
Title:
Student:
Supervisor:
Study program:
Branch / specialization:

Department:
Validity:

Assignment of bachelor’s thesis

RDF Editor Plugin for the OpenPonk Tool
Vojtěch Doležal
Ing. Jan Blizničenko
Informatics
Web and Software Engineering, specialization Software
Engineering
Department of Software Engineering
until the end of summer semester 2023/2024

Instructions

The goal of this thesis is the implementation of the RDF model editor as a plugin of the
OpenPonk tool.
RDF models will be visualized and modified using diagrams.
Support for import and export in JSON-LD format is required.

1. Familiarize yourself with the RDF standard, the JSON-LD format and its use for RDF
models
2. Familiarize yourself with the OpenPonk tool and its existing plugins
3. Review existing RDF editing tools
4. Familiarize yourself with relevant libraries/tools applicable for working with the JSON-
LD format on the Pharo platform
5. Design an architecture, implement and test the solution
6. Demonstrate your solution on a simple case study
7. Document your solution

Electronically approved by Ing. Michal Valenta, Ph.D. on 6 February 2023 in Prague.

Bachelor’s thesis

RDF Editor Plugin
for the OpenPonk Tool

Vojtěch Doležal

Czech Technical University in Prague
Faculty of Information Technology
Department of Software Engineering

Supervisor: Ing. Jan Blizničenko

May 11, 2023

Composed and generated using LibreOffice Writer.

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Vojtěch Doležal. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Doležal Vojtěch. RDF Editor Plugin for the OpenPonk
Tool. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.

Table of Contents
Acknowledgements..v
Declaration..vii
Abstract...ix
Introduction..1
Goals...3
Chapter 1 Technologies...5

1.1 Pharo..5
1.2 OpenPonk...5
1.3 Resource Description Framework (RDF)...6
1.4 Relevant RDF Formats..8

1.4.1 JSON-LD..8
1.4.2 N-Quads..9

1.5 SPARQL...10

Chapter 2 Analysis of similar products...11

2.1 Neologism 2.0..11
2.2 The NeOn Toolkit..11
2.3 Protégé (Desktop)...11
2.4 TopBraid Composer..12
2.5 WebProtégé..12
2.6 Conclusion of analysis of similar products..12

Chapter 3 Analysis of JSON-LD libraries...13

3.1 Analysis of libraries for Pharo..13
3.2 Analysis of libraries for other languages...13
3.3 Python-Pharo interoperability..13

Chapter 4 Design & Implementation..15

4.1 RDFLib and intermediary data format..15
4.2 Class structure..16

4.2.1 OpenPonk-RDF package...16

4.2.1.1 Announcements tag...17
4.2.1.2 Controllers tag...17
4.2.1.3 Examples tag...17
4.2.1.4 Help tag...17
4.2.1.5 Models tag...17
4.2.1.6 Plugin tag..18
4.2.1.7 QueryTool tag..18
4.2.1.8 Serialization tag...18
4.2.1.9 Shapes tag..18

4.2.2 RDFLIB package...19

4.3 Testing..19

iii

4.3.1 GitLab CI for Pharo..19
4.3.2 Content of tests...20

4.4 Case study..21

4.4.1 Import from an RDF file...21
4.4.2 Making manual changes in imported data..21
4.4.3 Running a SPARQL query..22
4.4.4 Exporting data into RDF format..24

4.5 Documentation...26
4.6 Performance profiling of import functionality..26
4.7 Future developments..27

Conclusion...29
Bibliography..31
Table of Figures..33
Table of Code Snippets...35
Table of Tables...37
Acronyms..39
Contents of enclosed archive...41

iv

Acknowledgements

I would like to thank everyone for all manner of support during my studies and
especially to Ing. Jan Blizničenko for proposing this topic and supervising the
process of writing this thesis.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance
with Article 46(6) of the Act, I hereby grant a nonexclusive authorization
(license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 11, 2023

Vojtěch Doležal

vii

Abstract

This thesis discusses design and implementation of a plugin for the OpenPonk platform
for work with linked data. The goal of this thesis was to create a software for
straightforward visualization and editing of RDF data. Main parts of this thesis include
import and export of this data, user interface for visualization and manipulation with the
loaded data, and querying of this data. In the final part of the thesis, after the
presentation of other functions, is the plugin demonstrated on a case study.

Keywords: data visualization, data management, linked data, OpenPonk, Pharo, Resource
Description Framework, JSON-LD, SPARQL

Abstrakt

Tato práce se zabývá návrhem a implementací pluginu pro platformu OpenPonk pro
práci s linkovanými daty. Cílem práce bylo vytvořit software pro snadnou vizualizaci
a úpravu RDF dat. Hlavní části této práce zahrnují import a export dat, uživatelské
rozhraní pro vizualizaci a manipulaci s načtenými daty, a dotazování nad těmito daty.
V závěru práce, po prezentaci ostatních funkcí, je použití pluginu předvedeno na
modelové studii.

Klíčová slova: vizualizace dat, správa dat, propojená data, OpenPonk, Pharo, Resource
Description Framework, JSON-LD, SPARQL

ix

Introduction

The concept of linked data, invented in the late 1990s, solved many issues
connected to the process of publishing data on the internet. Using URLs as
identifiers means not only that resources can be unambiguously referenced by
other resources in datasets published by a different entity, it also means these
identifiers may be dereferenced at any time to provide more information.
Specifically RDF (Resource Description Framework) provides this data in terms
of Graphs containing Subject-Predicate-Object triples. Due to predicates being
resources as well, these datasets can also share predicates defined by a third
party, provided a rigorous descriptions for their intended usage is also given,
making it easier to process multiple datasets in a uniform way.

Soon after the introduction of RDF also came SPARQL, a language for
querying these linked data graphs. SPARQL is now commonly supported and
makes using RDF even easier for someone willing to learn it. However, the
various formats of RDF make it still fairly difficult for a laic to meaningfully
interact with an RDF data file, and a graphical visualization and editing tool
would clearly be preferable to reading or editing the files directly in their text
form.

1

Goals

The main goal of this thesis is to develop an OpenPonk plugin which would
allow general user to import, visualize, edit and export linked data in format of
JSON-LD files with knowledge of basic RDF concepts and little to no knowledge
of the exact specifications of the JSON-LD standard. As an optional goal, this
thesis should explore possibility of querying the imported data, for example using
SPARQL.

The analysis section briefly explains main concepts and technologies associated
with RDF and overviews similar products available on the market, comparing
their features and flaws. Finally, a small selection of JSON-LD libraries is
examined.

