane detection concepts was proved and evaluated.
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Introduction

As the subject of this thesis, I have chosen Camera-controlled autonomous robotic vehicle,

because it opens the door to a world of computer vision, which is an exciting field, currently

utilized in many areas of industry. The goal of this thesis is to develop an algorithm for

lane detection, which could be used in the development of more complex autonomous

vehicle software for a small toy car equipped with a camera and a single-board computer.

To accomplish this task, I will have to understand key principles that are the backbone

of this entire field. Principles such as convolution, some topics of discrete mathematics,

statistics, and many more. This knowledge base will then provide a sufficient foundation

for understanding and, therefore, describing methods, typically utilized in solutions within

the scope of the matter. This includes basic principles and methods used for image

segmentation, color spaces, or lane detection algorithms.

As for the practical part, the developed algorithm will be put in Python code, which could

be used later for testing on the vehicle. The code will be tested on a set of sample videos

to prove its functionality. When the results of this testing will be satisfactory, testing

on the toy car can begin. As a result, an edge detection algorithm will be developed. It

should be possible to use this algorithm as a base for automating the steering of the toy

car so that it can follow a simple track.

Motivation

As stated at the beginning, computer vision is a scientific field, which finds use in many

areas of today’s industry. From miracles of modern medicine, over trend setting in auto-

mated agriculture, to defining future of automotive industry, where autonomous driving

technologies are one of the most discussed topics, with industry giants like BMW, Daim-

ler, MobilEye or Tesla investing large resources into developing an autonomous vehicle

systems.

Another popular field, closely related to computer vision and its use cases, is artificial

intelligence and machine learning. It is safe to say that without combination of both, the

probability of developing an autonomous vehicle would be low, maybe none.
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Computer vision and relative areas are heavily used in ADAS (Advanced Driver Assistant

Systems), which are supposed to prevent death and injuries by reducing the number of

incidents. Key ADAS applications are, for example: Pedestrian detection, Lane departure

warning, Automatic emergency breaking and more. It has to be said that these features

are present in the vast majority of new cars and most of them utilize computer vision.

Earlier this year (2022), Mercedes-Benz unveiled the Level 3 Drive Pilot, which is the first-

level 3 autonomous driving system with international valid certification. This means that

the vehicle is capable of fully autonomous driving up to a speed of 60 kph in a highway

environment. The same was achieved earlier by Honda, with their new Legend being also

a level 3 autonomous vehicle; however, at the time of this thesis, it is not available outside

of Japan. This leap in technology will surely result in further development.

List of Contributions

This thesis contributed to the project with the following:

• The use of Otsu binarization and sliding window methods was verified, showing

strong positive results if certain conditions are met

• The source code, which is the output of this thesis, will be used by future students,

providing a solid base for improvements and innovation

• future improvements were proposed.

Structure of the Thesis

In the beginning, a theoretical background (1) will be covered. Beginning with the in-

troduction of color spaces, like RBG, CMYK, and others, which are heavily utilized in

computer vision, continuing with the presentation of crucial mathematical concepts that

make this thesis possible. These concepts include discrete derivatives, gradients, and

more. Next, we will move to the introduction of traditional edge-detecting methods, such

as the Sobel operator or Canny edge detector. All of those utilize mathematical knowl-

edge, which was introduced prior. Moving on to concepts of thresholding and perspective

transformation. Both will play a defining role in the forthcoming practical section. Lastly,

we will introduce the current state of the art in the field of edge detection (2).

Everything has to start somewhere, and this part of the thesis will begin with the descrip-

tion of the first attempts at building the algorithm (3).I will show the concepts on which I

tried to build the algorithm and which eventually failed, but the gained experience helped

me on the way to the final version, which will be closely introduced with code samples

later. In the following chapter (4), we will share the build of the algorithm and the vehicle

8



itself. Here, I will also include the experience when I was assembling the vehicle, as well as

provide some details of the setup. . Comming closer to the final conclusion, the testing of

the algorithm will be covered (5), with possible improvements to the algorithm introduced

and briefly described. And finally, the thesis will be concluded with an evaluation of the

results.

9



Chapter 1

Background

In this chapter, I will introduce basic principles often used in computer vision. This

includes color spaces, mathematical operators, or an overview of common edge detectors

just to name a few. Understanding these principles is essential for the future development

of more complex solutions.

1.1 Color Spaces

A color space is an organized set of colors. With a weighted combination of the principal

color wavelength, it is possible to create almost any color [1]. These colors also form a co-

ordinate system for color measurements. In addition, different color spaces favor different

purposes. For example, the convenient RGB color space is valuable in programming [2],

however, the resulting color does not always match the color the human eye perceives.

Many challenges of computer vision encounter difficulties with object detection under

different lighting conditions. This is the area where color spaces become useful.

1.1.1 Turning Gray

For some applications, a grayscale image is needed. An achromatic image loses color

information, and the gray level (intensity) becomes the only attribute [3]. This loss of

information can be beneficial in further processing, where color does not play a significant

role, e.g., edge detecting, smoothing, and so on.

Often, the user can find a need to convert a color image in RGB color space to a grayscale

for further processing. It is done by using a weighted sum of color components, where it

is necessary to take into consideration that human vision perceives each of the basic RGB

colors differently. Therefore, if the weights are not used, the resulting image will appear

dark in the ”green” and ”red” areas and bright in the ”blue” ones [2]. That is how we

10



get the following formula for RGB to grayscale conversion.

Y = Luminance(R,G,B) = wr ·R + wg ·G+ wbB (1.1)

Some specific values of each weight applied to equation (1.1) were developed, for example,

to encode analog and digital color.

1.1.2 RGB

One of the most widely used linear color spaces is the RGB color space [4]. As the name

suggests, the primary colors of this color space are Red, Green, and Blue. The space is

represented by a normalized cube, a unit cube, where, at the origin, the black is located.

The farthest point away from the origin represents white and on the connector of these

two points is where the gray scale lies [3]. The number of bits that represent a pixel is

called pixel depth.

Figure 1.1: Weighted RGB cube1

1.1.3 CMY & CMYK

The CMY name comes from the three subtractive secondary colors, cyan, magenta, and

yellow. It is a subtractive color model, which means that these primaries should be viewed

as the colors that are subtracted from the white light. Secondary colors mean that it is

possible to create them using primary colors: cyan is B + G (blue and green); magenta is

R + B (red and blue), and yellow is R + G (red and green), as visible in figure 1.1 above

[3].

1https://www.researchgate.net/figure/The-RGB-colour-cube_fig1_304240592
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Because mixing colors causes poor black, most printing devices, for example, use the fourth

ink - black, and so we have to introduce the CMYK color space, where ”K” represents

black. This color model also finds use in printing, where black(or lack of it) is noticeable

and affects the overall output quality.

