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Abstract

Text Detection is a challenging task, especially when it comes to detecting specific types of text
such as map Nomenclatures on historical maps. This thesis proposes two CNN-based networks,
PSENet and TextPMs, implemented in PyTorch for detecting map Nomenclatures, and evalu-
ates their performance using the Nomenclature dataset. Additionally, the thesis explores the
effectiveness of pre-trained models on the TotalText dataset for detecting nomenclatures in his-
torical maps. Although pre-trained models did not yield promising results, the proposed methods
achieved f-measure scores of 88.8% and 91.1%, respectively, demonstrating their suitability for
the task. Overall, the thesis contributes to the field of historical map analysis by introducing
effective methods for text detection in this challenging domain.

Keywords text detection, historical maps, convolutional neural networks, PyTorch, PSENet,
TextPMs, deep learning

Abstrakt

Detekce textu je náročný úkol, zejména pokud jde o detekci konkrétních typů textu, jako jsou
například názvy míst na historických mapách. Tato práce představuje dvě metody založené
na konvolučních neuronových sítích, PSENet a TextPMs, implementované v PyTorch knihovně
pro detekci názvů míst na historických mapách a hodnotí jejich výkon pomocí Nomenclature
datasetu. Kromě toho práce zkoumá účinnost předtrénovaných modelů na TotalText datasetu
pro detekci nomenklatur v historických mapách. I když předtrénované modely nedosáhly slib-
ných výsledků, navržené metody dosáhly f-skóre v hodnotě 88, 8% a 91, 1%, což dokazuje jejich
vhodnost pro tuto úlohu. Celkově tato práce přináší přínos do oblasti analýzy historických map
tím, že představuje účinné metody pro detekci textu v této náročné oblasti.

Klíčová slova detekce textu, historické mapy, konvoluční neuronové sítě, PyTorch, PSENet,
TextPMs, hluboké učení
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Chapter 1

Introduction

The problem of detecting text is an important topic in the field of computer vision. Historical
maps contain a wealth of information about the past, including place names, landmarks, and
other textual information that is often critical for research and analysis. There are many poten-
tial applications across various fields such as history, geography, cartography, and archaeology.
However, the text in these maps can be difficult to detect and extract due to the complex na-
ture of the maps and the text itself, which can vary in size, font, and orientation. As a result,
developing effective methods for text detection in historical maps is essential for preserving and
understanding our cultural heritage.

I chose this topic because I believe that improving text detection on historical maps can
provide significant benefits. By accurately detecting text on these maps, researchers and enthu-
siasts can better understand historical events, study the evolution of place names, and create
more accurate maps for modern use.

The main focus of this thesis is to implement and evaluate the effectiveness of two CNN-
based networks, PSENet and TextPMs, for detecting nomenclatures on historical maps using
the Nomenclature dataset. The thesis also explores the effectiveness of pre-trained models on
the TotalText dataset.

The thesis is structured into five main chapters. The first chapter, Theoretical Background,
explains the fundamental concepts underpinning the methodology chapter. The second chapter,
Related Works, reviews existing literature and previous work on the topic. The third chapter,
Datasets Analysis, describes and analyzes the Nomenclature and TotalText datasets. The fourth
chapter, Methodology, explains the PSENet and TextPMs methods used in the study. The final
chapter, Experiments, summarizes the experiments and presents their outcomes and conclusions.

1
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Chapter 2

Objectives

The main objective of this thesis is to implement and apply two CNN-based methods to a dataset
of historical maps for text detection. Both methods will be implemented in Pytorch.

The next objective is to describe and analyze a dataset of historical maps to gain insights
into the challenges associated with detecting text in such maps.

The last objective is to apply models trained on the TotalText dataset to understand if
pre-trained models can effectively be used on historical maps.

Detecting text on historical maps can help to understand the maps better and reveal what is
depicted on them.

3
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Chapter 3

Theoretical Background

This chapter provides an overview of the fundamental concepts and terminology utilized in
this thesis. The chapter begins by introducing Convolutional Neural Networks (CNNs), which
form the core building block for both methods employed. The second section focuses on Residual
Network (ResNet) [1], a specific CNN architecture that has gained widespread usage in the image
processing field. The final section of the chapter outlines the Feature Pyramid Network (FPN) [2],
which serves as the backbone of both methods1.

3.1 Convolutional Neural Networks
A type of neural network known as CNN is designed to handle data with a grid-like topology,
such as images. Specifically, a digital image consists of a series of pixels organized in a grid-
like manner, with each pixel assigned a value that represents its brightness and color. The CNN
architecture is optimized for processing such data and has demonstrated exceptional performance
in various computer vision tasks. This section is based on [3, 4].

3.1.1 Architecture Overview
A simple CNN comprises a series of layers that transform one set of activations to another using
a differentiable function. The three main types of layers used to build CNN are the Convolutional
Layer, Pooling Layer, and Fully-Connected Layer, which are also used in regular Neural Networks.
These layers are combined to form a complete CNN architecture as shown in Figure 3.1.

3.1.2 Convolutional Layer
The convolutional layer is a fundamental part of the CNN and carries the main computational
load. In the field of mathematics, convolution refers to a mathematical operation performed on
two given functions f and g, in the continuous case defined as:

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ

and in the discrete case as:

(f ∗ g)(n) =
∞∑

m=−∞
f(m)g(n−m)

1PSENet and TextPMs

5



6 Theoretical Background

Figure 3.1 The structure of a CNN consists of three main layer types. [5]

The initial parameter f is referred to as the input, while the second parameter g is called the
convolution kernel.

In the context of a network, f and g are represented as a tensor2. For simplicity, let us
imagine the tensor as a matrix, then this layer performs a dot product between two matrices 3.2,
where the kernel matrix is the set of learnable parameters. The other matrix represents the
restricted part of the receptive field. The kernel is smaller than the image in terms of its spatial
dimensions but is greater in depth. This means that if an image is composed of three channels
(RGB), the kernel will have small spatial height and width dimensions, but the depth will extend
to all three channels.

Figure 3.2 The dot product of multiplying two matrices that have been flattened. [6]

In the forward pass, the kernel steps over the height and width of the input image to produce
a representation of that receptive region, resulting in a two-dimensional activation map that
indicates the kernel response at each spatial position of the image. The size of the step is called
a stride.

3.1.3 Activation Functions
After applying convolution to an image, non-linear activation functions are often added to intro-
duce non-linearities to the activation map since images are far from linear. There are different
types of activation functions, with popular ones including:

Sigmoid The sigmoid function, defined as σ(x) = 1
1+e−x = ex

ex+1 is a commonly used activation
function that maps real-valued numbers into a range between 0 and 1. This range is often
interpreted as a probability measure. However, a significant disadvantage of using the sigmoid

2A tensor is a mathematical object that represents a multi-dimensional array of data.
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function is that it suffers from the vanishing gradient problem, where the gradient becomes
almost zero at the tails of the function.

Tanh The tanh function, defined as tanh(x) = ex−e−x

ex+e−x “squashes” real-valued numbers to the
range between -1 and 1. It saturates like a sigmoid but is zero-centered, unlike sigmoid
neurons.

ReLu The Rectified Linear Unit, defined as f(x) = max(0, x) is a popular activation function
in recent years. It works by setting any negative input to zero, while positive values remain
unchanged. This results in faster convergence compared to sigmoid and tanh, making ReLU
a more reliable choice.

3.1.4 Pooling Layer
The pooling layer performs a summarization that replaces the output of the network at specific
locations by computing a summary statistic of the nearby outputs. The key objective of this layer
is to reduce the spatial size of the representation, resulting in a reduced computational load and
weights. The pooling operation is performed individually on every slice of the representation.

There are several types of pooling functions, including the average of the rectangular neigh-
borhood, the L2 norm of the rectangular neighborhood, and a weighted average based on the
distance from the central pixel. Nevertheless, the most commonly used method is max pooling,
which returns the maximum output from the neighborhood as shown in Figure 3.3.