The practical section then uses knowledge gained in the previous section to
design and implement a solution which would fit the criteria. This
implementation is documented, tested, and demonstrated on a case study.

The goal is however not necessarily to create a brilliantly polished product that
could be immediately deployed, as the OpenPonk platform is currently awaiting a
large update changing the version of the underlying graphical library, and the
resulting plugin will have to be appropriately prepared before a deployment
regardless.

3

Chapter 1

Technologies

1.1 Pharo

“Pharo is a pure object-oriented programming language and a powerful
environment, focused on simplicity and immediate feedback (think IDE and OS
rolled into one).” [1]

Pharo is a modern dialect of Smalltalk, one of the original object oriented
programming languages. It uses very simple syntax with only six reserved
keywords, but which was tailored for ergonomics when working with objects.
Furthermore, there are no access modifiers, with methods that are available
publicly and instance variables that are protected (only available to an instance,
even if it is an instance of a child class), which naturally leads to simple to
understand classes and heavy use of composition. [2]

Lastly, one of its other attractive features is also the fact there are no black
boxes: everything, including elements of the environment itself, can be easily
inspected and have its source code modified. That leads to very responsive and
hands-on development experience.

1.2 OpenPonk

“OpenPonk is a metamodeling platform and a modeling workbench
implemented in the dynamic environment Pharo aimed at supporting activities
surrounding software and business engineering such as modeling, execution,
simulation, source code generation, etc.” [3].

OpenPonk is currently mainly developed by persons associated with the
Faculty of Information Technology at the Czech Technical University in Prague.
It offers plugins for creation of various types of models including but not limited
to ontology domains, finite state machines and BPMN process models. Due to
already being used by plugins that are similar in nature, it features components
and functions that make it suitable to be the base of implementation part of this
thesis.

Plugins for OpenPonk are expected to follow architecture known as MVC
(Model-View-Controller). That means the class for representing the state of a
modelled object (the Model) is separate from class that represents the modelled
object in the user interface (the View). Due to that, operations with modelled
objects can be done without a view even existing. Model and View are then
connected by the Controller, on which they are independent. [4]

In OpenPonk each project consists of one or more models, which may or may
not be of the same kind. These models, and elements they may contain, are
provided by the OpenPonk plugins. These models and elements both commonly
derive from the OPModelObject class as it provides UUID generation and
methods for work with subelements and owner element, as well as announcer,
which are usually useful. Simularly, controllers for models and elements usually
derive from classes OPDiagramController and OPElementController

5

respectively. Special case are controllers for edge elements, in other words
elements connecting other elements, which usually derive from
OPDirectionalRelationshipController. Finally, the view classes that are
responsible for displaying the modelled object on the canvas derive from
OPDIDiagramElement.

1.3 Resource Description Framework (RDF)

“The Resource Description Framework (RDF) is a framework for representing
information in the Web. […] The abstract syntax has two key data structures:
RDF graphs are sets of subject-predicate-object triples, where the elements may
be IRIs, blank nodes, or datatyped literals. […] RDF datasets are used to organize
collections of RDF graphs, and comprise a default graph and zero or more
named graphs.” [5]

In other words RDF describes given domain using subject-predicate-object
triples, or in graph terms with triples node—directed edge—node. Any node is
either an IRI (Internationalized Resource Identifier), a literal (such as a number
or a string), or a blank node, which can be used to describe an object in one or
multiple statements without specifying its global identifier (for example when
expressing the sentence “Alice knows a person who was born on the 1st of April
1939”, “a person” might be referred to using a blank node). The edge, describing

6

Figure 1: Visualization of the example domain

https://macdonalds-farm.com/ownership-structure

https://macdonalds-farm.com/people/joseph-macdonald

http://schema.org/Person
[http://www.w3.org/2001/XMLSchema#integer]

180

Joseph

1939-04-01

MacDonald

http://schema.org/height

http://schema.org/givenName

http://schema.org/birthDate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://schema.org/familyName

https://macdonalds-farm.com/people/joseph-macdonald

https://macdonalds-farm.com/farm

http://schema.org/owns http://schema.org/worksFor

the predicate, must be an IRI. Since any IRI is either a URL (Uniform Resource
Locator), or URN (Uniform Resource Name), not only is it much simpler to keep
identifiers of nodes and predicates globally unique, they can also be dereferenced,
usually providing more information about the resource.

“This Web of Data […], also referred to as Semantic Web […], presents a
revolutionary opportunity for deriving insight and value from data. By enabling
seamless connections between data sets, we can transform the way drugs are
discovered, create rich pathways through diverse learning resources, spot
previously unseen factors in road traffic accidents, and scrutinise more effectively
the operation of our democratic systems.” [6]

Common storage formats include RDF/XML (the original RDF format),
various supersets of N-Triples (such as N-Quads, Turtle, Notation3 and TriG)
and JSON-LD. These formats have various differences in capabilities and
intended purpose. Main differences include whether a file of the format can
contain multiple graphs (most formats do not support this) and whether there are
ways to shorten common prefixes of IRIs (most formats do support this).

Let us introduce an example RDF domain. The data in this domain will be
related to certain Joseph MacDonald and his farm (both fictitious). This domain
will include two graphs, ‘https://macdonalds-farm.com/ownership-structure’ and
the default graph. The default graph contains the date of Joseph’s birth, his
height rounded to centimetres, his given and family name and the fact he is a
person. The named graph, on the other hand, contains the fact he works for
MacDonalds farm, which he also owns. Visualization of this domain can be seen
on figure 1.

7

1.4 Relevant RDF Formats

1.4.1 JSON-LD

“JSON-LD is a lightweight syntax to serialize Linked Data in JSON [...]. Its
design allows existing JSON to be interpreted as Linked Data with minimal
changes. JSON-LD is primarily intended to be a way to use Linked Data in
Web-based programming environments, to build interoperable Web services, and
to store Linked Data in JSON-based storage engines. Since JSON-LD is 100%
compatible with JSON, the large number of JSON parsers and libraries available
today can be reused.” [7]

JSON-LD is an RDF format based on JSON. One of its biggest features is that
communication that uses standard JSON data can simply have JSON-LD context
data inserted at a special keys that start with ‘@’ to make it JSON-LD. That
means legacy software or devices can then ignore the additional JSON-LD data
and process the rest in the same way they used to process the old data, but up to
date consumers can also read the additional context from the additional objects.

