
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Generated parser for the console language of the Algorithms

library

Ondřej Štorc

Ing. Jan Trávníček, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Study the syntax and semantics of the language used in the console interface of the

algorithm library (ALT) along with its tree representation.

Study the parser definition in the ANTLR tool.

Propose a way to integrate a parser generated by the ANTLR tool into ALT in order to

substitute the hand-written parser of the console interface language.

Implement the substitution of the current hand-written parser of the console interface

language with the one generated by the ANTLR tool.

Test the generated parser with the existing tests and design new tests specifically to

check the correctness of the generated parser.

Electronically approved by Ing. Michal Valenta, Ph.D. on 6 February 2023 in Prague.

Bachelor’s thesis

Generated parser for the console language of the
Algorithms library

Ondřej Štorc

Department of Software Engineering

Supervisor: Ing. Jan Trávníček, Ph.D.

May 11, 2023

Acknowledgements

I want to express my gratitude to my supervisor, Ing. Jan Trávníček, Ph.D.,
for the opportunity to choose this topic and for his supervision and expertise
during the work on this thesis. I would also like to sincerely thank my family,
especially my parents and twin brother, who have supported me, not only
during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 11, 2023
Ondřej Štorc

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Ondřej Štorc. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Štorc, Ondřej. Generated parser for the console language of the Algorithms
library. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.

Abstract

This thesis explores the transition from a handwritten parser in the Algorithms
Library Toolkit to a new parser generated with ANother Tool for Language
Recognition 4 (ANTLR4). The thesis begins by familiarizing the reader with
fundamental concepts of parsing and parsers and providing an overview of
ANTLR4 and the Algorithms Library Toolkit. The thesis details the integra-
tion process of the ANTLR4-generated parser into the existing codebase of the
Algorithms Library Toolkit. The approaches used to verify the correctness of
the new parser are also described.

Keywords Algorithm Library Toolkit, Algorithm Query Language,
ANTLR4, parser, AST, C++

vii

Abstrakt

Tato práce zkoumá proces nahrazení ručně psaného parseru v Algorithms Lib-
rary Toolkit novým parserem generovaným pomocí nástroje ANother Tool for
Language Recognition 4 (ANTLR4). Práce začíná seznámením čtenáře se zá-
kladními koncepty parsování a parserů, stejně jako s představením ANTLR4 a
Algorithms Library Toolkit. Následně je v práci popsán proces integrace gene-
rovaného parseru, pomocí nástroje ANTLR4, do stávajícího kódu Algorithms
Library Toolkit. Dále jsou popisovány postupy použité k ověření správnosti
nového parseru.

Klíčová slova Algorithm Library Toolkit, Algorithm Query Language,
ANTLR4, parser, AST, C++

viii

Contents

Introduction 1

1 Goal of thesis 3

2 Analysis 5
2.1 Definitions . 5
2.2 Lexer . 7
2.3 Parser . 9

2.3.1 LL(1) . 9
2.3.2 Recursive descent parser 10

2.4 ANother Tool for Language Recognition 4 11
2.4.1 Adaptive LL(*) parsing 12
2.4.2 Grammar definition . 12

2.5 Algorithm Library Toolkit . 15
2.5.1 Algorithm Query Language 15
2.5.2 Architecture . 17

2.5.2.1 aql2 . 17
2.5.2.2 alibcli . 17
2.5.2.3 alib2xml . 18
2.5.2.4 alib2common 18
2.5.2.5 alib2abstraction 18
2.5.2.6 alib2std . 18

ix

2.5.2.7 alib2measure 19
2.5.3 Parsing and evaluating user input 19

3 Implementation 23
3.1 Preparing grammar . 23

3.1.1 Lexer . 24
3.1.2 Expressions . 25
3.1.3 Files . 26
3.1.4 New Lines . 27
3.1.5 Top level commands . 28
3.1.6 Literals and identifiers 29

3.2 Integrating new parser . 30
3.2.1 CMake . 30
3.2.2 Visitor pattern . 31
3.2.3 Visitor for the Parser 32
3.2.4 Replacing the old parser 38

3.3 New Features . 39
3.3.1 Introspect AST command 39
3.3.2 Read Evaluate Print Loop ++ 41
3.3.3 Code Completion in Console Line Interface 42

4 Testing 45
4.1 Catch2 . 45
4.2 State of tests . 45
4.3 New Parser tests . 47

Conclusion 51

Bibliography 53

A Acronyms 57

B Contents of enclosed medium 59

x

List of Figures

2.1 Parse tree of a word if 1 if 2 3 else 4 in ambiguous grammar
from Example 1 . 7

2.2 Lexer example . 8
2.3 Abstract Syntax Tree example . 9
2.4 Ambiguous grammar example from The definitive ANTLR 4 ref-

erence - Parse Tree . 13
2.5 ALT modules diagram . 17
2.6 Old CLI sequence diagram . 19
2.7 CLI AST . 20

3.1 Visitor pattern . 31
3.2 Interface class hierarchy . 38
3.3 New CLI sequence diagram . 39
3.4 Base classes of ALT AST with print 40

xi

List of Source Codes

2.1 Ambiguous grammar example from The definitive ANTLR 4
reference - Grammar definition 12

2.2 Integer representation in BNF 13
2.3 Integer representation in EBNF 13
2.4 ANTLR4 Grammar Action example 14
2.5 ANTLR4 Semantic Predicate example 14
2.6 Example of statement chaining 16
2.7 Example of bindings and variables 16
2.8 Example of ALT algorithms usage in AQL. The command was

manually formatted. 16
3.1 Part of grammar from ALT documentation 23
3.2 ALT CLI Lexer grammar . 24
3.3 New expression grammar . 25
3.4 Old file syntax usage . 26
3.5 New file grammar . 26
3.6 New file syntax usage . 26
3.7 Example of ambiguous grammar in ALT (newlines) 27
3.8 Handling new lines inside lexer 28
3.9 Handling new lines inside parser 28
3.10 Commands definition inside parser 29
3.11 String definition in lexer . 29
3.12 Identifier definition in lexer . 30

xiii

3.13 Identifier definition in parser 30
3.14 Semicolon command definition in parser 33
3.15 Semicolon command definition with labels in parser 33
3.16 Semicolon command definition in visitor 33
3.17 std::any example . 34
3.18 retPtr implementation and usage 35
3.19 fillList implementation . 35
3.20 visitParse implementation . 36
3.21 visitIfCommand implementation 36
3.22 visitBinaryExpression implementation 37
3.23 Introspect AST command definition 40
3.24 Introspect AST command usage. Output was manually format-

ted. 41
3.25 Example usage of Replxx without color highlighting 41
3.26 Example of rule refactoring for code completion 43
4.1 Example of Catch2 test . 46

xiv

List of Tables

2.1 LL(1) First-Follow table . 10
2.2 LL(1) parsing table . 10
2.3 Precedence and Associativity of Operators 22

4.1 Coverage in alib2cli tests before 46
4.2 Coverage in alib2cli tests after 48

xv

Introduction

Algorithm Library Toolkit (ALT) and its interface applications, such as aql2
(console interface for the library) and web-based interface accessible from
alt.fit.cvut.cz/webui are used in several courses in the curriculum of the
Faculty of Information Technology of Czech Technical University in Prague,
mainly in BI-AAG.21. This library allows for a quick demonstration of pre-
sented algorithms and also allows students to verify their implementation of
the algorithms against implementation in ALT.

The console interface of ALT is text-based, and so it requires parsing of
user input provided via argument or by Read-Eval-Print Loop (REPL). In the
current library version, the input is parsed through a manually written lexer
and parser.

Manually written lexers and parsers are efficient, but the readability of
that code is often not the best experience, and fixing bugs in such written
parsers is not easy.

Automatically generated parsers are often not as efficient as manually writ-
ten ones, but their advantage is in the readability of the source from which the
parser is generated. These sources, which describe the given grammar, can be
pretty similar to the examples of grammar shown in course BI-AAG.21, which
makes it more accessible to other students or developers in general.

The topic of this work is to replace the current, manually written lexer
and parser with those generated by a tool called ANother Tool for Language
Recognition 4 (ANTLR4) [1].

1

Chapter 1
Goal of thesis

The goal of this bachelor thesis is to describe ANother Tool for Language
Recognition 4 (ANTLR4), Algorithm Library Toolkit (ALT), and then replace
the current parser of Algorithm Query Language (AQL) in the ALT console
interface with one generated by ANTLR4.

The first part of the work aims to explore the two tools, describe the
functionality of the ANTLR4 library and the architecture of ALT, and then
propose a way of integrating them.

In the second part, the main focus will be on the implementation itself,
which will be carried out according to the results of the first part of the thesis.

In the last part of this thesis, we will explain how the new parser was
tested and ensured that the implementation accepts the same input range
and, if necessary, how the bugs were fixed.

The outcome of this thesis is to make the parser more readable to new
users and readers and to make it easier to extend parsing in the future if
necessary.

3

Chapter 2
Analysis

In the first part, we will introduce the basic terminology used in this thesis
and also introduce the readers to the ANother Tool for Language Recognition
Library and the Algorithmic Library Toolkit.

2.1 Definitions

This thesis target is not to introduce the reader to the topic of grammar and
its formal definition, but this section will use quite a few of them so that we
will make at least some (more or less) informal definitions of them.

We can define grammar as a quadruple (N, Σ, P, S) [2], where:

• N is a set of non-terminals, symbols that do not have any meaning in
the language but are used by grammar to define rules.

• Σ is a set of terminals, which are letters of the language which the
grammar should accept. Typically in programming languages, this set
contains all possible tokens.

• P are rules describing how the grammar accepts the input.

• S says from which non-terminal the grammar should start accepting
input. In grammar that describes programming language, there can be
a rule named compilationUnit. 1

1This is arbitrary naming, but such a rule can be found in ANTLR4 definition of C
language [3]

5

2. Analysis

We can classify grammar into different categories according to the Chom-
sky hierarchy, which consists of four types of formal grammar. The Chomsky
hierarchy is comprised of the following categories [2]:

1. Unrestricted grammar2

2. Context-sensitive grammar2

3. Context-free grammar has every rule in the form of A −→ α, where A ∈ N

and α ∈ (N ∪ Σ)∗. Most programming languages can be described with
context-free grammar.

4. Regular grammar has all rules in the following format A −→ αB|α, where
A, B ∈ N and α ∈ Σ. Typically, the lexer would work with such
grammar.

