
Instructions

Interactive immersive virtual reality experiences are the realm of game engines, which have been

evolving rapidly to match the industry's requirements. In the case of non-interactive experiences, the

extensive functionality of more traditional creative software can be used.

However, most consumer-oriented 3D and DAW software, currently doesn’t have optimised workflows

for creation of VR/AR content, especially it’s audio aspect. The aim of this bachelor’s thesis is to design

and implement a tool to optimise the sound design and mixing workflow of creating three

dimensional scene based audio for immersive videoexperiences.

Tasks:

 1. Analyse available solutions.

 2. Propose a solution providing an improved workflow, while utilising the capabilities of existing

creative software.

 3. Implement software enabling the proposed workflow.

 4. Test and document the resulting software.

 5. Evaluate the results and discuss possible extensions/improvements.

Electronically approved by Ing. Radek Richtr, Ph.D. on 11 February 2022 in Prague.

Assignment of bachelor’s thesis

Title: Spatial sound for immersive video

Student: Ivan Desiatov

Supervisor: Ing. Jan Buriánek

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Computer Graphics

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

SPATIAL SOUND FOR
IMMERSIVE VIDEO

Ivan Desiatov

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jan Buriánek
February 16, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Ivan Desiatov. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Desiatov Ivan. Spatial sound for immersive video. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstrakt ix

List of abbreviations x

Introduction xi

1 Spatial audio 1
1.1 Spatial audio representations . 1

1.1.1 Channel-based audio . 1
1.1.2 Object-based audio . 2
1.1.3 Scene-based audio . 2

1.2 Ambisonics . 2
1.2.1 M/S Stereo . 2
1.2.2 From M/S stereo to B-format ambisonics 3
1.2.3 Higher Order Ambisonics . 3
1.2.4 Applying ambisonics in practice . 5

1.3 From data to sound . 6
1.3.1 Spatial hearing . 6
1.3.2 Basic examples of ambisonic decoding . 8
1.3.3 Decoding to loudspeakers . 9
1.3.4 Decoding to headphones . 10
1.3.5 A comparison of personalised and generic HRTFs 11

2 An overview of spatial audio production software 13
2.1 DAW-based solutions . 13
2.2 Game Engines . 16
2.3 3D software . 16
2.4 Other solutions . 17

3 UI/UX Design 19
3.1 Real-time approach . 19
3.2 Requirement definition . 19
3.3 User interaction . 20

3.3.1 Blender add-on . 21
3.3.2 VST plugin . 21

4 Implementation 25
4.1 IPC Protocol . 25

4.1.1 Protocol messages . 27
4.1.2 Offline rendering . 28

iii

iv Contents

4.2 VST plugin . 29
4.2.1 Third-party libraries . 29
4.2.2 Software architecture . 29
4.2.3 IPC . 30
4.2.4 Multithreading in a real-time context . 31
4.2.5 Encoder . 32
4.2.6 Limitations . 33

4.3 Blender add-on . 33
4.3.1 Software architecture . 34
4.3.2 Multithreading considerations . 34
4.3.3 Overcoming Blender API limitations . 35
4.3.4 Limitations . 36

5 Testing and evaluation of the implemented software 37
5.1 Testing . 37

5.1.1 Ambisonic panning correctness . 37
5.1.2 Overall functionality . 39

5.2 Future improvements . 41

6 Conclusion 43
6.1 Current state . 43
6.2 Final words . 44

Contents of attached media 51

List of Figures

1.1 M/S stereo recording technique. Image sourced from [18]. 3
1.2 Balloon plots of spherical harmonics up to third order. The distance from the

origin is defined by the absolute value of the given spherical harmonic. Dark
portions represent negative values. (Order increasing towards the bottom of the
picture; degree from left to right, with degree 0 in the middle.) Image sourced
from [22]. 4

1.3 Cone of confusion. Image sourced from [36]. 7
1.4 The WXY channels routed to 4 speakers for 2D ambisonics playback Image

sourced from [17]. 8
1.5 Decoding first order ambisonics using a sampling decoder. Image sourced from

[17]. 8
1.6 A 2D (horizontal plane) surround speaker array. Image courtesy of the author. . 9
1.7 Definition of a delta function and an impulse response. δ[n] is used to identify

the delta function. The impulse response of a linear system is usually denoted by
h[n]. Image sourced from [42]. 10

1.8 Horizontal and vertical localization errors for expert (solid pattern) and casual
(hatched pattern) players. Image sourced from [48]. 12

2.1 Ambisonic encoder plugins placed on individual channels. Image courtesy of the
author. 14

2.2 A master bus with an ambisonics decoder plugin. Image courtesy of the author. 14
2.3 Head-tracking and spatial panning in Steinberg’s Nuendo. Image sourced from

[55]. 15

3.1 Prototype GUI layout for the VST plugin. From top to bottom: main screen,
object selection screen, settings screen. Image courtesy of the author. 23

4.1 Diagram of high level interaction between the VST instances and the Blender
plugin. Image courtesy of the author. 25

4.2 Communication sequence between the Blender plugin and an instance of the VST
plugin during real-time (online) rendering. Messages with the suffix “request” or
“reply” are sent using Req/Rep. Messages with the suffix “msg” are sent using
Pub/Sub. Image courtesy of the author. 26

4.3 Sequence diagram illustrating communication in offline rendering mode. Image
courtesy of the author. 28

4.4 Simplified class diagram for the Ambilink VST plugin. (This diagram only includes
the most important classes, and is not by any means an exhaustive representation
of the whole architecture.) Image courtesy of the author. 30

4.5 State machine diagram describing the way IPC is implemented on the VST side.
Image courtesy of the author. 31

4.6 Simplified class diagram for the Ambilink Blender add-on. (For the sake of con-
ciseness, the diagram does not include some helper classes, e.g. custom exception
types.) Image courtesy of the author. 34

v

5.1 The Blender scene used for comparing Ambilink’s output to the output of the
IEM MultiEncoder plugin. Image courtesy of the author. 38

5.2 Reaper project used for testing with the Ambilink and the IEM encoder plugins
open. Image courtesy of the author. 38

5.3 The ambisonic output produced by Ambilink (bottom row), and the IEM Multi-
Encoder (top row), visualised using the IEM EnergyVisualizer plugin. Panning
directions are identical for each column. Image courtesy of the author. 39

List of Tables

4.1 Test results for performance of Blender object lookup by name and by value of
a custom property using lookup functions from code listing 3. The times in the
table correspond to the total time it took to find a specific Blender object 100000
times. The tests were performed using the timeit Python module. 35

List of code listings

1 Definition of IPC protocol constants used in Req/Rep messages. (From the source
code of the Blender add-on.) . 27

2 The encoding algorithm used by the BasicEncoder class in pseudocode. Member
variables are prefixed with underscores. 33

3 Functions used to compare performance of looking up Blender objects by name
and by value of a custom property. Test results are presented in table 4.1. 35

vi

I would like to thank my thesis mentor, Jan Buriánek, for providing
advice and valuable industry insight, as well as the people who have
supported me throughout the process of putting this together; you
know who you are.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46(6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and all
corresponding documentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the Work for non-profit
purposes only, in any way that does not detract from its value. This authorization is not limited
in terms of time, location and quantity.

In Prague on February 16, 2023 .

viii

Abstrakt

Práce představuje nejvýznamněǰśı moderńı technologie ve sféře prostorového audia a uvád́ı
výhody, d́ıky kterým ambisonie zač́ıná být standardńım formátem zvuku pro 360° video. Práce
uvád́ı čtenáře do teoretických základ̊u ambisonie a popisuje několik d̊uležitých dekódovaćıch tech-
nik. Následně je představeno softwarové řešeńı umožňuj́ıćı automatické prostorové panorámováńı
zvuku v DAW na základě 3D pozićı objekt̊u (v̊uči aktivńı kameře) ve scéně v Blenderu. Imple-
mentace obsahuje dva pluginy - plugin pro Blender, umožňuj́ıćı př́ıstup k současnému stavu 3D
scény, a VST plugin, který využ́ıvá tyto informace o 3D scéně pro ambisonické panorámováńı
zvuku. Panoramováćı směrové vektory jsou aktualizovaný v reálném čase pomoci meziprocesové
komunikace. Umělc̊um a inženýr̊um pracuj́ıćım na projektu to pak dovoluje mı́t před sebou
náhled animace a současně provádět změny v audiu, a obráceně - slyšet, jak změny v poloze
objekt̊u ovlivňuj́ı zvuk. Představené řešeńı je nejužitečněǰśı pro produkci prostorového zvuku
pro 360° 3D animace, kde může výrazně sńıžit počet kanál̊u vyžaduj́ıćıch ručńı panoramováńı.
Najde ale využit́ı i v neanimovaných projektech, kde může sloužit k vizualizaci pohybu zdroj̊u
zvuku, a umožńı využit́ı dostupných v Blenderu pokročilých nástroj̊u pro 3D animaci.

Kĺıčová slova ambisonie, prostorový zvuk, blender, 360 stupňové video, virtualńı realita,
digital audio workstation, VST, plugin, JUCE, meziprocesová komunikace

Abstract

This thesis provides an overview of modern immersive audio technologies and outlines why am-
bisonics is becoming the industry-standard spatial audio format for 360° video. An introduction
to ambisonics theory is provided, and several important decoding techniques are described. A
software solution is then presented, which implements automatic spatial panning of sounds in a
DAW based on the 3D positions of objects (relative to the active camera) in the Blender scene.
The implementation consists of two plugins - a Blender plugin to access the 3D scene data, and
a VST ambisonic panner plugin that utilises said scene data to calculate the panning direction.
Panning direction vectors are updated in real time using interprocess communication, allowing
artists to preview the animation while simultaneously making adjustments to the audio, and vice
versa. The presented solution is especially useful in producing spatial audio for 360° 3D anima-
tions, where it can help reduce the number of audio sources that have to be panned manually. It
can however find a place in non-animated projects as well, where it can be used to visualise the
movement of sound sources, and would allow to use Blender’s advanced 3D animation toolset for
animating sound source positions.

Keywords ambisonics, spatial audio, blender, 360 degree video, virtual reality, digital audio
workstation, VST, plugin, JUCE, inter-process communication

ix

List of abbreviations

API Application Programming Interface
AR Augmented Reality

CBA Channel-based Audio
DAW Digital Audio Workstation
FIFO First In, First Out
FFT Fast Fourier Transform
FPS First-Person Shooter
FPS Frames per Second
GUI Graphical User Interface
HCI Human-Computer Interface

HRIR Head-Related Impulse Response
HRTF Head-Related Transfer Function

MR Mixed Reality
M/S Stereo Mid/Side Stereo

OBA Object-based Audio
SBA Scene-based Audio
SDK Software Development Kit

VR Virtual Reality
VST Virtual Studio Technology

UI User Interface
UX User Experience

x

Introduction

Virtual reality and immersive video

Virtual reality, or VR, has become increasingly popular in recent years. VR gaming specifically
has been steadily rising to mainstream attention. But other forms of immersive content, such as
360° video are also gaining adoption - YouTube, for example, already provides support for 360°
video (and audio) on their platform.

The goal of VR experiences is to fully immerse the user in a virtual environment, striving to
erase the gap between the virtual and the real world. This is achieved using advanced human-
computer interfaces. Most prominently - VR headsets, that allow the user to see into the virtual
world, and various motion tracking systems, enabling the user to interact with it. Like any new
form of human-computer interaction, VR has found applications in many industries, but the
application most closely related to the goal of this thesis, and, incidentally, the one where most
adoption has been seen so far, is entertainment.

While fully interactive experiences, such as games, are prevalent, the applications of VR are
not limited to those. Immersive, or 360°, video 1 is a mostly noninteractive form of VR content
that benefits from the advantages of VR, but is closer to traditional film and television than
other forms of immersive experiences such as games.

Creation of interactive VR experiences shares more similarity with game development than
traditional video production. 360° video, on the other hand, is largely linear, allowing to use
creative software initially developed without VR content in mind. Compared to specialized im-
mersive content creation programs, such software is often more powerful, costs less, and benefits
from higher availability of learning resources regarding it’s usage. These factors would make it
a great choice for creators, if not for the lacklustre VR content support. Thankfully, many of
these tools are extensible via plugins, allowing developers to fill in the gaps.

The role of sound in immersive experiences

Sound is a key ingredient in achieving immersion in a virtual environment. Although it’s im-
portance is easily outshined by the importance of sight, hearing is an essential part of human
perception and getting audio wrong in a VR context can easily ruin the whole experience. While
simulating the perception of touch - another vital sense - is a very difficult task, doing the same
for hearing is fortunately already within our reach (although, as with real-time graphics, physi-
cally accurate techniques are still too computationally expensive). To do so, as with video, the
extension of audio into the third dimension is required. Because of that, creating audio for an
immersive experience is quite different to normal audio production. In addition to the usual
recording, sound design and mixing work, the spatial position of sounds must be defined and
animated.

1Throughout this thesis I will prefer using “360° video” instead of “immersive video”, because, this being such
a new concept, there is some inconsistency in terminology between some sources.

xi

xii Introduction

The goal of this thesis

It might seem that to utilise the power of modern DAWs (digital audio workstations) for spatial
audio production, the DAW itself has to provide a user interface for spatial panning2 , be it
natively or via plugins, but a different approach may be taken. Blender - a free and open
source 3D software - already provides all the required tools and an established workflow for 3D
animation. The challenge lies in finding a way to utilise it’s capabilities to control the spatial
position of sounds while still using the DAW for sound design and mixing. This can be achieved
by extending both Blender and the DAW via plugins, allowing the user to use Blender’s 3D
animation workflow for spatial audio. An existing 3D animation can also be used, providing
significant time savings for animated 360° video productions. This thesis aims to design and
implement such a solution.

2Spatial panning refers to the act of defining the 3D position of a sound source.

Chapter 1

Spatial audio

This chapter serves as an introduction to spatial audio. Different approaches to representing
spatial audio information are presented, and their suitability for 360° video applications is
discussed. A more in-depth section on ambisonics follows, accompanied by a brief foray into
the mechanisms behind human spatial hearing.

1.1 Spatial audio representations

There are three main approaches to representing spatial audio information - channel-based au-
dio, object-based audio and scene-based audio. [1][2][3] Each with their own advantages and
disadvantages for specific applications. Let me briefly introduce each paradigm.

1.1.1 Channel-based audio
CBA content consists of a set of audio signals, each of them intended to feed a loudspeaker at a
specific position relative to the listener. [2] It is extensively used for 3D sound in broadcasting
and film [1][2], but it’s core design is flawed in assuming a fixed speaker layout. Reproducing
channel based content on a speaker layout with a number of channels that is different to the one
it was produced for requires using sophisticated downmixing or upmixing algorithms which may
result in loss of quality and spatial resolution. [2][4] A study performed by researchers at the Delft
University of Technology shows that Dolby Surround, which employs a downmixing technique [5]
to playback surround audio on stereo headphones, showed significantly lower perceived “overall
presence” than even traditional stereo (not utilising HRTFs). [6][4] Furthermore, channel-based
audio doesn’t account for the possibility of speakers being positioned differently than the intended
layout (an occurrence common in the real world), which will inevitably alter the directionality
of sounds and make the experience differ from the one intended by the content creator(s).

While CBA has been used extensively for delivering surround audio content in film and video
games, it has a lot of constraints stemming from the assumption of a specific speaker count and
layout made during the production stage. The most important constraint for VR applications is
the difficulty in rotating the sound scene as a whole, which is required to keep the sound positions
anchored in space while the listener’s head may rotate. While it can be done, the results are
subpar at best, and result in “a sound that goes in and out of focus as the channels move into
and out of particular speakers” [7, p. 45].

The other two spatial audio paradigms - OBA and SBA, don’t share these flaws of CBA. [1][8]
Instead of relying on a specific speaker layout, they describe the audio scene independently of
the playback hardware (the end user’s speakers or headphones), allowing playback on arbitrary

1

2 Spatial audio

loudspeaker setups while preserving spatial information and general audio quality better than
CBA transformed using downmixing or upmixing techniques. [8][3]

1.1.2 Object-based audio
OBA, which originated in game audio [9], describes audio in a more general way. The content
is represented as a virtual sound scene - a collection of sound sources called objects. [10] An
audio feed, as well as metadata, describing how the sound should be rendered, is assigned to
each object. [10][9] This representation allows OBA content to be rendered on the end user’s
hardware, accounting for their specific (possibly non-standard [11]) speaker configuration, as well
as in the form of binaural audio, which will be described in more detail later. [8][9]

OBA comes with it’s own disadvantages - the main of which being the direct correlation
between the number of individual sound objects, the bandwidth required to transmit the OBA
content, and decoding complexity. [1] There are however proposed solutions to lower the required
bandwidth by employing object grouping techniques. [12]

Object-based audio seems to be much better suited for VR applications than CBA. It brings
the ability to differentiate between individual audio objects and adjust their position relative
to each other which is indispensable for VR games. While the interactivity potential OBA
brings is enticing, it is not as beneficial for noninteractive content, and the increased bandwidth
requirements are undesirable, especially for 360° video streaming scenarios.