Likely the most important of these special properties are ‘@id’, ‘@type’,
‘@context’, ‘@base’ and ‘@vocab’. Properties ‘@id’ and ‘@type’ are used to denote
identifier and type of an element, respectively. ‘@context’ denotes block where
definitions take place, ‘@base’ specifies the base domain to be used for identifiers
and ‘@vocab’ specifies the domain to be used for predicates. [7]

Other important properties include ‘@graph’ which denotes named graph
content (see snippet 1), ‘@list’ for declaring content is ordered and ‘@import’
which allows loading of an external context. [7]

8

 1 {
 2 "@context": {
 3 "@base": "https://macdonalds-farm.com/",
 4 "@vocab": "https://schema.org/"
 5 },
 6 "@graph": [
 7 {
 8 "@id": "ownership-structure",
 9 "@graph": [
10 {
11 "@id": "people/joseph-macdonald",
12 "owns": {"@id": "farm"},
13 "worksFor": {"@id": "farm"}
14 }
15]
16 },
17 {
18 "@id": "people/joseph-macdonald",
19 "@type": "http://schema.org/Person",
20 "givenName": "Joseph",
21 "familyName": "MacDonald",
22 "birthDate": "1939-04-01",
23 "height": 180
24 }
25]
26 }

Snippet 1: Example domain in JSON-LD

1.4.2 N-Quads

“N-quads statements are a sequence of RDF terms representing the subject,
predicate, object and graph label of an RDF Triple and the graph it is part of in
a dataset.” [8]

The N-Quads standard was invented as a superset to a standard called
N-Triples. Whereas N-Triples statements are just Subject-Predicate-Object
triples, N-Quads allow optional fourth term, which then describes the graph the
statement belongs to. This is important, because that means N-Quads have the
same ability of expression as JSON-LD while being much simpler. Example
domain in N-Quads may be seen in snippet 2 (each term of each statement is
only given its own line for readability).

N-Quads are not the only superset to N-Triples, however the other superset are
not entirely important for this thesis. Briefly and incompletely, Turtle introduces
shorthands and cascades, Notation3 expands that with logical operations, whereas
TriG adds syntax for encoding multiple graphs.

9

1 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://schema.org/owns>
<https://macdonalds-farm.com/farm>
<https://macdonalds-farm.com/ownership-structure> .

2 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://schema.org/worksFor>
<https://macdonalds-farm.com/farm>
<https://macdonalds-farm.com/ownership-structure> .

3 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://schema.org/birthDate>
"1939-04-01" .

4 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://schema.org/familyName>
"MacDonald" .

5 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://schema.org/givenName>
"Joseph" .

6 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://schema.org/height>
"180"^^<http://www.w3.org/2001/XMLSchema#integer> .

7 <https://macdonalds-farm.com/people/joseph-macdonald>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://schema.org/Person> .

Snippet 2: Example domain as N-Quads

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://macdonalds-farm.com/people/joseph-macdonald
http://schema.org/height
https://macdonalds-farm.com/people/joseph-macdonald
http://schema.org/givenName
https://macdonalds-farm.com/people/joseph-macdonald
http://schema.org/familyName
https://macdonalds-farm.com/people/joseph-macdonald
http://schema.org/birthDate
https://macdonalds-farm.com/people/joseph-macdonald
http://schema.org/worksFor
https://macdonalds-farm.com/people/joseph-macdonald
https://macdonalds-farm.com/farm
http://schema.org/owns
https://macdonalds-farm.com/people/joseph-macdonald

1.5 SPARQL

“SPARQL can be used to express queries across diverse data sources, whether
the data is stored natively as RDF or viewed as RDF via middleware. SPARQL
contains capabilities for querying required and optional graph patterns along with
their conjunctions and disjunctions. SPARQL also supports aggregation,
subqueries, negation, creating values by expressions, extensible value testing, and
constraining queries by source RDF graph. The results of SPARQL queries can
be result sets or RDF graphs.” [9]

SPARQL is a querying language not too dissimilar to SQL, but clearly inspired
by Turtle syntax. Just like in SQL, typical SPARQL query has SELECT and
WHERE clause, optionally followed by clauses such as GROUP BY, HAVING,
ORDER BY. The main difference lies in the WHERE clause, which is a body
typically containing statements inspired by Turtle, but which may also contain
statements for filtering data and binding calculated data to output columns.

As an example, suppose the example domain contains information about
employee contracts at the farm and that every contract is tied to specific
department and each department has a number and a name. Assume we want to
find list of departments “tags” consisting of department number and name, and
number of employees ordered by this number, but only if the department number
is less than 4. Query retrieving this information might look like the query in
snippet 3. Result of this query might look like the data in table 1.

10

 1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 2 PREFIX sch: <https://schema.org/>
 3 PREFIX macfarm: <https://macdonalds-farm.com/>
 4
 5 SELECT ?dept_tag (COUNT(?person) AS ?count)
 6 WHERE {
 7 macfarm:farm sch:department ?department.
 8 ?department sch:employee ?person;
 9 sch:numberedPosition ?dept_number;
10 sch:name ?dept_name.
11 FILTER(?dept_number < 4)
12 BIND(CONCAT(?dept_number, " - ", ?dept_name) as ?dept_tag)
13 } GROUP BY ?dept_tag
14 ORDER BY DESC(?count) ?dept_tag

Snippet 3: Example SPARQL query

?dept_tag ?count
“1 - Cow house” 3
“3 - Slaughterhouse” 3
“2 - Maintenance” 2

Table 1: Possible result of the example SPARQL query

https://schema.org/
http://xmlns.com/foaf/0.1/

Chapter 2

Analysis of similar products

This chapter briefly runs through RDF related products that might be
considered a competition on the market. It does not includes analysis of RDF
servers such as Amazon Neptune1 or Apache Jena2 which are, for the most part,
products with a different target audience.

2.1 Neologism 2.0

“Neologism 2.0 is an open-source tool for quick vocabulary creation through
domain experts. Its guided vocabulary creation and its collaborative graph editor
enable the quick creation of proper vocabularies, even for non-experts, and
dramatically reduces the time and effort to draft vocabularies collaboratively. An
RDF export allows quick bootstrapping of any other Semantic Web tool.” [10]

Neologism is a web tool focused on creation of vocabularies. Due to this fact, it
unfortunately does not support editing of general RDF files. Additionally it has
no commits in the last 5 months and the live demo linked in the readme file
seems to have been taken offline, making the project appear as no longer
developed.

