ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STROJNÍ

BAKALÁŘSKÁ PRÁCE

2023

JAKUB MATYÁŠ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta strojní

ÚSTAV STROJÍRENSKÉ TECHNOLOGIE

Změna emisivity elektrod v závislosti na míře opotřebení

Bakalářská práce

AUTOR:	Jakub Matyáš
VEDOUCÍ PRÁCE:	doc. Ing. Marie Kolaříková, Ph.D. Ing. Tomáš Němec
Studijní program:	B 2342 Teoretický základ strojního inženýrství
Studijní obor:	2301R000 Studijní program je bezoborový
Praha 2023	

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:			
	Matyáš	Jméno: Jakub	Osobní číslo: 501304
Fakulta/ústav:	Fakulta strojní		
Zadávající kated	ra/ústav: Ústav s	strojírenské technologie	
Studijní program	: Teoretický zákla	ad strojního inženýrství	
Studijní obor:	bez oboru		
ÚDAJE K BAK	ALÁŘSKÉ PRÁ	ACI	
Název bakalářské p	oráce:		
Změna emisivity	elektrod v závislo	osti na míře opotřebení	
Název bakalářské p	oráce anglicky:		
Change in emissi	vity of electrodes	depending on the degree of wear	
Pokyny pro vypracc	ování:		
 návrh experimentu vyhodnocení namě závěr 	a měřící sesťavy řených dat		
2 (33) ISN			
Seznam doporučen	é literatury:	- H	
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Jul and emissivity. Infran	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno	athematical determination of emissivity ar ometry. International Communications in l 5.010 NEGREANU. Infrared technique for simu plogy, doi:10.1016/j.infrared.2010.09.001	nd surface temperature of aluminum Heat and Mass Transfer. Itaneous determination of temperature
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Jul and emissivity. Infrar	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno vedoucí(ho) baka	athematical determination of emissivity ar ometry. International Communications in l 5.010 : NEGREANU. Infrared technique for simu ology, doi:10.1016/j.infrared.2010.09.001 lářské práce:	nd surface temperature of aluminum Heat and Mass Transfer. Iltaneous determination of temperature
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Ju and emissivity. Infran Jméno a pracoviště doc. Ing. Marie Ko	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno vedoucí(ho) baka blaříková, Ph.D.	athematical determination of emissivity ar ometry. International Communications in 1 5.010 : NEGREANU. Infrared technique for simu ology, doi:10.1016/j.infrared.2010.09.001 lářské práce: ústav strojírenské technologie F	nd surface temperature of aluminum Heat and Mass Transfer. Iltaneous determination of temperature
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Ju and emissivity. Infrar Jméno a pracoviště doc. Ing. Marie Ko Jméno a pracoviště	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno vedoucí(ho) baka blaříková, Ph.D.	athematical determination of emissivity ar ometry. International Communications in I 5.010 NEGREANU. Infrared technique for simu ology, doi:10.1016/j.infrared.2010.09.001 lářské práce: ústav strojírenské technologie F sí(ho) nebo konzultanta(ky) bakalářské	nd surface temperature of aluminum Heat and Mass Transfer. Iltaneous determination of temperature S é práce:
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Ju and emissivity. Infrar Jméno a pracoviště doc. Ing. Marie Ko Jméno a pracoviště Ing. Tomáš Něme	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno vedoucí(ho) baka blaříková, Ph.D. druhé(ho) vedouc c ústav strojíre	athematical determination of emissivity ar ometry. International Communications in 1 5.010 NEGREANU. Infrared technique for simu ology, doi:10.1016/j.infrared.2010.09.001 lářské práce: ústav strojírenské technologie F sí(ho) nebo konzultanta(ky) bakalářsko	nd surface temperature of aluminum Heat and Mass Transfer. Iltaneous determination of temperature S é práce:
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Ju and emissivity. Infrar Jméno a pracoviště doc. Ing. Marie Ko Jméno a pracoviště Ing. Tomáš Něme Datum zadání baka	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno vedoucí(ho) baka blaříková, Ph.D. druhé(ho) vedouc c ústav strojíre alářské práce: 26	athematical determination of emissivity ar ometry. International Communications in 1 5.010 NEGREANU. Infrared technique for simu ology, doi:10.1016/j.infrared.2010.09.001 lářské práce: ústav strojírenské technologie F sí(ho) nebo konzultanta(ky) bakalářské enské technologie FS	nd surface temperature of aluminum Heat and Mass Transfer. Iltaneous determination of temperature S é práce: bakalářské práce: 11.08.2023
Seznam doporučen WEN, Chang-Da a Is alloys using multispe doi:10.1016/j.icheatn HERVE, Philippe, Ju and emissivity. Infrar Jméno a pracoviště doc. Ing. Marie Ko Jméno a pracoviště Ing. Tomáš Něme Datum zadání baka Platnost zadání ba	é literatury: ssam MUDAWAR. M ectral radiation therm nasstransfer.2006.05 lie CEDELLE a lonut ed Physics & Techno vedoucí(ho) baka blaříková, Ph.D. druhé(ho) vedouc c ústav strojíre alářské práce: 26 kalářské práce: 3	athematical determination of emissivity ar ometry. International Communications in 1 5.010 : NEGREANU. Infrared technique for simu ology, doi:10.1016/j.infrared.2010.09.001 lářské práce: ústav strojírenské technologie F sí(ho) nebo konzultanta(ky) bakalářské enské technologie FS 5.04.2023 Termín odevzdání k 51.12.2023	nd surface temperature of aluminum Heat and Mass Transfer. Iltaneous determination of temperature S é práce: bakalářské práce: 11.08.2023

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

Datum převzetí zadání

Podpis studenta

Prohlášení

Tímto prohlašuji, že jsem svou diplomovou práci vypracoval samostatně pod vedením paní doc. Ing. Marie Kolaříkové Ph.D. a pana Ing. Tomáše Němce, a to pouze pomocí podkladů uvedených v seznamu použité literatury v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací, vydaným ČVUT v Praze 1. 7. 2009.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne:

.....

Podpis autora

Poděkování

Rád bych poděkoval vedoucí mé bakalářské práce paní doc. Ing. Marii Koláříkové, Ph.D. za ochotnou pomoc a přínosné rady během psaní práce a také vedoucímu mé práce panu Ing. Tomáši Němcovi za seznámení s měřící technikou a za asistenci a cenné připomínky při provádění experimentu.

Nakonec bych chtěl poděkovat mé rodině za podporu v průběhu celého studia.

Anotace

Název diplomové práce:	Změna emisivity elektrod v závislosti na míře opotřebení
Autor práce:	Jakub Matyáš
Vedoucí práce:	doc. Ing. Marie Kolaříková, Ph.D.
	Ing. Tomáš Němec
Akademický rok:	2022/2023
Vysoká škola:	ČVUT v Praze, Fakulta strojní
Ústav:	12133 – Ústav strojírenské technologie
Vedoucí ústavu:	doc. Ing. Ladislav Kolařík, Ph.D., IWE
Rozsah práce:	70 stránek, 3 tabulky, 31 obrázků
Klíčová slova:	emisivita, infračervená termografie, bodové svařování

Abstrakt: Bakalářská práce se zabývá vztahem mezi emisivitou kontaktních ploch elektrod pro bodové svařování a stupněm opotřebení těchto elektrod pro různé povrchové úpravy svařovaného materiálu. V práci je popsán vývoj emisivity kontaktních ploch těchto elektrod s teplotou při ohřevu a ochlazení. Měření emisivity je prováděno pomocí kontaktní infračervené termografie.

Annotation

Title of the final thesis:	Change in emissivity of electrodes depending on degree of wear
Author:	Jakub Matyáš
Supervisor:	doc. Ing. Marie Kolaříková, Ph.D.; Ing. Tomáš Němec
Academic year:	2022/2023
University:	CTU in Prague, Faculty of Mechanical Engineering
Department:	12133 – Department of Manufacturing Technology
Head of department:	doc. Ing. Ladislav Kolařík, Ph.D., IWE
Extent:	70 pages, 3 tables, 31 pictures
Keywords:	emissivity, infrared thermography, spot welding

Abstract: The bachelor thesis deals with the relations between emissivity of contact surfaces of electrodes for spot welding and the degree of wear of these electrodes for different surface treatments of the welded material. The thesis describes change in emissivity of contact surfaces of these electrodes with change in temperature for both heating a cooling. The measurement of emissivity is executed with contact infrared thermography.

Obsah

1	Úvc	od	
2	Emi	isivita	a – definice, měření13
	2.1	Def	inice emisivity13
	2.2	Para	ametry ovlivňující emisivitu15
	2.2	.1	Materiál15
	2.2	.2	Struktura povrchu15
	2.2	.3	Úhel pozorování15
	2.2	.4	Geometrie povrchu16
	2.2	.5	Vlnová délka17
	2.2	.6	Teplota17
	2.3	Způ	soby určování emisivity17
	2.3	.1	Určování emisivity z tabulek17
	2.3	.2	Určování emisivity pomocí spektrometru18
	2.3	.3	Určování emisivity pomocí fotoakusického efektu19
	2.3	.4	Určování emisivity pomocí termografických kamer20
3	Me	tody	NDT (non-destructive testing) pro svarové spoje23
	3.1	ND	T pro povrchové vady23
	3.1	.1	Vizuální kontrola23
	3.1	.2	Kapilární kontrola23
	3.1	.3	Kontrola pomocí vířivých proudů25
	3.2	ND	T pro vnitřní vady26
	3.2	.1	Radiografická kontrola26
	3.2	.2	Kontrola ultrazvukem27
	3.2	.3	Kontrola metodou rozptylových toků31

	3.2.	4	Kontrola metodou akustické emise	34
	3.2.	5	Infračervené nedestruktivní zkoušení materiálu	35
	3.2.	6	Kontrola metodou shearografie	37
4	Expe	erim	entální část	39
	4.1	Úvo	od	39
	4.2	Přís	stroje, přípravky a software pro vyhodnocení	40
	4.2.	1	Kamera FLIR E95	40
	4.2.	2	Univerzální vícekanálová měřící ústředna ALMEMO 5690-2M	41
	4.2.	3	Navařovací zařízení BT-2	41
	4.2.	Elektrická pec ZC	42	
	4.2.	5	Přípravky pro ohřívání a ochlazování elektrod	43
	4.2.	6	Přípravek pro odstínění parazitního záření	44
	4.2.	7	Software FLIR Tools	44
	4.2.	8	Software FLIR ResearchIR Max	45
	4.2.	9	Použitý materiál	45
	4.3	Náv	vrh experimentu	46
	4.4	Výs	ledky měření	48
5	Závě	ér		52
6	Sezr	nam	tabulek	59
7	Bibli	iogra	afie	53
8	Sezr	nam	obrázků	57
9	Přílo	ohy		60

Seznam zkratek

IČ	infračervený	infrared
FTIR	infračervená spektroskopie pomocí Fourierovy transformace	Fourier transform infrared spectroscopy
NDT	nedestruktivní testování	non-destructive testing
UV	ultrafialové	ultraviolet
CR	počítačová radiografie	computer radiography
DDA	-	digital detector array
EMAT	elektromagnetoakustický měnič	elektromagnetic acoustic transducer
SAFT	-	synthetic aperture focusing technique
AE	akustická emise	acosustic emission
CCD	-	charge-coupled device

Seznam použité symboliky

Me	hustota zářivého toku	W·m⁻²
Φ	zářivý tok	W
ε	emisivita	-
ελ	spektrální hemisférická emisivita	-
εΩ	úplná směrová emisivita	-
ε _{Ωλ}	spektrální směrová emisivita	-
ρ	odrazivost	-
τ	propustnost	-
а	výchylka částice z rovnovážné polohy	т
p	akustický tlak	dBA
z	akustická impedance	Pa·s·m ⁻¹
λ	vlnová délka	т
Н	intenzita magnetického pole	A·m⁻¹
Φ	magnetický tok	m²·kg·s ⁻² ·A ⁻¹
В	magnetická indukce	Т

1 Úvod

Při nedestruktivní kontrole bodových svarů je nejčastěji využívanou metodou kontrola ultrazvukem, k dispozici je nicméně řada dalších metod. Je potřeba mít tyto možnosti na paměti při návrhu postupu kontroly pro dosažení maximální efektivity a kvality.

Jednou z těchto metod by v budoucnu mohla být kontrola pomocí infračervené termografie, která se zatím ve strojírenství využívá především pro kontrolu kompozitních materiálů.

Pro přesné měření pomocí infračervené termografie je nutné znát parametry materiálu a prostředí, ve kterém je měření prováděno. Zásadním parametrem materiálu je emisivita jeho povrchu a pro měření termografickými kamerami je nezbytné ji určit.

Emisivita závisí na mnoha faktorech jako je teplota materiálu, geometrie měřeného objektu a vlastnosti povrchu jako drsnost a míra oxidace. Tato práce se zabývá měřením emisivity v podmínkách, které běžně nastávají při bodovém odporovém svařování tak, aby bylo možné na tyto poznatky dále navázat při další snaze začít využívat termografické kamery při nedestruktivním testování tohoto typu svarů.

Cílem práce je popsat změnu emisivity kontaktní plochy odporových elektrod pro různé stupně jejího opotřebení v závislosti na ohřevu nebo ochlazení. Získáním dat o změně emisivity kontaktní plochy elektrod bude položen základ pro další rozvoj využívání infračervené termografie pro nedestruktivní testování materiálu.

