
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Improving short-term rain prediction by using deep neural

networks with advanced architecture

Filip Miškařík

Mgr. Petr Šimánek

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Improving short-term prediction of rain is a very important and challenging task. We

currently use a method called PhyDNet [1] which provides a very good solution, but we

want to improve it further. The PhyDNet architecture currently uses a very basic ConvLSTM

model as a background. The task is to understand if we can improve PhyDNet by

improving the background model.

1) Survey and understand methods for Spatio-temporal prediction using artificial neural

networks

(e.g. ConvLSTm, predNet, predRNN, predRNN++, phyDNet).

2) Explore and describe the weather radar dataset (provided by Meteopress).

3) Implement one chosen method (e.g. predRNN++) into phyDNet architecture, in Pytorch.

4) Train the new model on radar data.

5) Compare the model performance with original phyDNet and analyze the results.

Literatura:

[1] Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video

Prediction, Le Guen et al.

[2] PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning, Y. Wang,

et al.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 8 November 2022 in Prague.

Bachelor’s thesis

Improving short-term rain prediction by
using deep neural networks with advanced
architecture

Filip Miškař́ık

Department of Applied Mathematics
Supervisor: Mgr. Petr Šimánek

May 10, 2023

Acknowledgements

I would like to thank Mgr. Petr Šimánek for his guidance, advice and sug-
gestions. I would also like to thank the company Meteopress and Datalab of
FIT CTU for providing the dataset and computational power, which made
this thesis possible.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 10, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Filip Mǐskař́ık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mǐskař́ık, Filip. Improving short-term rain prediction by using deep neural
networks with advanced architecture. Bachelor’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2023.

Abstrakt

Nowcasting srážek si klade za ćıl poskytovat přesné krátkodobé předpovědi
srážek pro určitou oblast. V posledńıch letech se k takovým předpověd́ım č́ım
dál častěji využ́ıvaj́ı hluboké neuronové śıtě. Zaměřeńım této práce je vylepšeńı
jedné z těchto śıt́ı, PhyDNet, sestávaj́ıćı se z dvouvětvé architektury, která
rozplétá fyzikálńı dynamiku bouřek od ostatńıch informaćı.

V jedné z větv́ı PhyDNetu se v současnosti využ́ıvá jednoduchý model
pro obecné předpov́ıdáńı sńımk̊u videa, ConvLSTM. V této práci provád́ıme
několik úprav PhyDNetu, od malých změn současné architektury až po ex-
perimentováńı s využit́ım jiných model̊u mı́sto ConvLSTM, specificky SA-
ConvLSTM a PredRNN.

Tato práce přináš́ı dvě perspektivńı modifikace – nahrazeńı ConvLSTM
za komplexněǰśı model PredRNN a přidáńı zkratky (tzv. skip connection) do
větve zodpovědné za modelováńı fyzikálńı dynamiky. Naše experimenty uka-
zuj́ı, že tyto změny přináš́ı lepš́ı výsledky oproti p̊uvodńımu modelu, obzvláště
pro dlouhodoběǰśı předpovědi.

Kĺıčová slova časoprostorová predikce, předpov́ıdáńı srážek, hluboké učeńı,
konvolučńı neuronová śıt’, rekurentńı neuronová śıt’, PyTorch

vii

Abstract

The goal of precipitation nowcasting is to give a precise short-term prediction
of rainfall intensity in a local region. In recent years, this problem has seen
wide adoption by many deep learning models for spatiotemporal prediction.
This thesis focuses on improving one such model, PhyDNet, which disentan-
gles physical dynamics from other, unknown, information in a two-branch
architecture.

The branch for capturing the unknown phenomena uses a basic Conv-
LSTM model for general video prediction. In this thesis, we apply several
modifications to the PhyDNet, ranging from small adjustments to the cur-
rent architecture to experiments with swapping the ConvLSTM for different
models, namely SA-ConvLSTM and PredRNN.

We present two promising alterations – replacing ConvLSTM with a more
complex PredRNN model and adding a skip connection to the branch that
models physical dynamics. The results of our experiments show that these
modifications can outperform the original network, especially for more long-
term predictions.

Keywords spatiotemporal prediction, precipitation nowcasting, deep learn-
ing, convolutional neural network, recurrent neural network, PyTorch

viii

Contents

Introduction 1

1 Machine learning background 3
1.1 Deep learning . 3

1.1.1 Fully-connected layer . 3
1.1.2 Adam . 4
1.1.3 Vanishing gradient problem 4
1.1.4 Normalization . 4

1.2 Convolutional neural networks 5
1.2.1 Convolutional layers . 6
1.2.2 Pooling layers . 6

1.3 Recurrent neural networks . 7
1.3.1 LSTM . 7
1.3.2 GRU . 9
1.3.3 Encoder-decoder and seq2seq networks 10

1.4 Attention mechanism . 11

2 Models for spatiotemporal prediction 13
2.1 PhyDNet . 14
2.2 ConvLSTM . 15
2.3 SA-ConvLSTM . 16
2.4 PredRNN . 18

2.4.1 PredRNN-v2 . 19
2.4.2 PredRNN++ . 20

2.5 TrajGRU . 20

3 Precipitation nowcasting 21
3.1 Weather radars . 22
3.2 Radar echo extrapolation . 22

3.2.1 COTREC . 22

ix

3.2.2 STEPS . 23
3.3 Deep learning . 23

4 Dataset and implementation 25
4.1 Radar echo dataset . 25
4.2 Used libraries and tools . 26
4.3 Common settings and hyperparameters 26

4.3.1 Training . 26
4.3.2 PhyCell and ConvLSTM hyperparameters 26

5 Experiments 29
5.1 Branch connection . 29
5.2 Separate decoders . 29
5.3 Skip connections . 31
5.4 SA-ConvLSTM . 33
5.5 PredRNN . 34
5.6 Summary of experiments . 36

Conclusion 41

Bibliography 43

A Acronyms 47

B Contents of the attachment 49

x

List of Figures

1.1 Comparison of normalization techniques 5
1.2 Convolutional layer . 6
1.3 Downsampling (max pooling) . 7
1.4 Recurrent connections in a neural network 8
1.5 LSTM unit . 9
1.6 GRU unit . 9
1.7 Sequence-to-sequence network . 10
1.8 Encoder-decoder network with skip connections 11
1.9 Attention mechanism . 12

2.1 PhyDNet architecture . 14
2.2 Self-attention memory module . 16
2.3 SA-ConvLSTM unit . 17
2.4 PredRNN architecture . 18
2.5 ST-LSTM unit . 19
2.6 Casual LSTM unit . 20
2.7 Dynamic connections in TrajGRU 20

5.1 Predictions of PhyDNet with connected branches 30
5.2 Predictions of PhyDNet with separate decoders 31
5.3 Predictions of PhyDNet with skip connections for longer sequences 32
5.4 Predictions of PhyDNet with skip connections 33
5.5 Predictions of PhyDNet with SA-ConvLSTM 34
5.6 Predictions of PhyDNet with PredRNN 35
5.7 Partial predictions from the ConvLSTM and PredRNN cells 36
5.8 Comparison of MSE, MAE and SSIM over time 38
5.9 Sample predictions from all experiments 39

xi

Introduction

In recent years, deep learning has emerged as a cutting-edge solution to many
different types of problems. One of the problems where artificial neural net-
works have received growing interest is spatiotemporal prediction – the task
of predicting sequences of data based on their variations in both time and
space. An important application of spatiotemporal prediction is short-term
rain prediction, also known as precipitation nowcasting, which is the main
focus of this thesis.

Precipitation nowcasting is a significant problem in the field of meteo-
rology, which aims to give precise short-range (usually 0-6 hours) forecast of
rainfall intensity in a local region based on radar echo maps or using numerical
weather prediction. It has a substantial impact on our daily lives as it provides
airports with weather guidance, helps predict road conditions, and aids with
issuing emergency rainfall alerts, potentially saving many lives. However, with
the very complex nature of atmospheric dynamics and increasing demand for
real-time, accurate, and timely prediction, precipitation nowcasting presents
a significant challenge. [1, 2]

Many machine learning models have been specifically designed or success-
fully used for precipitation nowcasting. They often consist of convolutional
and recurrent neural networks that predict rainfall from sequences of radar
images. The PhyDNet model takes this a step further and combines the power
of these neural networks with knowledge of physical laws. The resulting ar-
chitecture contains two major subnetworks, one for modeling the physics and
the other for capturing the unknown factors through a recurrent convolutional
network.

Although the results of PhyDNet for precipitation nowcasting are promis-
ing, there is room for improvement. The recurrent convolutional subnetwork
uses ConvLSTM, a relatively simple model for general spatiotemporal video
prediction. This thesis aims to improve this part of PhyDNet, either through
various modifications of the current ConvLSTM model or by replacing it with
a more novel and complex model.