The color coordinates can be, due to their close relation, converted from RGB to CMY

in a simple way:

CM
Y

 =

255255

255

−

RG
B

 (1.2)

1.1.4 HSV

In the real world, our sight does not follow these principles. Instead, the human eye can

detect the color’s brightness, saturation, and hue, and this is exactly what the HSV color

space (hue, saturation, value) attempts to represent. Note that the HSV color space is

sometimes referred to as an HSB, where B stands for brightness, but technically it is the

same color space.

This color space is often presented as a cone [5], where the black is located at the tip.

From here up, the height of the cone represents the value, the amount of light reflected

by the color, so logically, at the other end, is where the white color is located. Changes

in Hue are represented by the angle in the range ⟨0, 360⟩. Finally, the horizontal axis is a
representation of saturation.

Figure 1.2: HSV cone2

2https://desktop.arcgis.com/en/arcmap/10.7/manage-data/raster-and-images/color-

model-conversion-function.html
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1.1.5 Lab

This color space (also known as CIELAB or L*A*B) is a 3-dimensional system that

consists of lightness (L), and color dimensions (a,b). One of the key properties of this

color space is its independence and exactness of the device [6]. These make the Lab color

model suitable for carrying color information from device to device, i.e., use in many

different industries.

Although the color representation is the most accurate, it is often converted to less ac-

curate color spaces. The reason behind this is that computer screens, printers, and other

devices use three or even four colors for image representation.

1.1.6 YCrCb

The YCrCb color space is derived from the RGB model, which was mentioned before.

It is standardized for digital television and image compression [2] and is used for these

purposes due to its lower bandwidth requirements. Because in the RGB model, each color

component has to have equal bandwidth [7], YCrCb color model separates the brightness

component Y (Luma component), Cr and Cb (chroma red and chroma blue). It was

shown that the human eye is more sensitive to changes in brightness than to color, which

is the reason behind this separation: It is possible to send Cr and Cb at a lower rate than

Y, resulting in bandwidth and cost savings [7].

YCrCb can be represented as RGB as a cube. Unlike the RBG cube, where white and

black are located in opposite corners (can be seen above (1.1)) making up a ”grayscale

diagonal”, here white and black are located in the center of the cube’s sides.

In some cases, an interactive example is more useful than a whole book of theory. For these

purposes, I can recommend a well-created website [5], which was created as a practical

exercise of a bachelor’s thesis at Paderborn University. This website provides, in my

opinion, excellent interactive representations of color spaces with a brief introduction.

1.2 Computer Vision and Digital Image Processing

1.2.1 Derivatives

The concept of a derivative is fundamental in image processing and is applied in many

of its areas. Anyone, who participated in any calculus course should be familiar with the

following notation:
∂

∂x
f (x) = lim

∆x→0

f (x+∆x)− f (x)

∆x
(1.3)

13



This is a definition of a first–order derivative. In computer vision, however, we are working

with a discrete image. Therefore, it is necessary to reformulate this definition for discrete

functions. To be able to apply the derivative to a discrete function, the concept of finite

difference has to be introduced. Finite difference is, very simply, a distance between 2

points. It is possible to use the concept of finite difference to approximate the derivatives

[3]. In the case of a digital function, ∆x is the distance measured in pixels and defines the

distance between samples of an image function. Because of all of this, we can reintroduce

the first-order derivative in the following notation.

∂f(x)

∂x
≈ f(x+ 1)− f(x) (1.4)

The second–order derivative can be approximated in a similar way. It is possible to think

of the second–order derivative as a ’difference of a difference’, so at least 3 pixels are

required [8].

∂2f(x)

∂x2
≈ f(x− 1) + f(x+ 1)− 2f(x) (1.5)

∂2f(x)

∂y2
≈ f(y − 1) + f(y + 1)− 2f(y) (1.6)

Because finite differences have a strong response to sharp changes in pixel intensity, and

therefore noise can destroy the output, we will need a smoothing tool of some sort to

reduce its effect on the result (more on smoothing, etc. later).

1.2.2 Convolution

Firstly, it is necessary to introduce a couple of basic principles. The process of applying a

pattern of weights for a linear filter (kernel) is usually called convolution [3]. A convolution

is one of the fundamental operations in image processing [1]. In simple words, performing

a convolution of two functions means rotating one of these functions by 180 degrees,

taking the function at its origin and sliding it past the other function [3]. Then, at each

sliding displacement, a computation is performed or, as Ballard said [1], the value of the

convolution at any displacement is the integral of the product of the values of the functions

(relatively displaced). Therefore, the formal notation of convolution is as follows:

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ (1.7)

Convolution also , just like its less sophisticated brother multiplication, has some algebraic

properties, such as commutativity, associativity, distributivity, etc.. (The notation below

14



is in this order).

(f ∗ g) = (g ∗ f) (1.8)

(f ∗ g) ∗ h = (h ∗ g) ∗ f (1.9)

h ∗ (g + f) = (h ∗ g) + (h ∗ f) (1.10)

However, since the signal on which the convolution is performed is not a continuous signal

but a discrete signal, it is necessary to take this fact into account and apply a discrete

convolution:

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (1.11)

The mechanics of convolution are applied in many areas of computer vision, for example,

smoothing, and some edge-detecting techniques are based on kernel convolution, a simple

convolution filter, which will be discussed later in this thesis.

1.2.3 Gradient

The gradient is a vector that points to the maximum rate of change of a function f at a

single point. After computing the values for all points (x, y), ∇f(x, y) becomes a vector

image, where each element is a vector calculated using the equation below [3].

∇f(x, y) =

[
∂f

∂x
,
∂f

∂y

]
(1.12)

Most edge detection methods start with estimating the magnitude of an image gradient

[4]. We can compute the magnitude of the gradient with the Euclidean vector norm to

determine the strength of the edge. In real-world applications, it is common to apply a

threshold, so only edges that exceed the chosen value are taken into further processing

[4].

M(x, y) = ||∇f(x, y)|| =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

(1.13)

We have obtained the magnitude, but we do not know in which direction the rate of

change is the highest. The angles are measured counterclockwise, with respect to the

x-axis [3].

α(x, y) = arctan

(
∂f
∂y

∂f
∂x

)
(1.14)

To opt for the image gradient, it is necessary to compute partial derivatives (∂f
∂x
, ∂f
∂y
) on

every pixel of an image. This is implemented in Gradient operators (Prewitt, Sobel, etc.),

on which I will touch later, in other chapters.
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1.2.4 The Gaussian

Sometimes, there is a need for fewer details in an image, so the resulting image (after edge

detection, for example) is not too busy and contains only the important information. The

most commonly used process is smoothing.

The Gaussian smoothing operator is a circularly symmetric convolution kernel [3]. Each

pixel of the input array (the image) is convolved with the Gaussian kernel to create the

output array (blurred image). When that happens, the output image loses details and

noise compared to the input image. Although not the fastest filter, Gaussian smoothing

is probably the most useful. [9].

The kernel is essentially a representation of a 2D Gaussian distribution, where σ stands for

the standard deviation. The σ and the mean completely define the Gaussian [3], however,

the mean of the kernels is zero.