We say that x derives y (x =⇒ y) if there is a rule from the grammar that
translates input x into y, where x = αAβ and α, β, y ∈ (N ∪Σ)∗, A ∈ N [2, 4].
x

k=⇒ y, k ∈ (0, ∞) is a sequence of k derivations which takes as an input x and
produces y. Common notation is also x

∗=⇒ y, which says that in any number

of derivations, we will produce y, as is x
+=⇒ y, where we say that in one

or more derivations, we will produce y. Finally, we can also define left-most
derivation. In this derivation, we always derive the most-left non-terminal in
the sentential form. We can write it as x ==⇒

lm
y. In the same style, we can

also define right-most derivation [2, 4].
Sentential form of grammar with initial rule S is a ∈ (N ∪ Σ)∗ if S =⇒ a).

S
∗=⇒ a, a ∈ Σ∗ is a sentential form and also a sentence from the grammar [2].
Left-recursive grammar is a context-free grammar that has at least one

rule (A), which can be derived into a sentential form, which has itself as the
left-most symbol.

A
+=⇒ Aα, α ∈ (N ∪ Σ)∗

This type of grammar can lead to infinite recursion in predictive parsers since
we cannot determine when to stop with recursion and must be transformed
into an equivalent grammar that is not left-recursive [2].

2Unrestricted and Context-sensitive grammar are not discussed here since they are out
of the scope of this thesis.

6

2.2. Lexer

if

1 if

2 3 4

if

1 if

2 3

4

Figure 2.1: Parse tree of a word if 1 if 2 3 else 4 in ambiguous grammar
from Example 1

We can also distinguish between two types of recursion: direct and indirect.
The direct recursion is the one where we need only to perform one derivation
to get the required sentential form. Indirect recursion is a recursion where
after one derivation, we will not get the recursive sentential form. But with
two or more derivations, we will get the sentential form shown above [2].

Ambiguous grammar is grammar that can have two different left-most or
right-most derivations for one input.

Example 1 (Dangling else). Consider grammar:
G1 = ({STM, IF, EXP}, {if, else, 0, 1, ..., 9}, P , STM) and rules P :

STM -> IF | EXP
IF -> if EXP STM
IF -> if EXP STM else STM
EXP -> [0-9]

Grammar G1 also generates the following string: if 1 if 2 3 else 4.
However, it can be generated in two different ways, as shown in Figure 2.1.
In the first tree, the else branch statement belongs to the inner if statement,
and in the second tree, it belongs to the outer if statement. Both of these
results are valid, so grammar containing these rules is ambiguous.

2.2 Lexer

In the process of accepting user input, the first step is to analyze the input
to see if it contains only valid sequences of characters. If we would compare
it with reading English text. We would look at the text itself and try to

7

2. Analysis

var x = 42 + 3; Lexer

KwVar
Identifier ”x”

OpEq
Number ”42”

OpAdd
Number ”3”
Semicolon

Input

Tokens

Figure 2.2: Lexer example

recognize all words and try to group them into groups like verbs, adjectives,
and more. We would do this without actually understanding the meaning of
the text, and this is what a lexer does. More formally lexer’s job is to analyze
the input string and group the characters into tokens according to the rules
defined by the formal grammar; this process is known as Lexical Analysis [4].

Tokens are distinguished by their type and, if necessary, by their content.
Each token represents a specific syntactic element of the language, such as
keywords, identifiers, operators, punctuation, and literals.

In Figure 2.2, we can see that the input text is split into seven tokens:

1. Var keyword token of type KwVar.

2. Identifier token with value x.

3. Token with type of OpEq. This token does not need any value since it
is already fully qualified by its type.

4. Number token, with the value of 42

5. Token with type of OpPlus.

6. Number token, with the value of 3.

7. The token representing a semicolon.

This is minimal information on what we need to know about tokens.
In practical usage, we also want to know the location of a token in the in-
put stream, which is useful, for example, when reporting errors during the
later stages of the parsing and interpreting code [4].

8

2.3. Parser

Assign Statement

x Add Expression

42 3

Figure 2.3: Abstract Syntax Tree example

2.3 Parser

After the lexical analysis, the parser accepts a stream of tokens and tries to
match them with the grammar for which it was created. This is also called
syntactic analysis. The output of such a process is often a tree-like structure
called an Abstract Syntax Tree, which is a hierarchical representation of input
and clearly shows how each part of the input relates to the other.

The Abstract Syntax Tree for the input shown in Figure 2.2 can be vi-
sualized, for example, as shown in Figure 2.3. In the diagram, it can be
seen that we have transformed a linear stream of tokens into a tree-like graph
structure [4]. This structure does not contain all the lexical details in our
example, as it has no information on the semicolon token. But it can, and for
example, Microsoft C# compiler Roslyn stores these data in a structure called
SyntaxTriva, which is part of the Abstract Syntax Tree [5], where it can be
used for formatting or linting purposes.

2.3.1 LL(1)

LL(1) is a model describing top-down parsing. The acronym LL(1) stands for
Left-to-right, Leftmost derivation, with one look-ahead token. This refers to
the parsing strategy used by the parser, which reads the input string from left
to right and constructs a left-most derivation of the input according to the
rules of the input language grammar [4].

The LL(1) parser uses a predictive parsing table to determine which rule
to apply at each step of the parsing process. This table is constructed by

9

2. Analysis

Table 2.1: LL(1) First-Follow table

Rule (A → α) First(α) Follow(A)
1. A -> a X a ε

2. X -> a X a
3. X -> ε ε ε
4. X -> x x

Table 2.2: LL(1) parsing table

a x ε

A 1
X 2 4 3

analyzing the language’s grammar and computing the First and Follow sets
for each non-terminal symbol. The First set of a non-terminal represents the
set of tokens that can begin a string derived from that non-terminal, while
the Follow set represents the set of tokens that can follow a non-terminal in
a derivation [4]. From the constructed LL(1) parsing table, we can determine
what kind of rule we should apply to expand non-terminal for a given character
during parsing.

Example 2 (LL(1) table). Consider grammar G2 = ({A, X}, {a, x}, P , A) and
rules P :

A -> a X
X -> a X
X -> ε

X -> x

Then LL(1) computing the table of the First-Follow symbols would produce
Table 2.1. And the transformation to the parsing table will produce the table
2.2. From this table, for example, we can see that if we want to expand
non-terminal X and our first unprocessed character is x, then we use rule 2.

2.3.2 Recursive descent parser

The common technique for implementing the parser is called recursive descent
parser. This approach belongs to the top-down parser category, where the

10

2.4. ANother Tool for Language Recognition 4

parser starts with the initial non-terminal in grammar and tries to match the
input to the grammar by recursively calling the rules it needs.

When creating a recursive descent parser, it makes sense first to construct
LL(1) table (or its variant), which suggests how the code should be written.

For example, the GNU Compiler Collection parser for the C language is
written with this method [6] as is the LLVM Clang front-end parser [7].

2.4 ANother Tool for Language Recognition 4

ANTLR4, or ANother Tool for Language Recognition 4, is a robust parser
generator capable of reading, processing, executing, or translating structured
text or binary files. ANTLR4 is a popular choice for building languages, tools,
and frameworks. Taking grammar as input, ANTLR4 generates a parser that
can parse a given grammar and build a parse tree[1].

ANTLR4 supports generating the parser in several languages. At the time
of writing this thesis, the officially supported languages are the following: C#,
C++, Dart, Go, Java, JavaScript (as well as TypeScript), Python, and Swift.

When generating the parser, the user can specify several options for the
ANTLR4 that alter the generated parser:

• Listener and visitor: for a given parser, generates a visitor or Listener.
Through each of these, the parsed tree can be traversed and evaluated.
These options are not mutually exclusive.

• package specify in which package the lexer and parser will be located.3

• language tells ANTLR4 in which language to generate the lexer with
the parser.

This is not an exhaustive list of options, but it covers the ones used in this
thesis [8].

3Package is used in Java, in other languages namespace or other equivalent structure
will be used.

11

2. Analysis

stat: expr ';' // expression statement
| ID '(' ')' ';' // function call statement ;
expr: ID '(' ')' | INT
;

Code 2.1: Ambiguous grammar example from The definitive ANTLR 4 refer-
ence - Grammar definition

2.4.1 Adaptive LL(*) parsing

Adaptive LL(*) (also known as ALL (*)) parsing is used in the ANTLR4
tool. ALL(*) is a parsing algorithm that extends the capabilities of traditional
LL parsers. LL parsers must stop at each decision point (to see which rule
to apply). Due to this, LL(1), LL(k), and LL(*) have to perform a static
analysis on the input grammar to precompute the table or similar structure,
according to which the decision point will be resolved. This approach has an
issue because the static analysis must consider all possible inputs. The ALL(*)
does not perform the static analysis but does dynamic analysis at runtime.
With that, it does not have to consider all inputs but only the finite set of
inputs given to the parser. This update allows ALL(*) to be applied to all non-
left-recursive context-free grammars and context-free grammars that contain
direct left-recursion but not indirect ones [9].

Adaptive LL(*) can accept ambiguous grammar. This can be done be-
cause ALL(*) always selects the first possible option when deciding which rule
to take. In our example of an ambiguous grammar Figure 2.1, the ALL(*)
(and thus ANTLR4) would choose the first option where the else branch is
connected to the inner if statement. Another example from The definitive
ANTLR 4 reference [8] is shown in Code 2.1 and Figure 2.4. Again, in this
case, the ANTLR4 will choose the first option, and that is the expression
statement.

2.4.2 Grammar definition

ANTLR4 requires the user to define the input grammar in the EBNF format.
EBNF stands for Extended Backus-Naur Form. The Backus-Naur form (BNF)
allows specifying non-terminal symbols (rules) and how they expand to other

12

2.4. ANother Tool for Language Recognition 4

stat

expr

ID

f

()

;

Expression Statement

stat

ID

f

() ;

Function Call Statement

Figure 2.4: Ambiguous grammar example from The definitive ANTLR 4 ref-
erence - Parse Tree

S := '-' DIGIT | DIGIT
DIGIT := D | D DIGIT
D := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Code 2.2: Integer representation in BNF

S := '-'? D+
D := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Code 2.3: Integer representation in EBNF

non-terminal and terminal symbols [10]. In Code 2.2, we can see a grammar
that matches all integers written using BNF notation.