2 Emisivita – definice, měření

2.1 Definice emisivity

Jedním ze zásadních pojmů pro tuto práci je emisivita. Pro zavedení pojmu emisivita je třeba definovat hustotu zářivého toku černého tělesa. Černé těleso jako takové neexistuje, je modelem ideálního zářiče, nicméně je vhodným referenčním bodem pro reálná tělesa. Černé těleso musí splňovat následující vlastnosti: [1]

- Černé těleso absorbuje jakékoli záření dopadající na jeho povrch, nezávisle na směru nebo vlnové délce
- 2. Pro danou teplotu a vlnovou délku nemůže žádný povrch vyzařovat více energie
- Černé těleso se chová jako Lambertovský zářič, záleží tedy na vlnové délce záření, nikoliv ale na směru pozorování – září do všech směrů stejně [1]

Hustota zářivého toku černého tělesa M_e° [$W \cdot m^2$] je potom dle Stefan-Boltzmannovy rovnice dána jako:

$$M_e^\circ = \sigma T^4 \tag{1}$$

kde σ je Stefan-Boltzmannova konstanta a *T [K]* je termodynamická teplota. [1] Pro těleso s povrchem S pak platí:

$$\Phi = S\sigma T^4 \tag{2}$$

kde Φ [W] je zářivý tok emitovaný tělesem plochy S. [2]

Hemisférická emisivita ε [-] popisuje tepelné záření povrchu všech vlnových délek ve všech směrech a je určena jako poměr hustoty zářivého toku povrchu reálného tělesa M_e [$W \cdot m^{-2}$] k hustotě zářivého toku povrchu absolutně černého tělesa M_e° [$W \cdot m^{-2}$]: [3]

$$\varepsilon = \frac{M_e}{M_e^\circ} \tag{3}$$

Spektrální hemisférická emisivita ε_{λ} [-] se vztahuje ke konkrétní vlnové délce záření a je určena jako poměr spektrální hustoty zářivého toku povrchu reálného tělesa M_{λ} [W·m⁻²] k spektrální hustotě zářivého toku povrchu absolutně černého tělesa M_{λ}° [W·m⁻²]: [3]

$$\varepsilon_{\lambda} = \frac{M_{\lambda}}{M_{\lambda}^{\circ}} \tag{4}$$

Úplná směrová emisivita ε_{Ω} charakterizuje záření všech vlnových délek v určitém směru a je dána jako poměr úplného vyzařování povrchu reálného tělesa L_{Ω} [*W*·*sr*⁻¹·*m*⁻²] k úplnému vyzařování povrchu černého tělesa L_{Ω}° [*W*·*sr*⁻¹·*m*⁻²]: [3]

$$\varepsilon_{\Omega} = \frac{L_{\Omega}}{L_{\Omega}^{\circ}} \tag{5}$$

Spektrální směrová emisivita $\varepsilon_{\Omega\lambda}$ [-] popisuje záření v konkrétním směru a s konkrétní vlnovou délkou a určuje se jako poměr spektrálního vyzařování povrchu reálného tělesa $L_{\Omega\lambda}$ [W·sr⁻¹·m⁻²] ke spektrálnímu vyzařování povrchu černého tělesa $L_{\Omega\lambda}$ [W·sr⁻¹·m⁻²]: [3]

$$\varepsilon_{\Omega\lambda} = \frac{L_{\Omega\lambda}}{L_{\Omega\lambda}^{\circ}} \tag{6}$$

Pro emisivitu ε [-] platí také Kirchhoffův vztah, který říká, že množství absorbované energie α [-] je stejné jako množství vyzářené energie [2]

$$\varepsilon = \alpha$$
 (7)

Dále také platí vztah mezi emisivitou, odrazivostí a propustností: [2]

$$\varepsilon + \rho + \tau = 1 \tag{8}$$

kde ε [-] je emisivita materiálu, ρ [-] je odrazivost materiálu a τ [-] je optická propustnost materiálu. Pro nepropustné materiály je možné rovnici vyjádřit jako:

$$\varepsilon + \rho = 1$$
 (9)

Emisivita může nabývat hodnot od nuly, kdy se jedná o bílé těleso a odrazivost je jedna, po hodnotu nula, která platí pro černé těleso (odrazivost je nula). [2]

2.2 Parametry ovlivňující emisivitu

Hodnota emisivity reálných těles závisí na následujících parametrech materiálu. V některých případech jsou vlivy těchto parametrů zanedbatelné a je možné je v praxi neuvažovat, jiné jsou ale zásadní. [1]

2.2.1 Materiál

Materiál je podstatným parametrem pro hodnotu emisivity. Zjednodušeným způsobem rozdělení materiálů podle emisivity je rozdělení na kovové a nekovové. Kovové materiály mají zpravidla nižší hodnoty emisivity (okolo 0,2, někdy ale i výrazně méně), zatímco většina nekovových materiálů, které mají využití v termografii, má hodnotu emisivity vyšší (nad 0,8). [1]

2.2.2 Struktura povrchu

Stav a struktura povrchu materiálu také ovlivňuje hodnotu emisivity. To je komplikace, protože stejný materiál může dosahovat různých hodnot emisivity. Nejvíce se hodnota emisivity v závislosti na struktuře povrchu mění u kovových materiálů. Strukturu povrchu ovlivňuje jeho drsnost a případně jeho oxidace. Pro leštěné povrchy bez oxidace je emisivita zpravidla nižší, zatímco drsnost a oxidace povrchu ji zvyšuje. Rozdíly v emisivitě u různých povrchů stejného materiálu mohou být markantní. Například pro měď se hodnota emisivity v závislosti na struktuře povrchu může pohybovat od hodnoty 0,03 po 0,78. [1]

2.2.3 Úhel pozorování

Jak již bylo uvedeno v kapitole 2.1, černé těleso vyzařuje tepelné záření do všech směrů stejně, to ale neplatí pro reálná tělesa. Tato vlastnost znesnadňuje měření emisivity infračervenými kamerami (dále IČ kamera). Je nicméně možné měřit emisivitu pro různé úhly natočení povrchu vůči normále povrchu, kdy je zkoumané těleso položeno na úhlovou stupnici s rozsahem 0 až 180° s tím, že IČ kamera leží na stupnici na 90°. Poté je zaznamenána emisivita jako funkce úhlu, kdy je známa skutečná teplota a v softwaru kamery je následně nastavena emisivita tak, aby teplota zobrazovaná kamerou odpovídala skutečné teplotě. Pro přesné zjištění skutečné teploty je možné využít kontaktní termometrie, například použitím

termočlánků. Vývoj závislosti emisivity na úhlu pozorování se liší pro různé materiály. Pro nevodiče je typické postupné snižování měřené emisivity pro zvětšující se úhel pozorování od normály povrchu, přičemž do 45° se emisivita mění jen minimálně. U vodičů se nejprve emisivita zvyšuje (přibližně do 75°) a poté klesá. [1] [4]

2.2.4 Geometrie povrchu

Geometrie povrchu souvisí se strukturou povrchu, zde je myšleno jasně definované geometrické útvary, specificky dutiny a rýhy. [1]

Dutiny mají zpravidla vysokou emisivitu, která je dána tím, že záření vstupuje do dutiny malým otvorem a před jejím opuštěním u něj dojde k mnoha interakcím s vnitřními stěnami dutiny. Při každé z těchto interakcí se záření v závislosti na struktuře povrchu částečně rozptýlí. Výsledná emisivita je tedy dána velikostí otvoru dutiny, plochou dutiny, materiálem a jeho strukturou a tvarem dutiny. Této vlastnosti dutin se využívá pro kalibraci IČ kamer, kdy se emisivita dutiny pokládá za referenční bod – její emisivita je blízká emisivitě černého tělesa. [1]

Obr. 1: Vliv geometrie povrchu na emisivitu [1]

Rýhy, tedy mělké prohlubně výrazně větších rozměrů, než je struktura povrchu, stejně jako dutiny zvyšují emisivitu povrchu. Děje se tak z toho důvodu, že záření dopadající na povrch tělesa se z části odrazí na jinou část povrchu tělesa viz. Obr. 1. Tato představa je použitelná i pro vysvětlení, proč hrubé povrchy mají vyšší emisivitu než povrchy leštěné. Zároveň je třeba počítat s tím, že u povrchů se rýhami dochází k velkému rozptylu hodnot emisivity pro různé úhly pozorování. [1]

2.2.5 Vlnová délka

Emisivita se odvíjí také od vlnové délky dopadajícího záření. U kovových materiálů se emisivita většinou snižuje se zvyšující se vlnovou délkou, ale u oxidů a jiných nekovových materiálů se může i zvyšovat. U materiálů, u nichž je emisivita závislá na vlnové délce je třeba ověřit, zda je emisivita stálá pro spektrální rozsah IČ kamer. Pokud tomu tak není, je potřeba použít úzkopásmové filtry, nebo filtry pro jiná pásma vlnových délek, ve kterých materiál vykazuje nízkou změnu emisivity v závislosti na vlnové délce. [1]

2.2.6 Teplota

Teplota ovlivňuje stejně jako mnoho jiných vlastností materiálů i emisivitu. U některých materiálů je tato závislost významná, proto je důležité zajistit, že při sledování procesu lČ kamerou zůstane teplota přibližně konstantní. Také pokud se využívá tabulkových hodnot emisivity, je třeba zjistit, pro jakou teplotu tyto hodnoty platí. [1]

2.3 Způsoby určování emisivity

Hodnotu emisivity je možné získat mnoha způsoby, které se liší časovou a finanční náročností, přesností nebo tím, zda je metoda destruktivní nebo nedestruktivní.

2.3.1 Určování emisivity z tabulek

Nejrychlejším způsobem určování emisivity materiálu je získání potřebné hodnoty pomocí tabulek, které jsou také dostupné na internetu zdarma. Tabulky ve většině případů poskytují informaci, při jaké teplotě byla emisivita určována (ne však všechny), podrobnější tabulky i stav povrchu (zoxidovaný/nezoxidovaný, leštěný/zdrsněný, galvanizovaný atp.). Při využívání tabulek je ale potřeba mít stále na paměti, že faktorů ovlivňujících emisivitu je více viz. kapitola

Parametry ovlivňující emisivitu. Zároveň například popis povrchu materiálu v tabulkách je pouze přibližný a nemusí přesně odpovídat konkrétnímu povrchu, jehož emisivitu chceme určit. Proto pro určování emisivity s vyšší přesností je proto třeba zvolit jinou metodu. [5] [6] [7]

2.3.2 Určování emisivity pomocí spektrometru

Dalším způsobem určování emisivity je pomocí infračervené spektrometrie s Fourierovou transformací (dále FTIR). Součástí FTIR je Michelsonův interferometr (na obrázku č. 1). Ten sestává z pevného zrcadla, posuvného zrcadla, děliče paprsků, kolimátoru a detektoru. Záření se během měření rozdělí na děliči paprsků, který má v ideálním případě odrazivost 0,5 a propustnost také 0,5, na dva paprsky, přičemž jeden paprsek směřuje k pevnému zrcadlu a druhý k posuvnému. Od zrcadel se paprsky odráží a vrací se zpět, kde spolu interferují. Během měření se vzdálenost, kterou překoná paprsek směřující k posuvnému zrcadlu mění s tím, jak se posuvné zrcadlo pohybuje. Tím se mění i způsob, kterým spolu paprsky interferují. Detektor poté zaznamenává signál, který je na něj přiveden. Takto vzniká interferogram, který je potom převeden pomocí Fourierovy transformace na infračervené spektrum a pomocí softwaru je možné získat hodnotu emisivity. Metoda se používá pro testování referenčních černých těles při teplotách až 750 °C. [8]

Detektor

Obr. 2: Schéma Michelsonova interferometru [8]

2.3.3 Určování emisivity pomocí fotoakusického efektu

Další metodou k určování emisivity je pomocí fotoakustického efektu. Jako fotoakustický efekt se označuje jev, při kterém po dopadu světla na vzorek následuje vznik akustických efektů. Aby tento efekt vznikal, je třeba, aby se intenzita světla v čase měnila. [9]

Pro určování emisivity je možné využít aparatury podle schématu na Obr. 3. Ta sestává z hřídele a dvou kol s otvory. Otvory jsou vůči sobě pootočené a kola se synchronně otáčí. Mezi koly je umístěna fotoakustická buňka, ve které je mikrofon a která je vyplněna plynem, který pohlcuje infračervené světlo, nebo, jako v tomto případě, kde se nachází pevný disk, který vytváří fotoakustický efekt. Na vnější straně kol proti otvorům je na jedné straně umístěn testovaný povrch a na druhé straně referenční povrch. Vzhledem k otáčení kol vidí fotoakustická buňka střídavě referenční a testovaný povrch. To v buňce způsobuje vznik fotoakustického efektu, který zaznamenává mikrofon. Výstup z mikrofonu je posílán do zesilovače. Referenční hodnotu pro zesilovač poskytuje laser. Teplota testovaného povrchu je měněna tak, aby se v zesilovači vytvořila nulová hodnota, což následně umožňuje určení emisivity.

Jedná se spíše o experimentální metodu, která není běžně využívaná. Měřenými materiály byly papír, polyvinylchlorid, polystyren a polyethylen. [9]

Obr. 3: Schéma měřícího aparátu pro určování emisivity pomocí fotoakustického efektu [9]

2.3.4 Určování emisivity pomocí termografických kamer

Pro určování emisivity je možné využít termovizních kamer, vždy je potřeba určit skutečnou teplotu testovaného tělesa, toho je možné docílit různými metodami. Mezi ně patří porovnání s emisivitou pásky nebo termografické barvy a porovnání s emisivitou díry.

Nedestruktivní metody

Porovnávání emisivity s páskou

Jednou z možností je umístění pásky o známé emisivitě na měřený povrch. Hodnota emisivity tohoto pásku byla určena pomocí kontaktní termometrie. Většinou se využívá pásek o emisivitě $\varepsilon = 0,95$, ale je možné využít i pásky s jinými hodnotami emisivity jako například Scotch 3M +33 Super, která má hodnotu emisivity $\varepsilon = 0,90$. Poté je těleso i s páskou ohříváno na požadovanou teplotu, dokud nenastane tepelná rovnováha. Následně je pomocí nastavení termokamery na emisivitu pásku určena skutečná teplota tělesa. Termokamerou je potom sledován povrch samotného tělesa a emisivita je v softwaru kamery nastavována tak, aby kamera ukazovala skutečnou teplotu odečtenou pomocí pásku. Výhodou této metody je snadná aplikace a odstranění pásky, nicméně je třeba zajistit dobrý tepelný kontakt mezi páskou a tělesem, což je složité pro materiály s hrubým povrchem. Běžné pásky jsou určeny k použití do přibližně 100 °C, je ale důležité si uvědomit, že pásky stejně jako jiné materiály mění svou emisivitu s teplotou. Primárně je tedy vhodné volit pásky, kde výrobce zaručuje stálost emisivity pro rozsah konkrétního měření, případně kde uvádí, jak se emisivita s teplotou mění. [1] [10]

Porovnávání emisivity s emisivitou termografické barvy

Další možností je určování emisivity pomocí nátěru, jehož emisivitu známe. Metoda funguje obdobně jako při použití pásky – barva je nanesena na část povrchu materiálu a materiál je ohřát na určitou teplotu, poté je termokamerou změřena skutečná teplota pomocí známé emisivity barvy a z ní určena emisivita samotného povrchu. Různé nátěry mají různé teploty, ve kterých by se měly pro tyto účely využívat, a i různě se vyvíjející emisivity v závislosti na teplotě a úhlu pozorování. Jako příklad můžeme uvést barvy HE6 a HE23 od společnosti Rolls-Royce. Obě barvy by se měly využívat pro teploty od 700 °C do 1313 °C, HE6 je však lehce

závislá na úhlu pozorování a má emisivitu 0,95 která zůstává takřka konstantní s vývojem teploty, zatímco HE23 má s teplotou klesající emisivitu 0,93-0,90. Mezi výhody patří opět poměrně jednoduchá aplikace a v tomto případě není problém ani drsnější povrch, na druhou stranu je obtížnější barvu následně odstranit. [1] [11]