Figure 1.3: 2D Gaussian distribution3

G(x, y) =
1

2πσ2
e

−x2−y2

2σ2 (1.15)

Now, just like in the case of the gradient, the resulting kernel, which is applied in computer

vision, is an approximation. Otherwise, the kernel would be infinitely large. Theoretically,

the values of the distribution are small enough that they can be ignored in the area past 3

standard deviations. This essentially means that using a kernel larger than 6σ x 6σ does

not bring any benefits [3]. Thus, the dimension of a kernel is the smallest integer that

satisfies this condition.

The two properties of Gaussian are that the product and convolution of two Gaussians

are Gaussians as well. Because of that, the 2D Gaussian is separable into vertical and

horizontal components. Then, the convolution is performed separately in the x and y

directions.

3https://www.researchgate.net/figure/2D-Gaussian-distribution-with-mean-0-0-and-s-

1-Source-http-wwwceehwacuk_fig1_26487220

16

https://www.researchgate.net/figure/2D-Gaussian-distribution-with-mean-0-0-and-s-1-Source-http-wwwceehwacuk_fig1_26487220
https://www.researchgate.net/figure/2D-Gaussian-distribution-with-mean-0-0-and-s-1-Source-http-wwwceehwacuk_fig1_26487220


1.2.5 The Laplacian

The Laplacian is a sum of second-order derivatives of a function. Because derivatives of

any order are linear operations, the Laplacian is also a linear operator [3].

∇2f =
∂2f

∂x2
+

∂2f

∂y2
(1.16)

However, in image processing, the Laplacian is used as a filter which, when applied to an

image, can be used for edge detection [8]. And because the image is a discrete function,

as in the case of convolution, a discrete version of the Laplacian operator has to be

introduced [10]. To do that, we add the notation of discrete second-order derivatives

mentioned earlier in (1.5).

∇2f = f(x− 1) + f(x+ 1)− 2f(x) + f(y − 1) + f(y + 1)− 2f(y) (1.17)

When applied, edges are represented with strong zero crossings in the Laplacian of an

image [8]. There are two things that we must keep in mind: the Laplacian does not

provide any information on the orientation of an edge and the sensitivity of the finite

difference to noise [8].

1.2.6 The Laplacian of Gaussian (LoG)

As mentioned above, using a Laplacian for edge detection can be tricky due to its sensi-

tivity to noise. Due to this fact, it is necessary to smooth the image first, convolving the

image function with Gaussian, for example, and then applying the Laplacian. Because

both the Laplacian and Gaussian operators are linear operators, it is possible to switch

the order of the operations to get the resulting operator named the Laplacian of Gaussian.

[11].

∇2(G(x, y, σ) ∗ f(x, y)) = (∇2G(x, y, σ) ∗ f(x, y)) (1.18)

The ∇2G(x, y) operator can be effectively approximated by the difference of two images

convolved by two Gaussians with different variances σ [11].

1.3 OpenCV Library

OpenCV is an open-source library for computer vision and machine learning. It was built

to provide a common infrastructure for computer vision and machine learning applications

with more than 2500 optimized algorithms. The library is natively written in C++,

however, there are interfaces for other languages such as Python, Matlab and others [12].

OpenCV library can run under Linux, MS Windows or even Mac OS X and Android [12].
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For the purposes of this thesis, I will use the OpenCV library with the Python interface.

Python was chosen for its intuitive syntax and relatively low requirements for computing

power, which is useful for implementation on a single-board computer, such as Raspber-

ryPI or Nvidia Jetson.

1.4 Edge Detection

Edge detection in general is one of the fundamental procedures in computer vision. The

main objective is to detect sharp changes in pixel intensity[11], which calls for the imple-

mentation of a derivative of first and second order. In the following text, edge detection

techniques and its components chosen for this project are explained.

1.5 Edges

As suggested above, the edge is defined by a abrupt change in the intensity of the pixels

(or the gradient (eq. (1.12)) value is extremal). These groups of points (edge points /

pixels) are a valuable source of information about the content of an image, because they

can create regions boundaries[3]. If the input image is turned into grayscale scheme to

remove excessive information, reserving only the information about pixel luminance, the

computation is going to be less demanding, and, therefore, faster.

It is possible to classify edges by their intensity profile. A transition between 2 intensity

levels is called a Step edge and represents ”an ideal edge” [11]. A Ramp profile is slightly

more realistic. As the name suggests, the transition runs over more than one pixel and

the slope is proportional to the level of blurring of the edge[3]. The roof edge is another

model of an edge, where the base of the ”roof” is determined by the width and sharpness

of the edge [3].

One of the special cases is a corner. Corners are interesting, because they can be localized,

but edge detectors and gradient operators often fail at corner points [4]. It is due to the

smoothing of the image, which covers the corner. These points are characterized by a

sharp change in gradient orientation in a small neighborhood. There are many corner

detectors; however, one of the most common is the Harris corner detector.

1.6 Prewitt mask

The Prewitt mask is a 3x3 convolution kernel, which computes the gradient using local

averaging in horizontal direction with one kernel (Gx) and in the vertical direction with

(Gy). This helps reduce noise compared to, for example, the Roberts operator, which
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implements a 2D kernel [1].

Gx =

1 0 −1

1 0 −1

1 0 −1

 , Gy =

 1 1 1

0 0 0

−1 −1 −1

 (1.19)

1.7 Sobel mask

Sobel operator/mask is another one of many gradient-based edge detection operators. It

utilizes two convolving kernels, one in the horizontal Gx direction and the other in the

vertical (Gy) direction. Each of the kernels can be applied separately, resulting in two

separate gradient images. The Sobel operator draws many similarities to the Prewitt

operator, with the main difference being the value of 2 (-2 respectively) in the centre

coefficients. The higher value of those pixels gives them more weight. Because of this, the

resulting image computed with the Sobel operator is less noisy than the Prewitt image.

Gx =

1 0 −1

2 0 −2

1 0 −1

 , Gy =

 1 2 1

0 0 0

−1 −2 −1

 (1.20)

1.8 Canny edge detector

The edge detector of choice for this project will be the Canny edge detector. It is consid-

ered to be one of the most widely used edge detectors in computer vision. John Canny

proposed this edge detection method with three main goals: bringing the number of false

edge pixels to minimum, improving edge localization, and delivering a single mark per

edge [2]. To achieve these goals, multiple methods are combined. It implements Gaus-

sian smoothing to reduce noise level, gradient operator to compute edge gradient and its

properties, and zero-crossing to improve edge localization.

Because the definition of the Canny edge detector is complicated, the process of detection

using the Canny edge detector can be described simply in the following steps:

• Use 2D Gaussian to smooth the image

• Use Sobel (or Prewitt) mask and compute the image gradient

• at each pixel, find the gradient magnitude

• at each pixel, find the gradient orientation

• at each pixel, compute Laplacian along the gradient direction

• Find zero crossings in Laplacian to find the edge location
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It is important to realize that the output of the application depends on the level of

smoothing; more specifically, it depends on the choice of the sigma parameter σ (1.2.4).