2.2 The NeOn Toolkit

“The NeOn toolkit is a state-of-the-art, open source multi-platform ontology
engineering environment, which provides comprehensive support for the ontology
engineering life-cycle. The toolkit is based on the Eclipse platform, a leading
development environment, and provides an extensive set of plug-ins (currently 45
plug-ins are available) covering a variety of ontology engineering activities” [11]

The NeOn Toolkit is one of the RDF tools mentioned by Heath and Bizer [6],
unfortunately it does not appear to currently be maintained, with the last version
available on the website being from December 2011. This version seems to have
difficulties running on modern machines, and even features the notorious Log4J
library (unknown whether the exact version is vulnerable in the same way the
modern version was).

2.3 Protégé (Desktop)

“Protégé Desktop is a feature rich ontology editing environment with full
support for the OWL 2 Web Ontology Language, and direct in-memory
connections to description logic reasoners like HermiT and Pellet.” [12]

Protégé is a project developed mainly for modelling ontologies. It offers a way
of modelling subject-predicate-object, as well as SPARQL querying. However
when using the intuitive method of description, there does not seem to be a solid

1https://aws.amazon.com/neptune/
2https://jena.apache.org/

11

https://jena.apache.org/
https://aws.amazon.com/neptune/

way to properly visualize the data, and on the other hand when saving the data
in a way so that it would be displayable by the class viewer, it is hard to query.

Protégé allows saving into some of RDF interchange formats, however it is not
able to load and edit these RDF formats in general, as files that are being loaded
must follow its preferred structure (it seems to have a problem especially with
RDF files that don’t use classes).

2.4 TopBraid Composer

“In use by thousands of commercial customers, Composer offers robust and
comprehensive support for building and testing configurations of rich knowledge
graphs.” [13]

TopBraid Composer claims to have many features for working with both
models and data. Some of these include SHACL and SPARQL autogeneration,
and refactoring of both model and data.

It claims to have support for import and export of RDF files and SPARQL
querying. However, similarly to Protégé, has issues interpreting general RDF files
without a class structure. It should be mentioned that it is a commercial closed-
source tool as well.

2.5 WebProtégé

“WebProtégé is an ontology development environment for the Web that makes
it easy to create, upload, modify, and share ontologies for collaborative viewing
and editing.” [14]

WebProtégé is the continuation of the Protégé project. The interface runs in
the browser and although it does require login, the registration and access to the
instance provided by Stanford University seems to be free and open to the public
as well.

It is fair bit more polished and intuitive than the desktop version, mainly
because the desktop version seems to be mostly abandoned at the moment. Just
like its predecessor, it too features a way to make queries, however instead of
SPARQL processor, WebProtégé provides a custom graphical query builder.
While it might be bit more intuitive for a casual user, it is definitely less
expressive than the SPARQL processor provided by the desktop version. It also
means the queries cannot be copied and saved elsewhere and are not portable,
which might be a great annoyance to some.

It also features options for collaboration (four levels of privileges which can be
granted to other users: manage, edit, comment, view), and just like its
predecessor allows import from and export to RDF interchange formats, while
still not being general RDF editor.

2.6 Conclusion of analysis of similar products

In conclusion, none of the examined products seem to do exactly what this
thesis aims to do. Any support for RDF exchange formats in graphical tools
seems to be more for export and later import, primarily of ontological models,
rather than for import of a generic RDF file, visualization and editing, and later
export.

12

Chapter 3

Analysis of JSON-LD libraries

3.1 Analysis of libraries for Pharo

According to a brief research, there seem to be no existing JSON-LD library for
Pharo. While plain JSON libraries (such as STONJSON and NeoJSON) are
available and would certainly help with the implementation, after taking closer
look at the JSON-LD specification and libraries for other languages, I determined
it would not be possible for me to implement JSON-LD library from scratch in
satisfying manner in such a short time.

3.2 Analysis of libraries for other languages

According to a list at JSON-LD.org [15], there are many RDF libraries with
JSON-LD support for various programming languages, such as JSON-goLD3 for
Go, dotNetRDF4 for C# and Titanium JSON-LD5 for Java. However, Pharo does
not offer a simple way interoperate with these languages, other than including
pre-compiled binaries and running them from the command line.

The simplest language to run with RDF libraries seems to be Python, because
it can be executed through the command line without compilation. Main libraries
for work with JSON-LD in Python seem to be PyLD6 and RDFLib7 for Python.
From these two, I chose RDFLib, because it has support for wide array of RDF
formats and also comes with an engine for processing SPARQL queries.

3.3 Python-Pharo interoperability

As was stated in previous paragraph, interoperability between Python and
Pharo through command line works to a reasonable degree. The main issue with
it lies in behaviour on Windows, because Windows still uses code pages and
therefore sending any Unicode characters through it is unreliable. This is not an
issue for sending paths of data or data itself, as it can be encoded to not feature
Unicode characters, but it would be an issue if user has Python executable
installed in a location that contains Unicode characters (and does not have this
location added in the search path environment variable).

3https://github.com/piprate/json-gold
4https://github.com/dotnetrdf/dotnetrdf
5https://github.com/filip26/titanium-json-ld
6https://github.com/digitalbazaar/pyld
7https://github.com/RDFLib/rdflib

13

https://github.com/RDFLib/rdflib
https://github.com/digitalbazaar/pyld
https://github.com/filip26/titanium-json-ld
https://github.com/dotnetrdf/dotnetrdf
https://github.com/piprate/json-gold

Chapter 4

Design & Implementation

This chapter explains details about the design and implementation of the
thesis.

4.1 RDFLib and intermediary data format

As was hinted at in the analysis section, implementing a custom JSON-LD
library turned out to be harder than expected due to nuances in the standard
specifications, and pursuing this route would likely be met with failure. As a
substitute, Python library RDFLib is being called through the command line,
converting the RDF data from various formats into a simple intermediary format
based in JSON but similar to the N-Quads format. There are many advantages to
this approach, including the fact RDFLib is well tested and receives frequent
updates.

This intermediary format is simply just an array of arrays of simple JSON
objects. When conditions are met, it may be interpreted as an array of N-Quads
statements, with each object representing one term of the statement. It may,
however, also carry the result of SPARQL query, in which case there may be any
number of objects in the inner arrays. These JSON objects contain information
about the type and values of the given term. The ‘type’ being either
‘BLANK_NODE_LABEL’, ‘IRIREF’, ‘LITERAL’ or ‘NONE’. Terms of the type
‘LITERAL’ may also have optional ‘language’ and ‘datatype’ properties, having
the same function as in N-Quads (example in snippet 4).