Obr. 4: Referenční barva pro určování emisivity LabIR Paint HERP-LT-MWIR-BK-11 [11]

Určování emisivity pomocí termočlánku

V tomto případě jde o kontaktní metodu, kdy se na povrch materiálu připevní několik termočlánků, kterými je snímána teplota. Ta je opět porovnávána s teplotou snímanou termografickou kamerou a emisivita je upravována, dokud neodpovídá té, kterou naměřily termočlánky. Důležité je, aby termočlánky pomocí přenosu tepla neovlivňovaly teplotu materiálu. Toho se dosáhne tím, že tepelná kapacita termočlánku je výrazně nižší než tepelná kapacita materiálu. Měření touto metodou může být časově náročnější, zvlášť pokud je třeba provádět měření více materiálů. Také je možné termočlánky umisťovat do děr, které v materiálu vytvoříme, potom se jedná o destruktivní metodu. [1] [12]

Obr. 5: Termočlánek typu K [13]

Destruktivní metody

Porovnávání emisivity s emisivitou díry

Je možné také využít obdobného principu jako je popsán v kapitole 2.2.4 v části dutiny. Do povrchu se vyvrtá díra, která musí mít hloubku odpovídající minimálně šestinásobku svého průměru. Poté se využívá faktu, že se díra chová obdobně jako dutina, tedy má emisivitu blízkou hodnotě 1. Kamerou je změřena hodnota teploty díky znalosti emisivity díry a následně se kamera použije k měření teploty povrchu. V softwaru kamery se opět upraví hodnota emisivity tak, aby teplota povrchu odpovídala teplotě změřené pomocí známé emisivity díry. [1]

3 Metody NDT (non-destructive testing) pro svarové spoje

3.1 NDT pro povrchové vady

3.1.1 Vizuální kontrola

Vizuální kontrola odporových bodových svarů je jednou z nejjednodušších kontrol bodových svarových spojů. Kontrola obvykle probíhá tak, že osoba provádějící kontrolu pozoruje svar a zjistí jeho nedostatky. [14]

Rozsah kontroly určuje konstruktér a je uvedena na výkresové dokumentaci a v technických podmínkách na výrobu. Je také možné kontrolu automatizovat pomocí digitálních kamer, které svar nasnímají a který je poté vyhodnocen pomocí speciálního softwaru pro zpracování obrazu. U tradičního softwaru pro zpracování obrazu dochází ale obvykle k jeho zkreslení vlivem okolí, proto pro přesnější výsledky je možné tyto nedostatky potlačit pomocí softwaru využívajícího umělou inteligenci. [14] [15]

Vizuální kontrola se dělí na přímou a nepřímou. U přímé kontroly není optická dráha mezi okem pozorovatele a kontrolovanou plochou přerušena a provádí se bez pomůcek nebo s pomůckami typu zrcadla, čočky a boroskopy. U nepřímé kontroly je optická dráha mezi pozorovatelem a povrchem přerušena a kontrola se provádí pomocí fotokamery, endoskopu nebo videokamery. Pro pokročilejší vyhodnocování je možné využít i robotická vozítka a drony s kamerami. [16] [17]

Mezi výhody vizuální metody patří rychlost a jednoduchost jejího vyhodnocení. Kontrola je omezena pouze na povrchové vady a problémem může být obtížná přístupnost svarů pro vyhodnocení. [16]

Metodika provádění kontroly vychází z normy ČSN EN ISO 17637.

3.1.2 Kapilární kontrola

Kapilární kontrola je metoda, která využívá smáčivost kapalin. Po očištění je na povrch zkoumaného tělesa nanesen penetrant. Kapalina se nanese máčením, sprejováním nebo pomocí štětce tak, aby vnikla do prasklin na povrchu materiálu. Následně je povrch očištěn pomocí emulgátorů nebo vodou a je na něj nanesena vývojka, díky které penetrant vystoupí na povrch. Postupem času vystupuje na povrch více penetrantu, který způsobuje obtížnější vyhodnocení polohy a tvaru necelistvosti, a je proto potřeba vyhodnotit rozsah a tvar vady povrchu v krátkém časovém intervalu. [17]

Co se fyzikálních vlastností týče, penetranty musí mít vyšší povrchové napětí, malý krajový úhel a nízkou viskozitu, aby dobře pronikal do vad a po odstranění jeho přebytku vzlínal k povrchu. Kapilární metody se dělí podle typu penetrantu. Jednou možností je využít metody barevné indikace, kdy se necelistvost projeví vznikem kontrastní barevné indikace. Je důležité, aby byl kontrast mezi podkladem a penetrantem dostatečně zřetelný, většinou se proto používá červená barva. Další varianta je metoda fluorescenční, u které je pro indikaci penetrantu v necelistvosti povrchu nutné použít ultrafialové záření (UV). Tato metoda má zpravidla vyšší kontrast mezi podkladem a penetrantem než metoda barevné indikace, nicméně je potřeba disponovat zdrojem UV záření. Poslední možností je využít dvojúčelovou metodu, která obě tyto varianty kombinuje, je tedy možné metodu vyhodnocovat na denním světlu i pod UV zářením. [17]

Obr. 6: Nanášení penetrantu na výrobek [18]

Podle velikosti, tvaru a množství zkoumaných těles je nutné zvolit správné vybavení. Pro kontrolu jednotek kusů je vhodné zvolit sadu sestávající pouze z penetrantu, čističe a vývojky. Naopak pro velké množství kontrolovaných svarů je vhodná stacionární linka, kde je velká část úkonů automatizována. [16]

Je také podstatné využívat pro jednu zkoušku pouze jednu skupinu produktů, tedy produkty od jednoho výrobce. Tím je zajištěno, že jsou spolu kompatibilní. [16]

Výhodou metody je rychlost, cena a možnost využití pro magnetické i nemagnetické materiály. Malé testovací sety jsou navíc dobře přenosné. Metoda je nicméně limitována výhradně na odhalování povrchových vad, tedy povrchových trhlin, studených spojů, porezity na povrchu materiálu apod. Zároveň není možné ji využít pro vyhodnocování hrubých povrchů, protože po čištění by penetrant zůstal na zkoušeném tělese a znehodnotil tak následné vizuální vyhodnocení zkoušky. Dalším omezením jsou mělké a prostorové vady (bubliny), u kterých obvykle dojde k vymytí penetrantu z povrchu během čištění. Testování je také omezeno teplotou, při které má penetrant vhodnou viskozitu a při které schne správnou dobu tak, aby stihl vniknout do vad povrchu (rozmezí pro běžné penetranty je 5°C-50°C). [16] Zkouška je prováděna dle normy ČSN EN ISO 3452-1.

3.1.3 Kontrola pomocí vířivých proudů

Kontrola pomocí vířivého proudu se provádí na kovových a vodivých materiálech. Základem metody je využití magnetické indukce, kdy cívkou prochází střídavý proud od 1 kHz – 2 MHz, což mění magnetické pole okolo ní. Tím je indukován vířivý proud na testovaném materiálu. Vady na povrchu materiálu ovlivní způsob, jakým proud protéká a utvoří nové magnetické pole. Toto pole je možné zkoumat pomocí jiné cívky, nebo pomocí narušení impedance původní cívky. [15] [16] [19]

Pro kontrolu pomocí vířivých proudů je potřeba generátor střídavého proudu, jednu nebo více cívek a zobrazovací panel. Generátor může pracovat na jedné fixní frekvenci, proměnných frekvencích nebo dokonce na několika frekvencích zároveň. Velikost a konfigurace cívek se liší podle konkrétního použití. Zobrazovací panel se může různit od jednoduchého LED panelu po barevnou multifrekvenční obrazovku. [16]

Mezi výhody metody patří cena, přenosnost měřících přístrojů, možnost automatizace procesu. Dále také bezkontaktnost měření a možnost provádění kontroly při vysokých teplotách, a to umožňuje kontrolu provádět i při provozu součásti. Metoda má svá omezení. Především je možné ji využívat pouze u vodivých materiálů a pouze pro povrchové vady, případně pro vady blízko povrchu. Je také potřeba, aby povrch materiálu nebyl drsný. Vady rovnoběžné s plochou tvořenou závity cívky také nebudou touto metodou zaznamenány. [16] Metodiku provádění kontroly upravuje norma ČSN EN ISO 15549.

3.2 NDT pro vnitřní vady

3.2.1 Radiografická kontrola

Radiografická metoda je založená na absorpci velmi krátkých elektromagnetických vln testovaným objektem. Toto záření je generováno zdrojem záření a záření, které projde skrz materiál, je snímáno na druhé straně testovaného objektu, kde se tvoří radiograf. Čím vyšší je energie záření, tím vyšší je jeho schopnost prostupovat materiálem. Zdroj záření je buď rentgenka nebo zdroj záření gama. Pro záření gama se v průmyslových aplikacích využívá především iridium 192 a kobalt 60, případně thulium 170, cesium 137 a radium 226. [15] [16]

Konvenční radiografie využívá jako prostředek k zaznamenání procházejícího záření film. Je možné použít různé třídy filmů, přičemž konkrétní použití záleží na hustotě zkoumaného materiálu, a tedy na intenzitě záření, které projde materiálem a dopadne na film. Součástí standartního průmyslového radiografického filmu je základ filmu vyrobený z celulózy, triacetátu celulózy nebo polyesteru. Na základ filmu je přidáno adhezivum, na které přilne emulze. Emulze sestává z velkého množství malých krystalů halogenidu stříbra a ze želatiny. Na tuto vrstvu je ještě nanesena vrstva tvrzené želatiny, aby ochránila emulzi. Při ozáření dojde v emulzi k chemickému procesu, díky kterému je zaznamenáno procházející záření. Po ozáření filmu je třeba film vyvolat pomocí vyvolávací směsi, které chemicky uložený obraz přemění na viditelný obraz. Vyvolání obrazu trvá přibližně 4 až 8 minut při 20°, poté je nutné vyvolávání obrazu zastavit. To lze provést ponořením do vody nebo do přerušovací lázně. Poté je aplikován ustalovač, který film zbaví zbytků krystalů halogenidu a ustálí obraz. Následně je film na 30 minut ponořen do vody a zbaven vyvolávací směsi a ustalovače a poté usušen. Celý proces lze výrazně urychlit automatizací procesu, to je ale výhodné jen při velkém množství vyvolávaných filmů. [16]

Zkouška se provádí podle normy ČSN EN ISO 17636-1. [5]

Počítačová radiografie (CR) byla první metodou **digitální radiografie**. Namísto filmu využívá fosforovou desku, která je po nasnímání objektu vložena do kazety. Ta je vložena do čtečky, ze které se získá digitální obraz. Oproti konvenční radiografii tak dojde k významné úspoře času. Fosforové desky je navíc možné vymazat a používat opakovaně a v závislosti na konkrétní desce je také možné oproti filmu využívat menší dávku záření. Nicméně stále je u této metody potřeba médium přemístit a až potom je možné začít vyhodnocovat obraz. [16]

Možnou alternativou je DDA (digital detector array), která sestává z uhlíkového krytu, lineárních diodových polí, amorfních panelových detekčních systémů a CMOS (complementary metal-oxide semiconductor) systémů. Tato metoda je schopná obraz vyhodnocovat v řádu sekund, bez nutnosti s médiem manipulovat a je určena pro opakované použití. Nevýhodou je, že DDA panely jsou oproti CR hůře přenositelné, při vysoké dávce záření se mohou poškodit a jejich výměna je nákladná. [16]

Zkoušku upravuje norma ČSN EN ISO 17636-2.

Mezi výhody radiografických metod se řadí přesnost a při použití filmu i vznik trvalého záznamu. Zároveň se jedná o metodu, kterou lze vyhodnotit svary u těles různých tvarů a velikostí, stejně jako vady na povrchu i uvnitř těles. Jde o metodu, která je široce rozšířená a ozkoušená. Nevýhodou je, že během zkoušení je z důvodu přítomné radiace nutné dbát na bezpečnost obsluhy. Pro provádění kontroly a její vyhodnocení je také potřeba, aby měl personál, který zkoušku provádí, dostatečné zkušenosti. Metoda vyžaduje, aby byly přístupné obě strany testovaného objektu a jedná se o nákladnou metodu. [15] [16]

3.2.2 Kontrola ultrazvukem

Ultrazvuk je pojem popisující zvukové vlny, které se šíří s frekvencí vyšší, než je práh slyšitelnosti člověka (pole sluchu je u člověka přibližně 16 Hz – 20 kHz). Zvukové vlny se mohou šířit prostředím, které je alespoň částečně elastické a to tak, že kmitají okolo svých rovnovážných poloh. Tento pohyb se poté přenáší na další částice a dochází k šíření vlny. [16] [17]

Matematicky lze výchylku částice z rovnovážné polohy *a* [*m*] popsat v závislosti na čase jako:

$$a(t) = A_0 sin\omega \left(t - \frac{x}{c} \right)$$
(10)

kde A_0 [m] je amplituda, ω [rad·s⁻¹] je úhlová rychlost, t [s] je čas, x [m] je vzdálenost od počátku šíření vlny a c [m·s⁻¹] je rychlosti šíření vlny. [17]

Akustický tlak *p [dBA]* je poté popsán jako:

$$p = z \cdot v \tag{11}$$

kde *z* [*Pa*·*s*·*m*⁻¹] je akustická impedance prostředí a *v* [*m*·*s*⁻¹] je rychlost kmitání částic okolo rovnovážné polohy. [17]

Akustickou impedanci *z* [$Pa \cdot s \cdot m^{-1}$] prostředí je možné spočítat jako:

$$z = \rho \cdot c \tag{12}$$

kde $\rho [kg \cdot m^{-3}]$ je hustota prostředí a $c [m \cdot s^{-1}]$ je rychlost šíření vlny. Vlnová délka $\lambda [m]$ se určí jako:

$$\lambda = \frac{c}{f} \tag{13}$$

kde $c [m \cdot s^{-1}]$ je rychlost šíření vlny a f [Hz] je frekvence vlny. [17]

Zvukové vlny se mohou šířit čtyřmi základními způsoby, podle směru a povahy kmitání částic. **Podélné vlnění** se šíří v pevných, kapalných i plynných látkách. U podélného vlnění dochází ke kmitání částic ve směru šíření vlny. [17]