In Extended Backus-Naur Form (EBNF), special symbols such as ‘?’, ‘∗’,
and ‘+’ define the repetition and optionality of elements in the grammar rules.
The ‘?’ symbol denotes that an element is optional, meaning it can appear
either once or not at all. The ‘∗’ symbol signifies that an element can be
repeated zero or more times, allowing for any number of repetitions, including
none. Lastly, the ‘+’ symbol represents that an element can be repeated one
or more times, ensuring that it appears at least once [10]. These symbols play
a crucial role in EBNF, enabling the concise expression of complex grammar
rules while capturing the flexibility and variation in programming languages,
data formats, and communication protocols. The example in Code 2.2 could
be rewritten into EBNF as shown in Code 2.3.

Lexer rules are parsed from top to down, so rules defined at the top of
the file have higher priority than rules at the bottom. Thus it makes sense to
specify more specific lexer rules at the top [8].

13

2. Analysis

// ...
@parser::members{

std::set<std::string> symbols;
}
// ...
var_decl: ID = expr {symbols.insert($ID.text);};
// ...

Code 2.4: ANTLR4 Grammar Action example

// ...
@parser::members{

std::set<std::string> symbols;
}

var_access : '$' ID {symbols.count($ID.text)>0;}?;

Code 2.5: ANTLR4 Semantic Predicate example

Grammar can be split into multiple files, reused in various projects, and
annotated with additional information, altering how ANTLR4 generates the
lexer, parser, and other possible files.

Grammar can also be extended by adding grammar actions. Grammar
actions are snippets of code in the target language injected into the lexer or
parser. An example of such grammar action can be seen in Code 2.4. This ex-
ample shows part of the parser grammar, which defines via parser::members
member variable of the parser. When parsing the input, it puts the identifier
name into the set of encountered symbols. This example is an arbitrary one
and not suited for actual usage [8].

The grammar actions are powerful tools that can be used, for example,
in evaluating the input text; however, they do not alter how the lexer or
parser works; they only add side effects to the parsing or tokenizing of the
input. ANTLR4 allows us to specify semantic predicates to alter how the
input is recognized. These predicates are again fragments of code in the target
languages; however, this time, they must be evaluated at values of true or
false (or equivalent in the target language). And once again, these predicates
can be specified for both the lexer and parser [8].

14

2.5. Algorithm Library Toolkit

In Code 2.5, we can see parser semantic predicates that turn on or off
the rule var_access based on the presence of an identifier in the primitive
symbol table. The same syntax is used for the parser semantic predicates. In
ANTLR4, these predicates should not be used for semantic validation; instead,
other approaches such as the Listener or Visitor pattern should be used. Se-
mantic predicates should only be used to resolve an ambiguous grammar [11].

2.5 Algorithm Library Toolkit

This section relies primarily on information from [12, 13], and also from the
source code of the Algorithm Library Toolkit [14]. Algorithm Library Toolkit
(ALT) is a tool developed at the Faculty of Information Technology, Czech
Technical University in Prague. ALT is a software tool designed to manipulate
data structures in the field of stringology, such as automata, grammars, and
trees, among others. In addition, ALT provides numerous algorithms to work
with these data structures. ALT supports the console line interface and the
web-based interface.

2.5.1 Algorithm Query Language

This covers the basics of the Algorithm Query Language. Detailed information
about it can be found in [12] and [13]. Algorithm Query Language (AQL) is
a language created for usage in the Algorithm Library Toolkit. This language
syntax is similar to the Bash language. It supports literals in the form of
strings, integers, and doubles. AQL supports C-like comments. For single-
line comments, we can use // , and for potentially multiline, we use /**/ .

AQL allows the user to pass the result of one statement to the input of
another statement using the pipe (|). This enables the user to chain state-
ments as in the Bash language. We can see the example of this in Code 2.6.
Note that - (dash) represents the result of the previous command.

AQL allows the user to use bindings and variables. Bindings are defined at
the startup of the console line interface and are read-only values. These values
can be accessed by using # and the name of the binding. There are always
two bindings present, one for standard input (stdin) and one for standard

15

2. Analysis

> print 1 | IsSame - "world"
0
> print "hello" | IsSame "hello" -
1

Code 2.6: Example of statement chaining

> print #stdin
-
> execute 42 > $a
>print $a
42

Code 2.7: Example of bindings and variables

print "a + (a b)*" | string::Parse @regexp::RegExp -
| regexp::convert::ToAutomaton - | string::Compose -

Code 2.8: Example of ALT algorithms usage in AQL. The command was
manually formatted.

output (stdout). Variables are created at runtime and are a way how to pass
values between two commands. When accessing a variable, we start with $
(dollar sign) and then follow it by the name of the variable. Variables hold
information about what type of value they store, but at any time, we can
override the value of the variable with a new value and potentially change the
type of variable. Examples of using variables can be found in Code 2.7.

AQL contains several flow-control commands. Two dominant are if and
while commands. We can also use introspect command to get information
about available algorithms, overloads, variables, bindings, casts, and other
features. But the main feature of AQL is in its connection to the other modules
of the Algorithms Library Toolkit. An example of such usage is shown in
Code 2.8; this example was taken from [13]. In the example, we can see a
print statement that contains chained statements. At first, we pass a string
"a + (a b)*" into string::Parse algorithm, which parses the string into
regexp::RegExp data-type. This regular expression is then converted into
an automaton. Then we covert, the automaton into a more human-readable
format, which is then printed into standard output.

16

2.5. Algorithm Library Toolkit

aql2

alib2cli

alib2common alib2xml

alib2abstraction

alib2std

UseUse

Use Use

Use

Use

Readline
Use

LibXML2Use

alib2measure

alib2measure is
used in multiple
libraries, but for
clarity it is not

connected

Algorithm Library Toolkit

Transitive
dependencies
are removed

tclap
Use

Figure 2.5: ALT modules diagram

2.5.2 Architecture

ALT architecture is highly modular. In Figure 2.5, we can see the core modules
of the ALT console line interface. There are other modules, but these are not
directly related to this thesis. The entry point of the CLI is in aql2 executable.

2.5.2.1 aql2

aql2 is the entry point of the console line interface. It wraps all user input
into appropriate data structures for evaluation. These inputs can come from
program arguments or interactive text input (REPL). It also controls the
evaluation loop.

2.5.2.2 alibcli

alibcli handles the input evaluation and parsing of it. This module contains
a lexer, a parser, an abstraction over user input, and an abstract syntax tree

17

2. Analysis

of the Algorithm Query Language (Section 2.5.1). This module also contains
all the logic necessary to evaluate the AST produced by the parser.

2.5.2.3 alib2xml

alib2xml module handles all work related to the XML file format, allowing
alib2cli to read the input from XML files, which can be quite complex for some
data structures. Examples of such input can be found in the ALT repository.

2.5.2.4 alib2common

alib2common module implements basic data structures to represent prim-
itive data types, standard containers, exceptions, and the common object
wrapper for any datatype in the library type hierarchy. Additionally, the
module includes core functionality, such as support classes for the visitor pat-
tern, component classes, and a handler for printing stack traces in the event
of segmentation faults.

2.5.2.5 alib2abstraction

This module is represented by OperationAbstraction and ValueProvider
classes. These classes can be interconnected to represent algorithms, entities,
and parameters.

Each algorithm, cast operation, and data type implemented in the al-
gorithm library toolkit are registered within the internal structures of the
abstraction module, enabling its subsequent execution via the command-line
interface. Registration is accomplished by constructing global variables within
unnamed namespaces or calling functions.

2.5.2.6 alib2std

alib2std is the module that contains the implementation of some basic data
structures or improvements to the structures already present in the standard
library of C++.

18

2.5. Algorithm Library Toolkit

aql2

aql2 ReadlineInterface

Start aql2

Create REPL

Parser Lexer

Command

User Input

User Input

Token

Result of Command evaluation

Get text

Character

Wait for user input, if needed

User input

Until
parsed

Until
exit

alib2cli

Figure 2.6: Old CLI sequence diagram

2.5.2.7 alib2measure

This module includes the data structures necessary to collect measurements.
Measurements are organized into frames, each of which may contain sub-
frames. Each frame stores the time spent within the frame, exclusive of its
subframes, the change in memory usage resulting from dynamic allocations
and deallocations, and general-purpose counters.

The Algorithm Library Toolkit can be extended to support more algo-
rithms and data types. This is done through dynamically loaded libraries and
by registering the algorithms in the libraries as described above.

2.5.3 Parsing and evaluating user input

In Figure 2.6, we can see a simplified process of evaluating user input.4 The in-
teresting thing here is that the Parser directly asks Lexer for user input,

4Note that some layers of abstraction are not shown in the diagram for the sake of clarity.

19

2. Analysis

<<Interface>>
Command

+ run(Environment&) const
 : CommandResult

<<Interface>>
Arg

+ eval(Environment&) const
 : std::string

<<Interface>>
Expression

+ translateAndEval(...) const
 : ...

<<Interface>>
Statement

+ translateAndEval(...) const
 : ...

Figure 2.7: Base classes of ALT AST

and Lexer is also communicating with ReadlineInterface. This can be done
because the parser, as is the lexer, is handwritten.

When aql2, the console line interface of the Algorithm Library Toolkit,
starts, it parses the command line arguments. These arguments can be input
files and commands passed as arguments from the command line, a redirected
standard input stream, or an indicator to enter interactive mode. From these
arguments, instances of LineInterface are constructed. When the app knows
what to execute, it executes the arguments in the order passed to the app.
This is done in Prompt class, which passes LineInterfaces to Enviroment
instance. In this instance is each LineInterface wrapped in CharSequence,
which provides more granular control over the input.

Finally, with this wrapper, a Lexer instance is created, and then a Parser
instance is created. The method parse() is called on the constructed parser,
serving as the entry rule for the handwritten parser. The exact parsing
calls depend on the input. As shown in Figure 2.6, the parser asks Lexer
for tokens, and Lexer communicates through CharSequence with concrete
LineInterface. If the parse fails, an exception is raised; otherwise, the
parser’s output will be an abstract syntax tree. Finally, this tree is evalu-
ated.

The abstract syntax tree consists of five types of nodes. In Figure 2.7, we
can see four of them, but there is missing Option, which does not have any
common evaluation method, so showing their interface would be meaningless.

Command nodes are the only nodes that can be parsed as a top-level
statement or can be found inside the Block command. At the time of writing
this thesis, there are 355 commands. The most notable commands are:

5Before this thesis, there were only 34. introspect ast command was added as a side
effect of this thesis.