1.1.3 Scene-based audio
While SBA still uses the concept of channels, the channels play a very different role - instead
of associating each channel with a specific speaker, as in CBA, or with a specific sound object,
as in OBA, the channels in SBA are combined to equally capture the sound coming from all
directions. [7][3][9]

Ambisonics is the underlying mathematical framework that makes SBA possible. It is a sur-
prisingly old approach initially described by Michael A. Gerzon in 1972 in his article “Periphony:
With-Height Sound Reproduction” [13]. Ambisonic content can easily be transformed to allow
playback on any speaker arrangement, it is computationally viable to decode, encode, and apply
simple processing, such as rotating the sound scene, in real time, and it’s flexible in allowing to
lower the required bandwidth at the cost of decreased spatial resolution. [7][14] Ambisonics is in
fact so powerful, and such a good fit for 360° video, that it gets a dedicated section.

1.2 Ambisonics

1.2.1 M/S Stereo
To understand how ambisonics make all of this possible, let’s start with a simpler concept -
stereo audio, specifically it’s Mid/Side representation. When the term stereo is mentioned, most
readers will probably associate it with X/Y encoding where the audio is encoded using a left and
right channel. This representation is natural for humans, because it closely resembles the way
our hearing works, but mid/side (commonly shortened to M/S) encoding ([15]) brings significant
advantages compared to X/Y. It is very easily downmixed to mono, and gives the ability to
widen or narrow the stereo image. [7]

It’s easiest to explain how M/S encoding works on a recording example. To record M/S
stereo one needs two microphones - one with a cardioid or omnidirectional pattern, and a second
microphone with a figure-eight pattern, positioned at a 90° angle relative to the first microphone.
The first microphone captures sound from a wide area in front of the microphone or from all

Ambisonics 3

Figure 1.1 M/S stereo recording technique. Image sourced from [18].

directions, this microphone will provide the mid channel signal. A figure-eight pattern micro-
phone captures sound predominantly in front and behind it, so when rotated 90 degrees it will
provide the necessary information for our side channel. To get a stereo field, the side channel is
duplicated and one of the copies is phase shifted 180°. Let’s refer to the phase shifted version
as S- and the original side channel as S+. The left channel can then be calculated as L = M +
S+ and the right as R = M + S-. In practice this means hard-panning 1 the S+ channel left,
and hard-panning the S- channel right. Figure 1.1 visualises the microphone setup and channel
routing. To get a mono version, one can just use the mid channel, and to widen or narrow the
stereo image, the relative volume of the side channel can be adjusted. [16][7][17]

1.2.2 From M/S stereo to B-format ambisonics
The B-format is the minimal representation of ambisonics [7][p. 42]. It consists of four channels
- W, X, Y and Z. The role of the W channel is analogous to the M channel in M/S encoding -
it captures sound coming from all directions equally. The other three channels - X, Y and Z -
are similar to the S channel in M/S recording, but each one captures sound in a different plane,
the Y channel - to the left and right of the listener, the X channel - in front and behind, and
the Z channel - above and below. By distributing the source audio between the four channels, a
sound can be positioned anywhere on a sphere around the listener. [7][13][3]

1.2.3 Higher Order Ambisonics
After the B-format was initially described, the mathematical framework for ambisonics has been
further extended, probably most notably by Jérôme Daniel when he described higher order
ambisonics (HOA) in his Ph.D. thesis [19]. HOA extends the B-format by adding additional
channels to increase the spatial resolution. After the introduction of HOA, Gerzon’s work was
referred to as First Order Ambisonics. To represent ambisonics of order N, (N + 1)2 channels

1In music production and audio mixing, hard-panning a channel means routing it exclusively to a single
speaker. This approach was popular when stereo was first introduced, and can be heard, for example, on many
The Beatles records.

4 Spatial audio

Figure 1.2 Balloon plots of spherical harmonics up to third order. The distance from the origin is
defined by the absolute value of the given spherical harmonic. Dark portions represent negative values.
(Order increasing towards the bottom of the picture; degree from left to right, with degree 0 in the
middle.) Image sourced from [22].

are required. Accuracy of the HOA representation of the original signal as well as localisation
accuracy (spatial resolution) increase with increasing HOA order N. [1][7]

The next paragraphs will give a short summary of the mathematical apparatus behind higher
order ambisonics.

Functions defined on the surface of a sphere The following equation ([20]) defines a
spherical surface of unit radius in the Cartesian coordinate system:

S2 = {x ∈ R3 : ∥x∥ = 1}, (1.1)

where R3 is the three-dimensional space of real numbers, x represents a vector in geometric
notation, and ∥x∥ denotes the Euclidean norm (length) of the vector x. Any point on the
surface of a sphere can be defined using spherical coordinates (r, θ, ϕ); r denotes the radius of
the sphere, θ is the elevation angle, and ϕ is the azimuth angle. Spherical functions are defined
on the surface of a unit sphere (with r = 1), and accept the elevation and azimuth angles θ and
ϕ as inputs. [20] An example spherical function can be seen in the following equation:

f(θ, ϕ) = sin(θ)cos2(ϕ), (θ, ϕ) ∈ S2. (1.2)

Spherical harmonics Spherical harmonics are a special set of spherical functions. Each spher-
ical harmonic function Y m

n (θ, ϕ) is denoted by it’s order n ∈ N and it’s degree m ∈ Z. A graphical
representation can be seen in figure 1.2. A linear combination of the spherical harmonic functions
can be used to approximate any square-integrable spherical function. If the order of the spherical
harmonics used is not limited, the resulting infinite series will accurately represent the original
function. [21] Of course, an infinite series is not applicable for practical computations. Instead,
a linear combination of spherical harmonics up to a specific order N is used. The accuracy of
such an approximation increases with the maximum order N .

An ambisonics representation of a sound field is essentially “a set of signals that would be
obtained by microphones with specific directionality patterns” ([23]), and the spherical harmonic

Ambisonics 5

functions define the directionality patterns of these theoretical microphones. The values in the
channels of an ambisonics-encoded audio signal are the coefficients used in the linear combina-
tion of spherical harmonics at a given time, and the ambisonic order N is equal to the maximum
order of spherical harmonics used. Returning to the M/S stereo example, it can be seen that
the visualisations of first order spherical harmonics in figure 1.2 closely resemble the figure-eight
pattern of the microphone used for the side channel. To gain a better intuitive understanding
of ambisonic audio, higher order spherical harmonics can be thought of as representing increas-
ingly complex microphone pickup patterns, and increasing the ambisonic order - as adding more
microphones, with narrower patterns, thus increasing the spatial resolution of the ambisonics
representation.

Hopefully the brief summary presented above will provide the reader with a better intuitive
understanding of how ambisonics make SBA a reality. A more in-depth overview can be found
in [17] and [20].

1.2.4 Applying ambisonics in practice
Ambisonics is a great theoretical framework for representing a sound scene, but, importantly, it
is also applicable in practice and brings many benefits during both the production and delivery
stages. Listed below, in no particular order, are some of the practical benefits ambisonics bring
to the table:

Spatial audio content can be produced once, and decoded on the consumer’s hardware. Be-
cause the decoding is performed on the end user’s hardware, information about the playback
environment, such as the position and type of speakers, can be provided to the decoder. With
this information, a much better listening experience can be achieved than would otherwise
be possible. [1][7][14]

Ambisonics encoding, decoding, as well as rotation of the sound field can be performed
very fast2 on modern computers as most of the computation consists of matrix operations.
Furthermore, when hardware resources are limited, computational power can be saved by
rendering lower order ambisonics at the cost of fidelity - the extra HOA channels can just be
discarded. [1]

Ambisonics content may sound even better years after it was initially produced. Because
ambisonics is such a general way to represent sound, in the future, advanced decoders can
provide better sounding and more realistic mixes than what is possible now. [7]

There are also multiple advantages to using Ambisonics as an intermediate spatial audio
format in game engines. Submixing is a very useful audio production technique. Essentially,
it comes down to applying processing (audio effects) to multiple sounds at the same time.
However, when submixing object based audio, the directionality of individual sounds can’t
be preserved - the whole submix has to become a single sound object. By submixing multiple
sound objects into an ambisonics representation, the directionality of individual sounds can be
preserved, while still allowing to process the submix as a whole. Utilising ambisonic submixes
or even converting the whole mix to ambisonics before it gets rendered for playback can also
bring performance advantages compared to processing each sound object individually. [28][29]

With these key advantages in mind it becomes obvious that ambisonics is a great fit for
360° video. It should be no surprise that it is already being adopted for such applications.
One example is the ability to upload 360° video with ambisonics audio to YouTube. [30] A big
platform like YouTube supporting ambisonics and 360° video is a milestone in the adoption of

2Especially if using SIMD compiler intrinsics ([24][25][26]) and other techniques employed by good mathemat-
ical libraries (e.g. [27]).

6 Spatial audio

these technologies. It seems highly probable that user-created immersive content will increase
in popularity in the coming years, as the availability of devices capable of 360° video and audio
recording increases.

1.3 From data to sound
A detailed description of the inner workings of ambisonic decoding techniques is outside the scope
of this thesis, but it wouldn’t be complete without a brief overview of the existing approaches
and the possibilities they bring in practice. Ambisonics decoding is largely based on how humans
perceive sound, so let’s take a look at that in a bit more detail.

1.3.1 Spatial hearing
Human hearing is fascinating - with just two points in space at which the sound field is sampled
- our ears, we can tell the direction and distance to the sound source, if it’s moving or not (and,
roughly, at what speed), and many other things about the sound itself, as well as the surrounding
environment. In doing that, we rely on numerous acoustical cues that help us in locating the
sound source, but also, to a great extent, on our knowledge of the world - making assumptions
based on previous experience. [31][32][7]

Imagine you hear the sound of a helicopter flying in the distance, somewhere outside your
field of view. Based on the sound alone, you immediately assume numerous things about your
surroundings:

You can tell that there’s a helicopter flying because you know what a helicopter sounds like.

You can roughly estimate how far away it is, because you know how loud a helicopter is, and
based on the ratio of environmental reflections (reverberations) to the pure sound - again,
relying on previous experience of hearing a helicopter at a known distance.

If you are in a city, surrounded by tall buildings, depending on the distance to the helicopter,
your ability to localise the sound may be severely impaired because the sound reaching your
ears has been reflected multiple times by nearby buildings.

If you are in a field, on the other hand, you should be able to estimate where it is quite
precisely.

Hopefully this shows how complex our perception of sound is, and puts to light some of the
many factors - external and internal, that can affect it. I must note that the above example is
merely illustratory, not a description of a specific experiment. It is however inspired by research
in the field of auditory localisation. A good overview of such research can be found in [31] and
[33].

Let’s now explore the problem of sound localisation from a more theoretical point of view. It
has long been suspected that our ability to detect the direction of sounds stems from perceiving
differences in the sound reaching each ear. English physicist and baron, Lord Rayleigh, has
determined through ingenious experiments, often involving tuning forks, that the perception of
direction of sound is affected by differences in amplitude and phase of the sound waves between
each ear. The article ([34]) describing his findings is dated April 3, 1876. His findings have
later been confirmed with modern experiments. Nowadays we know of three main auditory cues
instrumental in horizontal plane sound localisation - interaural loudness difference, interaural
time difference, and interaural phase difference. While these are not the only factors at play, and
it’s impossible to say with any certainty that there aren’t any we are still not aware of, they are
quite easily simulated, play a major role in auditory spatial perception, and thus are very useful
in spatial audio decoding. [31][35][7]

From data to sound 7

Interaural intensity difference (IID) or interaural loudness difference (ILD) is the loudness
difference between the sound reaching each ear. A sound coming predominantly from one
side, will be perceived as louder by the ear closest to it, as the head will partially block the
sound before it reaches the other ear.

Interaural time difference (ITD) is the difference between when a sound reaches each ear. A
sound directly in front of the listener would reach each ear at roughly the same time, while a
sound to the listener’s left would reach the left ear slightly before the right ear. The human
brain effortlessly notices these timing differences and interprets them as information about
the position of a sound source on a horizontal plane.

Interaural phase difference (IPD) is affected by the ITD and the frequencies a sound is
composed of. A sine wave with a frequency of 1000 Hz that reaches one ear 0.5 ms before
the other, will result in an IPD of 180°. Humans can detect IPDs as small as 3 degrees, but
only for frequencies below 1000 to 1300 Hz. [7]

Interestingly, the effectiveness of these cues varies depending on the sound’s frequency com-
position. At lower frequencies sound localisation mostly relies on ITDs and IPDs, while IIDs are
important at higher frequencies. This can be explained by the fact that shorter (high frequency)
waves are easily blocked by the listener’s head, while longer ones can reach the other ear with
minimal amplitude degradation, thus making IID cues inefficient at lower frequencies. This again
has been described by Lord Rayleigh in the 19th century, and has since been termed the “duplex”
theory. [31][34]

Figure 1.3 Cone of confusion. Image sourced from [36].

The cone of confusion is another important concept in sound localisation research. As illus-
trated in figure 1.3, sounds located at specific points inside the so-called cone of confusion result
in identical interaural timing, phase, and level differences. This makes interaural differences
ineffective in discerning sounds in front and behind the listener, as well as above and below. To
alleviate this ambiguity, human listeners tend to move their head when trying to locate a sound.
Turning the head helps mitigate front/back confusion, and tilting the head aids vertical sound
localisation. For the same reason, many animals posses the ability to individually move each
ear, removing the need for whole-head movement. [7] Vertical and front/back sound localisation
is however still possible without head movement. For sound having a relatively broad and flat
spectrum, as is often the case in nature, direction-dependant filtering by the head and pinnae
(the flaps on the outer ear) provides vertical and front/back directional cues. [31]

The interaural difference and spectral filtering cues are helpful in detecting the direction of
a sound, but there is another dimension to our spatial hearing - distance. Auditory distance
perception is far less accurate than our ability to detect the direction to a source of sound.
“The principal acoustic cues for distance perception are intensity (i.e., sound level arriving at
the listener’s ears), direct-to-reverberant (D/R) energy ratio, and ILD. The relative importance
of these cues varies widely across conditions.” [31] An in-depth discussion of these distance

8 Spatial audio

Figure 1.4 The WXY channels routed to 4 speakers for 2D ambisonics playback Image sourced from
[17].

cues, and some other aspects of spatial hearing is outside the scope of this thesis, but I highly
recommend Chapter 6 of [31] for further reading.

1.3.2 Basic examples of ambisonic decoding
Decoding ambisonics is the process of transitioning from the whole-scene representation back to
separate channels that can be played back using individual speakers. For the sake of simplicity
let’s first take a look at playing back 3 out of 4 B-format channels using 4 speakers. The only
processing required for playback is adjusting the phase of the X and Y channels by 180° for
the right and back speakers respectively as seen in 1.4. (The front and left speaker receive the
unadjusted signal from the X and Y channels, and all speakers receive the W channel equally.)
It should be emphasized, that the Z channel is not utilised in this configuration, and thus height
information is lost.

The previous example assumes an ideal loudspeaker layout. Unfortunately, that assumption
almost never holds true in practice, and thus it is required to playback ambisonic audio with
loudspeakers positioned at arbitrary angles towards the listener. To achieve this, it is required
to know the angle from each speaker to the listener. Figure 1.5 shows how this can be achieved
in practice. Θ1...ΘL are the direction vectors for the loudspeakers; ΘX , ΘY and ΘZ are the unit
vectors for the X, Y and Z channels respectively. The speaker signals ([S1...SL] are calculated
by multiplying the source signal vector [WXY Z]T with the decoding matrix D. [17]

Figure 1.5 Decoding first order ambisonics using a sampling decoder. Image sourced from [17].

The presented decoder is called a “sampling decoder” - ambisonic playback using such a
decoder is “comparable to recording each signal with a virtual first-order cardioid microphone
aligned with the loudspeaker’s direction Θl”. [17] It is important to note that the speakers need
to be uniformly spaced so the loudness of the resulting sound is not affected by the directional
composition of the ambisonics signal (so sounds coming from specific directions are not perceived
as louder than sounds coming from elsewhere). An example of a 2D speaker array consisting of
uniformly spaced speakers can be seen in figure 1.6.

From data to sound 9

Figure 1.6 A 2D (horizontal plane) surround speaker array. Image courtesy of the author.

1.3.3 Decoding to loudspeakers
The ambisonics panning function g(θ) that yields the power of the signal for a given direction
θ is continuous, but in case of loudspeaker playback, the sound field must be recreated using a
discrete number of point-sources. (See [17] for the definition of g(θ) and a detailed dive into the
math behind ambisonics.) Only special arrangements of loudspeakers permit direct sampling
without introducing undesired direction-dependant gain variations (as described for first order
ambisonics in the previous subsection). These so-called t-designs are arrangements of speakers
where the distance and direction between all neighbouring speakers are constant. t ≥ 2N + 1
loudspeakers are required for optimal reproduction of ambisonics of order N . [17][37]

Vector Based Amplitude Panning To describe some of the more advanced ambisonic de-
coding techniques, let’s first introduce Vector Base Amplitude Panning (VBAP). First described
by Pulkki in 1997 in [38] and then in [39], VBAP provides a mathematical framework for select-
ing which loudspeakers from a 2D/3D surround arrangement should be activated and with what
gains, to reproduce a virtual sound source at a specific direction.

