
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Multiple target tracking with PHD filters

Petr Jechumtál

doc. Ing. Kamil Dedecius, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Abstract: While single target tracking is a relatively well established discipline relying

mostly on Kalman and particle filters, simultaneous tracking of multiple targets is still

very demanding. It involves the aforementioned filters too, but faces the uncertainty

about the measurement-target coupling. The targets may more or less randomly appear

and disappear, which calls for random initialization and removal of the low-level filters.

Moreover, if the measuring principle involves active radars or similar technologies, the

measurements are subject to clutter.

One way of solving the task consists in the probability hypothesis density (PHD) filters.

The approach involves modelling the respective collections of targets and

measurements as random finite sets. The probability hypothesis density (PHD) recursions

are employed to propagate the posterior intensity, which is a first-order statistic of the

random finite set of targets, in time.

Goal: The bachelor thesis aims at a design and experimental validation of the Gaussian

PHD filter. The steps are as follows:

1. Study the basic principles of single target tracking with Kalman filters.

2. Study the theory of the PHD filters. That is, get familiar with random finite sets, intensity

functions, Gaussian mixture-based representation of targets, mixtures pruning and

merging.

3. Design and implement a multiple target tracking algorithm(s) in python.

4. Experimentally validate the implementation on simulated data. Discuss results and

properties of the implementation.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 13 January 2023 in Prague.

Difficulty: Very high (advanced mathematics - random finite sets)

References:

[1] B.-N. Vo and W.-K. Ma, "The Gaussian Mixture Probability Hypothesis Density Filter," in

IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091-4104, Nov. 2006, doi:

10.1109/TSP.2006.881190.

[2] D. Smith and S. Singh, "Approaches to Multisensor Data Fusion in Target Tracking: A

Survey," in IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 12, pp.

1696-1710, Dec. 2006, doi: 10.1109/TKDE.2006.183.

[3] E. Brekke, Fundamentals of Sensor Fusion. Target Tracking, Navigation and SLAM. NTNU,

2020.

[4] Á. F. García-Fernández, J. L. Williams, K. Granström and L. Svensson, "Poisson Multi-

Bernoulli Mixture Filter: Direct Derivation and Implementation," in IEEE Transactions on

Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1883-1901, Aug. 2018, doi: 10.1109/

TAES.2018.2805153.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 13 January 2023 in Prague.

Bachelor’s thesis

MULTIPLE TARGET
TRACKING WITH PHD
FILTERS

Petr Jechumtál

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: doc. Ing. Kamil Dedecius, Ph.D.
May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Petr Jechumtál. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Jechumtál Petr. Multiple target tracking with PHD filters. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Acronyms x

Introduction 1

1 Bayesian modeling 3
1.1 Bayes Theorem . 3
1.2 Prior and Posterior distributions . 4

1.2.1 Conjugate prior distribution . 4
1.2.2 Example . 5

1.3 State-space model . 6
1.3.1 Hidden process model . 7
1.3.2 Measurement model . 7
1.3.3 Example: Constant velocity model . 8

2 Kalman filter: Single target tracking 11
2.1 Derivation of the Kalman filter . 11

2.1.1 Prediction step . 12
2.1.2 Update step . 12
2.1.3 Example . 13

2.2 Single-target tracking . 14
2.2.1 Clutter . 14
2.2.2 Misdetections . 15
2.2.3 Data association . 15

3 Multiple target tracking 17
3.1 Introduction to multiple target tracking . 17
3.2 Derivation of Probability Hypothesis Density filter 18

3.2.1 Possible target states . 18
3.2.2 Random finite sets . 18
3.2.3 Multiple-target Bayes filter . 19

3.3 The Probability Hypothesis Density (PHD) filter 20
3.3.1 Intensity . 20
3.3.2 PHD recursion . 20

3.4 Linear Gaussian PHD filter . 21
3.4.1 Prediction step . 21
3.4.2 Update step . 22

iii

iv Contents

4 Implementation 25
4.1 GaussianMix class . 25
4.2 PHD class . 25

4.2.1 Prediction method . 26
4.2.2 Update method . 28
4.2.3 Pruning and state estimation method . 28

5 Experiments 31
5.1 Example 1: One target with clutter . 32
5.2 Example 2: Three objects without clutter . 33
5.3 Example 3: Three objects with clutter . 34
5.4 Example 4: Birth, Spawn, and Dead of objects 36

Conclusion 39

Enclosed medium contents 43

List of Figures

1.1 Beta distribution charts of coin flips . 6
1.2 Evolution of the target state and its contribution to the origin of the measurement

[7]. 7
1.3 Graphical representation of CVM state variables in 2D. 9

2.1 Real trajectory of an object dropped at 80000 meters above the ground and sim-
ulated for 50 time steps. 14

2.2 Object height estimation with plotted confidence interval. 14
2.3 The described radar image [13]. 15

5.1 Real trajectory of an airplane, started at point [0, 0]⊺ and PHD filter estimations
of position, simulated for 50 seconds. Only the interesting part of the space is
depicted. The clutter measurements are not depicted as they differ at each time
instant. 32