1

Introduction

This thesis is divided into five chapters. The first chapter provides theoret-
ical deep learning background and introduces the reader to concepts important
for the thesis. Chapter 2 then describes various models for spatiotemporal
prediction and explains their architecture. Chapter 3 defines precipitation
nowcasting and outlines some methods used for the task. Chapter 4 describes
the radar echo dataset and outlines the details of the training procedure. In
chapter 5, all of the conducted experiments are described and evaluated and
their results are summarized, compared, and discussed.

2

Chapter 1
Machine learning background

This thesis deals with the application of neural networks for predicting the
weather. It is assumed that the reader is familiar with basic principles of neural
networks and how they are trained. This chapter describes select concepts in
neural networks and deep learning important for this thesis. It also explains
more advanced topics in deep learning, like convolutional and recurrent neural
networks, or attention.

1.1 Deep learning

The core building blocks of neural networks are layers consisting of individual
neurons, each computing some function of its inputs. Neural networks can
model very complex functions by stacking multiple such layers on top of each
other. The values of the input to network are referred to as the input layer,
while the last layer, which represents a final score or decision, is called the
output layer. All intermediate layers are collectively known as the hidden
layers. Deep learning refers to the practice of using neural networks with
many hidden layers.

1.1.1 Fully-connected layer

A fully-connected layer (also called a dense layer) is a basic type of layer used
in neural networks. It is made up of a vector of neurons with every neuron
connected to all p neurons in the previous layer. Each neuron calculates

z =
p∑

i=1
wixi + b = wT x + b, (1.1)

where x = (x1, . . . , xp)T are the inputs, w = (w1, . . . , wp)T are the weights and
b is the bias. The output of the entire layer with n neurons can be written in
matrix form as

z = W T x + b (1.2)

3

1. Machine learning background

where i-th column of W ∈ Rp×n and i-th element of b ∈ Rn are the weights
and bias of i-th neuron in the layer.

z or z are subsequently passed to an activation function f , such as the
sigmoid, hyperbolic tangent, ReLU or Leaky ReLU, to form the output Ŷ =
f(z).

Nowadays, many neural networks use the fully-connected layers in tandem
with other types of layers, like convolutional and pooling layers (discussed in
sections 1.2.1 and 1.2.2), to form more complex architectures.

1.1.2 Adam

Neural networks are trained to minimize a function J(w), which represents
the average prediction error measured with loss function L, given the network
parameters w. The function is minimized using gradient descent, which calcu-
lates the gradient ∇wJ and then updates the parameters as w ← w − η∇wJ ,
moving in the opposite direction of the gradient. [3]

The hyperparameter η (called the learning rate) determines how much the
parameters are updated. Instead of traditional gradient descent, which main-
tains a single unchanging learning rate, modern networks use optimization al-
gorithms with multiple adaptive learning rates, such as RMSprop, AdaGrad,
or Adam. The network implemented in this thesis uses the Adam algorithm,
which computes individual adaptive learning rates for each parameter from
estimates of the first (mean) and second (uncentered variance) moments of
the gradients. [4]

1.1.3 Vanishing gradient problem

Training deep neural networks presents a significant challenge because of the
vanishing gradient problem. When the weights are updated, the gradient
moves back through the network, often getting smaller with each step. This
prevents the weights from updating their values and causes the neurons in
earlier layers to learn at a much slower pace than neurons in later layers.

Because the gradient is calculated using the chain rule, the gradient in the
early layers is the product of terms from all the later layers. When combined
with the fact that some activation functions like the sigmoid have derivatives
with values in a range between 0 and 1, the multiplication of n such small
numbers causes the gradient to vanish. However, the opposite situation, where
the gradient gets progressively bigger, can also occur and is called the exploding
gradient problem. [3]

1.1.4 Normalization

Another issue, which makes training deep networks difficult, is the fact that
the inputs of each layer depend on the parameters of previous layers. This

4

1.2. Convolutional neural networks

means that small changes to the network’s parameters amplify as the network
becomes deeper. This phenomenon, known as internal covariate shift, slows
down training by requiring lower learning rates and careful parameter initial-
ization. [5] A solution to this problem is to normalize the inputs through one
of the following methods:

Batch Normalization normalizes the means and variances of the inputs
to a layer for each training mini-batch. It significantly accelerates the
training and also helps the gradient to flow through the network by
reducing the dependence of gradients on the scale of the parameters
or their initial values. [5] However, the effect of batch normalization is
highly dependent on the mini-batch size with the error rapidly increasing
with decreasing batch size. [6, 7]

Layer Normalization computes the means and variances from the sum of
all inputs to a layer on a single training case. It is also highly effective
at stabilizing the hidden state dynamics in recurrent neural networks.
[6]

Group Normalization divides the channels of the input into groups and
computes the mean and variance for normalization within each group.
This makes the normalization independent of the mini-batch size. [7]

Figure 1.1: Comparison of normalization techniques on an input tensor. N is
the batch size, C the number of channels and (H, W) the height and width.
The blue area is normalized by the same and variance, computed by aggre-
gating the values of these pixels. [7]

1.2 Convolutional neural networks

Convolutional neural networks (CNNs) are specialized kinds of neural net-
works designed mainly for working with images (although they have numerous
other applications, such as audio, text, or time series analysis). [8] Compared
to traditional, fully-connected networks, they present two significant advan-
tages. Firstly, CNNs can take into account the spatial structure of the image
and extract spatial features without explicit engineering. Secondly, they scale

5

1. Machine learning background

much better with the size of the images. For example, in a fully-connected
network with a color input image of size 600×600, each fully-connected neuron
in the first hidden layer would have over a million parameters. In convolu-
tional networks, each point of the output is connected to only a small area of
the input, which vastly reduces the number of parameters in the network and
makes the computations much more efficient. [9, 3]

A typical convolutional network is made up of an alternating pattern of
convolutional and pooling layers. The convolutional layers are usually imme-
diately followed by an activation function like ReLU. Fully-connected layers
are commonly found at the end of the network, with the last fully-connected
layer computing the output, i. e. the classification score. [9]

1.2.1 Convolutional layers

Convolutional layers are the main building blocks of CNNs. They consist of a
set of learnable 3D filters of shape C × k× k, which process 3D input tensors
of shape C×H ×W , where C is the number of image channels, H and W are
the height and width of the image and k is the size of the filter. These filters
slide across the input image and calculate cross-correlation at each position
in the image (shown in Figure 1.2). This produces a set of 2D tensors called
activation maps. These activation maps are then stacked along the channel
dimension to obtain a 3D output. The network will usually learn filters that
activate upon detecting a particular visual feature, for example, an edge or a
specific color. [10, 9]

Figure 1.2: Example of a convolutional layer with a 3× 3 kernel [11]

1.2.2 Pooling layers

Pooling layers are used to progressively reduce the spatial size (also known as
downsampling) of the images, thereby diminishing the number of parameters,
which leads to faster computations and helps control overfitting. This is done
by replacing the outputs at a specific location with a summary statistic of the

6

1.3. Recurrent neural networks

nearby pixels. A commonly used technique is max pooling, which outputs the
maximum value within a rectangular neighborhood. Other pooling functions
include average pooling and L2 norm pooling, both of which have seen less
use in recent years compared to max pooling. The pooling function is applied
to a k × k filter, which slides across the image and downsamples each slice
independently to a single value (see Figure 1.3). [10, 9]

Figure 1.3: Example of max pooling using a 2 × 2 filter with stride 2. The
maximum value of the 2 × 2 square is outputted, resulting in an image with
half the height and width of the original and only 25% of the values. [9]

An opposite operation to pooling, upsampling, is used for increasing the
resolution of the image. It is often found in convolutional encoder-decoder
networks (section 1.3.3), where upsampling is used to scale outputs of the
downsampling layers back to the original size of the input images. [12]

1.3 Recurrent neural networks

In many learning tasks, e.g. text prediction, music generation, or video ana-
lysis, predictions depend not only on the current input but also on the previ-
ous inputs. However, feed-forward or convolutional neural networks can only
process one input at a time, which makes them unsuitable for such tasks.
Recurrent neural networks (RNNs) address this issue by processing sequences
of data via recurrent connections, which can be thought of as loops in the
network that allow information to persist. [13] As shown in Figure 1.4, these
loops can be unfolded into a sequence of networks that share some of the pa-
rameters across time steps. To achieve this, RNNs introduce a hidden state
containing a summary of the information from previous inputs that transfers
the memorized features to the next time step. [8, 10]

1.3.1 LSTM

While RNNs can access information from previous inputs, this ability dimin-
ishes when going further into the past because of the vanishing gradient prob-
lem. A widely-used solution to this problem are Long Short-Term Memory