This simplicity allows to outsource the bulk of the parsing to a generic JSON
library, output of operation of which can be loaded with just a few lines of code.

15

 1 [[
 2 {
 3 "type": "BLANK_NODE_LABEL",
 4 "value": "b0"
 5 },
 6 {
 7 "type": "IRIREF",
 8 "value": "https://schema.org/name"
 9 },
10 {
11 "type": "LITERAL",
12 "value": "Winter",
13 "language": "en",
14 "datatype": ""
15 },
16 {
17 "type": "NONE"
18 }
19]]

Snippet 4: Example of intermediary RDF format

Naturally the inverse of this process, encoding model data into this intermediary
format, is just as simple.

4.2 Class structure

The project has similar structure to other OpenPonk plugins, most significantly
to the Finite State Machine plugin, which it is based on. UML Class diagram of
the most important classes of the project can be seen on figure 2.

4.2.1 OpenPonk-RDF package

The code of the project is segmented into multiple so called packages. As the
main class diagram suggests, the package OpenPonk-RDF contains the code

16

Figure 2: Structure of main classes of the project

OPRdfLayouter

OPRdfDiagram

RDFLIBSysCallWrapper

RDFLIBScripts

OPLayouter

OPRdfPlugin

OPPlugin

OPRdfDiagramController

OPRdfNavigatorAdapter

OPNavigatorAdapter

RDFLIBFormatAdapter

RDFLIBPythonAdapter

OPRdfQueryTool

OPDiagramController

RDFLIB

OpenPonk-RDF

OpenPonk-Core

OpenPonk

OPRdfModelSerializer

OPModelSerializer

connected with the user interface. It is further segmented into multiple “tags”, a
form of subpackaging.

4.2.1.1 Announcements tag

This tag contains two classes, namely OPRdfDiagramQueriesModified and
OPRdfDiagramControllersCountChangedAnnouncement. These two
classes represent custom Announcements that get sent when queries of a model
and model controller count gets modified respectively. This is used by the Query
Tool, because due to listening for these Announcements it can show up to date
list of diagrams and queries even when a diagram was closed since opening, or a
query was added or modified in another Query Tool window.

4.2.1.2 Controllers tag

This tag contains controllers for the models. Their main function is, per the
MVC architecture, to create the View for the Model, in these cases to create
Shapes for the models. Additionally the controllers are also responsible for
controls for changing model properties when the object is selected (on the right
hand side sidebar).

One exception to this is the OPRdfDiagramController, which also contains
methods for importing and exporting data in the intermediary format.

4.2.1.3 Examples tag

The examples tag commonly contains classes with examples in Pharo. In this
case there is only one example class named OPRdfExamples, which contains
static methods exampleEmpty and exampleMacDonaldsFarm. When run, the
first of these shows a new empty model, whereas the second shows the example
domain. The class also has static menuCommandOn: method, which creates menu
items from which these examples can be quickly summoned to help the user
better understand the capabilities of the plugin.

4.2.1.4 Help tag

This tag contains OPRdfHelp, which is a help window the user can open
through Diagram > Help. It contains basic information about the plugin, RDF,
SPARQL and the Query Tool.

4.2.1.5 Models tag

This tag contains classes representing the model and the elements, which
includes graphs, predicates, literals and nodes.

Since models and graphs may both contain other elements, classes
OPRdfDiagram and OPRdfGraph have a common ancestor, OPRdfContainer,
which provides methods for getting contained elements by type, as well as
method for getting a dictionary form of contained items.

Nodes (OPRdfNode) and predicates (OPRdfPredicate) are both mainly
defined by their IRI, but instances of OPRdfPredicate also references to the
elements they connect, since they represent a directed edge.

Lastly, instances of OPRdfLiteral contain three strings, content, datatype
and language, just as in the RDF model.

17

4.2.1.6 Plugin tag

The Plugin tag contains three classes, the OPRdfPlugin, which is a
representation of the plugin itself, OPRdfLayouter and
OPRdfNavigatorAdapter.
OPRdfPlugin extends OPPlugin, and as was stated is the representation of

the OpenPonk RDF plugin itself. It includes information about which classes
should be used for layouting, as a diagram model, as a model serializer, as well
menu items OpenPonk should display.
OPRdfLayouter extends the OPLayouter class, and is responsible for

applying layouts on the elements of diagrams, meaning for organizing them in a
specific way. This organization is done automatically when importing new RDF
data, but can also be triggered manually by the user through the user interface
(figure 3). From there, the user can even choose between several organization
styles. Unlike the OPLayouter, the OPRdfLayouter can organize nested
structures. Most of the work is still done by the Roassal display library, exactly
as with OPLayouter, but this layouter is first run for all graphs in the diagram,
and only then on the top level elements, with the elements contained within
graphs being moved to their new location afterwards.

OPRdfNavigatorAdapter extends OPNavigatorAdapter and provides
additional information about how elements should be shown in the view, such as
how should they be displayed in the hierarchic view.

4.2.1.7 QueryTool tag

This tag contains classes connected to the query tool, which can be open
through Diagram > Query, and allows user to execute SPARQL queries. The
queries themselves may also be saved in the given diagram for a later recall.
When a query is ran, the result is shown in OPRdfQueryResultTable, and if
the data could be understood as an RDF dataset, options for opening in a
diagram are shown.

4.2.1.8 Serialization tag

This tag contains classes OPRdfModelSerializer and OPRdfGraphML.
These classes handle proper serialization and deserialization of the diagram when
saving or loading the project. Saved are not only the values, but also positions of
the elements.

4.2.1.9 Shapes tag

This tag contains views for graphs, nodes and literals. These classes only
extend shapes created earlier with minor changes to colours and shapes (nodes
are displayed as ellipsoids), with OPRdfGraphShape extending the default
OPBoundaryFigure, and OPRdfLiteralShape and OPRdfNodeShape
extending OPUmlClassifierShape from the UML Class Diagram plugin.

18

Figure 3: Location of the menu with layouter commands

4.2.2 RDFLIB package

This package contains classes wrapping the Python library RDFLib. The
RDFLIBScripts class provides locations of Python scripts, which are also
created by it. Subclasses of RDFLIBPythonAdapter then use
RDFLIBSysCallWrapper to call the conversion script, from or to a specific
RDF format.