In the simplest example of stereophonic amplitude panning (two speakers positioned in front of
the listener), Pulkki treats the loudspeaker direction vectors as a vector base. A direction vector
for a virtual sound source at an arbitrary point on the arc enclosed by the two loudspeakers can be
calculated as a linear combination of the two basis vectors. The coordinates of the sound source
direction vector in that vector space are then interpreted as the gain values for each loudspeaker.
This system is then extended to horizontal arrangements of more than 2 loudspeakers by always
activating just 2 loudspeakers - the ones that form the arc on which the virtual sound source lies
at that moment. As Pulkki states, utilising just two loudspeakers at a given time might seem
wasteful, but this approach increases localisation accuracy.

The 2D case is then generalised to 3D by utilising triplets of loudspeakers instead of pairs. An
approach identical to the 2D case is used for arrays of more than 3 speakers. Picking the correct
speaker triplet to activate can however pose a problem in cases where the speaker arrangement
allows for ambiguous triplet selection and some other situations. Due to this, VBAP does favour
specific speaker arrangements, but it is still a flexible approach that can be used in a variety of
situations. [39][17]

10 Spatial audio

All-Round Ambisonic Decoding (AllRAD) The AllRAD approach presented in “All-
Round Ambisonic Panning and Decoding” by Franz Zotter and Matthias Frank [37] combines
VBAP and sampling decoders, as described in previous sections, to achieve a lower direction-
dependant loudness variation and good spatial resolution while also providing better results on
irregular loudspeaker arrangements.

The idea behind AllRAD is first decoding (sampling) the ambisonic signal to a set of virtual
speakers arranged in a t-design, and then using these signals as virtual sources for a slightly
modified version of VBAP. Decoding to a regular arrangement of virtual loudspeakers has the
advantage of low directional gain variations and good sound localisation, while VBAP makes
this approach usable with real-life non-ideal speaker arrangements (higher order t-design speaker
arrays are usually not very practical).

For playback on speaker hemispheres (which are more common than full spheres in practice
due to several factors), as with normal VBAP, one or more imaginary loudspeakers may be added
at the bottom of the arrangement, or at the average direction vector of the real loudspeakers.
The signal from the imaginary loudspeaker(s) may either be discarded or equally distributed to
the neighbouring loudspeakers. While this approach does not actually reproduce the direction
of sounds coming from below correctly, it helps avoid the inability to find a matching speaker
triplet (which would make these sounds inaudible), and preserves some of the audio content
coming from below (especially for sounds close to the outer ring of the speaker hemisphere). A
similar approach can of course be used for other speaker arrangements where there is no speakers
in certain parts of the sphere. [40][17]

I should note that while AllRAD is one of the most flexible and practical solutions available
today, there are multiple other decoding approaches. Overviews of the other approaches can be
found in [17], [41] and [40].

1.3.4 Decoding to headphones
Since human listeners can detect directivity cues with just two ears, it stands to reason, that
with the right technology, 360° sound can be reproduced on headphones just as well, if not
better, than on loudspeaker arrays. To achieve this, it is required that the main psychoacoustic
cues used by humans (as described in section 1.3.1) are correctly reproduced. Ideally, interaural
difference cues and changes to the frequency composition of the sound induced by the listener’s
head and ears need to be accounted for.

Figure 1.7 Definition of a delta function and an impulse response. δ[n] is used to identify the delta
function. The impulse response of a linear system is usually denoted by h[n]. Image sourced from [42].

All of this can be captured using a so-called Head-related Impulse Response (HRIR). First,
let’s figure out what an impulse response is in general. An impulse response is the output of a
linear system when a delta function (unit impulse) is the input. Considering a discrete signal

From data to sound 11

(N separate samples of a continuous signal), a unit impulse is such a signal where the sample at
position 0 has a value of 1, and all other samples have a value of 0. An important property of
the delta function is that any signal can be represented as a combination of differently shifted
and scaled delta functions.[42] Figure 1.7 provides a graphical definition of the delta function
(unit impulse) and it’s impulse response. In the case of a HRIR, the impulse response represents
how the listener’s head and ears affect sound in a so-called free-field - an environment with no
reflections or reverberations and thus no colouration of sound.[43] Of course an ideal free-field
environment can not be achieved in practice, but anechoic chambers get sufficiently close.

There are multiple methods and variations of methods of measuring a HRIR; a good in-
depth overview can be found in [44]. The core idea behind most of them is however the same
- microphones are placed into the subject’s ears, a specific sound (an excitation signal) is then
played back (often multiple times) over a loudspeaker located at a specific point in space, and then
the impulse response of the system is calculated from the recorded audio. Multiple measurements
with the sound coming from different directions and sometimes distances have to be taken. Often,
especially in case of human subjects (as opposed to head models) it is desirable to move the
position of the sound source instead of rotating the listener’s head.

In the time domain, the relation between the input and the output of the system is given by
the following equation ([42]):

y(t) = x(t) ∗ h(t) =
∫ +∞

−∞
x(τ)h(t − τ)dτ, (1.3)

where x(t) is the input signal, y(t) the output signal, h(t) is the impulse response of the system,
and ∗ denotes convolution. The same equation can be written for discrete signals as follows ([42]):

y[n] = x[n] ∗ h[n] =
N−1∑
j=0

h[j]h[n − j], (1.4)

for an N-point impulse response h[n] with indexes spanning from 0 to N − 1. Another term
that the reader would surely encounter when researching ambisonic decoding to headphones,
and binaural audio in general is a head-related transfer function. A HRTF is nothing more than
a HRIR in the frequency domain. [43] Once a HRIR is calculated, convolution can be utilised
to calculate the response of the system to an arbitrary input signal.[42] Using HRTFs measured
at different impulse directions, and utilising interpolation techniques, psychoacoustic cues for a
sound coming from an arbitrary direction can be reproduced.[44]

Decoding ambisonic audio to headphones using HRTFs can be achieved by utilising virtual
loudspeakers. A decoder such as AllRAD is first used to produce a CBA signal set for some
favourable arrangement of loudspeakers, such as a t-design, to achieve low loudness variation and
good localisation accuracy. Each of the resulting virtual loudspeaker signals is then convolved
with a HRTF measured at an appropriate direction. Finally, the signals are added together to
produce the final binaural mix. [45]

It is worth mentioning that, as with most topics discussed thus far, there are many possible
variations and improvements to the base approach. Some of them are discussed in [17].

1.3.5 A comparison of personalised and generic HRTFs
So-called personalised (or individualised) HRTFs are measured for a specific individual and thus
match how that person perceives sound in everyday life as closely as possible. Generic HRTFs on
the other hand are synthesized from large datasets of individual measurements with the aim to
provide a good enough experience for most people. Unsurprisingly, research shows that individu-
alised HRTFs perform better than generic ones, with the main improvement being a reduction in
front-to-back confusion. [46] However, non-personalised HRTFs show good enough performance

12 Spatial audio

Figure 1.8 Horizontal and vertical localization errors for expert (solid pattern) and casual (hatched
pattern) players. Image sourced from [48].

in many cases, and are the more common choice in practice due to the cost and complexity of
measuring individual HRTFs. Furthermore, with enough time, a listener’s brain is able to adjust
to a “foreign” HRTF - experiments performed in [47] show worse localization test performance
by inexperienced subjects, than those that went through training (both simultaneously hear-
ing a sound and seeing it’s position, and trying to determine a sound’s position with post-test
feedback). Trained subjects also showed better results when presented with sounds at positions
different to the ones used during the training phase of the experiment.

Non-individualised HRTFs are already being widely used in interactive media, especially com-
puter games. Sound localisation is important in first-person shooters and similar titles, and plays
an enormous role in increasing immersion in VR. HRTFs are employed in Overwatch, Counter
Strike: Global Offensive, Valorant, and many VR titles. There has also been some academic
research into the usage of individualised and non-individualised HRTFs in video games. While
[48] concludes, that individualised HRTFs expectedly showed better localisation performance, it
is of note that the experiment results (Fig. 1.8) showed a relatively similar horizontal localisation
performance between (self-reported) experienced players when using non-individualised HRTFs
and players using an individualised HRTF. This can realistically be attributed to “expert” play-
ers having more experience with other FPS titles with HRTF-based spatial audio, as many of
the most popular competitive titles do employ it.

Another study, that focused specifically on VR games [49], showed that sound localisation
using generic HRTFs was improved with time, when the players were presented with matching
visual and auditory stimuli. The improvements didn’t occur when no visual stimulus accompa-
nied the sound, or when the stimuli were not sufficiently synchronised. The experiments also
showed that the improvements in localisation didn’t transfer to different auditory stimuli (sounds
with a significantly different spectral composition). This however should not pose a problem in
case of video games and other hand-crafted experiences, as they tend to use a comparatively low
number of individual sounds, especially if only sounds whose accurate localisation is important
to the overall experience are taken into account.

Chapter 2

An overview of spatial audio
production software

This chapter examines some of the spatial audio production tools publicly available at the time
of writing and discusses their suitability for 360° video production.

2.1 DAW-based solutions
Most tools for producing ambisonic audio come in the form of DAW plugins, most of them in the
VST format1. They are usually released in the form of plugin suites, consisting of ambisonics
encoders (panners) and decoders.

The encoder plugin takes an input (in most cases mono or stereo), computes the spherical
harmonic coefficients, based on the current panning settings, and outputs an ambisonics repre-
sentation with the sound placed at the desired direction relative to the listener. An instance of
the encoding plugin has to be placed on each channel that will be used in the final ambisonics
mix, as can be seen in figure 2.1. Recordings from microphone arrays, and other ambisonic audio
can also easily be added to the final mix by simply adding the individual channels together.

Using the encoder alone is enough to output an ambisonics mix, but in order for the mixing
engineer to hear the results of his actions, or to output the mix in CBA format, the ambisonics
representation has to be decoded back to channel-based audio. For these purposes these plugin
suites usually include a decoder plugin that converts the ambisonics signals into speaker feeds for
a surround setup, or into a stereo binaural representation using a personalized or generic HRTF.
The decoding plugin is usually placed on the master bus2 - figure 2.2.

Because the plugin outputs multiple channels of audio, the digital audio workstation itself has
to provide support for multichannel audio. The maximum achievable ambisonics order is then
limited by three factors - available computational power (for real time preview), the plugin itself,
and the number of channels supported by the DAW. Fortunately, while not prevalent, multi-
channel support is present is some of the popular digital audio workstations, such as Reaper
[51] and Pro Tools [52]; Steinberg’s Cubase Pro even provides built-in ambisonics support in the
form of encoder and decoder plugins, as well as general multi-channel capabilities [53]. Nuendo -
another DAW from Steinberg, geared towards industry professionals, provides ambisonics support
with advanced features - their decoder, for example, supports head-tracking to synchronize the

1VST is a plugin format for digital audio workstations developed by Steinberg Media Technologies. [50] While
competing plugin formats exist, VST is multiplatform, and one of the most widely supported ones.

2A master bus is the final stage in audio processing. It combines the signals from all the individual channels
(or tracks) in a DAW or a hardware mixing console.

13

14 An overview of spatial audio production software

Figure 2.1 Ambisonic encoder plugins placed on individual channels. Image courtesy of the author.

Figure 2.2 A master bus with an ambisonics decoder plugin. Image courtesy of the author.

DAW-based solutions 15

audio with head movement (Fig. 2.3). Nuendo also has built-in integration with some game audio
middleware systems 3 (Wwise and ADX2), as well as features specific to VR audio , including
support for dearVR Spatial Connect - a virtual reality environment for spatial audio mixing,
which also provides positional data export to the Unity game engine. [54]

Figure 2.3 Head-tracking and spatial panning in Steinberg’s Nuendo. Image sourced from [55].

Ambisonic plugin suites usually include multiple types of encoders and decoders. Various
encoders can be used for encoding non-ambisonic content with different directivity patterns, e.g.
planewave (sound emanating from a single direction) or omnidirectional, as well as transforming
recordings from various microphone arrangements into a standardised ambisonics representation.
Decoders usually differ in their output format - CBA for various speaker arrangements, binaural
stereo, etc.

Listed below are some of the more fully featured ambisonics plugin suites (with a bias towards
open source).

The Ambisonic Toolkit [56]

ambiX [57]

IEM Plug-in Suite [58]

The DAW-based approach to spatial audio production provides a lot of flexibility, especially if
working in Reaper or another DAW with similar multichannel and routing capabilities. The pro-
ducer is able to use the in-DAW workflows they have grown accustomed to and can benefit from
the vast amount of available plugins. Plugins from different manufacturers, including ambisonic
encoders, decoders, and spatial effects, can all be used in a single project. This is approach
is popular and flexible, but there is definitely still room for improvement, especially for more
specialised workflows such as 360° video production. One area for improvement is integration
between the different software used throughout the production process. Such functionality is
absent from most DAWs, which is to be expected due to the relatively low number of users that
would benefit from it. Fortunately, in many cases, such workflows can be improved by plugin
developers.

3Middleware systems are software that is integrated into a game engine to handle a specific subset of it’s
functionality, such as audio playback.

16 An overview of spatial audio production software

2.2 Game Engines
While digital audio workstations are the obvious choice when it comes to producing any form of
audio content, including ambisonics, in some cases, other approaches may be more sensible. The
visual fidelity of modern game engines is already on such a high level, that they can be used for
3D productions. Their object-based audio systems also provide extensive functionality including
mixing and real time audio processing. [59][60] Theoretically, this could allow them to be used as
an all-in-one 360° video production tool. Unfortunately, in reality, using game engines for 360°
video production might not be a good choice. Neither of the two most popular commercially
available game engines provide reliable solutions for exporting 360° video and audio.

Unreal Engine does come with the ability to export 360° video out of the box, but only as a
series of still images, and thus without audio. Exporting ambisonics is not supported in any way
at the time of writing, although workarounds, converting a CBA mix from unreal to ambisonics,
can be devised (but quality loss would be inevitable in that case). [61] Unity doesn’t have built-
in support for exporting 360° video or audio, but a third-party solution is available. The ”VR
Panorama 360 PRO Renderer” tool’s Unity Asset Store page [62] does claim to support rendering
360° video, as well as ambisonics audio “for YouTube”. But the quality of the implementation
and integration with Unity is not guaranteed, this being a third-party product.

Being able to use a single piece of software for both the visual and the audio aspects of
production is certainly attractive. Unfortunately, the major commercially available game engines
are not currently viable for 360° video production. Their feature-set, however, despite being
intended for a different use case, already provides a great foundation that can be built upon by
adding some 360° video specific features. With the popularisation of spherical video and VR
gaming, it is possible that 360° gameplay demos and game trailers will become more common,
and such features will be added as demand increases.

2.3 3D software

Studying the manuals for multiple widely adopted 3D software packages 4 leads to an unsurprising
finding - most lack audio features in general, let alone SBA export capabilities.

Both Autodesk’s offerings - Maya and 3ds Max provide some degree of audio support, but
these features are limited and not usable in a spatial audio context. Maya’s audio support
is intended purely for synchronising animation to sound. [63] 3ds Max does provide a more
fully featured audio editing system, but it’s limited to arranging pre-rendered CBA clips, and is
incapable of spatial audio encoding in any form. [64]

Blender on the other hand does include a spatial sound system. The user can place speaker
objects, representing individual sound sources at arbitrary positions in the 3D scene. The soft-
ware allows to choose between several distance fall-off models, adjust the direction in which the
sound is emitted from each individual speaker object, and even includes doppler effect simula-
tion. [65] The unfortunate part is, that the current version of Blender (at the time of writing -
3.1) only supports exporting stereo. It is not documented anywhere which technique is used to
render this stereo output, but, based on my listening test5, it is not binaural stereo. Interestingly,
earlier versions of Blender (at least up until v2.796) did include the ability to export 5.1 and
7.1 surround audio, but it has later been removed. Overall, Blender itself can also be deemed
unusable for spatial audio production. A Blender add-on which implements OBA export will be
mentioned in the next subsection.

There is however an outlier, both in terms of spatial audio support, and in terms of the
software’s general purpose - SideFX’s Houdini. A software with a target audience intersecting

4Blender, Autodesk Maya, Maxon Cinema 4D, Autodesk 3ds Max, and SideFX Houdini.
5I placed a speaker object directly above a camera moving on the vertical axis, and listened to the result to

check if there was any height information present.
6Downloading and launching the aforementioned version of the software confirmed that the feature is present.