This effect could be represented by a simple example:

Imagine a very high-resolution image of an old asphalt or a tarmac road. If a Canny

edge detector is applied, the result is going to be very busy, including damage caused

by vehicles, weather conditions, etc., and differences in texture of already repaired areas

and the original surface of the road. Although it might sound very desirable, it is the

opposite: This image is very busy and contains edges, which have little to no use in

practice. Instead, if we manage to blur the image, the result will be less and less busy.

However, it is necessary to find a compromise between the sigma value, because we do

not want our image to be too blurry [13].

It depends on what is important for the user, and the Canny edge detector allows us to

change this via the change of one parameter, the sigma.

In Figure (1.4), you can see the difference in the output image using different operators.

For the image processed by the Canny edge detector, the low and high thresholds are

50,150 (a recommended ratio of thresholds is between 1:2 and 1:3 [9])

(a) (b)

(c) (d)

Figure 1.4: Comparison of edge detectors: (a) original image, (b) Prewitt, (c) Sobel and
(d) Canny
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1.9 Thresholding methods

Thresholding methods are used for image binarization, making further processing much

easier, if not possible. It is possible to classify thresholding methods into two categories –

fixed threshold methods, or adaptive thresholding. Fixed threshold compares the value in

the gray hue image to the specified value, which stays constant [14]. These methods are

the simplest way to create a binary image, but do not provide the flexibility needed for

most applications. Adaptive thresholding methods improve methods with a fixed value

and automatically compute the threshold value. In [15], the thresholding methods are

classified into six groups according to the information they are exploiting.

• Histogram shape–based methods

• Clustering–based methods

• Entropy–based methods

• object attribute–based methods

• Spatial methods

• Local methods

1.9.1 Otsu Binarization

Otsu method is one of the most referred [15] clustering–based methods [14]. Being intro-

duced in 1979 by Nobuyuki Otsu, the algorithm uses image histogram to define a suitable

threshold value, which then separates pixels into two classes, background and object (two

clusters). The ideal threshold is automatically selected by the discriminant criterion,

namely the measure of separability of the resultant classes at gray levels [16]. Beneath

this section, you can see the results of applying Otsu to a grayscale image in Python:

Figure 1.5: (a) Gray image; (b) Otsu applied to (a)
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1.10 Perspective Transformation

The perspective transformation will play a key role in the algorithm. Because perspective

effects, such as non–constant lane mark width and different distances make lane detection

more difficult, it is beneficial to remove those effects by remapping the image to a bird–eye

view.

Perspective transformation could be briefly described as applying a transformation matrix

M to the points in the source image, which returns new points in the output image. This

type of transformation does not preserve parallelism, length, or angle, and changes the

viewpoint [17]. The basic principle is to represent the pixel of n dimensions in a n + 1

dimension vector space, and with the use of homogenous coordinates [11]. For example, a

typical image pixel has 2 coordinates – 2D, but for the calculations, a 3D representation

of this pixel will be utilized. Thus, the transformation matrix M is a 3× 3 matrix.

tix
′

tiy
′

ti

 =

a1 a2 b1

a3 a4 b2

c1 c2 1


xy
1

 (1.21)

Where (x′, y′) the coordinates of the transformed point and (x, y) is the source. Matrix

M is the transformation matrix.

Since there are 8 degrees of freedom in M , first step is to select four points in the source

image and map these points to the specified location in the output image [17]. Due to

OpenCV (1.3), this is all that is necessary to get the matrix M .

1.11 Hough Transform

Let’s imagine a self driving car. The car, for sure, uses some kind of camera to capture

the road in front of the car, to keep it on the road. That usually means keeping the car

in between some lanes. To achieve this, the computer needs to calculate the equation of

these lanes to ’tell’ the car to stay in between them.

The Hough transform is one of the feature extraction methods, which can be used to

find features of a specific shape, usually one of the basic shapes, like ellipses, lines, etc.,

often called the primitives. It implements a transformation from regular image space to a

parameter space, also called the Hough space, which in concept is an accumulation array.

One of the common (and in my opinion one of the best) analogies of an accumulator array

is a grid of voting buckets. [4] The sought outcome is the maxima in the parameter space

- a bucket with the highest number of votes (just like the accumulator), which should

represent the value of parameters of the searched structure. The question raised by the

concept of an accumulator array is how large (or small) the cells should be. If the cells
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are too large, the lines merge, and if the cells are too small, noise will kill the line.

1.11.1 Finding a line

The algorithm of the Hough transform to detect a line is based on a parametrization of

a line. Typically, there are two most commonly used mathematical representations for a

line (let us assume two-dimensional x, y plain):

y = ax+ q, (1.22)

r = x cos θ + y sin θ (1.23)

The choice of representation depends on the user; however, in this section, I would like

to use equation (1.22), because it is easier to imagine, in my opinion, and therefore more

suitable for demonstrating the main principle of the Hough transform. Each point (or

so–called tokens) has its coordinates x, y, but the other 2 parameters, in this case, a and

q, both of which are unknown, so there is no exact line specified. To find these values, the

Hough space is created and each token is transformed to this space. The Hough space is

a plain with an axis, where the variables are the searched parameters a and q. For each

point in the original image space, a line can be created. As the algorithm goes through

the tokens and the number of lines in the Hough space increases, crossings of these lines

might occur. These intersections are the votes mentioned above. With each crossing,

the color of the point of intersection might change, the number of votes in this bucket

rises. The coordinates of the lightest point (or bucket with the highest number of votes)

represent the values of the parameters, and thus a line can be constructed.

In the case of perfectly straight lines, all lines should cross one point, and the Hough

space should display only one intersection, one bucket, which clearly wins the election.

However, in a more realistic example, multiple intersections are going to occur and some

lines might be separate. This means that the point in the image space does not form a

perfectly straight line, and there are more possible parameter values, or, in other words,

multiple lines.
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Chapter 2

State of the Art in Lane Detection

Lane detection is an essential part of driving assistants and autonomous driving [18].

Generally, a computer vision process can have three main steps [19]:

• Image acquisition

• Image processing

• Image analysis + decision–making

For example, at first, the image has to be captured from a camera. Next, pre–processing

methods (usually less complex operations [19]) are applied to improve the general suit-

ability for further processing. And finally, information is extracted from pre–processed,

analyzed image. On the basis of the results of this step, decisions can be made.

Lane detection methods could be divided into separate categories based on whether the

method is classical or uses deep learning [20]. A classical approach involves the use of

several computer vision and image processing methods to extract specialized features

and identify the location of the lane segments. Subsequently, post-processing techniques

remove false detections and join sub–segments to obtain the final positions of the road

lane [20]. Although less complex, these methods do not cope well with sub–optimal

illumination or complex road scenes [20].

A deep learning–based method presents an improved result and is embedded in the present

autonomous driving systems. These methods can be further separated into two other cat-

egories: segmentation–based methods and adversarial generative network-based methods

[20]. Deep learning–based methods use large datasets for learning. Some of the lead-

ing companies and universities in this field have developed such datasets, such as the AI

trucking company TuSimple or CalTech (Californian institute of technology) [21].

