
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Virtual guide to oppidum Závist

Vladislav Komkov

Ing. Radek Richtr, Ph.D.

Informatics

Web and Software Engineering, specialization Computer

Graphics

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The aim of the work is to design and implement a mobile application for the iOS

operating system, which will serve as a virtual guide to the Celtic oppidum Závist. The

application will use augmented reality for the realistic presenting 3D models of

historical buildings. The application will also include an interactive map and

gamification of the guide.

1. Conduct research on similar applications using augmented reality to display 3D

models.

2. Analyse the requirements of users and project stakeholders.

3. Using the SI methods, design a prototype of the application.

4. Implement the prototype application for the iOS operating system.

5. Subject the prototype to appropriate tests.

Electronically approved by Ing. Radek Richtr, Ph.D. on 23 February 2023 in Prague.

Bachelor’s thesis

VIRTUAL GUIDE OF THE
OPPIDUM ZÁVIST

Vladislav Komkov

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Radek Richtr, PhD
May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Vladislav Komkov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Komkov Vladislav. Virtual guide of the oppidum Závist. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

I Research 3

1 Solutions 5
1.1 Current solution of digital guide Oppidum Závist 5

1.1.1 Information architecture . 5
1.1.2 Interactive design . 6
1.1.3 Visual design . 7

1.2 Visit.More . 7
1.2.1 Information architecture . 7
1.2.2 Interactive design . 8
1.2.3 Visual design . 8

1.3 VMCK virtual guide . 9
1.4 Analysis results . 9

2 Product Analysis 11
2.1 Product requirements document . 11
2.2 Domain analisys . 11

2.2.1 Historical and Archaeological domains 11
2.3 Requirements . 12

2.3.1 Functional requirements . 12
2.3.2 Nonfunctional requirements . 12

3 Technologies 15
3.1 Options for iOS development . 15

3.1.1 Multiplatform Development . 15
3.1.2 Native Development . 17
3.1.3 Development using Game Engine . 17

3.2 Architecture . 17
3.2.1 MVVM/MVC . 18
3.2.2 The Composable Architecture . 18
3.2.3 Clean Architecture . 19

iii

iv Contents

II Implementation 21

4 Design and prototype creation 23
4.1 Prototyping process . 23

4.1.1 Design process . 23
4.2 Prototype testing . 24

5 Implementation 27
5.1 Tooling . 27

5.1.1 Dependency management . 27
5.1.2 Dependencies used . 27
5.1.3 Tools used . 28
5.1.4 Frameworks used . 28

5.2 Implementation of the prototype . 29
5.2.1 Modularisation . 29
5.2.2 Data layer . 29
5.2.3 Services . 30
5.2.4 Views . 31

6 Testing 33
6.1 Distribution for testing . 33
6.2 User usability testing . 33

6.2.1 Preparation for the tests . 34
6.2.2 Conducting tests . 34
6.2.3 Analysing the results . 35

6.3 Unit Testing . 38

A Scenarios for user-testing 41

B Storyboard application flow in Figma 47

C Product requirements document in Figma 51

Content of the attached media 59

List of Figures

1.1 Current solution menu interface [1] . 6
1.2 Current solution map screen. [1] . 6
1.3 Current solution point detail screen. [1] . 6
1.4 Current solution game story. [1] . 7
1.5 Current solution gameplay. [1] . 7
1.6 Visit.More Menu [4] . 8
1.7 Visit.More 3D map [4] . 8
1.8 Visit.More Information content [4] . 8

3.1 MVC design pattern [15] . 18
3.2 MVVM design pattern [15] . 18
3.3 TCA design pattern [16] . 19
3.4 Clean Architecture design pattern [18] . 20

4.1 Point detail flow . 24
4.2 Low-fidelity onboarding screen . 26
4.3 Low-fidelity map screen . 26
4.4 Low-fidelity detail screen . 26
4.5 High-fidelity onboarding screen . 26
4.6 High-fidelity map screen . 26
4.7 High-fidelity detail screen . 26
4.8 Examples of low- and high-fidelity prototypes . 26

5.1 Project modules inside Xcode . 29

6.1 UX usability laboratory . 35
6.2 Usability review room, with the running stream from the usability laboratory . . 35

B.1 Storyboard flow diagram with the requirements 48
B.2 Storyboard flow diagram with the requirements 49

C.1 Product requirements specification of the problem and the goals 52
C.2 User research, creation of the personas . 53

List of Tables

1.1 Overview of the analysed solutions . 10

v

3.1 Differences between Flutter and React Native . 16

4.1 Heuristics Evaluation Results . 25

6.1 Result of the usability tests (scenario 1) . 36
6.2 Result of the usability tests (scenario 2) . 37

List of code listings

5.1 Example of the point DTO. 30
5.2 Network Manager class managing communication with the API 30
5.3 Example of the Point Provider . 31
5.4 Example of the Map Annotation view . 31
6.1 Example of MapViewModel unit test. 39

vi

I would like to thank my supervisor Ing. Radek Richtr, PhD for
assisting me throughout the process of conducting the research and
the development, as well as David Pesek who was eager to help
with all questions connected to the project management. Not to
forget Jiri Chludil who assisted with the network communications
and Manda Michal for helping with the organization of the User
testing. And huge appreciation to all the members of the CCHAOS
research group for the opportunity to work on this project and for
all the information and help provided during the process.

vii

Declaration

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended. I further declare that I have entered into a
licence agreement with the Czech Technical University in Prague for the utilization of this thesis
as a school work pursuant to Section 60(1) of the Copyright Act. This fact does not affect the
provisions of Section 47b of Act No. 111/1998 Coll., the Higher Education Act, as amended.

In Prague on May 11, 2023 .

viii

Abstract

This thesis presents the development of the iOS application of a virtual guide for Celtic Oppidum
Závist. The application will provide visitors of the Oppidum immersive experience extending
the historical walk with information relevant to the place where the user is located on the map.
The project involves an analysis of existing digital guides, including the current solution of the
Oppidum Závist. The domain analysis touches on historical and archaeological domains, docu-
menting the requirements of the project. The study also examines options for iOS development
as well as different software architecture patterns. The implementation section focuses on user-
centred design and the prototype creation process, including the cognitive test. It summarises
tools and dependencies used in the development as well as specific details of native iOS devel-
opment in Swift programming language. The thesis concludes with user testing of the solution
with the analysis of the results and comparison with the current solution. The thesis aims to
provide an engaging and informative experience for visitors of the Oppidum, while also exploring
the latest iOS development and software engineering techniques.

Keywords virtual guide, mobile application, Oppidum Závist, user-centred design, user-
testing, Figma, iOS, Swift

Abstrakt

Tato práce prezentuje vývoj iOS aplikace virtuálńıho pr̊uvodce pro keltské oppidum Závist.
Aplikace poskytne návštěvńık̊um oppida zážitek rozšǐruj́ıćı historickou procházku informacemi
relevantńımi k mı́stu, kde se uživatel na mapě nacháźı. Projekt zahrnuje analýzu stávaj́ıćıch
digitálńıch pr̊uvodc̊u, včetně současného řešeńı pro oppidum Závist. Analýza domény se dotýka
historické a archeologické oblasti jenž popisuje požadavky projektu. Práce také zkoumá možnosti
vývoje pro iOS a r̊uzné architektonické vzory softwaru. Implementačńı čast se zaměřuje na
user-centered design a proces vytvářeńı prototyp̊u, včetně jeho kognitivńıho testováńı. Shrnuje
nástroje a závislosti použité při vývoji, stejně jako specifické detaily nativńıho vývoje pro iOS
v programovaćı jazyce Swift. Práce konč́ı uživatalským testováńım řešeńı, analýzou výsledk̊u
a porovnáńım s aktuálńım řešeńım. Ćılem práce je poskytnout návštěvńık̊um oppida zaj́ımavý
a informativńı zážitek, přičemž prozkoumává nejnověǰśı techniky vývoje pro iOS a softwarové
inženýrstv́ı samotné.

Kĺıčová slova virtuálńı pr̊uvodce, mobilńı aplikace, oppidum Závist, user-centered design,
uživatelské testovańı, Figma, iOS, Swift

ix

List of abbreviations

API Application Programming Interface
App Application
AR Augmented reality

HIG Human interface guidelines
IA Information Architecture
IS Information system

MVC Model View Controller
MVVM Model View ViewModel

UI User Interface
UX User Experience

x

Introduction

Introduction
In the current era, technology has advanced significantly and has the potential to revolutionize
the way people navigate historical sites and learn about the history surrounding them. With the
growing interest in outdoor activities and the historical heritage of various places, there is a need
for innovative solutions that can attract and educate more people about history. Learning about
history through new technologies has the potential to make it more engaging and accessible to a
wider audience.

However, the lack of investments and interest from companies has resulted in multiple chal-
lenges for virtual guides. Existing applications have several weak points in information archi-
tecture as well as in user interface design. Analysis of such applications gives a chance for an
improved solution for Celtic oppidum, chosen historical heritage with huge potential of telling a
story about more than 5000 years old settlement.

The main focus of this thesis is the user-centered design, how different approaches of proto-
typing and user-experience testing can influence development cost and speed as well as the final
product. The thesis is aimed at iOS development, but for the sake of digital sustainability it
is important to research different technologies for iOS development including multiplatform and
game development technologies.

To achieve this goal, a survey will be conducted on applications serving a similar purpose
of acting as a virtual guide to historical heritage using modern approaches and technologies. It
is important to note that there is a virtual guide to Celtic oppidum Závist that is referenced
throughout this text. For further improvement of the solution research will be carried out on
the domain and the information provided by archaeologists which would further improve user
experience, thus benefiting the user. It is also crucial to analyse the requirements of the ordering
party, as well as the needs and expectations of potential users.

The practical part of the thesis will focus on the design workflow as well as the implementation
of a high-fidelity prototype in Swift programming language. The implemented prototype will be
subjected to user experience and unit tests. The main challenge is the integration of advanced
interactive features such as a 3D browser for artefacts and augmented reality that can help
users understand the scale of buildings and other artefacts, keeping the user interface simple
and understandable. This will provide visitors with an immersive experience as well as the
opportunity to learn more when they are on the historical site without spending time figuring
out how to use the application.

The proposed solution can serve as a blueprint for other researchers and developers looking
to create digital solutions for historical sites. The significance of this thesis lies in its potential
to promote interest and educate visitors on historical sites through innovative digital solutions.

1

2 Introduction

Part I

Research

3

Chapter 1

Solutions

In this chapter, similar solutions will be analyzed in information architecture, interactive
and visual design to better understand their strengths and weaknesses. By examining these
solutions, we will be able to identify common patterns and trends that can be applied to our
work. Additionally, we will explore alternative approaches that have been used in the past, and
consider whether these might be applicable to guide. Through this comprehensive analysis, we
hope to gain a deeper understanding of the digitalization of the guide.

