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Abstract

Uncertainty quantification is an important aspect of deep learning. Since most of the models
cannot explain their predictions, it is essential to express a measure of their uncertainty. In this
thesis we discover a multiple ways of achieving this. We implemented MC dropout and quan-
tile regression into the PhyDNet model, a state-of-the-art prediction model for spatio-temporal
phenomena — specifically, precipitation measurement in our case. MC dropout proves to be a
flexible method, yet it requires meticulous configuration. Quantile regression offers remarkable
coverage probabilities, but we found out that this method can underestimate the uncertainty in
low precipitation density areas. We present an elaborate overview of these methods and provide
readers with a valuable guide for selecting the most suitable method depending on their specific
requirements and goals.

Keywords deep learning, uncertainty quantification, PhyDNet, precipitation nowcasting, neu-
ral networks

Abstrakt

Hodnoceńı nejistoty je d̊uležitým aspektem hlubokého učeńı. Protože většina model̊u nedokáže
vysvětlit své predikce, je vhodné vyjádřit mı́ru jejich nejistoty. V této práci se zabýváme
zp̊usoby jak tohoto dosáhnout. Implementovali jsme metody MC dropout a kvantilové re-
grese do modelu PhyDNet, což je aktuálně nejmoderněǰśı predikčńı model pro časoprostorové
jevy — v našem př́ıpadě mı́ru srážek. MC dropout se ukazuje být flexibilńı metodou, která
však potřebuje pečlivou konfiguraci. Kvantilová regrese nab́ıźı pozoruhodnou pravděpodobnost
pokryt́ı, ale zjistili jsme, že tato metoda může podceňovat nejistotu v oblastech ńızké hustoty
srážek. Představujeme podrobný přehled těchto metod a dáváme t́ım čtenáři do rukou cennou
př́ıručku pro výběr nejvhodněǰśı metody v závislosti na konkrétńıch požadavćıch a ćılech.

Kĺıčová slova hluboké učeńı, hodnoceńı nejistoty, PhyDNet, předpověd’ srážek, neuronové
śıtě
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Introduction

Recent years have brought a lot of innovation in the field of predictive neural networks. Being
very strong in representation learning, deep neural networks have become the most popular way
to tackle difficult problems in many different areas. One of them is forecast, such as precipitation
nowcasting.

The model we work with is PhyDNet[1], introduced in 2020, which has shown state-of-the-art
results with its spatio-temporal predictions. It disentangles the underlying physical dynamics of
unknown factors. In this work, we will have a look “under the hood” of the model, discovering
how it works.

The main focus of this work is measuring uncertainty in the model. This aspect is crucial
but frequently disregarded in the prediction process. A prediction with high uncertainty might
hold minimal importance, so it is necessary to establish a method for determining it. We aim
to explore various approaches for this purpose, with a particular focus on MC Dropout. This
simple technique utilizes dropout, typically employed for regularization, to generate an ensemble
of diverse predictions. We will try to understand why this approach can be better than other,
more complex ones.

The practical aim of this work is to implement the MC Dropout for uncertainty quantifi-
cation. There are various ways to implement the method, which means we will have to test
multiple variants. Along the way, we will also explore how effectively it functions as an ad-
ditional regularization layer in the PhyDNet model. To gain insight into how it compares to
different uncertainty quantification methods, we will attempt to implement quantile regression
and use it as such method. This technique estimates the quantiles of the output distribution,
rather than predicting the distribution itself.

There is a significant demand for methods to accurately assess the uncertainty of predictions.
In developing countries, numerous individuals are affected by extreme weather every year. A few
unreliable predictions that fail to materialize may heavily undermine confidence in the model.
Another example might be motorsport racing. The teams need a good way to predict the
weather to adapt the strategy. Understanding the uncertainty associated with predictions can
substantially reduce the risk of losing points due to unforeseen circumstances.

The first chapter of this work will describe the PhyDNet model. We will explore its layers and
try to understand the inner workings. Chapter 2 will examine various methods for incorporating
uncertainty into prediction models. Chapter 3 will connect these topics and cover everything
we need for the final implementation. Finally, chapter 4 will contain a description and analysis
of the practical results. Each chapter aims to offer greater understanding and guidance on the
implementation process. Chapters 1 and 2 can be used as independent units, each serving as a
reference for their respective subjects.

1
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Chapter 1

Deep dive into PhyDNet for
spatio-temporal predictions

This chapter describes the architecture of PhyDNet — a state-of-the-art model for spatio-
temporal predictions. This model is the core of this thesis so it is necessary to understand it
thoroughly. Later in this thesis, we will be using knowledge from this chapter to expand the
model with uncertainty quantification.

Spatio-temporal phenomena depend on both space and time. We will represent space as a matrix
with time dependent values. Although there are physical laws that govern the behavior of these
values, they can be difficult to model accurately due to limitations in our data and understanding
of the underlying processes [2].

The task of finding the underlying dependencies in the data is a part of the field of machine
learning. In order to make the predictions, we do not look for an explicit expression of these
laws, we only need a model that produces a good results according to some given criteria. This
model will be incorporating its own laws, and these should accomplish to describe the real world
phenomena rather well.

In recent years, deep learning techniques have shown great promise in the field of spatio-
temporal prediction. In particular, the PhyDNet model [1] has achieved state-of-the-art results
by disentangling the physical dynamics of the system from other unknown factors.

1.1 Recurrent neural networks
Neural networks started in 1943, when McCulloch and Pitts presented their mathematical model
of a neuron [3]. Since then, researchers have been working to develop networks that can more
closely mimic the behavior of the human brain.

Simple neural networks only work with fixed-size inputs and their output depends only by
the current input. Recurrent neural networks (RNNs), on the other hand, are designed to work
with sequential data, mapping input sequences to output sequences [4]. This makes them useful
for spatio-temporal prediction, used to predict how the system evolves over time.

A recurrent neural network uses internal state, referred to as hidden state, taken into account
when evaluating. This state is updated with every input and passed to the next time step, as
seen in Figure 1.1. This not only solves the fixed-size input problem, but also offers a short-term
memory to the network, represented by a hidden state. We previously mentioned imitating the
human brain so some kind of memory is vital. The hidden state of RNN is often used as an
output.

3



4 Deep dive into PhyDNet for spatio-temporal predictions
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Figure 1.1 Recurrent neural network.
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Figure 1.2 RNN with a single activation layer.

An RNN have a form of a chain of repeating modules [5]. These modules have a simple
structure consisting of a single non-linear layer, such as single tanh layer. A recurrent neural
network can be expressed mathematically [6] as

ht = F (ht−1, xt, θ),

where ht−1 is current state, xt is the input and θ is the collection of used parameters. In a simple
RNN, the full expression may be

ht = σ(Whht−1 + Wxxt + b),

where σ stands for non-linear function and Wrec, Win and bias b are parameters obtained by
training the network, referred to collectively as θ. The mathematical expression is depicted in
Figure 1.2. The output of the cell is passed in the next time step.

There are two important problems with the training of recurrent neural networks. The vanish-
ing and the exploding gradient problem, detailed in [7]. These problems make recurrent neural
networks hard to train properly [6], resulting into loss of learnt dependencies with increasing
duration of them being captured.

1.1.1 Long short-term memory
One method addressing the shortcomings of recurrent neural networks is long short-term memory
(LSTM) [8]. Their design was later improved by adding forget gates and since then, many variants
of this architecture appeared. We will first discuss what is often referred to as vanilla LSTM
[9]. By addressing the vanishing and the exploding gradient problem, these networks are able to
store information over longer period of time [8].

Like classic RNNs, LSTMs have a chain-like structure. Modules in this structure consist of
four neural network layers. We can split it into three parts. [5]

First part of the cell, the forget gate layer, decides what information will be discarded from
the cell state.The mathematical expression for this layer is

ft = σ(Wf [ht−1, xt] + bf ).

The [ht−1, xt] is a concatenation of the input and the output from previous cell, Wf is a matrix
of parameters of the forget cell and bf is its bias. σ is a sigmoid function — the result of this
gate will be a matrix of values between 0 and 1. This tells how much of the current cell state is
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Figure 1.3 LSTM cell.

passed on. For example, if ft = 0 where 0 is a zero matrix, the whole cell state will be forgotten
(the cell state will be a zero matrix). [5]

Second part presents the information that will be stored in the cell state. This part consists
of two parallel neural network layers, the first one is used to create the information and the other
one, called the input gate, tells how much of it is actually stored. Mathematically [5]:

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC [ht−1, xt] + bC)

With that, we have all we need to update the cell state [5]:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

We use ⊙ for Hadamard product (element-wise matrix multiplication).
The third layer is used to obtain the output of the cell. It consists of another sigmoid gate

which is multiplied by the updated cell state put through tanh. We can see that all of the gates
introduced use the same structure — we only change the values of parameters. [5]

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

The LSTM cell scheme is depicted in Figure 1.3.
Apart of addressing the vanishing/exploding gradient issues, we can see that LSTMs effec-

tively manage the information stored in the hidden state. That is a significant benefit of these
networks.

PhyDNet is using a variant of LSTM — ConvLSTM [10], which adds convolution operation
into the vanilla LSTM described above. This is extremely useful for processing sequential data
with spatial information.