For the purposes of this thesis, a classical approach algorithm, the sliding-window algo-

rithm, was chosen.
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2.1 The sliding window approach

The sliding window approach, in general, can be used to reduce the search area by reducing

the computational complexity [22]. An interesting application of this approach is the

detection of railway lines.

Probably the most common way to determine the position of the sliding window(s) is

to find peaks in the image histogram, where the horizontal axis represents the pixel

columns, so that the peaks in the image can be located, while the vertical axis represents

the intensity [23]. These computations are generated after converting the image to gray

(1.1.1) and after warping (1.10), so the image is preprocessed for further calculations.

Inside the window, a filter is applied to the potential edge points, which examines their

gradient value and the mean squared error approximation [22], so the result becomes the

center of the next sliding window. When enough points are obtained, it is possible to

attempt to fit a polynomial line through these pixels.

One of the challenges for this approach is the very sharp left or right turn, since this

algorithm, in its standard form, assumes that the next sliding window will be ”above”

the current one. The article [22] from Northern Illinois University presents an improved

version of this approach, reporting interesting results with a detailed explanation of their

solution, which considers the previous lane as a starting point.
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(a) image’s histogram

(b) Resulting image

(c) Sliding window
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Chapter 3

Concepts

Before explaining the final implementation of the algorithm and its results, I would like

to spend some time introducing approaches that were assessed as nonoptimal at best or,

at worst, not working at all. That said, if the approach mentioned in this chapter is

described as not working, it is not meant, as it is impossible to implement. I speak from

my point of view, from my own experience.

3.1 Use of Canny detection and Hough transform

With both algorithms described in detail earlier (1.8, 1.11), I decided to use both in the

first attempt to solve this problem. This version of the algorithm is the least complex,

taking only the warped image, with the applied Canny edge detector (1.8) in OpenCV.

Combining the resulting image with the line detection algorithm, the Hough transform

(1.11), and warping the image with detected lines back to its original perspective, ended

up being sensitive to lighting conditions, such as shadows and incorrectly chosen threshold

values. With ideal lighting conditions and a straight road ahead, the output was accept-

able, but once the vehicle approached a curve, the result fell apart and was unusable for

further calculations. Seeing those results, I decided to abandon this concept and find a

different solution.

3.2 The histogram

This time, instead of using the Canny edge detector, I opted for the Otsu (1.9.1) thresh-

olding, which created a binary image of the warped region. The warped binary image

was then sent to a function, which sliced the image into horizontal strips and calculated

histograms from each of them. With a defined middle point, I managed to detect the

left and right lane lines separately. Each point on the lane line was the result of finding
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the maximum value in the slice histogram. The results of this solution were a significant

improvement over the previously mentioned one. However, it still had its limitations.

Firstly, it was difficult to find the balance of number of slices and sensitivity to shadows

and other sources of inaccuracies - if the number of slices was too high, the output image

was affected even by tiny defects in the image, the histogram was calculated for a slice so

thin it couldn’t cope with the smallest of errors, like shadows or poor lightning. A clear

example was that when the middle lane line was doubled, the lane line points for this side

of the road often jumped from one lane to another, leading to an inconsistent line.

On the other hand, when I reduced the number of slices, the resulting polygon lacked any

smoothness, and there the sensitivity problems were still present. I ended up spending

many hours trying to fix this solution and make it work, creating many support functions

to find any improvement. This was not achieved. However, many of the principles applied

in this approach and some of the functions created made their way into the final version

of the algorithm, which I will introduce in more detail in a separate chapter.
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Chapter 4

Implementation

In this chapter, I will walk through the experience of building the toy vehicle’s kit, with

advice for possible future users included. In addition, the idea behind the algorithm for

lane detection will be shared. Core functions with their source code will be included with

a more in–depth description of their principles.

4.1 The build

This project focuses on the topic of an autonomous vehicle. So far, everything mentioned

was just theory. In this chapter, I would like to introduce the practical side from building

the actual test vehicle (which due to the current situation brought us many surprising

problems) to the details of testing the software.

The testing vehicle consists of two main parts, the chassis, and the computer. The chassis

is the JetRacer AI racing robot by Waveshare, provided to me by the university. And

here comes the first problem: due to the ongoing pandemic of COVID–19 (status 2021),

the university uses an online school concept, and all students and most of the lecturers

stay at home. So, picking up the kit meant that someone had to give it to me; fortunately,

after a short exchange of information, everything was agreed and it was possible to pick

up the kit.

Right after opening the box, I noticed two things: There are many screws of different sizes

and shapes, and the manual is small, which makes it hard to follow. Anyway, following

the instructions, the ’car’ started to shape. A small piece of advice for anyone building

this kit is this: Keep everything in place and follow the instructions. The screws are

tiny and look almost identical with few differences between them. Also, for the included

screwdriver and wrench, a regular size quality screwdriver is proposed; however, do not
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Figure 4.1: The vehicle build

put the included one away. Some areas are tight, so the small screwdriver helps.

At a certain point, you will find some aluminum parts that are sometimes sharp and do

not feel quality, so you must be careful. With this being mentioned, the overall quality

of this kit is, in my opinion, questionable - it looks very nice in the picture; however, the

aluminum body parts are, as said, sharp, and the screws have to be treated with care, to

not damage its head. Then there are, for example, the parts of the steering rack. The

front axle’s screw–threads are poorly finished, as are the ball joints, to which the wheels

are mounted. Speaking of ball joints, during the build-up, I was careful not to damage

anything. However, when my father came to inquire about my progress and fiddled with

the steering, the right front ball joint cracked, releasing the wheel. After some research,

it was found that it is not going to be easy to replace this part. I checked if there are

any OEM parts available; however, I was unable to order this specific part. So, the only

solution was to go to the modeling store. Successfully, the ball joints arrived, but after a

couple of attempts, I realized that due to some manufacturing inaccuracies, the axis will

not fit the joint, so the joints had to be adjusted to the correct diameter. Fortunately,

everything past this went well, but it just confirms the point that this whole kit is not of

the best quality. However, the only thing that matters is functionality.

This AI kit is powered by Nvidia’s Jetson NANO developer kit. It is a small single–board

computer specially developed for running AI. This vehicle is fitted with the more powerful

4GB version (more details of the specification list are included later).

Another popular choice for these types of projects is usually a RaspeberryPI. There are

some differences between the Jetson and the RaspberryPI, one of them being that they

use different charging connectors - whereas the RaspberryPI uses a USB-C charger, the

Jetson is powered either by a single–pin charger or micro USB. This isn’t a problem

unless you unpack your order and you find out that the charger included in the box is a
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Figure 4.2: a) nearly finished vehicle, b) finished vehicle

Raspberry charger, which isn’t compatible with the Jetson, so it had to be replaced.