1.1 Current solution of digital guide Oppidum Závist
To ensure the effectiveness of the virtual guide application, it is important to analyze the current
solution. This analysis will enable a comprehensive understanding of the problem and facilitate
an evaluation of the strong and weak aspects of the current solution. Identifying areas for
improvement will be essential to enhancing the application’s features and functionality, and to
provide an even more engaging and informative experience for users.

Despite the potential for improvement, the application is currently available for both iOS
and Android operating systems. The cross-platform compatibility of the application also ensures
that users with different device preferences can experience it.

1.1.1 Information architecture
On the main screen 1.1, the user sees the main parts of the application with helpers such as
language change buttons and Instructions to use information. A user chooses and starts one part
of the application. From there he can go back to the main menu or continue with the application
flow. Two main parts of the application are:

Digital guide The application displays an image of the map to the user 1.2, which provides
several options for engaging with the content. From the map image, the user can start
navigation, access detailed information about the location, and move to the relevant segment
of the game. The detailed information 1.3 presented to the user includes unstructured text
and feature buttons, enabling a more comprehensive exploration of the location’s history
and cultural significance. This feature enhances the user’s experience by providing a more
interactive and informative means of engaging with the virtual guide.

Game The game follows a linear story in which the user assists a scientist in solving problems
related to various historical eras. As the user progresses through the story, they gain a deeper
understanding of the life and culture of Oppidum in different time periods.

5

6 Solutions

The application’s information architecture (IA) presents several challenges that impact the
user experience. One key issue is the inability of users to freely switch between the game and map
modes, which can limit the user’s ability to navigate the application effectively. Additionally,
the point details section suffers from a lack of text organization, which can make it difficult for
users to access the information they need. Addressing these issues will be critical to improving
the user experience and enhancing the effectiveness of the virtual guide application.

Figure 1.1 Current solution
menu interface [1]

Figure 1.2 Current solution map screen. [1]

Figure 1.3 Current solution point detail screen. [1]

1.1.2 Interactive design
The app gives users 2 different interactive experiences, one of them being 360 panoramas and
the second being Augmented reality. Buttons for each of them are located between the text and
the context for interaction should be read in the text.

The game section 1.4 of the application guides them on what to do with text instead of
relying on UI. This results in forcing users to read instructions instead of explore, limiting users’
creativity. Taking into consideration targeted users (children), gameplay could benefit from
more interactive elements such as one in 1.5. The inability of switching between map and game
segments creates a lack of flexibility and limits users to a single activity at a time, which can
reduce the overall effectiveness of the virtual guide application. [2]

The application presents an orientation issue, as the main menu is designed to be viewed
in portrait mode while the remainder of the app is locked to landscape mode. This creates
a disorienting experience for the user, which can reduce the overall effectiveness of the virtual
guide. According to the Apple Human Interface Guidelines (HIG), it is recommended to avoid
locking the user to only one orientation. [3]

Visit.More 7

Figure 1.4 Current solution game story. [1] Figure 1.5 Current solution gameplay. [1]

1.1.3 Visual design
The Unity game engine, while suitable for game development, presents challenges when develop-
ing an interactive system such as the virtual guide application. The application lacks elements
of the iOS system navigation flow and other design elements specific to the iOS platform, which
can result in a disorienting experience for users who are accustomed to these elements. Addi-
tionally, the application’s scaling issues, caused by the use of static scale constraints and images
as backplates, pose a challenge to the application’s adaptability to different device sizes. This
scaling issue is also noted in Apple’s Human Interface Guidelines [3]

1.2 Visit.More

Visit.More is a virtual guide developed by a Czech company for iOS and Android that provides a
catalogue of historical monuments and infrastructure in the area. The application offers detailed
information, including historical significance, architectural features, and cultural context, making
it an engaging and informative tool for those interested in exploring the rich cultural heritage of
different regions.

1.2.1 Information architecture
The application has two distinct components. The first of these components is the location library
1.6 and overview section, which provides users with a list of available locations for discovering.
The second component of the application is the guide to a particular location, which serves as
detailed information about individual landmarks located on the site.

On the home screen, the user can choose the language of the application and select a monu-
ment to start the guide.

Upon selecting a monument, the user is immediately provided with information about the
location, illustrated with an aerial snapshot.

The detail screen provides the user with more detailed information about the location, includ-
ing basic information associated with the location such as website, navigation, and operators.

The Guide Map features a 3D viewer that highlights points of interest 1.7. For each point of
interest, the user can access extended information in the form of text, images, 3D models, and
augmented reality. The application distinguishes between these different types of information by
using separate icons for each of them.

8 Solutions

1.2.2 Interactive design
The application has numerous forms of information, enabling user to select one that suits him the
best. Upon initial launch, a guide presents a help screen to familiarize the user with the navigation
and the application’s features. The content is available in a diverse range of information formats,
including conventional textual and visual modes, in addition to advanced features such as audio
guides, 3D model viewing, and augmented reality. This features differs from point to point using
the most suitable type of information 1.8

To ensure that the application operates efficiently, the developers have implemented a data
size notification feature. Before downloading content, the user is notified of the data size to be
downloaded and prompted to connect to Wi-Fi. This feature enhances the user experience by
reducing the likelihood of unexpected data charges or slower download speeds.

1.2.3 Visual design
The absence of system elements in the application design may increase the learning curve for
users who are unfamiliar with the app’s interface, as they may not be able to rely on preexisting
knowledge of system-level design conventions. The application interface presents a complex and
information-dense layout but maintains consistency in its design elements, which may aid users
in locating and utilizing application features more efficiently. Although the application does
not display the user’s location, it offers a unique 3D map view feature that may provide users
with an alternative method of orienting themselves within the application’s geographic context.
However, without conducting tests it remains unclear how effective this feature compensates for
the absence of the user location indicator and whether it offers comparable functionality for user
orientation.

Figure 1.6 Visit.More Menu
[4]

Figure 1.7 Visit.More 3D
map [4]

Figure 1.8 Visit.More Infor-
mation content [4]

VMCK virtual guide 9

1.3 VMCK virtual guide
VMCK(Věnná města českých královen) is an app for the Android operating system, it is an
augmented reality (AR) application designed to provide an immersive experience of exploring
the historical heritage of the Dowry towns. The app leverages the capabilities of GPS technology
to enable the accurate positioning of 3D models of historical buildings at their actual location.
The application is currently in development mode and focuses on addressing several challenges
related to compass tracking, thus UX and UI are not in the scope of this analysis.

The primary feature of the app is the ability to overlay 3D models of historical buildings
onto the user’s view of the real-world environment. The app requires access to the GPS location
of the user’s device to determine the location and to present the building that could be seen
from the user’s location. Once the location is determined, the app retrieves the 3D model of the
historical building from a remote server and displays it on the user’s device.

One of the significant challenges of the app is the accuracy of the GPS data. The accuracy
of GPS location data can be affected by several factors, including environmental conditions such
as interference from buildings, trees, and other structures. In addition, the accuracy of compass
tracking can be compromised in urban environments due to the presence of electromagnetic
interference. These issues can result in incorrect positioning of the 3D models of the buildings,
leading to a less immersive user experience.

The app implements a calibration process to improve the accuracy of the compass tracking.
The calibration process involves the user pointing the device in the known direction. This data
is then used to calibrate the compass, improving its accuracy.

All the data required to render the 3D models of the historical buildings are fetched from the
remote server and stored on the user’s device until the model is updated. This approach ensures
that the app can be used offline and reduces the latency associated with fetching data from the
server.

In summary, the proposed AR application is designed to provide an immersive experience
of exploring historical buildings by overlaying 3D models onto the user’s view of the real-world
environment. The app employs several techniques to address the challenges associated with GPS
accuracy and compass tracking. The app’s development is ongoing, and further work is required
to optimize the performance and user experience of the application.

1.4 Analysis results
Each of the three solutions employs distinct strategies to address the challenge of virtual guidance,
incorporating modern technologies in diverse ways. While some emphasize the authenticity of
the building’s location, others seek to engage the user through the use of gaming narratives.
Each approach exhibits unique strengths, and leveraging these strengths can facilitate further
enhancements to our solution.

10 Solutions

Table 1.1 Overview of the analysed solutions

Name Description Structure AR Orientation Accessibility
Oppidum Závist Virtual guide to

Keltic oppidum
Závist including
a game for better
orintation on side

Separate game and
map sections

Activated with
marker

Mixed, locked Limited

VMCK A city guide accu-
rately showing his-
torical buildings in
different period in
the history of the
monument

Map with zones in
which user can ac-
tivate Extended re-
ality

Models’ location
are determined
by GPS for ac-
curate historical
representation

Vertical Limited

Visit.More Guide to many
Czech attractions
with 3D maps

User chooses a lo-
cation, after fly-
ing over 3D map
and learns about
marked points

Limited, not an-
chored to the lo-
cation

Vertical Limited

Chapter 2

Product Analysis

The application domain is quite specific, combining the historical and archaeological domains
not forgetting the guide part. Thus analysis of the domains as well as the analysis of the
requirements of the stakeholders is essential to ensure that the developed application meets the
requirements of the domain and the intended users.

2.1 Product requirements document
A product requirements document is a comprehensive and detailed outline of all the necessary
information about the product: problematics, goals and personas for the understanding of the
problem and user in one place. The process of creating a product requirements document involves
the effort of all team members and stakeholder engagement, providing everything needed for
the creation of the product requirements. Through this process, the team gains a thorough
understanding of the problem and the user, which ultimately helps to guide the design and
development of the product. The main outputs from the analysis are the summary of the goals
and personas further specifying the application development process. The full document can be
found in the appendix C.

2.2 Domain analisys
Domain analysis is a phase in software development that involves researching the methods and
specifics of the domain to better understand the problem space and design a better information
architecture that suits specific scenarios of virtual guides. This process is based on information
science, which is concerned with the collection, organization, analysis, and dissemination of
information [5]. Although information science is not the primary topic of your thesis, it is still
essential to understand its fundamental principles to conduct an effective domain analysis.

2.2.1 Historical and Archaeological domains
To gain a better understanding of the domain of Oppidum Závist, consultation with archaeolo-
gists and other domain experts was done to gather information about the historical and cultural
significance of the site.

During the discussion with archaeologist Mgr. Daniel Bursák [6], it was revealed that the
archaeological research conducted at Oppidum Závist was active for almost three decades, from
1963 to 1990. The findings of this research were meticulously documented by all archaeological
standards, resulting in a wealth of valuable information about the historical site.