Figure 3.3 The max pooling operation applied by sliding a small matrix of size f × f across the
input image with a stride s. [6]

3.1.5 Fully Connected Layer
The fully connected (FC) layer in a general neural network architecture is responsible for map-
ping the input representation to the output representation. It achieves this by establishing full
connectivity between all the neurons in the preceding and succeeding layers, similar to a regular
fully connected neural network.

Each neuron in the FC layer receives input from all the neurons in the preceding layer, and
its output is then connected to every neuron in the succeeding layer. This means that the FC
layer computes its output by performing a matrix multiplication between the input and weight
matrices, followed by the addition of a bias term. [3, 4]

3.2 Residual Networks
This section introduces the issue with deep neural networks and presents a solution to this
problem, which is based on the ResNet architecture. This section is based on [1, 7].



8 Theoretical Background

3.2.1 The Problem of Deep Neural Networks
The trend in neural networks has been to make them deeper, with the later models containing
over a hundred layers, in comparison to the earlier models with only a few layers. This has
allowed neural networks to represent increasingly complex functions.

However, a major problem associated with very deep neural networks is that the gradient
signal, which is used to optimize the model during training, can vanish very quickly. This
occurs during backpropagation3, when we are multiplying by the weight matrix on each step.
If the gradients are small, due to a large number of multiplications, the gradient can decrease
exponentially quickly to zero, which makes gradient descent training extremely slow or even
impossible.

3.2.2 Residual Block
The Residual Block is a solution to the problem of deep neural networks by allowing the net-
work to fit the residual mapping, which is the difference between the original mapping and its
approximation, rather than the original mapping itself.

The approach involves creating a shortcut or a skip connection that facilitates the flow of
information between layers in a convolutional neural network. This is achieved by allowing data
to bypass the normal flow of the CNN from one layer to the next layer after the immediate next.

There are two important things to keep in mind with residual blocks. First, adding more layers
will not hurt the performance because unnecessary layers will be ignored during regularization.
Second, if new layers do improve the model, even with regularization, the weights of those layers
will be nonzero and the performance of the model may improve slightly.

ResNets use two types of blocks 3.4 depending on whether the input and output dimensions
are the same or different. The identity block is used when the input and output activations have
the same dimension, while the convolutional block is used when the dimensions do not match up,
and it includes a convolutional layer in the shortcut path. [1, 7]

Figure 3.4 The identity block and the convolutional block are positioned respectively on the left
and right sides. [8]

3Backpropagation is a common method used to train neural networks by computing the gradients of the loss
function with respect to each parameter in the network.
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3.3 Feature Pyramid Networks
This section provides an overview of the FPN approach for feature extraction in object detection.
FPN is a feature extraction model that was developed with accuracy and speed as the main
goals. It is based on the pyramid concept and is designed to generate multiple feature map
layers, also known as multi-scale feature maps, that contain higher quality information compared
to traditional feature pyramids for object detection. This improvement in feature extraction is
crucial for accurate object detection, particularly for small objects, and has resulted in state-of-
the-art performance on benchmark datasets. This section is based on [2, 9].

3.3.1 Data Flow
The Feature Pyramid Network is made up of two pathways, one that goes from bottom-up and
one that goes from top-down as shown in Figure 3.5. The bottom-up pathway is a standard
convolutional network 3.1 used for feature extraction, where the spatial resolution decreases as
we move upwards, and higher-level structures are detected, leading to an increase in the semantic
value4 of each layer.

The purpose of the top-down pathway is to create higher-resolution layers from a semantic-
rich layer. The reconstructed layers may not have precise object locations because of all that
downsampling and upsampling, so lateral connections are added between reconstructed layers
and corresponding feature maps to improve detection accuracy. These connections also serve as
skip connections, which simplify the training process similar to ResNet 3.2.2.

Figure 3.5 The Feature Pyramid Network architecture overview. [10]

3.3.2 Bottom-up Pathway
The bottom-up pathway is built with ResNet 3.2, and it consists of several convolution modules,
each containing multiple convolution layers. While progressing upwards, the spatial dimension
is decreased by half. The top-down pathway uses the output of each convolution module.

3.3.3 Top-down Pathway
To create the initial feature map layer for object prediction, we use a 1× 1 convolution filter to
reduce the channel depth of C5 to 256-d, resulting in M5, referring to the Figure 3.6. In the
top-down path, we upsample the previous layer by 2 via nearest neighbors upsampling and then
use a 1× 1 convolution on the corresponding feature maps in the bottom-up path before adding
them element-wise. Finally, we apply a 3× 3 convolution to all merged layers. [2, 9]

4Level of abstract information about the detected objects.
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Figure 3.6 The bottom-up and top-down pathway operations of Feature Pyramid Network with
lateral connections. [9]



Chapter 4

Related Work

Scene text detection has made significant advancements in recent years due to the progress made
in deep learning techniques. Numerous methods have been proposed to address this challenge,
each with a different approach focusing on different aspects of the problem. This chapter ex-
amines existing research on text detection techniques, with a particular focus on three general
categories. The primary categories of deep learning-based methods are the segmentation-based
methods and the regression-based methods. Connected component (CC) based methods, on the
other hand, are commonly categorized as traditional computer vision methods. These categories
represent different strategies for localizing text regions in an image, and each has its strengths
and weaknesses.

4.1 Segmentation-based Methods
Segmentation-based methods generally aim to predict a pixel-wise segmentation map that identi-
fies the locations of text instances in an image. The segmentation map is generated by analyzing
the features extracted from the input image using a CNN. These methods can effectively handle
variations in text size, style, orientation, and background, which makes them suitable for text
detection in complex scenes. For instance, they can accurately segment text instances even in
scenes with overlapping or curved text, or when text is partially occluded by other objects. They
are also robust to changes in lighting, resolution, and distortion.

The PixelLink [11] algorithm directly predicts the pixel-level links between adjacent text
regions in an image. The method works by dividing the text detection problem into two sub-
tasks, text region proposal and text region linking. In the first step, the method generates a set of
text region proposals using a simple thresholding technique on the output of the network. Then,
in the second step, the method links these proposals using the predicted pixel-level links.

TextSnake [12] proposes a new representation for curved text instances in natural scenes.
Instead of rectangular bounding boxes or quadrilaterals, it represents text instances as snakes,
which are defined by a series of straight line segments and corresponding curvature parameters.
After predicting the coordinates of the snake points, it optimizes the snake representation using
a differentiable polygon rendering algorithm. The method also uses a set of post-processing steps
same as PixelLink.

TextFuseNet [13] uses a feature fusion strategy to combine multi-level features from different
layers of the network, which enables it to capture both fine-grained and high-level information for
improved text detection performance. Additionally, it includes a post-processing step to refine
the detection results and remove false positives.

The TextField [14] text detector utilizes an adversarial loss function at the instance level to

11
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improve the accuracy of predicted bounding boxes. The method further employs a multi-scale
testing strategy to handle a text of different scales and resolutions.

DBNet++ [15] extends upon the original DBNet architecture by incorporating a recurrent
neural network to refine the segmentation results and improve the recognition accuracy. It also
includes a bounding box refinement module to further improve the localization of text regions.

4.2 Regression-based Methods
In regression-based methods, the text detection task is formulated as a regression problem where
the aim is to predict the bounding box coordinates and attributes directly from the input image.
In contrast to segmentation-based methods, which typically require additional post-processing
steps to obtain the final bounding boxes, regression-based methods directly predict the bounding
box coordinates in a single step. This makes them faster than segmentation-based methods,
and more efficient in detecting regular text with clear boundaries, but they may struggle with
detecting irregular or curved text due to their reliance on predefined bounding box shapes.

TextBoxes++ [16] incorporates an FPN-like architecture that aggregates feature maps across
different resolutions to handle text instances of varying scales and aspect ratios. The method
employs a novel aspect ratio refinement module that helps to refine the aspect ratios of text
boxes and improve the detection performance of the network. In addition, Textboxes++ utilizes
a positive-negative ratio balancing strategy during training to address the issue of class imbalance,
resulting in better detection performance on small text instances.