4.3 Testing

Pharo offers multiple ways to run tests. The System Browser (Browse >
System Browser) offers button for running tests when a class derives from the
TestCase class. This button runs every method name of which begins with
“test” when pressed, and subsequently it is coloured depending on the result of
the tests. Similar buttons are also available for each of the individual test
methods.

Another way to run tests in Pharo is through the DrTests test runner
(currently under Browse > Dr Test (Preview)). The expected test structure is
almost exactly the same as with the basic test runner, but it offers advanced
options such as line coverage, which basic runner does not offer. It even supports
running test suites split into multiple packages.

4.3.1 GitLab CI for Pharo

Continuous Integration can be achieved fairly easily in Pharo, and other
dialects of Smalltalk, due to SmalltalkCI8. To use it, repository only needs to load
the SmalltalkCI image (through YAML file such as in snippet 5) and have test
configuration in a .smalltalk.ston file (snippet 6) located in the root directory of
the repository.

8https://github.com/hpi-swa/smalltalkCI

19

 1 image: hpiswa/smalltalkci
 2
 3 Pharo6410:
 4 before_script:
 5 # Install python3 and pip
 6 - apt-get update -qq && apt-get install -y -qq python3
 7 #- python -m ensurepip –upgrade
 8 - apt-get update -qq && apt-get install -y -qq python3-pip
 9 # Alias python to python3
10 #- apt-get update -qq

&& apt-get install -y -qq python-is-python3
11 - update-alternatives –install

/usr/local/bin/python python "$(which python3)" 3
12 # Install rdflib through pip
13 - pip3 install rdflib
14 script: smalltalkci -s "Pharo64-10"

Snippet 5: YAML configuration for GitLab CI

https://github.com/hpi-swa/smalltalkCI

4.3.2 Content of tests

Both of the main packages, OpenPonk-RDF and RDFLIB, have separate
packages for tests, OpenPonk-RDF-Tests and RDFLIB-Tests.

Tests for OpenPonk-RDF mainly focus on operation of controllers and models
such as property editing fields, intermediary format import and export, and
model serialization and deserialization. This is mainly because these are the most
important components, but also because significant changes for other parts are
expected in near future.

For RDFLIB, the tests mainly test whether Python code can be executed,
RDFLib package is present and scripts work approximately as expected. The
difficulty with creating more tests for conversions between RDF formats is that
properly testing the outputs are always correct would require the tests to already
understand all the tested formats, which is the part that is outsourced to
RDFLib. In almost all RDF formats the order of statements should not matter,
and many formats furthermore allow for defining shorthands, making possibilities
of how a valid output might look potentially endless. For this reason, only
conversions to the intermediary format is tested, since while the order of
statements can still vary, there is very finite number of possible valid outputs.

Unfortunately, likely due to behaviour changes between RDFLib versions,
RDFLIB tests currently only appear to work locally and fail in the GitLab CI.

20

 1 SmalltalkCISpec {
 2 #loading : [
 3 SCIMetacelloLoadSpec {
 4 #baseline : 'RdfEditor',
 5 #directory : 'repository',
 6 #platforms : [#pharo]
 7 }
 8],
 9 #preLoading : '.github/scripts/preLoad.st',
10 #postLoading : '.github/scripts/postLoad.st',
11 #testing : {
12 #include : {
13 #packages : ['OpenPonk*', 'RDFLIB*']
14 },
15 #coverage : {
16 #packages : ['OpenPonk-RDF', 'RDFLIB']
17 }
18 }
19 }

Snippet 6: SmalltalkCI .smalltalk.ston configuration file

4.4 Case study

To demonstrate the functionality, let us step through a possible workflow of
user of this plugin. Main tasks of this workflow include import of a JSON-LD file,
manual correction of an error in the imported data, execution of a SPARQL
query and export of the output of the query into an N-Quads file.

4.4.1 Import from an RDF file

If we assume input file is located in a known location, import of a file is done
simply through the Diagram > Import menu, in case of JSON-LD through
Diagram > Import > JSON-LD. Assume input data from Snippet 7.

4.4.2 Making manual changes in imported data

To correct an error, we simply navigate to the erroneous part, or in general to
the part we wish to change. Removal of elements can be done through context
menu when using right mouse button on the given element (figure 4). Addition of
elements can be done through the left hand side sidebar (figure 5 and figure 6).
Properties of the selected element are shown on the right hand side sidebar
(figure 7).

21

 1 {
 2 "@context": {
 3 "gn": "http://schema.org/givenName",
 4 "fn": "http://schema.org/familyName"
 5 },
 6 "@graph":[
 7 {
 8 "@id":

"http://macdonalds-farm.com/people/joseph-macdonald",
 9 "gn": "Joseph",
10 "fn": "MacDonald"
11 },
12 {
13 "@id":

"http://macdonalds-farm.com/people/jamie-macdonald",
14 "gn": "Joseph",
15 "fn": "MacDonald"
16 },
17 {
18 "@id":

"http://macdonalds-farm.com/people/jonah-macdonald",
19 "gn": "Jonah",
20 "fn": "MacDonald"
21 }
22]
23 }

Snippet 7: Case study: Input JSON-LD data

This correction may be documented by leaving a Note or creating a comment
on the element (presence of which is indicated by an icon). Note that Notes or
comments are not treated as RDF data. That means they cannot be queried
through SPARQL and are not exported when exporting the data into RDF
formats.

When we are happy with the adjustments, we save the project (Project >
Save Project). Unlike exporting to an RDF format, saving a project does preserve
Notes and comments.

4.4.3 Running a SPARQL query

To run a SPARQL query, we open the Query Tool using Diagram > Query. If
we wish to query a different diagram from the one that is currently selected, we
can select the correct one from the first dropdown list.

On the bottom part of the window is a query area. The default content of the
query area is an “identity query”, which returns all RDF data in the diagram.

22

Figure 4: Element context menu showing how to delete an element

Figure 5: Insertion of new Literal into a graph

Content of the query area can be executed even if not saved, however to save
content of the area, we enter a name into the second dropdown list and confirm.
That can also be used if we want to save modified query under a new name.
Saving without query name selected is not possible (unsaved changes indicator
will not disappear).

If we assume we want to get aggregate data about counts of given names, the
query might look same as on the figure 8.

After query is executed by pressing the Run button, window with results will
appear. If resulting data could be interpreted as an RDF dataset, it will be
indicated by buttons for opening in the original or a new project being enabled,
as seen on figure 9.

23

Figure 6: Insertion of new Predicate into a graph

Figure 7: Right hand side sidebar for editing of properties

4.4.4 Exporting data into RDF format

With the resulting data (or any data you wish to export in general) being
open, click Diagram > Export and select the preferred output format (see figure
10).