11

12 Product Analysis

Mr Bursák emphasized the importance of making this information accessible to the public
and popularizing the fascinating findings of the research. However, the current application for
the virtual guide is unnecessarily complicated, which makes it difficult to use while exploring the
site. As the guide himself, he points out that using the phone is not a priority for visitors to
a historical site. These insights will be valuable in informing the design and development of an
improved virtual guide application that is more user-friendly and tailored to the needs of visitors
to Oppidum Závist.

2.3 Requirements
Writing down the functional and non-functional requirements of a software application is a
critical component of the software development process. Functional requirements are describing
functions, services, and features that a software system should have to satisfy the user’s needs
and solve their problems. While non-functional describes qualities of a software system that are
important but do not relate to its specific functionality [7]. This will help with the understanding
of the project goals, identify constraints and limitations, and establish a clear roadmap for project
completion. Requirements that are separated by the application parts are described application
flow diagram in appendix B

2.3.1 Functional requirements
F1 Navigation

The user should be able to navigate the Oppidum Závist site using the app. It implies
that the app should provide an intuitive and user-friendly interface for navigating the site.

F2 Points of Interest

Users must be able to view points of interest on the map and get more information about
them.

F3 Interactive Elements

The app must include interactive elements such as 3D models, panorama, and AR view.

F4 Geocaching Game

The app should include a geocaching-style game where users can interact with points of
interest and answer quiz questions.

F5 Progress Tracking

The app should keep track of the user’s progress in the game and provide rewards upon
completion.

F6 User is able to turn off game elements

Setting panel must be present for the user to enable/disable game functionality

2.3.2 Nonfunctional requirements
N1 Web Application Integration

The app should be integrated with a web application that allows administrators to modify
points of interest.

Requirements 13

N2 Usability

The app should have an intuitive interface that is easy for users to navigate and interact
with.

N3 Performance

The app should be fast and responsive, with minimal lag or delay.

N4 Compatibility

The app should be compatible with iOS devices and meet Apple’s App Store requirements.

Conducting a thorough domain and requirement analysis helps identify the key concepts,
entities, relationships, and processes that took place on the Oppidum Závist. This knowledge
can then be used to develop an application that meets the needs and expectations of the target
audience and provides an engaging and informative virtual guide to this fascinating historical
site.

14 Product Analysis

Chapter 3

Technologies

3.1 Options for iOS development

Abstract

The focus of this thesis centres on the development of iOS applications. As iOS development
has evolved over the years, the field has transitioned from a predominantly native approach to
one that incorporates a range of development frameworks. Researching each of these frameworks
can facilitate informed decision-making regarding the selection of an optimal framework for our
specific solution.

3.1.1 Multiplatform Development
As the demand for mobile applications continues to rise, the need for efficient and cost-effective
cross-platform development solutions has become increasingly critical, leading to the emergence
of promising technologies [8] such as Kotlin Multiplatform (KMM), React Native, and Flutter
for developing applications that can run seamlessly on both iOS and Android platforms.

The main advantage of all such platforms is the ability to share code between multiple plat-
forms. This feature streamlines development by reducing the need for duplicated code, enabling
developers to focus on platform-specific functionalities. Furthermore, it provides a single code-
base, which can result in significant time and cost savings.

Its biggest advantage of generics is leading to the complex development process due to the
platform-specific differences, which may require developers to write platform-specific code. Each
framework solves this problem differently.

According to a study on the performance of cross-platform mobile app development using
web-based multiplatform tools [9] can struggle with performance whenever there are callbacks
from one codebase to another, some of the frameworks address this problem by converting code
to use native components.

15

16 Technologies

3.1.1.1 Kotlin Multiplatform
KMM – Kotlin Multiplatform Mobile goes around the problem of platform-specific code. It
generates a common core for the business and data layers of the app, leaving implementation
of the user interface to the developers of each platform [10]. It does not eliminate the need for
platform-specific code. Thus, developers must possess a deep understanding of both platforms
in order to effectively utilize KMM.

One of the key benefits of KMM is the ability to use the full potential of native development.
With KMM, developers can write native code for both Android and iOS platforms, which can
lead to increased performance and a better user experience, providing developers with access to
the native APIs and toolkits of each platform.

However, it is important to note that KMM is still in beta version and there are no stable
production versions yet [11]. This means that there may be bugs, compatibility issues, or other
problems that could impact the stability and performance of KMM. Developers must be aware
of these limitations and be prepared to work around them in order to effectively utilize KMM in
their projects.

Despite these challenges, KMM represents a promising approach to mobile app development
that can help reduce development time and improve code quality. As such, developers need to
stay informed about KMM to stay ahead in the ever-evolving mobile app development.

3.1.1.2 React native and Flutter
Flutter and React Native are two popular cross-platform mobile app development frameworks,
each with its strengths and weaknesses. Table 3.1 highlights some of the key differences between
the two frameworks across five aspects: programming language, user interface, performance,
development tools, and community support. Based on the documentation of the React Native
from Facebook team [12] and Flutter provided by its developers [13]

From a UI standpoint, React uses native design components, and therefore user gets as
native experience as possible with multiplatform development. Whereas Flutter uses Its widgets,
creating equivalent UX on both platforms.

Table 3.1 Differences between Flutter and React Native

Aspect Flutter React Native
Programming Lan-
guage

Dart JavaScript

User Interface Flutter renders its widgets resulting
in a consistent look and feels across
platforms

React Native uses native
components resulting in dif-
ferences in the UI on different
platforms

Performance Dart and reactive programming
model provide faster app perfor-
mance

Performance may be affected
by differences in the way na-
tive components are imple-
mented on each platform

Development Tools Comes with a comprehensive suite
of tools including its integrated de-
velopment environment (IDE) and
widget library

Relies on third-party tools
and libraries

Community Sup-
port

Growing rapidly and known for its
active contributions to open-source
development

Larger community with a
long history resulting in a
more extensive ecosystem of
third-party libraries, plugins,
and tools

Architecture 17

3.1.2 Native Development
Native mobile development provides several benefits over cross-platform development approaches.
By building a native app, developers can create an app that delivers the best possible performance
and user experience, taking full advantage of the design elements and features specific to each
platform.

Native apps offer superior performance because they are optimized for the platform’s hard-
ware and software [9]. This means that the app can run faster and more smoothly than cross-
platform alternatives, providing users with a better experience. Additionally, native apps can
take advantage of platform-specific features, such as the LidAR scanner in iPhones or the S Pen
in Samsung Galaxy devices. These features allow developers to create innovative and immersive
user experiences that are not possible with cross-platform development frameworks.

Another advantage of native development is the ability to deliver a high-quality user interface
that is consistent with the platform’s design language. This means that the app will look and
feel like a natural part of the device, making it easier for users to understand and use. Native
development also provides access to the full range of design elements and widgets available on
each platform, allowing developers to create interfaces that are tailored to the needs of their users.
Not to mention the presence of the accessibility features, that is missing on most multiplatform
platforms.

In summary, native mobile development offers several advantages over cross-platform develop-
ment, including better performance, access to platform-specific features, and the ability to create
a consistent and high-quality user interface. While the cost of development may be higher, the
benefits make it a worthwhile investment for delivering the best possible user experience.

3.1.3 Development using Game Engine
Developing an information system on a game engine may not be a suitable choice due to several
factors. Firstly, the game engine is designed primarily for game development and may not possess
the necessary features to support the creation of a responsive design with interface-building ca-
pabilities. This lack of built-in tools for interface building could result in additional development
time and effort being required to create a suitable user interface. Secondly, networking handling
in game engines is typically focused on game development, and may not support communication
with REST APIs, which are commonly used in information systems. This would require addi-
tional work and potentially result in further delays in the development process. Additionally,
game engines are not typically designed with responsive design in mind, and thus may not be
able to provide an optimal user experience across different devices and screen sizes. Finally,
accessibility features, such as support for screen readers or other assistive technologies, may be
lacking in game engines, making it difficult for users with disabilities to interact with the infor-
mation system. In conclusion, while game engines can be powerful tools for game development,
they may not be the most appropriate choice for developing information systems due to their
limitations in terms of interface building, networking, responsive design, and accessibility.

3.2 Architecture
The architecture pattern chosen for software development plays a pivotal role in determining
the development course of the project. It sets the foundation for the development process and
directly impacts the overall quality and maintainability of the software. Therefore, it is essential
to carefully consider the architectural pattern that best suits the specific requirements of the
project. The choice of architecture pattern can either simplify or complicate the development
process, affecting the efficiency and effectiveness of the development process. In this context, this
thesis focuses on the analysis of three popular architecture patterns, namely MVVM/MVC, TCA

18 Technologies

(The Composable Architecture), and The Clean Architecture, in the context of iOS application
development for the virtual guide of Oppidum Závist. The aim is to evaluate the strengths
and limitations of each pattern and provide insights into the suitability of each for the specific
requirements of the project.

3.2.1 MVVM/MVC
MVC (Model-View-Controller) is a widely used design pattern in software development that sep-
arates the application logic into three interconnected components: Model, View, and Controller.
It might be as well visible from the diagram 3.1. A controller has the responsibility for passing
through users’ interactions from view as well as model updates. Adding a loose description of
the responsibility network requests could go as in model as well as in controller. This leads to a
bigger controller that is harder to manage test and maintain. [14]

The MVVM (Model-View-ViewModel) design pattern is often compared to the widely used
MVC pattern due to their similarities. However, MVVM introduces some fundamental differences
that distinguish it from MVC. In MVVM, the View is responsible for owning the ViewModel,
which acts as an intermediary between the View and the Model. The ViewModel retrieves data
from the Model and publishes it to the View, which updates its state accordingly. Conversely,
the ViewModel receives input from the View and communicates with the Model to update its
state. By separating the View and ViewModel in this way, MVVM enables better separation of
concerns and enhances the testability and maintainability of the code.

Figure 3.1 MVC design pattern [15] Figure 3.2 MVVM design pattern [15]

3.2.2 The Composable Architecture
TCA or Composable Architecture brings a compositional and functional approach to iOS software
development. Independent developers of Point Free created a library that provides a set of
tools for developing software differently. At first glance, it might look complicated, but once
understood, it is easy to use.

The main component of this pattern is the store, it consists of the connection between State,
Reducer and Environment, and each of them has its role. 3.3

State resembles the state of the store, it combines all the data and view states. Important to
note that sometimes store owns ViewStore for the further abstraction of a particular screen
state and the application state

Reducer is a pure function, defining the effects caused by the action called from the View

Effect is the wrapped publisher user for the data flow.

Action is the enum of all possible actions that store handles

Environment is the collection of the dependencies for the store to function properly, there
might be the networking or the schedulers.