5.2 Real trajectories of three airplanes, started at point [0, 0]⊺ and PHD filter estima-
tions of position, simulated for 50 seconds. Only the interesting part of the space
is depicted. The clutter measurements are not depicted as they differ at each time
instant. 33

5.3 Simulation of three aircraft at time instant t = 10. 34
5.4 Simulation of three aircraft at time instant t = 30. 34
5.5 Simulation of three aircraft at time instant t = 50. 35
5.6 Real trajectories of three airplanes with clutter, started at point [0, 0]⊺ and PHD

filter estimations of position, simulated for 50 seconds. 35
5.7 Simulation of the aircraft carrier and two planes at time t = 5. 36
5.8 Simulation of the aircraft carrier and two planes at time t = 38. 37
5.9 Simulation of the aircraft carrier and two planes at time t = 65. 37
5.10 Estimation of the number of targets on the surface during the time and real number

of targets. 38

v

List of code listings

1 Code of the filter data method . 26
2 Code of the prediction method . 26
3 Code of the compute survivals function . 26
4 Code of the spawn method . 27
5 Code of the update method . 27
6 Code of the pruning method . 29

List of Tables

1.1 Distributions and their conjugate priors. Standard notation of inferred parameters
is assumed. 4

vi

I want to thank my supervisor, doc. Ing. Kamil Dedecius, Ph.D., for
his patience and willingness to always advise me. I would also like
to thank my friends and family, who have supported me throughout
my studies.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 3, 2023 .

viii

Abstract

This thesis focuses on the problem of tracking multiple targets, which is still a very challenging
discipline. It deals with the uncertainty about the measurement-target association in a noisy-
cluttered-environment. Furthermore, targets can appear and disappear more or less randomly.
The solution described in this thesis is based on the Bayesian inference and consists of the
probability hypothesis density (PHD) filters. This approach involves modeling the relevant sets
of targets and measurements as random finite sets. The probability density recursions (PHDs)
are used to propagate the posterior intensity, which is a first-order statistic of a random finite
set of targets, over time.

Keywords Kalman filter, Bayesian inference, random finite set, multiple target tracking, state
estimation, Gaussian mixture, intensity

Abstrakt

Tato práce se zaměřuje na problém sledováńı v́ıce ćıl̊u, což je stále velmi náročná discipĺına.
Zabývá se nejistotou spojeńı mezi měřeńım a ćılem v prostřed́ı se zvýšeným šumem. Ćıle se
nav́ıc mohou objevovat a mizet v́ıceméně náhodně. Řešeńı popsané v této práci je založeno
na bayesovské inferenci a sestává z filtr̊u hustoty pravděpodobnostńıch hypotéz. Tento př́ıstup
zahrnuje modelováńı př́ıslušných množin ćıl̊u a měřeńı jako náhodné konečné množiny. K š́ı̌reńı
aposteriorńı intenzity, což je statistika prvńıho řádu náhodné konečné množiny ćıl̊u v čase, se
použ́ıvaj́ı rekurze hustoty pravděpodobnosti.

Kĺıčová slova Kalmán̊uv filter, Bayesovská inference, konečná náhodná množiná, sledováńı
v́ıce ćıl̊u, odhad stav̊u, Gaussovská směs, intenzita

ix

Acronyms

CVM Constant Velocity Model
JPDA Joint Probabilistic Data Association
MAP Maximum A Posteriori

MMSE Minimum Mean Square Error
PDA Probabilistic Data Association
PHD Probability Hypothesis Density

PHMT Probabilistic Multiple Hypothesis Tracking
RFS Random Finite Set

x

Introduction

Target tracking is an essential part of systems that perform functions such as tracking, guidance,
or obstacle avoidance. Tracking algorithms receive input measurements from sensors that provide
radar, sonar, or video signals. Measurements are taken at regular intervals, and the task is to
estimate the state of the target at each time instant. The state involves, for instance, the target
position, speed, acceleration, and potentially other attributes. Successive estimates provide
traces that describe the target trajectory.

An almost universally accepted mathematical framework used to describe this problem is
the filtering theory, particularly Bayesian filtering. The probability distribution describing the
knowledge of the target state is recursively predicted by propagation through the state evolution
model describing the target motion and updated when new observations become available. The
mean and covariance of the state are determined at each time step from the posterior distribution.
The Kalman filter, derived in 1960, is the most commonly used filtering technique for linear and
Gaussian target models.