Other solutions 17

those of the previously mentioned programs only to a lesser extent, Houdini takes a completely
procedural approach to 3D and includes advanced simulation capabilities. Audio simulation ca-
pabilities are also present, and “simulation” is truly the correct word to use here. Houdini’s
spatial audio system supports distance fall-off, doppler effect, and even obstacle interference,
including per-obstacle customisation of transmission and absorption levels for different frequen-
cies. [66][67] As in Blender, sound objects with customisable emission direction can be placed
in the 3D scene. [68] The sound can then be “captured” by an arbitrary amount of virtual
microphone objects [69], effectively allowing to record audio using microphone setups analogous
to those used in the real-world, which makes ambisonics and CBA recordings possible. While
I could not find any examples of spatial audio rendered using Houdini, and thus can not assess
the quality of the output, the capabilities of this solution seem vast. Houdini, however, is not
an audio production environment. Using it’s spatial audio system, as with it’s other aspects,
requires much more specialised knowledge than using other approaches, such as DAWs and game
engines.

2.4 Other solutions
This section includes some interesting solutions that didn’t fall into any of the above categories
and don’t have alternatives that would warrant adding a separate subsection.

IRCAM Panoramix Designed and developed at IRCAM (French: Institut de recherche et
coordination acoustique/musique, English: Institute for Research and Coordination in Acous-
tics/Music), Panoramix is a post-production and mixing workstation for 3D-audio content. It
aims to provide a “comprehensive environment for mixing, reverberating, and spatializing sound
materials from different microphone systems: surround microphone trees, spot microphones, am-
bient miking, Higher Order Ambisonics capture.” ([70]) It is not meant to replace a digital audio
workstation, but rather work in conjunction with one, aiding in the mixing stage of the produc-
tion workflow. The design is inspired by hardware mixing decks with each track represented by
a vertical strip. There are various types of input tracks, accommodating different input signal
types, e.g. mono, ambisonic, different microphone arrangements. It also includes various other
tools useful in spatial mixing and mastering, such as a reverberation engine, as well as the usual
mixing instruments - an equaliser and a compressor/expander. A concise feature list can be
found in [71]; a conference paper ([70]), that delves deeper into the motivation behind creating
the software and the design decisions made in the process might also be of interest to the reader.

The “soundobjects” Blender add-on Created by Jamie Hardt (@luvcapra on GitHub),
“soundobjects” is a Blender add-on that allows export of OBA in the ADM Broadcast WAV
format. (See [72] for the format specification.) It provides Blender operators that allow to
import WAV audio files, add speaker objects to existing objects in the scene, assign audio files to
them, and export a file in the ADM Broadcast-WAV format where each audio object corresponds
to a Blender speaker object in the scene. The resulting file contains a sound object for each of
the speaker objects in the blender scene.

Unfortunately, it seems this project is no longer being developed or maintained. The last
commit in the project’s GitHub repository ([73]) adds a note about changes in ProTools that
result in the inability to import WAV files produced by the add-on. Despite this, the project is
still an interesting tool, and, with interest from the open source community, could be revitalised
and improved.

18 An overview of spatial audio production software

Chapter 3

UI/UX Design

This chapter explains the reasoning behind some of the core design decisions, specifies the
software requirements, and provides an overview of the GUI layout.

3.1 Real-time approach

Ambilink’s1 main goal lies in allowing to utilise animation data from a Blender scene for ambisonic
panning in a DAW. This is achieved with a pair of plugins - a Blender plugin and a VST plugin.
The Blender plugin (or “add-on”, using Blender’s official terminology) provides data about the
3D scene to instances of the VST plugin, that perform the ambisonic panning. Deciding how
this data will be passed from the Blender add-on to the VST was the earliest design decision
that had to be made, since the chosen approach would dramatically affect the way the software
functions, and, naturally, the user experience.

One solution would be to export animation data from Blender to a file. The data could then
be imported by the VST plugin. Unfortunately, such a solution, although simple to implement,
would be quite suboptimal from a UX perspective. Music production experience has taught me
that immediate feedback is immensely helpful when making creative decisions, and that decisions
made by sound designers and mixing engineers are undoubtedly of creative nature. Thus, from
the very beginning, I’ve designed the software to include real-time preview functionality - the
panning directions are continuously updated based on the current state of the Blender scene,
allowing the user to immediately hear how adjustments performed in Blender affect the audio
mix.

Of course, the real-time approach also has it’s downsides. It increases the overall complexity
of the system, and may introduce new types of problems stemming from connection issues.
Communication latency may also negatively affect responsiveness. A good implementation should
however be able to avoid or mitigate these flaws.

3.2 Requirement definition

Once the decision to make the system real-time was made, I’ve settled on some functional and
non-functional requirements to guide the development.

1“Ambilink” is the name given to the software during early stages of development.

19

20 UI/UX Design

Functional requirements
FR1: The system consists of two components - the Blender add-on and the VST plugin.

FR2: The user is able to pick an object from the Blender scene using the VST plugin. The
location of that object is then used to calculate the panning direction used by the VST
plugin.

FR3: Whenever the location of a Blender object is updated (manually or during animation
playback), the panning directions are updated in real time. (Communication between the
two components is performed in real time.)

FR4: When a VST instance is bound (subscribed) to a specific Blender object, renaming or
deleting the object in Blender is reflected by the VST GUI.

FR5: The VST plugin supports offline rendering2. The exported audio is synchronised to the
animation.

FR6: The distance from a Blender object to the camera affects the gain of the respective VST
distance; the user is able to choose from multiple distance attenuation models.

FR7: The user is able to pick the Ambisonics order and normalisation type (N3D or SN3D)
used by the plugin.

Non-functional requirements
It has to be noted that since the software can run on any number of hardware configurations,
it is hard to define performance-related requirements unambiguously. Thus, the “scales well”
formulation used in the non-functional requirements below should be understood as “scales well
for the hardware”.

NFR1: Selecting an object from the Blender scene via the VST GUI is quick, even when the
scene contains a large number of objects.

NFR2: Real-time direction updates have an acceptable delay, ideally less than 0.5 seconds.

NFR3: The system scales well for Blender scenes containing a large number of objects (e.g.
thousands).

3.3 User interaction
With the requirements in place, the next step was designing the way the user will interact with
the software. In case of Ambilink, this was a relatively straightforward process, since the system
has a single use case, that only requires limited user interaction. A user’s workflow might roughly
follow these steps:

1. Open the Blender project, and start the Ambilink Blender add-on.

2. Open the DAW, and place the Ambilink VST on the channels containing sounds that should
correspond to objects in the Blender scene.

3. For each instance of the Ambilink VST, select an object from the Blender scene.

2Offline rendering refers to exporting the audio, as opposed to real-time (online) playback during the production
process.

User interaction 21

4. Adjust ambisonics-related settings (order, normalisation type) to match what’s being used in
the project.

5. Make any necessary adjustments to the Blender scene, or the audio mix, including adjusting
distance attenuation parameters of the Ambilink VST.

6. Render the resulting audio.

3.3.1 Blender add-on
The Blender plugin needs to support two main actions - launching and stopping the server that
will provide data to the VSTs. Most operations in Blender are realised using so-called operators
that essentially encapsulate any action that can be performed by the user. Operators can be
invoked via buttons in the GUI or using Blender’s search functionality. Because the user shouldn’t
have to start or stop the server often, I’ve chosen to avoid adding an additional panel to the GUI.
Instead both actions are realised using operators that can be invoked from the File > Export
menu, or using search.

The Blender add-on depends on an external Python module.3 I did not want to include
the module’s code as part of the addon, or to automatically install third-party modules without
informing the user. Instead I’ve chosen to be transparent and require the user to explicitly
initiate dependency installation. This can be done by pressing a button in Ambilink’s add-on
preferences panel which can be accessed through Blender’s preferences dialogue. If dependencies
aren’t installed and the user invokes the “Start Server For Ambilink VST” operator, an error
message is shown that instructs the user to install dependencies via add-on settings.

3.3.2 VST plugin
The VST plugin should allow the user to perform a much wider range of actions - selecting an
object from the Blender scene, changing distance attenuation and ambisonics parameters. Figure
3.1 shows a wireframe of the user interface created before implementation. The GUI consists of
a main screen that is shown at launch and two additional screens - the object selection screen
and the settings screen.

Main screen The main screen displays the currently active object (if any), and a visual indi-
cator of the current direction from the camera to the object. It also allows to adjust the distance
attenuation type and maximum distance to the camera at which the sound gain will be above 0
dB. The distance attenuation parameters are located on the main screen to minimise the number
of clicks required to adjust them. This is done because various sounds may require different
values, depending on the distance at which the user would want them to become audible. By
pressing the button on the right side of the active object indicator the user can transition to the
object selection screen. The settings screen can be accessed by pressing the “Settings” button
located in the top right corner of the UI.

Object selection screen The object selection screen allows the user to select an object from
the Blender scene. Since the Blender scene may include a high number of objects, a search box
is present in the top part of the UI, allowing the user to quickly find a specific object. When
searching, the first object in the list is highlighted; the user can then select that object by pressing
the “Enter” key.

3External dependencies will be discussed in Chapter 4.

22 UI/UX Design

Settings screen The settings screen is reserved for plugin parameters that are not expected
to be adjusted often, and can thus be placed on a separate screen to avoid cluttering the main
UI (and save space for adding new parameters further down the line). Right now it only includes
the ambisonics order and the normalisation method. The user should only need to adjust these
parameters once per project most of the time.

User interaction 23

Figure 3.1 Prototype GUI layout for the VST plugin. From top to bottom: main screen, object
selection screen, settings screen. Image courtesy of the author.

24 UI/UX Design

Chapter 4

Implementation

This chapter provides an overview of the implementation of the Blender add-on and the VST
plugin. It present the structure of the IPC protocol, describes the top level architecture of each
component, and provides some insight into the challenges that had to be solved.

Figure 4.1 Diagram of high level interaction between the VST instances and the Blender plugin.
Image courtesy of the author.

4.1 IPC Protocol
To minimise latency in communication between the Blender add-on and the VST plugin, Am-
bilink utilises IPC 1. Since Ambilink is developed in a way that should enable eventual support
of all three major operating systems, utilising OS-specific IPC mechanisms directly was unde-
sirable. Instead, I’ve chosen to entrust the low level details of interprocess communication to
a third-party library - NNG (nanomsg-next-gen). NNG is multiplatform, provides support for
various transports (e.g. IPC, TCP, WebSockets), as well as common communication patterns
(e.g. Request/Response, Publisher/Subscriber). While NNG itself is written in C, wrappers
exist for many popular programming languages, including Pynng for Python, as well as nngpp
for C++. (The latter serves more as a quality of life improvement, as NNG’s C interface can of
course be used directly from C++ code.) Using the library also highly increases flexibility of the
implementation, allowing, for example, to replace IPC with network communication via TCP or
WebSockets with minimal effort. All of this made NNG a great choice for Ambilink.

1IPC is a generic term - interprocess communication may very well be realised using TCP or other network
protocols. In the context of this thesis, however, the term IPC is used to refer to any form of “direct” interprocess
communication, such as named pipes or shared memory.

25

26 Implementation

Figure 4.2 Communication sequence between the Blender plugin and an instance of the VST plugin
during real-time (online) rendering. Messages with the suffix “request” or “reply” are sent using Req/Rep.
Messages with the suffix “msg” are sent using Pub/Sub. Image courtesy of the author.

Figure 4.1 illustrates how the individual components are connected via IPC from a high level
perspective. The Blender plugin takes on the role of a server, providing information about the
Blender scene to an arbitrary number of clients - instances of the VST plugin.

A sequence diagram illustrating communication between the two plugins in real-time render-
ing mode is shown in figure 4.2. First, the user picks an object from the Blender scene. The
VST instance then subscribes to that object, requesting the Blender add-on to begin informing it
about updates to the object’s location and other important events. The object is then renamed
in Blender, and a rename notification is published by the Blender add-on, allowing the VST
GUI to update the object name. Finally, the VST instance is deleted by the user; it’s destructor
sends a request to unsubscribe from the object. (Object position updates would have continued
after the rename message if the instance hadn’t been destroyed.) Two different communication
patterns implemented by the NNG library were used during that sequence:

Request/Reply (Req/Rep) This pattern is used for all communication initiated by the VST
instance - requesting the list of objects in the Blender scene, subscribing to an object, re-
questing object location data for offline rendering, etc.

Publisher/Subscriber (Pub/Sub) In this pattern, a single publisher produces messages that
are consumed by multiple subscribers. Ambilink starts using this pattern once a VST instance
is subscribed to an object. The Blender plugin serves as the publisher, and the VST plugin
instances as the subscribers. Messages published by the Blender plugin include object location
updates (published multiple times per second for all objects with at least one subscribed VST

IPC Protocol 27

instance), object name updates, and object deletion notifications.

4.1.1 Protocol messages

class ReqRepCommand(IntEnum):
OBJ_LIST = 0x01
OBJ_SUB = 0x02
OBJ_UNSUB = 0x03
PREPARE_TO_RENDER = 0x04
INFORM_RENDER_FINISHED = 0x05
GET_RENDERING_LOCATION_DATA = 0x06
GET_ANIMATION_INFO = 0x07
PING = 0xFF

class ReqRepStatusCode(IntEnum):
SUCCESS = 0x00
OBJECT_NOT_FOUND = 0x01
INVALID_REQUEST_DATA = 0x02
INTERNAL_ERROR = 0xFE
UNKNOWN_COMMAND = 0xFF

Code listing 1 Definition of IPC protocol constants used in Req/Rep messages. (From the source
code of the Blender add-on.)

This section provides an overview of the message structure for each communication patter
used in the IPC protocol. The documentation/ipc.md file included on the attached media
defines the structure of each individual message type. Alternatively, documentation generated
using Doxygen (documentation/Doxyfile on the attached media) will also include the contents
of the file.

Request/Reply The Request/Reply part of the protocol consists of a set of commands differ-
entiated by a single-byte command code. A request always starts with the command code, and
a reply starts with a status code (also a single byte) indicating if the operation was successful or
the reason it failed. In both cases optional command-specific data may follow. Listing 1 shows
the list of all commands and status codes and the corresponding constants.

Ambilink IDs During the initial stage of communication (before a subscription is established)
Blender objects are referenced by their name. While object names in Blender are unique, using
the object’s name as the identifier would not be viable as the objects can be renamed after the
subscription is established. It would also be inefficient - a whole string would have to be passed for
every request referencing a specific object, as well as in every message published by the Blender
add-on, increasing the size of most messages. Because of these factors, once a subscription is
established, a unique numeric identifier is used to reference Blender objects. This value, called
an Ambilink ID, is assigned by the Blender plugin 2, and returned as part of the reply to an
OBJ_SUB request.

Publisher/Subscriber Messages published by the Blender add-on start with the AmbilinkID
of the object they relate to. This allows each VST instance to filter out irrelevant messages based

2The process of Ambilink ID assignment will be discussed in more detail in 4.3.3.

28 Implementation

Figure 4.3 Sequence diagram illustrating communication in offline rendering mode. Image courtesy
of the author.

on the first two bytes. After the Ambilink ID, a single-byte message type identifier follows. The
Blender add-on publishes the following message types: OBJ_POSITION_UPDATED, OBJ_RENAMED,
OBJ_DELETED. OBJ_POSITION_UPDATED messages include the location of the object in camera
space. Using camera space coordinates allows to reduce the bandwidth consumed by these
messages since only one set of coordinates needs to be transmitted. The direction and distance
from the object to the camera are then calculated by the VST plugin.

4.1.2 Offline rendering
As can be seen from the sequence diagram in figure 4.3, communication during offline rendering
(when the audio is being rendered to a file) significantly differs from communication during
real-time playback. Pub/Sub is not used, instead, every interaction is initiated by the VST.
The PREPARE_TO_RENDER request includes no additional data and serves as a notification for the
Blender plugin that a render is about to begin. The Blender plugin will receive this message
from each VST instance, but only the first one will have an effect. While this may seem wasteful,
it greatly simplifies the protocol. Otherwise, all the VST instances would have to communicate
with each other, agreeing on a single “master” instance. Once a PREPARE_TO_RENDER message is
received, the Blender plugins stops publishing OBJ_POSITION_UPDATED messages until the render
ends, and invalidates the cache used during the previous offline render.

To render the audio, a VST instance needs to know the object’s camera space coordinates at
each frame of the animation. Instead of requesting all the animation data at once, the VSTs first

VST plugin 29

request the number of frames and FPS of the animation, and then get the data in slices using
multiple GET_RENDERING_LOCATION_DATA requests. (Denoted in fig. 4.3 by the “loop” fragment.)
This is done because the DAW’s GUI thread might be blocked until the first audio sample buffer
is processed. 3 Since Ambilink would not have been able to process the first buffer until all the
rendering data is received, such an implementation would have made the GUI of some DAW’s
unresponsive for unacceptable periods when entering rendering mode. Getting rendering data in
slices also allows audio processing and IPC to be performed in parallel.