Architecture 19

Figure 3.3 TCA design pattern [16]

By separating concerns and modelling the application as a pure function of its state and
actions, The Composable Architecture enables developers to build applications that are easier
to scale, test, and maintain. One disadvantage is that this framework is still in development,
at the moment of writing, the library is still in the beta/unstable development stage. But it is
promising technologies that have all the chances to compete with other patterns described in
this section.

3.2.3 Clean Architecture
Clean architecture is the most robust of all presented. It provides layers of abstraction, for com-
plete modularity. Coming with the price of generating most of the template code in comparison
with other patterns 3.4. On the other side, it is in favour when talking about the cleanness of
the code described by Robert C. Martin [17]. Nevertheless, from clean approach mostly benefits
applications of great size, with several developer teams developing solutions over a considerable
amount of time.

Evaluating three popular architecture patterns, namely MVVM/MVC, TCA (The Compos-
able Architecture), and The Clean Architecture, in the context of iOS application development.
MVC separates the application logic into three interconnected components: Model, View, and
Controller. However, the MVVM pattern enhances the separation of concerns and enhances the
testability and maintainability of the code. TCA provides great separation, easy testing, and

20 Technologies

Figure 3.4 Clean Architecture design pattern [18]

maintenance but is still in the beta/unstable development stage. Clean architecture is the most
flexible of all and provides layers of abstraction but comes with the cost of an overhead that
unnecessarily complicates the development process. MVVM is recommended as it is flexible and
provides distinction between the layers, with a relatively small overhead.

Part II

Implementation

21

Chapter 4

Design and prototype creation

This section walks through the design decisions and prototypes made during the process of
getting the best results out of user testing. It covers the various techniques and tools used for
designing and creating prototypes, as well as the importance of iteration and collaboration in
the design process.

4.1 Prototyping process

4.1.1 Design process
The complete design process was executed in Figma, it is a cloud-based design and prototyping
tool that has become the industry standard for many designers due to its ease of use and collab-
orative features. As such, it was chosen as the primary application for the creation of the mobile
app design in this study.

One of the key benefits of using Figma is its ability to create designs and prototypes within
a single platform. This eliminates the need for multiple applications and simplifies the design
process. Additionally, Figma’s collaborative features, such as real-time editing and commenting,
allow for efficient teamwork and communication among designers and stakeholders.

When designing mobile applications, creating a flow for the user experience (UX) is critical.
Figma provides an intuitive interface for designing UX flows such as one on the image 4.1, enabling
designers to create user journeys and wireframes that align with the app’s goals. Moreover,
Figma’s design elements library contains a variety of pre-made icons, buttons, and UI elements
that designers can use to speed up their workflow.

In addition to designing UX flows, Figma also allows for the creation of low and high-fidelity
prototypes for user testing. Each of these types plays a significant role in different stages of the
design process.

Low-fidelity prototypes enable designers to quickly test the functionality and usability of
their app design without getting bogged down in details, although the standard method
for low-fi prototyping is pen and paper it is proven [19] that computer-based disadvantages
prototyping disadvantages are neglectable for the most of the scenarios. As it was determined
that drawing was not my strong side, the decision was made to create lo-fi prototypes 4.8
directly in Figma, with all design elements contained within one system. The goal of this
prototype was to experiment with different elements leaving the UX as simple as possible,
which means minimising the navigation and allowing the user to reach their goal (learn more
about a specific part of oppidum) effortlessly.

23

24 Design and prototype creation

Figure 4.1 Point detail flow

High-fidelity prototypes provide a more polished and refined user experience that closely
resembles the final product. While it is proven that low-fidelity prototypes can identify the
same amount of usability problems, high-fidelity 4.8 is useful for getting a better vision of how
final product, which helps with the communication with the client and other departments
working on the project [20]. User testing the prototype should not be instructed and need no
additional information for using it.

Prototyping is an essential part of the design creation process that enables designers to
identify usability problems and refine the user experience. The creation of low- and high-fidelity
prototypes plays a crucial role in different stages of the design process, allowing designers to
quickly test the functionality and usability of their design and provide a more polished and
refined user experience that closely resembles the final product. While low-fidelity prototypes
are useful for experimenting with different design elements and testing functionality, high-fidelity
prototypes are useful for getting a better vision of the final product and communicating with
the client and other departments working on the project. Although there are various tools for
prototyping, Figma has become an industry standard for many designers due to its versatility,
ease of use, and collaborative features. Nonetheless, different prototype and creation methods
serve their purposes, and designers should choose the most suitable one for their specific design
needs.

4.2 Prototype testing
As it was stated in the previous chapter main purpose of the prototype is to build the feeling of
the application and identify critical usability issues for faster development in the future. There
are several common principles for testing prototypes. As the Figma prototype will be as well
implemented and tested by user testing, the design prototype is tested by heuristics methodology.

Heuristics is a set of well-recognized usability design principles used for discovering usability
problems [21]. Nevertheless, this set is not stated and may vary depending on the purpose of
the evaluation.

For the heuristics evaluation of the Oppidum prototype Nielson Heuristics principles was cho-
sen. It provides a general overview of all aspects of the design prototype. For more information,

Prototype testing 25

we will compare the prototype with the existing application to see if the prototype is solving
some of the issues of the original solution. Each row of the table 4.1 is evaluating one of the
principles stated by Nielsen, Jakob [22]

Table 4.1 Heuristics Evaluation Results

Heuristic Prototype Evaluation Result Existing Solution Evaluation
Result

Visibility of system sta-
tus

Users always know in which state
of the app they are and how to
navigate forward/backwards

Users may be confused when in
the state of the game but the nav-
igation screen is presented as part
of the game

Match between the sys-
tem and the real world

The language and terminology
used in the system match the
user’s mental model, as there is a
possibility to change text style to
the child version with more suit-
able texts for the users of different
age groups

The language and terminology
used in the information sec-
tion are more suitable for adults
whereas the game is focused on
the children audience

User control and free-
dom

The user can undo and redo ac-
tions and navigate back to previ-
ous pages.

The user can return to the previ-
ous page but does not have the
freedom to change between sec-
tions of the application.

Consistency and stan-
dards

The system follows consistent de-
sign patterns as well as HIG for
the iOS operating system

The design system is fairly consis-
tent but does not follow HIG

Error prevention The system uses system Alerts ac-
cording to apples HIG

The system does not have error
states, actions that lead to a fail-
ing state are immediately rewind.

Recognition rather than
recall

The system minimises navigation
entries to make elements more ac-
cessible

All the instructions are shown to
the user in text form and are con-
sistent

Flexibility and effi-
ciency of use

The system is adapting to differ-
ent user groups through interface
and content customisation.

A historical guide is merely ef-
ficient despite the format of the
text.

Aesthetic and minimal-
ist design

The system is visually appealing
and does not contain extraneous
information.

System design elements are not
minimalistic.

Help users recognize,
diagnose, and recover
from errors

The system uses native elements
to handle the error

The system does not handle users’
wrong answers to the game ques-
tions.

Help and documenta-
tion

The system provides an onboard-
ing flow for users to set up the ap-
plication for specific use case.

The system provides a help screen
for users to learn more about the
application.

26 Design and prototype creation

Figure 4.2 Low-fidelity on-
boarding screen

Figure 4.3 Low-fidelity map
screen

Figure 4.4 Low-fidelity de-
tail screen

Figure 4.5 High-fidelity on-
boarding screen

Figure 4.6 High-fidelity
map screen

Figure 4.7 High-fidelity de-
tail screen

Figure 4.8 Examples of low- and high-fidelity prototypes

Chapter 5

Implementation

This chapter describes the implementation of the prototype for the operating system iOS using
Swift programming language. Describing the reasoning behind the usage of each tool and
package for the implementation. As well as decisions related to Software Engineering.

5.1 Tooling

5.1.1 Dependency management
App uses Carthage as a primary dependency manager, Providing a decentralised solution that
builds dependencies while not changing project files leaving the installation process to the user.
However, not all dependencies are available to install through Carthage. So the second package
manager used is SPM. Although this solution is provided by Apple it does not provide as
much flexibility as Carthage do. Both of the dependencies managers are integrated using Tuist
Dependencies. All of the dependencies are defined in Dependencies.swift file. For tooling
dependencies, Mint dependency manager is used, it is providing easy access to the tools that
are used for localization.

5.1.2 Dependencies used
The described dependencies are external modules that facilitate the implementation of the ap-
plication’s functionality. It is important to note that tests and strict versioning are crucial when
utilizing external dependencies.

The dependencies used in this project:

Alamofire Powerful networking library for iOS and macOS, providing a simple and intuitive
API for making network requests. It simplifies the process of handling network code, such as
serialization, authentication, and error handling, while also providing advanced features such
as response validation.

CTPanoramaView One of the most exciting interactive features of our application is the
browser that enables users to reconstruct scenes from the early days of the oppidum. By
utilizing this feature, our application creates an incredibly immersive experience for users,
providing them with a unique window into the past through the screen of their phone. CT-
PanoramaView is a sceneKit wrapper that creates 3D scenes with photos wrapped around
and uses the phone’s gyroscope for recreating camera movement so the panorama follows the
user’s phone movements.

27

28 Implementation

CodableGeoJSON GeoJSON implementation in Swift, for extending maps with the touristic
paths. In our particular case system maps have not provided the level of detail that would
simplify user navigation on the side. On the other side, GeoJSON is the accepted standard
for extending maps. GeoJSON data is used to add colour-coded paths for users to navigate
through the oppidum.

5.1.3 Tools used
Tools simplify development processes. When talking about production applications there are a
lot of processes that could be automatized. Each project is unique, and getting the right tooling
can save time as well as prolong it setting up the tools that won’t be used on the project at their
full potential.

ACKLocalization Localisations are a crucial aspect of UX that significantly impact accessi-
bility. By implementing localization tools, users from different regions and language back-
grounds can effectively engage with the product or service, providing a more inclusive and
personalized experience. This tool enables management of the localisation texts with ease
using Google Spreadsheet as the source for the generation of localisation files.

Tuist command line tool which is used to generate, maintain and interact with Xcode projects
and dependencies. The Xcode project file has quite a complicated structure and it brings
unnecessary complexity. Tuist is used for easier management of the project including modu-
larisation as well as resource and dependency management.

5.1.4 Frameworks used
Thanks to the decision to use native development discussed in 3.1.2 it is possible to use the most
optimised solutions for the platform utilising the full potential of the CPU as well as the GPU
of the mobile device using frameworks from Apple to build interfaces as well as using Camera
and LiDAR sensor for Extended reality.

SwiftUI user interface (UI) framework for building iOS, macOS, watchOS, and tvOS applica-
tions. It uses a declarative syntax to create UI elements, which makes it more flexible and
easier to use than the traditional UIKit framework. SwiftUI also supports a preview feature,
which allows developers to see how their UI will look and behave in real-time, making the
development process faster and more efficient [23]. Overall, SwiftUI is a powerful tool for
creating modern and intuitive user interfaces for iOS applications.