												-				1 v λ (L	lnov .amb	á dé oda)	lka	-															
		•••	•	٠	•	•	٠	٠	٠	•	• • •	•	•	•	٠	•	٠	•	٠	••	••	٠	•	•	•	٠	٠	٠	٠	• •	•	٠	•	• •	•
-		•••	•	٠	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	••	••	•	•	•	•	•	•	٠	•	• •	•	•	•	• •	•
		• • •	•	٠	•	•	•	•	•	•	• • •	•	•	•	•	•	•	•	•	••	••	•	•	•	•	•	•	٠	•	• •	• •	•	•	• •	•
		•••	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	••	••	•	•	•	•	•	•	•	•	• •	• •	•	•	• •	•
		•••	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	••	••	•	•	•	•	•	•	•	•	• •	•	•	•	• •	•
-		•••	•	٠	•	•	٠	٠	•	• •	• • •	•	•	•	•	٠	•	٠	٠	••	••	•	•	•	٠	٠	٠	٠	٠	• •	• •	•	•	• •	•
		•••	•	•	•	•	•	•	•	•	•••	• •	•	•	•	•	•	•	•	••	••	•	•	•	•	•	•	•	•	• •	• •	•	•	• •	•
		•••	•	٠	٠	•	٠	٠	٠	•	• • •	•	•	•	٠	٠	•	٠	٠	••	••	•	•	•	٠	٠	٠	٠	٠	• •	• •	•	•	• •	•
		•••	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	••	••	•	•	•	•	•	•	•	•	• •	• •	•	•	• •	•
-		•••	•	٠	•	•	٠	٠	٠	•	• • •	•	•	•	٠	٠	•	٠	٠	••	••	•	•	•	٠	٠	٠	٠	٠	• •	• •	•	•	• •	•
		•••	•	٠	•	•	•	٠	•	•	•••	•	•	•	٠	٠	•	•	٠	••	••	•	•	•	٠	٠	٠	٠	٠	• •	• •	•	•	• •	•
	stlač	ení			rozta	ažen	ú									sr	něr š	śířer	ń				_		•										
																po	déln	ná vl	na																

Obr. 7: Podélné vlnění [16]

Příčné vlnění se šíří pouze v pevných látkách, jelikož kapalné a plynné látky nejsou schopny přenést smykové síly. Částice kmitají kolmo na směr šíření vlny. [17]

Obr. 8: Příčné vlnění [16]

Povrchové vlnění se opět šíří pouze v pevných látkách. Je to vlnění, při kterém se vlna šíří pouze blízko povrchu (přibližně do hloubky jedné vlnové délky od povrchu a částice kmitají v elipsách, přičemž hlavní osa elipsy je kolmá na směr šíření vlny. Povrchová vlna se šíří 0,8 až 0,9krát nižší rychlostí než příčná vlna. [17]

Deskové vlnění je vlnění, ke kterému dochází pouze u pevných těles s konstantním průřezem jako jsou desky, trubky a dráty. Pohyb částic je stejně jako u povrchového vlnění eliptický. Deskové vlny je ještě možné rozdělit na dilatační a ohybové. U dilatačních vln se částice ve středu materiálu pohybují stejně jako u podélného vlnění ve směru šíření vlny, zatímco částice při ohybovém vlnění ve středu materiálu kmitají jako příčné vlny. [17]

Výsledný tvar vlnové plochy popisuje Huygensův princip. Ten říká, že při šíření vlny se každá částice, kterou vlnění rozkmitá, stává zdrojem vlnění. Tvar vlnové plochy (obálka) nekonečně malého zdroje vlnění v trojrozměrném homogenním prostoru je koule. V praxi nejsou ale zdroje vlnění nekonečně malé a mohou mít různé tvary, které tvar obálky na začátku šíření vlny kopíruje. Se zvětšující se vzdáleností od zdroje se ale tvar obálky začíná opět blížit kouli. Toto je důležité si uvědomit při kontrole materiálu ultrazvukem, jelikož pokud bude defekt daleko od sondy, změna šíření vlny, kterou defekt způsobil, nebude zaznamenána. [17]

Součástí každé ultrazvukové sondy, tedy zařízení, které do materiálu vysílá a z něj přijímá signál, je měnič, který generuje impulsy. Pro generování signálu je možné využít různé druhy měničů. [16] [17]

Nejčastěji používanými měniči v kovové defektoskopii jsou piezoelektrické měniče. Je to destička, která generuje podélné vlny. Piezoelektrické měniče je možné vyrábět z různých

materiálů. Nejčastěji se využívá piezokeramika, jejíž výhodou je vysoká hodnota piezoelektrického součinitele, nevýhodou zase přenos ultrazvukových impulsů do některých prostředí. Dalším druhem piezoelektrického měniče je piezokompozitový měnič, který se skládá z keramické destičky rozdělené na pravoúhlé tyčinky, mezi kterými zůstane mezera, která je vyplněna epoxidem. Takovýto měnič má tedy nižší hustotu, a proto i nižší vlnový odpor, čehož je využíváno například u úhlových sond, jelikož to usnadňuje přenos energie do plexisklového klínu, který je součástí těchto sond. Využití piezokompozitových měničů je nicméně limitováno použitím epoxidové složky pouze na prostředí do 100 °C. Poslední možností jsou PVDF (Polyvinylidene Fluoride) měniče, jejichž výhodou je dobrý přenos energie do materiálu a velký rozsah frekvencí signálu, který dokáže generovat. Materiál je také pružný a je proto vhodný pro soustředění paprsku, a tedy pro získávání vysokého rozlišení. Impulzy, který PVDF měniče vysílají jsou ale slabé a je proto většinou potřeba jejich signál zesílit zesilovačem. [16] [17]

Speciálním typem sond s piezoelektrickými měniči jsou sondy využívající techniku Phased array. Základem techniky je sonda, která obsahuje soustavu malých měničů, které vysílají nezávisle na sobě signály do materiálu. Pomocí Huygensova principu a vhodných časových odstupů mezi signály z jednotlivých měničů je možné soustředit výslednou vlnu nebo ji nasměrovat pod požadovaným úhlem. Toho se využívá pro kontrolu součástí se složitou geometrií jako například lopatek turbíny. [16] [17]

Kromě piezoelektrických měničů je pro generování ultrazvukových signálů možné využít také elektromagnetoakustické měniče (EMAT). Ty fungují na principu působení Lorentzovy síly, která vzniká v důsledku vířivých proudů, které se v materiálu vytváří pomocí permanentních magnetů nebo elektromagnetů. Tím vznikají na povrchu materiálu kmity, které se šíří do materiálu. Výhodou EMAT měničů je, že pro jejich použití není potřeba kontakt s materiálem, a proto není potřeba vazbové médium mezi sondou a materiálem. Z tohoto důvodu je také možné tyto měniče použít pro aplikace, kdy je materiál zahřátý na vysokou teplotu. Médium mezi sondou a materiálem. Také je možné soustředit a nasměrovat paprsek a možnost generovat v materiálu horizontálně polarizované příčné vlny, které jsou vhodné pro zkoušení austenitických svarů a jiných materiálů s dendritickou strukturou. Nevýhodou je nízká amplituda signálu v porovnání s piezoelektrickými měniči. Na buzení měničů je také potřeba větší proud. Proto jsou přístroje s EMAT měniči větší a většinou napájené ze sítě. [16] [17]

Další možností bezkontaktního ultrasonické kontroly je kontrola pomocí laseru. Ta spočívá v rychlém zahřátí povrchu materiálu pomocí laseru, což způsobí roztažení materiálu. To vyvolá vznik vlny, která se šíří materiálem. Obvykle je potřeba využít dva lasery, kdy jeden generuje signál a druhý funguje jako interferometr, tedy zaznamenává narušení vlny od necelistvostí v kontrolovaném vzorku. Kontrolní laser je možné nahradit konvenčním měničem na povrchu tělesa. [16]

Sondy je možné uspořádat podle dvou základních schémat. Pokud jsou vysílač a přijímač dvě různé sondy na dvou protilehlých površích, jedná se o **metodu průchozí**. Ta spočívá v generování signálu jednou sondou a po průchodu zkoušeného tělesa k zaznamenání narušení vlny v důsledku vady pomocí druhé sondy. Tato metoda má výhodu v tom, že je schopná zaznamenat i vady blízko povrchu a tím, že vlna prochází materiálem pouze jednou, se méně zeslabuje. [17]

Druhou metodou je metoda odrazová, kdy je vysílač i přijímač stejné zařízení. Vlna se tedy ve chvíli, kdy dosáhne vady v materiálu, odrazí a je zaznamenána stejnou sondou. Nevýhodou je, že vysílání signálu netrvá nekonečně malý časový úsek a proto, pokud je vada blízko povrchu materiálu, sonda ve chvíli, kdy se vlna odrazí od vady a vrací se do sondy, která by ji měla zaznamenat, stále ještě vysílá signál. Signál proto nebude zaznamenán. Je také potřeba brát v potaz, že ultrazvuk může v krajním případě urazit takřka dvojnásobnou vzdálenost než u průchozí metody, a proto dojde k jeho většímu zeslabení. Výhodou naopak je, že je potřeba pouze jeden přístupný povrch. [17]

Přesnou polohu, a hlavně přesnější odhad tvaru necelistvosti, je možné získat pomocí postprocesingu, nejčastěji pomocí SAFT (Synthetic Aperture Focusing Technique), která skládá dohromady ultrazvukové signály ze všech pozic měniče. [20]

Zkoušku upravuje norma ČSN EN ISO 22825 (051184).

3.2.3 Kontrola metodou rozptylových toků

Metoda rozptylových toků nebo také Magnetická metoda prášková spočívá ve zmagnetování materiálu magnetickým polem, což způsobí, že se v místě trhliny vytvoří magnetický rozptylový tok, který vystupuje nad povrch materiálu a tam je možné ho zaznamenat pomocí magnetického prášku nebo pomocí sond. Magnetický prášek je možné aplikovat přímo v podobě prášku, v podobě emulze nebo ve spreji. [16] [17]

Vznik magnetického pole souvisí s přítomností pohybujících se elektrických nábojů podle Maxwellovy rovnice v integrálním tvaru:

$$\oint_{l} H \cdot dl = \sum I \tag{14}$$

kde $H[A \cdot m^{-1}]$ je intenzita magnetického pole, a I[m] je délka integrační křivky a I[A] elektrický proud. [17]

Vztah magnetického toku Φ [$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$] a magnetické indukce B [T] popisuje rovnice

$$\Phi = \int_{S} B \cdot \cos\alpha \cdot dS \tag{15}$$

kde α [°] je úhel mezi plochou materiálu a vektorem magnetické indukce a *S* [*m*²] je plocha. [17]

Magnetickou indukci je možné přepočítat na intenzitu magnetického pole pomocí následujícího vztahu:

$$B = \mu_o \cdot \mu_r \cdot H \tag{16}$$

kde $\mu_0 [H \cdot m^{-1}]$ je permeabilita vakua a $\mu_r [-]$ je relativní permeabilita. [17]

Jelikož magnetické pole je pole vírové a jeho siločáry tedy nikde nezačínají a nikde nekončí, je celková velikost magnetického toku po celé jeho dráze konstantní. Povrchová necelistvost nicméně svou výrazně nižší relativní permeabilitou oproti relativní permeabilitě materiálu dosahuje vyššího magnetického odporu. Tím je způsobeno zhuštění siločar okolo necelistvosti a jejich částečné vystoupení na povrch materiálu, čímž vzniká rozptylové pole. [17]

Vady materiálu by v ideálním případě měly být kolmé na vytvářené magnetické pole, aby toto pole narušovaly. Pokud by byly rovnoběžné s magnetickým polem a nevytvořilo by se tak rozptylové pole, nebylo by možné kontrolu provést. Tomu je třeba uzpůsobit způsob magnetizace. [17]

Pólová magnetizace vytvoří v materiálu magnetické pole, které prochází jak předmětem, tak i okolo něj. Typicky vznikají na vstupu a výstupu siločar z materiálu magnetické póly. Pólově magnetizovat je možné pomocí cívky nebo pomocí magnetizačního jha. Při použití cívky má magnetické pole směr osy cívky, a proto jsou kontrolovány příčné vady. Stejně tak se příčné vady dají kontrolovat i pomocí magnetizačního jha, kdy je jho přiloženo na povrch materiálu a stává se součástí obvodu. Je možné použít jho protékané proudem nebo permanentní magnet,

kde není potřeba přívod elektrické energie, nicméně je obtížnější manipulace se jhem, protože se magnety silně přitahují k materiálu. [17]

Další možností magnetizace je cirkulární magnetizace, kdy je magnetický tok uzavřený v magnetovaném předmětu. Cirkulární magnetizace je možné docílit průchodem proudu zkoušeným materiálem. Při tom se vytvoří magnetické pole kolmé na průchod proudu a je tedy možné zjišťovat vady ve směru průchodu proudu. Stejně tak se podélné necelistvosti dají zjišťovat pomocí cirkulární magnetizace pomocným vodičem. Tato metoda se používá u profilů s otvorem, kterým lze provléct pomocný vodič, kterým protéká proud. To vytvoří magnetické pole, které zmagnetuje obvod otvoru. Pro krátké duté profily je možné také použít cirkulární magnetizaci indukcí proudu. K indukci proudu dochází pomocí cívky, která je napájena střídavým proudem, a tím dochází k vytvoření indukovaného proudu po obvodu předmětu. Tímto způsobem je možné zjišťovat vady rovnoběžné se směrem průchodu proudu. [17]

Pokud není patrné, jakým směrem budou trhliny orientovány, je potřeba využít kombinaci dvou metod magnetizace, kdy jedna metoda bude vytvářet podélné a druhá příčné pole, takže například pomocí magnetizační cívky a průchodu proudu materiálem. [17]

Další možností magnetizace je metoda Quick-Break. Metoda funguje na principu průchodu proudu materiálem a následně jeho vypnutím v řádech desítek milisekund. Tím se předejde ovlivnění úmyslně generovaného magnetizačního pole od vlastního magnetického pole tělesa okolo volných konců. [17]

Po provedení kontroly je potřeba součást odmagnetovat, protože zmagnetované drobné výrobky se k sobě přitahují a také se na povrchu výrobků zachycují drobné feromagnetické částice. Zmagnetované části také znesnadňují svařování elektrickým obloukem a způsobují nižší přesnost měřících přístrojů. Materiál je možné odmagnetovat pomocí vnějšího střídavého magnetického pole s klesající amplitudou, pomocí demagnetizační cívky a pomocí magnetování materiálu polem opačné polarity. [16] [17]

Kontrola metodou rozptylových toků je, co se týče provedení, velmi rychlá metoda a její výsledky není složité interpretovat včetně tvaru a typu vady. Jedná se o poměrně levnou metodu a oproti kapilární metodě má nižší požadavky na přípravu povrchu. Největším omezením metody je neschopnost zachytit vady hlouběji pod povrchem. Jak již bylo zmíněno, magnetický tok musí být přibližně kolmý na osu necelistvosti a je třeba výrobky odmagnetizovat. Složité tvary těles také mohou způsobit obtížně odhadnutelný průchod

proudu materiálem a náhlé změny profilů mohou způsobovat indikace vad i tam, kde se žádné nenacházejí. [16]

Zkoušku upravuje norma ČSN EN 13554 (015081).