7

1. Machine learning background

Figure 1.4: Recurrent connections can be represented by cycles in the network
(left) or as an unfolded series of networks with recurrent edges connecting the
network across adjacent time steps (right). [8]

(LSTM) networks, which are capable of learning long-term dependencies. In
addition to the hidden state, they contain a memory cell C for passing long-
term information and possess a more intricate inner structure that allows to
add or remove information from the memory cell state. [13, 8]

Inside the LSTM, there are three multiplicative gates, which determine
whether and how the inputs should affect the memory cell state and the output
of the unit. The forget gate (ft) controls which information is kept and which
is discarded, the input gate (it) decides which parts of the input will be added
to the memory cell, and the output gate (ot) determines which information
will be outputted at the current time step. [8]

The network takes both the input at the current time step Xt and the
hidden state at the previous time step Ht−1 as its input and passes it to the
gates, which are comprised of fully-connected layers with activation functions
and element-wise operations. Collectively, these can be described by the fol-
lowing set of equations, where W and b are the weight and bias parameters
and ⊙ is the element-wise (Hadamard) product:

ft = σ (Wxf Xt + WhfHt−1 + bf)
it = σ (WxiXt + WhiHt−1 + bi)
ot = σ (WxoXt + WhoHt−1 + bo)
C̃t = tanh (WxcXt + WhcHt−1 + bc)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t

Ht = ot ⊙ tanh (Ct)

(1.3)

Figure 1.5 shows a visual representation of these calculations. [8]
There are many modifications of the LSTM model, a notable example

being the Gated Recurrent Unit (GRU). Another variation suited for spa-
tiotemporal prediction, ConvLSTM, is described later in section 2.2.

8

1.3. Recurrent neural networks

Figure 1.5: Inner structure of the LSTM unit. [8]

1.3.2 GRU

GRU is a variation on LSTM, which simplifies the model by merging the
hidden state and memory cell state. It also replaces the three gates with
just two gates. The reset gate (rt) decides how much the previous state will
be remembered. When the reset gate is close to 0, the hidden state ignores
the previous hidden state Ht−1 and resets itself with the current input. This
allows the network to discard information that is not relevant. The update
gate (ut) controls how much of the previous hidden state will be copied into
the current hidden state. This serves a similar function to the memory cell
of LSTMs and helps capture long-term dependencies. The resulting model
performs similarly to LSTM, while being simpler and faster to compute. [8,
14]

Figure 1.6: Inner structure of the GRU unit. [13]

9

1. Machine learning background

1.3.3 Encoder-decoder and seq2seq networks

Some problems require the recurrent network to take one sequence of data and
output a different sequence. For example in machine translation, the model
takes a sentence in one language and tries to predict a corresponding sentence
in a different language. But due to different grammatical rules, the two sen-
tences might have a different ordering of the words or even different lengths.
Generally, problems that involve mapping a variable-length sequence to a dif-
ferent variable-length sequence are known as sequence-to-sequence (seq2seq)
problems. [8]

A common approach for seq2seq is to use an encoder-decoder network.
The encoder RNN processes the input sequence X1, . . . , Xt into a fixed-size
hidden state often called the context and the decoder RNN then uses the
context to generate the output sequence Y1, . . . , Yt′ . The last state Ht of the
encoder is often provided as an input to the decoder RNN (demonstrated in
Figure 1.7). Both RNNs are then jointly trained to maximize the average of
log P(Y1, . . . , Yt′ | X1, . . . , Xt) across all pairs of X and Y in the training set.
[10, 15]

Figure 1.7: Example of seq2seq network for machine translation with encoder
and decoder RNNs. The last state of the encoder is fed into the decoder as
an input along with the previously generated word. [8]

Networks for processing sequences of images combine the encoder-decoder
architecture with convolutional layers. The encoder utilizes convolutional and
pooling layers to reduce the input images into a smaller representation and the
decoder uses convolutional and upsampling layers, which increase the spatial
size of the output. [12] A notable feature in these networks are skip connec-
tions, which combine information from early layers into later layers, usually
through addition or concatenation (shown in Figure 1.8). This provides an
additional path for the gradient to flow through and is one of the ways of
tackling the vanishing gradient problem. Skip connections also allow to pass
features from the encoder directly to the decoder in order to recover infor-
mation lost during downsampling and to help with feature reusability. Many
modern network architectures, such as U-Net, ResNet, or DenseNet, heavily
utilize skip connections. [16, 12]

10

1.4. Attention mechanism

Figure 1.8: Convolutional encoder-decoder network architecture with skip con-
nections. [16]

1.4 Attention mechanism

One flaw of encoder-decoder networks is that they need to compress all the
information from the input sequence into a fixed-length state, which presents
a challenge with increasing length of the sequences. A solution to this problem
is a mechanism known as attention. It is the core idea behind Transformers,
found in many state-of-the-art models, including OpenAI’s GPT-4. The in-
tuition behind attention is that it allows the network to selectively focus on
specific parts of the input at each decoding step by enabling the decoder to
periodically revisit the input sequence. [8, 17]

The idea is for the encoder to produce a representation of the same length
as the input sequence. The decoder then receives a weighted vector of these
representations with the weights deciding how much focus should be given to
a particular input token. When predicting, the model only attends to parts
of the input that are deemed relevant to the current prediction. [8]

Vaswani et al. describe attention in [18] as “mapping of a query and a set
of key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of
the query with the corresponding key.”

Given a database D = (k1, v1), . . . , (kn, vn) of n pairs of keys and values
and a query q we can define attention over D as

Attention(q,D) =
n∑

i=1
α(q, ki)vi, (1.4)

where α(q, ki) ∈ R, i = 1, . . . , n are scalar attention weights of the values.

11

1. Machine learning background

To ensure that the weights are not negative and add up to 1, they are
usually normalized by the softmax function as

α(q, ki) = softmax(a(q, ki)) = exp(a(q, ki))∑
j exp(a(q, kj)) , (1.5)

where a(q, kj) is an attention scoring or alignment function, most common
being dot-product and additive attention.

In practice, attention is often calculated on multiple queries simultane-
ously. Suppose we have n queries and m key-value pairs with queries and keys
of length dk and values of length dv. The queries, keys and values are stacked
into matrices Q ∈ Rn×dk , K ∈ Rm×dk and V ∈ Rm×dv . The attention can
then be formulated using matrix multiplication as:

Attention(Q, K, V) = softmax
(
a

(
QKT))

V. (1.6)

Figure 1.9 shows the entire attention pooling process. [18, 17]

Figure 1.9: Computing the output of attention pooling as a weighted average
of values, where weights are computed with the attention scoring function and
the softmax operation. [8]

A special case of the attention mechanism, when all of the keys, values,
and queries come from the same source, is known as self-attention. It relates
different positions of a single sequence in order to compute a representation
of the sequence. It is a key concept behind SA-ConvLSTM, a model for
spatiotemporal prediction described in section 2.3. [18]

12

Chapter 2
Models for spatiotemporal

prediction

Spatiotemporal predictive learning is an important problem and a hot research
topic in the fields of artificial intelligence and computer vision. The task is to
make predictions from input sequences that consider both the variations over
time and the changes in the spatial structure. It has applications in numerous
fields – video prediction, surveillance, traffic flow prediction, simulation of
physical interactions, or, most importantly for this thesis, weather forecasting.

To define this problem formally, suppose that we are observing a dynamical
system, such as a video clip, of P measurements (e.g. RGB image channels)
over time. These measurements are recorded across all points in a spatial
region represented by M ×N grid with M rows and N columns. Observation
at any time can be represented by a tensor X ∈ RP ×M×N . Observations over
T time steps form a sequence of tensors X1, X2, . . . , XT . The spatiotemporal
prediction problem is to predict the most likely length-K sequence in the
future

X̃t+1, . . . , X̃t+K = arg max
Xt+1,...,Xt+K

p
(
Xt+1, . . . , Xt+K | X̂t−J+1, . . . , X̂t

)
(2.1)

given the previous J observations, including the current one. [1, 19]

Neural networks that solve this problem usually use the recurrent encoder-
decoder architecture described in the previous chapter, along with convolu-
tional layers for processing the images (although recently, other machine learn-
ing models, such as the Transformer, have also been successfully adopted for
this task [20]). This chapter presents some of the models used for spatiotem-
poral prediction.

13

2. Models for spatiotemporal prediction

2.1 PhyDNet

PhyDNet, introduced by Vincent Le Guen and Nicolas Thome in [21], is the
primary focus of this thesis. It is a seq2seq deep model dedicated to video
prediction, which leverages physical dynamics described by partial differential
equations (PDEs) that are disentangled from unknown factors (i.e. appear-
ance, details, or texture).