The EAST [17] network consists of a feature extraction stage followed by a two-branch sub-
network that outputs the score map and geometry map for each position in the input image. The
score map represents the probability of a pixel belonging to the text region, while the geometry
map encodes the four coordinates of the bounding box and the angle of rotation.

LOMO [18] presents a module for refining bounding box proposals for long texts in an iterative
manner. The proposed module predicts center line, text region, and border offsets for rebuilding
the text instance.

4.3 CC-based Methods
Connected Components-based methods segment text by grouping together pixels that share the
same color or intensity values. These pixels belong to the same connected component. This is
achieved by thresholding the image to binarize it and then identifying connected components
using techniques such as flood filling1. One of the main limitations of CC-based methods is that
they can be sensitive to noise and other artifacts in the image, leading to false positive detections.

SegLink [19] decomposes text into segments and links, where the link joins neighboring seg-
ments that form a single word. The upgraded verison SegLink++ [20] replaces the original back-
bone with an improved version of ResNet-50, and incorporates several modifications to enhance
text detection accuracy.

CRAFT [21] use a single-shot detector that predicts character regions rather than text regions.
The network is designed to recognize each character separately and then assemble them into words
or text lines.

1Process of coloring connected pixels with the same color starting from a seed pixel and expanding to adjacent
pixels.



Chapter 5

Datasets Analysis

This chapter first describes the Nomenclature dataset [22] and presents the challenges associated
with this dataset. In the second part, the widely used TotalText dataset [23] is briefly introduced.

5.1 Nomenclature Dataset
The Nomenclature Dataset is designed to identify and recognize handwritten nomenclatures on
historical cadastral maps. A nomenclature is a text that provides information about the position
of an individual map sheet in a grid that covers a larger region. The dataset comprises a total
of 800 map sheets which have been split into three parts for training, testing, and validation.
The training set includes 650 sheets, while the testing set has 100 sheets, and the validation set
includes 50 sheets. [24]

5.1.1 Data Description
The dataset includes files in two formats, namely .txt and .jpg. The .jpg files represent
the input images, with a typical map image being shown in Figure 5.1. The .txt files provide
annotations that are considered as the ground-truth. These annotations are tab-separated values
that typically have the following format:

xmin ymin xmax ymax label type

where the first four values specify the coordinates of an axis-aligned bounding box. The text
enclosed within this bounding box is captured as the label, including any new line characters,
which can complicate the parsing process. The type indicates the type of text. There are three
types of text labels that can be identified. The first is Handwritten (H) and includes general
toponyms such as forests, roads, hills, swamps, and rivers. These are shown in the bottom-right
bounding box of Figure 5.1. The second type is Printed (P) and includes municipal toponyms
like cities, villages, and significant buildings. These are shown in the bottom-left bounding box
of Figure 5.1. The last type is Nomenclature (N) which is always located in the top-right corner
of the map sheet and indicates the location of the map in the coordinate system. This is also
shown in Figure 5.1. [22]

There are three ground-truth representations used in this thesis.

1. The axis-aligned bounding box representation is composed of four values. Usually, these values
indicate the coordinates of the top-left and bottom-right corners of a rectangle that is aligned
with the x and y axes. The Nomenclature dataset uses this representation.

13
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Figure 5.1 This is an illustration of a historical map that showcases all three label types. The red
bounding boxes indicate the ground-truth regions. [24]

2. The oriented bounding box representation is comprised of eight values. Each value denotes
one corner of a rectangle that can be rotated with respect to the coordinate axes.

3. The polygon representation is composed of coordinates for the vertices, typically listed in an
array. The order in which these vertices are listed determines the sequence of the edges of the
polygon. This representation provides more detailed and accurate shape information than
bounding box representations, especially for complex and irregularly-shaped objects, such as
text instances.

5.1.2 Toponym Box Limitations
The most challenging aspect is accurately distinguishing between place names and non-place
name text on the map. It should be noted that even in Figure 5.1, some words do not qualify as
place names. In addition, the labeling in the Nomenclature dataset lacks precision, containing a
greater number of non-textual pixels than necessary. This inaccuracy can be partly attributed
to the use of an axis-aligned representation for the ground-truth. Here are some examples of
these inaccuracies:

Certain text instances on the map may not be horizontally aligned, which poses a challenge
when describing them using an axis-aligned bounding box. This results in the text instance
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being confined to the diagonal section of the rectangle, which results in a significant number
of non-textual pixels. This is evident from Figure 5.2.

Figure 5.2 This figure refers to the inaccuracy of representing oriented text instances through the
use of an axis-aligned bounding box.

Typically, written text features characters that are vertically aligned, with certain characters
extending below the baseline. However, since the axis-aligned bounding box must be rect-
angular in shape, the presence of a single descender character can significantly expand the
entire ground-truth. This expansion leads to a significant number of non-textual pixels being
included in the ground-truth. This is illustrated in Figure 5.3

Figure 5.3 This figure refers to the extension of the entire ground-truth due to the inclusion of a
descender character “y”.

Figures 5.2 and 5.3 show inaccuracies that could be resolved by using a polygon representation.
However, it is important to note that even the ground truth data itself may contain inaccuracies,
as demonstrated in Figure 5.4, where the middle three instances exhibit significant imprecision.

5.2 TotalText Dataset
The TotalText dataset [23] is a scene text dataset that features a diverse range of natural scene
images with annotations for text detection and recognition tasks. One of the key characteristics
of this dataset is its inclusion of multi-oriented and curved text instances that can appear in any
direction and shape.

The TotalText dataset contains a total of 1 555 images of natural scenes, including street
views, shop windows, indoor environments, and more. The images are collected from various
sources, such as the Google Street View and other publicly available repositories. Each image is
annotated with ground truth information.

The presence of multi-oriented and curved text instances in the TotalText dataset also reflects
the real-world scenarios where text can appear in a variety of shapes and orientations, such as
on billboards, road signs, and product packaging.

To handle the variability in text appearance, the TotalText dataset provides annotations in
two forms: oriented bounding boxes and polygons, as described in Section 5.1.1. The oriented
bounding boxes are used to represent the text instances with a minimum rotated rectangle that
tightly encloses the text. The polygons are used to represent the text instances more accurately,
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Figure 5.4 Illustration of highly imprecise ground truth annotations.

especially in cases where the text is curved or has irregular shapes. Figure 5.5 illustrates a typical
example of an image within this dataset that features both representations.

Figure 5.5 Illustrative example of the TotalText dataset. The green contours correspond to the
Polygon representation and the red contours represent the Oriented Bounding Box representation. [23]



Chapter 6

Methodology

This chapter introduces two text detection methods that were chosen for implementation and ap-
plication to the Nomenclature Dataset1. The Progressive Scale Expansion Network (PSENet)[25]
is a recently proposed and widely used method that was selected for its robustness and stabil-
ity. The Text Detection with Probability Maps (TextPMs) [26] is a novel approach that has
shown promising performance and potential. These methods achieved an F-measure of 80.9%
and 88.79% on the TotalText dataset2, respectively. In addition, this chapter details the training
process and evaluation used in the Experiments 7 chapter.

6.1 Progressive Scale Expansion Network
PSENet is a deep learning-based text detection algorithm that was proposed in 2019 by Wang
et al. The algorithm is designed to handle text in various shapes and orientations, making it
robust to the challenges posed by natural scene images.

PSENet uses a progressive scale expansion strategy to gradually expand the detected text
regions. The network generates a set of text region proposals at each scale, which are then
merged and refined in a post-processing step to obtain the final detection results. This section
is based on [25].

6.1.1 Network Design
Figure 6.1 presents an overview of the PSENet model, which employs ResNet 3.2 as its backbone.
The model combines low-level texture features with high-level semantic features, which are fused
into feature map F to encode information from various receptive fields. Subsequently, F is
projected into n branches to generate several segmentation outcomes, each corresponding to a
segmentation mask for all text instances at a specific scale. The scale of each segmentation
mask is determined by hyper-parameters. S1 indicates the segmentation result for the text
instances with the smallest scales, while Sn denotes the original segmentation mask with the
largest kernels. The final detection results R are produced by applying the progressive scale
expansion algorithm 6.1.3, which gradually expands the kernels of all instances from S1 to their
full shapes in Sn.