Because the animation may be very long, there is a limit to the number of slices held in
memory by each VST instance. If the memory limit is reached, the VST instance waits for the
audio thread to consume the previous slice of location data before fetching the next one.

4.2 VST plugin

The Ambilink audio plugin is developed in C++ using the JUCE framework and targets Stein-
berg’s VST3 interface4. It outputs ambisonics up to fifth order (The reasons behind this
limitation are described in 4.2.6.) with ACN channel ordering and N3D or SN3D normalisa-
tion (configurable via the settings screen). The code base is multiplatform, but, at the time
of writing this thesis, the build system is only operational on Linux. Documentation com-
ments are used throughout the code base; documentation can be generated using Doxygen (see
documentation/Doxyfile on attached media).

4.2.1 Third-party libraries
While developing a VST plugin without a specialised framework is possible, it is highly time
consuming, and takes a lot of “reinventing the wheel”, that’s why Ambilink uses JUCE. It
provides all of the base functionality required for building audio plugins - a relatively convenient
wrapper on top of the base VST interface, a GUI system, audio processing primitives, as well as
other features not as pertinent to this specific project. Developing the Ambilink VST with JUCE
also opens the opportunity to provide the plugin in other formats later on without requiring major
changes to the codebase. Another important factor is that the JUCE framework has a large user
base, increasing the number and availability of learning resources, which was of great help, since
I had no prior experience developing audio processing plugins. Finally, it is dual-licensed under
GPLv3 and a proprietary commercial license, enabling it’s use in this project. Besides JUCE, the
VST plugin component also uses the Spatial Audio Framework ([74]) to calculate the spherical
harmonics coefficients for a given direction of sound, as well as vector data types and some useful
trigonometric functions from GLM ([75]).

4.2.2 Software architecture
An audio plugin written with JUCE consists of two main parts. An AudioProcessor class deriv-
ing from the juce::AudioProcessor virtual base class that performs the actual audio processing,
receives audio, MIDI, and other data from the host software. The plugin’s GUI is implemented in
the AudioProcessorEditor class that derives from juce::AudioProcessorEditor. An instance
of the AudioProcessor class always exists while the plugin is loaded. AudioProcessorEditor,
on the other hand, is only instantiated once the plugin’s GUI editor is open, and is usually5

3This is the case for at least one DAW - Reaper.
4Since VST3 is the only version of the interface that is currently supported by Steinberg, I’ve been mostly

referring to it as “VST” up to this point and will continue to do so unless differences between versions of the
standard are discussed.

5Such details may differ between different DAWs.

30 Implementation

Figure 4.4 Simplified class diagram for the Ambilink VST plugin. (This diagram only includes the
most important classes, and is not by any means an exhaustive representation of the whole architecture.)
Image courtesy of the author.

destroyed as soon as it is closed.6
Figure 4.4 shows the high level structure of the Ambilink VST plugin. The AudioProcessor

class holds instances of the IPCClient and the BasicEncoder classes. The IPCClient class
handles communication with the Blender plugin, and the BasicEncoder class performs the am-
bisonic panning. (The two classes have no knowledge of each other, the direction data is passed
through the AudioProcessor class.)

4.2.3 IPC
The IPCClient class is implemented as a state machine. The states and transitions can be
seen in figure 4.5. The “Error” state and corresponding transitions, as well as transitions to
the “Disconnected“ state are omitted from the diagram to keep it comprehensible. Whenever
connection to the Blender plugin is lost (e.g. if Blender is closed, or the server is stopped by
the user), the IPC client transitions to the “Disconnected” state, regardless of what state it
was in previously. Whenever an exception not caused by connection loss occurs in any of the
states, the VST transitions to a special “Error” state. The GUI then displays an error message,
and a button allowing to transition back to the “Disconnected” state. (The plugin will then
automatically transition to either “Connected” or “Subscribed”, depending on what state it was
in before the error occurred.) While the users should hopefully never be able to experience the
error screen by themselves, having such a fail-safe allows the plugin to recover gracefully from
situations that would have otherwise lead to a crash.

IPCClient spawns two threads, one for each communication pattern - a requestor thread,
and a subscriber thread. Each class implementing a state has specific functions to send requests
to the Blender plugin, and to receive messages published using Pub/Sub. These functions are
called by the main IPCClient class from the respective threads.

To reduce coupling, other parts of the plugin control IPC using a custom event system. For
example, the ObjectSelectionScreen class can instruct the IPCClient to subscribe to an object
by publishing an event. The event is passed to IPCClient through the AudioProcessorEditor
and AudioProcessor classes. This is done to further reduce coupling and allow some events to
be “intercepted” and acted upon by classes other than the IPCClient.

6A VST plugin does not require a custom GUI, DAW’s implement a default GUI for the various audio param-
eters defined by the VST interface. This was not a viable option for Ambilink.

VST plugin 31

Figure 4.5 State machine diagram describing the way IPC is implemented on the VST side. Image
courtesy of the author.

Once an event reaches the IPCClient, it is added to a lock-free queue implemented us-
ing atomic variables (The implementation used in Ambilink is inspired by Fabian Renn-Giles’s
farbot library [76].). Thread-safety is required since the events are added and removed by dif-
ferent threads; the lock-free implementation reduces overhead of posting an event. IPCClient’s
requestor thread consumes events from the queue, and passes them to the currently active state,
the state class can then perform any required action, e.g. sending requests or initiating a tran-
sition to a different IPC state.

Upon transitioning to the “Subscribed” state, the subscriber thread is spawned and begins
consuming messages published by the Blender plugin. When an OBJ_POSITION_UPDATED mes-
sage is received, it calculates the direction and distance to the object from the camera space
coordinates, and updates the values of atomic variables, that are then read by the audio thread
and passed to the encoder.

4.2.4 Multithreading in a real-time context
Real-time audio processing is quite different from most problems usually encountered by pro-
grammers. In case of VST plugins, the host software manages the high-priority threads used for
audio processing. The plugin’s processing function (AudioProcessor::processBlock() in case
of plugins using JUCE) is repeatedly called from the audio thread, each time with new audio
and/or MIDI data for the plugin to process. [77] The main caveat is that this callback has to
always finish in time. Any delay, even if it occurs extremely rarely will result in audible artifacts
in the audio. [78][79]

For example, if the sample rate of the host software is 44.1kHz, and the size of the audio
buffers passed to the plugin is 128 samples, then the AudioProcessor::processBlock() function
must take less than (1/44100) ∗ 128 = 0.0029s to execute, which is just under 3ms7. [79] This
limitation rules out any operation that doesn’t have a reliable time limit. Examples of such
operations include accessing files, any form of network communication (or IPC), and, importantly,
using mutex-based thread synchronisation techniques. Practically any call to a function not

7The sample rate can be significantly higher (usually in the range of 44.1 − 192kHz). Buffer sizes can go down
to 32, or even 16 samples. (Speaking from personal experience using DAWs and working with audio.)

32 Implementation

implemented by the program should be treated as not real-time safe unless the documentation
explicitly states otherwise. [78] All of these operations can of course be performed on other
threads, but if the data needs to be passed to the audio thread it has to be done without using
traditional synchronisation primitives. Thankfully, even when using locks is out of the question,
race conditions can be avoided with good design and some tricks. In simpler cases, using an
atomic value that is modified by one thread and read by another is sufficient, but various thread-
safe lock-free data structures, such as single consumer single producer FIFO queues can also
be implemented (mostly by clever use of atomic variables). For further information on real-
time audio programming I would recommend the two part talk by Fabian Renn-Giles and Dave
Rowland [78][80], which I used as the main source of information on this topic. Fabian Renn-
Giles’s open source farbot library [76] which implements many real-time safe data structures may
also be of interest to the reader.

In case of Ambilink, the data used in the audio processing callback has to be passed from
the Pub/Sub thread. Since the data is small8, this is realised using a pair of atomic variables
that are ensured to be lock-free by static assertions (std::atomic<T>::is_always_lock_free).
The atomic variables are stored by IPCClient and read by the audio thread whenever required.
In offline rendering mode, however, a lock is utilised so the audio thread can get access to the
instance of the OfflineRendering state9. This does not really pose a problem since the audio
is not played back in real time in this case and because locking the mutex will be uncontested
unless a communication error occurs and IPC needs to switch to a different state. It is however
undebatable that this part of the implementation could benefit from optimisation in the future.

4.2.5 Encoder
As mentioned previously, BasicEncoder is the class that handles ambisonic panning of the
incoming audio. On each invocation of the AudioProcessor::processBlock() function, the
encoder’s direction and distance parameters are updated. In real-time mode, the latest value
processed by the IPCClient is used. In offline rendering mode, direction and location at the
respective time in the animation are used.

A version of the encoding algorithm used by Ambilink written in pseudocode can be seen
in listing 2. (The actual C++ code is too verbose to be included as a listing.) The ambisonic-
encoded buffers are produced by matrix multiplication of the input audio sample vector x, and
the vector of spherical harmonic coefficients s that is calculated using the getRSH_recur()
function from the Spatial Audio Framework library ([74]) based on the direction received from
IPCClient. For first-order ambisonics, this would look as follows:

sT x =


w
x
y
z

 [
x1 x2 · · · xn

]
=

W1 W2 · · · Wn

X1 X2 · · · Xn

Y1 Y2 · · · Yn

 (4.1)

The same calculation is performed twice, with the spherical harmonic coefficients and gains
from the previous and current method calls, and the resulting buffers are then cross-faded to
avoid audible artifacts in the audio when the direction or distance changes rapidly.

8A struct of two floats for the direction and a single float for the distance.
9The mutex is only used to prevent the IPCClient from switching to a different state, which would result in

destruction of the OfflineRendering object. Synchronisation between the Req/Rep thread and the audio thread,
once the audio thread does gets access to the state, is performed using atomic variables.

Blender add-on 33

def encode(input_buffer, ambisonic_order, direction, distance,
max_distance, distance_attenuation_curve)

{
curr_sh_coefficients =

calc_spherical_harmonic_coefficients(ambisonic_order, direction)
gain = gain_from_distance(distance, max_distance,

distance_attenuation_curve)

encoded_with_prev_direction =
matmult(_prev_sh_coefficients, input_buffer.with_gain(_prev_gain))

encoded_with_curr_direction =
matmult(curr_sh_coefficients, input_buffer.with_gain(gain))

_prev_sh_coefficients = curr_sh_coefficients
_prev_gain = gain

return crossfade(encoded_with_prev_direction,
encoded_with_curr_direction)

}

Code listing 2 The encoding algorithm used by the BasicEncoder class in pseudocode. Member
variables are prefixed with underscores.

4.2.6 Limitations
Due to limitations of the VST3 format, Ambilink only supports ambisonics up to fifth order.
The VST3 interface requires the plugin’s main output bus10 to conform to one of the output
channel sets explicitly specified by Steinberg 11. The VST3 interface still only officially supports
ambisonic channel sets up to third order, but JUCE manages to support fourth and fifth order
ambisonics, potentially using some undocumented behaviour of the VST3 interface. Curiously,
the previous version of the interface - VST2, supported so-called “discrete” layouts for a plugin’s
main output, which basically allowed to use any number of output channels without explicitly
labeling what CBA or SBA format the plugin’s output conforms to. Discussion regarding the
issue on Steinberg’s forums ([82]) has started as early as April 2018 and continues as of February
2023. Development team members have been intermittently discussing possible solutions and
proposals in the thread, but the issue has not been resolved as of February 2023.

4.3 Blender add-on

The Ambilink blender add-on is written in Python (as all Blender add-ons are) and supports
Blender version 3.4.1 - the latest one at the time of development. In contrast to the VST,
the Blender add-on only uses one external module - pynng, the previously mentioned Python
wrapper for the NNG library.

10In this context, the word “bus” refers to a set of audio channels.
11In the VST3 interface, these are referred to as “speaker arrangements”. The current definitions can be found

here [81], but the page is likely to be updated as new versions of the SDK are released.

34 Implementation

Figure 4.6 Simplified class diagram for the Ambilink Blender add-on. (For the sake of conciseness,
the diagram does not include some helper classes, e.g. custom exception types.) Image courtesy of the
author.

4.3.1 Software architecture
As can be seen in figure 4.6, the architecture of the Blender add-on is simpler than that of the VST
plugin. There are two main classes - IPCServer and ObjectInfoManager. The IPCServer class
handles all details of the IPC protocol - decoding incoming requests, correctly structuring and
encoding reply data, etc. It holds an instance of ObjectInfoManager that takes care of the “busi-
ness logic” of the add-on, but has no knowledge of the IPC protocol itself. ObjectInfoManager’s
responsibilities include keeping track of all objects with at least one subscriber, informing the
IPCClient class (via callbacks) whenever the objects are renamed or deleted, providing object
locations and other information about the Blender scene, such as animation length and FPS.

4.3.2 Multithreading considerations
The add-on needs to continuously reply to requests and publish messages for subscribed VST
instances. Ideally this would be done in a separate thread, but Blender’s Python scripting im-
plementation is not thread safe. Thus, all access to Blender data needs to be performed on the
thread the add-on is launched from, which also happens to be the GUI thread12. While spawn-
ing another thread and passing commands using a thread-safe queue or a similar mechanism is
possible, such an approach didn’t make much sense for Ambilink, especially for the initial imple-
mentation. Because the majority of IPC commands require accessing Blender data, only a limited
number of operations, such as encoding and decoding message data, could have been performed
in a separate thread, so the performance improvement (if any) provided by a multithreaded
implementation wouldn’t have been significant enough to justify the added complexity.

Instead of using a separate thread for IPC communication, messages are sent and received
by a method that is called on the main thread multiple times per second. This is achieved using
the StartServerOp (“Start Server For Ambilink VST”) modal operator. 13 Once it is invoked
by the user, it creates an IPCServer instance and schedules a timer that calls it’s serve method
multiple times per second. (The update frequency can be configured via add-on settings, the
default is 30 Hz.) On each invocation, the serve method replies to all pending requests sent by
VST instances and publishes updates for any registered objects14.

12This means that long operations performed by the add-on will result in Blender’s GUI being unresponsive.
13Modal operators can continue running in the background after being invoked by the user.
14I will sometimes refer to objects with at least one subscribing VST instance as “registered objects” for the

sake of conciseness.

Blender add-on 35

def get_scene_objects():
return bpy.context.scene.objects

def lookup_by_name():
return get_scene_objects().get(TEST_OBJ_NAME)

def lookup_by_prop():
for obj in get_scene_objects():

if obj.get(TEST_PROP_NAME) == DESIRED_PROP_VALUE:
return obj

Code listing 3 Functions used to compare performance of looking up Blender objects by name and
by value of a custom property. Test results are presented in table 4.1.

A single object has the custom
property assigned

All objects have the custom
property assigned

lookup_by_name() 20.42s 19.76s
lookup_by_prop() 96.88s 128.85s
Performance decrease 4.74x 6.51x

Table 4.1 Test results for performance of Blender object lookup by name and by value of a custom
property using lookup functions from code listing 3. The times in the table correspond to the total
time it took to find a specific Blender object 100000 times. The tests were performed using the timeit
Python module.

4.3.3 Overcoming Blender API limitations
Blender’s Python API is realised via the bpy Python module that is accessible to add-ons and
scripts. It allows to access and modify most aspects of the 3D scene including the names and
locations of objects, so, at first glance, keeping track of this data should be simple. Objects in
the scene can easily be accessed by their name, e.g. bpy.context.scene.objects['Name'].
However, as mentioned previously, the name of the object is not a viable unique identifier for
Ambilink’s use case since an object can be renamed after a subscription is established, and an
Ambilink-specific identifier (Ambilink ID) is used instead.

Unfortunately, as evident from the test results presented in table 4.1, finding an object
by it’s Ambilink ID is much slower than using the object’s name. The times in the table
correspond to the total time it took to lookup a specific Blender object 100000 times using
the lookup_by_name() and lookup_by_prop() functions (code listing 3). There was a to-
tal of 2380 objects in the Blender scene, and the same object, located at index 1871 in the
bpy.context.scene.objects collection, was being looked up each time. Two tests have been
performed. In the first test, there was only one object in the scene that had the custom property
set. In the second test, all objects in the scene had the custom property set, but only one of
them had it set to DESIRED_PROP_VALUE. The Python script and the Blender project used to
perform the tests can be found in the attached media. The results show that lookup using the
value of a custom property takes roughly 5 times longer than lookup by name. This can be
explained by the fact that getting an object by it’s name is handled directly by Blender’s C++
implementation, and finding an object by the value of a custom property requires iterating all
objects in the scene from Python code. 15

15I have initially expected Blender’s implementation to use a hashmap for looking up objects by name, but the

36 Implementation

In an ideal case, the Blender add-on would avoid the need to constantly search the list of all
objects in the scene by storing a reference16 to the actual Python object17 returned by Blender’s
API. The situation is however complicated by the fact that references to Blender data returned
by bpy can be invalidated under some circumstances. The most common case when this occurs
is whenever the Undo/Redo functionality is used.