The situation described above considers one target and its measurements. However, there
are additional issues in real scenarios. First, the presence of clutter (false measurements), then
we do not know which measurements are from the target. Second, the case of multiple targets,
where the association between the target and its measurement is uncertain. The aim is then to
estimate the location of an unknown number of targets based on observations of targets corrupted
by noise, with the possibility that false detections may occur and that the observations may be
false alarms caused by clutter.

Structure of the thesis
This thesis is divided into 5 main chapters. The aim of Chapter 1 is to explain the important
concepts and ideas on which we build later in this thesis. In Chapter 2, we come to the problem
of target tracking by deriving a Kalman filter. Then, in Chapter 3, we extend the tracking to
multiple targets and illustrate everything with the example of probability hypothesis density
(PHD) filters. Chapter 4 describes our implementation of the linear Gaussian PHD filter, over
which we run simulations and experimentally verify its performance in Chapter 5.

1

2 Introduction

Chapter 1

Bayesian modeling

In the first chapter, we introduce you to the basic concepts of the Bayesian modeling, which are
important for understanding the whole work. We first introduce the Bayes formula and then
proceed through the various topics needed to derive the Kalman filter. Throughout the paper,
we consider that, in line with the Bayesian literature, we do not distinguish between random
variables and their realizations. This chapter is mostly inspired by [1] and [2].

1.1 Bayes Theorem
The Bayes theorem is one of the fundamental concepts in statistics. It is named after English
statistician Thomas Bayes, who proposed the principle in 1763. The Bayes theorem is used to
determine the probability of a hypothesis in the presence of more evidence or information. The
exact formulation is as follows:

p(A|B) = p(B|A)p(A)
p(B) , (1.1)

where A and B are events and p(B) ̸= 0. p(A|B) is the conditional probability of event A
occurring given that B is true, p(A) and p(B) is probability of event A and B, respectively [1].

However, for the purposes of this paper, the following formulation is more appropriate. As-
sume that we have a random variable x, its distribution f depends on a parameter θ that can be
multi-dimensional. Furthermore, f(x|θ) and π(θ) are their probability density functions. Then
the Bayes formula is following

π(θ|x) = f(x|θ)π(θ)
f(x) . (1.2)

The terms in the last formula are:

π(θ|x) is the posterior density of θ.

π(θ) is the prior density of θ.

f(x|θ) is the likelihood of observations.

f(x) is marginal density of observations.

Since f(x) is only a normalization factor, we can rewrite Equation 1.2 into the proportional form
as follows:

π(θ|x) ∝ f(x|θ)π(θ). (1.3)

3

4 Bayesian modeling

1.2 Prior and Posterior distributions
The probability distribution that expresses the (subjective) beliefs about the parameters is called
the prior probability distribution, often simply called the prior. We can then update our prior
distribution with the data using the Bayes theorem to obtain a posterior distribution. The
posterior distribution is a probability distribution that represents the updated beliefs about the
parameters after having seen the data [2]. However, the exact computation of the posterior
distribution is difficult and often unnecessary. A key tool for the Bayesian statistics that greatly
simplifies the computation is the concept of conjugate prior distributions.

1.2.1 Conjugate prior distribution
A prior distribution π(θ) is said to be a conjugate prior distribution if the posterior distribution
π(θ|x) remains in the same distribution family as the prior.

Unfortunately, this behavior is not common. In order to ensure that our prior is conjugate,
we need another level of abstraction, namely the exponential family of distributions, that can be
defined in the following way [3].

▶ Definition 1.1 (Exponential family). A family {Fθ} of distributions of a random variable x
parameterized by a scalar or multivariate parameter θ is said to form an exponential family if
the probability density function can be written in the form [4]

f(x|θ) = h(x)g(θ) exp{η(θ)⊺T (x)}, (1.4)
where η(θ) is natural parameter, T (x) is the sufficient statistic, g(θ) is the normalizing function,
and h(x) is the base measure.

We can now fully formulate the definition of a conjugate prior [5],

▶ Definition 1.2 (Conjugate prior). Suppose we have f(x|θ), which is the exponential family
distribution defined in Definition 1.1. We say that a prior distribution π(θ) with hyper-parameters
ξ and ν is conjugate to it if its probability density has the form,

π(θ) = q(ξ, ν)g(θ)ν exp {η(θ)⊺ξ}, (1.5)
where ξ has the same dimension as T (x), ν ∈ R+ and q(ξ, ν) is a known function. The function
g(θ) is the same as the normalization function in the density for f(x|θ).

From [6], we know that for a Bayesian update then, the density product from an exponential
class with conjugate prior reduces to a simple update of hyperparameters of the form,

ξt = ξt−1 + T (xt),
νt = νt−1 + 1.

(1.6)

Table 1.1 lists some popular distribution and their conjugate prior distribution.

Distribution of observations Inferred parameter Conjugate prior Posterior
Bernoulli probability p Beta Beta
Binomial probability p Beta Beta

Normal with known variance σ2 mean µ Normal Normal
Poisson rate λ Gamma Gamma

Exponential rate λ Gamma Gamma
Table 1.1 Distributions and their conjugate priors. Standard notation of inferred parameters is

assumed.