When the Jetson was mounted on the vehicle, everything was ready for the installation

of the operating system on the vehicle. Jetson uses a micro SD card as a storage solution,

so a card reader and 2 micro SD cards were ordered just in case. However, probably

by accident, one of the two ordered SD cards was missing. After further investigation, I

realized that the missing SD card was replaced with a second card reader.

Nvidia’s software support for Jetson is exemplary. Everything is easy to setup, or at least

described by a detailed guide, so that anyone can install the required software. Simply

download the recommended SD card formater and OS, format the SD card and load

the OS onto it, with the recommended software featured on the Nvidia website. The

installation itself is just a very simple 5–minute process. (the SD card included in the

package ended up being faulty and failed to install the OS, so it had to be replaced with

another, higher–performance SD card) The OS, provided by Nvidia, is essentially Ubuntu,

with some pre–installed applications for the Jetson, and a signature graphic theme.

Next, all the necessary software has to be installed. First, Samba allows easy access to

files from another computer, so there is no need to use a portable drive of some sort.

Second, for remote desktop access, the NoMachine software is installed. NoMachine was

chosen because it offers low latency, a nice set of features, and support, while being a

freeware. For coding, Visual Studio Code by Microsoft was chosen, due to its relatively

low hardware requirements and intuitive interface. Later in the project, I switched to

PyCharm by JetBrains, which provides a more complex environment with GIT support

to improve the project’s efficiency.

The vehicle was installed and ready for testing. Following the guide on the manufacturer’s

website, I decided to test whether everything works as it should. Unfortunately, I was

unable to connect to the car computer. Even when following the guide step by step and

contacting support, I did not receive the expected result. Later, when the manufacturer
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published a new version of the software, this problem was resolved. At the time of

publishment, I was already short on time to do further testing with the actual vehicle.

The fact that the vehicle was equipped with a 64 GB microSD card did not help either;

since the new software was around 67 GB before installation, a new card had to be

purchased, which shortened the time for testing even more.

4.2 First software implementations

Technically, a vehicle capable of reacting to the situation ”ahead” and also if it manages

to keep the vehicle on the road could be called autonomous to some degree.

In this thesis, the goal is to create and implement an algorithm to keep the vehicle on the

road. There are several solutions available on the Internet, of which few are widely used

and are then trained by many to achieve the best results possible.

4.2.1 Building the algorithm

With concepts described in previous chapters of this thesis, the build of the algorithm

can start.

From my personal experience, most of the solutions available on the Internet are built

with the use of object-oriented programming. Although it has unquestionable benefits, I

decided to opt for classic C-style functional programming. The algorithm could be broken

down into the following steps:

• the image to grayscale,

• create a Otsu binary image,

• warp a defined region in the binary image,

• detect starting points and perform a sliding window algorithm,

• warp lane points to the original perspective,

• calculate offset, and lane curvature.

First, a video must be loaded. The image is then prepared for edge detection. Firstly,

to remove any irrelevant information from the image, grayscale and otsu thresholding is

applied.

� �
1 def Gray_scaNumPyg ) :

2 return cv2 . cvtColor ( img , cv2 . COLOR_BGR2GRAY )

3

4 def Otsu_thresh ( img ) :

5 otsu_threshold , img_resulthe = cv2 . threshold (
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6 x - axis , 100 , 255 , cv2 . THRESH_BINARY + cv2 . THRESH_OTSU

7 )

8 return img_result� �
Listing 4.1: Grayscale and otsu

The grayscale function is very trivial – takes the image as an argument and returns the

same image, just turned into a grayscale scheme. The Otsu threshold, still relatively

simple, has more attributes available for configuration; for example, we can adjust the

threshold value, which decides whether the pixel is evaluated as black (0) or white (255).

The poorly chosen threshold value can affect the resulting image, which may later lead

to incorrect calculations.

The next step is to perform a perspective transformation, which is a key component to

extract the data necessary to detect lines. Again, the OpenCV library provides prede-

fined functions, which create a transformation matrix based on two user-defined sets of

points. In the code, I created a function Perspective transform, which takes the binary

image, the set of quadrangle vertices from the binary image, and the width and height of

the warped image. Firstly, it defines the warped image’s quadrangle vertices and trans-

fers those points from lists to a single NumPy array, which is accepted by the OpenCV

function getPerspectiveTransform(), which calculates a 3x3 transformation matrix. This

matrix is applied to the binary image in the next line with warpPerspective(). The warped

image, as well as the transformation matrix and the array of vertices of the warped image,

is then returned by this function, as seen in the code below:

� �
1 def Perspective_transform ( img , points , width , height ) :

2 output_left_top = [0 , 0 ]

3 output_right_top = [ width , 0 ]

4 output_left_bottom = [0 , height ]

5 output_right_bottom = [ width , height ]

6 output_points = np . float32 ( the [ outpleft_top , output_right_top , output_right_bottom ,

output_left_bottom ] )

7 perspective_matrix = cv2 . getPerspectiveTransform ( points , output_points )

8 warp_img = cv2 . warpPerspective ( img , perspective_matrix , ( width , height ) )

9 rcopiedarp_img , perspective_matrix , output_points� �
Listing 4.2: Perspective transform

With the transformed binary image, the sliding window algorithm (2.1) can be used. Be-

cause the introduction is included in the separate chapter referenced earlier, lets look at

the core sections of the code.

� �
1 def Window ( img , nwin , win_width , recenter_th ) :

2 histogram = np . sum ( img [ img . shape [ 0 ] // 2 : , : ] , axis=0)

3 out_img = np . dstack ( ( img , img , img ) ) ∗ 255

4 midpoint = int ( histogram . shape [ 0 ] // 2)
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5 left_bottom = np . argmax ( histogram [ : midpoint ] )

6 right_bottom = np . argmax ( histogram [ midpoint : ] ) + midpoint

7 win_height = np . int ( img . shape [ 0 ] // nwin )� �
Listing 4.3: Window

First, the function takes as arguments the warped binary image, the number of windows

per lane nwin, width of a window win width and the recenter threshold recenter th. When

the frame is loaded, the function calculates a histogram of the bottom half of the loaded

frame, since this is the region. If we performed a histogram of the whole frame, the

resulting peaks could be wider, and therefore we could risk potential inaccuracies. To

divide the histogram into two parts, left and right, it is necessary to define the value

of the midpoint, which is simply the maximum value of the x–axis divided by 2. To

find desired peaks for each lane line, we searched for the maximum value in each of the

histogram’s two parts. Note that if the center lane is doubled, as in one of the sample

videos, it can result in two peaks on the left part of the histogram. Then the height of a

single window is defined by dividing the height of the frame by the argument nwin, the

number of windows per lane.

Second, with the peaks found, it is useful to find the location of nonzero pixels in the

image. This can be done in multiple ways, but probably the most efficient is to use the

NumPy function np.nonzero, which returns, in this case, two arrays, where one carries

the x–coordinate of each nonzero point, and the other one carries the y–component. This

idea was inspired by [24]. Then, a list is initialized for each lane to store lane points.