20

2.5. Algorithm Library Toolkit

• block command works functionally the same as in other languages.
They create a new scope and can group several commands. The cre-
ation of scope is important since some commands can be used only in
the global scope and others in the non-global scope.

• print and execute commands are the most basic commands that accept
statements or expressions. execute only evaluates the data passed and
does not show them. print command works similarly to the execute
command, but also prints the result.

• if and while commands have the same meaning as in C-like languages.
One limitation placed on them in the Algorithm Library Toolkit is that
they cannot be used in a global scope and can only be defined in nested
scopes.

• procedure and function declaration are used to declare reusable code.
These declarations are available only in the global scope.

Statements can be chained or executed on their own. In the Algorithm
Library Toolkit, we can divide statements into three groups; Single state-
ment, Cast statements, and Common statements.

Common statements are typically simple values. A simple value can be as
simple as literal or as complex as a result of a previous statement or redirect
from a file. However, they still do not execute anything independently; they
just hold some value. Cast statements have the same semantic meaning as
in other languages, where they take any value and try to interpret it in the
desired data type.

On the other hand, Single statement is a much more complex statement.
In its most basic and frequently used variant, it accepts the name of the
algorithm to be executed and the corresponding parameters. An example
of a Single statement is IsSame 1 "2" where we have an algorithm with
name IsSame and two parameters: an integer 1 and a string "2". Single
statements can also take additional arguments as template arguments, which
helps determine the concrete algorithm used in the evaluation. There are also
category options, which are described in grammar but are not currently used
in the evaluation of the Single statement.

21

2. Analysis

Table 2.3: Precedence and Associativity of Operators

Operator Precedence Associativity
Function call Highest Left to Right
Method call Left to Right
Postfix Increment/Dec. Left to Right
Cast Right to Left
Unary Plus Right to Left
Unary Minus Right to Left
Logical Not (!) Right to Left
Binary Negation (∼) Right to Left
Prefix Increment/Dec. Right to Left
Multiplication, Modulo, Division Left to Right
Addition, Subtraction Left to Right
Relational (>, >=, <, <=) Left to Right
Equality (==, !=) Left to Right
Bitwise XOR (∧) Left to Right
Bitwise AND (&) Left to Right
Bitwise OR (>, >=, <, <=) Left to Right
Logical AND (&&) Left to Right
Logical OR (||) Left to Right
Assignment (=) Lowest Right to Left

Expressions are similar to the expression in other languages. They sup-
port chain expressions by operators with the precedence described in Table 2.3.

Args or arguments are simple values that can be either identifiers or bound
values. Identifiers are any unmatched word that starts with a letter from the
English alphabet or with _ and contains only these letters or digits and colon
sign (’:’). Bounded arguments are environment variables passed from the
command line. The name of the bound argument starts with # and is followed
by an identifier or an integer.

22

Chapter 3
Implementation

This chapter will describe the implementation and integration process of the
new parser generated by ANTLR4. Note that we will be using the ’...’
symbol in code listings, which denotes that we have removed part of the
original code from the listing to make it less verbose.

3.1 Preparing grammar

The first step in generating a parser is to specify the grammar for which
the parser will be generated. The starting point for this part of the work
was grammar definition (from which part can be seen in Code 3.1) on the
Algorithm Toolkit Library website.

arg : HASH_SIGN (INTEGER | IDENTIFIER) | IDENTIFIER;
batch_or_expression: KW_EXPRESSION expression | KW_BATCH? batch;
runnableParam: qualifiedType DOLAR_SIGN arg;
command
: KW_EXECUTE batch_or_expression | KW_PRINT batch_or_expression
| KW_EXIT batch_or_expression? | KW_RETURN batch_or_expression?
...
;
parse: command (SEMICOLON command) END | END;
assign_expression: or_expression (ASSIGN_OPERATOR assign_expression)?;
or_expression: and_expression (OR_OPERATOR and_expression)*;
and_expression: bitwise_or_expression (AND_OPERATOR bitwise_or_expression)*;

Code 3.1: Part of grammar from ALT documentation

23

3. Implementation

// Operators or otherwise important characters
HASH_SIGN : '#';
AT_SIGN : '@';
LEFT_PAREN : '(';

// Keywords
KW_AST : 'ast';
KW_FROM : 'from';
KW_TO : 'to';
KW_ALGORITHMS : 'algorithms';

// Integers, identifiers, and string
fragment DIGIT: [0-9];
INTEGER : DIGIT+;
DOUBLE: DIGIT+'.'DIGIT* | DIGIT*'.'DIGIT+;
IDENTIFIER :
([a-z] | [A-Z] | '_') ([0-9] | [a-z] | [A-Z] | '_' | ':')*;

// Whitespace, comments
WS : [\t]+ -> channel(HIDDEN);
COMMENT : '//' (~[\r\n] | '\\'EOL)* -> channel(HIDDEN);
MULTILINE_COMMENT : '/*' .*? '*/' -> channel(HIDDEN);

Code 3.2: ALT CLI Lexer grammar

3.1.1 Lexer

Seemingly the easiest step was to define the lexer for the input grammar. This
was done by reviewing the original grammar and finding all keywords or other
lexical elements.

We can group all the lexical elements into a few groups, as shown in
Code 3.2. For each group, only a few examples are shown. Operators and
keywords are straightforward and do not require any other explanation.

Integers, identifiers, and other non-constant tokens use the features of the
EBNF syntax to the fullest. We can also see the usage of fragment DIGIT.
Fragments are lexer tokens that cannot be referenced in the parser, but be-
cause of them, we can avoid duplicating some syntax in the lexer grammar.

Finally, we have arguably the most complicated part of the lexer rules,
which are rules for matching whitespaces and comments. We can see that
each token is redirected to the channel with the name HIDDEN.

24

3.1. Preparing grammar

expression
: lhs=expression op=(STAR_SIGN | PERCENTAGE_SIGN | SLASH_SIGN) rhs=expression
| lhs=expression op=(PLUS_SIGN | MINUS_SIGN) rhs=expression
| lhs=expression op=(LESS_SIGN | ... | MORE_SIGN) rhs=expression
| lhs=expression op=(EQUAL_OPERATOR | NOT_EQUAL_OPERATOR) rhs=expression
| lhs=expression op=CARET_SIGN rhs=expression
| lhs=expression op=AMPERSAND_SIGN rhs=expression
| lhs=expression op=PIPE_SIGN rhs=expression
| lhs=expression op=AND_OPERATOR rhs=expression
| lhs=expression op=OR_OPERATOR rhs=expression
| <assoc=right> lhs=expression op=ASSIGN_OPERATOR rhs=expression
| prefix_expression // Subrule for all prefix expressions
;

Code 3.3: New expression grammar

This channel is a predefined channel from ANTLR4 and is used when we
do not want to consider these tokens in parsing, but we still want them to stay
in the token stream, so we can reconstruct the input if needed. In ANTLR4,
there is also directive -> skip which says to skip the token completely.

We can also see the usage of ~, which allows us to negate some expressions.
We can see the usage in the COMMENT token, where we want to accept characters
that are not a new line or carriage return. The COMMENT token also allows us
to escape a new line inside a single-line comment, which is possible in C and
C++; however, it was not possible in the old version of the parser.

3.1.2 Expressions

ANTLR4 can handle much simpler rules for expression syntax than the one
shown in Code 3.1. This is due to the ability of ANTLR4 to accept ambiguous
grammar and direct left recursion. The final grammar with some simplifica-
tion for expression is shown in Code 3.3. This grammar follows the operator
precedence described in Table 2.3.

There are a few things worth noting: All expression rules produce the
same syntax tree nodes, which contain different subtrees. Each node contains
lhs, rhs with expressions, and a opmember, which defines which operation we
want to use. Later in the transformation of the syntax tree to AST, we will use
this. In the rule describing assign expression, we use <assoc=right> syntax
to tell ANTLR4 that we want the assignment operator to be right-associative.

25

3. Implementation

print < ../../input.xml
execute 1 > /tmp/out.xml
print < #file
execute 1 > "out.xml"

Code 3.4: Old file syntax usage

file
: binding
| string
;

Code 3.5: New file grammar

print < #file
execute 1 > "out.xml"

Code 3.6: New file syntax usage

Expressions are not limited to the binary expression shown in Code 3.3
but contain prefix, suffix, and atom expressions. These expressions have a
similar syntax and do not use any new syntax, so they are not shown here,
but they still can be found in the complete grammar.

3.1.3 Files

The old syntax supported parsing files and file paths (examples of old syntax
are in Code 3.4). This was done by giving hints from the parser to the lexer.
This communication was possible, as seen in Figure 2.6, where the parser
sends messages to the lexer. This is not possible with an ANTLR4-based
parser because we cannot give a hint from the parser back to the lexer. Thus,
the support for direct file names was removed, and the only available options
right now are putting the file name into a string or using binding. The new
file syntax can be seen in Code 3.5, and an example of usage can be found in
Code 3.6.

26

3.1. Preparing grammar

print batch
automaton::simplify::EpsilonRemoverIncoming $automaton
| automaton::determinize::Determinize -
| automaton::simplify::Trim -
| automaton::simplify::Minimize -
| automaton::simplify::Normalize -

Code 3.7: Example of ambiguous grammar in ALT (newlines)

3.1.4 New Lines

New lines are not a simple topic, as it seems to be in the Algorithm Library
Toolkit CLI. They have different meanings depending on the current state of
the parse tree. If they are located inside blocks, their meaning is the same as
in C or C++, and they do not matter. But in the top-level statements, they
separate the commands instead of the semicolon, which is used inside blocks.
This behavior is similar to the one in the Bash language. An example shown in
Code 3.7 is not valid if it is inside the block command, but it is only because
we miss the semicolon required at the end of each command inside the block.
If it is entered as a top-level command, it is invalid because of the new lines.
New lines are not allowed at all, and they are separating commands.

The approach which it is solved in this thesis is by using grammar ac-
tions and semantic predicates inside the lexer. In Code 3.8, we can see the
implementation of this. Lexer holds an internal counter of how deep inside
of block statement we are. If we are at the level 0, then that means that we
need to consider new lines, and we disable the rule BLOCK_NEWLINE. Due to
that, all new lines are matched by the rule NEWLINE; however, if the nested
level is bigger than 0, we allow matching of the rule BLOCK_NEWLINE, and it
takes precedence over the rule NEWLINE and consumes all newlines. This rule
is also redirected to the hidden channel, so all new lines will not be considered
inside the parser. This approach is not ideal, as the lexer has to know how
the parser and grammar work, but due to the limitation of ANTLR4 runtime,
this approach was taken. Finally, we need to use the rules inside the parser,
and this can be seen in Code 3.9.