Prior and Posterior distributions 5

1.2.2 Example
In this example, we show how to estimate the probability p of the Bernoulli formula using the
conjugate Beta distribution. Its purpose is to demonstrate the use of the Bayes theorem and
conjugate priors as shown in Sections 1.1 and 1.2, respectively.

Assume we have a binary random variable Xt describing the result of 100 coin tosses, denoted
xt where t = 1, 2, . . . We can model this experiment using the Bernoulli distribution with a
parameter p describing the (unknown) probability of head,

Xt ∼ Ber(p), p ∈ (0, 1), (1.7)

where p is the probability of success, which we try to estimate. Xt can only take values from the
set {0, 1} (tail or head).

If we rewrite the probability density function model into exponential according to Definition
1.1, we obtain

f(xt|θ) = f(xt|p)
= pxt(1 − p)1−xt

= exp{ln[pxt · (1 − p)1−xt]}
= exp{xt ln p + (1 − xt) ln(1 − p)}

= 1︸︷︷︸
h(xt)

· 1︸︷︷︸
g(p)

· exp
{ [

ln p
ln(1 − p)

]⊺

︸ ︷︷ ︸
η(p)

[
xt

1 − xt

]
︸ ︷︷ ︸

T (xt)

}
.

(1.8)

As mentioned in the Section 1.2 appropriate conjugate prior for p is a Beta distribution. Its
probability density has the form

π(p|a, b) = 1
B(a, b)pa−1(1 − p)b−1, a, b > 0, (1.9)

where
B(a, b) = Γ(a)Γ(b)

Γ(a + b) (1.10)

is the Beta function defined by the proportion of Gamma functions, and a, b are hyperparameters.
Now let us rewrite this model into a more appropriate form that reflects our knowledge gained

in the previous time steps t−1 so that we can incorporate this knowledge into the current state t,

π(p|at−1, bt−1) = 1
B(at−1, bt−1)pat−1−1(1 − p)bt−1−1. (1.11)

In the next step, we rewrite the model in exponential form, which can be done in the following
way,

π(p|ξt−1, νt−1) = π(p|at−1, bt−1)

= 1
B(at−1, bt−1)pat−1−1(1 − p)bt−1−1

= 1
B(at−1, bt−1)︸ ︷︷ ︸

q(ξt−1,νt−1)

· 1︸︷︷︸
g(p)νt−1

exp
{ [

ln p
ln(1 − p)

]⊺

︸ ︷︷ ︸
η(p)

[
at−1 − 1
bt−1 − 1

]
︸ ︷︷ ︸

ξt−1

}
.

(1.12)

6 Bayesian modeling

We know from Section 1.2.1 that we can simplify the Bayesian update for the conjugate prior
to the form,

ξt = ξt−1 + T (xt),
νt = νt−1 + 1.

(1.13)

Since g(ν) = 1, we can completely omit the second equation from our calculations. The posterior
hyperparameter ξt are equivalent to[

at − 1
bt − 1

]
=

[
at−1 − 1
bt−1 − 1

]
+

[
xt

1 − xt

]
. (1.14)

It follows that to update our hyperparameters a, b, and we only need to add a + 1 if the head
fell or b + 1 if the tail fell. For the estimation of parameter p, we use the mean of the beta
distribution, which is as follows:

E[p] = E[p|a, b] = a

a + b
. (1.15)

The last essential thing for our experiment is to choose the correct initial values of the
hyperparameters a, b. Since we do not know anything about the coin (whether it is fair or not),
a = b = 1 seem to be an appropriate value to model exactly this information. In Figure 1.1, we
can see the results of our experiment, where the mean of the Beta distribution determines our
estimate of the parameter p. For the demonstration, I chose the results after 10 and 100 coin
flips.

The results show nicely that our uncertainty around the estimate of p decreases with increas-
ing flips. Moreover, we can hypothesize that our coin is fair because p is close to the value of
0.5.

(a) 10 coins flip (b) 100 coins flip

Figure 1.1 Beta distribution charts of coin flips

1.3 State-space model
Until now, we have considered models with fixed parameters. However, if our (hidden) parameters
change and we know the pattern of their evolution, then we get a state-space model. It is a
complete overview of the state of the system at a certain point in time. Knowing the state at
some initial time t0 and knowing the system inputs after time t0 allows us to determine the
state at a later time t1. Thus, the state at time t0 represents the complete history of the system

State-space model 7

behavior before time t0, insofar as this history affects future behavior. The state-space model
classically becomes two equations, one describing the hidden process and the other for the data
model.

At any fixed time, the state of a system can be described by vector xt. For example, one of
the state variables of a tracking system is the position of the tracked object.