Combine Any communication with the network requires a way for asynchronous communication
in the app. The combined framework from Apple introduces declarative API for processing
values over time. Combine follows a reactive programming paradigm, declaring publishers
to expose values that can change over time, and subscribers to receive those values from the
publishers. [24]

SceneKit Apple Framework for working with 3d scenes, control lighting and geometry objects
its position in the scene and rendering options. Thanks to the optimisation done on the
Apple side SceneKit utilises the full power of the GPU with a low power consumption of the
device it is possible to integrate a 3D model browser to the page seamlessly so the feature is
enabled by default and the user does not need to do anything to enable it. [25]

RealityKit Apple Framework for working with Augmented reality. One of the latest Apple
Frameworks for forking with Extended Reality. It is a powerful tool for anything connected
with placing objects in the real world. Using a native solution like RealityKit enables not
only integration of the objects to the real world but also enables interactions with the objects

Implementation of the prototype 29

and advanced features such as People Occlusion and instant place detection using LiDAR
technologies integrated into some models of iPhone and iPad. [26]

5.2 Implementation of the prototype
In this section Implementation details are discussed. The benefits and principles of using MVVM
architecture are described in 3.2.1. Therefore this chapter discusses specific implementation
details relevant to iOS native development.

5.2.1 Modularisation
Modularization is an important aspect of iOS development that
involves breaking down an app’s functionality into smaller, more
manageable modules or components. By doing so, developers can
achieve several benefits, such as increased code reusability, better
structure and organization, and faster compile times. Modularisa-
tion of the current app is shown in the image 5.1

One of the main advantages of modularization is that it enables
greater code reusability. By breaking an app down into smaller, self-
contained modules, developers can create code that is more easily
shared and reused across different parts of the app or even across
different projects. This can save significant amounts of time and
effort, as developers can avoid duplicating code and instead focus
on building new features or improving existing ones.

Testing the individual modules is
Another benefit of modularization is that it promotes better

overall structure and organization of an app’s codebase. By sepa-
rating different parts of an app’s functionality into distinct modules,
developers can more easily reason about how the app is put together
and how different components interact with each other. This can
lead to more maintainable code, as well as easier troubleshooting
and bug fixing.

Finally, modularization can also help to speed up compile times.
By compiling each module in parallel and continuously in separate
threads, developers can reduce the overall time it takes to build
and test an app. This can be especially beneficial for larger, more
complex apps with many different modules that need to be built
and tested together.

Figure 5.1
Project modules
inside Xcode

5.2.2 Data layer
On the data layer, separate DTOs (Data Transfer Objects) implement Data models that are
received from API (Application Programming Interface). Having DTO written in the Project
and mapped to the app structures 5.1 makes the app independent from Back End models.
For decoding of the models, each DTO implements Decodable [27] protocol, from the functional
requirements 2.3.1 there is no need for Encodable implementation, for encoding data and sending
it back to the server, but the implementation of such functionality is the matter of one changing
conformation from Decodable to Codable [28], that enables encoding and decoding objects. On
any changes on the Back End, it is possible to update relevant DTO and its mapping to the
models without further editing of the application code.

30 Implementation

public struct PointDTO: Decodable {
public let id: String
public let label: Int
public let name: String
public let location: LocationCoordinatesDTO
public let timeStart: Int
public let timeEnd: Int
public let hasGeoGame: Bool

}
public struct LocationCoordinatesDTO: Codable {

public let longitude: Double
public let latitude: Double
public let altitude: Double

enum CodingKeys: String, CodingKey {
case longitude = "lon"
case latitude = "lat"
case altitude = "alt"

}
}
extension LocationCoordinatesDTO {

public var domain: LocationCoordinates {
.init(longitude: longitude, latitude: latitude)

}
}

Code listing 5.1 Example of the point DTO.

5.2.3 Services
Services are responsible for getting data from API. Since communication with the API is an
operation that involves transferring data over the network, the methods used for communicating
with the API must be asynchronous to prevent the user interface from becoming stuck during
the API method call 5.2.

public protocol Networking {
func fetch<T: Decodable>(_ endpoint: Endpoint) -> AnyPublisher<T, AFError>
func getURLSession(_ endpoint: Endpoint) -> Session

}

public final class NetworkManager: Networking {
// GET request using Alamofire returns publisher
public func fetch<T: Decodable>(_ endpoint: Endpoint) -> AnyPublisher<T, AFError> {

return sessionManager.request(endpoint.url)
.publishDecodable(type: T.self)
.value()
.eraseToAnyPublisher()

}

Code listing 5.2 Network Manager class managing communication with the API

For asynchronous networking prototype uses AFResults from Alamofire that is wrapped Com-
bine publisher. Provider uses another level of abstraction called Networking 5.3 that manages
all the request to the network, this way it is possible to change data source fetching the results
from another API or even different type of data source such as firebase for example. Providers
also stores fetched information in memory, to prevent fetching same data several time decreasing
the load on the server.

Implementation of the prototype 31

public final class PointProvider: PointProviding {
public var network: Networking
public var points: [PointDTO] = []
public func getPoints() -> AnyPublisher<PointsDTO, AFError> {

network.fetch(.allPoints)
}

public init(network: Networking) {
self.network = network

}
}

Code listing 5.3 Example of the Point Provider

5.2.4 Views
Views is the key element of the SwiftUI and MVVM architecture, it is represented by the any
object that conforms to the View protocol. Only requirement of the view is to have computed
property body of type Some View meaning that exact type of the view is computed on the compile
time, as the View type might be hard to distinguish giving the declarative programming style.
View is constructed appling the different modifiers to the elements. As the example of the view
Map annotation is shown in 5.4, that builds Annotation view for the given location on the map.

func MapAnnotationView(location: LocationOverview) -> some View {
Text(String(location.number))

// Add padding around the text label
.padding(12)
// Set the colour of the background
.background {

viewModel.annotationColor(location: location)
}
// Set shape to the circle
.clipShape(Circle())
// Set on tap action
.onTapGesture {

withAnimation {
viewModel.setChosenIndex(location: location)

}
}
// Increase scale on selected
.scaleEffect(location.number == (viewModel.chosenLocation?.number ?? -1) ? 1: 0.7)
// Add animation for the changing of the color and size
.animation(.default, value: viewModel.chosenPointIndex)

}

Code listing 5.4 Example of the Map Annotation view

32 Implementation

Chapter 6

Testing

This chapter discusses the testing process of the Oppidum Závist guide application, which
was distributed for testing using Apple’s TestFlight platform. The chapter emphasizes the
importance of usability testing to gain valuable insights into user needs and preferences, and
to identify usability problems for further improvement of the application’s guide. The chapter
presents a detailed description of how to prepare for usability testing. The chapter also dis-
cusses the results of usability testing defining areas where the application can be improved to
better meet user needs. Lastly unit-testing of the application was discussed, pointing out the
importance of the modularisation for the sake of testing units separately. By following the
methods outlined in this chapter, developers can ensure that their application is thoroughly
tested and ready for release to the public.

6.1 Distribution for testing

In order to distribute an iOS app for testing, Apple’s platform for test distribution called Test-
Flight [29] was used. This platform is designed to simplify the process of testing pre-release
versions of iOS apps and is available to developers who have a developer account with Apple.

TestFlight offers two types of testing: internal and external. Internal testing is intended for
the testing of pre-release apps within a development team or other authorized group. This type
of testing requires the use of an invitation system, where testers are invited via email to download
and install the app on their devices.

External testing, on the other hand, allows developers to share their app with a wider audience
outside of their development team. This can be useful for gathering feedback from potential users
or for beta testing with a larger group. External testing requires the app to go through a review
process before it can be distributed, which can take a few days to complete.

Using TestFlight for app distribution provides developers with an efficient and streamlined
process, enabling the distribution of versions through CI (Continuous Integration) for testing
pre-release versions of their iOS apps. With the ability to conduct both internal and external
testing, developers can ensure that their app is tested thoroughly and is ready for release to the
public.

6.2 User usability testing

▶ Definition 6.1. Usability testing—the process of learning about users from users by observing
them using a product to accomplish specific goals of interest to them. [30]

33

34 Testing

Anyone working on the project has their own subjective opinion and evaluating the product’s
usability solely based on one’s opinion may not provide accurate results of the usability tests.
To mitigate this issue, usability testing provides an effective means to focus on the user’s per-
spective and their interaction with the product. Obtaining feedback from external sources can
gain valuable insights to improve the product’s usability. However, to maximize the benefits of
usability testing, proper preparation is crucial.

Usability testing on the working prototype of Oppidum Závist provided valuable insights into
user needs and preferences, and helped identify usability problems, for further improvement of
the guide.

6.2.1 Preparation for the tests
The definition of usability according to the International Organization for Standardization (ISO)
emphasizes that a system, product, or service should be evaluated based on its ability to meet
the needs of specific users to achieve specific goals with effectiveness, efficiency, and satisfaction
within a specific context of use. [31]

The specification of users, goals, and context is important as it determines the scope of
usability testing. Testing should be conducted with potential users who are representative of the
intended audience, and the goals that the product or system is designed to achieve should be
clearly defined. Furthermore, the context in which the product or system is used should also be
taken into consideration during testing.

For the conducted study, a group of users was selected to represent personas of adults with
varying levels of interest in history and technology. The participants were recruited based on
their demographic profiles and were asked to perform a set of predefined scenarios to achieve
specific testing goals.

To ensure that the testing goals were clearly defined, scenarios were provided to each user
along with step-by-step instructions to help them achieve their objectives. This approach helped
to ensure that the testing was conducted consistently and that the results obtained were accurate
and reliable.

The simulation of the testing environment was based on the story of a real scenario in which
the user would visit the historical site and install the virtual guide application. By providing the
users with a realistic context, the testing was conducted under conditions that closely mirrored
the actual use of the product. This approach helped to ensure that the feedback obtained from
the users was more relevant and reliable.

The study was conducted with a representative group of users, clear testing goals, and a
realistic testing environment. This approach helped to ensure that the usability testing was
conducted in a systematic and controlled manner, which in turn yielded reliable and valuable
insights into the product’s usability.

6.2.2 Conducting tests
The tests were conducted in a user-usability lab in CTU FIT equipped with camera equipment,
testing devices, and a quiet environment that was non-destructive for the user. The cameras
were strategically located to monitor the user’s nonverbal communication, as well as their actions
during the test.

In the room with the user was a moderator who explained the user’s goals and the necessary
information for accomplishing those goals. During the testing process, the moderator did not
take part, allowing the user to discover the interface and solve problems by themselves. This
approach helped to obtain more accurate results of the testing as the user’s actions were not
influenced by the moderator.