1.1.2 ConvLSTM
Convolution operation is closely related to operations with image data. The reason is “that
in images, the interesting “combinations of features” (pixels) tend to come from pixels that are
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close together in the image” [11]. Convolutional layers are used for capturing spatial features
in images, whereas ConvLSTM is a powerful technique to model spatio-temporal dependencies
that can be used to predict video data.

ConvLSTM can be expressed mathematically [10]:

ft = σ(Wxf ∗ xt + Whf ∗ hr
t−1 + bf )

it = σ(Wxi ∗ xt + Whi ∗ hr
t−1 + bi)

C̃t = tanh(WxC ∗ xt + WhC ∗ hr
t−1 + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ot = σ(Wxo ∗ xt + Who ∗ hr
t−1 + bo)

hr
t = ot ⊙ tanh(Ct)

where hr
t is the output from the cell. We use this notion because in the PhyDNet model,

ConvLSTM is used to predict the residual component. This will be discussed later in this
chapter.

Note that an optional expansion adds peephole connections to the gates. The term added
might take form Wcf ⊙ct−1, in the case of forget gate layer, and it allows the gates to look at the
cell state and use the information. Although the ConvLSTM variant with peephole connections
has become quite popular, in our case, we will be utilizing the standard ConvLSTM architecture
without the peephole connections.

We can see that the leap from the vanilla LSTM is not very big. Note that addition and
concatenation are linked. If we have input x, hidden state h and respective parameter W, we
can show the following:

W[x, h] = W1x + W2h

where W is split horizontally into W1 and W2. This means that we only replace matrix multi-
plication with convolution operation.

1.1.3 PhyCell
PhyDNet’s authors proposed PhyCell [1], a physical recurrent cell that performs predictions
constrained by partial differential equations (PDEs) in a latent space denoted as H. We can
model PhyCell’s dynamics using PDE response function Mp(hp, u):

Mp(hp, u) = Φ(hp) + C(hp, u)

where hp is latent representation of the physical system up to current time step t and thus can
be expressed as a function hp(x, t) ∈ H, where x is set of coordinates. We denote u as the input
stream frame at current time step t, u = u(x, t). The function is divided into two parts — the
physical predictor Φ(hp) and the correction term C(hp, u). [1]

The physical predictor is based on an assumption of good expressibility of laws of nature
using PDEs. It takes the following form [1]:

Φ(hp(x, t)) =
∑

i,j:i+j≤q

cij
∂i+jhp

∂xi∂xj
(x, t)

where q is given differential order. This can be used to model linear PDEs, which many equations
in physics take form of. One of the famous examples is the heat equation. [1]

In the implementation, the physical predictor approximates the solution of the PDEs by using
multiple convolutional neural networks to extract features from the hidden state. These features
are expected to correspond to the dynamics expressed in the hidden state. The features are then
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Figure 1.4 Architecture of PhyCell. [1]

flattened into a one-dimensional vector that is fed through a fully connected layer, generating
a matrix h̃p in the latent space. This matrix represents the updated hidden state and is then
passed into the correction term. [1]

Correction term is modeled as follows [1]:

C(hp, u) = K(t, x) ⊙ [E(u(t, x)) − (hp(t, x) + Φ(hp(t, x))]

The correction term is used to update the hidden state using the information about the differ-
ence between the updated latent hidden state and the new observed output. This difference is
multiplied by gating factor K(t, x), which can be understood as an approximate Kalman gain.
The approximation is done by using convolutional neural networks.

K(t, x) = tanh(h̃p(t, x) ∗ Wkh + E(u(t, x)) ∗ Wku + bk)

As mentioned earlier, the approximate Kalman gain is used as a gating factor. This means that
if this value is 0, then the input is not accounted and if it is 1, then the latent dynamics in the
hidden state is reset. This is similar to LSTMs described earlier. [1]

In summary, PhyCell operates in two steps. The first step is the prediction, taking form:

h̃p
t+1 = hp

t + Φ(hp
t)

The other step is used as a correction using the input in the current step encoded into the latent
space E(ut):

hp
t+1 = h̃p

t+1 + Kt ⊙ (E(ut) − h̃p
t+1)

The structure of PhyCell is depicted in Figure 1.4.
Note that the physical predictor operates without a knowledge about current input. It pre-

dicts a new hidden state based on the current one, and this new hidden state is updated using
the input in the correction term. This architecture allows us to predict multiple time steps into
future without having direct knowledge of the input at those future time steps. The quality of
these predictions depends on how close our PDE approximation is to the real-world laws. [1]
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Figure 1.5 Architecture of PhyDNet. [1]

1.2 PhyDNet
Now that we have covered all the necessary building blocks, we can describe the PhyDNet
architecture, which was introduced in [1] by Vincent Le Guen and Nicholas Thome in 2020. This
architecture has demonstrated state-of-the-art results in video prediction by disentangling the
physical dynamics expressible by using PDEs from unknown complementary information. [1]

We will first cover the encoder-decoder architecture used to convert the input data into a
latent space and then we will discuss the principle of the disentanglement — key feature in
PhyDNet.

1.2.1 The latent space — encoder-decoder architecture
PhyDNet operates in a latent space H. This is done by using the encoder-decoder architecture.
The input data ut is converted into E(ut) ∈ H. This representation provides more compressed
and abstract form of the input. The reason why we want to encode is because physical laws
can’t be used to describe the motion of pixels. The PhyDNet model assumes that this pixel
representation can be converted into a latent space where some laws can be applied. [1]

The encoder is implemented by using convolutional neural networks. This extracts important
features of the input and compresses them into a feature map in the latent space H. We will be
using E(ut) ∈ H to denote the encoded input. [1]

1.2.2 Disentanglement
The main part of the PhyDNet network is the two-branch architecture which disentangles the
physical dynamics from the unknown factors. The encoded input E(ut) is used as an input of
two parallel neural networks at once. [1]

The left branch in Figure 1.5 is used to model the latent representation hp, fulfilling the
physical prediction. The prediction is done by approximating the solution of PDEs describing
the system behavior using PhyCell, described above. As mentioned, the latent representation of
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the physical prediction hp is by design the hidden state of the cell. The use of PhyCell leads
to use of less parameters as it incorporates the physics of the system as constraints. Another
benefit is that by incorporating the physical knowledge, PhyDNet can learn from fewer examples
and generalize better. It is like having a built-in intuition. [1]

Since the system of precipitation movement contains too many unknown phenomena to be
modelled only using the PDEs, the right branch is used to predict the residual dynamics of the
system. This obtains the latent representation of the unknown factors in the system, hr. Any
generic RNN can be used for this task, we use ConvLSTM [10] like the authors of [1]. ConvLSTM
is described above. [1]

The latent representation of the final prediction is obtained in the following elegant way:

ht+1 = hp
t+1 + hr

t+1

This latent representation should contain the prediction of the current state of the modelled
system.

Finally, a deep decoder is used to decode the latent space representation ht+1 to forecast
the image, mathematically ût+1 = D(ht+1). This step is implementd by using transposed
convolution operation, also referred to as deconvolution. [1] This operation goes in the oppostite
direction than convolution, upsampling feature maps. [12]
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Chapter 2

Various methods of uncertainty
quantification

This chapter provides an overview of the probabilistic methods employed for quantifying un-
certainty. It briefly reflects on the significance of uncertainty awareness in decision-making.
Two of these methods will be implemented, MC dropout and quantile regression. These two
will be put into practice in the next chapter covering the implementation.

Uncertainty in neural networks can arise from various sources. According to [13], there are five
main factors:
1. Variability in Real world simulation

2. Error and Noise in Measurement Systems

3. Errors in the Model Structure

4. Errors in the Training Procedure

5. Errors Caused by Unknown Data
We will categorize uncertainty in predictions into two types. The first one is called epistemic
uncertainty, which arises due to inaccuracies in the model, or in other words, it reflects what the
model does not know. The second type is aleatoric uncertainty, which is inherently present in
the observed data [14]. It is hardly surprising that the aleatoric uncertainty will play a crucial
role in precipitation nowcasting. The big problem is the chaotic nature of weather, meaning
that small inaccuracy in initial conditions grows rapidly. We are unable to measure the perfect
initial conditions, so even if we had a perfect model, inaccuracies would quantify over time [15].
Generating an accurate weather forecast is a daunting task due to the multitude of interrelated
atmospheric factors and the complex properties of the Earth and its atmosphere [16].

In [17], the authors emphasize the significance of aleatoric uncertainty quantification in the
case of large datasets where epistemic uncertainty is lessened and in real-time applications since
computationally expensive methods are not necessary. Conversely, they suggest that epistemic
uncertainty should be quantified for smaller datasets, where the level of epistemic uncertainty
may be greater, and in safety-critical applications where new and unseen data could result in
significant issues. It is also emphasized that these uncertainties are not mutually exclusive.

Having knowledge of forecast uncertainty provides an advantage that can lead to better
decision-making and risk management. There are numerous practical examples where uncertainty
quantification can be beneficial, such as helping farmers mitigate weather-related risks, scheduling
launches for space exploration missions and many more.