3.2.4 Kontrola metodou akustické emise

Metoda akustické emise (AE) vychází z principu zaznamenávání napěťových vln, které se šíří od necelistvostí materiálu vlivem šíření trhlin pod napětím, únikem média pod tlakem nebo poklepy částic dopadající na povrch materiálu vlivem eroze. To znamená, že zdrojem informace, kterou detekční zařízení zaznamená je sám materiál a jedná se tedy o pasivní metodu, zatímco ultrazvuková a radiografická metoda jsou metody aktivní. [16]

Akustická emise v kovových materiálech vzniká dvěma způsoby – z mikrostrukturních a makrostrukturních zdrojů. Akustická emise vzniklá z mikrostrukturních zdrojů je způsobena pohybem dislokací a nesignalizuje porušení materiálu. Míra akustické emise je v tomto případě velmi nízká s výjimkou namáhání v oblasti před maximální elastickou a následně před maximální plastickou deformací. Makroskopické zdroje AE, typicky trhliny, vznikají z koncentrace napětí. Tyto zdroje AE vysílají signály s vysokou amplitudou a jsou proto dobře zaznamenatelné a rozeznatelné od mikroskopických zdrojů. [16]

Poté, co se signál přenese od necelistvosti k povrchu skrze materiál, je přetvořen na elektrický signál pomocí piezoelektrického snímače, který je obvykle vyroben z olovo-zirkonátu-titanátu. Ten je dále veden do měřícího systému AE, kde je následně vyhodnocen. [16] [21]

Vyhodnocení je možné provádět v reálném čase i za provozu. Také je možné zjišťovat úniky plynu u tlakových nádob a určit jejich polohu. Zároveň je metoda cenově dostupná. [16]

Nevýhodou je, že metoda není pro stejné parametry zatěžování opakovatelná, což popisuje Kaiserův efekt. Ten říká, že procesy, které jsou zdrojem AE, jsou nevratné. Pro další kontrolu je tedy potřeba zatížit výrobek víc. S tím souvisí i to, že je výhodné znát historii zatěžování výrobku, aby mohly být správně nastaveny parametry zkoušky. Výsledky metody mohou být také negativně ovlivněny vnějšími nesouvisejícími zvuky. [16]

3.2.5 Infračervené nedestruktivní zkoušení materiálu

Pojem emisivita již byl popsán. Je jedním z parametrů, který je potřeba znát při měření termografickou kamerou. Dalšími jsou vlhkost, vzdálenost od měřeného objektu a odražená zdánlivá teplota, které je potřeba zadat do kamery, aby bylo možné měřit přesnou teplotu povrchu materiálu. Toto se týká kvantitativní termografie. Je možné ale využívat i kvalitativní termografie, kdy výsledkem je pouze termogram, ze kterého není možné získat přesnou teplotu, nicméně pomocí srovnání je i tak možné vyvodit některé závěry. Většina pokročilejších systémů je schopná poskytovat termogram i informaci o teplotě v libovolném bodu tohoto termogramu, tedy kombinaci kvalitativní a kvantitativní termografie. [16]

Termografické kamery sestávají z několika základních komponent. Čočky zajišťují soustředění přicházejícího infračerveného záření na detektor. Nejčastěji jsou vyrobeny z germania. Na detektoru je vytvářena elektronicky měřitelná reakce, ze které je vytvořen termogram a spočtena teplota. Kamery také obsahují software, ve kterém je možné upravit parametry jako je emisivita a odražená zdánlivá teplota a také barevná paleta termogramu. Kamery také mají datové úložiště, kam se termogramy ukládají a filtry, které omezují rozsah vlnových délek, které kamera zachytí. [16] [22]

Obr. 10: Termografická kamera X8580 SLS [23]

Obvyklou metodou vyhodnocení je srovnáním dvou termogramů, odkud je možné určit například přehřívání součásti vlivem tření. Pokročilejší metodou je mapování, kdy je srovnání provedeno pomocí softwaru, který vyhodnotí změny teploty na celém termogramu. Ve strojírenství není z důvodu velkého množství proměnných, které ovlivňují měření, běžné zjišťovat vady jako jsou například trhliny. Výjimkou je letectví, kde je možné vyhodnocovat vady v kompozitních materiálech. Využívají se k tomu kamery s vysokou frekvencí snímků. Při kontrole je jedna strana součásti zahřívána tepelným zářičem a snímána kamerou. Na výrobek je někdy výhodné zářit pulzujícím tepelným zářičem, laserem a je možné i využít energii ultrazvuku. Materiál bez vad by měl vykazovat jednotné teplotní chování při ohřívání a teplo by se mělo šířit rovnoměrně. Pokud tomu tak není, je možné usuzovat, že v materiálu je necelistvost. [16]

Infračervené nedestruktivní zkoušení materiálu je velmi efektivní a pro některé aplikace jednoduchá metoda, kterou je možné získat informace o strojních součástech. Velmi užitečná je pro předcházení poruchám součástí, případně pro čistě kvalitativní aplikace jako určování

úrovně naplnění nádrží. Pokud je potřeba zjišťovat přesnou teplotu, je nutné brát v potaz mnoho faktorů ovlivňující měření, jako měnící se odraženou zdánlivou teplotu, vzdálenost a úhel natočení povrchu. Právě z důvodu odražené zdánlivé teploty je mimo laboratorní podmínky také složité měřit materiály s emisivitou nižší než 0,6. Zásadní je, aby si obsluha termografů byla vědoma těchto vlivů, které musí být zohledňovány při jejich vyhodnocení. [16]

Zkoušku upravuje norma ČSN EN 16714-1.

3.2.6 Kontrola metodou shearografie

Shearografie je optická metoda NDT, při níž je namáhán materiál a na jeho povrch dopadá světlo z laseru. Namáháním se vytvoří na povrchu materiálu vypouklina nebo prohlubeň. Laser se odrazí od povrchu do interferometru, který je schopen tyto změny na povrchu zaznamenat, díky kratší nebo delší vzdálenosti od zdroje laseru k povrchu materiálu a od povrchu materiálu k interferometru. Součástí vybavení je tedy kamera, jejíž součástí je většinou i přístroj určený k namáhání materiálu jako je například tepelný zářič. Data je možné zaznamenávat třemi způsoby. Prvním je fotografický záznam, který využívá jako médium fotografickou emulzi. Výhodou je, že není potřeba využívat laser pro referenci, nicméně médium je potřeba po každé zkoušce měnit, navíc je třeba mezi zaznamenáním fotky bez působení napětí a s ním provést Fourierovu filtraci neboli rekonstrukci interferenčních vzorců, takže není možné provádět měření v reálném čase. Další možností je termoplastický záznam, který využívá termoplastickou plošku, kterou je možné znovu použít, ale je stejně jako u fotografického záznamu třeba médium vyjmout použít Fourierovu filtraci, takže vyhodnocení v reálném čase také není možné. Poslední možností je využití digitální shearografie, která využívá video senzory jako CCD (Charge-coupled device) a zde je možné vyhodnocovat zkoušku v reálném čase. Pro zpracování dat z interferometru je třeba počítač s příslušným softwarem a monitor pro zobrazení dat. [16]

Metodu lze dále dělit podle druhu namáhání vzorku. Jednou možností je namáhat jej tepelně pomocí tepelného zářiče, kdy je namáhání materiálu způsobeno teplotní roztažností. Metoda je oproti infračervenému testování materiálu nezávislá na emisivitě materiálu a výrazně méně ovlivněná čistotou povrchu. Je také možné zkoušený objekt namáhat pomocí natlakování plynem. Další možností je namáhání pomocí vakua, což je jediná metoda namáhání materiálu,

která není bezkontaktní. Výrobky o malých rozměrech lze vložit celé do vakuové komory, u větších lze využít přenosné soupravy, které obsahují vakuovací přístroj i kameru. Vibrační shearografie zase využívá ultrazvukového zdroje, který rozvibruje povrch. Cílem je dosáhnout rezonance anomálií v materiálu, které pak dokáže interferometr zaznamenat. [16] [24]

Obr. 11: Přenosná souprava pro provedení shearografické kontroly materiálu [25]

Shearografické zkoušení materiálu je velmi rychlou metodou, navíc vyhodnocení je snazší než u většiny ostatních NDT metod. Je možné také vyhodnocovat nakloněné povrchy, což usnadňuje zkoušení velkých výrobků. Navíc je možné kombinovat různé metody namáhání zkoušeného vzorku a docílit tak přesnějších výsledků. [16]

Nevýhodou je, že necelistvosti hluboko pod povrchem nebudou zaznamenány, protože nedojde ke změně na povrchu materiálu. Pokud je shearografie prováděna například v průmyslových objektech, může docházet k degradaci snímků vlivem hluku a vibrací. [16] Zkoušku upravuje norma DIN 54108-1.

4 Experimentální část

4.1 Úvod

Cílem praktické části je určit emisivitu povrchu kontaktních ploch dvou sad elektrod pro odporové svařování pomocí termografické kamery FLIR E95 v závislosti na míře jejich opotřebení svařovacími cykly dle normy ČSN ISO 18434-1.

Emisivita byla určována porovnáváním teploty změřené pomocí termočlánku na povrchu vzorku s teplotou nastavené v softwaru kamery. Emisivita byla měřena při ohřevu a ochlazení.

Výsledkem je závislost emisivity kontaktních ploch elektrod na teplotě povrchu při ohřevu a ochlazení pro různé stupně opotřebení.

4.2 Přístroje, přípravky a software pro vyhodnocení

4.2.1 Kamera FLIR E95

Měření bylo prováděno termografickou kamerou FLIR E95 od značky FLIR. Kamera disponuje barevným dotykovým displejem. Na displeji je možné umístit bod a sledovat jeho teplotu v reálném čase. Kamera má možnost automatického i mechanického ostření. Parametry kamery jsou uvedeny v tabulce č. 1.

Obr. 12: Kamera FLIR E95 [26]

Tab. 1: Parametry termografické kamery FLIR E95 (26

Rozlišení senzoru	464 x 348 px	F-No	f/1,3
Teplotní rozsah	-20°C až +1500°C	Ostření	Manuální a automatické
Typ detektoru	Nechlazený mikrobolometr, 17 μm	Obrazová frekvence	30 Hz
Teplotní citlivost	< 30 mK	Digitální Zoom	1-4x kontinuální
Spektrální rozsah	7,5 – 14,0 μm	Měřicí funkce	Video, MSX, obraz v obraze, UltraMax

Zorné pole	24° x 18° (18 mm	Časosběr	10 s až 24 hodin
	čočky)	(infračervený)	
Minimální ostřicí	0,5 m (pro objektiv	Rozpoznávání čoček	Automatické
vzdálenost	18 mm)		

4.2.2 Univerzální vícekanálová měřící ústředna ALMEMO 5690-2M

Měřící ústředna ALMEMO 5690-2 umožňuje pozorovat vývoj teplot na termočláncích v reálném čase díky vícekanálovému displeji. Data z ústředny je možné ukládat na paměťovou kartu typu SD. Parametry ústředny jsou uvedeny v tabulce č. 2.

Tab.	2: Parametry	měřící ústředny	ALEMO	5690-2M	[27]

Rozlišení displeje	128 x 128 px
Rychlost měření [s ⁻¹]	100/50/10/2,5
Počet vstupů	99
Napájecí proud [A]	2,5
Kapacita akumulátoru [mAh]	1600 mAh

Obr. 13: Univerzální vícekanálová měřící ústředna ALMEMO 5690-2M [27]

4.2.3 Navařovací zařízení BT-2

Pro navaření termočlánků na elektrody a na ocelové přípravky bylo použito navařovací zařízení BT-2. Zdrojem svařovacího proudu jsou kondenzátorové baterie. Parametry navařovacího zařízení jsou uvedeny v tabulce č. 3

Maximální průměr termočlánku [mm]	1.4
Počet výbojů při plném nabití	5000
Nabíjecí proud [mA]	150
Napájecí napětí [V]	230
Čas do plného nabití akumulátoru [hod]	5
Váha [kg]	2,5
Krytí	IP 23
Pozice pro svařování	libovolná

Tab. 3: Parametry navařovacího zařízení BT-2 [28]

Obr. 14: Navařovací zařízení BT-2 [28]

4.2.4 Elektrická pec ZC

Laboratorní elektrická pec má výkon 2500 W. Je schopná docílit teploty 1200 °C. Vnitřní rozměry jsou 200 x 100 x 250 mm.

Obr. 15: Elektrická pec ZC

4.2.5 Přípravky pro ohřívání a ochlazování elektrod

Pro ohřátí a ochlazení elektrod byly použity svařence z oceli S235. Kolmá část přípravku pro ohřátí elektrod má rozměry 80 x 30 x 10 mm. Kolíky pro nasazení elektrod mají výšku 30 mm a průměr 8 mm, tedy stejně jako vnitřek testovaných elektrod, aby došlo k plošnému kontaktu pro vedení tepla. Přípravek pro ochlazení má stejné rozměry jako přípravek pro ochlazení kromě kolmé části, která má tloušťku 20 mm pro rychlejší ochlazení elektrod.

Obr. 16: přípravek pro ohřev elektrod

Obr. 17: přípravek pro ochlazení elektrod

4.2.6 Přípravek pro odstínění parazitního záření

Aby byl minimalizován vliv vnějšího záření na měření, byl přípravek umístěn v přípravku z polyuretanových desek. Jejich povrch byl potažen hliníkovou folií, což pro naší aplikaci není vhodné, protože fólie má vysokou odrazivost. Proto byl na její povrch nanesena barva ThermaSpray 500 s deklarovanou emisivitou $\varepsilon = 0,97$ a tedy s minimální odrazivostí.

Obr. 19: Přípravek pro odstínění parazitního záření

4.2.7 Software FLIR Tools

Vyhodnocení proběhlo v softwaru FLIR Tools. Do programu byl nahrán termogram. V programu se v levé části nachází menu pro výběr oblasti, která má být vyhodnocena. Ve

Obr. 20: rozhraní programu FLIR Tools

spodní části je možné upravit barevnou paletu termogramu, pokud je třeba zlepšit jeho kontrast. Napravo se nachází nastavení parametrů měření. Ty lze upravovat i před samotným měřením přímo v softwaru kamery.