Video and audio from the test were streamed to the usability review room where observers
noticed user behaviours and took notes for further evaluation to identify pain points and usability

User usability testing 35

problems 6.2. This approach allowed for real-time observation, helping to identify usability issues
and areas of improvement for the product.

After the tests were completed, the user was asked to provide feedback on the product. This
feedback was obtained after the user had used the application, giving an overall impression of
the product. Gathering feedback in this way gives valuable insights into the user’s experience of
the product and helps identify areas where the product could be improved to better meet user
needs.

Figure 6.1 UX usability labora-
tory

Figure 6.2 Usability review room, with the running stream
from the usability laboratory

6.2.3 Analysing the results
In the user usability testing, two scenarios were designed to evaluate the effectiveness and effi-
ciency of the application in achieving the specified goals covering the core functionality of the
application.

The first scenario focused on the onboarding process and familiarizing the user with the
design elements of the application. All participants completed and one issue worth mentioning
is changing the language. By design language change is conducted throw system settings, deep
linking the user to the language setting in the system settings, after the user is supposed to
change back the app manually, requiring the user deeper knowledge of the iOS operating system.
This and several other insignificant problems found during this scenario are documented in the
table 6.1 along with suggestions for solutions.

The second scenario aimed to test the main goal of the application, which was to provide
information about the points of interest around Oppidum Závist. In the first step, users were
asked about their preferred navigation app and source of information. They were then asked to
find the point of interest by name and explore the interactive elements, such as panoramas and
augmented reality. While there were only minor issues encountered during this section of the
test, they are documented in the table 6.2.

The second part of the scenario focused on testing the integration of game elements. Several
issues were revealed, including a lack of feedback upon completion of the game segment and
navigation flow problems. These issues are also described in the table 6.2.

The results of the usability testing provided valuable insights into the user experience of the
application and helped identify areas for improvement. The findings from the scenarios will
inform the design changes and updates to improve the usability and overall user satisfaction of
the virtual guide for Oppidum Závist.

36
T

esting

Table 6.1 Result of the usability tests (scenario 1)

Goal to achieve Timecode Findings Possible solution
The first interaction with the ap-
plication

12:09:10 (user 3) User trying to swipe tab View, but the panorama is
swiped overwise, user uses a button to proceed

Disable touch gestures on
panorama, change the type of
interaction on the first screen
not recognizing gestures

Change the language of the ap-
plication

11:49:40 (user 2)
12:09:30 (user 3) Changing the language, opening system settings,

switching the application, that puzzles the user on
coming back

Change language directly in the
application

11:32:35 Button back from settings gets the user to come back
to system settings, not an application

Find and open application infor-
mation

12:10:30 (user 3) Using only system gesture to dismiss(swipe down)
may cause the user a hiccup on closing tap

Add button to dismiss or use an-
other style of navigation

11:32:44 (user 1) Interactive element of the 3D model is indistinguish-
able from the photo, users may not see the possibility
of interaction

Add icon to all 3d elements or
make default animation for a
user to see that it is a 3D model

U
ser

usability
testing

37

Table 6.2 Result of the usability tests (scenario 2)

Goal to achieve Timecode Findings Possible solution
Map orientation 11:35:35 (user 1) Settings menu not disappearing while navigating on

the map
Add gesture recognition to hide settings
on the first tap outside the settings
menu

Find the point of interest
by name

11:54:10 (user 2) Labels are numbers, the only way to find them is to
go through all the points

Add dynamic labels that add names on
Zoom in, a list with an overview of all
the points

Open point detail 11:54:30 (user 2) Definition of buttons “More“ and “Next“ are not
clear.

Change Texts with more describing

Look through all interac-
tions on the point detail

12:14:00 (user 3) Scroll is interacted by the rotating gestures on the
3D Model, resulting in the user not freely scrolling
information

Disable interactions with 3d model by
default, the user starts it with the but-
ton, adds padding to the 3d model
viewer

Answer game question 11:56:00 (user 2) App does not provide feedback on the correct answer,
the user does not know if the question is answered

Provide additional feedback through
graphics, haptics or sounds

Find the game progress
screen

11:37:41 (user 1) User expects progress of the game on the screen with
the game itself

Provide more links from the game to
progress and another way around

38 Testing

In conclusion, the user usability testing conducted in this study provided valuable insights
into the design and usability of the virtual guide for Oppidum Závist. By focusing on specific
users and goals, simulating the environment, and providing scenarios and instructions, the study
revealed usability problems and provided insights into how users interact with the product. The
testing was conducted in a controlled environment with cameras to monitor user behaviours, and
the observers in the usability review room took notes for further evaluation. Based on the results
of the testing, recommendations for improvements were made. Overall, this study highlights the
importance of user usability testing in identifying and addressing design and usability issues
before releasing the application to the public.

6.3 Unit Testing
Another important part of the software testing process is unit testing. As the name suggests
it puts separate units of the program to the test. It involves testing individual modules or
components of software code to ensure that they function as intended and that they can be
integrated seamlessly into the overall application. This approach to testing offers several benefits
over testing the application as a whole. Firstly, it allows for more granular and targeted testing,
as each unit can be tested in isolation. This, in turn, makes it easier to identify and fix errors
or bugs in the code. Secondly, by testing each unit separately, developers can ensure that the
code is modular and easily maintainable. This means that changes or updates can be made to
individual units without affecting the rest of the application. Additionally, modularisation allows
for faster compilation and testing, as units can be tested independently of one another. Overall,
unit testing is a valuable practice that can greatly improve the quality and reliability of software
applications.

The application uses a module concept where each feature is separated as described in 5.2.
This allows us to create another test module for testing feature modules. In this module test
source file is created and unit tests go here. For a better understanding of the tests, all unit test
files follow similar order, having in common the following:

XCTest is the framework providing a set of tools for running unit tests, and performance tests.
Providing methods such XCTAssert for assertion and self.measure ... for testament of
the performance

testable import allows access to the internal module implementation, that would not be
accessible from another module otherwise.

method setUpWithError() is called before the invocation of each test method in the test
class.

One of the Unit tests is presented as the example 6.1. Here the tests are done on the
MapViewModel, where separate methods of the viewModel are put to test. Test of the data is
possible thanks to the wrapping providers with the protocols described in 5.2.3, which makes the
creation and use of the mock data easy.

Unit Testing 39

import XCTest
...
@testable import MapModule

final class MapViewModel_Tests: XCTestCase {
var viewModel: MapViewModel!

override func setUpWithError() throws {
viewModel = MapViewModel(pointProvider: MockPointProvider())

}
func testPointFetchCorrectly() throws {

XCTAssert(viewModel.points == PointDTO.mockList.domain)
}

func testChooseLocation() throws {
viewModel.setChosenIndex(location: PointDTO.mockList[0].domain)
XCTAssert(viewModel.chosenLocation == PointDTO.mockList[0].domain)

}

func testChooseNextLocation() throws {
viewModel.setChosenIndex(location: PointDTO.mockList[0].domain)

for i in (1..<viewModel.points.count) {
viewModel.chooseNextLocation()
XCTAssert(viewModel.chosenPointIndex == i)

}

viewModel.chooseNextLocation()
XCTAssert(viewModel.chosenPointIndex == 0)

}

func testPerformanceInitialiser() throws {
self.measure {

_ = MapViewModel(pointProvider: MockPointProvider())
}

}
}

Code listing 6.1 Example of MapViewModel unit test.

40 Testing

Conclusion
It takes a lot of effort to make something look effortless.
—Ben Mitchell [32]

This thesis presents a comprehensive description of the development process of the Virtual
Guide for the Oppidum Závist, specifically for the iOS operating system. The development goal
was to make a performant and informative application using advanced features, keeping the user
interface simple and user-friendly.

To develop an optimal solution within the given time and resource constraints, analysis was
conducted throughout the research part of the thesis. Analysis of similar solutions given the
understanding of the product alternatives its advantages and disadvantages. Domain analysis
and writing down the requirements allow for better planning and understanding of the problem
application tries to solve. In the overview of the most used frameworks, the native way of
development using SwiftUI was chosen as the most appropriate for the problem. Furthermore,
through the choices of architectures, MVVM was chosen as the most reliable and comprehensive.
With a solid theoretical background in place, the development phase commenced.

The implementation starts with the development of the design. The creation of the Low- and
High-Fidelity prototypes were discussed implying further creation and testing using heuristic
evaluation methods. The application implementation implies many different tools and frame-
works, the usage of which is discussed along with the main implementation principles. The
implemented prototype was put to unit tests, testing individual modules separately as well as
user usability tests that were conducted in the usability laboratory having the potential users go
through the core functionality of the applications. Results of the test are summarised giving the
list of the improvements for further development.

Future Development
Future development of the virtual guide prototype for Oppidum Závist offers a promising oppor-
tunity to bring the application to a broader audience. With further refinement and expansion,
the prototype can be transformed into a production application and released in the applica-
tion store for iOS, thus enabling visitors to the archaeological site to have a more enriched and
immersive experience.

Additionally, the design principles and implementation strategies employed in the develop-
ment of the virtual guide for Oppidum Závist can serve as a template for the development of
virtual guides for other historical sites. The insights gained from the user testing and analysis of
similar applications can be applied to future projects, enabling the development of more efficient,
user-friendly, and visually appealing virtual guides.

Furthermore, the application can be expanded to include additional historical sites and tourist
destinations, creating a comprehensive travel guide application that combines multiple locations.
Providing the familiar interface on each location.

Appendix A

Scenarios for user-testing

Two scenarios were designed to test the usability of the guide’s core functionality. As the prod-
uct’s target market is the Czech Republic and the tester’s majority were Czech it was decided to
conduct tests in the Czech language. The first scenario is focused on the user’s first interaction
with the application. The first page includes a set of step-by-step instructions to complete a spe-
cific task within the app, whereas the second page describes user-expected behaviour. Normally
the behaviour patterns would be placed inside the table, but taking the small size of the testing
(3 testers), separated notes on the tests were enough in our case.

41

Prvńı spouštěńı
Abstrakt

V tomto scénáře chceme otestovat prvńı interakce uživatele a aplikaci.
Hlavńım ćılem je nastavit aplikaci podle pokyn̊u, následně tyto nastavěńı
změnit.