27

3. Implementation

@lexer::members {
size_t nestedLevel = 0;
}
// ...

KW_BEGIN: 'begin' { nestedLevel++; };
KW_END: 'end' { nestedLevel--; };

ESCAPE_NEWLINE: '\\' EOL -> channel(HIDDEN);
// This new line is skipped if we are in a block
BLOCK_NEWLINE: EOL {nestedLevel>0}? -> channel(HIDDEN);
// Top level newline
NEWLINE: EOL;

Code 3.8: Handling new lines inside lexer

parse
: NEWLINE* top_level_command (NEWLINE top_level_command?)* EOF
| NEWLINE* EOF;

Code 3.9: Handling new lines inside parser

3.1.5 Top level commands

In the ALT language, there are 34 commands. Most of them can be used
outside blocks. However, four of them (if, while, break, and continue) can-
not be used as top-level commands, and three are not available within blocks
(undeclare command, declaration of functions and declaration of procedures).

The old parser solves this by counting how deep it is currently nested and,
after matching the beginning of the command deciding if it is allowed to use
the command in the current nested level.

This approach could also be implemented in the new parser, and the first
iteration of the parser used this approach when it parsed the input and then
analyzed the parse tree to see if there were any violations of these constraints.
However, this approach had one big drawback, and it had to parse the whole
input and then analyze it once again to decide if it was the correct input or
not. Instead, the grammar was rewritten to prohibit commands in unwanted
scopes, as seen in Code 3.10. The rule command is never used directly, and
only the level_command variants are used appropriately.

28

3.1. Preparing grammar

// All commands without scope constraints
commands: ...;

nested_level_command
: command # NestedLevelCommand
| command_if # If
| command_while # While
| (KW_BREAK | KW_CONTINUE) # CycleControl;

top_level_command
: command # TopLevelCommand
| KW_UNDECLARE ... # UndeclareFunction
| KW_PROCEDURE ... nested_level_command # Procedure
| KW_FUNCTION ... # Function;

Code 3.10: Commands definition inside parser

STRING: DQUOTE (STR_TEXT | EOL)* DQUOTE;

fragment DQUOTE: '"';
fragment EOL: '\r'? '\n';
fragment STR_TEXT: (~([\r\n\\] | DQUOTE) | ESC_SEQ)+;
fragment ESC_SEQ: '\\' ([btnrf\\] | | DQUOTE | EOF);

Code 3.11: String definition in lexer

3.1.6 Literals and identifiers

As literals, consider all integers, doubles, and strings. Integers and doubles are
standard as in other languages. Strings support newlines inside them, which
is uncommon in regular strings. The lexer rule for the string can be seen in
Code 3.11.

Identifiers are more complicated. The token rules are defined in Code 3.12.
Identifiers in the ALT language can match all alpha-numeric words. These
words can also contain underscores, and, what is important, it also allows
a colon character to be included, which is not permitted, for example, as part
of identifiers in C or C++ language.6

This rule covers almost all possible identifiers; however, keywords are also
allowed in ALT as an identifier. Thus, defining the identifier rule in the parser

6In fact in C++ double colon (::) is an operator [15].

29

3. Implementation

IDENTIFIER: ID_LETTER (ID_LETTER | [0-9] | ':')*;

fragment ID_LETTER: [a-z] | [A-Z] | '_';

Code 3.12: Identifier definition in lexer

identifier
: IDENTIFIER | KW_AST | KW_FROM | KW_TO
| KW_NORMALIZATIONS | KW_DENORMALIZATIONS
| KW_EXECUTE | KW_PRINT | KW_QUIT | KW_EXIT
| ...
;

Code 3.13: Identifier definition in parser

that matches an identifier or any of the keywords was necessary. The simplified
version of this rule is shown in Code 3.13.

3.2 Integrating new parser

With the defined grammar, the next step in replacing the old parser was
incorporating the newly generated parser into the codebase of the Algorithms
Library Toolkit and, more specifically, the alib2cli module.

3.2.1 CMake

The integration of ANTLR4 into the ALT and the project’s build itself is done
by CMake.

CMake is a cross-platform open-source build system generator that sim-
plifies the process of building, testing, and packaging software. Developed by
Kitware, CMake is designed to manage the compilation process using platform-
and compiler-independent configuration files. These configuration files, typi-
cally named CMakeLists.txt, describe the build process of a software project
and specify various parameters, such as source files, dependencies, libraries,
and compilation flags.

CMake generates native build files tailored to the target platform and build
environment, such as Makefiles or Ninja build files for Unix-based systems,
Visual Studio project files for Windows, or Xcode project files for macOS.

30

3.2. Integrating new parser

Visitor

visitElement1(Element1)

visitElement2(Element2)

ConcreteVisitor1

visitElement1(Element1)

visitElement2(Element2)

Element

accept(Visitor)

Element2

accept(Visitor)

Element1

accept(Visitor)

Figure 3.1: Visitor pattern

By abstracting away platform-specific details, CMake allows developers to
focus on writing source code and defining build rules without worrying about
the intricacies of different build systems [16].

3.2.2 Visitor pattern

ANTLR4 support two options for traversing the output of the generated
parser, Visitor and Listener. The visitor pattern was chosen for its flexibility
and because it can return values directly, making work with it more straight-
forward in this case than with the listener pattern. The listener pattern can
be useful when we want to traverse all nodes in the syntax tree without the
need to return specific values. One example where this could be useful is
building a syntax highlighting engine. We would want to enter all nodes and
then store where in the input it is located and what kind of syntax structure
it represents.

The visitor pattern is a widely-used behavioral design pattern that facil-
itates the separation of concerns between data structures and the operations
performed on them. This pattern is beneficial when dealing with object-
oriented class hierarchies. By decoupling the operations from the data struc-
tures, the visitor pattern enables extensibility and maintainability [17]. As can
be seen in Figure 3.1, the visitor pattern consists of the following components:

31

3. Implementation

Visitor interface defines set of methods, usually called visit(), for each of
the elements in the data structure. For example, in the case of ANTLR4,
we will have a method for each node of the parse tree.

Concrete Visitor class provides the implementation for all visit() meth-
ods. Each concrete visitor can do different things; thus, it enables ex-
tending the functionality of the objects without modifying them.

ANTLR4 provides us with the base implementation of the Visitor,
which has implemented all visit() methods. These methods do not do
anything else except call the visit on all child nodes in the parse tree.
With this, we do not have to provide the implementation for all methods
and only override these we want to extend.

Element defines the interface for all elements that we do want to use in the
visitor. In ANTLR4, this interface is described by the ParseTree, where
it has abstract method std::any accept(ParseTreeVisitor*).

Concrete Elements are the classes that represent the elements of the data
structure we want to visit. In our case, these are the concrete parse tree
nodes that the ANTLR4 produces.

3.2.3 Visitor for the Parser

In the Algorithms Library Toolkit, the visitor is used for the transformation
of the parse tree, which is produced by the parser, to the Abstract Syntax
Tree. The implementation of the visitor can be found in AltVisitor class in
alib2cli module.

By default, the ANTLR4 produces visit method for each rule in the
parser. For more complex rules, this is not detailed enough. For example,
rule semicolon_command, as shown in Code 3.14, has 4 possible ways how
it can be parsed. Due to that, we will have to have some non-trivial logic
in the visitor that would decide how to construct the Abstract Syntax Tree
node.7

7Note that this rule is fairly straightforward, but in the grammar are more complex
rules.

32

3.2. Integrating new parser

semicolon_command
: block
| command_if
| command_while
| nested_level_command SEMICOLON
;

Code 3.14: Semicolon command definition in parser

semicolon_command
: block # BlockSemicolonCommand
| command_if # IfSemicolonCommand
| command_while # WhileSemicolonCommand
| nested_level_command SEMICOLON # SemicolonCommand
;

Code 3.15: Semicolon command definition with labels in parser

using namespace std;
// ...
any visitBlockSemicolonCommand(AltCliParser::BlockSemicolonCommandContext*);
any visitIfSemicolonCommand(AltCliParser::IfSemicolonCommandContext*);
any visitWhileSemicolonCommand(AltCliParser::WhileSemicolonCommandContext*);
any visitSemicolonCommand(AltCliParser::SemicolonCommandContext*);

Code 3.16: Semicolon command definition in visitor

We can avoid this situation by labeling sub-rules in the grammar itself,
and this will tell ANTLR4 to generate a visit method for each sub-rule, and
the logic for deciding which sub-rule is correct will be automatically generated
by ANTLR4. The labeled example can be Code 3.15. Corresponding method
headers for this rule can be seen in Code 3.16. These methods are usually
simple, and that is by design. They should not decide if the grammar is
correctly parsed or not; all this logic is left for the parser. Most methods
could be implemented as one-liners, usually though they are not since they
would not be as readable.

The only logic which is in the visitor is the handling of the optionality of
tokens and rules or if they are allowed to repeat (see Section 2.4.2 for how to
define these properties for the tokens or rules).

The visitor generated by the ANTLR4 has one property that has added

33

3. Implementation

#include <any>

struct A { };
struct B : A { };

std::any foo() {
return new B();

}

int main() {
// Throws std::bad_any_cast
A* a = any_cast<A*>(foo());

}

Code 3.17: std::any example

to the implementation more function calls, then would be ideal. All methods
in the visitor pattern have to return the std::any type. This type is defined
in the standard library [18]. std::any is a type-safe container for all copy
constructible types. This type usually holds information about the stored
type, and if supplied, the value [19]. The process of extracting the value from
this container checks if the stored type information matches the one desired
on the output, thus, is this container type-safe. This, however, does not work
with inheritance and its usage. For example, let us have Code 3.17. This code
will compile, but it will throw runtime std::bad_any_cast exception. If we
replace the std::any return type in foo with either A* or B*, the code will
work as intended.