The final output to N-Quads should look similar to Snippet 8 (order of rows
and values of blank nodes may be different and the default node specification is
not strictly necessary).

24

Figure 9: Query Results window

Figure 8: Query Tool window

25

Figure 10: Exporting model to RDF format

 1 _:b1
<https://schema.org/collectionSize>
"1"^^<http://www.w3.org/2001/XMLSchema#integer>
<urn:x-rdflib:default> .

 2 _:b1
<http://schema.org/givenName>
"Jonah"
<urn:x-rdflib:default> .

 3 _:b2
<http://schema.org/givenName>
"Joseph"
<urn:x-rdflib:default> .

 4 _:b3
<https://schema.org/collectionSize>
"1"^^<http://www.w3.org/2001/XMLSchema#integer>
<urn:x-rdflib:default> .

 5 _:b3
<http://schema.org/givenName>
"Jamie"
<urn:x-rdflib:default> .

 6 _:b2
<https://schema.org/collectionSize>
"1"^^<http://www.w3.org/2001/XMLSchema#integer>
<urn:x-rdflib:default> .

Snippet 8: Case study: Resulting N-Quads data

4.5 Documentation

The project is documented in several ways. Aside from this thesis which
describes concepts behind it and general structure, there are also readme files and
naturally comments within the code.

There are two separate readme files in the enclosed archive. One is in the root
folder and describes the structure of the archive, along with the general content
of the files. The second readme file can be found in the project repository and
explains how to install the plugin and its dependencies.

4.6 Performance profiling of import functionality

When testing the program with larger datasets, it has arisen that the
performance of import code might be an issue. For example, importing Turtle file
with approximately 1000 predicates took several minutes, which is significantly
longer than could reasonably be expected.

Pharo fortunately features a Time Profiler (Debug > Time Profiler), which
shows how much time was spent with execution of which call. The profiling was
done using code in snippet 9.

The results have shown that OPDiagramExplorer>>showElements: is the
method the most of the time was spent in, meaning most of the time is spent
with creating elements rendering in the view.

It is likely there is room for optimization in this class, since the measured times
were much larger than could be expected for such a relatively small dataset, but
it would require deeper investigation of OpenPonk components and possibly even
the underlying graphical libraries. Although it is unfortunate, it will have to be
resolved at a later date.

26

 1 | workbench controller |
 2 workbench := OPWorkbench new.
 3 controller := OPRdfDiagramController new.
 4 controller
 5 model: (OPRdfDiagram new announcer: (workbench announcer));
 6 workbenchAnnouncer: (workbench announcer);
 7 view: (RTView new);
 8 layouter: (OPRdfLayouter new diagramController: controller;
 9 yourself);
10 importJSONQuads:
11 (NeoJSONReader fromString:
12 (((FileLocator temp) / 'stw_100.txt')
13 readStream upToEnd))

Snippet 9: Code used for performance profiling

4.7 Future developments

As was mentioned before, one of the bigger issues which could be improved on
is the performance when loading larger dataset. This poor performance makes it
unusable for anything but the smallest datasets, and should positively be the first
one to be addressed.

For smaller improvements in functionality, there is currently almost no
validation of the data entered by the user. Validation was experimented with, but
there did not seem to be simple way to do this with Magritte, the library
responsible for the property editing UI. Additionally, it is also currently not
possible to move a node from one graph into another. This is mainly due to the
fact the content of a graph currently does not move along with it when dragged,
which would be required to implement moving of elements between graphs in a
meaningful way. That is however a limitation of OpenPonk which is resolved in
the upcoming version, meaning this will be addressed when upgrading to it.

Larger future developments are twofold. For one, it might be useful to develop
tools for work with RDF ontologies, such as a panel that would show class
hierarchy of given objects and properties associated with the classes. Secondly, it
might be useful to extend supported standards to RDF* (RDF-star9). This
standard is relatively new when compared to RDF, but introduces a simple way
to describe additional predicate information. That may for example include a
date when a contract takes effect, probability event occurs, or similar
information, which can only be expressed in RDF by creating resources for
instances of such predicates.

9https://www.w3.org/2021/12/rdf-star.html

27

https://www.w3.org/2021/12/rdf-star.html

Conclusion

The goal of this thesis was to implement RDF model editor plugin for the
OpenPonk modelling platform. That included brief review of relevant
technologies, such as the Resource Description Framework itself, and other RDF
editing tools, brief exploration of available libraries and tools, and design,
implementation, testing and documenting a solution. Optional goal was to
establish a way to work with data loaded or created in the solution through
SPARQL querying language.

In the analytical part of the thesis, basic concepts of RDF were explained,
along with basics and examples of JSON-LD and N-Quads formats, which were
both relevant to the implementation. It was shown that there do not appear to be
graphical tools for editing RDF formats except for specific applications such as
ontological models. Lastly it was also shown there are no libraries for Pharo that
would allow for simple work with JSON-LD or any other RDF format.

In the practical part, it was explained how the plugin uses Python library
RDFLib along with custom intermediary format. Basic structure of classes and
packages was shown, and expected workflow including execution of SPARQL
query was shown on a case study.

While I am certainly happy with the result in terms of capabilities of the
implementation with all planned features working to great extent, I must admit
the testing and documentation was not given as much attention as would be
appropriate. Keeping that in mind, I am still inclined to say the goals of the
thesis were met.

29

Bibliography
[1] Pharo - The immersive programming experience [online]. Pharo Project.