Kroky

Splńıte ćıl pomoci následuj́ıćıch krok̊u

1. Nastavte následuj́ıćı nastaveni:

(a) Jazyk aplikaci na “Češtinu“

(b) Zapnete režim aplikaćı pro dět́ı

(c) Vypnete funkcionalitu “Kviz“

2. Najdete a otevřete záložku informaci o aplikaci

3. Najdete a otevřete záložku nastaveńı

4. Zapnete zpatky funkcionalitu “Kvizu“

5. Vypente režim aplikaćı pro dět́ı

1

Př́ıprava

• Zkoušeme Software ne Vás

• Aplikace je prototyp

• Budu Vás provázet na každém kroku

• Zkuste se uvolnit

• Uživatel přijel na oppidum stahnul aplikaci

Pre-testovaci otazky

1. Jak často jezd́ıte na výlety do př́ırody?

2. Použ́ıvali jste někde operačńı systém iOS?

3. Použ́ıváte-li mobilńı aplikaci, v museu?

Očekávané kroky uživatele

1. Nastavte následuj́ıćı nastaveni:

(a) Jazyk aplikaci na “Češtinu“

Uživatel přejde do nastaveńı a změńı jazyk aplikaci. Předpoklad
uživatel umı́ ovládat iOS a přejde zpátky, jinak pomoct.

(b) Zapnete režim aplikaćı pro dět́ı

Uživatel přepne sṕınač

(c) Vypnete funkcionalitu “Kviz“

Uživatel přepne sṕınač

(d) Vypente režim aplikaćı pro dět́ı

2. Najdete a otevřete záložku informaci o aplikaci

Uživatel najde označeni pro informaci otevře záložku

3. Zapnete zpatky funkcionalitu “Kviz“

Uživatel otevře nastaveni a zapne funkcionalitu kvizu

Post-testovaci otazky

1. Je něco co Vám nebylo jasné, na co byste potřebovali v́ıc informaci?

2. Bylo vám jasně ovladani aplikaci

2

44 Scenarios for user-testing

The second scenario is focused on the user’s main interaction with the application, using the
guide including the interactive features as well as game elements. The first page includes a set
of step-by-step instructions to complete a specific task within the app, whereas the second page
describes user-expected behaviour.

Přehlednost informaci o zastaveńı
Abstrakt

V tomto scénáře chceme otestovat aplikace jako Interaktivńıho pr̊uvodce.
Hlavńım ćılem je prozkoumat informaci k zastaveńı. Následně odpovědět
na kvizovou otázku a prozkoumat progres kvizu.

Kroky

Splńıte ćıl pomoci nasledujicich krok̊u

1. Najdete na mapě bod s nazvem “Předhrad́ı Závist́ı“

2. Najdete a otevřete detail bodu

3. Kouknete informaci o zastaveńı, vyzkoušejte

• obrazky

• panoramu

• 3d model

• Doplněnou realitu

4. Najdete sekce kvizu

5. Přečtete kvizovou otazku a odpovezte na nej

6. Najdete kde se dá sledovat progres kvizu

7. Najdete na kolik otázek jste zodpověděli

1

Pre-testovaci otazky

1. Jak moc Vás zaj́ımá historie nebo archeologie?

2. Pokud jste na historickém mı́stě, jaké prvky použ́ıváte pro navigaci?

3. Jaké prvky použ́ıváte pro nalezeńı informaci o mı́stě?

Očekované kroky uživatele

1. Najdete na mapě bod s nazvem “Předhrad́ı Závist́ı“

• Uzivatel klikne na nahodny bod

• Uživatel klikne na označeni sve polohy

• Uživatel použije tlacitko “daľśı zastaveńı“

2. Kouknete informaci o zastaveńı, vyzkoušejte ...

• Uzivatel pochopi jak funguji panoramy

• Uzivatel pochopi jak funguji 3d objekty

• Uzivatel pochopi jak funguje prostřed́ı rozš́ı̌rené reality

3. Najdete sekce kvizu

• Uzivatel přepne sekce

4. Přečtete kvizovou otazku a odpovezte na nej

• Uzivatel pochoṕı že odpověděl správně/špatně

5. Najdete kde se dá sledovat progress kvizu.

• Uživatel vraćı na mapu

• Uživatel pozná značeni ikony informaci o kvizu

Post-testovaci otazky

1. Pokud byste použ́ıvali aplikaci, zapnuli byste funkcionalitu kvizu

2. Pokud byste použ́ıvali aplikaci, chtěli byste odpovědět na všechny otázky
z kvizu?

3. Je něco co Vám nebylo jasné, na co byste potřebovali v́ıc informaci?

2

Appendix B

Storyboard application flow in
Figma

Storyboarding is a useful tool for designing and illustrating the flow of a mobile application’s user
interface. In this thesis, two storyboard flows have been created in Figma for an iOS application.
Taking into consideration that all team members are Czech, StoryBoards was done in the Czech
language. The first flow B.1 includes onboarding, a map view, and a settings view, while the
second flow includes point detail B.2 and a quiz game. These flows were designed to enhance the
user experience of the application by providing a seamless and intuitive navigation path. The
following sections provide a detailed description of the two storyboard flows.

47

48 Storyboard application flow in Figma

Zobrazí se mapa s
jednotlivý body(1-13)

Po stisknuti bodu
zobrazí se přehled
zastavky (nazev)

Po stisknuti detailu
kvizu zobrazi se

progress

Flow:

Požadavky:

Poznamky k implementaci:

 Funkčn
 Mapa -Interaktivní mapa, možnosti zobrazovat detail jednotlivých bodu zajm
 Navigace do bod

 Nefunkčn
 Mapa je interaktivní, UI/UX je stejný jako o systémových map, připadně conejvic podobny

 Ani v Google ani v Apple mapách není turistické cest
 Vykresleni cest na další vrstvě - nezprovozníme navigaci, bude potřeba připínat na Mapy.c
 Použiti Mapy.cz - není iOS API, horší navigace na detail, složitější implementace

Přepnout na
dalši zastavku

otevřít detail

Informace o oppidu
samotnem,

kratce

Info o aplikace,
sponzoři

Informace:

Požadavky:
 Funkčn

 Uživatel muže přejit z informaci na stranky Dolních Břežan

Návod jak používat
aplikaci

Odkazy Dolní břežany,
CCHAOS

Vybrat jazyk Vítejte v aplikaci

Flow:

Požadavky:

Zapnout/vypnout
GeoCaching

Upravit obsah pro děti

 Funkčn
 Musí existovat nastaveni aplikaci, kde se dá funkcionalitu zapínat/vypína
 Na pozadí je obrázek z Virtualizac

 Nefunkční – jde o to aby Uživatelovi ukázat co aplikace umí, zaujat h
 Zobrazovat na pozadí celou panoramu/y podle polohy mobil
 Zobrazovat 3d artefakty (pokud budou 3d artefakty)

Nastavení:
 Změna dětského režim

 změna bare
 textac

 Zapnuti vypnuti geoHr
 Změna jazyku

Nastaveni

Hlávní obrazovká

Po prvnem zpouštěni aplikace

Screen: Informace

Figure B.1 Storyboard flow diagram with the requirements

49

Seznam zadaní

splněné/zadané

Po zobrazeni zadaní
zobrazí se detail a

kvizová otázka

Flow:

Cíle hry:
 Pomocí interaktivních forem dovede účast na geohře návštěvníka k dalším zjištěním a faktům,

týkajícím se hradiště a oppida Závist, ale zejména dalších aspektů života v době železné a dalších
pravěkých epochách

 Po úspěšném absolvování by měla následovat odměna

Mapa s oblasti

zobrazeni 3D modelu
artefaktu

Až uživatel dorazí do
oblasti bude mu

nabízena kvizová
otázka

Po sbíraní všech
předmětu bude

nabízeno uživatele
nasdílet své úspěchy

na sociální sítě

Zobrazí se nástin
objektu a jak je ho se

da získat
je uzavřen

Zobrazí se detail

a moznost zobrazeni v

AR
je otevřen

Zobrazi Detailni info o
zastavký

Textove sekce vč. foto

Flow: Overview

Požadavky:
Funkčn

 Obsah se sklada z 3 čast
 Seznámení a shrnutí nejdůležitějších poznatků(~600 zn.
 Rozvíjení dílčích témat, spojenych s daným místem (~2000 zn.) (na začatku zabalena
 Zajímavost spojená s daným místem, ať už se jedná o movitý či nemovitý nález (~300 zn.) (na začatku zabalena

 Texty budou doplněny ilustracemi formou trojrozměrných rekonstrukcí, fotografií, případně ručními kresbami at
 foto do kolotoče v textove sekc
 3D a AR maji rozlišne ikony a umistine na viditelnem mistě

 Textovy obsah se liši podle nastaveni detských/dospelých text
 Nefunkčn

 System načte veškere data asynchrone, neblokujici uživatele

Časový usek

Interactivni zobrazeni

Rozsirena realita

360 Panoramy
rekonstrukce

(rotace podle

kompasu)

Detail

(rozbalovaci)

Zajimovosti

(rozbalovaci)

Naskenovat plochu

Sjednotit obris

Přidat modely do sceny

3D viewer

Kviz

Multichoice text

Multi-choice

Obrazky

GeoCatching

Screen: GeoHra

Detail zastavky

Figure B.2 Storyboard flow diagram with the requirements

50 Storyboard application flow in Figma

Appendix C

Product requirements document
in Figma

During the preparation for the development, products requirements were analysed, providing
outputs on problematics and goals of the product C.1, and the analysis of the personas main
and secondary C.2

The process of creating a product requirements document involves the effort of all team
members and stakeholder engagement, considering the communication in the team and between
stakeholders are in Czech language, thus the document is conducted in the same language. Figma
makes the collaboration between all the members seamless, providing everything needed for the
creation of the product requirements.

51

52 Product requirements document in Figma

Problem

Virtuální průvodce

Approach

Purpose

Digitalizace průvodce - jednoduchý způsob
dostat další informace k životu na Oppidu
primárně pro návštěvníci oppida, nejen formou
textu ale i s využitím současných technologii a
gamifikačních prvku

Komkov Vladislav

Navrhnout ponejvíc
jednoduchou aplikaci

Zvýšit návštěvnost oppida

Použití technologie(AR,
3D) kde je potřeba

Zveřejnit znalosti vytížené
z dlouhodobého
archeologického výzkumu

Oppidum Závist

Ukazatele výkonnosti

Cile

Value proposition

Aplikace bude mít dobré
hodnocení (>4.0)

Nabídnout lepši řešení pro
virtuálního průvodce

Neobtěžující doplněk s zajímavé informace pro
lepši procházku

Průvodce oppida dostane
dobré hodnoceni přímo na
prohlídce

Aplikace je udržitelná -
snadné rozšíření, doplnění
a úprava obsahu

WhyWhat

Figure C.1 Product requirements specification of the problem and the goals

53

Primární persona

Sekundární persona

Demografi
 7–13

Povah
 hrav
 aktivn
 zvídavý

Cíl
 Projít se oppidem

zkoumat nové
informace

 Přístu
 Hrávy, aktivní

Jaký řešíme problé
 Učení hravou formou

 Co potřebuje
 Zaujat se během

procházk
 Dozvědět víc o

Oppidu

Jan Novak

Tomáš Svoboda

Demografi
 16–45

Povah
 Klidn
 Nelíbí se mu přetížení

desig
 Nechce se nic hrat

Cíl
 Projít se oppidem

zkoumat nové
informace

Přístu
 Suchy, zajima se jenom

o informacich

Jaký řešíme problém
 Doplnění informaci o

Oppidu

Co potřebuje
 Dozvědět víc o Oppid
 Lepe si představit život

Oppida

Who

Figure C.2 User research, creation of the personas

54 Product requirements document in Figma

Bibliography

1. MATHESIO LTD. Screenshot of Oppidum Zavist application for iOS [online]. Mathesio Ltd,
2021. Available also from: https://apps.apple.com/cz/app/oppidum-z%C3%A1vist/
id1525870747?l=cs.