4.2.8 Software FLIR ResearchIR Max

Alternativou k FLIR Tools je zpoplatněný program FLIR ResearchIR Max. Rozložení ovládacích prvků je podobné jako v programu FLIR Tools. ResearchIR Max ale oproti základnímu programu nabízí možnost emisivitu nastavit na tři desetinná místa přímo v rozhraní softwaru. Zásadní výhodou je možnost vyhodnocení emisivity z videa. To umožňuje vybrat body pro vyhodnocení emisivity při konkrétních hodnotách teplot místo hodnot v konkrétních časech a tím získat výrazně rovnoměrněji rozmístěné body v grafu závislosti emisivity na teplotě a tím pádem přesnější výsledky.

4.2.9 Použitý materiál

Obě sady testovaných elektrod sestávaly z elektrod pro odporové svařování 39D-1978-2. Použité elektrody jsou z materiálu A2/2 – CuCr1Zr a mají následující složení: Cu = 98,98 %, Cr = 0,9 %, Zn = 0,12 %. Jednou sadou elektrod byl svařován plech z nelegované jakostní hlubokotažená ocel DC05. Ocel DC05 je elektrolyticky zinkovaná. Druhou sadou čepiček byl svařován plech z oceli DX56D. Ta je žárově zinkovaná a vrstva zinku na povrchu je proto tlustší.

Obr. 21: Nová čepička pro bodové svařování

Obr. 22: Elektroda po 10 svařovacích cyklech, žárově zinkovaný svařovací materiál

4.3 Návrh experimentu

Navaření termočlánků

Termočlánky byly navařeny pomocí navařovacího zařízení BT-2 na měřené elektrody, aby byla získána referenční hodnota. Poté byly termočlánky navařeny na přípravek pro ohřívání elektrod, aby bylo zajištěno potřebné prohřátí přípravku v peci, a na ochlazovací přípravek (viz. Obr. 23), aby bylo možné při opakovaném měření zajistit, že přípravek bude mít na začátku měření pokojovou teplotu.

Na přípravek určený pro ohřev elektrod byl navařen termočlánek, aby bylo možné sledovat jeho teplotu. Pro potřeby experimentu bylo třeba, aby se elektrody po umístění na přípravek ohřály na teplotu minimálně 150 °C. Empiricky bylo zjištěno, že při ohřevu přípravku v peci na 300°C v jeho celém objemu byla tato minimální teplota vždy splněna. Po ohřevu přípravku bylo nutné pec vždy vypnout, protože zapnutá pec generuje elektromagnetické pole, které ruší signál z termočlánků.

Obr. 23: Termočlánek navařený na ochlazovací přípravek

Měření odražené zdánlivé teploty

Infračervený reflektor, pomocí kterého je odražená zdánlivá teplota měřena, je vložen do přípravku pro odstínění parazitního záření. Kamera je od reflektoru umístěna ve stejné vzdálenosti jako při samotném měření emisivity. V software FLIR Tools je nastavena vzdálenost od objektu *l* = 1 *m*, emisivita na ε = 1, odražená teplota t_o = 20 °C. Ve FLIR Tools je vybráno vyhodnocení teploty z plochy a je odečtena průměrná hodnota. Měření je provedeno celkem třikrát a hodnoty jsou opět zprůměrovány.

Nastavení kamery pro měření emisivity

Kamera je umístěna na stativu v konstantní vzdálenosti a kolmo vzhledem k měřené ploše. V softwaru kamery je nastaven rozsah teplot 0–650 °C. Je nastaveno samosběrné snímání a interval mezi snímky je nastaven na 10 sekund. Do kamery je zadána vlhkost vzduchu, odražená zdánlivá teplota a vzdálenost od kamery.

Snímání termokamerou

Přípravek pro ohřev je vyjmut z pece a umístěn do přípravku pro odstínění parazitického záření. Poté jsou na přípravek pro ohřev umístěny elektrody. Následně na měřící stanici pozorujeme, jak se vyvíjí teplota elektrody. Ve chvíli, kdy teplota elektrod začne klesat, jsou elektrody přemístěny na ochlazovací přípravek. Dle normy ČSN ISO 18434-1 je možné měřit objekty o teplotě alespoň o 20 °C nad zdánlivou odraženou teplotou. Proto bylo měření prováděno od 50 °C s výjimkou měření elektrod, kterými byl svařován žárově zinkovaný materiál s 1 a 10 svary, kde byl pozorován vliv odražené zdánlivé teploty při nesplnění požadavků normy. Tam byly teploty měřeny až do 40 °C. Před dalším měřením je třeba přípravek určený pro ochlazení ochladit na pokojovou teplotu.

Obr. 24: Schéma měření

4.4 Výsledky měření

Získaná data byla vynesena do grafů. Byly získány závislosti emisivity na opotřebení povrchu při konkrétních teplotách. Obr. 25 a Obr. 26 ukazují vývoj emisivity elektrod v závislosti na počtu svarů pro oba svařované materiály při 100 °C. Je patrné, že emisivita elektrod se zvyšuje se zvyšujícím se počtem svarů. Zatímco u žárově zinkovaných elektrod je zvyšování emisivity v závislosti na počtu svarů postupné a je ustálené až přibližně okolo 150 svarů, u galvanicky zinkovaného materiálu dochází k rychlému nárustu emisivity mezi 1 a 10 svary, následně se již emisivita se zvyšujícím se počtem svarů zvyšuje málo.

100 °C, žárově zinkovaný materiál

Obr. 25: Emisivita pro různé stupně opotřebení, ohřev a ochlazení, žárově zinkovaný materiál

100 °C, galvanicky zinkovaný materiál

Obr. 26: Emisivita pro různé stupně opotřebení, ohřev a ochlazení, galvanicky zinkovaný materiál

Obr. 27 a Obr. 28 znázorňují vývoj emisivity s teplotou v závislosti na opotřebení pro žárově zinkovaný materiál. Při ohřevu se emisivita pro všechny úrovně opotřebení s teplotou snižuje. Emisivita se při nižších teplotách snižuje rychleji a tento vývoj se postupně zpomaluje s rostoucí teplotou. Při teplotách mezi 150 °C a 200 °C se již emisivita mění jen minimálně. Při ochlazení se pro elektrody s 300 a 100 svary emisivita snižuje s klesající teplotou, u elektrod s 25 a 75 svary zůstává víceméně konstantní a u elektrod s 1 a 10 svary se mírně zvyšuje.

Obr. 29 a Obr. 30 popisují, jak se vyvíjí emisivita s teplotou v závislosti na opotřebení pro galvanicky zinkovaný materiál. Při ohřevu emisivita klesá s výjimkou elektrody s 1 svarem, kde mírně roste. Naopak při ochlazování emisivita klesá pro všechny úrovně opotřebení elektrod. Při ohřevu i ochlazení se hodnotou emisivity vymyká elektroda s 10 svary, která má vyšší emisivitu než elektroda s 25 svary a podobnou emisivitu jako elektroda se 75 svary. Ukazuje se tak, že pro přesné určení emisivity není možné emisivitu elektrod hodnotit výhradně na základě počtu provedených svarů, ale na základě důkladnějšího zkoumání povrchu.

žárově zinkovaný materiál, ohřev

Obr. 27: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ohřevu, žárově zinkovaný materiál

Obr. 28: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ochlazení, žárově zinkovaný materiál

Obr. 29: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ohřevu, galvanicky zinkovaný materiál

Obr. 30: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ochlazení, galvanicky zinkovaný materiál

Při nesplnění požadavků normy dochází k rozptylu hodnot při teplotách pod 50 °C, což je způsobeno vlivem odražené zdánlivé teploty. Tento jev je nejvýrazněji patrný při měření povrchů s nízkou emisivitou jako u elektrod použitých pro svařování žárově zinkovaného materiálu s 1 a 10 svary viz. Obr. 31.

Obr. 31: Emisivita v závislosti na teplotě, 1 a 10 svarů, žárově zinkovaný materiál

5 Závěr

Cílem bakalářské práce bylo zmapovat emisivitu kontaktních ploch svařovacích elektrod 39D-1978-2 pro ohřev a ochlazení v závislosti na stupni opotřebení. Měření bylo provedeno na předem opotřebených elektrodách. Svařovaným materiálem byla jakostní hlubokotažená ocel DC05 a byly porovnávány dva typy povlaku, a to žárově zinkovaný a galvanicky zinkovaný povlak. Určování emisivity proběhlo podle normy ČSN ISO 18434-1.

Termogramy byly vyhodnoceny v softwaru FLIR Tools. Získané hodnoty emisivity byly vyneseny v grafech v závislosti na teplotě. Potvrdil se předpoklad, že elektrody, kterými bylo provedeno více svarů, mají v průměru vyšší emisivitu. Tento vývoj emisivity však nelze zobecnit a vždy záleží na stavu povrchu konkrétní elektrody. Ukázalo se, že svařovaný materiál má na vývoj emisivity elektrod v závislosti na opotřebení zásadní vliv. Emisivita elektrod, kterými byl svařovaný galvanicky zinkovaný materiál, roste výrazně rychleji než emisivita elektrod použitých ke svaření žárově zinkovaného materiálu.

Na experiment je možné navázat dalšími měřeními pro jiné typy povlaků svařovaných materiálů a dalších charakteristik svařovaného materiálu. Cílem by mělo být vytvoření souboru emisivit materiálů a elektrod pro přesné určování teploty materiálů při bodovém svařování a zpřesnění procesu určování těchto hodnot emisivity. To je základem pro rozvoj nedestruktivního testování pomocí infračervené termografie.

6 Bibliografie

- [1] VOLLMER, Michael a Klaus-Peter MÖLLMANN. Infrared Thermal Imaging: Fundamentals, Research and Applications. 1. Německo: John Wiley & Sons, Incorporated, 2010. ISBN 9783527641550.
- [2] Teoretické základy bezdotykového měření teploty. In: Automa: Časopis pro automatizační techniku [online]. ČR, 2014 [cit. 2023-05-09]. Dostupné z: https://automa.cz/Aton/FileRepository/pdf_articles/52890.pdf
- [3] ISO 9288 : 1989. Thermal insulation Heat transfer by radiation Physical quantities and definitions. 1. Švýcarsko: International Organization for Standardization, 1989.
- [4] NUNAK, T., K. RAKRUEANGDET, N. NUNAK a T. SUESUT. Thermal Image Resolution on Angular Emissivity Measurements using Infrared Thermography. International MultiConference of Engineers and Computer Scientist. Hong Kong, 2015, 2015(3), 2-5. ISSN 2078-0966.
- [5] Infrared Emissivity Table. In: *Https://www.thermoworks.com/* [online]. Spojené státy americké, 2023 [cit. 2023-05-09]. Dostupné z: https://www.thermoworks.com/emissivity-table/
- [6] TABLE OF EMISSIVITY OF VARIOUS SURFACES. In: TRANSMETRA [online]. Německo [cit.
 2023-05-09]. Dostupné z: https://www.transmetra.ch/images/transmetra_pdf/publikationen_literatur/pyromet rie-thermografie/emissivity_table.pdf
- [7] Emissivity values of common materials. In: Berg Engineering and Sales Company, Inc. [online]. Spojené státy americké [cit. 2023-05-09]. Dostupné z: https://www.bergeng.com/mm5/downloads/fluke/Emissivity-Values-of-Common-Materials-Chart.pdf
- [8] INFRAČERVENÁ SPEKTROSKOPIE. In: PŘÍRODOVĚDECKÁ FAKULTA: Univerzita Karlova [online]. ČR, 2008 [cit. 2023-05-09]. Dostupné z: https://web.natur.cuni.cz/~analchem/pprakt/ftir.pdf

- [9] ZHANG, Yaqi a Gerald DIEBOLD. Emissivity determination using the photoacoustic effect. *Applied Optics* [online]. 2018, 57(11) [cit. 2023-05-05]. ISSN 1559-128X. Dostupné z: doi:10.1364/AO.57.002790
- [10] Measurement of materials emissivity Influence of the procedure September 2015.
 13th International Workshop on Advanced Infrared Technology & Applications. 2015,
 2015(9), 242-245.
- [11] BRANDT, Ruediger, Colin BIRD a Guenther NEUER. Emissivity reference paints for high temperature applications. *Measurement* [online]. 2008, 41(7), 731-736 [cit. 2023-05-05]. ISSN 02632241. Dostupné z: doi:10.1016/j.measurement.2007.10.007
- [12] KIERUJ, Piotr, Damian PRZESTACKI a Tadeusz CHWALCZUK. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide. *Archives of Mechanical Technology and Materials* [online]. 2016, **36**(1), 30-34 [cit. 2023-05-05]. ISSN 2450-9469. Dostupné z: doi:10.1515/amtm-2016-0006
- [13] Type K Thermocouple with SMP. In: *MadgeTech* [online]. Spojené státy americké [cit. 2023-05-09]. Dostupné z: https://www.madgetech.com/products/type-k-36-72thermocouple-smp/
- [14] INSTRUKCE PRO PROVÁDĚNÍ VIZUÁLNÍ I ROZMĚROVÉ KONTROLY SVAROVÝCH SPOJŮ DLE POŽADAVKŮ ČSN EN ISO 17637. In: Www.techncika-zarizeni.cz [online]. ČR, 2008 [cit. 2023-05-09]. Dostupné z: https://www.technicka-zarizeni.cz/instrukce-proprovadeni-vizualni-i-rozmerove-kontroly-svarovych-spoju-dle-pozadavku-csn-en-iso-17637/
- [15] Evaluation of non-destructive testing methods for automatic quality checking of spot welds. Spotlight. 2013, 2013(8), 1-17.
- [16] HELLIER, Charles J. Handbook of Nondestructive Evaluation, 3rd Edition. 3. Spojené státy americké: McGraw-Hill Education, 2020. ISBN 9781260441437.
- [17] KOPEC, Bernard. Nedestruktivní zkoušení materiálů a konstrukcí: (nauka o materiálu IV).
 Vyd. 1. Brno: Akademické nakladatelství CERM, 2008. ISBN 978-80-7204-591-4.
- [18] Checkmor. In: NDT Instruments [online]. Singapur, 2017 [cit. 2023-05-22]. Dostupné z: https://www.ndt-instruments.com/product/checkmor/