1https://corpora.kiv.zcu.cz/nomenclature/
2https://github.com/cs-chan/Total-Text-Dataset
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Figure 6.1 The PSENet overall pipeline, with the FPN on the left and the feature fusion followed
by Progressive Scale Expansion Algorithm 6.1.3 on the right. [25]

6.1.2 Backbone
The PSENet model is based on the FPN architecture discussed in Section 3.3. Initially, four
feature maps (P2, P3, P4, and P5) are generated by the FPN backbone, each with different
channel sizes of 128, 256, 512, and 1024, respectively. These feature maps are merged to create a
new feature map F , with 1024 channels that combine semantic features from low to high levels.
To achieve this, a function C(·) is used to combine the four feature maps as follows:

F = C (P2, P3, P4, P5) = P2 ∥ Up×2(P3) ∥ Up×4(P4) ∥ Up×8(P5), (6.1)

where “∥” means concatenation and Up×2(·), Up×4(·), and Up×8(·) indicate 2, 4, and 8 times
upsampling, respectively. Afterwards, the input F goes through Convolution-BN-ReLu layers
with a 3× 3 filter, which reduces it to 256 channels. Then, it undergoes n layers of Convolution
with a 1× 1 filter, followed by upsampling and Sigmoid activation, resulting in n segmentation
outputs labeled S1, S2, . . . , Sn.

6.1.3 Progressive Scale Expansion Algorithm
It is often difficult for segmentation-based methods to accurately separate text instances that
are located closely together. To address this challenge, a progressive scale expansion algorithm
has been developed as a solution.

In Figure 6.2, a clear example is provided to illustrate the progressive scale expansion al-
gorithm, which is derived from the Breadth-First-Search (BFS) algorithm. In the given exam-
ple, three segmentation results S = {S1, S2, S3} are presented in Figures 6.2 (a), (e), and (f).
Initially, the minimal kernels’ map S1 is used to obtain four distinct connected components
C = {c1, c2, c3, c4} as initializations. These connected components are represented by different
colors in Figure 6.2 (b). By doing so, we can detect all the central parts of the text instances,
i.e., the minimal kernels. Next, we gradually expand the detected kernels by merging the pixels
in S2 and then in S3. The scale expansions’ results are displayed in Figures 6.2 (c) and (d),
respectively. Finally, the connected components marked with different colors in Figure 6.2 (d)
are extracted as the text instances’ final predictions.

The scale expansion process is demonstrated in Figure 6.2 (g). The algorithm starts from the
pixels of multiple kernels and combines adjacent text pixels in iterations, similar to BFS. Some
pixels may be in conflict during expansion, as highlighted by the red box in Figure 6.2 (g). In
practice, the principle for dealing with these conflicts is to merge the conflicting pixel with only
one single kernel based on a first-come-first-served basis. Thanks to the “progressive” nature of
the expansion procedure, these boundary conflicts will not significantly affect the final detection
results or the performance.
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Figure 6.2 The figure depicts the progressive scale expansion algorithm, which includes two
functions: CC and EX. CC is used to find the connected components, while EX is responsible for the

scale expansion. [25]

6.1.4 Kernel Scales
As depicted in Figure 6.1, PSENet generates various segmentation outcomes, such as S1, S2, . . . ,
Sn utilizing multiple kernel scales. Therefore, it requires ground-truth labels corresponding to
different kernel scales for successful training. In practical scenarios, these labels can be obtained
easily and effectively by shrinking the original text instance. In Figure 6.3 (b), the original
text instance is represented by a polygon with a blue border, which corresponds to the largest
segmentation label mask as shown in the rightmost map of Figure 6.3 (c). To obtain the shrunk
masks presented sequentially in Figure 6.3 (c), the Vatti clipping algorithm [27] is used to shrink
the original polygon pn by di pixels and obtain the shrunk polygon pi as shown in Figure 6.3 (a).

Figure 6.3 The illustration of how labels are created. [25]

After obtaining the shrunk polygon pi, it is converted into a binary mask for the segmentation
label ground-truth. The resulting ground-truth maps are denoted as G1, G2, . . . , Gn respectively.
Mathematically, if we consider the scale ratio as ri, the margin di between pn and pi can be
calculated as:

di =
Area (pn)×

(
1− r2i

)
Perimeter (pn)

(6.2)
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Moreover, the ground-truth map Gi is related to a scale ratio ri, which is defined as:

ri = 1− (1−m)× (n− i)

n− 1
, (6.3)

where m is the minimal scale ratio within the range of (0, 1]. Equation 6.3 defines the scale
ratios r1, r2, . . . , rn, which are determined by two hyper-parameters n and m. These scale ratios
linearly increase from m to 1.

6.1.5 Loss Function
To train PSENet, the loss function L can be expressed as follows:

L = λLc + (1− λ)Ls, (6.4)

where Lc denotes the loss for complete text instances, Ls denotes the loss for shrunk instances,
and λ is a balancing parameter that determines the relative significance of Lc and Ls.

The authors of PSENet decided to employ the dice coefficient in their experiments. The dice
coefficient, denoted as D(Si, Gi), is defined as follows:

D (Si, Gi) =
2
∑

x,y (Si,x,y ×Gi,x,y)∑
x,y S

2
i,x,y +

∑
x,y G

2
i,x,y

(6.5)

Equation 6.5 computes the dice coefficient, which is derived from the values of pixels (x, y)
in the segmentation result, Si,x,y, and the corresponding ground-truth, Gi,x,y. Additionally,
there are various structures that resemble text strokes, such as fences and lattices. In order to
better discriminate between these structures, the authors utilized Online Hard Example Mining
(OHEM) [28] during training to improve the performance of Lc. The primary goal of Lc is to
segment the text and non-text areas. Specifically, if the training mask generated by OHEM is
denoted as M , then Lc is formulated according to Equation 6.6.

Lc = 1−D (Sn ·M,Gn ·M) (6.6)

The loss function for the shrunk text instances denoted as Ls, excludes the pixels of the
non-text region in the segmentation result Sn to avoid redundancy. This is because the shrunk
instances are within the original areas of the complete text instances. The formulation of Ls 6.7
takes into account a mask, W , that disregards the non-text region pixels in Sn. Sn,x,y refers to
the value of the pixel (x, y) in Sn. [25]

Ls = 1−
∑n−1

i=1 D (Si ·W,Gi ·W )

n− 1
; Wx,y =

{
1, if Sn,x,y ≥ 0.5
0, otherwise (6.7)

6.1.6 Hyperparameters
Since PSENet uses a neural network, there are some common hyperparameters that are shared
among them:

Learning rate Determines the step size at each iteration while moving toward a minimum of
a loss function during training.

Momentum Controls the contribution of the previous updates to the current update of the
model weights.

Weight decay Regularization technique that reduces the magnitude of weights during the train-
ing process to prevent overfitting.
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Number of epochs Number of times the entire dataset is passed through the model. In other
words, one epoch is a complete pass via the entire dataset during training.

Optimizer Algorithm that adjusts the parameters of the model during training to minimize the
loss function. There are various optimizers, such as Stochastic Gradient Descent (SGD) and
Adaptive Moment Estimation (Adam), which differ in how they update the weights. SGD
calculates the gradient of the loss function and updates the weights using a fixed learning
rate, while Adam adjusts the learning rate adaptively according to the history of gradients.

Batch size Number of samples from the dataset used in one iteration of the training process.

Furthermore, there exist multiple hyperparameters which are specific to PSENet:

Lambda parameter in loss function (λ) The balancing parameter, as discussed in 6.4.

Number of kernels (n) Number of segmentation results denoted as S1, S2, . . . , Sn in Fig-
ure 6.1.

Minimal kernel scale (m) The minimal scale ratio employed in Equation 6.3.

Bounding Box Type Whether to use an oriented bounding box or a polygon representation for
the final output. Both representations are explained in Section 5.1.1.