2. KRUG, Steve. Don’t make me think, revisited: A common sense approach to web usability.
New Riders, 2019. isbn 9780321965516.

3. APPLE INC. Human Interface Guidelines [online]. Apple Inc., 2022. Available also from:
https://developer.apple.com/design/human-interface-guidelines/foundations/
layout/.

4. MORE.IS.MORE LTD. Screenshot of Visit.More application for iOS [online]. More.is.More
Ltd, 2020. Available also from: https : / / apps . apple . com / cz / app / visit - more /
id1459887821.

5. PRIETO-DIAZ, Ruben. Domain Analysis: An Introduction. SIGSOFT Softw. Eng. Notes.
1990, vol. 15, no. 2, pp. 47–54. issn 0163-5948. Available from doi: 10.1145/382296.
382703.

6. BURSÁK, Daniel. Discussion on Oppidum Zavist [Personal communication]. 2023.
7. WIEGERS, Karl; BEATTY, Joy. Software Requirements. 3rd. Microsoft Press, 2013. isbn

978-0735679665.
8. CHARKAOUI, Salma; ADRAOUI, Zakaria; BENLAHMAR, El Habib. Cross-platform mo-

bile development approaches. In: 2014 Third IEEE International Colloquium in Information
Science and Technology (CIST). 2014, pp. 188–191. Available from doi: 10.1109/CIST.
2014.7016616.

9. CORRAL, Luis; SILLITTI, Alberto; SUCCI, Giancarlo. Mobile Multiplatform Develop-
ment: An Experiment for Performance Analysis. Procedia Computer Science. 2012, vol. 10,
pp. 736–743. issn 1877-0509. Available from doi: https://doi.org/10.1016/j.procs.
2012.06.094. ANT 2012 and MobiWIS 2012.

10. JETBRAINS. Kotlin for Mobile App Development [online]. JetBrains, 2021. Available also
from: https://kotlinlang.org/lp/mobile/.

11. JETBRAINS. Kotlin - Components Stability [online]. Accessed April 15, 2023. Available
also from: https://kotlinlang.org/docs/components-stability.html.

12. FACEBOOK. React Native - Architecture Overview [online]. Accessed April 15, 2023. Avail-
able also from: https://reactnative.dev/architecture/overview.

13. FLUTTER TEAM. Flutter - Frequently Asked Questions [online]. Accessed April 15, 2023.
Available also from: https://docs.flutter.dev/resources/faq.

55

https://apps.apple.com/cz/app/oppidum-z%C3%A1vist/id1525870747?l=cs
https://apps.apple.com/cz/app/oppidum-z%C3%A1vist/id1525870747?l=cs
https://developer.apple.com/design/human-interface-guidelines/foundations/layout/
https://developer.apple.com/design/human-interface-guidelines/foundations/layout/
https://apps.apple.com/cz/app/visit-more/id1459887821
https://apps.apple.com/cz/app/visit-more/id1459887821
https://doi.org/10.1145/382296.382703
https://doi.org/10.1145/382296.382703
https://doi.org/10.1109/CIST.2014.7016616
https://doi.org/10.1109/CIST.2014.7016616
https://doi.org/https://doi.org/10.1016/j.procs.2012.06.094
https://doi.org/https://doi.org/10.1016/j.procs.2012.06.094
https://kotlinlang.org/lp/mobile/
https://kotlinlang.org/docs/components-stability.html
https://reactnative.dev/architecture/overview
https://docs.flutter.dev/resources/faq

56 Bibliography

14. ALJAMEA, Mariam; ALKANDARI, Mohammad. MMVMi: A validation model for MVC
and MVVM design patterns in iOS applications. IAENG Int. J. Comput. Sci. 2018, vol. 45,
no. 3, pp. 377–389.

15. ALJAMEA, Mariam; ALKANDARI, Mohammad. MMVMi: A validation model for MVC
and MVVM design patterns in iOS applications. IAENG Int. J. Comput. Sci. 2018, vol. 45,
no. 3, pp. 377–389.

16. SWIFT AND TIPS. The basics of The Composable Architecture [Video] [Online; accessed
2023/05/10]. 2023. Available also from: https://www.youtube.com/watch?v=SfFDj6qT-
xg.

17. MARTIN, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship. 1st. Pren-
tice Hall, 2008. isbn 978-0132350884.

18. LAW, Raymond. Introducing Clean Swift Architecture (VIP) [Online; accessed 2023/05/10].
2017. Available also from: https : / / medium . com / hackernoon / introducing - clean -
swift-architecture-vip-770a639ad7bf.

19. SEFELIN, Reinhard; TSCHELIGI, Manfred; GILLER, Verena. Paper Prototyping - What
is It Good for? A Comparison of Paper- and Computer-Based Low-Fidelity Prototyping.
In: CHI ’03 Extended Abstracts on Human Factors in Computing Systems. Ft. Lauderdale,
Florida, USA: Association for Computing Machinery, 2003, pp. 778–779. CHI EA ’03. isbn
1581136374. Available from doi: 10.1145/765891.765986.

20. VIRZI, Robert A; SOKOLOV, Jeffrey L; KARIS, Demetrios. Usability problem identifica-
tion using both low-and high-fidelity prototypes. In: Proceedings of the SIGCHI conference
on human factors in computing systems. 1996, pp. 236–243.

21. JIMENEZ, Cristhy; LOZADA, Pablo; ROSAS, Pablo. Usability heuristics: A systematic
review. In: 2016 IEEE 11th Colombian Computing Conference (CCC). 2016, pp. 1–8. Avail-
able from doi: 10.1109/ColumbianCC.2016.7750805.

22. NIELSEN, Jakob. Ten Usability Heuristics [online]. Accessed April 15, 2023.
23. APPLE INC. SwiftUI [Online]. 2021. Available also from: https://developer.apple.

com/xcode/swiftui/.
24. APPLE INC. Combine [Online]. 2021. Available also from: https://developer.apple.

com/documentation/combine/.
25. APPLE INC. SceneKit [Online]. 2021. Available also from: https://developer.apple.

com/documentation/scenekit/.
26. APPLE INC. RealityKit [Online]. 2021. Available also from: https://developer.apple.

com/documentation/realitykit/.
27. APPLE INC. Decodable [online]. 2021. Available also from: https://developer.apple.

com/documentation/swift/decodable.
28. APPLE INC. Codable [online]. 2021. Available also from: https://developer.apple.com/

documentation/swift/Codable.
29. INC., Apple. TestFlight [Online]. 2021. Available also from: https://developer.apple.

com/testflight/.
30. BARNUM, Carol M. Introduction: Getting started guide. In: BARNUM, Carol M. (ed.). Us-

ability Testing Essentials. Boston: Morgan Kaufmann, 2011, pp. 1–7. isbn 978-0-12-375092-
1. Available from doi: https://doi.org/10.1016/B978-0-12-375092-1.00012-X.

31. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Ergonomics of human-
system interaction – Part 210: Human-centred design for interactive systems [Online]. ISO,
2010. Available also from: https://www.iso.org/standard/52075.html.

https://www.youtube.com/watch?v=SfFDj6qT-xg
https://www.youtube.com/watch?v=SfFDj6qT-xg
https://medium.com/hackernoon/introducing-clean-swift-architecture-vip-770a639ad7bf
https://medium.com/hackernoon/introducing-clean-swift-architecture-vip-770a639ad7bf
https://doi.org/10.1145/765891.765986
https://doi.org/10.1109/ColumbianCC.2016.7750805
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/documentation/combine/
https://developer.apple.com/documentation/combine/
https://developer.apple.com/documentation/scenekit/
https://developer.apple.com/documentation/scenekit/
https://developer.apple.com/documentation/realitykit/
https://developer.apple.com/documentation/realitykit/
https://developer.apple.com/documentation/swift/decodable
https://developer.apple.com/documentation/swift/decodable
https://developer.apple.com/documentation/swift/Codable
https://developer.apple.com/documentation/swift/Codable
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://doi.org/https://doi.org/10.1016/B978-0-12-375092-1.00012-X
https://www.iso.org/standard/52075.html

Bibliography 57

32. MITCHELL, Ben. Quote: It takes a lot of effort to make something look effortless [Online].
2023. Available also from: https://www.goodreads.com/quotes/1612992-it-takes-a-
lot-of-effort-to-make-something-look.

https://www.goodreads.com/quotes/1612992-it-takes-a-lot-of-effort-to-make-something-look
https://www.goodreads.com/quotes/1612992-it-takes-a-lot-of-effort-to-make-something-look

58 Bibliography

Content of the attached media

README.md..........................overview of the thesis, resources and installation guide
src..folder with the sources files
src

oppidum...sources for the application
thesis .. sources of the thesis in LATEX format

text .. text of the thesis
ctufit-thesis.pdf..................................text of the thesis in PDF format

59

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	I Research
	Solutions
	 Current solution of digital guide Oppidum Závist
	Information architecture
	Interactive design
	Visual design

	 Visit.More
	Information architecture
	Interactive design
	Visual design

	 VMCK virtual guide
	 Analysis results

	 Product Analysis
	 Product requirements document
	 Domain analisys
	 Historical and Archaeological domains

	Requirements
	 Functional requirements
	 Nonfunctional requirements

	Technologies
	 Options for iOS development
	Multiplatform Development
	Native Development
	Development using Game Engine

	 Architecture
	 MVVM/MVC
	 The Composable Architecture
	 Clean Architecture

	II Implementation
	Design and prototype creation
	 Prototyping process
	 Design process

	 Prototype testing

	Implementation
	 Tooling
	Dependency management
	Dependencies used
	Tools used
	Frameworks used

	 Implementation of the prototype
	Modularisation
	Data layer
	Services
	Views

	Testing
	 Distribution for testing
	 User usability testing
	 Preparation for the tests
	 Conducting tests
	 Analysing the results

	 Unit Testing

	 Scenarios for user-testing
	 Storyboard application flow in Figma
	 Product requirements document in Figma
	Content of the attached media