Figure 2.1: Left: Example of the disentanglement of physical dynamics from
unknown factors on the Moving MNIST dataset. Right: The structure of the
recurrent PhyDNet unit. [21]

Because physical laws might not apply at pixel level of the input video,
PhyDNet maps the input into latent space H. The authors assume that in
H, the mechanics in the video can be described by physical laws. The model
learns H in an unsupervised manner using a deep convolutional encoder E
and decoder D so that the physical dynamics are disentangled from other
information.

The inner architecture consists of two parallel branches (see Figure 2.1).
The left branch captures the physical dynamics using a recurrent physical cell,
PhyCell, which models a broad class of PDEs approximated by convolutional
layers. The right branch contains a deep recurrent ConvLSTM network that
captures all the residual dynamics.

Both branches complement each other – the PhyCell regularizes training
and improves generalization, while the ConvLSTM captures unknown phe-
nomena which do not correspond to any prior model and are learned entirely
from data. The physical constraints of the PhyCell also help reduce the num-
ber of parameters.

Given spatial coordinates x = (x, y), the latent representation of the video
up to time t, h(t, x) ∈ H, can be decomposed as h = hp + hr, where hp and hr

14

2.2. ConvLSTM

represent the physical and residual dynamics, respectively. The evolution of
the video in H is then governed by the following PDE:

∂h(t, x)
∂t

= ∂hp

∂t
+ ∂hr

∂t
:=Mp(hp, u) +Mr(hr, u), (2.2)

where u = u(t, x) is the frame of a video at time t andMp(hp, u) andMr(hr, u)
are the physical and residual dynamics in the latent space H.

The encoded mapping of the input frame E(ut) is passed to the two
branches that fulfill the respective parts of the PDE in 2.2. They subsequently
compute hp

t+1 (resp. hr
t+1) from E(ut) and hp (resp. hr). The combined repre-

sentation ht+1 = hp
t+1 + hr

t+1 is passed to the decoder D to predict the image
ût+1. [21]

2.2 ConvLSTM

Convolutional LSTM, or ConvLSTM, is an extension of the LSTM model for
spatiotemporal prediction. Although LSTM handles temporal correlation well,
it struggles with capturing the spatial correlation, because the fully-connected
layers in input-to-state and state-to-state transitions in the cell cannot encode
spatial information. To overcome this, ConvLSTM replaces these layers with
convolutional layers. [1]

The inputs Xt to the ConvLSTM cell are 3D tensors with the first di-
mension being the number of channels and the other two being the spatial
dimensions (height and width). The inner workings of the cell can be de-
scribed by following equations with ‘∗’ representing the convolution operator:

it = σ (Wxi ∗Xt + Whi ∗ Ht−1 + Wci ⊙ Ct−1 + bi)
ft = σ (Wxf ∗ Ct + Whf ∗ Ht−1 + Wcf ⊙ Ct−1 + bf)
ot = σ (Wxo ∗ Ct + Who ∗ Ht−1 + Wco ⊙ Ct + bo)
gt = tanh (Wxc ∗ Ct + Whc ∗ Ht−1 + bc)
Ct = ft ⊙ Ct−1 + it ⊙ gt

Ht = ot ⊙ tanh (Ct)

(2.3)

Like LSTM, ConvLSTM can also be used as a building block for more com-
plex structures, often stacks of multiple ConvLSTM units. An example given
by the authors of the original paper uses an encoding and forecasting net-
work with both using two ConvLSTM units. Stacking multiple ConvLSTMs
brings strong representational power to the network, making it suitable for
predictions in complex dynamical systems, like precipitation nowcasting. [1]
A similar stacked structure is also used in the residual cell of PhyDNet.

15

2. Models for spatiotemporal prediction

2.3 SA-ConvLSTM

SA-ConvLSTM adds a novel self-attention memory (SAM) module to Conv-
LSTM. SAM is aimed at memorizing features with long-term dependencies
in both the spatial and temporal domains. Based on self-attention, SAM
can capture information by aggregating features across all positions of both
the input itself and the network’s memory with pair-wise similarity scores.
Additionally, an extra memory cell M is used to memorize global spatial
features. M can also capture long-range temporal dependencies through a
gating mechanism, similar to that in LSTM. [22]

Figure 2.2: Structure of the SAM module. Q, K and V represent the query,
key and value used in the attention mechanism. [22]

Figure 2.2 shows the pipeline of the self-attention memory module. SAM
applies self-attention to both the hidden state Ht and the previous state of
the memory cell Mt−1. The hidden state Ht is mapped into different feature
spaces as the query Qh = Whq ∗Ht ∈ RĈ×N , key Kh = Whk ∗Ht ∈ RĈ×N and
value Vh = Whv ∗Ht ∈ RC×N and the memory cell stateMt−1 is mapped into
the key Km = Wmk ∗Mt−1 ∈ RĈ×N and value Vm = Wmv ∗Mt−1 ∈ RC×N ,
where W are sets of weights for 1 × 1 convolutions, C and Ĉ are number of
channels and N = H ×W .

The similarity scores between the queries and keys are calculated using
matrix multiplication as:

eh = QT
h Kh ∈ RN×N (2.4)

These are then normalized along columns by a softmax function:

αh;i,j = exp eh;i,j∑N
k=1 exp eh;i,k

, i, j ∈ 1, 2, . . . , N (2.5)

16

2.3. SA-ConvLSTM

The similarity scores em and αm of the memory cell M are calculated the
same way.

The features Zh and Zm are obtained as a weighted sum across all locations
in the value. The i-th location in the feature is calculated as:

Zh;i =
N∑

j=1
αh;i,jVh;j =

N∑
j=1

αh;i,j(WhvHt;j)

Zm;i =
N∑

j=1
αm;i,jVm;j =

N∑
j=1

αm;i,j(WmvMt−1;j),
(2.6)

where Vh;j and Vm;j are the j-th columns of the values. Zm and Zh are then
concatenated into the aggregated feature Z = Wz[Zh, Zm].

The memory M is updated by a gating mechanism, which combines the
aggregated feature Z, hidden state Ht and memory Mt−1. This allows the
SAM to capture global past spatiotemporal information. The output feature
of SAM is a dot product between an output gate and the updated memory
state Mt. The memory updating and module output can be formulated as:

i′
t = σ (Wm;zi ∗ Z + Wm;hi ∗ Ht + bm;i)

g′
t = tanh (Wm;zg ∗ Z + Wm;hg ∗ Ht + bm;g)

Mt =
(
1− i′

t

)
⊙Mt−1 + i′

t ⊙ g′
t

o′
t = σ (Wm;zo ∗ Z + Wm;ho ∗ Ht + bm;o)
Ĥt = o′

t ⊙Mt

(2.7)

The SAM is then embedded into the ConvLSTM unit as shown in Figure
2.3. Without the SAM module, the SA-ConvLSTM would degenerate into
standard ConvLSTM. [22]

Figure 2.3: The SA-ConvLSTM unit. [22]

17

2. Models for spatiotemporal prediction

2.4 PredRNN

Another variation on ConvLSTM is the predictive RNN (PredRNN). It is
based on the idea that both spatial and temporal variations should be mem-
orized in a unified memory cell M. This memory then travels through the
network in two directions – across stacked RNN layers vertically and through
all RNN states horizontally, allowing different LSTMs to interact with each
other. On the whole, the standard temporal memory C flows in the horizontal
direction and the new spatiotemporal memory M zigzags through the net-
work in both directions (see Figure 2.4). This accomplishes an efficient flow
of spatial information while being relatively prone to the vanishing gradient
problem. [19]

Figure 2.4: The architecture of PredRNN. The orange arrows show the flow
of the memory state M. © 2021 IEEE [23]

This design is supported by a new unit, the spatiotemporal LSTM (ST-
LSTM), shown in Figure 2.5. It maintains the cells and gates from LSTM but
adds a new gating mechanism for updating the spatiotemporal memory M.
ST-LSTM also uses a shared output gate for both memory types to enable
seamless memory fusion, which can effectively model the shape deformations
and motion trajectories in the spatiotemporal sequences. [19]

The entire model is described by the following set of equations, whereHl
t−1

represents the hidden state in layer l at a time step t− 1:

18

2.4. PredRNN

it = σ
(
Wxi ∗Xt + Whi ∗ Hl

t−1 + bi

)
ft = σ

(
Wxf ∗Xt + Whf ∗ Hl

t−1 + bf

)
gt = tanh

(
Wxg ∗Xt + Whg ∗ Hl

t−1 + bg

)
i′
t = σ

(
W ′

xi ∗Xt + Wmi ∗Ml−1
t + b′

i

)
f ′

t = σ
(
W ′

xf ∗Xt + Wmf ∗Ml−1
t + b′

f

)
g′

t = tanh
(
W ′

xg ∗Xt + Wmg ∗Ml−1
t + b′

g

)
ot = σ

(
Wxo ∗Xt + Who ∗ Hl

t−1 + Wco ∗ Cl
t + Wmo ∗Ml

t + bo

)
Cl

t = ft ⊙ Cl
t−1 + it ⊙ gt

Ml
t = f ′

t ⊙Ml−1
t + i′

t ⊙ g′
t

Hl
t = ot ⊙ tanh

(
W1×1 ∗

[
Cl

t,Ml
t

])

(2.8)

Figure 2.5: Inner structure of the ST-LSTM unit. Yellow circles show addi-
tional features compared to ConvLSTM. © 2021 IEEE [23]

2.4.1 PredRNN-v2

The authors of PredRNN later improved upon the concept in [23] with a
new decoupling loss function that maximizes the distance of memory states
between the two memory cells C and M. This forces the cells to focus on
different aspects of spatiotemporal variations. They also presented a new
learning procedure, Reverse Scheduled Sampling, used at the encoding time
steps, that makes the model learn more about long-term dynamics by ran-
domly hiding real observations with decreasing probabilities as the training
phase progresses.