6.2 Text Detection with Probability Maps
The TextPMs method, proposed by Shi-Xue Zhang et al. in 2022, is a novel segmentation-
based text detection method that uses a group of probability maps to accurately detect text
instances by describing possible probability distributions. It uses a Sigmoid Alpha Function
(SAF) to transfer the distances between boundaries and their inside pixels to a probability map
and adopts an iterative model to predict and assimilate probability maps to reconstruct text
instances. This section is based on [26].

Figure 6.4 Overall TextPMs architecture with FPN on the left followed by Iterative Module on the
right. [26]
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6.2.1 Architecture Overview
The TextPMs method uses a ResNet-50 model to extract image features and a multi-level feature
fusion strategy to preserve spatial resolution and capture multi-level information. The backbone
of this architecture is the Feature Pyramid Network (FPN) as described in Section 3.3. An iter-
ative module is then used to predict probability maps that describe the possible probability dis-
tributions of text pixels within a boundary, which provide enough information for reconstructing
text instances. Different region-growing algorithms are used to aggregate the computed proba-
bility distribution maps into candidate text instances, and an adaptive voting filtering algorithm
is used to filter out false-positive text instances. An overview of the architecture is shown in
Figure 6.4.

6.2.2 Probability Maps
Many scene text detection datasets only provide rough annotations of text boundaries due to
the high cost of pixel-level annotations. These annotations are then used to create pixel-level
binary supervision masks for text instance segmentation in most segmentation-based methods.
However, the quality of these masks is often poor, with many background pixels being incorrectly
categorized as text pixels due to inaccurate annotations around text boundaries. This results in
false-positive text instances in the trained detectors. Some segmentation-based methods attempt
to reduce or avoid this issue through distance or direction fields, but the inaccurate annotations
still significantly degrade the detection performance. This problem is illustrated in Figure 6.5 (c).

Figure 6.5 This figure demonstrates the correlation between the distance to the boundary and the
probability distribution. [26]
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In this method, probability maps are proposed to address the ambiguity in text annotations
explicitly. Generally, the likelihood of a pixel being a text pixel is determined by its distance to
the boundary. As depicted in Figure 6.5 (a), the yellow point (A) located farther away from the
text boundary has a higher probability of being a text pixel than the red point (C) located close
to the boundary. On the other hand, even though the blue point (B) may resemble a background
pixel based on color and texture features, the probability of it being predicted as a part of a text
instance is still high in existing text detection methods. This is because point B is surrounded
by text pixels and located far away from the text boundary.

The primary objective of this method is to determine text boundaries by considering the
probability of the entire boundary instead of a single pixel. In this approach, it is assumed that
pixels on the same contour have the same probability, and contours closer to the annotation
boundary have smaller probability values. Figure 6.5 (c) shows a green annotation boundary,
mainly located in the background region, with background noise inside the boundary, especially
near the boundary (point C in Figure 6.5 (a)). The red and yellow contours, shown in Figure 6.5
(a), have the same distance to the text boundary (green contour), and pixels on the red contour
are more likely to be a text instance than those on the green contour, whereas pixels on the yellow
contour are more likely to be text than those on the red and green contours. By computing the
distance to the annotation boundary, a series of contours with pixels at the same distance to
the annotation boundary can be obtained, as shown in Figure 6.5 (b). Typically, the closer a
contour is to the boundary, the lower the proportion of text pixels. Assuming the proportion of
text pixels on a contour represents pixel probability, pixels on the same contour have the same
probabilities, enabling the establishment of the relationship between the probability of a pixel
and its distance to the boundary. The objective of the text detection task is to identify a contour
where the probability of pixels has a minimum value.

6.2.3 Sigmoid Alpha Function
The probability map is constructed based on the distance between pixels and the annotation
boundary to represent the likelihood of a pixel belonging to a text region. To establish a re-
lationship between pixel probability and distance to the boundary, a Sigmoid Alpha Function
(SAF) is proposed, which is based on the Sigmoid Function [29]. The SAF is beneficial as it
maps distance values into the range [0,1], which can be interpreted as a pixel probability. As a
result, the SAF is applied to map a distance map (D) into a probability map. The definition of
the Sigmoid Alpha Function is:

SAF(i,j) = C ∗

(
2

1 + e
−αD(i,j)

L

− 1

)
; C =

1 + e−α

1− e−α
; α ∈ (0,∞) (6.8)

where parameter α can be used to control the shape of the probability distribution maps, while
the constant C is responsible for keeping the output values within the range of [0, 1]. The indices
(i, j) represent the coordinates of a particular pixel in the map, and D(i,j) represents the shortest
distance from that pixel to the boundary. The distance map D is the set of all these shortest
distances D(i,j). Lastly, the variable L denotes the scale of the text instance, and it is defined
as:

L = max
(
D(i,j)

)
; i, j ∈ T (6.9)

where T denotes a text instance. By incorporating information about the size of text instances
into probability maps through the parameter L in the SAF, the model is better equipped to
detect text of different sizes, increasing its adaptability.

Due to the uncertainty and inaccuracy of annotation boundaries, a single probability map
cannot accurately describe the probability distributions of text pixels inside a boundary. To
address this, a series of probability distribution maps are employed as supervision to segment text
instances. Based on observations and experiments, a group of probability maps can account for
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possible probability distributions that cover annotation errors and provide sufficient information
for reconstructing text instances. Multiple probability maps improve the robustness of the model
for final detections as other probability maps can provide supplementary context predictions if a
local prediction of one probability map is inaccurate. Using Equation 6.8, a group of probability
distribution maps can be obtained by controlling the hyperparameter α in SAF.

6.2.4 Generation of Probability Maps
The process of creating probability maps depends on the distance map D and SAF. For a given
text image, a polygon representation is used to describe the region of each text instance. To
generate labels for each instance, the shortest distance from each pixel (i, j) to the boundary is
computed and stored as a set of D(i,j) values, that form the distance map for the text instance.
As a result, the distance map D may be defined as follows:

D =
{
D(i,j)

}
; i, j ∈ T, (6.10)

where T represents the text instance.
Once the distance map D is obtained, the sigmoid alpha function is applied with a series of

α values (α1, α2, . . . , αn) to convert the distance into probability. This procedure, as shown in
Figure 6.6, results in a set of probability distribution maps. These probability distribution maps
(G1, G2, . . . , Gn) can be described as:

G = {Gk}nk=1 = {SAF (D,αi) | i ∈ (1, 2, . . . , n)} , (6.11)

where n corresponds to the number of α values. The set of α values (α1, α2, . . . , αn) is determined
by a hyper-parameter. The probability maps G will act as the final ground-truths.

Figure 6.6 The process of generating probability maps. First, a distance map is created from text
instances. Second, the distance map is fed into the SAF to generate a set of probability maps. [26]

6.2.5 Iterative Module
The paper presents a new approach called iterative module (IM), which is designed to improve
the accuracy of the probability maps generated in the earlier steps. The IM employs large-scale
asymmetric convolution kernels based on text attributes. The structure of the module is shown
in Figure 6.7. The IM can explore the mapping relationship between probability distributions to
optimize the predictions of the probability maps. The information from low-level iterations can be
fully utilized to enhance the accuracy of predictions at high-level iterations. Back-propagation
gradients can be used to optimize the parameters in high-level iteration layers. Finally, the
predictions of the IM serve as a series of probability maps P1, P2, . . . , Pn.
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Figure 6.7 Detailed structure of Iterative Module. [26]

Scene text instances are different from generic object instances as they have varying sizes
and aspect ratios and are often distributed in strips, particularly for long and line-level text
instances. To tackle the challenge of significant variability in size and aspect ratio in scene text
detection, two different approaches can be utilized. Firstly, text size information is encoded into
probability maps using SAF. Secondly, an iterative model with a group of asymmetric convo-
lutions is employed to improve the accuracy of detecting long and line-level text. Using these
two approaches together, it is possible to accurately detect long text instances. In mathematical
terms, the IM can be expressed as:

f1 = ConvBlock (f0) ; P1 = σ (f1) (6.12)

fi = ConvBlock (f0 ⊕ fi−1) ; Pi = σ (fi) ; i ∈ [2, n] (6.13)
The Equations 6.12, 6.13 utilizes the concatenation operation denoted by ⊕ and the Sigmoid

activation function, discussed in Section 3.1.3, represented by σ (·). The symbol n represents the
total number of iteration steps, which is determined by the number of alpha values set by the
hyperparameter, the same as in Equation 6.11. This guarantees that the probability maps P are
matched with the ground-truth maps G for the purpose of the loss function.