This is, however, not applicable to the implementation of the interface
of visitors created by ANTLR4. We are constrained by the fact that we
must always return std::any. The only solution for this is then to cast
the result of foo before we wrap it into the std::any container. For this
reason, the implementation has the helper method retPtr, which constructs
the desired object with supplied parameters and casts it to the base pointer
type. The implementation of retPtr can be seen in Code 3.18 as well as how it
would be used in Code 3.17. This method removes all casting from the actual
implementation of visitor methods and also, with strict usage in all methods,
ensures that we never perform any unwanted cast. This is done thanks to the
use of constraints [20], which limits the applications of this method only to
types where we have the wanted inheritance relation.

34

3.2. Integrating new parser

template <typename Base, std::derived_from<Base> T, class... Args>
Base* retPtr(Args&&... args)
{

return new T(std::forward<Args>(args)...);
}

// ...
std::any foo() {

// same as return (A*) new B();
return retPtr<A, B>();

}
// ...

Code 3.18: retPtr implementation and usage

template <typename T>
std::unique_ptr<T> castToUnique(

const std::any&,
const std::source_location) const;

template <class Type, class OutVectorType, class InVectorType>
void fillList(

std::vector<OutVectorType>& outVector,
const std::vector<InVectorType>& inVector,
const std::source_location location = std::source_location::current()
)

{
for (auto& ctx : inVector) {

auto any = visit(ctx);
try {

// If OutVectorType is std::shared_ptr<Type>,
// then std::unique_ptr is promoted.
outVector.emplace_back(castToUnique<Type>(any, location));

} catch (const std::exception& ex) {
throw;

}
}

}

Code 3.19: fillList implementation

Several other methods were introduced to the visitor class, which address
the issue of using std::any. The most complicated one of them is fillList,
this method is shown in Code 3.19. This method takes as an input iterable
object. This object is then iterated through, and all values are visited and
cast into the required base type. In the implementation, we can also see the
usage of method castToUnique, which extracts raw pointer from the std::any
container and then wraps it into std::unique_ptr object. The fillList is

35

3. Implementation

std::any AltVisitor::visitParse(AltCliParser::ParseContext* ctx)
{

ext::vector<std::unique_ptr<Command>> commands;

if (ctx->top_level_command().empty()) {
commands.emplace_back(new EOTCommand());

} else {
fillList<Command>(commands, ctx->top_level_command());

}

return new CommandList(std::move(commands));
}

Code 3.20: visitParse implementation

std::any AltVisitor::visitIfCommand(AltCliParser::IfCommandContext* ctx)
{

auto expression = castToUnique<Expression>(visit(ctx->condition));
auto thenBranch = castToUnique<Command>(visit(ctx->then_branch));

auto elseBranch = std::unique_ptr<Command>(nullptr);
if (ctx->else_branch != nullptr) {

elseBranch = castToUnique<Command>(visit(ctx->else_branch));
}

return retPtr<Command, IfCommand>(std::move(expression),
std::move(thenBranch), std::move(elseBranch));

}

Code 3.21: visitIfCommand implementation

useful when working with rules or tokens that can be present multiple times
in the rule which is being visited. An example can be parse from Code 3.9.
We can see that this rule always matches one or more top_level_command
rules, and for this reason, we will have in available std::vector of contexts
representing top_level_command. We could have iterated over it in each
method manually, making the code more complex, so we can use the fillList
method to handle this. The final implementation for visiting parse rule can
be seen in Code 3.20. We can see that in the visit method, we also handle an
edge case where we do not have any commands in the input. This method does
not contain any other logic and is simple as it can be, which was the target
for all visitor methods, where we do not want to handle any logic related to
parsing or the evaluation of the input.

36

3.2. Integrating new parser

std::map<std::string, Operators::BinaryOperators>
AltVisitor::binaryExpressionMap = {

{"&&", Operators::BinaryOperators::LOGICAL_AND},
{"||", Operators::BinaryOperators::LOGICAL_OR},
...,
{">=", Operators::BinaryOperators::MORE_OR_EQUAL},
{"=", Operators::BinaryOperators::ASSIGN}};

std::any
AltVisitor::visitBinaryExpression(AltCliParser::BinaryExpressionContext* ctx)
{

auto lhs = castToUnique<Expression>(visit(ctx->lhs));
auto rhs = castToUnique<Expression>(visit(ctx->rhs));
auto operation = binaryExpressionMap[ctx->op->getText()];

return retPtr<Expression, BinaryExpression>(operation,
std::move(lhs), std::move(rhs));

}

Code 3.22: visitBinaryExpression implementation

In Section 3.1.2, we have shown that all binary expressions have the same
structure. With this, the implementation of the visit method for them is
straightforward, and we do not have to deal with each of the possible expres-
sions individually. The implementation can be found in Code 3.22. Unary
expressions are implemented in the same fashion.

The final example for visitor methods can be found in Code 3.21. This
method is responsible for constructing IfCommand node in the Abstract Syn-
tax Tree. This method represents how most methods in the AltVisitor are
implemented. At the beginning of the method, we evaluate all mandatory
rules for the rule by calling visit method and then wrapping the result in
std::unique_ptr with the method castToUnique. After that, we check if
the optional rule elseBranch is present; if so, we also visit it and then wrap
it in std::unique_ptr. Finally, we construct the IfCommand object through
retPtr method, which ensures that we wrap in the std::any pointer to the
Command class.

37

3. Implementation

Interface

+ execute(cli::Enviroment)

StreamInterface

getStream()

ReplInterface

Prompt

- m_interfaces

- m_enviroment

+ appendCharSequence()

+ run()

* 1has

StringInterface

- m_stream

FileInterface

- m_stream

CinInterface

Figure 3.2: Interface class hierarchy

3.2.4 Replacing the old parser

The visitor pattern itself is not enough to replace the old parser. At first, we
need to call the ANTLR4-generated parser and then pass the created syntax
tree to the visitor instance, and only after that do we have an output equivalent
to the original parser’s output. This whole logic can be found in the file
Parser.cpp in the alib2cli module. Source codes will not be shown here as
it is a standard implementation and usage of ANTLR4.

One of the biggest issues when replacing the parser was how to pass the
input into the parser. In Figure 2.6, we could see that it was required to
construct ReadlineInterface before we could start the parsing process. This
is, however, not required with an ANTLR4-based parser, and in fact, it is
not possible since ANTLR4-based parsers accept only strings or C++ streams
(which are then internally converted to strings too [21]). Replacement of the
input method into the parser was in all modules straightforward except the
aql2 one, which was expected since this module has relied the most on the
communication between the input interface and parser.

In aql2 module is Prompt class responsible for handling all possible input
sources and presenting them to the environment and parser for evaluation.
This class heavily relied on the ReadlineInterface. This dependency was
removed and was replaced with a new Interface structure, which is described

38

3.3. New Features

aql2

aql2 ReplInterface

Start aql2

Create REPL

Parser AltCliLexer AltCliParser AltVisitor

Command

User Input
User Input

Tokens

Tokens

Syntax Tree

Syntax Tree

Command

Result of Command evaluation

User Input

Get User input

Until exit

aql2 alib2cli

Figure 3.3: New CLI sequence diagram

in Figure 3.2. With this new class hierarchy, we still have the same flexibility
and power to handle all possible input sources, which can be defined by passing
arguments to the executable of the aql2 executable. This structure makes
adding a new interface without any other impact on the codebase possible.

With this, the basic integration of the parser into aql2 was done. Thanks
to removing all communication between the parser and input interface, the
new sequence diagram is more streamlined, as shown in Figure 3.3.

3.3 New Features

This section will describe new features introduced into the Algorithms Library
Toolkit, which were not directly related to the replacement of the parser but
made the replacement easier or were possible only because of the replacement
of the parser.

3.3.1 Introspect AST command

Adding a new command into the alib2cli module was one of the first tasks
done in this thesis. There was no way to diagnose what kind of AST the

39

3. Implementation

command
: ...
| KW_INTROSPECT introspect_command # Introspect
| ...
;

introspect_command
: ...
| KW_AST top_level_command # IntrospectAst
;

Code 3.23: Introspect AST command definition

<<Interface>>
Command

+ run(Environment&) const
 : CommandResult

<<Interface>>
Arg

+ eval(Environment&) const
 : std::string

<<Interface>>
Expression

+ translateAndEval(...) const
 : ...

<<Interface>>
Statement

+ translateAndEval(...) const
 : ...

<<Interface>>
AstNode

 # std::ostream& print(std::ostream&)
 + overloads for operator <<

Figure 3.4: Base classes of ALT AST with print

parser produces other than manually stepping through the parser or the final
AST, which is not convenient and is time-consuming.

For this reason, command introspect ast was created. This command
was added to both the new and old parser. This command takes as input
any top-level command and, on evaluation, produces a textual representation
of the command into standard output. The definition of this command in
the new grammar is shown in Code 3.23. Adding one common method to all
possible nodes in the AST of alib2cli was necessary. This method prints
itself on the stream passed as an argument. AST’s new base class hierarchy
can be seen in Figure 3.4. An example of the usage with the output can be
seen in Code 3.24.

40

3.3. New Features

aql> introspect ast print expression IsSame(1, "1")
(PrintCommand

(FunctionCallExpression
IsSame
(ImmediateExpression 1)
(ImmediateExpression 1)

)
)

Code 3.24: Introspect AST command usage. Output was manually formatted.

aql> introspect ast print expression $a.Is<tab>
IsLanguageEmpty IsSame IsLanguageGeneratingEpsilon
IsSymmetric IsReflexive IsTransitive
aql> introspect ast print expression $a.IsS<tab>
IsSame IsSymmetric
aql> introspect ast print expression $a.IsSame(2)<enter>
(PrintCommand (MethodCallExpression (VariableExpression
(ImmediateArg a)) IsSame (ImmediateExpression 2)))

Code 3.25: Example usage of Replxx without color highlighting

3.3.2 Read Evaluate Print Loop ++

Read Evaluate Print Loop ++ (replxx) is a lightweight, open-source, and cross-
platform readline-like library [22] for C++. It is designed to facilitate the im-
plementation of a user-friendly and feature-rich command-line interface (CLI)
in C++ applications. Replxx offers numerous features to enhance the user
experience, such as syntax highlighting, autocompletion, and history manage-
ment [25].