To maximise performance, Ambilink uses a combination of storing object references returned
by bpy, lookup by name, and lookup by Ambilink ID. When a VST instance subscribes to a
previously unregistered object, an Ambilink ID is generated and stored in Blender’s object data
as a custom property. The Python object (reference) returned by Blender, the object’s name,
and the assigned Ambilink ID are stored in an instance of the ObjectInfo class. The name
stored by the Ambilink add-on is kept up to date even if the object is renamed by subscribing
to updates of it’s “name” property using the bpy.msgbus.subscribe_rna function. Whenever
a property of a Blender object needs to be accessed, the following steps are taken:

1. Try to access the object through the stored reference.

2. If the previous step fails, try to find the object by name.

3. If both previous steps fail, try to find the object by Ambilink ID.

If all of the steps listed above fail, the Blender object is treated as deleted and an OBJ_DELETED
message is published. Additionally, the add-on registers handlers that are called by Blender on
Undo/Redo operations. This allows to keep the stored references valid and avoid the need to
lookup objects by name or Ambilink ID most of the time.

While fairly complicated, the described approach minimises the time it takes to access prop-
erties of registered objects by using the fastest approach under most circumstances and only
falling back to the slower options if needed. The slowest option - lookup by Ambilink ID - should
only ever be used in the Undo/Redo handlers, when the operation being undone or redone is
renaming an object, and, even in that case, only for one object, because multiple objects can’t
be renamed as part of one Undo or Redo operation. In all other cases, Blender should invoke the
object name update handler registered by each ObjectInfo instance, keeping the name stored
by the Ambilink add-on up to date, and ensuring lookup by name succeeds.

4.3.4 Limitations
Using custom properties is the only way to attach custom data to Blender objects. For most
use cases, this approach works great. The only caveat is, when a Blender object is duplicated
it’s custom properties are duplicated as well. This is a problem for Ambilink since duplicating
an object with at least one subscribing VST instance results in a Blender scene containing two
objects with identical Ambilink IDs. This results in what the C++ standard would call undefined
behaviour.

The current version of Ambilink does not attempt to solve this in any way, but a potential
future workaround would be to override all of Blender’s built-in operators that allow the user to
duplicate an object resulting in duplication of custom properties. Unfortunately, there are at least
four such operators. Two of them are specific to object duplication (bpy.ops.duplicate_move
and bpy.ops.duplicate_move_linked), but the same result can be achieved by copying and
pasting an object either from the 3D viewport (bpy.ops.view3d.pastebuffer) or the object
list (bpy.ops.outliner.id_paste).

RNA_property_collection_lookup_string function defined in the rna_access.c file ([83]) seems to simply iterate
over all items in the collection. (Which seems to be more than fast enough.)

16Variables in Python “are simply names that refer to objects” ([84]), meaning that assigning an object to a
variable always results in storing a reference to that object and never in copying the object itself.

17There may be some confusion between objects as in object-oriented programming, and 3D objects in the
Blender scene. I will try to avoid the ambiguity by always referring to the first kind as “Python objects”.

Chapter 5

Testing and evaluation of the
implemented software

This chapter evaluates the implemented software from a technical and user experience per-
spective. Advantages and disadvantages of the solution are discussed, and possible paths for
future improvement are laid out.

5.1 Testing

5.1.1 Ambisonic panning correctness
Since I do not have a surround speaker array at my disposal, I have used a the the Binau-
ralDecoder plugin from the IEM plugin suite [58] to judge the correctness of spatial panning.
Subjectively, the software is performing correctly, and the audible direction to the sound source
corresponds to the direction from the camera to the object in the Blender scene.

To complement these subjective tests, and to verify that the ambisonic panning is not being
performed incorrectly in other aspects, that may not result in obvious audible differences, I’ve
chosen to compare the output of the Ambilink VST to the output of the MultiEncoder plugin
from the IEM suite [58].

To achieve this, I’ve created a simple Blender scene with objects positioned at specific posi-
tions relative to the camera (figure 5.1). Switching to Reaper, a simple test project has been used
with a single mono track containing an audio file of a pure sine wave (with constant volume)
routed to the two multichannel tracks - one with the Ambilink VST, and one with the IEM
MultiEncoder (figure 5.2). (The frequency composition of the input signal does not matter for
the purposes of this test, but it is of course essential that the input signal is identical for both
encoders.)

In comparing the output of the encoders, the IEM EnergyVisualizer [58] plugin has been
used to visualise the energy distribution of the ambisonic signal on the surface of a sphere.1 For
each test case, a different object from the Blender scene was selected in Ambilink, and the same
direction was set in the IEM MultiEncoder using the plugin’s GUI. The SN3D normalisation
convention has been used in both encoders, and both visualiser instances. Distance attenuation
has been disabled in Ambilink, so the output signal’s gain is identical.

As can be seen in figure 5.3 both instances of the IEM EnergyVisualizer produced identical

1I have to mention that the EnergyVisualizer plugin (v1.0.3) has proven to be extremely unstable, consistently
crashing Reaper whenever it’s GUI is closed. The crashes also occurred when no instances of the Ambilink VST
or any other plugins were loaded.

37

38 Testing and evaluation of the implemented software

Figure 5.1 The Blender scene used for comparing Ambilink’s output to the output of the IEM
MultiEncoder plugin. Image courtesy of the author.

Figure 5.2 Reaper project used for testing with the Ambilink and the IEM encoder plugins open.
Image courtesy of the author.

Testing 39

Figure 5.3 The ambisonic output produced by Ambilink (bottom row), and the IEM MultiEncoder
(top row), visualised using the IEM EnergyVisualizer plugin. Panning directions are identical for each
column. Image courtesy of the author.

visualisations for identical panning directions. Other panning directions have been tested be-
sides the two presented in figure 5.3, and the visualisation of the output of the two encoders
has been identical in all cases. A screen capture demonstrating that the movement of an ob-
ject in Blender matches the visualisation produced by the IEM EnergyVisualizer plugin can be
found on the attached media in the demo_videos_and_renders/ directory under the filename
8_iem_visualiser_realtime_demo.mkv.

5.1.2 Overall functionality
Automated integration tests of both components would have been the ideal approach for testing
interprocess communication and other aspects of the solution. Unfortunately, both plugins re-
quire host software to run. Because of that, creation of automated integration tests would have
taken up a disproportionate amount of the overall development time. Instead, I have settled on
testing the solution manually.

Manual testing has been performed throughout development. A mid-range laptop from 2018
with an AMD Ryzen 5 2500U processor running Ubuntu 22.04.1 has been used for testing.
Blender 3.4.1 and Reaper 6.73 have been used to host the plugins. Several screen recordings of
performed tests are available on the attached media in the demo_videos_and_renders/ directory.
It should be noted that screen capture was performed locally (without using an external capture
card) resulting in additional CPU load. The following paragraphs will summarise the results of
the tests. Where applicable, the filenames of screen captures included on the attached media
will be referenced by using a monospaced font, e.g. 1_real_time.mkv.

General VST functionality Picking a Blender object and changing other parameters (Am-
bisonics order, normalisation type, distance attenuation function and distance attenuation maxi-
mum distance) functions correctly. (0_params_and_object_sub.mkv) So does saving and loading
of the VST plugin’s state. Upon reopening the Reaper project, parameter values are consistent
to the previous state, and the VST automatically resubscribes to the previous object. I should

40 Testing and evaluation of the implemented software

note that if the Blender object was renamed while the VST wasn’t running, it would show up
as deleted on reconnection because Ambilink IDs are only utilised when the VST instance is
subscribed. (4_vst_save_load.mkv) When a blender object is renamed or deleted, the change
is reflected in the VST GUI. (7_rename_delete.mkv)

IPC stability The IPC connection has proven to be stable - no spontaneous disconnects
have occurred during testing. This was expected since no external factors except system load
should be able to affect the interprocess communication. The VST plugin reacts quickly when-
ever the Blender server is launched, switching to the “Connected” state and updating the GUI
practically immediately. The delay before the plugin GUI updates after stopping the Ambilink
server or closing Blender is longer, up to multiple seconds, but still acceptable for the use case.
(3_disconnect_reconnect.mkv)

IPC latency I have performed two latency tests. The first one with a single instance of the
Ambilink VST, and the second one with 20 instances all subscribed to different Blender objects2.
The Blender scene used for the test contained more than 2000 objects overall. Latency has been
calculated from screen captures by counting the number of frames between the first frame where
the timeline position is updated in the Blender GUI and when a change in panning direction is
visible on the IEM EnergyVisualizer instance placed after one of the VSTs. The screen capture
has been performed at 30 frames per second.

For the first test, the delay has been around three frames, which is around 100ms. While this is
a relatively significant delay, it is sufficiently low for the use case, and latency has not been an issue
during normal use. (5_latency_test_1.mkv) Surprisingly, the second test, where the overall load
on the system was significantly higher due to the number of active Ambilink instances, all encod-
ing fifth order ambisonics, had the same result of around three frames. (6_latency_test_2.mkv)
This may be caused by the screen recording software skipping frames, but, even if the real latency
was double the measured latency, this would have been a good result considering the increased
load. Although these tests don’t account for several factors, such as the latency introduced by
the IEM EnergyVisualizer plugin, they provide an upper bound that is precise enough to prove
that IPC latency is not detrimental to the overall usability of the software.

Blender add-on performance Another factor to consider is how the Ambilink add-on affects
Blender performance. In my testing3, starting the Ambilink server had no noticeable effect on the
playback FPS in most cases. To keep the system load as consistent as possible, the Ambilink VST
instances were always running in the background (encoding is still performed when disconnected)

In a scene with 70 objects and a very simple animation of some cubes4, running the Ambilink
server at the maximum update frequency of 120Hz5 with 15 connected VST instances (set to
first order to reduce encoding load), resulted in no visible FPS dips. Adding five more VST
instances did however result in the overall framerate being lower due to the added CPU load.
This made periodic dips down to around 22-23 FPS from the target 24 noticeable. These dips
are likely caused by the Ambilink server processing IPC requests and only appear when the CPU
is already under significant load. Overall, with a sufficiently performant machine (as opposed to
the laptop used for testing), the performance impact of running the Ambilink server should not
pose any issues.

2Having 20 instances all subscribed to a single object wouldn’t have increased the load since only one
OBJECT_POSITION_UPDATED message would have been published on each update.

3These tests have not been recorded, as the screen capture induced too much additional CPU load.
4Because of the relatively low-end hardware used for testing, and the Ambilink VSTs running in the background,

a more demanding scene was not required to get on the verge of dipping below the target framerate.
5This is overkill for normal use, update frequencies in the range of 30-60Hz are sufficient.

Future improvements 41

Offline rendering During development, many rendering tests have been performed under
various conditions - different animation start and end frames (including extremes, such as a single
frame animation), different numbers of VST instances, different numbers of objects in the scene.
A screen capture of two rendering tests can be found under the filename 2_offline_render.mkv
on the attached media. In all performed tests, offline rendering has functioned correctly - panning
directions are synced with the position of objects in the animation.

A short demo animation has been produced and is included on the attached media under the
demo_videos_and_renders/demo_animation/ directory. The 3D animation has been rendered
with Blender, the audio has been rendered using Reaper and Ambilink. Only a binaural version
could be included on the attached media due to the large size of the full 36-channel fifth order
ambisonics file. No other plugins or effects were applied except for the Ambilink encoders on
each of the five channels (3 channels are used for objects that can be seen in the video, and 2
more for ambient sounds) and the IEM BinauralDecoder plugin used for decoding.

5.2 Future improvements
The implemented software is fully functional, fulfils the requirements defined in chapter 3 and
the overall goal of the thesis. However, while no user experience testing has been performed, it
is safe to say there is room for improvement in that regard. The following paragraphs list several
unsatisfactory aspects of the user experience in order of descending importance and outline
potential paths for future improvement.

Object restoration Several improvements can be made to the Blender add-on in terms of
handling operations with objects. Besides the issues with duplicating objects described in 4.3.4,
Ambilink also doesn’t handle undoing the deletion of an object in a user-friendly way - if the
user deletes an object and then undoes the change, the object will still show up as deleted in any
previously subscribed VST instances. Both of these aspects are high priority targets for future
improvement.

Parameter synchronisation It is likely that all ambisonics encoders used in a project will be
using the same settings. Despite that, in the current version of Ambilink, the ambisonics settings
(order and normalisation type) have to be manually set for each VST instance. I see two main
approaches to solving this problem. One solution would be to initialise new VST instances with
the last used settings - for example, if the user creates one instance and adjusts the ambisonics
order, the next instance would automatically use the same value.

Another approach would be to add a GUI for managing VST instances. This could be
implemented as part of the Blender plugin, or as a standalone application. This would allow the
user to easily change the parameters of multiple Ambilink VST instances at once, which could
be very useful in some cases. For example, the user could select a group of encoders handling
background sounds with lower importance, and lower the ambisonics order, and then increase
the order for more important sounds, allowing to easily distribute CPU usage by sound priority.
If such a GUI was ever to be implemented, it could, of course, allow to control other parameters
besides the ambisonics order. This would open a lot of opportunities for improving usability.

Timeline synchronisation Another useful feature that is missing from the current version
of Ambilink is the ability to synchronise the playback position of the animation in Blender with
the playback position in the DAW. That would make the real-time preview even more useful
since the user would be able to easily preview the animation as a whole without rendering audio
out. Unfortunately, this is not a trivial problem to solve, especially since the target playback
FPS may not always be reached in Blender. Designing how such a synchronisation system would
function from the user’s perspective also poses quite a significant UX design challenge.

42 Testing and evaluation of the implemented software

Panning offsets In some situations it could be desirable to offset the sound source’s position
from the Blender object’s origin without affecting the 3D scene itself. This is not currently
possible in Ambilink, but could be a useful future addition. A direction offset can however be
achieved even with the current version by utilising an additional child object in Blender, giving
it the required offset relative to the parent, and then using the newly created object to position
the sound source. The disadvantage of this workaround is that it can result in extra objects
cluttering the Blender scene. It also requires the sound designer or mixing engineer to switch
their attention away from the digital audio workstation, so a “native” solution would be preferred.

Chapter 6

Conclusion

The first chapter of this thesis provides a broad overview of the spatial audio field, and describes
the three main approaches to representing spatial audio information (CBA, OBA, SBA) and their
viability for 360° video. Ambisonics in particular is described in more detail from a practical and
theoretical perspective, as the approach most suitable for 360° video. The chapter also examines
various methods of decoding ambisonics for playback on surround loudspeaker arrays and via
headphones (using HRTFs). In the second chapter, various software solutions for spatial audio
production are reviewed and their suitability for 360° video production is evaluated. Besides
solutions specifically aimed at audio production, the possibility of using other types of software,
such as game engines, is explored.

The next two chapters are dedicated to the design and development of Ambilink - a software
solution that implements a VST3 ambisonic encoder, the panning direction of which is deter-
mined by the position of a 3D object in a Blender scene. The Ambilink Blender add-on provides
data about objects in the Blender scene to instances of the VST plugin using interprocess com-
munication. An object from the Blender scene can be selected using the VST plugin’s GUI. The
direction from the active camera to that object is then used as the panning direction for the
ambisonic encoder. When playing audio in-DAW, the panning direction is updated in real time,
allowing artists and sound engineers to immediately hear how adjustments made to the Blender
scene affect the audio mix. The VST plugin is implemented using JUCE framework; NNG is
used for interprocess communication. No analogous solutions exist at the time of writing this
thesis.

Finally, the presented software is evaluated from a technical and user experience perspective.
To demonstrate the correctness of the ambisonic panning algorithm, the output of the Ambilink
VST was compared to the output of the IEM MultiEncoder plugin - a well-regarded solution
developed at the Institute of Electronic Music and Acoustics. Several other aspects of the software
are evaluated and it is concluded that the software meets the requirements defined in chapter
three and fulfils the overall goal of providing an improved workflow for producing spatial audio
for 360° video. Potential paths for improving the user experience in the future are also discussed,
providing a starting point for future extension of the software.

6.1 Current state

The implemented solution fulfils the goal of providing an improved SBA production workflow for
360° (immersive) video. As intended, it is especially useful for 360° 3D animations - in this case,
in addition to allowing the content creators to utilise Blender’s 3D animation tools, it should
significantly reduce the number of objects that require manual ambisonic panning; for large-scale

43

44 Conclusion

projects the time savings could be substantial.
The use cases are not however limited to 360° video. The implemented software can be

used in any audio production where ambisonic audio may be desired. In music production, for
example, Blender can be used as an improved user interface for spatial panning. Visualising
the position of individual sound sources in a full 3D environment could be helpful in creating
complex soundscapes. Blender’s Python scripting capabilities and animation drivers can also
be used to define the position of sounds procedurally, which opens up possibilities for utilising
Ambilink in generative music.

6.2 Final words
Overall, I am content with the current state of the project. As stated in the previous section,
the current version of Ambilink fulfils the goals of this thesis. The software’s architecture is
extendable and can serve as a foundation for an even more flexible solution. Because the VST
plugin and the Blender add-on are connected via IPC, the resulting software is highly modular,
and either of the components can be exchanged to make it serve a slightly different purpose.
While I cannot say with certainty that I will continue development of this project myself, it’s
open-source nature should allow others to improve it beyond what I might have ever envisioned.