In summary, the process begins by obtaining fusion feature maps f0 from the backbone
with 16 channels. These feature maps f0 are then fed into the first iterative layer, given by
Equation 6.12, of the iterative module to produce a new feature map f1, which is used to generate
a probability map P1 through the Sigmoid function. This probability map P1 is then used as prior
information for producing the second probability map P2 in the next iteration layer, described
by Equation 6.13. This process continues for several iterations to obtain multiple probability
map predictions P1, P2, . . . , Pn. After obtaining these probability distribution maps P from
the trained network, region growth algorithms such as the Watershed Algorithm or Progressive
Scale Expansion Algorithm can be applied to combine these probability maps into complete text
instances.

6.2.6 Loss Function
Once the ground-truth probability maps G and predicted probability maps P have been obtained,
as described in Sections 6.2.4 and 6.2.5, respectively, the loss for each pixel on the image domain
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Ω can be calculated using the Mean Squared Error (MSE) as:

lossi =
1

Ω

∑
p∈Ω

∥Gi(p), Pi(p)∥2 (6.14)

The Equation 6.14 calculates the MSE for each pixel in the image domain Ω by comparing
the i-th ground-truth probability map Gi and the i-th predicted probability map Pi. Here,
p represents a pixel in the image domain Ω. The network training focuses on distinguishing
hard-to-classify pixels. To achieve this, the concept of Online Hard Negative Mining (OHEM)
is utilized. Specifically, only pixels with a probability greater than 0.001 are considered, while
those with “zero” probability are not taken into account.

The total loss L is obtained by a sum of all the individual losses lossi as:

L =

n∑
i=1

lossi, (6.15)

where i denotes the probability map number, and n is the total number of probability maps. [26]

6.2.7 Hyperparameters
This method shares common hyperparameters with neural networks, as outlined in Section 6.1.6.
Additionally, it contains specific hyperparameters:

Set of α values The set of (α1, α2, . . . , αn) is used to construct different distributions of prob-
ability maps, as described in Section 6.2.4, Equation 6.11, and Section 6.2.5 Equation 6.13.

Recovery Algorithm Whether to use Watershed Algorithm or Progressive Scale Expansion
Algorithm to recover complete text instances from probability maps.

6.3 Training Process
Both methods were implemented using the PyTorch [30] deep learning framework. The code
was partially adapted from the official implementations of the PSENet3 and TextPMs4. The
models were trained using stochastic gradient descent (SGD) optimizer on a single NVIDIA
A100-SXM4-40GB GPU.

The PSENet hyperparameters were chosen following the guidelines provided in the official
PSENet paper. The initial learning rate was set at 0.001 and is divided by 10 every third of the
training process, with a momentum of 0.99 and a weight decay of 5 × 10−4. While the number
of epochs varied depending on the experiment, it typically ranged around 500. All images were
resized to 640× 640, and the batch size was set to 8 due to GPU memory constraints, although
the paper suggests a batch size of 16. In the loss function, the balancing parameter (λ) was set
to 0.7. The PSENet model utilized 7 kernels, with a minimal kernel scale of 0.7. To ensure a
better consistency of the final output with the annotations in the Nomenclature dataset, oriented
bounding boxes were chosen as the output format. [25]

The hyperparameters for TextPMs were also selected based on the official TextPMs paper.
The training process consists of a pre-training phase of two epochs on the SynthText [31] dataset,
where the Adam optimizer is used with a fixed learning rate of 0.001 and a batch size of 10. After
the pre-training phase, the training process is divided into two stages: the first stage resizes
images to 640 × 640 with a batch size of 6, while the second stage resizes images to 800 × 800
with a batch size of 4. Both stages adopt the SGD optimizer with an initial learning rate of

3https://github.com/whai362/PSENet
4https://github.com/GXYM/TextPMs

https://github.com/whai362/PSENet
https://github.com/GXYM/TextPMs
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0.01, which is multiplied by 0.9 after every 100 epochs, with a momentum of 0.9. The number
of epochs is set to 300 for each stage. [26]

It is advisable to consider dataset augmentation when dealing with a small amount of data
like in this case. Dataset augmentation is a technique that involves creating additional data
samples by applying various transformations or modifications to the existing training data. The
goal is to increase the size of the training dataset and improve the model’s ability to generalize.
By introducing variations to the training data, the model becomes more robust and capable of
handling different types of input data. In the thesis, the transformation includes random crop-
ping, flipping, changes in brightness and contrast, and random rotation with an angle sampled
from a Gaussian distribution between -60 and 60 degrees.

6.4 Evaluation
This section aims to introduce the standard approach for evaluating object detection tasks,
followed by an explanation of the TotalText evaluation method utilized in this thesis.

6.4.1 Object Detection Evaluation
To evaluate the effectiveness of an object detection model, it is necessary to measure the degree
of similarity between the predicted bounding box and the actual location of the object in the
image. This is typically done by calculating the Intersection over Union (IoU). [32]

The IoU is a metric used to measure how closely the predicted bounding box aligns with
the ground truth bounding box. The value of IoU ranges between 0 and 1. When the two
boxes overlap completely, the predicted bounding box is considered perfect, and the IoU is 1.
Conversely, if the two boxes do not overlap at all, the IoU is 0. The IoU is calculated by dividing
the area of intersection between the two bounding boxes by the area of their union:

Figure 6.8 This figure provides an illustration of the IoU calculation. [32]
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After calculating the IoU between the predicted bounding box and the ground truth bounding
box, the resulting value is compared to a specified threshold value. If the IoU value exceeds the
threshold value, the detection is classified as True Positive (TP), indicating that the predicted
bounding box accurately identifies the object. On the other hand, if the IoU value is lower than
the threshold, the detection is classified as False Positive (FP), indicating that the predicted
bounding box does not accurately identify the object. Additionally, if there is no TP detection
for the corresponding ground-truth area, it is labeled as a False Negative (FN).

Upon obtaining the TP, FP, and FN detections, the evaluation metrics such as Precision,
Recall, and F1-Score can be computed using standard formulas:

Precision =
Correct Predictions

Total Predictions
=

TP

TP + FP
(6.16)

Recall =
Correct Predictions

Total GroundTruth
=

TP

TP + FN
(6.17)

F1-Score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(6.18)

6.4.2 TotalText Evaluation Protocol
This evaluation protocol differs from the approach presented in Section 6.4.1 by addressing
a specific scenario. Consider two detections overlapping the same ground truth, where one
detection covers the left half of the ground truth and the other covers the right half, both with
an IoU of 0.5. Typically, when using a common IoU threshold of 0.7, this situation would result
in two False Positives and one False Negative. However, in the context of the TotalText dataset
evaluation protocol, this is considered as one True Positive. This scenario is common in Text
Detection tasks, where the presence of large spaces between characters can cause the ground
truth area to be split into multiple detections.

The primary idea is to identify all the overlapping detections for a particular ground truth and
merge them to determine the IoU. This represents a one-to-many scenario. When combining these
detections, the goal is to minimize the number of merged detections while gradually increasing
them, if required. This strategy guarantees that the minimum number of detections are used to
achieve the True Positive case and any leftover detections become False Positives.

The IoU calculation is divided into two cases, namely the Intersection over Detection and
the Intersection over Ground Truth. The Intersection over Detection represents the intersection
between the ground truth and the union of detections divided by the union of detections. On
the other hand, the Intersection over Ground Truth calculation is the same intersection area but
divided by the area of the ground truth. The threshold for the Intersection over Detection is
set to 0.7, and for the Intersection over Ground Truth, it is set to 0.6, in order to provide some
tolerance when detections cover additional area. To be considered a True Positive, both of these
requirements must be met simultaneously.