The third step is finally to use the sliding windows. In a for loop, each iteration defines

opposite corners for a single window in the left lane and for one in the right lane. The

rectangles are then plotted for visualization. As mentioned in (2.1), the recentralization

of the following window is based on the number of nonzero pixels in the current window

region. Here again, I implemented the np.nonzero method:

� �
1 l_pix = (( nonzero_y >= y_min ) & ( nonzero_y < y_max ) & ( nonzero_x >= xl_min ) & (

nonzero_x < xl_max ) ) . nonzero ( ) [ 0 ]

2 r_pix = (( nonzero_y >= y_min ) & ( nonzero_y < y_max ) & ( nonzero_x >= xr_min ) & (

nonzero_x < xr_max ) ) . nonzero ( ) [ 0 ]� �
Listing 4.4: Window region

If the number of nonzero pixels in the window’s area exceeds recenter th, the next window

will be recentered to the mean of the x coordinates of detected nonzero points. The

y-value is calculated by the algorithm.

Next, the center of each window is appended to the list poly points left / poly points right,

which is then copied to the list poly points with the use of list comprehension. I want
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to point out that the poly points right is copied in reverse order - this is due to the fact

that poly points will be used for visualization, and the OpenCV function fillpoly is sen-

sitive to the order of the points. In other words, if I did not use the reverse order of

poly points right, the polygon could be displayed with defects, as I described in (pokusy).

The code implementation can be seen in the listing below

� �
1 if len ( l_pix ) > recenter_th :

2 left_bottom = np . int ( np . mean ( nonzero_x [ l_pix ] ) )

3 if len ( r_pix ) > recenter_th :

4 right_bottom = np . int ( np . mean ( nonzero_x [ r_pix ] ) )

5 l_point = [ left_bottom , ( y_min + win_height //2) ]

6 r_point = [ right_bottom , ( y_min + win_height //2) ]

7 l_circle = ( l_point [ 0 ] , np . int ( np . abs ( l_point [ 1 ] ) ) )

8 cv2 . circle ( out_img , l_circle , 2 , (0 , 255 , 0) , 2)

9 poly_points_left . append ( l_point )

10 poly_points_right . append ( r_point )

11

12 poly_points = np . asarray ( [ j for i in [ poly_points_left , reversed ( poly_points_right ) ]

for j in i ] , dtype="float32" )� �
Listing 4.5: Window region

In real vehicles, lane-keeping assist is almost always supported by lane-centering assistant.

This assistant helps keep the vehicle in the center of the lane. Although not within the

scope of this thesis, a simple offset calculator was created.

� �
1 def car_position ( points , img ) :

2 car_position = np . array ( [ img . shape [ 1 ] / 2 , points [ 0 ] [ 0 ] ] )

3 right_bottom = points [ - 1 ]

4 left_bottom = points [ 0 ]

5 lane_width_px = math . dist ( left_bottom , right_bottom )

6 increment = lane_width_px // 2 + left_bottom [ 0 ]

7 lane_center = np . array ( [ increment , car_position [ 1 ] ] )

8 offset = math . dist ( car_position , lane_center )

9 return offset , lane_width_px� �
Listing 4.6: Car position

It utilizes the coordinates of two bottom points of the detected lane region and assumes

that the vehicle is in the center of the image (the camera is in the middle of vehicle). The

width of the lane is calculated as the distance of the points of the detected lane region and

then calculates the offset as the distance between the center of the lane and the vehicle’s

position.
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Chapter 5

Testing and Evaluation

Testing was firstly done on a couple of short sample videos, which were cut from a dashcam

recording available on YouTube. Each of the samples was of a different complexity for

processing – driving in straight, driving in a slight curve, and driving in more prominent

curve. In addition, the lighting conditions differed from one sample to another.

The recording of driving straight with solid lighting conditions did not cause any problems,

with the algorithm showing good results even when a light shadow occurred.

Figure 5.1: straight source, straight output
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Figure 5.2: straight binary, straight sliding windows

While going through a slight curve, the algorithm performed decently in most situations.

The only problem that occurred in those scenarios had to do with the highly contrasting

edge of the road or lighting imperfections, which caused a slight deformation of the de-

tected region. This problem is demonstrated by the following figure:

Figure 5.3: slight curve source, slight curve output
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Figure 5.4: binary image, sliding windows

It should be noted that this was often corrected by a more precise selection of corner

points of the source image for perspective transformation (1.10).

Dealing with more prominent curves we discovered significant drops in performance. In

a few frames of testing videos, under specific lighting conditions, the algorithm returned

decent outputs with little to no defect of the blue polygon:

Figure 5.5: curve source, curve output
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Figure 5.6: curve good binary, curve good sliding windows

However, in general, the increase (technically loss) of the curvature caused the upper

points of the trapezoid to not capture the road, causing the position of sliding windows

in this part of the image to be evaluated incorrectly, resulting in an insufficient output

image, as shown in the figure below:
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(a) (b)

(c) (d)

Figure 5.7: Lane detection on a curved road: (a) original image, (b) output image, (c)
Transformed binary image (d) Sliding window

Unlike the previous case, this could not be improved enough by a better selection of

warping points. The algorithm does not provide a sufficient tool to cope with this type of

situation. One of the possible solutions to this problem could be the use of more complex

binarization method, as in the prior case, in combination with an adaptive distance of

detection – the main idea being that the vehicle approaching a sharp turn will not travel

at the same speed as on the straight or mild turn, therefore, lowering the viewing distance

for the detector should not bring issues. The decrease in distance would have to be tied

to the angle of the road, which means something like comparing the offset of individual

windows, which would, if conditions are met, decrease the distance.

40



The language of choice for this project is, as stated before, Python. While Python is very

popular for its relatively simple syntax and well–established community providing count-

less libraries, the performance is not on par with C–style languages, like C++ or Java,

which are also supported by OpenCV (1.3). Python still provides decent performance, if

supported by powerful hardware.

One iteration of the algorithm in its final form was measured using the time module. This

test was done on a laptop with the following specification:

• CPU: AMD Ryzen 7 5800h

• GPU: AMD RX Vega 8

• RAM: 16 GB DDR4

On this hardware specification, the algorithm runs at average 17 FPS. Comparing the

hardware specification of the laptop to the specification of the Jetson Nano, it is certain

it would take longer; therefore, to improve the overall performance of the algorithm, a

conversion from Python to one of the other supported languages is recommended.

If there were no desire to convert the program to a different language supported by

OpenCV (1.3), some performance gains could be made by optimizing the code. It is

known that the efficiency of Python code can be improved if predefined functions are

utilized. In the source code, it is possible to see that in some instances I implemented

for loops. While this solution is functional, it is not exactly pythonic. More performance

could be found by replacing these loops with predefined functions.
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Conclusion and Future Work

The goal of this thesis was to develop a lane detection algorithm and test it on a test

track for a toy vehicle. In this text, I depicted a selection of popular color spaces, showing

their advantages and disadvantages, further, I described why it is beneficial to convert

the image to grayscale.