Bibliography

1. OLIVIERI, Ferdinando; PETERS, Nils; SEN, Deep. Scene-Based Audio and Higher Order
Ambisonics: A technology overview and application to Next-Generation Audio, VR and 360°
Video [online]. 2019. Tech. rep. European Broadcasting Union. Available also from: https:
//tech.ebu.ch/docs/techreview/trev_2019-Q4_SBA_HOA_Technology_Overview.pdf.

2. HERRE, Jürgen; HILPERT, Johannes; KUNTZ, Achim; PLOGSTIES, Jan. MPEG-H 3D
Audio—The New Standard for Coding of Immersive Spatial Audio. IEEE Journal of Selected
Topics in Signal Processing. 2015, vol. 9, no. 5, pp. 770–779. Available from doi: 10.1109/
JSTSP.2015.2411578.

3. PETERS, Nils; SEN, Deep; KIM, Moo-Young; WUEBBOLT, Oliver; WEISS, S. Merrill.
Scene-Based Audio Implemented with Higher Order Ambisonics (HOA). In: SMPTE 2015
Annual Technical Conference and Exhibition. 2015, pp. 1–13. Available from doi: 10.5594/
M001651.

4. BRINKMAN, Willem-Paul; HOEKSTRA, Allart RD; EGMOND, René van. The effect
of 3D audio and other audio techniques on virtual reality experience. Annual Review of
Cybertherapy and Telemedicine 2015. 2015, pp. 44–48.

5. MELKOTE, Vinay; YEN, Kuan-Chieh; FELLERS, Matt; DAVIDSON, Grant; KUMAR,
Vivek. Transform-domain decorrelation in Dolby Digital Plus. In: 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014, pp. 6949–6953.
Available from doi: 10.1109/ICASSP.2014.6854947.

6. HOEKSTRA, ARD. 3D audio for virtual reality exposure therapy. 2013. MA thesis. Delft
University if Technology.

7. SCHUTZE, Stephan; IRWIN-SCHUTZE, Anna. New Realities in Audio: A Practical Guide
for VR, AR, MR and 360 Video. 1st ed. Milton: CRC Press, 2018. isbn 9781138740822.

8. COLEMAN, Philip; FRANCK, Andreas; FRANCOMBE, Jon; LIU, Qingju; CAMPOS, Te-
ofilo de; HUGHES, Richard J.; MENZIES, Dylan; GÁLVEZ, Marcos F. Simón; TANG, Yan;
WOODCOCK, James; JACKSON, Philip J. B.; MELCHIOR, Frank; PIKE, Chris; FAZI,
Filippo Maria; COX, Trevor J.; HILTON, Adrian. An Audio-Visual System for Object-
Based Audio: From Recording to Listening. IEEE Transactions on Multimedia. 2018, vol. 20,
no. 8, pp. 1919–1931. Available from doi: 10.1109/TMM.2018.2794780.

9. SUN, Xuejing. Immersive audio, capture, transport, and rendering: a review. APSIPA
Transactions on Signal and Information Processing. 2021, vol. 10, e13. Available from doi:
10.1017/ATSIP.2021.12.

45

https://tech.ebu.ch/docs/techreview/trev_2019-Q4_SBA_HOA_Technology_Overview.pdf
https://tech.ebu.ch/docs/techreview/trev_2019-Q4_SBA_HOA_Technology_Overview.pdf
https://doi.org/10.1109/JSTSP.2015.2411578
https://doi.org/10.1109/JSTSP.2015.2411578
https://doi.org/10.5594/M001651
https://doi.org/10.5594/M001651
https://doi.org/10.1109/ICASSP.2014.6854947
https://doi.org/10.1109/TMM.2018.2794780
https://doi.org/10.1017/ATSIP.2021.12

46 Bibliography

10. SPORS, Sascha; WIERSTORF, Hagen; RAAKE, Alexander; MELCHIOR, Frank; FRANK,
Matthias; ZOTTER, Franz. Spatial Sound With Loudspeakers and Its Perception: A Review
of the Current State. Proceedings of the IEEE. 2013, vol. 101, no. 9, pp. 1920–1938. Available
from doi: 10.1109/JPROC.2013.2264784.

11. WANG, Jun; CENGARLE, Giulio; TORRES, Juan Felix; ARTEAGA, Daniel. Adaptive
panner of audio objects [online]. U.S. Patent 10405120, Sep 3, 2019 [visited on 2022-03-26].
Available from: https://patents.justia.com/patent/10405120.

12. BREEBAART, Jeroen; CENGARLE, Giulio; LU, Lie; MATEOS, Toni; PURNHAGEN,
Heiko; TSINGOS, Nicolas. Spatial Coding of Complex Object-Based Program Material.
Journal of the Audio Engineering Society. 2019, vol. 67, no. 7/8, pp. 486–497. Available
from doi: https://doi.org/10.17743/jaes.2018.0067.

13. GERZON, Michael A. Periphony: With-Height Sound Reproduction. Journal of the Audio
Engineering Society. 1973, vol. 21, no. 1, pp. 2–10.

14. QUALCOMM TECHNOLOGIES, INC. Scene Based Audio: A Novel Paradigm for Immer-
sive and Interactive Audio User Experience [online]. 2015 [visited on 2022-03-31]. Tech. rep.
Available from: https://www.qualcomm.com/media/documents/files/scene-based-
audio-for-mpeg-h-whitepaper.pdf.

15. HERRE, Jürgen et al. From joint stereo to spatial audio coding-recent progress and stan-
dardization. In: Sixth International Conference on Digital Audio Effects (DAFX04). Naples,
Italy, 2004.

16. KELLER, Daniel. Mid/Side Mic Recording Basics [online]. [N.d.] [visited on 2022-03-31].
Available from: https://www.uaudio.com/blog/mid-side-mic-recording/.

17. ZOTTER, Franz; FRANK, Matthias. Ambisonics: A Practical 3D Audio Theory for Record-
ing, Studio Production, Sound Reinforcement, and Virtual Reality. 2019. isbn 978-3-030-
17206-0. Available from doi: 10.1007/978-3-030-17207-7.

18. Microphone practice [online]. [N.d.] [visited on 2022-04-01]. Available from: https://en.
wikipedia.org/wiki/Microphone_practice.

19. DANIEL, Jérôme. Représentation de champs acoustiques, application à la transmission et
à la reproduction de scènes sonores complexes dans un contexte multimédia [online]. 2000
[visited on 2022-04-23]. Available from: http://gyronymo.free.fr/audio3D/download_
Thesis_PwPt.html#PDFThesis. PhD thesis. University of Paris VI.

20. RAFAELY, B. Fundamentals of Spherical Array Processing. Springer International Publish-
ing, 2018. Springer Topics in Signal Processing. isbn 9783319995601. Available also from:
https://books.google.cz/books?id=KZlUuQEACAAJ.

21. ZOTTER, Franz; FRANK, Matthias. Ambisonics: A Practical 3D Audio Theory for Record-
ing, Studio Production, Sound Reinforcement, and Virtual Reality. In: 2019, chap. 4, p. 68.
isbn 978-3-030-17206-0. Available from doi: 10.1007/978-3-030-17207-7.

22. ZOTTER Franz, Dr. Spherical Harmonics deg3 [online]. 2013 [visited on 2022-04-23]. Avail-
able from: https://commons.wikimedia.org/w/index.php?curid=30239736.

23. DICKINS, Glenn. Soundfield representation, reconstruction and perception [online]. 2003
[visited on 2023-02-13]. Available from: https://openresearch-repository.anu.edu.
au/bitstream/1885/9728/8/02Whole_Dickins.pdf. PhD thesis. Australian National
University.

24. ABERDEEN, Douglas; BAXTER, Jonathan. General matrix-matrix multiplication using
SIMD features of the PIII. In: European Conference on Parallel Processing. 2000, pp. 980–
983.

https://doi.org/10.1109/JPROC.2013.2264784
https://patents.justia.com/patent/10405120
https://doi.org/https://doi.org/10.17743/jaes.2018.0067
https://www.qualcomm.com/media/documents/files/scene-based-audio-for-mpeg-h-whitepaper.pdf
https://www.qualcomm.com/media/documents/files/scene-based-audio-for-mpeg-h-whitepaper.pdf
https://www.uaudio.com/blog/mid-side-mic-recording/
https://doi.org/10.1007/978-3-030-17207-7
https://en.wikipedia.org/wiki/Microphone_practice
https://en.wikipedia.org/wiki/Microphone_practice
http://gyronymo.free.fr/audio3D/download_Thesis_PwPt.html#PDFThesis
http://gyronymo.free.fr/audio3D/download_Thesis_PwPt.html#PDFThesis
https://books.google.cz/books?id=KZlUuQEACAAJ
https://doi.org/10.1007/978-3-030-17207-7
https://commons.wikimedia.org/w/index.php?curid=30239736
https://openresearch-repository.anu.edu.au/bitstream/1885/9728/8/02Whole_Dickins.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/9728/8/02Whole_Dickins.pdf

Bibliography 47

25. INTEL CORPORATION. Intel® Intrinsics Guide [online]. [N.d.] [visited on 2022-04-01].
Available from: https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html.

26. ARM LIMITED. Optimizing C Code with Neon Intrinsics [online]. 2022 [visited on 2022-04-
01]. Available from: https://developer.arm.com/documentation/102467/0100/?lang=
en.

27. IGLBERGER, Klaus; HAGER, Georg; TREIBIG, Jan; RÜDE, Ulrich. High performance
smart expression template math libraries. In: 2012 International Conference on High Per-
formance Computing Simulation (HPCS). 2012, pp. 367–373. Available from doi: 10.1109/
HPCSim.2012.6266939.

28. BUFFONI, Louis-Xavier. Working with Object-Based Audio. In: [online]. 2016 [visited on
2022-04-05]. Available from: https://blog.audiokinetic.com/working-with-object-
based-audio/.

29. BUFFONI, Louis-Xavier. Ambisonics as an Intermediate Spatial Representation (for VR)
[online]. 2016 [visited on 2022-04-05]. Available from: https://blog.audiokinetic.com/
ambisonics-as-an-intermediate-spatial-representation-for-vr/.

30. GOOGLE LLC. Use spatial audio in 360-degree and VR videos [online]. [N.d.] [visited on
2022-04-07]. Available from: https://support.google.com/youtube/answer/6395969?
hl=en#zippy=%2Cspatial-audio-requirements.

31. MIDDLEBROOKS, John C. Chapter 6 - Sound localization. In: AMINOFF, Michael J.;
BOLLER, François; SWAAB, Dick F. (eds.). The Human Auditory System. Elsevier, 2015,
vol. 129, pp. 99–116. Handbook of Clinical Neurology. issn 0072-9752. Available from doi:
https://doi.org/10.1016/B978-0-444-62630-1.00006-8.

32. KOLARIK, Andrew J.; MOORE, Brian C. J.; ZAHORIK, Pavel; CIRSTEA, Silvia; PARD-
HAN, Shahina. Auditory distance perception in humans: a review of cues, development, neu-
ronal bases, and effects of sensory loss. Attention, perception & psychophysics. 2016, vol. 78,
no. 2, pp. 373–395. issn 1943-393X. Available from doi: 10.3758/s13414-015-1015-1.
PMC4744263[pmcid].

33. MOORE, David R; KING, Andrew J. Auditory perception: The near and far of sound
localization. Current Biology. 1999, vol. 9, no. 10, R361–R363. issn 0960-9822. Available
from doi: https://doi.org/10.1016/S0960-9822(99)80227-9.

34. STRUTT, John William (3rd Baron Rayleigh). On Our Perception of the Direction of a
Source of Sound. Proceedings of the Musical Association [online]. 1875, vol. 2, pp. 75–84
[visited on 2022-04-12]. issn 09588442. Available from: http://www.jstor.org/stable/
765209.

35. MIDDLEBROOKS, John; GREEN, David. Sound Localization by Human Listeners. Annual
review of psychology. 1991, vol. 42, pp. 135–59. Available from doi: 10.1146/annurev.ps.
42.020191.001031.

36. LETOWSKI, Tomasz; LETOWSKI, Szymon. Auditory Spatial Perception: Auditory Lo-
calization [online]. 2012 [visited on 2022-04-13]. Available from: https://apps.dtic.mil/
sti/pdfs/ADA563540.pdf.

37. ZOTTER, Franz; FRANK, Matthias. All-Round Ambisonic Panning and Decoding. Journal
of The Audio Engineering Society. 2012, vol. 60, pp. 807–820.

38. PULKKI, V.; HUOPANIEMI, J.; HUOTILAINEN, T. Dsp Tool for 8-Channel Audio Mix-
ing. In: Nordic Acoustical Meeting NAM 96, Helsinki, Finland, June 12-14, 1996. Finland:
Acoustical Society of Finland, 1996, pp. 307–314.

39. PULKKI, Ville. Virtual Sound Source Positioning Using Vector Base Amplitude Panning.
Journal of the Audio Engineering Society. 1997, vol. 45, no. 6, pp. 456–466. issn 1549-4950.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://developer.arm.com/documentation/102467/0100/?lang=en
https://developer.arm.com/documentation/102467/0100/?lang=en
https://doi.org/10.1109/HPCSim.2012.6266939
https://doi.org/10.1109/HPCSim.2012.6266939
https://blog.audiokinetic.com/working-with-object-based-audio/
https://blog.audiokinetic.com/working-with-object-based-audio/
https://blog.audiokinetic.com/ambisonics-as-an-intermediate-spatial-representation-for-vr/
https://blog.audiokinetic.com/ambisonics-as-an-intermediate-spatial-representation-for-vr/
https://support.google.com/youtube/answer/6395969?hl=en#zippy=%2Cspatial-audio-requirements
https://support.google.com/youtube/answer/6395969?hl=en#zippy=%2Cspatial-audio-requirements
https://doi.org/https://doi.org/10.1016/B978-0-444-62630-1.00006-8
https://doi.org/10.3758/s13414-015-1015-1
https://doi.org/https://doi.org/10.1016/S0960-9822(99)80227-9
http://www.jstor.org/stable/765209
http://www.jstor.org/stable/765209
https://doi.org/10.1146/annurev.ps.42.020191.001031
https://doi.org/10.1146/annurev.ps.42.020191.001031
https://apps.dtic.mil/sti/pdfs/ADA563540.pdf
https://apps.dtic.mil/sti/pdfs/ADA563540.pdf

48 Bibliography

40. HELLER, Aaron. Ambisonic Decoders - Music 222, Stanford [online]. 2021 [visited on 2023-
01-05]. Available from: https://ccrma.stanford.edu/courses/222/lectures/14/Ambi-
Decoders-Music222-2021.pdf.

41. FRANK, Matthias; ZOTTER, Franz; SONTACCHI, Alois. Producing 3D Audio in Am-
bisonics. In: Proceedings of the 57th AES International Conference. 2015.

42. SMITH, Steven W. The Scientist and Engineer’s Guide to Digital Signal Processing. USA:
California Technical Publishing, 1997. isbn 0966017633.

43. MØLLER, Henrik. Fundamentals of binaural technology. Applied Acoustics. 1992, vol. 36,
pp. 171–218. Available from doi: 10.1016/0003-682X(92)90046-U.

44. LI, Song; PEISSIG, Jürgen. Measurement of Head-Related Transfer Functions: A Review.
Applied Sciences. 2020, vol. 10, no. 14. issn 2076-3417. Available from doi: 10 . 3390 /
app10145014.

45. NOISTERNIG, Markus; SONTACCHI, Alois; MUSIL, Thomas; HÖLDRICH, Robert. A 3D
ambisonic based binaural sound reproduction system. Advances in Engineering Software -
AES. 2012.

46. WENZEL, Elizabeth; ARRUDA, Marianne; KISTLER, Doris; WIGHTMAN, Frederic. Lo-
calization using nonindividualized head-related transfer functions. The Journal of the Acous-
tical Society of America. 1993, vol. 94, pp. 111–23. Available from doi: 10.1121/1.407089.

47. MENDONÇA, Catarina; JA, Santos; CAMPOS, Guilherme; DIAS, Paulo; VIEIRA, Jose.
On the adaptation to non-individualised HRTF auralisations: A longitudinal study. In:
Proceedings of the 45th AES International Conference. 2012.

48. ANDERSEN, Jonas Siim; MICCINI, Riccardo; SERAFIN, Stefania; SPAGNOL, Simone.
Evaluation of Individualized HRTFs in a 3D Shooter Game. In: 2021 Immersive and 3D
Audio: from Architecture to Automotive (I3DA). 2021, pp. 1–10. Available from doi: 10.
1109/I3DA48870.2021.9610934.