The general workflow of this protocol involves initially attempting to match ground truths
and detections using one-to-one scenarios. If any ground truths remain unmatched, then the
one-to-many case is applied to satisfy the 0.7 and 0.6 thresholds. Finally, if any candidates
remain, the many-to-many scenario is employed with the same principle.
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Experiments

This chapter provides a description and evaluation of the experiments carried out with both
methods on the Nomenclature dataset. The loss functions are occasionally smoothed using
Exponential Moving Average (EMA) for better visualization. The horizontal axis labeled as step
in the graphs represents every tenth forward pass using the entire batch. Recording the results
for every batch would be redundant as recording every tenth batch is sufficient. The Weights &
Biases [33] tool was utilized for logging values during the training process.

7.1 Experiments with PSENet
This section presents the experiments performed using the Progressive Scale Expansion Network.

7.1.1 Initial Experiment
The Initial Experiment denotes that no augmentation or other modifications were made to the
dataset. Only resizing the images to 640 × 640 was performed according to 6.3. Figure 7.1
displays the training loss during this experiment.

Figure 7.1 The training loss during initial experiment with EMA = 0.7 smoothing.

29
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Due to the training loss reaching values near zero, the corresponding gradients became sig-
nificantly small, and as a result, the model parameters stopped updating. Consequently, the
run was terminated at the 233rd epoch out of a total of 500. The resulting validation loss is
displayed in Figure 7.2.

Figure 7.2 The validation loss during initial experiment with EMA = 0.2 smoothing.

At the 176th epoch, the validation loss reached its minimum, with a Precision of 70.0%, Recall
of 83.3%, and F-Score of 76.1%. The lower Precision compared to Recall suggests a higher rate
of false positives. The model struggled with recognizing toponyms on the maps and tended to
detect some additional text, as depicted in Figure 7.3.

Figure 7.3 The output of the initial experiment is an illustrative example that showcases the typical
false positives in the outputs generated by the model.
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7.1.2 Augmentation
The experiment utilizes the augmentation strategy outlined in Section 6.3. This involves exposing
the model to inputs during each epoch of training that include specific variations and randomness,
which the model has not previously encountered. As a result, the model can encounter a subset of
new inputs during each epoch, which contrasts with the Initial Experiment 7.1.1 that presented
the model with the exact same data every epoch. Figure 7.4 displays the training loss.

Figure 7.4 The training loss during augmentation experiment with EMA = 0.7 smoothing.

The training loss shows a pattern of fluctuation between high and low values. However,
still presents a decreasing trend in the larger context. The run completed all 500 epochs, with
Validation Loss shown in Figure 7.5.

Figure 7.5 The validation loss during augmentation experiment with EMA = 0.2 smoothing.

At the 395th epoch, a small peak is observed in the Validation Loss, with the lowest value
achieved at this point. This peak corresponds to a Precision of 91.6%, Recall of 86.2%, and
F-Score of 88.8%, which are promising results. However, a significant portion of False Detections
can be attributed to inaccurate ground truth annotations. The model performs well in differen-
tiating between map toponyms and other instances of text. The main error lies in detecting the
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smallest instances in the maps, as illustrated in Figures 7.6 and 7.7.

Figure 7.6 The outputs of the augmentation experiment indicate that the model is unable to detect
the smallest maps toponyms. Figure 7.7 illustrates the corresponding ground truth area to this False

Negative, located in the bottom left part of this Figure.

Figure 7.7 The ground truth area of tiny map toponym that was not detected in Figure 7.6.
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7.1.3 Pretrained Model
The aim of this experiment is to evaluate the performance of a pre-trained model on the TotalText
dataset, which is a more generalized text detection task. The experiment utilized the same
weights1 as described in the official PSENet [25] paper, and was trained using the process outlined
in Section 6.3, except for the use of a batch size of 16. The resulting weights achieved a Precision
of 84.0%, Recall of 78.0%, and F-Score of 80.9% on the TotalText dataset.

Applying the weights to the Nomenclature dataset yields a Precision of 21.9%, Recall of
32.4%, and F-Score of 26.1%. The model can detect printed instances, but it fails completely
to detect handwritten toponyms, which are common in most scenarios. Instead of detecting
map toponyms, the model typically detects other printed texts on the maps, as illustrated in
Figure 7.8. Occasionally, the model detects text-like areas such as trees, paths, or numbers. The
evaluation parameters and output visualizations demonstrate that the pre-trained model is not
suitable for toponym detection in the Nomenclature dataset.

Figure 7.8 The output of the pretrained model is typically unable to detect handwritten toponyms,
and only detects simple printed text instances, regardless of whether they are map toponyms or not.

1https://github.com/whai362/PSENet

https://github.com/whai362/PSENet
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7.1.4 Finetuning
This experiment aims to finetune the pretrained model used in the previous experiment 7.1.3 to
enhance its performance. The experiment employs slightly different hyperparameters from the
previous experiments, which are described in Section 6.3. The learning rate is lowered to 10−4,
and the number of epochs is reduced to 400. Otherwise, the process is the same as described in
Section 6.3, with the utilization of an augmentation strategy. Figure 7.9 displays the training
loss.

Figure 7.9 The training loss during finetuning experiment with EMA = 0.9 smoothing.

All 400 epochs were completed, and Figure 7.10 displays the Validation Loss.

Figure 7.10 The validation loss during finetuning experiment with EMA = 0.4 smoothing.

At the 248th epoch, the validation loss achieved its lowest value, resulting in a Precision of
88.8%, Recall of 84.9%, and F-Score of 86.8%. The generated outputs were very similar to the
ones produced by the augmentation experiment mentioned in section 7.1.2. The only difference
was that this finetuned version attempted to produce smaller detections, which led to a lower
F-Score due to imprecise ground truth annotations. Because the detections aim to be as precise
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as possible, they sometimes cause the area to be divided into several detections, as depicted in
Figure 7.11 but are still classified as True Positive according to 6.4.2.

Figure 7.11 The output of the finetuned model shows an example where a single ground truth area
is detected with multiple smaller detections instead of a single large one.

7.1.5 Summary
Table 7.1 summarizes the evaluation results obtained from the experiments.

PSENet Precision Recall F-Score
Initial 70.0 83.3 76.1
Augmentation 91.6 86.2 88.8
Pretrained 21.9 32.4 26.1
Finetuning 88.8 84.9 86.8

Table 7.1 Overview of experiments results.

The Augmentation experiment achieved the best results with an F-Score of 88.8%. The most
challenging aspect appears to be the detection of small text instances, as illustrated in Figure 7.7.

Although the Finetuning experiment did not perform better than the Augmentation exper-
iment in terms of evaluation scores, primarily due to inaccurate ground truth annotations, its
outputs cover a smaller area, which may be advantageous in certain applications.

The pretrained model struggles significantly with the complex background nature of cadastral
maps and often fails to detect the handwritten toponyms, which comprise the majority of the
dataset. As a result, the pretrained model is not appropriate for toponym detection in the
Nomenclature dataset.

On average, the experiments took approximately 19 hours to complete the training, with the
memory usage being displayed in Figure 7.12.

7.2 Experiments with TextPMs
This section presents the experiments performed using the Text Detection with Probability Maps
approach.
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Figure 7.12 Memory usage during the training process of the experiments.

7.2.1 Initial Experiment
This experiment follows the same approach as presented in Section 7.1.1, where no augmentation
was applied. The training process is described in section 6.3. The training and validation losses
for the first stage are presented in Figures 7.13 and 7.14, respectively.

Figure 7.13 The training loss during the first stage with EMA = 0.7 smoothing.

Due to the increasing trend of the validation loss (Figure 7.14) function, it suggested that
there was overfitting, leading to the termination of the run at the 161st epoch out of the 300.
The validation loss reached its minimum at the 30th epoch, so the weights from this epoch were
used for the second stage. Since the minimum was achieved at the 30th epoch out of 300, the
number of epochs for the second stage was reduced to 200. The validation loss for the second
stage is shown in Figure 7.15.