With the rework of the input processing method, which was mentioned in
Section 3.2.4, it was necessary to modify how the REPL itself will work. One
option was to use the already present libreadline library, which is shipped
with GNU/Linux, FreeBSD, and MacOS [22]. Ultimately, this option was
not chosen due to the old application programming interface of the library
and compatibility issues with MacOS, where an old version of this library is
distributed. Note that in the example, we use <tab> to denote that user has
pressed the tab key, and then we show the output visible to the user. The same
notation applies to the <enter> symbol. As part of this thesis, only the core

41

3. Implementation

functionality of this library is used, with basic support for text highlighting,
history, and autocompletion of the user input. An example of this can be seen
in Code 3.25.

3.3.3 Code Completion in Console Line Interface

Previous autocomplete support in aql2 was done through analysis of the al-
ready written input. This logic was separated from the parser logic, and if
the input language of the CLI was changed, then the autocomplete had to be
updated.

Thanks to the ANTLR4-based parser, we could replace this logic with code
completion based on the current status of the parser. This would mean that
any changes to the ANTLR4 grammar would be directly propagated to the
code completion hints shown in the CLI.

As the code completion engine, we are using ANTLR C3 engine [23].
ANTLR C3, also known as ANTLR Code Completion Core, is an open-source
library that can provide code completion for any ANTLR4-based parser. This
library provides runtime targets only for Typescript with ports to C# and
Java. However, the author of this library has published in the MySQL Work-
bench repository a port of this library into C ++. This port can be found at
GitHub [26].

The documentation of ANTLR C3 suggests refactoring the grammar for
better code completion suggestions. The first suggested thing is not to skip
any tokens. This will help with the easier determination of the caret position
in the input text. The second refactoring which was performed was to replace
all occurrences of token rule IDENTIFIER with rules that suggest what kind of
identifier we want to suggest to the user in the current rule.

See Code 3.26 for an example of refactoring. In the example, we have
rule suffix_expression, and it is a subrule describing the syntax of method
calls. Methods in AQL are all algorithms where is the first parameter in the
algorithm replaced by the atom on which was the method called. In the original
grammar definition, we used to IDENTIFIER to define the method name. This
is correct and works well. But the autocomplete engine does not know what
identifiers we want to autocomplete. With the refactoring performed in the

42

https://github.com/mike-lischke/antlr4-c3
https://github.com/mysql/mysql-workbench/tree/8.0/library/parsers/code-completion

3.3. New Features

suffix_expression
- | atom DOT IDENTIFIER bracketed_expression_list
+ : atom DOT algorithm bracketed_expression_list

+algorithm
+ : identifier
+ ;

Code 3.26: Example of rule refactoring for code completion

example, we specify in the grammar itself that we want to have an algorithm
name here (which is an identifier). This not only provides better autocomplete
suggestions but also makes the grammar more verbose since now the reader
does have an understanding of what kind of values he can expect here.

43

Chapter 4
Testing

In the last chapter of this bachelor thesis, we will discuss how was the whole
implementation tested.

4.1 Catch2

All of the unit tests in the Algorithms Library Toolkit are written with Catch2.
Catch2 is an open-source test framework written in C++. This framework is
header files only. This means that we do not have to link against any library
but only include header files, but it comes at the cost of increased built time
since the header files must be processed every time.

One of the key features of Catch2 is its simple and natural syntax for
defining test cases and test sections. Using the BDD (Behavior Driven De-
velopment) style, Catch2 enables developers to express test scenarios in a
human-readable format, making it easy to understand the intent and purpose
of each test. In Code 4.1, we can see a sample test written in Catch2.

4.2 State of tests

This section will be described the state of the relevant test before this thesis.
Each module has a defined test-src folder, in which we can find all tests for
the module. Not all modules have tests, but the alib2cli as one of the core
modules has some coverage. In Table 4.1, we can see some statistics about the
coverage in the alib2cli module. In the table are filtered out only portions

45

4. Testing

#include <catch2/catch_test_macros.hpp>
unsigned int add(int a, int b) { return a + b; }
TEST_CASE("Add function", "[add]") {

REQUIRE(add(1, 0) == 1);
REQUIRE(add(1, 1) == 2);
REQUIRE(add(-5, 5) == 0);

}

Code 4.1: Example of Catch2 test

Table 4.1: Coverage in alib2cli tests before

File Lines Branches
Lexer.cpp 55.6% 263/473 42.9% 411/958
Lexer.h 10.1% 11/109 8.3% 5/60
Parser.h 90.6% 58/64 44.2% 72/163
Parser.cpp 51.5% 301/585 34.0% 316/930
ast folder 31.8% 223/701 19.1% 231/1208
Total 44.8% 866/1932 31.1% 1035/3319

of the module that are interesting for this thesis. Parser combined itself has
around 55% lines coverage and 35.4% branch coverage. There is no systematic
testing of all methods in the parser, and only a small amount of negative tests.

Negative tests are these tests where we intentionally supply invalid input to
the method or part of the code we are testing and then expect some behavior
from them[24].

There are other tests that test the whole application, and we could clas-
sify them as integration tests, although their primary target is to verify
the correctness of implemented algorithms. These test suites are labeled as
test_cppaqltests and test_aqltests. Both of them evaluate the input in
the same way, and the only difference is in how the input is prepared for the
tests. In the case of test_aqltests, it is done through prepared scripts in
the CLI language. On the other hand, in the case of the test_cppaqltests,
the input is dynamically constructed at runtime to produce valid input for the
parser. Each of these tests uses algorithms that are already implemented in
the Algorithms Library Toolkit, and due to this, they can take a non-trivial
amount of time to finish (at the time of writing this thesis, the longest running
test case took around 150 seconds on average to finish). To speed up tests

46

4.3. New Parser tests

and prevent potential issues with the tests not finishing due to the timeouts,
each of the test cases is run in its own fork of the application. Note that the
test coverage produced by these tests is not included in the Table 4.1.

4.3 New Parser tests

Before the replacement of the old parser, there was a time period when both
parsers were present in the codebase at the same time. With this, both of
the parsers could be run against the same suite of tests, and the output could
be compared to ensure that the same output was produced. Input for these
new tests was a set of newly created scripts in the CLI language. In addition
to newly created scripts, the new tests also use already written scripts from
test_aqltests integration test. These new tests do not execute the input
scripts, so algorithm names do not restrict them but only by the syntax of the
language, which is what we want from these tests.

Comparing the result of two parsers is not straightforward since they
produce an Abstract Syntax Tree, which in the current implementation of
alib2cli module has no comparison operators. One approach to solve this
was to implement an equality operator on the tree, which will have several
limitations on usage. For the comparison, we need two Abstract Syntax Trees
in memory, which we want to compare. With two parsers in the codebase, the
comparison is possible and makes sense, but in the final iteration of this work,
there will be only one parser; thus, this test will be impossible to execute. The
second, not-so-important limitation is that it will be only usable in the tests
or somewhere else in the codebase. With these facts, the indirect method of
comparison is used. This is done through the already written functionality of
the alib2cli AST, which enables the AST to print itself into a C++ stream
object (for details, see Section 3.3.1). The flow of these tests is as follows:

1. Check that the script file exists

2. Ensure that the old and new parsers parse the input

3. Print result of these tests into separate std::ostringstream

4. Compare the content of the streams

47

4. Testing

Table 4.2: Coverage in alib2cli tests after

File Lines Branches
AltVisitor.h 50.0% 9/18 28.8% 17/59
AltVisitor.cpp 92.3% 36/39 52.7% 29/55
AltVisitor.Arg.cpp 100.0% 24/24 91.9% 34/37
AltVisitor.Command.cpp 100.0% 229/229 94.9% 350/369
AltVisitor.Expression.cpp 100.0% 47/47 100.0% 73/73
AltVisitor.Option.cpp 100.0% 10/10 93.8% 15/16
AltVisitor.Statement.cpp 100.0% 60/60 100.0% 98/98
Parser.cpp 96.2% 25/26 85.7% 30/35
ast folder 55.8% 387/694 22.5% 215/952
Total 72.1% 827/1147 50.8% 861/1694

If all of these test points were successful, then the parsers are producing equiv-
alent output for the given script. The flow described above is the same for
all prepared input scripts, with the exception of a few tests, which do not
compare the content of the streams.

Both of the parsers produce nearly equivalent AST, and if they were used
in the application, they would, after some time, produce the same result.
The difference here is how they handle multiple top-level commands. The
old parser only takes the first top-level command and leaves the rest of the
input untouched; due to this, it always returns cli::CommandList, which
contains only one command. This can be done thanks to the fact that there is
communication between the input interface and the parser. On the other hand,
the new parser needs to have the input buffered so it accepts the whole input
at once and produces cli::CommandList with potentially multiple commands
in it.

This difference can not be spotted by a user who only uses REPL. REPL
always tries to evaluate the input after every new line, which is the same in
both the old and the new parser. The difference, however, can be spotted
when executing files and only if the file contains a syntax error in the second
or later top-level command. The old parser would execute all commands until
the syntax error. The new parser will not execute anything.

The code in alib2cli module currently has 72.1% lines coverage and
50.8% branches coverage in all relevant files for this thesis. The breakdown of
this coverage can be seen in Table 4.2.

48

4.3. New Parser tests

After the parser was finally removed, the test methodology had to be
changed since we could not compare the two parsers directly anymore. Before
the removal of the old parser from the codebase, we took a snapshot of all the
Abstract Syntax Tree produced by the parser in the tests and saved it next
to the possible input. These files are then used as a reference for comparison
in the test case against the new parser. Note that this was done in the final
part of the work. The new parser was already stable, and it passed all tests.
It was only kept as insurance in case a new change made the parser produce
invalid or different trees.

49

Conclusion

The main goal of this thesis was to replace the old parser in the Algorithm
Library Toolkit with a new one generated by ANother Tool for Language
Recognition 4 (ANTLR4).

The first part of the thesis introduces the theory of formal languages.
In that section are described terms such as the definition of grammar, context-
free grammar, and ambiguous grammar. After introducing formal terms, the
thesis describes what a lexer and a parser are and what part they take in the
process of parsing input.

Following that, the thesis describes what ANother Tool for Language
Recognition is. In this section of the analysis, the reader is introduced to the
Adaptive LL(*) algorithm, which is used in the ANTLR4 runtime. Following
that, the thesis describes how users can construct grammar for ANTLR4 and
introduce the reader to the grammar actions, semantic predicates, and other
features of the ANTLR4. The last section of the analysis describes the Algo-
rithm Library Toolkit, its core modules, and the basics of the CLI language
used in ALT.