11
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Figure 2.1 Regular neural network on the left uses fixed values for weights. Bayesian neural network
on the right treats weights as random variables. [18]

2.1 Bayesian neural networks
Bayesian neural networks (BNN) are a type of probabilistic model that incorporates Bayesian
inference. In a BNN, the weights are treated as random variables and assigned a probability
distribution over possible values, rather than using fixed-size values. This allows for the incor-
poration of uncertainty in the model predictions. During each pass of inference, the weights
are sampled, generating a non-deterministic prediction, which leads to a slightly different model
for each pass. By sampling the weights multiple times and generating multiple predictions, a
probability distribution over possible outcomes can be obtained. An illustration is in Figure 2.1.
[18]

In the Bayesian paradigm, probability is viewed as a measure of belief in the occurrence of
events, where prior beliefs shape the resulting posterior beliefs. This is summarized in Bayes’
theorem:

P (W | D) = P (D | W)P (W)
P (D)

where W is based on hypothesis with prior belief, and D is data updating our prior belief about
W into the posterior. It is important that we are talking about the Bayesian paradigm, which
contrasts with the frequentist paradigm. The Bayes’ theorem formula is still true in frequentist
interpretation, but W and D are considered as the sets of outcomes. Bayesian neural networks
can differentiate between epistemic and aleatoric uncertainty, which makes them highly efficient
in utilizing data since they do not tend to overfit on small datasets. [19]

Our goal when training a BNN is to infer the posterior distributions over the parameters W,
P (W | D). According to Bayes’ theorem, we can use the following:

P (W | D) ∝ P (D | W)P (W)

where P (D | W) is the likelihood of the model given by its parameters W and P (W) is the prior
distribution. [20]

According to [21], “obtaining explicit posterior densities through Bayesian inference is in-
tractable”. This is true especially for complex models and large datasets because computation
of high-dimensional integrals is necessary. However, recent advances in variational inference
techniques have made it possible to obtain posterior approximations for BNNs, rendering them
computationally feasible. Despite this, BNNs are still generally less efficient than standard neu-
ral networks and take longer to converge [21]. Bayesian neural networks achieve state-of-the-art
results in uncertainty quantification [22], but for their complexity, we often have to look for
alternatives.
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2.2 Deep ensembles
Many methods for quantifying uncertainty can be classified as ensemble methods. This section
focuses on deep ensembles, which are composed of multiple instances of a single neural network
model, each with distinct parameters. This is done by training the models using different initial
parameters, which ensures that they are sufficiently independent of each other. [21]

It has been shown that deep ensembles might match other popular probabilistic methods such
as Bayesian neural networks or MC dropout [22]. However, there are some drawbacks to this
method, such as high computational costs (it may be unfeasible to train large neural network
many times) and the need to store many parameter values [21]. An attempt to tackle these
disadvantages has been shown in [23], yet this cannot be used for uncertainty quantification, so
these disadvantages remain [21].

We already mentioned that many methods of uncertainty quantification can be thought of as
ensembles of different models. This is because certain techniques, like Bayesian neural networks or
Monte Carlo dropout, produce non-deterministic predictions. During each pass, these techniques
generate different versions of the network, which can be seen as different models within the
ensemble.

2.3 Stochastic Weight Averaging with Gaussian approxi-
mation (SWAG)

One method that has emerged in recent years for the purpose of uncertainty quantification is
SWAG (Stochastic Weight Averaging), proposed in [24]. In order to understand how it operates,
we must first discuss some concepts used in this method.

2.3.1 Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent (SGD) is an optimization algorithm. Its goal is to minimize a given
loss function L(θ). This means that it finds the parameters θ that minimize this function. The
loss function is usually defined so that it involves the difference between predicted and actual
value, thus minimizing this function means making the model’s predictions more accurate.

Stochastic gradient descent, unlike batch gradient descent, updates its parameters with every
training example. This can be useful for large datasets, as we don’t have to go through all
the data before updating our model. Because of frequent updates with high variation, the loss
function tends to fluctuate heavily. This can make the function deviate from the local minima
and help it find the global minima, but it may also cause convergence issues [25]. The fluctuations
will prove to be an important part of this method.

If we have gradients of our loss function with respect to the parameters ∇θL(θ; xi; yi) calcu-
lated, we can update the parameters using the following rule [25]:

θ = θ − η · ∇θL(θ; xi; yi)

where xi and yi denote the training example [25]. The update step is repeated until some stopping
criterion is met. This criterion can be a maximum number of epochs reached or predefined
behavior of recent loss function values, and so on.

2.3.2 Stochastic Weight Averaging (SWA)
The idea behind SWA is remarkably simple. Due to the fluctuations caused during SGD, we can
run the SGD on a pre-trained model (this is not necessary, we can run SWA on an untrained
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model, but it takes longer to converge [26]) and calculate the parameters by averaging them:

θSWA = 1
T

T∑
i=1

θi

When using the SWA method to obtain the parameters, we would choose a higher learning
rate than usual. This causes higher fluctuations, which means discovering a wider area of the
parameter space. After the training, we would use θSWA as our final parameters. [24]

We can update the parameters after every few epochs:

θSWA = θSWA · n + θ

n + 1

where n is the number of models used in the average and θ refers to current parameters. This
allows us to only remember the last used θ̃SWA. [26]

This simple method can achieve improvements in test accuracy over conventional SGD train-
ing on a range of state-of-the-art networks. [26]

2.3.3 SWAG for uncertainty quantification
Moving from Stochastic Weight Averaging to Stochastic Weight Averaging with Gaussian ap-
proximation is a straightforward extension. In SWA, we obtain multiple samples of the model’s
parameters that are averaged to get the final parameters. SWAG uses these samples to approx-
imate the parameter distributions as a Gaussian to capture the uncertainty in the parameters.
[24]

To implement SWAG, we need to expand the SWA method by calculating the covariance
matrix:

Σ = 1
T − 1

T∑
i=1

(θi − θSWA)(θi − θSWA)⊺

The covariance matrix captures the statistical properties of the parameters and allows us to
approximate their distributions. [24]

When we compare SWAG with the previously discussed BNN, we can see one of its main
limitations. BNN uses prior distributions that are updated using the observed data to approxi-
mate the posteriors, allowing for a more flexible representation of uncertainty. SWAG assumes
the parameters follow Gaussian distribution, which may not always be the case.

Overall SWAG is a relatively new method that has shown promising results on various datasets
in comparison with other probabilistic methods. [24]

2.4 Monte Carlo dropout
We will now introduce the first method that we plan to implement, but we first have to discuss
some important related topics. Let’s first have a look at what dropout is.

2.4.1 Dropout
The knowledge obtained in a deep learning model is given by combinations of features using
defined parameters. These parameters are usually obtained during training. Based on these
parameters, our model is able to map inputs to outputs in a useful way.

A large model may use the training data to minimize the loss function and find the best
settings to make accurate predictions, based on the criteria given by the loss function. The
ability of the model to perform well on the training data does not guarantee its performance on
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Figure 2.2 Schematic of fully connected network on the left, when we apply dropout, we drop ran-
domly selected units. The illustration is on the right. [28]

any real-world data, even if the training data is a good real-world representation. The ability
to generalize is what makes the deep learning models interesting. The measure of generalization
can be given by generalization error:

generalization error = test error − training error

High generalization error means that the model is too specialized for the training data. This is
referred to as overfitting. A question of how to minimize this value arises and the answer is by
regularizing the parameters. [27]

It is important to understand the idea proposed in [27]. The authors emphasize that the
regularization can be split into implicit and explicit and the implicit regularization should be the
important factor, giving constraints to the parameters so that they don’t become too specialized
to the training data. This refers to the architecture of the model or the optimization algorithm
used to train it. The explicit regularization is described as follows: “Explicit regularization may
improve generalization performance, but is neither necessary nor by itself sufficient for controlling
generalization error.” [27]

Dropout is one of the methods of explicit regularization. Its key idea is to drop units of
neural network randomly, as depicted in Figure 2.2. The basic intuition is that by always using
different combinations of parameters, we prevent the units from co-adapting. [28]

The only parameter of dropout is the dropout rate, specifying the probability of the unit
being dropped. When picking this value, one of the approaches is to test multiple variants and
select the one that minimizes the error using some validation data.

2.4.2 Spatial dropout
Dropout makes the most sense when used on fully connected layers, that’s what was intended
when the method was proposed in [28]. We, however, want to use dropout in convolutional
neural networks.

The straightforward approach would be to use the regular dropout. In [29], the authors argue
that the main problem of dropout when used on convolutional networks is the random dropping
of features since they are spatially correlated. They state the following: “When the features are
correlated, even with dropout, information about the input can still be sent to the next layer,
which causes the networks to overfit. This intuition suggests that a more structured form of
dropout is needed to better regularize convolutional networks.” [29]

The convolutional network learns spatial correlations of features from the input data and
maps them into feature maps. A feature map usually represents a single specific feature in the
data. As an example of what a feature map can be, we can think of an edge detector, which is
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implemented using the convolution operation. As we get deeper, the concept of feature maps
becomes very abstract, which enables the network to understand deep dependencies.

What we do by using the spatial dropout instead of the regular one is we do not randomly drop
units, but whole feature maps instead. This should prevent the feature maps from co-adapting
to the training data and has been shown to increase the model’s performance. [30]

Since we work with image data and convolutional networks, we will be using this variant of
dropout instead of the regular one.