- [19] VAN DRUNEN, G. a V.S. CECCO. Recognizing limitations in eddy-current testing. *NDT International* [online]. 1984, **17**(1), 9-17 [cit. 2023-05-05]. ISSN 03089126. Dostupné z: doi:10.1016/0308-9126(84)90108-1
- [20] PETROV, I, A VDOVENKO, D DOLMATOV a D SEDNEV. The implementation of postprocessing algorithm for ultrasonic testing of welds. *IOP Conference Series: Materials Science and Engineering* [online]. 2019, **510** [cit. 2023-05-05]. ISSN 1757-899X. Dostupné z: doi:10.1088/1757-899X/510/1/012004
- [21] GROSSE, Christian, Masayasu OHTSU, Dimitrios AGGELIS a Tomoki SHIOTANI, ed. *Acoustic Emission Testing* [online]. 2. Cham: Springer International Publishing, 2022 [cit. 2023-05-09]. Springer Tracts in Civil Engineering. ISBN 978-3-030-67935-4. Dostupné z: doi:10.1007/978-3-030-67936-1
- [22] QU, Zhi, Peng JIANG a Weixu ZHANG. Development and Application of Infrared Thermography Non-Destructive Testing Techniques. *Sensors* [online]. 2020, 20(14) [cit. 2023-05-05]. ISSN 1424-8220. Dostupné z: doi:10.3390/s20143851
- [23] FLIR X8580 SLS. In: *TELEDYNE FLIR* [online]. Spojené státy americké, 2023 [cit. 2023-05-09]. Dostupné z: https://www.flir.com/products/x8580-sls/
- [24] HUNG, Y.Y. a H.P. HO. Shearography: An optical measurement technique and applications. *Materials Science and Engineering: R: Reports* [online]. 2005, 49(3), 61-87 [cit. 2023-04-27]. ISSN 0927796X. Dostupné z: doi:10.1016/j.mser.2005.04.001
- [25] Laser Shearography NDT. In: DANTEC DYNAMICS [online]. Dánsko, 2023 [cit. 2023-05-09]. Dostupné z: https://www.dantecdynamics.com/solutions/laser-shearography-ndt/
- [26] Termokamery FLIR E52, E54, E76, E86 a E96. In: *Https://www.termokamery-flir.cz/* [online]. ČR [cit. 2023-05-09]. Dostupné z: https://www.termokameryflir.cz/termovizni-kamery-flir-e75-e85-e95/
- [27] Univerzální měřicí ústředna datalogger AHLBORN ALMEMO 5690-2M vícekanálová. In: AHLBORN [online]. [cit. 2023-05-09]. Dostupné z: https://www.ahlborn.cz/univerzalni-merici-ustredna-datalogger-ahlborn-almemo-5690-2m-vicekanalova.html
- [28] Thermocouples unit BT 2. In: TSK [online]. Slovensko [cit. 2023-05-09]. Dostupné z: https://www.tsk-services.sk/en/p/thermocouples-unit-bt-2

- [29] LabIR[®] Thermographic spray paint for standard applications. In: *TIMI CREATION* [online]. ČR, 2020 [cit. 2023-05-09]. Dostupné z: https://store.timic.cz/p/thermographic-spray-paint-for-standard-applications
- [30] Spot welding electrode tips for resistance spot welder. In: Alibaba [online]. Čína, 1999
 [cit. 2023-05-26]. Dostupné z: https://www.alibaba.com/product-detail/Good-Quality-1320-spot-welding-electrode_1600444701062.html

7 Seznam obrázků

Obr. 1: Vliv geometrie povrchu na emisivitu [1]	16
Obr. 2: Schéma Michelsonova interferometru [8]	
Obr. 3: Schéma měřícího aparátu pro určování emisivity pomocí fotoakustického ef	ektu [9]
	19
Obr. 4: Referenční barva pro určování emisivity LabIR Paint HERP-LT-MWIR-BK-11 [11]21
Obr. 5: Termočlánek typu K [13]	22
Obr. 6: Nanášení penetrantu na výrobek [18]	24
Obr. 7: Podélné vlnění [16]	
Obr. 8: Příčné vlnění [16]	29
Obr. 9: AE v závislosti na napětí [16]	34
Obr. 10: Termografická kamera X8580 SLS [23]	
Obr. 11: Přenosná souprava pro provedení shearografické kontroly materiálu [25]	
Obr. 12: Kamera FLIR E95 [26]	40
Obr. 13: Univerzální vícekanálová měřící ústředna ALMEMO 5690-2M [27]	41
Obr. 14: Navařovací zařízení BT-2 [28]	42
Obr. 15: Elektrická pec ZC	43
Obr. 16: přípravek pro ohřev elektrod	43
Obr. 17: přípravek pro ochlazení elektrod	43
Obr. 18: Thermaspray 500 [30]	44
Obr. 19: Přípravek pro odstínění parazitního záření	44
Obr. 20: rozhraní programu FLIR Tools	44
Obr. 21: Nová čepička pro bodové svařování	45
Obr. 22: Elektroda po 10 svařovacích cyklech, žárově zinkovaný svařovací materiál	45
Obr. 23: Termočlánek navařený na ochlazovací přípravek	46
Obr. 24: Schéma měření	47
Obr. 25: Emisivita pro různé stupně opotřebení, ohřev a ochlazení, žárově zinkovaný i	materiál
	48
Obr. 26: Emisivita pro různé stupně opotřebení, ohřev a ochlazení, galvanicky zir	nkovaný
materiál	48
Obr. 27: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ohřevu,	, žárově
zinkovaný materiál	49

Obr. 28: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ochlazení, žárově
zinkovaný materiál50
Obr. 29: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ohřevu, galvanick
zinkovaný materiál50
Obr. 30: Emisivita v závislosti na teplotě pro různé stupně opotřebení při ohřevu, galvanick
zinkovaný materiál52

8 Seznam tabulek

Tab. 1: Parametry termografické kamery FLIR E95 [24]	40
Tab. 2: Parametry měřící ústředny ALEMO 5690-2M [25]	41
Tab. 3: Parametry navařovacího zařízení BT-2 [26]	42

9 Přílohy

Příloha 1

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování žárově zinkovaného materiálu, 1 a 10 svarů

		odražená	i zdánlivá	atmosférická				vzdálenost
termokan	mokamera teplota [°C]		ta [°C]	teplota [°C]	r	elativní vlh	kost [%]	měření [m]
FLIR E9	5	23	3,4	22		53		1
		1 sva	ar	10 sva	arů			
čas t [s]	tej	olota T [°C]	emisivita [-]	teplota T [°C]	en	nisivita [-]		
9:56:45		75,9	0,213	97,3		0,192		
9:56:54		100,1	0,162	123,5		0,169		
9:57:04		119,8	0,147	142,9		0,156		
9:57:14		134,6	0,142	156,5		0,156		
9:57:24		146	0,133	167,3		0,152		
9:57:34		155,6	0,136	175,2		0,153		
9:57:44		163,3	0,126	181,8		0,160		
9:57:54		169,7	0,128	186,9		0,158		
9:58:04		174,8	0,128	191		0,156		
9:58:14		179,2	0,123	194,4		0,153		
9:58:24		182,8	0,126	197,1		0,156		
9:58:34		185,8	0,124	199,1		0,155		
9:58:44		188,3	0,124	200,7		0,154		
9:58:54		190,2	0,122	201,9		0,155		
9:59:04		191,6	0,119	202,5		0,144		
9:59:14		192,6	0,121	203		0,152		
9:59:24		193,4	0,124	203,1		0,160		
9:59:34		193,7	0,120	203		0,144		
9:59:44		194	0,124	202,7		0,146		
9:59:54		194,2	0,119	202,5		0,144		
10:00:14		154,3	0,118	153,2		0,154		
10:00:24		131,8	0,121	128,1		0,160		
10:00:34		116,1	0,121	111,8		0,153		
10:00:44		104,1	0,123	99,9		0,156		
10:00:54		94,2	0,116	90,1		0,155		
10:01:04		86,1	0,118	82,1		0,163		
10:01:14		79,1	0,145	75,4		0,186		
10:01:24		73,2	0,122	69,6		0,178		
10:01:34		68,6	0,130	65,1		0,156		
10:01:44		63,6	0,130	60,4		0,186		
10:01:54		59,7	0,122	56,7		0,200		
10:02:04		56,4	0,134	53,5		0,194		
10:02:14		53,4	0,140	50,7		0,217		

10:02:24	50,8	0,156	48,3	0,217
10:02:34	48,5	0,166	46,2	0,216

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování žárově zinkovaného materiálu, 25 a 50 svarů

	odražená zdánlivá	atmosférická		vzdálenost
termokamera	teplota [°C]	teplota [°C]	relativní vlhkost [%]	měření [m]
FLIR E95	23,7	22	53	1

	25 svarů		50 svarů	
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
10:45:27	44,3	0,35	58,8	0,420
10:45:37	86,8	0,303	108,9	0,360
10:45:47	113,1	0,293	134,9	0,304
10:45:57	131,5	0,274	151,4	0,296
10:46:07	145,3	0,275	163,5	0,296
10:46:17	156,3	0,273	172,8	0,299
10:46:27	165,1	0,27	180,4	0,292
10:46:37	172	0,274	186,5	0,289
10:46:47	178	0,273	191,4	0,287
10:46:57	182,9	0,273	195,5	0,293
10:47:07	186,6	0,268	198,8	0,295
10:47:17	189,8	0,271	201,3	0,288
10:47:27	192,4	0,246	203,4	0,290
10:47:37	194,3	0,264	204,8	0,282
10:47:47	195,9	0,263	205,8	0,281
10:47:57	196,9	0,264	206,7	0,283
10:48:07	198,3	0,261	207,1	0,283
10:48:17	198,7	0,261	207,1	0,283
10:48:27	198,6	0,26	207	0,277
10:48:37	198,4	0,243	206,5	0,279
10:48:47	198	0,26	206	0,276
10:48:57	183,7	0,232	188,8	0,266
10:49:07	152,3	0,248	146,3	0,287
10:49:17	131,8	0,253	123,3	0,274
10:49:27	116,5	0,232	108,2	0,275
10:49:37	104,4	0,247	96,8	0,276
10:49:47	94,8	0,238	87,4	0,290
10:49:57	86,4	0,236	79,5	0,276
10:50:07	79,5	0,235	72,8	0,270
10:50:17	73,3	0,24	67,1	0,280
10:50:27	68,1	0,24	62,2	0,277
10:50:37	63,4	0,242	57,9	0,285

10:50:47	59,3	0,25	54,3	0,294
10:50:57	55,8	0,246	51	0,284
10:51:07	52,7	0,248	48,3	0,293
10:51:17	50	0,248	45,9	0,286

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování žárově zinkovaného materiálu, 75 a 100 svarů

termokamera	odražená zdánlivá teplota [°C]	atmosférická teplota [°C]	relativní vlhkost [%]	vzdálenost měření [m]
FLIR E95	23,3	22,2	54	1

	75 svarů		100 svarů	
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
11:28:49	59,3	0,606	60,9	0,731
11:28:59	92,7	0,535	95,5	0,701
11:29:09	114,6	0,51	117,6	0,68
11:29:19	131	0,512	133,7	0,68
11:29:29	143,6	0,498	145,7	0,668
11:29:39	153,9	0,5	155,2	0,669
11:29:49	162,3	0,499	163,1	0,671
11:29:59	169,2	0,495	169,7	0,671
11:30:09	174,7	0,496	174,9	0,668
11:30:19	179,5	0,496	179,5	0,666
11:30:29	183,4	0,497	182,9	0,665
11:30:39	186,5	0,504	185,8	0,656
11:30:49	189,1	0,49	188,7	0,648
11:30:59	191,3	0,486	190,3	0,648
11:31:09	192,6	0,489	191,6	0,661
11:31:19	193,9	0,485	193	0,657
11:31:29	194,8	0,48	193,8	0,658
11:31:39	195,2	0,481	193,9	0,661
11:31:49	195,6	0,48	194,3	0,661
11:31:59	195,5	0,48	194,3	0,639
11:32:09	195,2	0,478	193,9	0,66
11:32:19	194,8	0,477	193,9	0,656
11:32:29	179,6	0,424	174,9	0,575
11:32:39	146,4	0,451	139,9	0,523
11:32:49	125,8	0,454	119,3	0,525
11:32:59	111,1	0,455	105	0,528
11:33:09	99,8	0,459	94,4	0,497
11:33:19	90,7	0,435	85,6	0,496
11:33:29	83	0,43	78,2	0,498
11:33:39	76,3	0,433	72	0,49

11:33:49	70,5	0,448	66,6	0,49
11:33:59	65,6	0,441	61,9	0,51
11:34:09	61,2	0,451	57,9	0,502
11:34:19	57,4	0,462	54,4	0,497
11:34:29	54,2	0,447	51,5	0,507
11:34:39	51,3	0,434	48,8	0,51
11:34:49	48,8	0,44	46,5	0,515

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování žárově zinkovaného materiálu, 150 a 200 svarů

	odražená zdánlivá	atmosférická	nalation (adhlaast 10/1	vzdálenost
termokamera	teplota [°C]	teplota [°C]	relativni vinkost [%]	mereni [m]
FLIR E95	23,3	22,2	54	1

	150 svarů		200 svarů		
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]	
14:35:46	59,5	0,915	70,3	0,950	
14:35:56	96,4	0,778	111,7	0,817	
14:36:06	119,1	0,789	134,6	0,794	
14:36:16	135,2	0,765	149,5	0,797	
14:36:26	147,6	0,744	161,2	0,765	
14:36:36	157,5	0,751	168,6	0,769	
14:36:46	165,4	0,748	177,3	0,763	
14:36:56	172,5	0,742	182,2	0,763	
14:37:06	177	0,734	187,4	0,775	
14:37:16	180,9	0,741	191,2	0,756	
14:37:26	184,7	0,739	194,4	0,771	
14:37:36	187,3	0,730	196,1	0,757	
14:37:46	189,6	0,734	198,5	0,768	
14:37:56	191,4	0,747	199,8	0,751	
14:38:06	192,6	0,730	200,7	0,751	
14:38:16	193,4	0,731	201,1	0,767	
14:38:26	194,4	0,721	201,6	0,764	
14:38:36	194,8	0,717	201,7	0,747	
14:38:46	193,7	0,725	201,1	0,753	
14:39:06	168,2	0,671	169,5	0,693	
14:39:16	141,4	0,668	137,2	0,698	
14:39:26	123,5	0,685	118,6	0,699	
14:39:36	110,8	0,676	105,6	0,688	
14:39:46	100,3	0,683	95,5	0,689	
14:39:56	91,7	0,690	87,1	0,688	
14:40:06	84,3	0,675	79,9	0,687	
14:40:16	78	0,672	73,8	0,672	