19

2. Models for spatiotemporal prediction

2.4.2 PredRNN++

A different improvement on PredRNN presented by the same authors is Pre-
dRNN++. It replaces the ST-LSTM unit with a new unit, Casual LSTM,
which updates the memory through a cascaded mechanism shown in Figure
2.6. This allows for a larger recurrence depth from one step to the next and
thereby obtains more modeling power for short-term video dynamics and sud-
den changes. A second improvement presented is a highway layer that provides
an uninterrupted alternative way for the gradient to flow, further helping to
combat gradient backpropagation issues. [24]

Figure 2.6: Casual LSTM unit. Colored parts represent additional operations
compared to ConvLSTM. [24]

2.5 TrajGRU

One problematic aspect of convolutional RNNs is that the convolutions ap-
ply a location-invariant filter. In other words, the neighborhood used for the
calculation stays the same for all locations. However, most motion patterns
require different neighborhoods for different locations. TrajGRU attempts to
combat this by using the current input and the previous state to generate
a neighborhood set for each location at each time step through a convolu-
tional subnetwork (see Figure 2.7). The subnetwork can learn this connection
topology simply by learning its parameters. [2]

Figure 2.7: The connections in a convolutional RNN (left) are fixed, whereas
connections in TrajGRU (right) are dynamically determined. [2]

20

Chapter 3
Precipitation nowcasting

Weather is an essential aspect of our lives. It influences both our day-to-day
decisions, like the choice of clothing or transportation, as well as large-scale,
critical activities, such as agriculture, transportation or disaster management.
In many areas of the world, weather presents a significant threat to human
lives and property, with its impact possibly increasing in the near future due
to climate change. Weather forecasting allows us to understand the current
and future weather conditions and is critical to making informed decisions and
taking appropriate actions.

Nowcasting is a specific type of weather forecasting defined by the World
Meteorological Organization as “forecasting with local detail, by any method,
over a period from the present to 6 hours ahead, including a detailed descrip-
tion of the present weather”. [25] Precipitation nowcasting applies this concept
to predictions of rainfall intensity. It is important for enhancing the safety
of people by providing weather guidance for air traffic control and helping to
issue emergency rainfall alerts among many others.

However, precipitation nowcasting is a difficult problem. Besides the al-
ready very complex nature of the atmosphere and its dynamic processes, the
forecasting resolution and time accuracy required to give precise predictions
are much higher than in other forecasting tasks, like predicting the average
temperature. [1]

Methods for precipitation nowcasting roughly fall into three categories –
methods based on numerical weather prediction (NWP), radar echo extra-
polation methods, and deep learning methods. NWP-based methods build on
very sophisticated simulations of physical equations in atmospheric models.
Even though they can extend the nowcasting range up to 6 hours, they re-
quire long computation times. Most models, therefore, favor faster and more
accurate radar echo map extrapolation techniques or deep learning models.
[1, 25]. This chapter gives an overview of some of these methods.

21

3. Precipitation nowcasting

3.1 Weather radars

Weather radar systems are the most important instruments for measuring
precipitation data. Similar to how sound reflects off surfaces and comes back
in the form of an echo, radars measure rainfall based on signal reflections.
More specifically, radars send out electromagnetic (radio) waves traveling at
approximately the speed of light, which are then reflected by the precipitation
back to the radar. From this information, the radar can calculate the position
and intensity of the precipitation. Radars can usually measure two types of
data – reflectivity, which measures the amount of precipitation in an area, and
velocity, which uses the Doppler effect to measure the speed and direction of
the rainfall. [26]

Radars have numerous advantages over other observing systems. They
can capture precipitation particles over a very large area in three dimensions
with an update rate of a few minutes. They can also operate unmanned
in all weathers and during the day or night. However, they are also very
sophisticated and expensive to build and maintain. [25]

Methods for precipitation nowcasting take radar echo images as their input
data. These are maps of reflected particles over an area surrounding the radar
at a constant altitude. The maps display a color image of the precipitation
intensity measured in dBZ units, which measure the relative reflectivity factor
(Z) of an object.

3.2 Radar echo extrapolation

Conventional methods for precipitation nowcasting often use optical flow for
extrapolation from radar echo maps. Generally, these algorithms identify
storms as objects in the radar maps and then track the motion of the storm
by identifying the same object in successive radar echo images. [25]

3.2.1 COTREC

COTREC is a radar extrapolation method used by the nowcasting system
of the Czech Hydrometeorological Institute built on the TREC method. [27]
TREC predicts the motion of the storms by taking two consecutive radar scans
and computing translation vectors of patterns observed in the two images.

The input images are divided into boxes of the same size. Each box from
the first image is then compared to the relevant boxes in the second image,
usually those found in a circular area around the initial box. The pair with
the highest correlation coefficient is then used to determine the translation
vector that indicates the motion of the initial box.

The results of TREC are often noisy and inconsistent. COTREC attempts
to solve this with two improvements. Firstly, vectors that significantly deviate
from the mean direction of their neighbors are replaced by the average of the

22

3.3. Deep learning

neighboring vectors. Secondly, COTREC forces continuity on the derived
motion vectors with specific requirements through variational analysis. [28]

3.2.2 STEPS

Extrapolation-based methods assume that the precipitation field does not
grow or shrink but simply shifts to a different location. To address this, the
nowcasting system STEPS (Short-Term Ensemble Prediction System) presents
an ensemble model that merges extrapolation nowcasting with a scaled-down
NWP forecast.

The system is able to decompose the precipitation field into a cascade of
features using the Fourier transform. Each level of the cascade represents
a different spatial scale and is treated separately from the other levels. By
combining the predictions, the model can overcome the limitations of both
methods at different scales. [29]

3.3 Deep learning

In recent years, deep learning models have emerged as a promising alterna-
tive to optical flow methods. These models use the seq2seq encoder-decoder
architecture that takes a sequence of radar images as input and produces a
sequence of output images with the predictions.

The spatiotemporal prediction models presented in the previous chapter
have been used for spatiotemporal prediction with promising results. The
experiments conducted on ConvLSTM and TrajGRU have shown that these
models can outperform state-of-the-art optical flow models. [1, 2]

23

Chapter 4
Dataset and implementation

The aim of this thesis is to try to improve the PhyDNet model when used for
precipitation nowcasting. As the original PhyDNet uses only a basic Conv-
LSTM model in the residual branch, our improvements focused on this part
of the model. This chapter describes details of the implementation, the radar
echo dataset, and the procedure used for training the networks.

4.1 Radar echo dataset

The dataset used in this thesis was provided by the company Meteopress. It
consists of 249,196 radar images taken from 2015-10-23 19:30 UTC up until
2020-07-21 23:50 UTC, acquired through the OPERA program of the Euro-
pean Meteorological Network (EUMETNET). The data was recorded every
10 minutes, meaning there are 144 frames per day. The aerial domain of
the images is a rectangular area covering the entirety of the Czech Republic
with small parts of the neighboring countries. The dataset contains a total of
108,646 rainy images, amounting to about 18,096 hours of precipitation. [30]

The images are stored as gray-scale PNG files with resolution of 544× 352
pixels. The pixel values represent the intensity of rainfall in dBZ units. The
radar measurements, which range from 0 dBZ (no precipitation) to 60 dBZ
(heavy rainfall), are linearly mapped into the 8-bit range [0, 255] of the PNG
images. These input values are then scaled to floating point numbers in the
range [0, 1] to help stabilize the training process.