Next, the key mathematical operators and concepts were introduced. I moved to the

discrete world to define discrete derivatives, which are essential for edge detection. To be

able to understand the basics of image processing, ideas like convolution or Gaussian had

to be presented.

To utilize some of the mathematics briefly mentioned above, the subject of edge detection

could be brought up. Together with it, I looked back in the past to show different

convolution masks, which were utilized for edge detection. This enabled me to present

the Canny edge detector, as well as other concepts essential for this thesis.

Furthermore, the current state of the art in lane detection was introduced, introducing

the current state and trends in this field.

Moving to the practical part of the thesis, I briefly presented a couple of approaches I

tried before deciding on the final solution.

Later, I shared the experience of building the toy robotic vehicle and made thoughts on

the whole process, including the installation of software. With the vehicle built, I was able

to move on and present the specifications of the final version of the algorithm, including

code samples of key functions, and I described them in detail.

Finally, the results and evaluation of the testing were presented. Here, I showed the

results of the testing and come up with possible improvements to the algorithm.

The lane detection algorithm was developed. Utilizing the Sliding window method, it

performs well, if certain conditions are met. The areas where the algorithm in this state

lacks, are poor lighting conditions, like shadows or lack of contrast of the road and lane

lines. Also, it was proven that the sliding window approach does not produce constant

results if the road is of significant curvature. The solution to this problem might be
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the adaptive ROI, which was briefly presented in this thesis, and might be worthy of

further investigation. For future work, I propose adding a curvature calculation function,

which can be later used to operate the steering rack, as well as improving the Car position

function and adding conversion to meters from pixels. Also, depending on the test results,

it might be necessary to convert the source code to another programming language.

Unfortunately, it was not possible to test the performance of the algorithm on the toy

vehicle. This happened for a couple of reasons. One is the difficulties with shipment

and handover during the pandemic. The other was corrupt software released by the

manufacturer of the vehicle kit. The software was fixed too late and the time conditions

did not allow me to perform future testing with the vehicle.

I believe that the content of this thesis as well as the source code can be used as a starting

point for future development of the software to make the vehicle autonomous. For readers,

who are interested in the source code, please contact Department of Applied Mathematics,

Faculty of Transportation Sciences, CTU in Prague.
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[12] OpenCV team. About. 2022. url: https://opencv.org/about/.

[13] X. Li M. Wang S. Zheng and X. Qin. “A new image denoising method based on

Gaussian filter”. In: (2014).

[14] Prathima Guruprasad. “OVERVIEWOF DIFFERENT THRESHOLDINGMETH-

ODS IN IMAGE PROCESSING”. In: (June 2020).

[15] M. Sezgin and Bulent Sankur. “Survey over image thresholding techniques and

quantitative performance evaluation”. In: Journal of Electronic Imaging 13 (Jan.

2004), pp. 146–168. doi: 10.1117/1.1631315.

44

https://color.lukas-stratmann.com/
www.mathworks.com/discovery/lab-color.html
www.mathworks.com/discovery/lab-color.html
https://doi.org/10.1109/ICIAS.2007.4658603
https://doi.org/10.1109/ICIAS.2007.4658603
https://www.youtube.com/watch?v=uNP6ZwQ3r6A&t=468s&ab_channel=FirstPrinciplesofComputerVision
https://www.youtube.com/watch?v=uNP6ZwQ3r6A&t=468s&ab_channel=FirstPrinciplesofComputerVision
https://machinelearningmastery.com/a-gentle-introduction-to-the-laplacian/
https://machinelearningmastery.com/a-gentle-introduction-to-the-laplacian/
https://opencv.org/about/
https://doi.org/10.1117/1.1631315


[16] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level Histograms”. In:

IEEE Transactions on Systems, Man and Cybernetics 9 (1979).

[17] TheAILearner. Perspective Transformation. 2020. url: https://theailearner.

com/tag/cv2-getperspectivetransform/.

[18] Minhyeok Lee et al. “Robust lane detection via expanded self attention”. In: (2022),

pp. 533–542.

[19] Mehdi Mahmoodpour et al. “An affordable deep learning based solution to support

pick and place robotic tasks”. In: (Dec. 2019), pp. 66–75. doi: 10.22213/2658-

3658-2019-66-75.

[20] Nima Khairdoost, Steven Beauchemin, and Michael Bauer. “Road Lane Detection

and Classification in Urban and Suburban Areas based on CNNs”. In: (Jan. 2021),

pp. 450–457. doi: 10.5220/0010241004500457.

[21] Wajahat Kazmi. Lane detection: Brief history and the road ahead. Nov. 2019. url:

https://medium.com/motive-eng/lane-detection-a-quick-review-and-the-

way-forward-dd7a43353da.

[22] Keerti Chand Bhupathi and Hasan Ferdowsi. “An Augmented Sliding Window Tech-

nique to Improve Detection of Curved Lanes in Autonomous Vehicles”. In: 2020

IEEE International Conference on Electro Information Technology (EIT). 2020,

pp. 522–527. doi: 10.1109/EIT48999.2020.9208278.

[23] Addison Sears-Collins. real-time-lane-detection. 2021. url: https://automaticaddison.

com/the-ultimate-guide-to-real-time-lane-detection-using-opencv/.

[24] liwangGT. CarND-Advanced-Lane-Lines. url: https://github.com/liwangGT/

CarND-Advanced-Lane-Lines.

45

https://theailearner.com/tag/cv2-getperspectivetransform/
https://theailearner.com/tag/cv2-getperspectivetransform/
https://doi.org/10.22213/2658-3658-2019-66-75
https://doi.org/10.22213/2658-3658-2019-66-75
https://doi.org/10.5220/0010241004500457
https://medium.com/motive-eng/lane-detection-a-quick-review-and-the-way-forward-dd7a43353da
https://medium.com/motive-eng/lane-detection-a-quick-review-and-the-way-forward-dd7a43353da
https://doi.org/10.1109/EIT48999.2020.9208278
https://automaticaddison.com/the-ultimate-guide-to-real-time-lane-detection-using-opencv/
https://automaticaddison.com/the-ultimate-guide-to-real-time-lane-detection-using-opencv/
https://github.com/liwangGT/CarND-Advanced-Lane-Lines
https://github.com/liwangGT/CarND-Advanced-Lane-Lines

	Background
	Color Spaces
	Turning Gray 
	RGB
	CMY & CMYK
	HSV
	Lab
	YCrCb

	Computer Vision and Digital Image Processing
	Derivatives
	Convolution
	Gradient
	The Gaussian
	The Laplacian
	The Laplacian of Gaussian (LoG)

	OpenCV Library
	Edge Detection
	Edges
	Prewitt mask
	Sobel mask
	Canny edge detector
	Thresholding methods
	Otsu Binarization

	Perspective Transformation 
	Hough Transform
	Finding a line


	State of the Art in Lane Detection
	The sliding window approach

	Concepts
	Use of Canny detection and Hough transform
	The histogram

	Implementation
	The build
	First software implementations
	Building the algorithm


	Testing and Evaluation