2.4.3 MC dropout for uncertainty quantification
The MC dropout method was proposed in [31] as a way to tackle the prohibitive computational
cost of Bayesian models.

The main idea of MC dropout is to apply dropout during inference, generating an ensemble
of sampled outputs that can be used to approximate the distribution of the output. The authors
show that MC dropout is mathematically equivalent to an approximation of the probabilistic
deep Gaussian processes, a non-parametric, computationally expensive method for uncertainty
quantification. [31]

One of the key advantages of MC dropout is its simplicity. It can be easily integrated into
existing deep learning frameworks without requiring significant modifications. There is often no
need to retrain the model to enable uncertainty quantification. Since dropout is often used as a
regularization technique, enabling it during the inference is all we have to do. If dropout wasn’t
employed during training, a question arise whether or not to retrain the network with it. An
argument speaking in favor of retraining the model is the improvement in robustness, making
the model better prepared for the dropped units. However, this might also cause decrease in
diversity of the output.

After obtaining samples using multiple inference steps, we are able to obtain the confidence
interval with a given significance level α:

(L, U) =
(

X̄n −
tn−1( α

2 )s
√

n
, X̄n +

tn−1( α
2 )s

√
n

)
where n is a number of samples, X̄n is the sample mean, s is the sample standard deviation, and
finally tn−1 refers to the student’s t-distribution This gives us the range in which the true mean
is likely to lie with the probability of (1 − α).

2.5 Quantile regression
When training a neural network to make it learn from the training data, L1 or L2 loss functions
are often used. These take the following form, respectively:

L1(y, ŷ) = 1
N

N∑
i=1

|yi − ŷi|

L2(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2

It is known, that if we had a function f(y | D, x) expressing the probability density of the output
y given the training data D and input x, we can show that by minimizing the L2 loss, the
predictions made by this model would correspond to the conditional mean of this distribution
while minimizing the L1 loss would make the model learn its conditional median. [32]
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We define quantile as value qa for which P (X ≤ qa) = a. Median, for example, is q0.50, since:

P (X ≤ q0.50) = 0.5

The question arises: can we find a certain loss function with parameter a such that, by minimizing
it, our model would predict the qa quantile of the aforementioned probability density? The answer
was proposed in [33], with the following loss function:

LQ(y, ŷ) =

 ∑
i∈{i:yi≥ŷi}

a|yi − ŷi| +
∑

i∈{i:yi<ŷi}

(1 − a)|yi − ŷi|


By minimizing this function, we are able to find the model that predicts the value of sample
quantile qa. We can see that minimizing this loss function is equivalent to minimizing the L1
loss if a = 0.5

The rest is straightforward: we select upper and lower bounds and train two models for them.
Using the two models, we will find the prediction interval and its width should be our confidence
measure.

It is important to note that while other methods, such as MC Dropout, are intended to ap-
proximate Bayesian inference, quantile regression employs the frequentist paradigm, as mentioned
in Section 2.1. This provides a distinct perspective on quantifying and interpreting uncertainty
in the model.

There is a big limitation of this method. Previous methods were usually able to approximate
the distribution of the output and by changing parameters, we were able to tune the method to
show wider or narrower intervals. By using the quantile regression, we must train two models,
which might be time-consuming and once we have it, there is no natural way to change the
predicted intervals other than training two new models.

Apart from the need to train two models, during inference, we only need to obtain two
predictions. This is faster than the other methods that require many more passes to obtain
useful statistics.
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Chapter 3

Uncertainty quantification with
PhyDNet

This chapter covers everything we need to know to start quantifying uncertainty with PhyDNet
for precipitation nowcasting. We will describe the dataset we will be working with as well as
everything that is used during the training process. The goal of this chapter is to provide all
things necessary to start our implementation.

The previous chapters have covered the description of the PhyDNet model, as well as explanations
of multiple methods for uncertainty quantification. This chapter connects these two topics by
explaining how uncertainty quantification can be achieved with the PhyDNet model. Throughout
the chapter, we will also discuss various topics related to the training and deployment of the
model, with or without uncertainty quantification. After reading this chapter, the reader should
understand our implementation and decisions we made.

3.1 Dataset

Since supervised machine learning models learn from data, dataset is a vital part of the training
process. The dataset should be a good representation of the real-world phenomena we are trying
to predict for the model to generalize well.

The dataset we use was provided by Meteopress. It consists of 24784 data samples collected
using weather radar, each consisting of 12 single-channel precipitation rate images, with the data
in the range 0–1. We will use our model to make 6 predictions and we will be using 6 images as
the input sequence. The images are each 10 minutes apart. An example can be seen in Figure
3.1.

The problem with forecasting precipitation is the diversity in the data. Some samples may
have very little or no precipitation in them. We can expect the model to predict with little to
no error (and very little uncertainty) on these examples. On the other hand, we can expect the
samples with lots of precipitation to be more difficult to predict for the model. This leads to two
limitations in our implementation:

We must always use the same subset of the dataset for any evaluation to be able to compare
the models.

When quantifying uncertainty, we might expect the mean of the interval widths to be very
small. We will have to evaluate the variants of uncertainty quantification not only by using

19
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Input data

Target data

Input data

Target data

Input data

Target data

Figure 3.1 Examples from the dataset. Images are 10 minutes apart, the target data follow the input
data.

the metrics but also by visualizing the results to see if, for some cases, the intervals aren’t
unnecessarily wide.

As mentioned earlier, inaccuracies in the data may cause uncertainty in the model. As it was
said in the previous chapter, we don’t have the resolving power necessary to get the exact data,
which is inherently a problem when predicting a chaotic system the precipitation movement is
[15]. Resolving power means the ability to measure the initial conditions of the system with
infinite precision.

Since we have a good amount of data, the dataset will be divided into three parts. The
training dataset will be used for the training of the model. This one will be the largest. Smaller
chunks of data will be used as validation datasets. During training, we will be using it to see
the ability of the model to generalize. We will also use this dataset to obtain the metrics of the
methods that will be compared with each other. The last chunk of data, the testing dataset, will
remain unused. This dataset is typically reserved for assessing the final model’s performance on
unseen data.

One may ask why we do not use the testing dataset for comparing different models. This
approach is incorrect — selection of the model is part of the training process and by using the
data, they are no longer an unseen representation of the real-world phenomena.

3.2 Possible issue with dropout implementation
In [28], dropout is introduced as a regularization technique for fully connected layers in deep
learning networks. Since then, it has become one of the most popular techniques for regularizing
deep learning networks. We’ve already explained why it isn’t suitable for convolutional networks
and found an alternative, proposed in [30], called spatial dropout.
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We’ve also discussed the encoder-decoder architecture of PhyDNet, where the use of spatial
dropout for regularization could be beneficial. A possible issue is that these blocks are already
employing another technique, group normalization. While using normalization and regularization
techniques together sounds reasonable (some normalization techniques even lead to its regular-
ization [34]), authors in [35] show that using dropout and batch normalization together might
lead to worse performance. To decide whether we should replace group normalization with spa-
tial dropout or use these techniques together, we must understand how this combination works
and see if it can cause issues. Therefore, we will make a small detour to take a look at the case
of dropout and batch normalization.

3.2.1 Disharmony between Dropout and Batch Normaliza-
tion

We will discuss the use of dropout and batch normalization together and see, what may be the
problem when using normalization and regularization techniques together. Note that in this
section, we refer to the regular dropout rather than its spatial variant. We will also talk about
batch normalization, which is not used in the PhyDNet. Our goal is to see how can the use of
regularization and normalization layers together lead to worse performance.

The dropout layer drops units in neural networks with probability p, which is a hyperpa-
rameter of the network. We can interpret the output of the dropout layer using the following
notation [28]:

x̃i = Z · 1
1 − p

· xi

where Z ∼ Bernoulli(1 − p). The term 1
1−p is used for scaling so that the dropout doesn’t

change the magnitude of the output. The dropout is not used during inference, leaving the input
untouched:

x̃i = xi

The expected value (mean) remains the same:

E [x̃i]train = E [Z] · 1
1 − p

· xi = (1 − p) · 1
1 − p

· xi = xi

E [x̃i]test = xi

This doesn’t apply to the variance, as shown in [35]:

Vartrain (xi) = 1
1 − p

(
c2 + v

)
− c2

Vartest (xi) = v

c and v are used to demonstrate the variance shift between training and testing that arises when
dropout is used. The variance shift is not much of a problem for our model by itself.

When using batch normalization [34], training is done in mini-batches of data. The mean
and variance of these mini-batches are calculated and used to normalize the inputs:

x̃i = xi − xB√
s2

B + ϵ

xB and s2
B are sample mean and sample variance of the mini-batch B, respectively. ϵ is added to

avoid division by zero. A running mean and running variance are calculated to be used during
inference, so it takes the following form:

x̃i = xi − xR√
s2

R + ϵ
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Figure 3.2 Visualization of different normalization techniques used in machine learning. [34]

where sR and xR are the running mean and running variance obtained during training. Thanks
to the normalization of the data, batch normalization can accelerate the training process.