Unknown date [cit. 2023-04-22]. Available at: https://pharo.org/

[2] Pharo Cheat Sheet [online]. Pharo Project. Unknown date [cit. 2023-04-22].
Available at:
http://files.pharo.org/media/pharoCheatSheet.pdf

[3] OpenPonk [online]. Faculty of Information Technology, Czech Technical
University in Prague. ©2022 [cit. 2022-03-11]. Available at:
https://openponk.org/

[4] BLIZNIČENKO, Jan. Podpora simulace a vizualizace v nástroji DynaCASE.
Bakalářská práce. Praha: České vysoké učení technické v Praze, Fakulta
informačních technologií, 2015. Available at:
https://dspace.cvut.cz/handle/10467/63136/

[5] RDF 1.1 Concepts and Abstract Syntax [online]. W3C. ©2004-2014 [cit. 2023-
03-11]. Available at: https://www.w3.org/TR/rdf11-concepts/

[6] HEATH, T. and C. BIZER. Linked Data: Evolving the Web into a Global
Data Space [online]. New York: Springer Publishing Company, 2022. 122.
ISBN: 978-3-031-79432-2. Available at:
https://link.springer.com/book/10.1007/978-3-031-79432-2

[7] JSON-LD 1.1: A JSON-based Serialization for Linked Data [online]. W3C.
©2010-2020 [cit. 2023-04-04]. Available at:
https://www.w3.org/TR/json-ld11/

[8] RDF 1.1 N-Quads [online]. W3C. ©2012-2014 [cit. 2023-04-23]. Available at:
https://www.w3.org/TR/n-quads/

[9] SPARQL 1.1 Query Language [online]. W3C. ©2013 [cit. 2023-04-20].
Available at: https://www.w3.org/TR/sparql11-query/

[10] Neologism 2.0 [online]. Semantic Society. Unknown date [cit. 2023-04-23].
Available at: https://github.com/Semantic-Society/Neologism

[11] NeOn Wiki [online]. Semantic Media Wiki. ©2014 [cit. 2023-04-23]. Available
at: http://neon-toolkit.org/wiki/Main_Page.html

[12] Protégé [online]. Stanford University. ©2016-2020 [cit. 2023-03-11]. Available
at: https://protege.stanford.edu/software.php

[13] TopBraid Composer [online]. TopQuadrant. ©2020 [cit. 2023-04-23].
Available at:
https://archive.topquadrant.com/products/topbraid-
composer/

[14] WebProtégé [online]. Stanford University. ©2016-2020 [cit. 2023-04-23].
Available at: https://protege.stanford.edu/software.php

[15] JSON-LD - JSON for Linking Data [online]. PaySwarm. Unknown date
[cit. 2023-04-23]. Available at: https://json-ld.org/

31

https://json-ld.org/
https://protege.stanford.edu/software.php
https://archive.topquadrant.com/products/topbraid-composer/
https://archive.topquadrant.com/products/topbraid-composer/
https://protege.stanford.edu/software.php
http://neon-toolkit.org/wiki/Main_Page.html
https://github.com/Semantic-Society/Neologism
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/json-ld11/
https://link.springer.com/book/10.1007/978-3-031-79432-2
https://www.w3.org/TR/rdf11-concepts/
https://dspace.cvut.cz/handle/10467/63136/
https://openponk.org/
http://files.pharo.org/media/pharoCheatSheet.pdf
https://pharo.org/

Table of Figures
Figure 1: Visualization of the example domain...6
Figure 2: Structure of main classes of the project...16
Figure 3: Location of the menu with layouter commands.....................................18
Figure 4: Element context menu showing how to delete an element....................22
Figure 5: Insertion of new Literal into a graph...22
Figure 6: Insertion of new Predicate into a graph..23
Figure 7: Right hand side sidebar for editing of properties...................................23
Figure 8: Query Tool window...24
Figure 9: Query Results window...24
Figure 10: Exporting model to RDF format...25

33

Table of Code Snippets
Snippet 1: Example domain in JSON-LD...8
Snippet 2: Example domain as N-Quads..9
Snippet 3: Example SPARQL query...10
Snippet 4: Example of intermediary RDF format...15
Snippet 5: YAML configuration for GitLab CI...19
Snippet 6: SmalltalkCI .smalltalk.ston configuration file......................................20
Snippet 7: Case study: Input JSON-LD data..21
Snippet 8: Case study: Resulting N-Quads data...25
Snippet 9: Code used for performance profiling..26

35

Table of Tables
Table 1: Possible result of the example SPARQL query......................................10

37

Acronyms

RDF Resource Description Framework
IRI Internationalized Resource Identifier
URL Uniform Resource Locator
URI Uniform Resource Identifier
URN Uniform Resource Name
IDE Integrated Development Environment
OS Operating System
BPMN Business Process Model and Notation
XML Extensible Markup Language
MVC Model-View-Controller
UUID Universally Unique Identifier
JSON JavaScript Object Notation
SQL Structured Query Language
SHACL Shapes Constraints Language
STON Smalltalk Object Notation
UML Unified Modelling Language
YAML YAML Ain’t Markup Language
UI User Interface

39

Contents of enclosed archive

| readme.txt..Description of contents of the archive
| dolezvo1_assignment.pdf..................................Assignment of this thesis
| dolezvo1_thesis.pdf...This thesis
+ rdf-editor...Git repository

| .gitlab-ci.yml..GitLab pipeline configuration
| .smalltalk.ston...SmalltalkCI configuration
| README.md...Repository readme
+ repository..Source files directory

41

	Table of Contents
	Acknowledgements
	Declaration
	Abstract
	Introduction
	Goals
	Chapter 1 Technologies
	1.1 Pharo
	1.2 OpenPonk
	1.3 Resource Description Framework (RDF)
	1.4 Relevant RDF Formats
	1.4.1 JSON-LD
	1.4.2 N-Quads

	1.5 SPARQL

	Chapter 2 Analysis of similar products
	2.1 Neologism 2.0
	2.2 The NeOn Toolkit
	2.3 Protégé (Desktop)
	2.4 TopBraid Composer
	2.5 WebProtégé
	2.6 Conclusion of analysis of similar products

	Chapter 3 Analysis of JSON-LD libraries
	3.1 Analysis of libraries for Pharo
	3.2 Analysis of libraries for other languages
	3.3 Python-Pharo interoperability

	Chapter 4 Design & Implementation
	4.1 RDFLib and intermediary data format
	4.2 Class structure
	4.2.1 OpenPonk-RDF package
	4.2.1.1 Announcements tag
	4.2.1.2 Controllers tag
	4.2.1.3 Examples tag
	4.2.1.4 Help tag
	4.2.1.5 Models tag
	4.2.1.6 Plugin tag
	4.2.1.7 QueryTool tag
	4.2.1.8 Serialization tag
	4.2.1.9 Shapes tag

	4.2.2 RDFLIB package

	4.3 Testing
	4.3.1 GitLab CI for Pharo
	4.3.2 Content of tests

	4.4 Case study
	4.4.1 Import from an RDF file
	4.4.2 Making manual changes in imported data
	4.4.3 Running a SPARQL query
	4.4.4 Exporting data into RDF format

	4.5 Documentation
	4.6 Performance profiling of import functionality
	4.7 Future developments

	Conclusion
	Bibliography
	Table of Figures
	Table of Code Snippets
	Table of Tables
	Acronyms
	Contents of enclosed archive