14:40:26	72,6	0,668	68,5	0,687
14:40:36	67,8	0,662	64,2	0,680
14:40:46	63,7	0,630	60,3	0,683
14:40:56	60,1	0,650	56,9	0,673
14:41:06	56,8	0,654	54	0,665
14:41:16	54,7	0,653	51,5	0,665
14:41:26	52,2	0,658	49,3	0,665
14:41:36	50,1	0,675	47,6	0,673

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování žárově zinkovaného materiálu, 250 a 300 svarů

termokamera	odražená zdánlivá teplota [°C]	atmosférická teplota [°C]	relativní vlhkost [%]	vzdálenost měření [m]
FLIR E95	23,3	22,2	54	1

	250 svarů		300 svarů	
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
15:12:26	83,7	0,822	93,6	0,838
15:12:36	112,7	0,766	123,2	0,791
15:12:46	132,5	0,743	142,1	0,762
15:12:56	146,7	0,735	155,4	0,735
15:13:06	157,9	0,725	165,8	0,734
15:13:16	166,7	0,721	173,9	0,721
15:13:26	173,9	0,718	180,6	0,714
15:13:36	179,8	0,714	185,8	0,724
15:13:46	184,8	0,729	190,4	0,729
15:13:56	188,5	0,711	194,1	0,718
15:14:06	191,7	0,711	196,9	0,717
15:14:16	194,4	0,706	199,1	0,722
15:14:26	196,5	0,705	201	0,7
15:14:36	198	0,703	202,4	0,699
15:14:46	199,1	0,703	203,3	0,698
15:14:56	199,9	0,703	203,8	0,71
15:15:06	200,2	0,703	204,1	0,71
15:15:16	200,3	0,702	204	0,714
15:15:26	200,4	0,698	203,9	0,704
15:15:36	200,3	0,695	203,5	0,71
15:15:46	199,7	0,71	203,3	0,711
15:15:56	197,1	0,698	201,4	0,714
15:16:06	163,8	0,679	158,3	0,691
15:16:16	139,2	0,68	131,2	0,669
15:16:26	122	0,691	113,9	0,681
15:16:36	108,9	0,693	101,2	0,678

15:16:46	98,3	0,674	91,1	0,669
15:16:56	89,3	0,674	82,5	0,68
15:17:06	81,8	0,669	75,4	0,675
15:17:16	75,2	0,676	69,2	0,683
15:17:26	69,6	0,657	64	0,672
15:17:36	64,7	0,653	59,4	0,676
15:17:46	60,3	0,65	55,5	0,665
15:17:56	56,6	0,65	52,1	0,67
15:18:06	53,4	0,65	49,2	0,68
15:18:16	50,5	0,648	46,7	0,668
15:18:26	48	0,653	44,4	0,667

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování galvanicky zinkovaného materiálu, 1 a 10 svarů

termokamera	odražená zdánlivá tenlota [°C]	atmosférická teplota [°C]	relativní vlhkost [%]	vzdálenost měření [m]
FLIR E95	23,4	22,1	52	1

	1 svar		10 svarů	
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
09:49:09	54,6	0,733	54,2	0,750
09:49:19	65,7	0,311	82,1	0,706
09:49:29	75,5	0,32	100,5	0,711
09:49:39	84,2	0,33	114	0,719
09:49:49	91,9	0,329	124,1	0,708
09:49:59	98,7	0,326	132,2	0,699
09:50:09	104,7	0,331	138,4	0,701
09:50:19	109,9	0,334	143,7	0,700
09:50:29	114,4	0,329	147,9	0,699
09:50:39	118,7	0,338	151,9	0,700
09:50:49	122	0,341	155	0,694
09:50:59	125,5	0,342	157,2	0,704
09:51:09	128,5	0,342	159,1	0,688
09:51:19	131,2	0,351	160,5	0,686
09:51:29	133,3	0,363	161,7	0,684
09:51:39	135,2	0,37	162,9	0,683
09:51:49	136,9	0,363	163,5	0,683
09:51:59	140,8	0,366	163,6	0,678
09:52:09	144,7	0,359	164,2	0,673
09:52:19	147,5	0,362	164,5	0,684
09:52:29	149,4	0,364	164,5	0,681
09:52:39	151	0,358	164,4	0,665
09:52:49	152	0,356	163,8	0,668

09:52:59	152,8	0,353	163,5	0,666
09:53:09	153,3	0,356	163,1	0,663
09:53:19	153,7	0,364	162,1	0,667
09:53:29	153,7	0,361	161,5	0,664
09:53:39	153,6	0,354	160,9	0,654
09:53:49	153,4	0,356	160,1	0,653
09:53:59	153,3	0,359	159,4	0,654
09:54:09	152,7	0,36	158,4	0,655
09:54:19	152,4	0,332	157,5	0,653
09:54:39	117,2	0,344	125,8	0,616
09:54:49	99,6	0,309	109,2	0,581
09:54:59	88,2	0,301	97,3	0,563
09:55:09	80,2	0,292	87,9	0,537
09:55:19	73,5	0,282	80,3	0,539
09:55:29	67,9	0,3	73,9	0,545
09:55:39	63,1	0,293	68,5	0,522
09:55:49	59	0,287	63,9	0,525
09:55:59	55,5	0,276	59,8	0,510
09:56:09	52,4	0,291	56,4	0,505
09:56:19	49,7	0,278	53,2	0,552
09:56:29	47,3	0,286	50,5	0,534
09:56:39	45,3	0,285	48,2	0,533

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování galvanicky zinkovaného materiálu, 25 a 50 svarů

	odražená zdánlivá	atmosférická	nalation (adhlaast 10/1	vzdálenost
termokamera	teplota ["C]	teplota [°C]	relativní vinkost [%]	mereni [m]
FLIR E95	23,4	22,1	52	1

	25 svarů		50 sv	varů
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
10:39:22	54,2	0,668	58,7	0,685
10:39:32	79,6	0,644	86,3	0,654
10:39:42	96,7	0,607	103,6	0,656
10:39:52	109,5	0,637	116,2	0,640
10:40:02	119,3	0,643	125,6	0,638
10:40:12	127,2	0,644	132,9	0,661
10:40:22	133,7	0,648	138,9	0,613
10:40:32	138,8	0,63	143,8	0,620
10:40:42	143,2	0,602	147,7	0,603
10:40:52	146,6	0,65	150,9	0,613
10:41:02	149,4	0,649	153,6	0,607
10:41:12	151,9	0,648	155,7	0,603

10:41:22	154	0,647	157,5	0,601
10:41:32	155,4	0,644	158,7	0,613
10:41:42	156,6	0,646	159,9	0,607
10:41:52	157,4	0,646	160,2	0,607
10:42:02	157,9	0,62	160,8	0,641
10:42:12	157,7	0,647	159,9	0,643
10:42:22	158,1	0,643	160,7	0,635
10:42:32	158,1	0,644	160,5	0,636
10:42:42	158,1	0,644	160,5	0,634
10:42:52	157,9	0,615	160,3	0,596
10:43:02	157,7	0,613	159,7	0,630
10:43:12	157,2	0,613	159,1	0,599
10:43:22	156,6	0,642	158,5	0,628
10:43:32	148,2	0,577	148,7	0,611
10:43:42	121,2	0,569	119,3	0,586
10:43:52	104,3	0,575	101,7	0,53
10:44:02	92,9	0,546	90	0,581
10:44:12	83,9	0,544	81,2	0,550
10:44:22	76,6	0,559	74,1	0,580
10:44:32	70,5	0,566	68,2	0,563
10:44:42	65,3	0,55	62,9	0,560
10:44:52	60,8	0,548	58,6	0,567
10:45:02	57	0,544	54,8	0,572
10:45:12	53,6	0,554	51,6	0,554
10:45:22	50,6	0,53	48,8	0,543
10:45:32	48	0,535	46,4	0,528

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování galvanicky zinkovaného materiálu, 75 a 100 svarů

termokamera	odražená zdánlivá teplota [°C]	atmosférická teplota [°C]	relativní vlhkost [%]	vzdálenost měření [m]
FLIR E95	23,7	22,4	54	1

	75 svarů		100 sv	varů
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
11:32:36	57,4	0,662	65,8	0,757
11:32:46	81,7	0,674	92,4	0,760
11:32:56	98,4	0,691	108,8	0,766
11:33:06	110,4	0,697	120,1	0,764
11:33:16	119,8	0,703	128,9	0,763
11:33:26	127,2	0,709	136	0,761
11:33:36	133,3	0,712	141,3	0,765
11:33:46	138,3	0,706	145,6	0,760
11:33:56	142,1	0,702	149,5	0,755

11:34:06	145,7	0,707	152,4	0,752
11:34:16	148,4	0,704	154,8	0,750
11:34:26	150,5	0,698	156,5	0,748
11:34:36	152,3	0,702	158	0,747
11:34:46	153,7	0,699	159,1	0,742
11:34:56	154,8	0,696	159,9	0,740
11:35:06	155,5	0,693	160,4	0,737
11:35:16	156,1	0,684	160,9	0,734
11:35:26	156,4	0,69	161	0,734
11:35:36	156,6	0,689	160,9	0,731
11:35:46	156,1	0,691	161	0,721
11:35:56	156,3	0,686	160,2	0,729
11:36:06	155,6	0,691	160	0,741
11:36:16	154,8	0,692	158,9	0,736
11:36:26	135,8	0,698	134,6	0,708
11:36:36	115,3	0,676	111,3	0,717
11:36:46	101,7	0,676	97,5	0,715
11:36:56	91,6	0,678	87,5	0,717
11:37:06	83,6	0,668	79,7	0,704
11:37:16	76,9	0,661	73,3	0,702
11:37:26	71	0,677	67,6	0,714
11:37:36	66,2	0,663	63	0,720
11:37:46	61,9	0,65	59	0,692
11:37:56	58,3	0,648	55,5	0,708
11:38:06	55,1	0,635	52,5	0,700
11:38:16	52,3	0,625	50	0,690
11:38:26	50	0,625	47,7	0,703

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování galvanicky zinkovaného materiálu, 150 a 200 svarů

termokamera	odražená zdánlivá teplota [°C]	atmosférická teplota [°C]	relativní vlhkost [%]	vzdálenost měření [m]
FLIR E95	23,7	22,4	54	1

	150 svarů		200 s	varů
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
11:58:26	57,3	0,668	64,1	0,798
11:58:36	82,2	0,66	90,6	0,769
11:58:46	99,7	0,651	107,3	0,795
11:58:56	112,6	0,665	119,3	0,790
11:59:06	122,7	0,659	128,2	0,795
11:59:16	130,7	0,658	135	0,795
11:59:26	137,4	0,655	140,6	0,795
11:59:36	142,6	0,668	145	0,791

11:59:46	146,9	0,671	148,9	0,791
11:59:56	150,5	0,671	151,9	0,788
12:00:06	153,4	0,687	154,4	0,783
12:00:16	155,9	0,69	156,1	0,782
12:00:26	157,8	0,69	157,7	0,780
12:00:36	159,3	0,681	158,8	0,778
12:00:46	160,5	0,688	159,8	0,773
12:00:56	161,2	0,691	160,1	0,774
12:01:06	161,8	0,679	160,8	0,770
12:01:16	162,3	0,689	161	0,768
12:01:26	162,5	0,683	160,7	0,768
12:01:36	162,2	0,686	160,5	0,765
12:01:46	150,1	0,666	146,5	0,730
12:01:56	124,3	0,633	118,3	0,710
12:02:06	107,7	0,615	101,2	0,721
12:02:16	95,6	0,618	89,4	0,721
12:02:26	86,3	0,614	80,9	0,706
12:02:36	78,7	0,609	73,8	0,693
12:02:46	72,3	0,613	67,6	0,700
12:02:56	66,8	0,617	62,4	0,700
12:03:06	62	0,608	58,2	0,690
12:03:16	58	0,592	54,4	0,683
12:03:26	54,4	0,613	51,1	0,668
12:03:36	51,2	0,618	48,3	0,687
12:03:46	48,5	0,595	45,9	0,660

Naměřené hodnoty teplot a emisivit pro elektrody 39D-1978-2 pro svařování galvanicky zinkovaného materiálu, 250 a 300 svarů

termokamera	odražená zdánlivá teplota [°C]	atmosférická teplota [°C]	relativní vlhkost [%]	vzdálenost měření [m]
FLIR E95	23,7	22,4	54	1

	250 svarů		300 sv	arů
čas t [s]	teplota T [°C]	emisivita ε [-]	teplota T [°C]	emisivita [-]
15:18:56	50,1	0,807	67,2	0,874
15:19:06	56,6	0,745	84,5	0,799
15:19:16	62,4	0,738	97,4	0,791
15:19:26	79,9	0,732	107,7	0,808
15:19:36	93,9	0,729	116,2	0,807
15:19:46	104,6	0,73	123,3	0,798
15:19:56	113,3	0,729	129,1	0,799
15:20:06	120,3	0,743	134	0,793
15:20:16	126	0,736	137,6	0,797

15:20:26	131	0,736	141,5	0,795
15:20:36	135	0,733	144,5	0,788
15:20:46	138,8	0,735	147	0,789
15:20:56	141,5	0,733	148,7	0,788
15:21:06	143,7	0,735	150,4	0,786
15:21:16	145,7	0,732	152	0,784
15:21:26	147,3	0,732	152,8	0,784
15:21:36	148,7	0,738	153,5	0,783
15:21:46	149,5	0,738	154	0,791
15:21:56	150,5	0,728	154,7	0,78
15:22:06	151,4	0,728	155,1	0,777
15:22:16	151,7	0,729	154,7	0,781
15:22:26	152	0,731	154,6	0,78
15:22:46	132,4	0,698	113,7	0,777
15:22:56	124,3	0,685	97,4	0,746
15:23:06	116,5	0,701	86,5	0,763
15:23:16	109,8	0,695	78,5	0,745
15:23:26	103,8	0,685	71,7	0,75
15:23:36	98,1	0,67	66,2	0,75
15:23:46	93	0,656	61,7	0,742
15:23:56	88,4	0,656	57,9	0,748
15:24:06	84,1	0,654	54,3	0,75
15:24:16	80,2	0,65	51,4	0,75
15:24:26	76,5	0,652	48,6	0,747
15:24:36	73,3	0,652	46,6	0,75
15:24:46	70,1	0,665	44,6	0,76
15:24:56	67,4	0,65	42,9	0,76
15:25:06	64,8	0,656	41,3	0,765
15:25:16	62,4	0,657	40,1	0,78
15:25:26	60,2	0,666	39,1	0,76
15:25:36	58	0,67	38,1	0,758
15:25:56	54,5	0,67	36,7	0,752
15:26:06	52,9	0,671	36,2	0,763
15:26:16	51,4	0,683	35,7	0,762
15:26:26	50	0,668	35,2	0,782