Finally, due to the variance shift between the training and testing phases caused by dropout,
the statistics used in batch normalization deviate from the real-world statistics, which leads to
incorrect normalization and thus the decrease in the model’s performance. [35]

To sum it up, dropout changes the distribution of the output of the layer during training,
affecting its variance. The batch normalization method uses the approximate variance obtained
from the training data (using running variance), which is influenced by the dropout. Since
dropout is not used during inference, the shifted approximate variance causes the problem.

3.2.2 Group Normalization
Group normalization was proposed in [36], introducing a simple alternative to batch normal-
ization. One of the main disadvantages of batch normalization is its dependence on batch size,
leading to a worse performance with small batches of data. This problem is solved in group
normalization as it is independent of the batch size.

Group normalization normalizes the outputs within a group of G feature maps in the input
tensor. Each of these groups contains C/G channels, where C is the total number of channels.
Next, we obtain the mean and variance of these groups and we normalize the values over groups
in the same manner as in batch normalization. We can see the difference between batch normal-
ization and group normalization visualized in Figure 3.2. The other methods in the figure are in
fact just the edge cases of group normalization, setting G = 1 or G = C (they actually existed
before the group normalization). [36]

We can also see that the normalization procedure is consistent during training and inference,
so the concerns of incorrect statistics we have with batch normalization do not apply, which
suggests that using spatial dropout and group normalization together could be safe. Based on
this reasoning, we will use both techniques together in our experiments. It is worth noting,
however, that further empirical evaluation may be necessary to fully validate the effectiveness of
using spatial dropout and group normalization together. This is beyond the scope of our work.

Additionally, in the original paper, the authors find that group normalization has lower
regularization power than batch normalization. [34]

3.3 Uncertainty quantification

Measuring uncertainty in the predicted images is different than in the single-point scenario. We
are actually dealing with many points that are not independent of each other — if we have high
uncertainty in one pixel, we can also expect high uncertainty in the pixels around it. We will be
using the Mean Prediction Interval Width (MPIW) and Prediction Interval Coverage Probability
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(PICP), mathematically expressed as [21]:

MPIW(L̂, Û) = 1
T

T∑
t=1

(Ût − L̂t)

PICP(L̂, Û, y) = 1
T

T∑
t=1

1
(

yt − L̂t

)
1

(
Ût − yt

)
Where L and U are the lower and upper bounds of the predicted interval, respectively. 1 is a
function, returning 1 for positives and 0 for other values. The best uncertainty quantification
would be maximizing the coverage while keeping the width as low as possible.

The MPIW and PICP metrics were not designed for spatio-temporal data; however, in many
use case scenarios, they effectively capture the desired information. A possible use case involves
an individual selecting a single location and the model would warn them in case of a certain
forecast of extreme weather conditions. We can see that in this case, we do not directly use
the spatio-temporal nature of the data. Instead, we measure an uncertainty of a single-value
prediction, for which MPIW and PICP were designed. However, we must keep in mind that in
this particular use case, we aim to find a way to quantify uncertainty so that it minimizes the
prediction width in points where there is high precipitation. This may be difficult task because
of the skewness of the data and visualization can help.

We have already discussed various methods of implementing uncertainty quantification in
Chapter 2. We will now discuss the use of two of these methods, Monte Carlo dropout and
quantile regression, in the PhyDNet model.

3.3.1 MC dropout
We must discuss how dropout will be implemented in the PhyDNet architecture. We will dissect
its parts individually and tackle this question by parts.

We can think of each part of PhyDNet as a module — by implementing the dropout, we
express the uncertainty contained in each of these. For example, when we talk about uncertainty
in the encoder, we can think of a possibility of error between the conversion of the input into
latent space — we address the expected imperfection of encoding the information, which may
be caused by inaccuracies in the input, like time delays or inaccurate measurements, or by
limitations of the encoder architecture. This example can be extrapolated into other parts of the
PhyDNet model.

Spatial dropout (like regular dropout) has one hyperparameter — the dropout rate which de-
termines the probability of an element being dropped. We will try multiple values and determine
their impact on the intervals using the results.

3.3.1.1 Dropout in the encoder/decoder
Implementing the dropout in the encoder and decoder is relatively straightforward since they
consist of simple convolutional and deconvolutional neural networks, respectively. During train-
ing, these parts of PhyDNet become physics-informed and they tend to extract features that will
be disentangled into physical expression of the latent dynamics of the system.

We will use the spatial dropout previously discussed to drop the whole feature maps. This
should lead to making various combinations of them, slightly changing the model in each pass
during inference.

We are using the spatial dropout implemented in PyTorch [37] (torch.nn.Dropout2d). The
dropout is located after the convolution (deconvolution) operation, as the documentation sug-
gests. In fact, we use it even after the group normalization and activation layer. Firstly, it
doesn’t matter whether we use the dropout after or before the activation function, because we
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use leaky ReLU which maps zero values to zeros. The spatial dropout is used after the group
normalization, since it ensures preservation of the statistical properties for group normalization.

3.3.1.2 Dropout in PhyCell
We’ve already discussed PhyCell’s architecture in Section 1.1.3. PhyCell is a physically con-
strained cell designed to model the partial differential equations (PDEs) representing the physical
dynamics of a system. Based on the architecture of the PhyCell, implementing random drops of
feature maps may not be appropriate for several reasons:

Dropout might lead to loss of spatio-temporal information that is vital for the prediction.

Use of dropout might disrupt the constraints given by the PDEs.

The drops would affect the members of the PDEs which would lead to incorrect representation
of the physical dynamics. For the aforementioned reasons, we will not implement dropout in
PhyCell at all. There might be some careful, controlled ways that don’t directly involve the
PDEs, like implementing dropout on the input of PhyCell, but it is likely that this wouldn’t lead
to much variation on the output and the uncertainty in this can be expressed by using dropout
in the encoder.

We must note that the structure of PhyCell is different from the structure of other networks.
The physical constraints allow the use of fewer parameters than what must be used in other
methods, like in the ConvLSTM. This makes it a powerful tool for predicting physical-based
phenomena, but it might also perform worse in cases where the physical bounds are redundant.

3.3.1.3 Dropout in ConvLSTM
We expect the recurrent cell to have a high impact on the uncertainty of the model since it is
used for residual dynamics that cannot be expressed using the physical prediction layer. We want
to find a way that would be the best for our purposes — minimizing the MPIW and maximizing
the PICP. We will do this by using multiple variants and comparing them.

The use of dropout in recurrent neural networks, especially in the LSTM, has been closely
discussed in various works. We will try to use what has worked for the LSTM and try to convert
it to its convolutional variant.

We will take inspiration from the implementation in [38]. This work collects the previous
attempts and also proposes its own method of implementing the dropout into the LSTM cell,
which exceeds the previous methods. We will be using the following ConvLSTM variant:

ft = σ(Wxf ∗ (xt ⊙ zxf ) + Whf ∗
(
hr

t−1 ⊙ zhf

)
+ bf )

it = σ(Wxi ∗ (xt ⊙ zxi) + Whi ∗
(
hr

t−1 ⊙ zhi

)
+ bi)

C̃t = tanh(WxC ∗ (xt ⊙ zxC) + WhC ∗
(
hr

t−1 ⊙ zhC

)
+ bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ot = σ(Wxo ∗ (xt ⊙ zxo) + Who ∗
(
hr

t−1 ⊙ zho

)
+ bo)

hr
t = ot ⊙ tanh(Ct)

The zx: and zh: are masks for the dropout operations. Note that these masks are the same in
every time step of the recurrent cell, which is one of the main differences between this and the
other methods.

Note that the original work [38], which we use as an inspiration, uses vanilla LSTM and
regular dropout, while we are trying to implement the spatial dropout into the convolutional
variant of the LSTM. This makes our method quite different from the method in the paper.
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In our base implementation, we utilize what in [38] is referred to as the tied-weights LSTM
(ConvLSTM in our case). The aforementioned untied-weights variant of the model has been
shown to yield slightly better results, so we will adopt this approach when implementing dropout
in the ConvLSTM with locked dropout masks. We must, however, keep this change in the model’s
architecture in mind. The other approaches will stick to the PhyDNet’s original implementation,
as we want to find an easy way of implementing uncertainty quantification into our model.

Resources on adding the spatial dropout into ConvLSTM for uncertainty quantification are
limited. We will also test two other approaches — adding the spatial dropout to the input of
the recurrent network layer and applying the dropout on the hidden state and the cell state of
each ConvLSTM’s cell.

3.4 Training the model
Training of a deep learning model is a process of adjusting its parameters and fine-tuning the
internal structure of the model so that it maps the input into the desired output in the most ac-
curate way, based on some criteria. This is usually done by minimizing the error and maximizing
its ability to generalize to make the model perform well on unseen data.

3.4.1 PhyDNet hyperparameters
Hyperparameters of the model are configurable parameters defining its behavior. Unlike the
standard parameters, values of hyperparameters are set by a person training the model. This
allows us to fine-tune the model and find the ideal configuration of the model.

We can divide PhyDNet’s hyperparameters by its subcomponents. For example, we can set
the number of convolutional neural networks in the physical predictor in PhyCell, or the number
of hidden feature maps in the ConvLSTM layer. There are also general hyperparameters, like used
loss function or optimizer. It is not necessary to cover the hyperparameters used in individual
layers, as they are inherently determined by the properties of the layer itself. We will have a
closer look at the general hyperparameters — loss function and optimizer.