At the 9th epoch, the validation loss (Figure 7.15) reached its minimum, resulting in a Preci-
sion of 88.7%, Recall of 85.9%, and F-Score of 87.3%. This represents a significant improvement
when compared to the F-Score of 76.1% obtained in PSENet experiment 7.1.1. While the model
occasionally predicts additional text instances, as shown in Figure 7.16, it does so much less
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Figure 7.14 The validation loss during the first stage with EMA = 0.2 smoothing.

Figure 7.15 The validation loss during the second stage with EMA = 0.2 smoothing.

frequently than PSENet. Both models are still unable to detect the tiny text toponyms as shown
in Figure 7.7. In very rare cases, the model may detect only part of a text instance or split it
into multiple parts due to the larger space between characters.

Figure 7.16 The output of the initial experiment where a model detects non-toponym text instances
(the left one).
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7.2.2 Augmentation
This experiment involves the same augmentation concept as discussed in Section 7.1.2. The
training process is detailed in 6.3. Figures 7.17 and 7.18 display the training and validation
losses, respectively.

Figure 7.17 The training loss during the first stage with EMA = 0.7 smoothing.

Figure 7.18 The validation loss during the first stage with EMA = 0.2 smoothing.

As the validation loss 7.18 was still decreasing, it was deemed appropriate to continue the
training process for another 300 epochs with the same configuration. This resulted in a validation
loss shown in Figure 7.19.

The validation loss 7.19 continued to decrease, but at such a slow rate that continuing for
additional epochs would likely not make a significant difference. The minimum was reached at
the 273rd epoch, which is the 573rd epoch in total with the first part. Weights from this epoch
were selected for the second stage.

The validation loss 7.20 reached its minimum at the 296th epoch, which is the 869th epoch in
total including the first stage. This resulted in a Precision of 93.5%, Recall of 88.8%, and F-Score
of 91.1%, improving upon the best F-Score of 88.8% achieved by PSENet. Most errors still stem
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Figure 7.19 The validation loss during the first stage continuation with EMA = 0.2 smoothing.

Figure 7.20 The validation loss during the second stage with EMA = 0.2 smoothing.

from inaccurate ground truth annotations. While the model is able to detect some tiny text
toponyms, as illustrated in Figure 7.21, it is not capable of detecting all of them. Additionally,
as in the initial experiment 7.2.1, there are still rare cases where the issue with bigger spaces
between characters occurs.

7.2.3 Pretrained Model
The model used in this experiment is similar to the one used in the PSENet experiment 7.1.3,
as it is trained on the TotalText dataset. The weights2 for this experiment are described in the
official TextPMs [26] paper, and the training process is explained in Section 6.3. These weights
achieved a Precision of 89.9%, Recall of 87.6%, and F-Score of 88.7% on the TotalText dataset.

Applying these weights to the Nomenclature dataset resulted in a Precision of 27.0%, Recall of
43.8%, and F-Score of 33.4%. As in the PSENet experiment 7.1.3, the precision is low because the
models detect non-toponym text instances frequently. However, the recall is slightly better than

2https://github.com/GXYM/TextPMs

https://github.com/GXYM/TextPMs
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Figure 7.21 This output demonstrates that the model can detect some of the tiny map toponyms,
as compared to Figure 7.6.

in PSENet 7.1.3. The model can sometimes detect map toponyms, as illustrated in Figure 7.22,
but not all of them, especially those “hidden” in trees, paths, buildings, or other map elements.

Figure 7.22 The example output of the TextPMs pretrained model demonstrates its improved
ability to detect handwritten toponyms when compared to the output of the PSENet pretrained model,

as illustrated in Figure 7.8.
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7.2.4 Finetuning
This experiment aims to fine-tune the pretrained model used in the previous experiment 7.2.3
to improve its performance. The training process differs from the original one described in
Section 6.3. Only one stage with 600 epochs is used, with images resized to 800 × 800 and a
batch size of 4. The augmentation strategy is also employed, and the learning rate is lowered to
0.001. The training and validation losses are displayed in Figures 7.23 and 7.24, respectively.

Figure 7.23 The training loss during finetuning experiment with EMA = 0.9 smoothing.

Figure 7.24 The validation loss during finetuning experiment with EMA = 0.4 smoothing.

The validation loss 7.24 reached its minimum at the 592nd epoch, achieving a Precision of
91.5%, Recall of 87.4%, and F-Score of 89.4%. The outputs are similar to the augmentation
experiment in Section 7.2.2. In general, the detected areas are slightly smaller, but this means
that the model is more sensitive to larger character spacing, as shown in Figure 7.25.
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Figure 7.25 The output of the finetuning experiment demonstrates that the model is not always
capable of detecting the whole nomenclature area due to larger space between characters.

7.2.5 Summary
The evaluation results obtained from the experiments are summarized in Table 7.2.

TextPMs Precision Recall F-Score
Initial 88.7 85.9 87.3
Augmentation 93.5 88.8 91.1
Pretrained 27.0 43.8 33.4
Finetuning 91.5 87.4 89.4

Table 7.2 Overview of experiments results.

The augmentation experiment produced the best results, achieving an F-Score of 91.1%.
However, the model still struggles with detecting all of the smallest map toponyms, as shown in
Figure 7.7. In rare instances, the model also experiences difficulty with larger character spacing,
but this is a necessary trade-off for generating the smallest detections possible. The authors of
the Nomenclature dataset [22] obtained a best F-Score of 87.1% using the EAST [17] detector,
which demonstrates the potential of the TextPMs method.

The finetuning experiment generally produces smaller detections, but it is more susceptible to
larger character spacing than the augmentation experiment, resulting in slightly lower evaluation
scores.

The performance of the pretrained model in detecting map toponyms is unsatisfactory, as
it often detects non-toponymic text instances and struggles to identify most of the handwritten
toponyms.

The training process took about 10 hours on average with the memory usage depicted in
Figure 7.26, resulting in roughly 5 times better memory usage than the PSENet experiments
shown in Figure 7.12.

Figure 7.26 Memory usage during the training process of the experiments.
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The evaluation results obtained from the experiments are not particularly optimistic, mainly
because of inaccurate ground truth annotations. An example output presented in Figure 7.27
shows much more precise detections compared to the ground truth in Figure 5.4, which leads to
the two middle detections not being classified as True Positives. Consequently, the F-Score for
this output is only 50%, even though the detections are correct.

Figure 7.27 This output contains more precise detections in comparison to the ground truth
annotations in Figure 5.4, which resulted in lower evaluation scores.
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Chapter 8

Conclusion

The main objective was to implement and apply two text detection methods on a dataset of his-
torical maps. Both methods were successfully implemented using PyTorch and achieved F-scores
of 88.8% and 91.1%, demonstrating their effectiveness for text detection on historical maps.
However, the methods’ performance was negatively affected by the inaccurate annotations they
were trained on. This resulted in the addition of extraneous margins around text instances.

The unresolved weakness lies in the large spaces between letters, which may result in partial
text detection or the division of the text into multiple instances.

The capability of the pretrained models to detect map toponyms is unsatisfactory as they
frequently detect non-toponymic text instances and struggle with the complex background nature
of cadastral maps, leading to F-scores of 26.1% and 33.4%.

For future work, an OCR module could be added to extract and compare the resulting text.
One possible approach could be to use the Editing Distance metric to compare the detected text
with the ground truth annotations.

Overall, the implemented methods demonstrate their suitability for text detection on histor-
ical maps and have the potential for various applications.
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Contents of the attached media

LICENCE.txt.....................................................licence for the attachment
README.md ................................................ description of the media content
src

PSENet ...................... the source code of the PSENet implementation in PyTorch
TextPMs....................the source code of the TextPMs implementation in PyTorch
thesis ......................................... the source format of the thesis in LATEX

thesis.pdf..................................................the thesis text in PDF format
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