Let us assume that we have a state model that is time-invariant and that we move in discrete
times t = 0, 1, 2, . . . The state-space model consists of two models: first, the hidden process
model, and second, the measurement model. The target states use the hidden process model for
their evolution. At the same time, states generate measurements according to the measurement
model. The state evolution is then captured in Figure 1.2. We look at the models in detail in
the following sections.

Figure 1.2 Evolution of the target state and its contribution to the origin of the measurement [7].

1.3.1 Hidden process model
According to [8], we can define such a model using the following equations,

xt = Axt−1 + But + wt, (1.16)

where xt and xt−1 are the (unknown and estimated) states vectors at time instants t and t − 1,
respectively. ut is a control vector that is known, wt is the state noise. Finally, A and B are
known matrices of compatible dimensions. We also assume that wt is an independent zero-
centered normally distributed noise,

wt ∼ N (0, Q). (1.17)
Since wt is a normal random variable and Formula (1.16) represents its transformation, the state
variable xt is a random variable too. The transformation is linear and preserves the distribution.
That is

xt ∼ N (Axt−1 + But, Q). (1.18)
In the Bayesian estimation theory, we represent this distribution by a probability density function
p(xt|xt−1, ut).

1.3.2 Measurement model
The hidden process model describes the state variables and their evolution, but the variables
themselves are not observable. The states xt generate observable measurements yt through a
measurement model prescribed by the formula

yt = Hxt + εt, (1.19)

where xt is a state vector, H is matrix of compatible shapes.

8 Bayesian modeling

Further, similarly to the state model, we assume εt is independent and from a normal distri-
bution centered at zero

εt ∼ N (0, R). (1.20)
Similar to wt, εt is also a normal random variable, and Formula (1.19) represents its trans-

formation, the measurement of yt is also a random variable. The transformation is linear and
preserves the distribution. This means

yt ∼ N (Hxt, R). (1.21)
In the Bayesian estimation theory, we represent this distribution by a probability density function
f(yt|xt). The fact that both noise variables wt and εt are centered at zero is extremely important
because otherwise, we would get a systematic error in the estimation.

1.3.3 Example: Constant velocity model
One of the most widely used state-space model is the constant velocity model (CVM). In its
basic version, it describes the position of the target on a 2D surface (direct extension to higher
dimensions is straightforward). The position has two components x1,t, x2,t, e.g., corresponding
to longitude and latitude, respectively. We model them based on the previous position at time
t − 1 and the velocities in these components v1,t, v2,t during the time period ∆t. All CVM state
variables can be seen in 1.3. We also model the velocities, for simplicity, as a random walk. The
state evolution formulas are:

x1,t = x1,t−1 + vx1,t∆t + wx1,t,

x2,t = x2,t−1 + vx2,t∆t + wx2,t,

vx1,t = vx1,t−1 + wvx1 ,t,

vx2,t = vx2,t−1 + wvx2 ,t,

(1.22)

in the matrix notation:
x1,t

x2,t

vx1,t

vx2,t

︸ ︷︷ ︸

xt

=

1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

︸ ︷︷ ︸

At

x1,t−1
x2,t−1
vx1,t−1
vx2,t−1

︸ ︷︷ ︸

xt−1

+

wx1,t

wx2,t

wvx1 ,t

wvx2 ,t

︸ ︷︷ ︸

wt

. (1.23)

Assume that there are noisy measurements in the same coordinate space. Then, the measure-
ments are y1,t and y2,t. Their model is

y1,t = x1,t + εx1,t,

y2,t = x2,t + εx2,t,
(1.24)

in the matrix notation: [
y1,t

y2,t

]
︸ ︷︷ ︸

yt

=
[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

Ht

[
x1,t

x2,t

]
︸ ︷︷ ︸

xt

+
[
εx1,t

εx2,t

]
︸ ︷︷ ︸

εt

. (1.25)

Since the noise variables wt and εt are normally distributed, we may rewrite Formulas (1.22) and
(1.24) as

xt ∼ N (Axt−1 + But, Q),
yt ∼ N (Hxt, R).

(1.26)

State-space model 9

Figure 1.3 Graphical representation of CVM state variables in 2D.

10 Bayesian modeling

Chapter 2

Kalman filter: Single target
tracking

The Kalman Filter is one of the most important and common sequential estimation algorithms.
It produces estimates of hidden variables based on inaccurate and uncertain measurements. Also,
predicts the future system state based on past estimates. The filter is named after Rudolf E.
Kálmán [9]. Navigation for the Apollo program is among the first applications of the Kalman
filter. Since then, it has spread to many other areas, such as target tracking, navigation systems,
control systems, computer graphics, and much more.

The Kalman filter itself is limited to linear models. We need an extended Kalman filter if we
are working with non-linear models. But that is beyond the scope of our work. We work with
linear models; therefore, the classical Kalman filter is sufficient. This chapter is mostly inspired
by [6] and [10].