3.4.2 Loss function
The loss function determines if the model is good or bad and allows us to compare different
setups. The usable loss function is defined so that it is minimal if the model predicts in an
optimal way. This means that our goal when training the model is to minimize the loss function.

There are many loss functions that are being used, depending on the task. We are dealing
with the regression problem, and the most often used loss functions are L1 and L2 loss, discussed
in Section 2.5. Our model uses the sum of these:

L (y, ŷ) = L1 (y, ŷ) + L2 (y, ŷ)

L1 loss penalizes all errors equally, which makes a good loss function when dealing with outliers,
L2 loss on the other hand penalizes larger errors more.

3.4.3 Optimizer
Gradient descent is one of the most widely used optimization algorithms, and we previously
discussed a specific variant of it, the Stochastic Gradient Descent (SGD) optimizer, in Section
2.3.1. This method is used very often, but we might need a different approach for large and
complex networks since SGD has its shortcomings. For example, it might be difficult to select
the right learning rate. [25]
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Figure 3.3 Comparison between regular SGD (left) and SGD with momentum (right). [39]

The mathematical expression of the SGD method takes the following form:

θ = θ − η · ∇θL(θ; xi; yi)

There are two problems that may occur. The first one is possible convergence into local minima.
With lower values of the learning rate, the probability of this increases. A high learning rate is
also not optimal, as it may cause the model not to converge at all (in fact, even the fluctuations
caused by a high learning rate can cause problems). The other problem we have happens when
gradients are very steep in one dimension, yet very flat in the other one. This causes fluctuations
in the steep dimension and slow descent in the flat dimension [25]. This behavior is depicted
on the left side in Figure 3.3. The time of training also depends on the learning rate — lower
learning rate leads to higher training time. [39]

A possible solution to both of the aforementioned problems is introducing momentum into
the equation:

vt = γ · vt−1 + η · ∇θL(θ; xi; yi)

θ = θ − vt

Momentum γ accelerates the learning process in the direction of the gradients [25]. This is
depicted on the right side in Figure 3.3. This is similar to the Newtonian equations, so we can
liken it to a ball in a hilly landscape [40]. The momentum method leads to faster convergence
and reduction in oscillation. We can enhance this by using Nesterov accelerated gradient:

vt = γ · vt−1 + η · ∇θL(θ − γ · vt−1; xi; yi)

θ = θ − vt

This method allows for a more accurate estimate of the gradient and faster convergence. [25]
The next step forward is adaptive gradients, used by methods like Adagrad, Adadelta, RM-

Sprop, and finally, a method we will be using, Adam. Its main idea is adjusting the learning rate
of each parameter during training based on the gradients obtained in previous time steps of the
training. The Adagrad method is the original adaptive gradients implementation and its goal is
to give a smaller learning rate for frequently occurring parameters and a higher learning rate for
infrequent parameters. We will see that the same idea is used in Adam. [25]

We set the gt,i to be the gradient of the loss function with respect to the parameter θi at
time step t:

gt,i = ∇θiL(θt,i)

For example, the SGD equation can be expressed as follows:

θt+1,i = θt,i − η · gt,i

The gt would then be a vector of these gradients computed for all parameters θi at time step t.
We adopt this notation from [25], as it is more expressive.
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Adaptive Moment Estimation (Adam) combines the previously mentioned ideas, momentum,
and adaptive gradients. It does so by estimating the first and second moments. The first-moment
estimation takes the following form:

mt = β1mt−1 + (1 − β1)gt

The first moment represents the mean, which in our case acts similarly to momentum. The
expression of the second moment estimation is the following:

vt = β2vt−1 + (1 − β2)g2
t

where β1 and β2 parameters are decay rates and they are specified manually (authors propose
the default values β1 = 0.9 and β2 = 0.999). This, on the other hand, represents the uncentered
variance. Variance is higher with higher changes in the parameters, so we can use it for the
adaptive gradients [25].

The authors of Adam in [41] found, that initializing the estimations to zero leads to them being
biased towards zero. This happens especially during the initial time steps and with the decay
rates close to 1. The solution is to use the bias-corrected first and second-moment estimates:

m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2

Finally, the update rule for the parameters is as follows:

θt+1 = θt − η√
v̂t + ϵ

· m̂t

The ϵ value helps avoid the division by zero and the authors propose a value of 10−8 [25]. Adam
has been shown to outperform the aforementioned methods in [41].

3.5 Evaluating the model
The evaluation of uncertainty quantification has been discussed in Section 3.3. Now we will
cover the evaluation of the point predictions obtained directly from the model. We will have
to evaluate the models to see whether or not the use of dropout during training improves the
performance of the model.

3.5.1 Metrics
We have already discussed L1 and L2 loss functions in Section 2.5. These minimize widely used
metrics, mean absolute error and mean square error, respectively:

MAE(y, ŷ) = 1
N

N∑
i=1

|yi − ŷi|

MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2

where N is the number of samples, ŷi is the prediction and yi is the target value. Similarly to
the respective loss functions, MSE penalizes higher errors more, while MAE penalizes all errors
equally.
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In the case of precipitation nowcasting, the aforementioned metrics can be useful for evalu-
ating the performance of a precipitation rate prediction model if we treat each pixel as a point
with a specific value representing the precipitation rate. The metrics would provide an overall
measure of the accuracy of the prediction. On the other hand, we want to visualize these values
as images. The human eye is highly adapted for extracting structural information from a scene
[42] and the standard metrics aren’t able to capture this very well.

Structural Similarity Index Measure (SSIM) was proposed in [42] and it is designed to take
into account the structural information of the image. This is done by comparing 3 important
features of the image, luminance, contrast, and structure. We first have to obtain the mean
intensity and the standard deviation of the values of a pixel. These take the following form,
respectively:

µx = 1
N

N∑
i=1

xi

σx =

√√√√ 1
N − 1

N∑
i=1

(xi − µx)2

The mean value serves for luminance comparison, so the function l(x, y) will be comparing µx

and µy. Standard deviation is used as an approximation of the contrast, so the function c(x, y)
will be comparing σx and σy. Finally, the structure comparison function uses the covariance
between the luminance values of the two images we are comparing, σxy. This value can be
estimated as follows:

σxy =

√√√√ 1
N − 1

N∑
i=1

(xi − µx) (yi − µy)

With this equation, we have all we need to put the SSIM together. [42]
The comparison of these values is done as follows:

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) = σxy + C3

σxσy + C3

where Ci values are used to avoid instability when the values in the denominator are very close
to zero. Finally, the SSIM metrics take the following form:

SSIM(x, y) = [l(x, y)]α + [c(x, y)]β + [s(x, y)]γ

where α, β, and γ are used to define the importance of each comparison function. [42]

3.5.2 Visualization
The input and the output of our model are weather radar images and their prediction. These
take the form of a matrix containing values 0–1 determining the precipitation rate. A better
approach to visualize the data is by using images. We have already done this in Figure 3.1 and
we can see that this representation seems intuitive and informative.

The natural way would be to convert the 0–1 value to the intensity of the pixel, which
would lead to single-channel (grayscale) images. This approach is usable, however, it could prove
difficult for the human eye to distinguish between the levels in the image. A solution is to convert
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Figure 3.4 Color map used for the visualization.

the grayscale image data to a color map. The color map we use is nipy spectral from Matplotlib
[43], depicted in Figure 3.4. The comparison between grayscale and color map visualization
approaches can be seen in Figure 3.5. This color map retains 0 as black and 1 as white, utilizing
levels in different colors to effectively distinguish the data.

There are some limitations to the color map approach as well. For example, by using different
color map, we might get a different interpretation of the data. This may cause two different
weather forecasts to look more different than they actually are.

Figure 3.5 Comparison between grayscale and colormap image visualization.
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Chapter 4

Experiments

This chapter summarizes the practical results of our efforts. We compare various methods
of utilizing MC dropout for quantifying uncertainty, and we also compare MC dropout with
quantile regression. Additionally, we provide visualizations of the network outputs using these
techniques.

In the first section of this chapter, we will discuss dropout as a regularization technique and
examine how incorporating dropout affects the accuracy of our model in point predictions. Later
on, we will delve into the topic of uncertainty quantification, where we will review the outcomes
of our implementation of MC dropout and quantile regression.

Finally, we will compare the two methods using metrics and visualizations described in the
previous chapter. We will use the colormaps to visualize the widths of the prediction intervals
obtained by these methods. This should allow us to see the strengths and weaknesses of the
methods.

4.1 Dropout as a method of regularization

We trained models with spatial dropout applied at various stages of PhyDNet and compared
their performance using evaluation metrics described in Section 3.5.1. Additionally, we included
a comparison with the regular model, without dropout, to assess its impact.

Based on the results presented in Table 4.1, it seems that the addition of dropout results
in little to no significant improvement or degradation in the model’s performance. This may
be caused by the possible redundancy of additional regularization, as discussed in 2.4.1. Not
only we can expect the model to have a solid implicit regularization, but it also uses an explicit
regularization technique, group normalization, discussed in 3.2.2.