49. BERGER, Christopher C.; GONZALEZ-FRANCO, Mar; TAJADURA-JIMÉNEZ, Ana;
FLORENCIO, Dinei; ZHANG, Zhengyou. Generic HRTFs May be Good Enough in Virtual
Reality. Improving Source Localization through Cross-Modal Plasticity. Frontiers in Neu-
roscience. 2018, vol. 12. issn 1662-453X. Available from doi: 10.3389/fnins.2018.00021.

50. STEINBERG MEDIA TECHNOLOGIES GMBH. VST - VST 3 Developer Portal [online].
2022 [visited on 2023-01-30]. Available from: https://steinbergmedia.github.io/vst3_
dev_portal/pages/index.html.

51. Up and Running: A REAPER User Guide v 6.74 [online]. 2023 [visited on 2023-02-15].
Available from: https://www.reaper.fm/userguide.php.

52. AVID TECHNOLOGY, Inc. Pro Tools Reference Guide [online]. 2021 [visited on 2023-
02-15]. Available from: https://resources.avid.com/SupportFiles/PT/Pro_Tools_
Reference_Guide_2021.3.pdf.

53. STEINBERG MEDIA TECHNOLOGIES GMBH. 3D Mixes for Ambisonics [online]. 2017
[visited on 2022-04-21]. Available from: https://steinberg.help/cubase_pro_artist/
v10/en/cubase_nuendo/topics/surround_sound/surround_sound_ambisonics_c.
html.

54. STEINBERG MEDIA TECHNOLOGIES GMBH. What is Nuendo: Discover All The Fea-
tures [online]. 2022 [visited on 2022-04-21]. Available from: https://www.steinberg.net/
nuendo/features/.

55. STEINBERG MEDIA TECHNOLOGIES GMBH. The DAW for VR, AR and Immersive
Sound: Nuendo — Steinberg [online]. [N.d.] [visited on 2023-01-13]. Available from: https:
//www.steinberg.net/nuendo/virtual-reality.

https://ccrma.stanford.edu/courses/222/lectures/14/Ambi-Decoders-Music222-2021.pdf
https://ccrma.stanford.edu/courses/222/lectures/14/Ambi-Decoders-Music222-2021.pdf
https://doi.org/10.1016/0003-682X(92)90046-U
https://doi.org/10.3390/app10145014
https://doi.org/10.3390/app10145014
https://doi.org/10.1121/1.407089
https://doi.org/10.1109/I3DA48870.2021.9610934
https://doi.org/10.1109/I3DA48870.2021.9610934
https://doi.org/10.3389/fnins.2018.00021
https://steinbergmedia.github.io/vst3_dev_portal/pages/index.html
https://steinbergmedia.github.io/vst3_dev_portal/pages/index.html
https://www.reaper.fm/userguide.php
https://resources.avid.com/SupportFiles/PT/Pro_Tools_Reference_Guide_2021.3.pdf
https://resources.avid.com/SupportFiles/PT/Pro_Tools_Reference_Guide_2021.3.pdf
https://steinberg.help/cubase_pro_artist/v10/en/cubase_nuendo/topics/surround_sound/surround_sound_ambisonics_c.html
https://steinberg.help/cubase_pro_artist/v10/en/cubase_nuendo/topics/surround_sound/surround_sound_ambisonics_c.html
https://steinberg.help/cubase_pro_artist/v10/en/cubase_nuendo/topics/surround_sound/surround_sound_ambisonics_c.html
https://www.steinberg.net/nuendo/features/
https://www.steinberg.net/nuendo/features/
https://www.steinberg.net/nuendo/virtual-reality
https://www.steinberg.net/nuendo/virtual-reality

Bibliography 49

56. ATK for Reaper [online]. 2021 [visited on 2022-04-21]. Available from: https : / / www .
ambisonictoolkit.net/.

57. KRONLACHNER, Matthias. ambiX v0.2.10 – Ambisonic plugin suite [online]. 2014 [visited
on 2022-04-21]. Available from: http://www.matthiaskronlachner.com/?p=2015.

58. INSTITUTE OF ELECTRONIC MUSIC AND ACOUSTICS. IEM Plug-in Suite [online].
[N.d.] [visited on 2022-04-21]. Available from: https://plugins.iem.at/.

59. EPIC GAMES, INC. Working with Audio — Unreal Engine Documentation [online]. 2022
[visited on 2022-04-23]. Available from: https://docs.unrealengine.com/4.27/en-
US/WorkingWithAudio.

60. UNITY TECHNOLOGIES. Unity - Manual: Audio [online]. 2022 [visited on 2022-04-23].
Available from: https://docs.unity3d.com/Manual/Audio.html.

61. KLINT, Renee; CRUZ, John. A comprehensive guide to creating 360-degree game trail-
ers using Unreal [online]. 2020 [visited on 2022-04-21]. Available from: https : / / www .
unrealengine.com/en-US/tech-blog/a-comprehensive-guide-to-creating-360-
degree-game-trailers-using-unreal.

62. VR Panorama 360 PRO Renderer — Video — Unity Asset Store [online]. 2021 [visited on
2022-04-21]. Available from: https://assetstore.unity.com/packages/tools/video/
vr-panorama-360-pro-renderer-35102#reviews.

63. AUTODESK INC. Add Audio To Your Animation — Maya 2022 — Autodesk Knowledge...
[Online]. 2021 [visited on 2022-04-24]. Available from: https://knowledge.autodesk.
com/support/maya/learn- explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-
Animation/files/GUID-9D69DD33-CAEB-4FB9-9559-67984E9ABC2A-htm.html.

64. AUTODESK INC. ProSound — 3ds Max 2021 — Autodesk Knowledge... [Online]. 2020
[visited on 2022-04-24]. Available from: https://knowledge.autodesk.com/support/3ds-
max/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/3DSMax-Animation/files/
GUID-5881B552-5DB6-433F-B40E-2F2E1A6EA453-htm.html.

65. Audio Rendering – Blender Manual [online]. 2022 [visited on 2022-04-24]. Available from:
https://docs.blender.org/manual/en/latest/render/output/audio/index.html.

66. SIDE EFFECTS SOFTWARE INC. Spatial Audio channel node [Houdini Documentation]
[online]. [N.d.] [visited on 2022-04-24]. Available from: https://www.sidefx.com/docs/
houdini/nodes/chop/spatial.html.

67. SIDE EFFECTS SOFTWARE INC. Acoustic channel node [Houdini Documentation] [on-
line]. [N.d.] [visited on 2022-04-24]. Available from: https://www.sidefx.com/docs/
houdini/nodes/chop/acoustic.html.

68. SIDE EFFECTS SOFTWARE INC. Sound object node [Houdini Documentation] [online].
[N.d.] [visited on 2022-04-24]. Available from: https://www.sidefx.com/docs/houdini/
nodes/obj/sound.html.

69. SIDE EFFECTS SOFTWARE INC. Microphone object node [Houdini Documentation] [on-
line]. [N.d.] [visited on 2022-04-24]. Available from: https://www.sidefx.com/docs/
houdini/nodes/obj/microphone.html.

70. CARPENTIER, Thibaut. Panoramix: 3D mixing and post-production workstation. In: 42nd
International Computer Music Conference (ICMC). Utrecht, Netherlands, 2016. Available
also from: https://hal.archives-ouvertes.fr/hal-01366547.

71. IRCAM. Panoramix — Ircam Forum [online]. 2023 [visited on 2023-01-13]. Available from:
https://forum.ircam.fr/projects/detail/panoramix/.

72. DOLBY LABORATORIES, INC. Dolby Atmos ADM Profile specification [online]. 2022.
Version 1.1 [visited on 2023-01-13]. Available from: https : / / professionalsupport .
dolby.com/s/article/Dolby-Atmos-ADM-Profile-specification?language=en_US.

https://www.ambisonictoolkit.net/
https://www.ambisonictoolkit.net/
http://www.matthiaskronlachner.com/?p=2015
https://plugins.iem.at/
https://docs.unrealengine.com/4.27/en-US/WorkingWithAudio
https://docs.unrealengine.com/4.27/en-US/WorkingWithAudio
https://docs.unity3d.com/Manual/Audio.html
https://www.unrealengine.com/en-US/tech-blog/a-comprehensive-guide-to-creating-360-degree-game-trailers-using-unreal
https://www.unrealengine.com/en-US/tech-blog/a-comprehensive-guide-to-creating-360-degree-game-trailers-using-unreal
https://www.unrealengine.com/en-US/tech-blog/a-comprehensive-guide-to-creating-360-degree-game-trailers-using-unreal
https://assetstore.unity.com/packages/tools/video/vr-panorama-360-pro-renderer-35102#reviews
https://assetstore.unity.com/packages/tools/video/vr-panorama-360-pro-renderer-35102#reviews
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-Animation/files/GUID-9D69DD33-CAEB-4FB9-9559-67984E9ABC2A-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-Animation/files/GUID-9D69DD33-CAEB-4FB9-9559-67984E9ABC2A-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-Animation/files/GUID-9D69DD33-CAEB-4FB9-9559-67984E9ABC2A-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/3DSMax-Animation/files/GUID-5881B552-5DB6-433F-B40E-2F2E1A6EA453-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/3DSMax-Animation/files/GUID-5881B552-5DB6-433F-B40E-2F2E1A6EA453-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/3DSMax-Animation/files/GUID-5881B552-5DB6-433F-B40E-2F2E1A6EA453-htm.html
https://docs.blender.org/manual/en/latest/render/output/audio/index.html
https://www.sidefx.com/docs/houdini/nodes/chop/spatial.html
https://www.sidefx.com/docs/houdini/nodes/chop/spatial.html
https://www.sidefx.com/docs/houdini/nodes/chop/acoustic.html
https://www.sidefx.com/docs/houdini/nodes/chop/acoustic.html
https://www.sidefx.com/docs/houdini/nodes/obj/sound.html
https://www.sidefx.com/docs/houdini/nodes/obj/sound.html
https://www.sidefx.com/docs/houdini/nodes/obj/microphone.html
https://www.sidefx.com/docs/houdini/nodes/obj/microphone.html
https://hal.archives-ouvertes.fr/hal-01366547
https://forum.ircam.fr/projects/detail/panoramix/
https://professionalsupport.dolby.com/s/article/Dolby-Atmos-ADM-Profile-specification?language=en_US
https://professionalsupport.dolby.com/s/article/Dolby-Atmos-ADM-Profile-specification?language=en_US

50 Bibliography

73. HARDT, James. soundobjects Blender Add-On [online]. GitHub, [n.d.] [visited on 2023-01-
13]. Available from: https://github.com/iluvcapra/soundobjects_blender_addon.

74. MCCORMACK, Leo et al. Spatial Audio Framework [online]. GitHub, [n.d.] [visited on
2023-02-10]. Available from: https : / / github . com / leomccormack / Spatial _ Audio _
Framework.

75. RICCIO, Christophe et al. OpenGL Mathematics (GLM) [online]. GitHub, [n.d.] [visited on
2023-02-10]. Available from: https://github.com/g-truc/glm.

76. RENN-GILES, Fabian. farbot [online]. GitHub, [n.d.] [visited on 2023-02-10]. Available from:
https://github.com/hogliux/farbot.

77. RAW MATERIAL SOFTWARE LIMITED. JUCE: AudioProcessor Class Reference [on-
line]. [N.d.] [visited on 2023-02-13]. Available from: https://docs.juce.com/master/
classAudioProcessor.html.

78. RENN-GILES, Fabian; ROWLAND, Dave. Audio Developer Conference. Real-time 101 -
part I: Investigating the real-time problem space [online]. 2019 [visited on 2023-02-13].
Available from: https://www.youtube.com/watch?v=Q0vrQFyAdWI.

79. DOUMLER, Timur. Using locks in real-time audio processing, safely [online]. 2020 [visited
on 2023-02-13]. Available from: https://timur.audio/using-locks-in-real-time-
audio-processing-safely.

80. RENN-GILES, Fabian; ROWLAND, Dave. Audio Developer Conference. Real-time 101 -
part II: The real-time audio developer’s toolbox [online]. 2019 [visited on 2023-02-13]. Avail-
able from: https://www.youtube.com/watch?v=PoZAo2Vikbo.

81. STEINBERG MEDIA TECHNOLOGIES GMBH. VST 3 Interfaces: Steinberg::Vst::SpeakerArr
Namespace Reference [online]. [N.d.] [visited on 2023-02-11]. Available from: https : / /
steinbergmedia.github.io/vst3_doc/vstinterfaces/namespaceSteinberg_1_1Vst_
1_1SpeakerArr.html.

82. VST3 HOA Support > 3rd order - Developer / VST 3 SDK - Steinberg Forums [online].
[N.d.] [visited on 2023-02-11]. Available from: https://forums.steinberg.net/t/vst3-
hoa-support-3rd-order/201766/30.

83. BLENDER DEVELOPMENT TEAM. blender/rna access.c - blender - Blender Projects
[online]. 2023 [visited on 2023-02-10]. Available from: https://projects.blender.org/
blender/blender/src/commit/5d30c3994e6ecf665bfae87d7294216d368f0c59/source/
blender/makesrna/intern/rna_access.c.

84. PYTHON SOFTWARE FOUNDATION. Programming FAQ — Python 3.11.2 documenta-
tion [online]. [N.d.] [visited on 2023-02-14]. Available from: https://docs.python.org/3/
faq/programming.html#why-did-changing-list-y-also-change-list-x.

https://github.com/iluvcapra/soundobjects_blender_addon
https://github.com/leomccormack/Spatial_Audio_Framework
https://github.com/leomccormack/Spatial_Audio_Framework
https://github.com/g-truc/glm
https://github.com/hogliux/farbot
https://docs.juce.com/master/classAudioProcessor.html
https://docs.juce.com/master/classAudioProcessor.html
https://www.youtube.com/watch?v=Q0vrQFyAdWI
https://timur.audio/using-locks-in-real-time-audio-processing-safely
https://timur.audio/using-locks-in-real-time-audio-processing-safely
https://www.youtube.com/watch?v=PoZAo2Vikbo
https://steinbergmedia.github.io/vst3_doc/vstinterfaces/namespaceSteinberg_1_1Vst_1_1SpeakerArr.html
https://steinbergmedia.github.io/vst3_doc/vstinterfaces/namespaceSteinberg_1_1Vst_1_1SpeakerArr.html
https://steinbergmedia.github.io/vst3_doc/vstinterfaces/namespaceSteinberg_1_1Vst_1_1SpeakerArr.html
https://forums.steinberg.net/t/vst3-hoa-support-3rd-order/201766/30
https://forums.steinberg.net/t/vst3-hoa-support-3rd-order/201766/30
https://projects.blender.org/blender/blender/src/commit/5d30c3994e6ecf665bfae87d7294216d368f0c59/source/blender/makesrna/intern/rna_access.c
https://projects.blender.org/blender/blender/src/commit/5d30c3994e6ecf665bfae87d7294216d368f0c59/source/blender/makesrna/intern/rna_access.c
https://projects.blender.org/blender/blender/src/commit/5d30c3994e6ecf665bfae87d7294216d368f0c59/source/blender/makesrna/intern/rna_access.c
https://docs.python.org/3/faq/programming.html#why-did-changing-list-y-also-change-list-x
https://docs.python.org/3/faq/programming.html#why-did-changing-list-y-also-change-list-x

Contents of attached media

code .. source code of the plugins
latex.. the LATEX source code of the thesis

vst..source code of the VST plugin
blender..source code of the Blender add-on

documentation...Doxygen documentation
Doxyfile configuration file for generating documentation
ipc.md.. IPC protocol message specification

demo videos and renders screen captures and test renders
demo animation...demo animation

Ambilink.vst3...The VST3 plugin built for Linux
Ambilink.zip .. The Blender add-on
README.md.......................a short description of the software and build instructions
thesis.pdf...The thesis in PDF format

51

	Acknowledgments
	Declaration
	Abstrakt
	List of abbreviations
	Introduction
	Spatial audio
	Spatial audio representations
	Channel-based audio
	Object-based audio
	Scene-based audio

	Ambisonics
	M/S Stereo
	From M/S stereo to B-format ambisonics
	Higher Order Ambisonics
	Applying ambisonics in practice

	From data to sound
	Spatial hearing
	Basic examples of ambisonic decoding
	Decoding to loudspeakers
	Decoding to headphones
	A comparison of personalised and generic HRTFs

	An overview of spatial audio production software
	DAW-based solutions
	Game Engines
	3D software
	Other solutions

	UI/UX Design
	Real-time approach
	Requirement definition
	User interaction
	Blender add-on
	VST plugin

	Implementation
	IPC Protocol
	Protocol messages
	Offline rendering

	VST plugin
	Third-party libraries
	Software architecture
	IPC
	Multithreading in a real-time context
	Encoder
	Limitations

	Blender add-on
	Software architecture
	Multithreading considerations
	Overcoming Blender API limitations
	Limitations

	Testing and evaluation of the implemented software
	Testing
	Ambisonic panning correctness
	Overall functionality

	Future improvements

	Conclusion
	Current state
	Final words

	Contents of attached media