The consecutive images are sliced with a 12-frame-wide sliding window
to generate the sequences, which are then split into a training dataset with
17,361 sequences, a validation dataset with 4,960 sequences, and a test dataset
with 2,481 sequences.

25

4. Dataset and implementation

4.2 Used libraries and tools

The project was implemented in Python 3.10 using machine learning frame-
works PyTorch 1.13, PyTorch Lightning 1.9, and Tensorboard, used for logging
the metrics. The visualizations of the predictions were made using the popular
Python library matplotlib.

The implementation of PhyDNet was adapted from the source code1 pub-
lished with the original paper [21] and from later modifications2 introduced
by Matej Choma in his thesis [30]. The code for PredRNN was derived from
the official implementation3 of [23] and the SA-ConvLSTM implementation
was based on an open source implementation [31]. The rest of the code is our
own work.

The networks were trained on a specialized DGX computing station, be-
longing to Datalab of FIT CTU, equipped with AMD EPYC 7742 64-core
processors and four Nvidia A100 graphics processing units (GPUs) with 40
GBs of memory.

4.3 Common settings and hyperparameters

Most of the settings and hyperparameters were the same for all trained models.
Cases, where the experiments deviated from these common settings, are noted
in the next chapter.

4.3.1 Training

All models were trained using the Adam optimizer (section 1.1.2) with default
parameters: β1 = 0.9, β2 = 0.999, ϵ = 10−8 and learning rate of 10−3. [4] The
loss function minimized during training was L1,2. The training process was
set to a maximum of 50 epochs with early stopping deciding when to end the
training to avoid overfitting.

The networks were trained with 6-frame input sequence and 6-frame out-
put sequence. When evaluating some experiments, we increased the length
of the output sequence, because the differences between the networks become
more noticeable with higher lead times and also to examine the long-term
capabilities of the networks. The mini-batch size was set to 8 for all models.

4.3.2 PhyCell and ConvLSTM hyperparameters

The PhyCell consists of a series of convolutions approximating various PDEs.
These PDEs were computed up to an order of k = 7 with 49 linear terms in
the PDE.

1https://github.com/vincent-leguen/PhyDNet
2https://gitlab.fit.cvut.cz/chomamat/dp-text
3https://github.com/thuml/predrnn-pytorch

26

https://github.com/vincent-leguen/PhyDNet
https://gitlab.fit.cvut.cz/chomamat/dp-text
https://github.com/thuml/predrnn-pytorch

4.3. Common settings and hyperparameters

The ConvLSTM model used 3 individual ConvLSTM layers with dimen-
sions of hidden states set to 128, 128, and 64, respectively. All convolutional
layers used 3× 3 kernels.

The convolutional encoders and decoders both had 3 convolutional layers
with 3 × 3 kernels, followed by a GroupNorm with 16 groups and a Leaky
ReLU with a negative slope of 0.2. The encoder used standard convolutions
to downsample the images, while the decoder used transposed convolution
operators to upsample the images.

27

Chapter 5
Experiments

In this chapter, all of the conducted experiments are presented and described.
These range from smaller adjustments to the baseline PhyDNet network to
experiments with replacing the ConvLSTM network with different models.
The chapter contains both quantitative and qualitative comparisons of these
networks and discusses the results.

5.1 Branch connection

Our first experiment tried connecting both branches of the network by adding
the output from the PhyCell as a second input to the ConvLSTM. The idea
was that instead of each branch learning independently, the residual branch
could know the features learned in the physical branch and utilize them in its
own prediction. The inputs were combined using two approaches, addition and
concatenation along the channel axis. For concatenation, we tried mapping
the two 64-channel inputs into one 64-channel input with convolutional layers.

In both cases, the modified networks had slightly worse MAE but better
SSIM, as shown in Table 5.1. The additive approach also achieved a minor
improvement in MSE. Surprisingly, the concatenating network yielded predic-
tions with more areas with intense precipitation (shown in Fig 5.1). However,
it also tended to predict no precipitation in some areas with less intense rain-
fall (as evident by some of the holes in the bottom right picture in Fig 5.1),
possibly causing the increase in MSE and MAE.

5.2 Separate decoders

In the original model, the decoder D receives the summed outputs from
both branches and then maps them into the original input pixel space. As
both branches serve distinct purposes, their outputs differ quite significantly.
Therefore, we tried passing the output of each branch to its own decoder and

29

5. Experiments

Table 5.1: Relative change in performance of PhyDNet with connected
branches compared to the baseline model. Red denotes loss of performance.
This convention is used in the rest of the tables in this chapter.

Model MSE MAE SSIM
connected branches (addition) −0.60% +1.63% +0.10%
connected branches (concat) +1.73% +0.40% +0.06%

Figure 5.1: Comparison of predictions of PhyDNet with connected branches.

summing the outputs after decoding. Both decoders used the same architec-
ture with 3 convolutional layers with 3 × 3 kernels and respective strides of
2, 1, and 2. This setup was also trained with the ConvLSTM taking the con-
catenation of PhyCell and encoder outputs as an input in the same fashion as
the previous experiment.

Table 5.2 shows that both networks did not achieve any significant im-
provement. Although MSE and SSIM did improve slightly for the network
with independent branches, it did not warrant the additional parameters and
memory usage. The network with connected branches had worse results across
all metrics, likely due to the fact that sharing the features between both
branches forced the decoders to operate less independently. Examples in Fig-
ure 5.2 show that the network with connected branches produced slightly less

30

5.3. Skip connections

Table 5.2: Performance of PhyDNet with separate decoders.

Model MSE MAE SSIM
separate decoders −1.81% +0.54% +0.06%
separate decoders
(connected branches) +2.42% +1.27% −0.006%

accurate shapes of the predicted clouds. Conversely, the other network (shown
on the bottom left) struggled somewhat with generating the high-intensity ar-
eas.

ground truth (+60 min) baseline model

separate decoders
separate decoders

(connected branches)

Figure 5.2: Comparison of predictions of PhyDNet with separate decoders.

5.3 Skip connections

As mentioned in 1.3.3, many networks benefit from the usage of skip (or
residual) connections, which act as a shortcut for both the information and
gradient flow in the network. These were the inspiration for the next set of
experiments.

In the first experiment, we added a skip connection to the physical branch
of the network, multiplying the output from the PhyCell with the decoder
output. The second experiment introduced a global skip connection across the

31

5. Experiments

Table 5.3: Performance of PhyDNet with skip connections.

Model MSE MAE SSIM
PhyCell connection −0.24% −0.27% +0.11%
global connection +1.81% +9.17% −1.11%
global & PhyCell
connection −3.03% +2.17% −0.08%

entire network. The generated final prediction is added to the original input,
causing the network to only predict updates to the previous input instead
of predicting the entire image. The third experiment with skip connections
combined the approaches from the first and second experiments.

Although the first experiment brought only a very slight decrease in MAE
and MSE and increase SSIM (Table 5.3), the predictions shown in Figure 5.4
have a more refined shape and can more accurately capture the core areas of
the storm with heavy rainfall. Figure 5.3 demonstrates that when inputting
longer sequences, the network with the PhyCell connection gives much more
detailed predictions compared to the baseline model, suggesting that the con-
nection might help capture long-term dependencies. Also, as shown in Figure
5.8, when comparing the metrics for longer output sequences, the quality of
the predictions holds up over time compared to other experiments.

Experiments with a global skip connection resulted in worse performance
in almost all metrics and the predictions had less pronounced shapes and were
slightly noisier. Although the combination of both skip connections did result
in an improved MSE, the performance quickly deteriorated with increased
leading times and the visualized predictions were less detailed than with the
PhyCell connection.

+3
0

m
in

ground truth baseline model PhyCell connection

+6
0

m
in

Figure 5.3: Comparison of predictions of PhyDNet with skip connections with
an input sequence of 2 hours.

32

5.4. SA-ConvLSTM

Figure 5.4: Comparison of predictions of PhyDNet with skip connections.

5.4 SA-ConvLSTM

Further experiments focused on replacing the ConvLSTM with a different
model for spatiotemporal prediction. The first model we tried was SA-Conv-
LSTM, which extends the ConvLSTM using the self-attention mechanism.
However, as the authors who proposed this model warned [22], the modified
self-attention used in this model can have very significant computational re-
quirements for large images. This proved to be a problem in our case, where
even after downsampling by the encoder, the images are still relatively large
(almost thrice as large as the Moving MNIST images, for example), requiring
heavy GPU usage.

The implemented model consisted of 3 SA-ConvLSTM layers with hidden
dimensions of 128, 64, and 64, respectively. The network was trained once
without any normalization after the convolutional layer in the LSTM layers
and once with a GroupNorm layer with 16 channel groups. We used common
settings for the rest of the hyperparameters.