2.1 Derivation of the Kalman filter
From Section 1.3, we have the following state model

xt = Axt−1 + But + wt, wt ∼ N (0, Q),
yt = Hxt + εt, εt ∼ N (0, R),

(2.1)

from normality, we can therefore deduce

xt ∼ N (Axt−1 + But, Q), with the density p(xt|xt−1, ut),
yt ∼ N (Hxt, R), with the density f(yt|xt).

(2.2)

We intend to filter sequentially estimate the state xt in a Bayesian fashion, and we need a
prior distribution for xt. Since the model yt is a normal distribution, the conjugate prior is a
normal distribution, too; see Section 1.2. Let us denote it

π(xt|y0:t−1, u0:t−1) = N (x+
t−1, P +

t−1). (2.3)

where x+
t−1 is the mean vector and P +

t−1 is the covariance matrix.
The Kalman filter, like many other filters, runs in two steps: the state prediction and the

state update. The prediction uses the first of the state equations, and the update uses the
second. It is important to note that if the states of xt and the measurements of yt were not
noisy, we would not actually need the update since there would be a direct relationship between

11

12 Kalman filter: Single target tracking

the predicted xt and the measured yt. It would be enough just to use the second equation and use
algebraic adjustments to get to xt. However, since noise is present in the measurements, we use
the predicted state as prior information in the Bayes theorem, where we use the measurements
to correct it. Let us now focus on both steps in detail.

2.1.1 Prediction step
The prediction uses the state evolution model (the first equation in the state-space model). The
state estimation xt−1 from the previous time instant enters the equation. We then calculate
(predict) the current state xt by computing the equation. We combine the prior distribution
with the evolution model to obtain the posterior distribution [11],

π(xt|y0:t−1, u0:t) =
∫

p(xt|xt−1, ut) π(xt−1|y0:t−1, u0:t−1) dxt−1

=
∫

π(xt, xt−1|y0:t−1, u0:t) dxt−1,

(2.4)

where the integral is taken over the space of xt−1. Since we multiply two normal distributions, we
get a multivariate normal distribution. Subsequently, we integrate over xt−1, which gets rid of the
previous xt−1 and leaves us again with a normal distribution N (x−

t , P −
t) with hyperparameters

equal to the following expressions,

x−
t = Ax+

t−1 + But,

P −
t = AP +

t−1A⊺ + Q.
(2.5)

It is also worth noting that the covariance of the estimate of P −
t expresses the measure of

uncertainty in this estimate. Since we have only predicted and have not used any measurements
to correct this prediction, it logically follows that our measure of uncertainty will increase.

2.1.2 Update step
The update step corrects the predicted estimate based on the observed data yt. We use the
Bayes formula in the following way:

π(xt|y0:t, u0:t) ∝ f(yt|xt) π(xt|y0:t−1, u0:t). (2.6)

We know from Section 1.2.1 that the Bayesian update can be reduced to a sum of the hyper-
parameter and the sufficient statistic when the prior is conjugate. Let us, therefore, modify the
distributions to exponential form. First, we adjust the measurement model,

f(yt|xt) ∝ exp
{

−1
2(yt − Hxt)⊺R−1(yt − Hxt)

}
= exp

{
Tr

(
−1

2

[
−1
xt

] [
−1
xt

]⊺

︸ ︷︷ ︸
η

[
y⊺

t

H⊺

]
R−1

[
y⊺

t

H⊺

]⊺

︸ ︷︷ ︸
T (yt)

)}
.

(2.7)

Now we make the same adjustment for the prior distribution,

π(xt|y0:t−1, u0:t) ∝ exp
{

−1
2(xt − x−

t)⊺(P −
t)−1(xt − x−

t)
}

= exp
{

Tr
(

−1
2

[
−1
xt

] [
−1
xt

]⊺

︸ ︷︷ ︸
η

[
(x−

t)⊺
I

]
(P −

t)−1
[
(x−

t)⊺
I

]⊺

︸ ︷︷ ︸
ξt

)}
,

Derivation of the Kalman filter 13

where I is an identity matrix of matching dimensions. Now we can rewrite the Bayesian update
using the following equations,

ξt = ξt−1 + T (yt)

=
[
(x−

t)⊺(P −
t)−1x−

t + y⊺
t R−1yt, (x−

t)⊺(P −
t)−1 + y⊺

t R−1H
(P −

t)−1(x−
t)⊺ + H⊺R−1yt, (P −

t)−1 + H⊺R−1H

]
.