Note, that from these results we cannot definitely state that the use of dropout as a reg-
ularization technique in PhyDNet is redundant, even though our experiments did not show a
significant difference in performance with or without it. Further investigation of the theoretical
grounding, as well as providing test results on multiple datasets may be necessary to determine
whether dropout may be beneficial or not.

We have already mentioned the slightly changed architecture of the models using dropout
in locked locations in Section 3.3.1.3. As we can see, this change has a minimal effect on the
performance. We should, however, keep it in mind. It is possible that the model works differently
than the other one, so we have to make a clear distinction between them.

31
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Dropout Drop rate MSE ↓ MAE ↓ SSIM ↑
— (v1) — 0.00153 0.01057 0.91661
— (v2) — 0.00150 0.01052 0.91763
Encoder 0.2 0.00157 0.01078 0.91628
Encoder 0.4 0.00158 0.01071 0.91567
Decoder 0.2 0.00158 0.01074 0.91649
Decoder 0.4 0.00160 0.01091 0.91492
Encoder + Decoder 0.2 0.00158 0.01076 0.91616
Encoder + Decoder 0.4 0.00154 0.01056 0.91716
ConvLSTM (cell) 0.2 0.00152 0.01054 0.91738
ConvLSTM (cell) 0.4 0.00154 0.01069 0.91577
ConvLSTM (input) 0.2 0.00155 0.01062 0.91682
ConvLSTM (input) 0.4 0.00152 0.01048 0.91720
ConvLSTM (cell, locked) * 0.2 0.00149 0.01040 0.91761
ConvLSTM (cell, locked) * 0.4 0.00151 0.01054 0.91722
Encoder + ConvLSTM (input) + Decoder 0.2 0.00154 0.01069 0.91684
Encoder + ConvLSTM (input) + Decoder 0.4 0.00153 0.01060 0.91691
Encoder + ConvLSTM (cell) + Decoder 0.2 0.00155 0.01066 0.91678
Encoder + ConvLSTM (cell) + Decoder 0.4 0.00164 0.01104 0.91398
Encoder + ConvLSTM (cell, locked) + Decoder * 0.2 0.00151 0.01064 0.91684
Encoder + ConvLSTM (cell, locked) + Decoder * 0.4 0.00160 0.01087 0.91459

Table 4.1 Evaluation of models trained with dropout. The v2 model of PhyDNet without dropout
refers to the variant used for dropout with fixed locations, models using this architecture are marked
with *.

4.2 MC dropout for uncertainty quantification
We have used the MC dropout method on models from previous sections. Their ability to
quantify uncertainty was tested using the metrics mentioned in Section 3.3.

From the results listed in Table 4.2, we see that the selection of where dropout is used has
a significant impact on the resulting intervals. It seems that using dropout in the encoder does
not have as much impact as, for example, dropout in the decoder layer. Using dropout in the
decoder layer also leads to a higher PICP, which suggests that introducing uncertainty in it can
better capture the uncertainty in the model, with the cost of wider intervals (MPIW).

We also see that MPIW does not directly correlate to the prediction interval coverage prob-
ability. In some cases, even the same model with different values of dropout probability lead
to wider intervals, yet less coverage. It is necessary to test multiple dropout probability values
before making the decision of which model to employ.

Very interesting fact lies in the very narrow prediction intervals in some cases when using
dropout inside the recurrent cell, which is used to predict the residual dynamics of the system.
We see that in these models, changes in the ConvLSTM doesn’t affect the output very much.
Now let’s find out why.

We used dropout for training, which regularizes the ConvLSTM. The goal of regularization is
to make the model generalize better, which means to learn the consistent phenomena that occurs
in the real world. The residual dynamics layer tries to learn the constant patterns that appear in
the residual dynamics. We hypothesize that applying excessive dropout, in this case, may lead
to underfitting since finding constant patterns in residual dynamics is a challenging task. The
underfit ConvLSTM would then cause an error on the output, so the model learns to ignore it.

We can verify this by dropping the contribution of each layer separately. In the model trained
without any additional regularization, we see that the final prediction depends a lot on the output
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Input

Target

Base model (no dropout used during training)

Prediction

No PhyCell

No ConvLSTM

Regularized ConvLSTM

Prediction

No PhyCell

No ConvLSTM

Figure 4.1 Some ways of regularizing the ConvLSTM may lead to its demise in the prediction.

of the ConvLSTM layer. However, after the regularization of this layer, the prediction is based
solely on the physical prediction, the PhyCell layer. This is visualized in Figure 4.1 and it shows
a possible redundancy of the ConvLSTM layer in the PhyDNet model when used on our data
since the regularized model does not perform worse, as seen in Table 4.1. Since we work with
precipitation data, we may believe that it can be modeled well only by using the PhyCell in
PhyDNet. The figure support this claim.

We will now examine the intervals produced by these variants more closely. We selected
predictions with the highest mean squared error in the validation dataset, as this is where we
might expect the highest uncertainty of the model. The results can be seen in Figure 4.2 and
seem consistent with what we would expect from Table 4.2. When using dropout in the encoder
or decoder (or both), the width of the interval appears to remain very similar across every time
step, indicating that the uncertainty in these modules does not depend on time. We can say
that the interpretation of the uncertainty in these modules is up for debate. We might prefer it
to be time-dependent because their input is the previous prediction, which inherently contains
uncertainty. However, the modules themselves serve to convert the input into a latent space
in the case of the encoder, regardless of the data, providing a reason why we might want the
uncertainty in these modules to be time-independent. We also observe that the use of MC
Dropout in ConvLSTM leads to either very narrow intervals or intervals that widen over time.
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Dropout Drop rate MPIW ↓ PICP ↑
Encoder 0.2 0.0007 0.0495
Encoder 0.4 0.0006 0.0526
Decoder 0.2 0.0030 0.6527
Decoder 0.4 0.0048 0.4819
Encoder + Decoder 0.2 0.0032 0.7292
Encoder + Decoder 0.4 0.0046 0.4272
ConvLSTM (input) 0.2 0.0020 0.0914
ConvLSTM (input) 0.4 0.0018 0.0527
ConvLSTM (cell) 0.2 0.0030 0.1377
ConvLSTM (cell) 0.4 0.0000 0.0018
ConvLSTM (cell, locked) * 0.2 0.0031 0.1018
ConvLSTM (cell, locked) * 0.4 0.0032 0.0784
Encoder + ConvLSTM (input) + Decoder 0.2 0.0040 0.5976
Encoder + ConvLSTM (input) + Decoder 0.4 0.0132 0.8533
Encoder + ConvLSTM (cell) + Decoder 0.2 0.0078 0.8371
Encoder + ConvLSTM (cell) + Decoder 0.4 0.0046 0.6743
Encoder + ConvLSTM (cell, locked) + Decoder * 0.2 0.0038 0.2407
Encoder + ConvLSTM (cell, locked) + Decoder * 0.4 0.0027 0.7895

Table 4.2 MC dropout - 15 samples, alpha=0.02, models are regularized using dropout. Models using
the alternative architecture are marked with *.

Intuitively, the residual dynamics modeled by ConvLSTM should become more uncertain with
time, making these results seem reasonable.

The narrow intervals caused by the regularization of the ConvLSTM are a potential problem.
The dropout used in training makes the contribution of the residual dynamics predictor to the
final prediction negligible. In search of a solution for this, we will implement dropout into the
residual predictor in a model that was trained without dropout and see whether this will lead to
more useful results.

The data in Table 4.3 shows that MC dropout method on model trained without using dropout
leads to wider intervals and higher coverage probabilities. It might seem to be the better option,
as we are able to get a better coverage (up to around 93%), but the interval widths are also a
lot wider in most cases. To see whether the prediction interval width is a problem, we will have
a look at the visualization of the widths.

We have to keep in mind that we use different model for the locked locations dropout. The
results suggest that this model has learned to rely more on the PhyCell layer, so that the
contribution of the residual predictor to the output is less important, yet it is still present, unlike
in some models with regularized ConvLSTM.

By examining the widths in Figure 4.3, we can see that in most cases, the prediction intervals
are wider. The contribution of the non-regularized ConvLSTM is higher, so using MC dropout
results in a more diverse range of outcomes. We also notice that the widths of the prediction
intervals using dropout in the encoder/decoder are time-dependent, as they widen over time.
This may not be desirable; therefore, a combination of regularized and non-regularized models
could potentially be employed. Utilizing the non-regularized model with the MC dropout method
could be beneficial in situations where there is little room for error. Although the wider prediction
intervals suggest increased uncertainty, the high coverage ensures that the actual predictions are
likely to fall within these intervals.