Although results in Table 5.4 show that SA-ConvLSTM achieved com-
parable or better performance in most metrics, the decomposed predictions
from both branches showed that the optimizer heavily favored updating the
PhyCell over SA-ConvLSTM, which had only minimal training. Using nor-

33

5. Experiments

Table 5.4: Performance of PhyDNet with SA-ConvLSTM.

Model MSE MAE SSIM
SA-ConvLSTM −4.17% +0.73% −0.01%
SA-ConvLSTM +
GroupNorm −2.05% −0.28% +0.10%

malization in the SA-ConvLSTM units to combat the potential vanishing of
information did not help much as the SA-ConvLSTM branch still showed very
limited signs of learning. While this problem could probably be solved by a
more complex training procedure or optimizer adjustments, because of the
large GPU requirements, we decided to abandon this model.

ground truth (+60 min) baseline model

SA-ConvLSTM SA-ConvLSTM + GroupNorm

Figure 5.5: Comparison of predictions of PhyDNet with SA-ConvLSTM.

5.5 PredRNN

The last set of experiments tried using PredRNN instead of ConvLSTM in the
residual branch. The implemented PredRNN network contained 3 ST-LSTM
cells, each with 64-channel hidden states, 3 × 3 convolutional kernels with a
stride of 1. We trained PhyDNet with PredRNN in two different setups, once

34

5.5. PredRNN

Table 5.5: Performance of PhyDNet with PredRNN.

Model MSE MAE SSIM
PredRNN −1.80% −0.60% +0.19%
PredRNN & PhyCell connection −4.51% −1.20% +0.16%

without and once with the skip connection in the physical branch (described
in section 5.3).

The results in Table 5.5 show that in both experiments PhyDNet with
PredRNN did better in all three metrics. The improvements become more
noticeable in long-term predictions, as evident in Figure 5.8, where these net-
works achieved the best performance for predictions between two and three
hours into the future. Visually, the predictions in Figure 5.6 have slightly more
accurate high-intensity areas but are quite similar to the baseline model. Fig-
ure 5.7 shows the partial predictions from only the ConvLSTM and PredRNN
cells.

ground truth baseline model

PredRNN
PredRNN &

PhyCell connection

Figure 5.6: Comparison of predictions of PhyDNet with PredRNN.

35

5. Experiments

+3
0

m
in

ground truth
baseline model

(ConvLSTM cell output)
PredRNN

(PredRNN cell output)

+6
0

m
in

Figure 5.7: Comparison of partial predictions from the ConvLSTM cell and
PredRNN cell.

5.6 Summary of experiments

The conducted experiments showed that modifying the residual branch of
PhyDNet has a relatively small effect on the overall performance of the net-
work. Table 5.6 compares the best network from each experiment on the test
dataset. The experiment which swapped ConvLSTM for PredRNN and added
a skip connection to the PhyCell achieved the best MAE, MSE, and SSIM.
While some experiments did better than the baseline model, the improvements
were generally small.

However, the differences become more significant when we extend the
length of the predicted sequence past the trained setting of 60 minutes. The
charts in Figure 5.8 show that with PredRNN and the PhyCell skip connection,
the quality of predictions doesn’t deteriorate as fast as in other experiments.
The three experiments with these modifications were the best in all metrics
for more long-term predictions. Both of these modifications also performed
better in MSE, MAE, and SSIM in the 60-minute predictions.

Visually, the most interesting change was seen with the residual connection
for the PhyCell (Figures 5.3 and 5.4), which confirms the quantitative results.
The predictions were more detailed and accurate and the model could more
precisely identify areas with intense precipitation.

Interestingly, replacing ConvLSTM with SA-ConvLSTM model resulted
in the betterment of MSE, MAE, and SSIM, even though the SA-ConvLSTM
showed only minimal signs of learning. However, when assessing the long-term
performance, the results are less encouraging, especially in SSIM, where this
network falls behind the baseline model after the 2-hour mark. Combined with
the computational limitations, SA-ConvLSTM didn’t show as a promising
model for the residual branch.

36

5.6. Summary of experiments

Table 5.6: Performance of each experiment on the test dataset for 60-minute
predictions.

Model MSE MAE SSIM
baseline model 0.001657 0.011011 0.914045
connected branches (addition) 0.001643 0.011197 0.915032
separate decoders 0.001621 0.011077 0.914614
PhyCell connection 0.001653 0.010985 0.915047
SA-ConvLSTM + GroupNorm 0.001623 0.010979 0.915027
PredRNN & PhyCell connection 0.001582 0.010878 0.915549

Overall, the experiments indicate two potential improvements to PhyDNet:
adding a skip connection to the physical branch and using PredRNN instead
of ConvLSTM, both of which consistently achieved better performance in all
three metrics for 60- and 180-minute predictions and generated more detailed
images. These could serve as a basis for further research.

The results of other experiments are mixed. While some experiments did
improve the performance in one metric, they also did worse in others. In some
cases (namely with SA-ConvLSTM and separate decoders), the modifications
burdened the model with increased computational requirements, making train-
ing slower and more difficult, while delivering little to no performance gain.

37

5. Experiments

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

0.001

0.002

0.003

0.004

0.005

0.006

MSE
baseline model
connected branches, addition
separate decoders
PhyCell connection
SA-ConvLSTM + GroupNorm
PredRNN
PredRNN + PhyCell connection

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

MAE
baseline model
connected branches, addition
separate decoders
PhyCell connection
SA-ConvLSTM + GroupNorm
PredRNN
PredRNN + PhyCell connection

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
time (min)

0.84

0.86

0.88

0.90

0.92

0.94

SSIM
baseline model
connected branches, addition
separate decoders
PhyCell connection
SA-ConvLSTM + GroupNorm
PredRNN
PredRNN + PhyCell connection

Figure 5.8: Comparison of the average MSE, MAE and SSIM of the prediction
sequence over time on test dataset. The predictions were set for 3 hours.

38

5.6. Summary of experiments

+20 min +40 min +60 min

baseline model

connected branches (addition)

separate decoders

PhyCell connection

SA-ConvLSTM + GroupNorm

PredRNN & PhyCell connection

Figure 5.9: Sample predictions from select networks from each experiment.
The top row represents the ground truth.

39

Conclusion

Precipitation nowcasting improves our everyday lives by providing important
information about upcoming rainfall, thus protecting many people from severe
storms. Deep learning models can be used for precipitation nowcasting based
on radar echo maps. The goal of this thesis was to improve the predictive
capabilities of one particular model, PhyDNet, by experimenting with different
neural network architectures for spatiotemporal prediction.

Chapter 1 introduced the theory and necessary concepts behind deep learn-
ing models for spatiotemporal prediction. A detailed description of many of
these models was presented in 2. Chapter 3 gave an overview of methods for
precipitation nowcasting.

Chapter 4 explored the radar echo dataset and described the training pro-
cedure and common hyperparameters for all implemented models. In chapter
5, multiple modifications of the PhyDNet model were trained on the radar
echo dataset. These modifications ranged from small enhancements, such as
adding skip connections or connecting independent subnetworks together, to
experiments with changing the ConvLSTM model inside PhyDNet for differ-
ent models, specifically SA-ConvLSTM and PredRNN. The experiments were
evaluated and discussed.

Two of our modifications to PhyDNet achieved promising results both in
the quantitative performance and the quality of the predictions: replacement
of ConvLSTM with PredRNN and the addition of a skip connection to the
physical branch of PhyDNet. Other experiments had varying results with
some falling short of the performance of the baseline model and some deliv-
ering slight improvements in one metric but often worsening in another. To
conclude, the aim of the thesis was successfully fulfilled – we explored several
alterations to PhyDNet when used for precipitation nowcasting and identified
two encouraging approaches, which can serve as a basis for further exploration.

41

Bibliography

1. SHI, Xingjian et al. Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting. In: Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2015.

2. SHI, Xingjian et al. Deep Learning for Precipitation Nowcasting: A
Benchmark and A New Model. In: Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2017, vol. 30.

3. NIELSEN, Michael A. Neural Networks and Deep Learning [online]. De-
termination Press, 2015 [visited on 2023-04-03]. Available from: http:
//neuralnetworksanddeeplearning.com/.

4. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. 2017. Available from arXiv: 1412.6980 [cs.LG].

5. IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift. In:
Proceedings of the 32nd International Conference on Machine Learning.
2015, vol. 37, pp. 448–456.

6. BA, Jimmy Lei; KIROS, Jamie Ryan; HINTON, Geoffrey E. Layer Nor-
malization. 2016. Available from arXiv: 1607.06450 [stat.ML].