At the beginning of the implementation chapter, the thesis describes how
the ALT grammar for ANTLR4 was prepared and the main issues when cre-
ating the grammar. With the grammar prepared user is then introduced to
the integration of the lexer and the parser generated by ANTLR4 from this
grammar. The final part of the thesis describes how was the new parser tested.

51

Conclusion

In conclusion, all goals of the thesis were completed and exceeded. The ini-
tial goal was to replace the old parser with the new one generated by the
ANTLR4; this was, without a doubt, done. After that, the library responsible
for handling user input was replaced with a new one called replxx. And fi-
nally, the auto-complete for the CLI was replaced with a new one, which uses
ANTLR4 grammar and current input to suggest options for an auto-complete.

This thesis could be followed by extending the syntax of the current CLI
language. Among these extensions could be support for switch command8,
ternary expression, and more. Additional improvements to the user experience
of the CLI environment could be made, starting from improvements to the
auto-complete engine as far as syntax highlighting based on output from the
parser.

8In most languages, we would classify switch as a statement, but in the context of ALT,
it makes sense to address it as a command.

52

Bibliography

1. PARR, Terence. ANother Tool for Language Recognition [online].
ANTLR, 2013. [visited on 2023-04-02]. Available from: https :
//antlr.org.

2. HOPCROFT, John; ULLMAN, Jeffrey D. Introduction to automata the-
ory, languages, and computation. CNIB, 1995.

3. HARWELL, Sam; CONTRIBUTORS, other. ANTLR grammars V4 -
c language. GitHub, 2022. Available also from: https://github.com/
antlr/grammars-v4/blob/512d11783af25edffb4/c/C.g4.

4. AHO, Alfred V; LAM, Monica S; SETHI, Ravi; ULLMAN, Jeffrey D.
Compilers : principles, techniques, & tools. 2nd ed. Braille Jymico Inc,
2015.

5. WAGNER, Bill. Get started with syntax analysis (Roslyn APIs). Mi-
crosoft, 2021. Available also from: https://learn.microsoft.com/en-
us/dotnet/csharp/roslyn-sdk/get-started/syntax-analysis.

6. MYERS, Joseph. New_C_Parser. GCC Wiki, 2006. Available also from:
https://gcc.gnu.org/wiki/New_C_Parser.

7. LLVM. Clang - features and goals. LLVM, 2023. Available also from:
https://clang.llvm.org/features.html.

8. PARR, Terence. The definitive ANTLR 4 reference. 2nd ed. Prag-
matic Bookshelf, 2013. Available also from: https : / / www .

53

https://antlr.org
https://antlr.org
https://github.com/antlr/grammars-v4/blob/512d11783af25edffb4/c/C.g4
https://github.com/antlr/grammars-v4/blob/512d11783af25edffb4/c/C.g4
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/get-started/syntax-analysis
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/get-started/syntax-analysis
https://gcc.gnu.org/wiki/New_C_Parser
https://clang.llvm.org/features.html
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/

Bibliography

safaribooksonline . com / library / view / the - definitive -
antlr/9781941222621/.

9. PARR, Terence; HARWELL, Sam; FISHER, Kathleen. Adaptive LL(*)
parsing: The power of dynamic analysis. SIGPLAN Not. 2014, vol. 49,
no. 10, pp. 579–598. Available from doi: 10.1145/2714064.2660202.

10. STANDARDIZATION, International Organization for. ISO/IEC
14977:1996(en) Information Technology – Syntactic Metalanguage
– Extended BNF [online]. International Organization for Standard-
ization, 1996. [visited on 2023-05-08]. No. 14977. Available from:
https://www.iso.org/standard/26153.html.

11. HARWELL, Sam. Force semantic error (failed predicate) in ANTLR4
[online]. StackOverflow, 2013. [visited on 2023-03-28]. Available from:
https://stackoverflow.com/a/19145292.

12. TRÁVNÍČEK, Jan. Query Language [online]. Ed. by PECKA, Tomáš.
Algorithms Library Toolkit, 2023. [visited on 2023-04-17]. Available from:
https://alt.fit.cvut.cz/docs/userguide/.

13. TRÁVNÍČEK, Jan; PECKA, Tomáš. Algorithms Library Toolkit. Algo-
rithms Library Toolkit, 2020. Available also from: https://alt.fit.
cvut.cz/.

14. TRÁVNÍČEK, Jan; PECKA, Tomáš; PLACHÝ, Štěpán. Algorithms Li-
brary Toolkit / Algorithms Library Toolkit Core · GitLab [online]. Git-
Lab, 2013. [visited on 2023-05-07]. Available from: https://gitlab.
fit.cvut.cz/algorithms-library-toolkit/automata-library.

15. CPPREFERENCE.COM. Identifiers - cppreference.com [online].
en.cppreference.com, 2023. [visited on 2023-05-07]. Available from:
https://en.cppreference.com/w/cpp/language/identifiers%5C#
Qualified_identifiers.

16. MARTIN, Ken; HOFFMAN, Bill. Mastering CMake. .13rd ed. Kitware,
Inc., 2015.

17. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES,
John. Design patterns: Elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

54

https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://doi.org/10.1145/2714064.2660202
https://www.iso.org/standard/26153.html
https://stackoverflow.com/a/19145292
https://alt.fit.cvut.cz/docs/userguide/
https://alt.fit.cvut.cz/
https://alt.fit.cvut.cz/
https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library
https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library
https://en.cppreference.com/w/cpp/language/identifiers%5C#Qualified_identifiers
https://en.cppreference.com/w/cpp/language/identifiers%5C#Qualified_identifiers

Bibliography

18. CUBBI. std::any - cppreference.com [online]. en.cppreference.com, 2016.
[visited on 2023-04-28]. Available from: https://en.cppreference.
com/w/cpp/utility/any.

19. BOCCARA, Jonathan. How std::any Works [online]. Fluent C++, 2021.
[visited on 2023-04-28]. Available from: https://www.fluentcpp.com/
2021/02/05/how-stdany-works/.

20. SONG, Tim. Constraints and concepts (since C++20) - cppreference.com
[online]. en.cppreference.com, 2018. [visited on 2023-04-28]. Available
from: https://en.cppreference.com/w/cpp/language/constraints.

21. ANTLR. ANTLR v4 CPP runtime - ANTLRInputStream [on-
line]. GitHub, 2021. [visited on 2023-04-28]. Available from: https :
/ / github . com / antlr / antlr4 / blob / 8dcc6526cfb154d68849 /
runtime/Cpp/runtime/src/ANTLRInputStream.cpp%5C#L61.

22. RAMEY, Chet. The GNU Readline Library. tiswww.case.edu, 2022.
Available also from: https://tiswww.case.edu/php/chet/readline/
rltop.html.

23. LISCHKE, Mike. ANTLR-c3 - ANTLR4 Code Completion Core [online].
GitHub, 2023. [visited on 2023-05-01]. Available from: https://github.
com/mike-lischke/antlr4-c3.

24. SOFTWARE, SmartBear. Negative Testing [online]. smartbear.com,
2020. [visited on 2023-04-28]. Available from: https://smartbear.com/
learn/automated-testing/negative-testing/.

25. KONARSKI, Marcin. Read Evaluate Print Loop ++ [online]. GitHub,
2023. [visited on 2023-05-08]. Available from: https://github.com/
AmokHuginnsson/replxx.

26. LISCHKE, Mike; CORPORATION, Oracle. mysql / mysql-workbench
[online]. GitHub, 2016. [visited on 2023-04-08]. Available from: https://
github.com/mysql/mysql-workbench/tree/8.0/library/parsers/
code-completion.

55

https://en.cppreference.com/w/cpp/utility/any
https://en.cppreference.com/w/cpp/utility/any
https://www.fluentcpp.com/2021/02/05/how-stdany-works/
https://www.fluentcpp.com/2021/02/05/how-stdany-works/
https://en.cppreference.com/w/cpp/language/constraints
https://github.com/antlr/antlr4/blob/8dcc6526cfb154d68849/runtime/Cpp/runtime/src/ANTLRInputStream.cpp%5C#L61
https://github.com/antlr/antlr4/blob/8dcc6526cfb154d68849/runtime/Cpp/runtime/src/ANTLRInputStream.cpp%5C#L61
https://github.com/antlr/antlr4/blob/8dcc6526cfb154d68849/runtime/Cpp/runtime/src/ANTLRInputStream.cpp%5C#L61
https://tiswww.case.edu/php/chet/readline/rltop.html
https://tiswww.case.edu/php/chet/readline/rltop.html
https://github.com/mike-lischke/antlr4-c3
https://github.com/mike-lischke/antlr4-c3
https://smartbear.com/learn/automated-testing/negative-testing/
https://smartbear.com/learn/automated-testing/negative-testing/
https://github.com/AmokHuginnsson/replxx
https://github.com/AmokHuginnsson/replxx
https://github.com/mysql/mysql-workbench/tree/8.0/library/parsers/code-completion
https://github.com/mysql/mysql-workbench/tree/8.0/library/parsers/code-completion
https://github.com/mysql/mysql-workbench/tree/8.0/library/parsers/code-completion

Appendix A
Acronyms

ANTLR4 ANother Tool for Language Recognition 4

ALT Algorithm library toolkit

ALL(*) Adaptive LL(*)

AQL Algorithm Query Language

AST Abstract Syntax Tree

EBNF Extended Backus-Naur Form

REPL Read Evaluate Print Loop

57

Appendix B
Contents of enclosed medium

This work was merged into the repository of Algorithms Library Toolkit [14]
with commit 35ce5qa0e87.

readme.txt.............................the file with contents description
src...the directory of source codes

automata-library........................... implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

59

	Introduction
	Goal of thesis
	Analysis
	Definitions
	Lexer
	Parser
	LL(1)
	Recursive descent parser

	ANother Tool for Language Recognition 4
	Adaptive LL(*) parsing
	Grammar definition

	Algorithm Library Toolkit
	Algorithm Query Language
	Architecture
	aql2
	alibcli
	alib2xml
	alib2common
	alib2abstraction
	alib2std
	alib2measure

	Parsing and evaluating user input

	Implementation
	Preparing grammar
	Lexer
	Expressions
	Files
	New Lines
	Top level commands
	Literals and identifiers

	Integrating new parser
	CMake
	Visitor pattern
	Visitor for the Parser
	Replacing the old parser

	New Features
	Introspect AST command
	Read Evaluate Print Loop ++
	Code Completion in Console Line Interface

	Testing
	Catch2
	State of tests
	New Parser tests

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed medium