(2.8)

We can easily derive the posterior distribution hyperparameters

P +
t = (ξt;[2,2])−1

=
[
(P −

t)−1 + H⊺R−1H
]−1

= (I − KtH)P −
t ,

x+
t = (ξt;[2,2])−1ξt;[2,1]

= P +
t

[
(P −

t)−1(x−
t)⊺ + H⊺R−1yt

]
= x−

t + P +
t H⊺R−1(yt − Hx−

t),

(2.9)

where

Kt = P −
t H⊺(R + HP −

t H⊺)−1 (2.10)
is the Kalman gain. In general, the greater the Kalman gain, the greater the emphasis of the new
measurements. The filter is then more sensitive, but less able to filter out noise. The Formula
(2.10) shows the gain that yields the optimal Kalman filter. Alternatively, it is possible to proceed
with fixed gain or other variants [1]. In Formula (2.11), we can see how the hyperparameters
change during one cycle of the Kalman filter.

−→ (P +
t−1, x+

t−1) prediction−−−−−−→ (P −
t , x−

t) update−−−−→ (P +
t , x+

t) −→ (2.11)

2.1.3 Example
The main purpose of this example is to show the functionality of the Kalman filter. We demon-
strate this by using the example of tracking the position of a falling object from a height on the
ground. Atmospheric drag is neglected. Such an example has the following state equations,

Xt =
[
1 −∆t

0 1

]
Xt−1 +

[
− 1

2 ∆2
t

∆t

]
g +

[
wh,t

wv,t

]
,

Yt =
[
1 0

]
xt + εt.

(2.12)

We get the measured height of the object from each time instant for 100 seconds and estimate
the actual height of the object based on these measurements and the Kalman filter. In Figure
2.1, we can see the actual trajectory of the object and the measurements captured by the sensor.

Before we can use the Kalman filter as explained in Section 2.1, we have to initialize the
matrices A, B, H, R, and Q, which can be done according to Formula (2.12). Next, we need to
initialize our prior ideas about the task, all we know is that we will observe the falling object
from a height, so we decided to place our prior idea of the object up to 60000 meters above the
ground. However, since this is just our guess unsupported by any data, we set our covariance
matrix P to reflect the large uncertainty. This will ensure that even if we are off by a lot with
the initial height, the Kalman filter will be more responsive to the measurements and will go in
the right direction quickly. This fact is clearly seen in Figure 2.2. Once we have all the variables
initialized, we can run the Kalman filter. In the graph, we can see our gradually improving
estimates of the object height, which have already caught the actual trajectory at around 35
seconds. This is also evident in the narrowing of the confidence interval, which shows the band
in which our falling object is actually located with a probability of over 95%.

14 Kalman filter: Single target tracking

Figure 2.1 Real trajectory of an object dropped at 80000 meters above the ground and simulated for
50 time steps.

Figure 2.2 Object height estimation with plotted confidence interval.

2.2 Single-target tracking

In this section, we begin our study of target tracking. Unlike the Kalman filter, where we assumed
that at every time instant we get exactly one measurement from our tracked object, in the real
world of target tracking, it may happen that we get no measurements or that we get multiple
measurements where some of them are false.

The standard assumption in the following part of the paper is that our tracked object gen-
erates at most one measurement. The other measurements are generated by other objects or by
the clutter. This section is mostly inspired by [12].

2.2.1 Clutter
The measurements we enter into the tracking method are usually obtained from a sensor array,
such as a radar image. For a given resolution cell (the smallest volume of airspace in which a
radar cannot determine the presence of more than one target), we have a Boolean detector that
is tasked with reporting whenever a target is in that resolution cell. Otherwise, it should report
nothing. However, since no detector is perfect, there is some probability that it reports a false
when no target is present. We call these false measurements clutter. In Figure 2.3 we can see
the actual radar image.

Furthermore, for the purpose of our work, we assume that the detection of targets in different
cells is independent and equally distributed, and the intensity of false measurements comes from
a Poisson distribution.

Single-target tracking 15

Figure 2.3 The described radar image [13].

2.2.2 Misdetections
The second complication that makes target tracking more difficult than pure filtering is that the
target may or may not be detected. If we assume that the target detection or non-detection
event at time t is independent of the detection events at all other time steps, then the detection
model is very simple. It is given by a Bernoulli random variable:

P (δ) =
{

PD if δ = 1,

1 − PD if δ = 0,
(2.13)

where PD is the probability of detection.
The main complication is to determine the correct value of PD. Typically this value is in the

range from 0.5 (e.g., tracking of boats) to 0.95 (e.g., radar tracking of airplanes)[14].

2.2.3 Data association
It is clear from Section 2.2.1 and Section 2.2.2 that the biggest problem in tracking a single target
in space is proper measurement association. In the case of using a Kalman filter, we therefore
need to select the correct measurement to update our filter with.