7. WU, Yuxin; HE, Kaiming. Group Normalization. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018.

8. ZHANG, Aston et al. Dive into Deep Learning. 2023. Available from
arXiv: 2106.11342 [cs.LG].

9. KARPATHY, Andrej. Convolutional Neural Networks [online]. 2016. [vis-
ited on 2023-04-03]. Available from: https : / / cs231n . github . io /
convolutional-networks/.

10. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
Learning [online]. MIT Press, 2016 [visited on 2023-04-04]. isbn 978-
0262035613. Available from: http://www.deeplearningbook.org.

43

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2106.11342
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
http://www.deeplearningbook.org

Bibliography

11. REYNOLDS, Ann H. Convolutional Neural Networks (CNNs) [online].
2019. [visited on 2023-04-04]. Available from: https://anhreynolds.
com/blogs/cnn.html.

12. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-Net:
Convolutional Networks for Biomedical Image Segmentation. In: Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2015.
Springer International Publishing, 2015, pp. 234–241. Available from doi:
10.1007/978-3-319-24574-4_28.

13. OLAH, Christopher. Understanding LSTM Networks [online]. 2015. [vis-
ited on 2023-04-05]. Available from: https://colah.github.io/posts/
2015-08-Understanding-LSTMs/.

14. CHO, Kyunghyun et al. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. 2014. Available
from arXiv: 1406.1078 [cs.CL].

15. SUTSKEVER, Ilya; VINYALS, Oriol; LE, Quoc V. Sequence to Sequence
Learning with Neural Networks. In: Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2014, vol. 27.

16. ADALOGLOU, Nikolas. Intuitive Explanation of Skip Connections in
Deep Learning [online]. 2020 [visited on 2023-04-06]. Available from:
https://theaisummer.com/skip-connections/.

17. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural
Machine Translation by Jointly Learning to Align and Translate. 2016.
Available from arXiv: 1409.0473 [cs.CL].

18. VASWANI, Ashish et al. Attention Is All You Need. In: Advances in
Neural Information Processing Systems. Curran Associates, Inc., 2017,
vol. 30.

19. WANG, Yunbo et al. PredRNN: Recurrent Neural Networks for Pre-
dictive Learning Using Spatiotemporal LSTMs. In: Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2017, vol. 30,
pp. 879–888.

20. GAO, Zhihan et al. Earthformer: Exploring space-time transformers for
earth system forecasting. In: NeurIPS 2022. 2022.

21. GUEN, Vincent Le; THOME, Nicolas. Disentangling Physical Dynam-
ics from Unknown Factors for Unsupervised Video Prediction. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2020.

22. LIN, Zhihui et al. Self-Attention ConvLSTM for Spatiotemporal Predic-
tion. Proceedings of the AAAI Conference on Artificial Intelligence. 2020,
vol. 34, pp. 11531–11538. Available from doi: 10.1609/aaai.v34i07.
6819.

44

https://anhreynolds.com/blogs/cnn.html
https://anhreynolds.com/blogs/cnn.html
https://doi.org/10.1007/978-3-319-24574-4_28
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1406.1078
https://theaisummer.com/skip-connections/
https://arxiv.org/abs/1409.0473
https://doi.org/10.1609/aaai.v34i07.6819
https://doi.org/10.1609/aaai.v34i07.6819

Bibliography

23. WANG, Yunbo et al. PredRNN: A Recurrent Neural Network for Spa-
tiotemporal Predictive Learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 2021, vol. 45, pp. 2208–2225. Available from
doi: 10.1109/TPAMI.2022.3165153.

24. WANG, Yunbo et al. PredRNN++: Towards A Resolution of the Deep-
in-Time Dilemma in Spatiotemporal Predictive Learning. In: Proceed-
ings of the 35th International Conference on Machine Learning. 2018,
pp. 5123–5132.

25. WORLD METEOROLOGICAL ORGANIZATION. Guidelines for Now-
casting Techniques. WMO, 2017. isbn 978-92-63-11198-2. Available also
from: https://library.wmo.int/doc_num.php?explnum_id=3795.

26. BUREAU OF METEOROLOGY OF THE AUSTRALIAN GOVERN-
MENT. How Radar Works [online]. [N.d.]. [visited on 2023-04-26]. Avail-
able from: http://www.bom.gov.au/australia/radar/about/what_
is_radar.shtml.

27. CZECH HYDROMETEOROLOGICAL INSTITUTE. ČHMÚ nowcast-
ing webportal [online]. [N.d.]. [visited on 2023-04-28]. Available from:
https : / / www . chmi . cz / files / portal / docs / meteo / rad / inca -
cz/short.html.

28. LI, L.; SCHMID, W.; JOSS, J. Nowcasting of Motion and Growth of Pre-
cipitation with Radar over a Complex Orography. Journal of Applied Me-
teorology and Climatology. 1995, vol. 34, no. 6, pp. 1286–1300. Available
from doi: https://doi.org/10.1175/1520-0450(1995)034<1286:
NOMAGO>2.0.CO;2.

29. BOWLER, Neill E.; PIERCE, Clive E.; SEED, Alan W. STEPS: A prob-
abilistic precipitation forecasting scheme which merges an extrapolation
nowcast with downscaled NWP. Quarterly Journal of the Royal Meteo-
rological Society. 2006, vol. 132, no. 620, pp. 2127–2155. Available from
doi: https://doi.org/10.1256/qj.04.100.

30. CHOMA, Matej. Improving Deep Learning Precipitation Nowcasting by
Using Prior Knowledge. 2022. Master’s Thesis. Czech Technical Univer-
sity in Prague, Faculty of Information Technology.

31. NAMGUNG, Min. SA-ConvLSTM [online]. GitHub, 2022 [visited on
2023-04-23]. Available from: https://github.com/MinNamgung/sa_
convlstm.

45

https://doi.org/10.1109/TPAMI.2022.3165153
https://library.wmo.int/doc_num.php?explnum_id=3795
http://www.bom.gov.au/australia/radar/about/what_is_radar.shtml
http://www.bom.gov.au/australia/radar/about/what_is_radar.shtml
https://www.chmi.cz/files/portal/docs/meteo/rad/inca-cz/short.html
https://www.chmi.cz/files/portal/docs/meteo/rad/inca-cz/short.html
https://doi.org/https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
https://doi.org/https://doi.org/10.1256/qj.04.100
https://github.com/MinNamgung/sa_convlstm
https://github.com/MinNamgung/sa_convlstm

Appendix A
Acronyms

CNN Convolutional neural network

GPU Graphics processing unit

GRU Gated recurrent unit

LSTM Long short-term memory

MAE Mean absolute error

MSE Mean squared error

NWP Numerical weather prediction

PDE Partial differential equation

ReLU Rectified linear unit

RGB Red green blue

RNN Recurrent neural network

SA Self-attention

SAM Self-attention memory

SSIM Structural similarity index measure

47

Appendix B
Contents of the attachment

configs directory with network configurations
sample data.............................sample data for visualizations
src

model
layers

covlstm............directory with ConvLSTM implementation
phycells directory with PhyCell implementations
predrnn directory with PredRNN implementation
sacovlstm......directory with SA-ConvLSTM implementation
phydnet layers.py...........encoder-decoder implementation

base metric.py............................base class for metrics
base model.py.............................base class for models
loss.py...loss functions
metric detail.py....................implementations of metrics
phydnet.py............................PhyDNet implementation

utils directory with utility functions
dataset.py..dataset loader
test.py..testing procedure
tracker.py.................................. custom metric tracker
train.py..training procedure

text.....................................directory with the thesis text
latex.................directory with LATEX source codes and images
thesis.pdf........................ text of the thesis in PDF format

env.yml............................specifiaction of Conda environment
README.md...................file with instruction about the source code
train.py...training script
trained model.ckpt.........checkpoint file with trained baseline model
visualize.ipynb..................example visualizations of predictions

49

	Introduction
	Machine learning background
	Deep learning
	Fully-connected layer
	Adam
	Vanishing gradient problem
	Normalization

	Convolutional neural networks
	Convolutional layers
	Pooling layers

	Recurrent neural networks
	LSTM
	GRU
	Encoder-decoder and seq2seq networks

	Attention mechanism

	Models for spatiotemporal prediction
	PhyDNet
	ConvLSTM
	SA-ConvLSTM
	PredRNN
	PredRNN-v2
	PredRNN++

	TrajGRU

	Precipitation nowcasting
	Weather radars
	Radar echo extrapolation
	COTREC
	STEPS

	Deep learning

	Dataset and implementation
	Radar echo dataset
	Used libraries and tools
	Common settings and hyperparameters
	Training
	PhyCell and ConvLSTM hyperparameters

	Experiments
	Branch connection
	Separate decoders
	Skip connections
	SA-ConvLSTM
	PredRNN
	Summary of experiments

	Conclusion
	Bibliography
	Acronyms
	Contents of the attachment