We can also see that in Table 4.3, the interval width dependence on the value of the dropout
rate is far more obvious than in the regularized model. This may help in adjusting and fine-tuning
the parameters of the model when employing this method.
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Input

Target

Prediction

Encoder (0.2)

Encoder (0.4)

Decoder (0.2)

Decoder (0.4)

Encoder+Decoder (0.2)

Encoder+Decoder (0.4)

ConvLSTM (input) (0.2)

ConvLSTM (input) (0.4)

ConvLSTM (cell) (0.2)

ConvLSTM (cell) (0.4)

ConvLSTM (cell, locked) (0.2) *

ConvLSTM (cell, locked) (0.4) *

Encoder+ConvLSTM (input)+Decoder (0.2)

Encoder+ConvLSTM (input)+Decoder (0.4)

Encoder+ConvLSTM (cell)+Decoder (0.2)

Encoder+ConvLSTM (cell)+Decoder (0.4)

Encoder+ConvLSTM (cell, locked)+Decoder (0.2) *

Encoder+ConvLSTM (cell, locked)+Decoder (0.4) *

Figure 4.2 Widths of prediction intervals obtained from MC dropout using model regularized with
dropout. Models using the alternative architecture are marked with *.
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Input

Target

Prediction

Encoder (0.2)

Encoder (0.4)

Decoder (0.2)

Decoder (0.4)

Encoder+Decoder (0.2)

Encoder+Decoder (0.4)

ConvLSTM (input) (0.2)

ConvLSTM (input) (0.4)

ConvLSTM (cell) (0.2)

ConvLSTM (cell) (0.4)

ConvLSTM (cell, locked) (0.2) *

ConvLSTM (cell, locked) (0.4) *

Encoder+ConvLSTM (input)+Decoder (0.2)

Encoder+ConvLSTM (input)+Decoder (0.4)

Encoder+ConvLSTM (cell)+Decoder (0.2)

Encoder+ConvLSTM (cell)+Decoder (0.4)

Encoder+ConvLSTM (cell, locked)+Decoder (0.2) *

Encoder+ConvLSTM (cell, locked)+Decoder (0.4) *

Figure 4.3 Widths of prediction intervals obtained from MC dropout using a model trained without
dropout. Models using the alternative architecture are marked with *.
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Dropout Drop rate MPIW ↓ PICP ↑
Encoder 0.2 0.0100 0.2332
Encoder 0.4 0.0172 0.4057
Decoder 0.2 0.0273 0.8906
Decoder 0.4 0.0473 0.9231
Encoder + Decoder 0.2 0.0309 0.8999
Encoder + Decoder 0.4 0.0530 0.9306
ConvLSTM (input) 0.2 0.0159 0.4405
ConvLSTM (input) 0.4 0.0336 0.7698
ConvLSTM (cell) 0.2 0.0473 0.8506
ConvLSTM (cell) 0.4 0.0819 0.2467
ConvLSTM (cell, locked) * 0.2 0.0025 0.0811
ConvLSTM (cell, locked) * 0.4 0.0037 0.1506
Encoder + ConvLSTM (input) + Decoder 0.2 0.0352 0.9072
Encoder + ConvLSTM (input) + Decoder 0.4 0.0642 0.9323
Encoder + ConvLSTM (cell) + Decoder 0.2 0.0654 0.9077
Encoder + ConvLSTM (cell) + Decoder 0.4 0.1371 0.5744
Encoder + ConvLSTM (cell, locked) + Decoder * 0.2 0.0475 0.9220
Encoder + ConvLSTM (cell, locked) + Decoder * 0.4 0.1216 0.9465

Table 4.3 MC Dropout - 15 samples, alpha=0.02, model trained without dropout. Models using the
alternative architecture are marked with *.

MC dropout proves to be a useful method. Through fine-tuning, we may be able to identify
the optimal configuration for our specific use case. We believe that the versatility and value of
the method lie in its configurability in various ways.

4.3 Quantile regression for uncertainty quantification

Implementing the quantile regression method into the training process is relatively straightfor-
ward, as discussed in 2.5. By selecting the desired bounds and training the models using the
specialized quantile loss function, we can achieve our goals.

The results in Table 4.4 suggest that quantile regression is a superior method, with extremely
high coverage probability and, in some cases, lower mean prediction interval widths compared to
MC dropout. Given its fast inference time, which requires only two predictions, it’s reasonable
to question the necessity of other methods. We will address this in the following parts of this
section.

Initially, one might assume that the width of the bounds set during the training of quantile
regression models would directly represent the proportion of data contained within them. For
instance, if a quantile regression model predicts the 0.15 to 0.85 interval, we would expect it to
encompass 70% of the data, which corresponds to the width. As we can see, this is not the case,
as the coverage probability is far higher.

Quantile values (predicted bounds) MPIW ↓ PICP ↑
0.15 – 0.85 0.0263 0.9522
0.05 – 0.95 0.0397 0.9771
0.01 – 0.99 0.0686 0.9916

Table 4.4 Results of using quantile regression.
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Prediction

0.15 – 0.85

0.05 – 0.95

0.01 – 0.99

Figure 4.4 Widths of prediction intervals with the quantile regression.

In Figure 4.4, the interval widths appear to be significantly larger than those shown in Figures
4.2 and 4.3, which represent the MC dropout results. However, this observation doesn’t align
with the data in Table 4.4, as some of the MC dropout results have higher MPIWs than the 0.01
to 0.99 quantile regression model. We must explore a different example to see why is it so. We
will compare it to the MC dropout method.

4.3.1 Comparing quantile regression to MC dropout
Considering the MPIW and PICP metrics, one might think that to achieve a similarly high
PICP, the width of MC dropout prediction intervals would generally be larger than the width of
the prediction intervals derived from quantile regression.

In Section 3.1, we mentioned the importance of visualization, caused by the skewness of data.
We anticipate that the dataset contains many zero values. If the quantile regression model can
cover these points with high certainty, it could explain the relatively low MPIW compared to
the MC dropout method. Figure 4.5 supports this observation. We compare quantile regression
to the Encoder + ConvLSTM(cell, locked) + Decoder variant of MC dropout with 0.2 and 0.4
dropout probabilities, as they also exhibit strong PICP and could be useful in specific use cases.

We have already mentioned the difference between frequentist and Bayesian paradigm. Fig-
ure 4.5 illustrates this: MC dropout is able to develop uncertainty in every point, while quantile
regression keeps it very low in certain areas where there was little to no precipitation. This char-
acteristic is advantageous for MC dropout as it allows for a more comprehensive understanding
of uncertainty throughout the entire spatial domain.

Even with the high MPIW and PICP metrics of quantile regression, MC dropout seems to
model the uncertainty in the model better, as quantile regression could potentially underestimate
the uncertainty in the low precipitation density areas.
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MC dropout (0.2)

MC dropout (0.4)

0.15 – 0.85

0.05 – 0.95

0.01 – 0.99

Figure 4.5 Comparison of MC dropout interval widths and the interaval widths obtained by using
the quantile regression.
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Conclusion

In this work, we summarized various methods used for uncertainty quantification, with empha-
sis on MC dropout and quantile regression. Our goal was to gain a deeper understanding of
different approaches, their benefits, and their limitations. We have discussed implementing the
uncertainty in the PhyDNet, a state-of-the-art model for video prediction tasks. Not only have we
discussed how this model operates, but we also discussed possible obstacles when implementing
the uncertainty in it.

Since methods of predicting the distribution of the output may be computationally expensive,
approximate techniques like MC dropout serve as a simple, yet effective alternative. It enables
the integration of uncertainty quantification into existing deep learning models without signifi-
cantly increasing the computational burden. This makes it a practical choice for researchers and
practitioners seeking to enhance their models’ performance while managing resource constraints.

In our implementation, the use of dropout didn’t bring any improvements when used as a reg-
ularization technique during training. This is most likely due to sufficient implicit regularization
of the model and other explicit regularization methods that have previously been employed.

The MC Dropout method offers a straightforward approach to uncertainty quantification. We
have examined two distinct strategies: incorporating dropout during both training and inference
or solely during the inference process. The first approach leads to very narrow intervals with
rather small coverage probabilities, suggesting that the second option or a combination of the
two might be more effective.

We have found that for our specific problem, the prediction of the model doesn’t have to
rely on the residual predictor of PhyDNet too much, so implementing dropout into it during
training may cause its demise in the final prediction. This also speaks for the second strategy
of implementing MC dropout, since high dependence on PhyCell leads to very narrow intervals,
with almost zero coverage probability.

With quantile regression, we were able to achieve notably high coverage probability. Al-
though the metrics indicate that the widths of the prediction intervals resemble those of the
MC dropout method, our analysis demonstrates that when employing quantile regression, the
prediction intervals tend to be very narrow with the prediction near zero and wider anywhere
else. This is caused by the frequentist nature of the method, and may cause underestimation of
uncertainty in areas with low precipitation density. MC dropout, on the other hand, is able to
quantify uncertainty throughout the entire spatial domain.

We have also discussed another drawback of quantile regression — to change the model
slightly, we need two new models and their training may take a lot of time and resources.

In this work, we proposed two different methods of implementing uncertainty quantification
into the PhyDNet model for spatio-temporal predictions. We have compared the methods and
by presenting empirical results alongside real-world examples, we have provided a comprehensive
understanding of these approaches’ impact on uncertainty quantification.
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Contents of attachments

models ................................. directory of implemented PhyDNet architectures
base .............................................standard PhyDNet implementation
locked-dropout-masks ..........PhyDNet implementation with locked dropout masks

train.py ............................................................... training script
README.md ..........................basic instructions for running the attached programs
phydnet-hyperparams.yaml ........................ file with configuration for the model
metrics.py .................................................script for model evaluation
inference.py ................. script for model uncertainty evaluation and image logging
env.yml ......................................specification of conda virtual environment
dataset.py....................................................script for work with data
text

src............................................directory with thesis LATEX source files
thesis.pdf................................................thesis text in PDF format
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