This data association problem can be solved in many ways. In general, we have two op-
tions that, in some sense, correspond to maximum a posteriori (MAP) and the minimum mean
square error (MMSE) estimation: We can choose the most probable measurement and discard
all other measurements, or we can attempt to calculate a weighted average over all the possible
measurements, where the weights quantify how likely the measurement is to be the one true
measurement [14]. In practice, the second approach is usually adopted. A particularly popular
filter averaging over plausible measurements is the probabilistic data association (PDA) and its
extension to multiple targets (JPDA) [15]. Unfortunately, this filter is beyond the scope of our
thesis, and we do not discuss it in detail here.

16 Kalman filter: Single target tracking

Chapter 3

Multiple target tracking

In the previous chapter, we made two key assumptions. First, there is only one target, and
second, this target generates all real observations. When observing multiple targets, we allow
for the possibility of more than one or even no target. Thus, the sensor responses may be caused
by any one of the targets or none of them. In the second case, we refer to these measurements
as clutter, cf. Section 2.2.1. We must realize we do not know how many targets are moving in
the space.

Another challenge for us is the appearance and disappearance of targets. The task of multiple
target tracking has a significant complexity, increased by the unknown cardinality of the set of
targets. For instance, assume a close-range airport radar. If an airplane takes off, a new target
has to be created (birth). On the other hand, if an airplane land or leave radar range, the target
has to disappear (death).

However, the main problem in multi-target tracking is deciding which target elicited which
sensor response or whether the response is a false measurement. Data association is the process
of associating a sensor response with a target. If the assignment is ambiguous, the multi-target
tracking problem becomes complicated to solve [16].

This chapter primarily deals with the probability hypothesis density (PHD) filter method
[17], other methods for tracking multiple targets such as the joint probability data association
(JPDA) [15] filter or probabilistic multiple hypothesis tracking (PHMT) [18] are not be discussed
further here.

3.1 Introduction to multiple target tracking

First, let us look at the problem of multiple target tracking without false measurements, and
for simplicity, let us consider that we know how many targets are moving in space. Moreover,
assume that we track each of these targets using a Kalman filter that is already initialized. Then,
at each time point, all we need to do is to correctly assign a measurement to a target and then
use this measurement to perform the update step of the corresponding Kalman filter.

There are several ways to look at such a problem. One possible solution is to advance the
state at its next t+1 time point for each target. And then assign the measurement that is closest
to this predicted state.

The problem arises when we have two targets close together. Then the assignment of mea-
surements to the target may not be unambiguous. However, there is a solution where we assign
each measurement a probability of 0 < p < 1 and then try to maximize the product of proba-
bilities over all measurements, thereby choosing the most likely assignment of measurements to
targets. These considerations lead to the JPDA filter [15], which uses a similar system of assign-

17

18 Multiple target tracking

ing measurements to targets and can even handle false measurements, making it a full-featured
filter for tracking multiple targets.

From this brief introduction, it is clear that even the simplest example of tracking multiple
targets can get very complicated, and we have not addressed the problem of target birth and
death at all here. Let us move on to a PHD filter that can also handle these situations.

3.2 Derivation of Probability Hypothesis Density filter
In this section, we derive all the important concepts of the PHD filter. Most of this section is
inspired by [16], [17] and [19].

3.2.1 Possible target states
There are three possibilities of what can happen to one target between two-time steps:

1. A target can be born, i.e., appear in our viewing territory. Modeling such a problem may
vary in different applications of the PHD filter, but in our case, we consider that a target can
only originate at a known location in advance. In the analogy of the aircraft example, these
locations are airports. At each time instant, the PHD filter creates a low-weight target at
these birth locations. Only if there are enough measurements in the vicinity can the target
actually be born and continue to other time instants.

2. An existing target can continue on its trajectory or die. We model this case using pS,t(xt−1)
as the probability of the target survival and 1 − pS,t(xt−1) as the probability of the target
death. This probability can be written as the conditional probability xt on the previous state
xt−1 as the following ft|t−1(xt|xt−1).

3. A new target may be spawned. Thus, at time t, we have a single target, and at time t + 1,
we have multiple targets that arose from a single target xt. This problem is also modeled in
the PHD filter up to the task specification. In the analogy of the aircraft example, such a
situation corresponds to an aircraft carrier from which an aircraft takes off (be spawned).

3.2.2 Random finite sets
To continue, we need to give a definition of the concept of a random finite set (RFS) [20],

▶ Definition 3.1 (Random finite sets). A random variable whose possible outcomes are sets
with a finite number of unique elements.

We need this definition mainly for easier handling of measurements and target states.
Suppose M(t) is the number of targets at time t and consider that at time t − 1, the states of

the targets are xt−1,1, . . . , xt−1,M(t−1) ∈ X , where X stands for set of all states. At the next time
instant, some of these targets may disappear, surviving targets evolve into new states, and new
targets may appear. The result in M(t) new states xt,1, . . . , xt,M(t) ∈ X . Note that the order of
in which the states are listed have no meaning in the multi-target RFS model formulation.

Similarly, for the measurements, let us assume N(t) measurements zt,1, . . . , zt,N(t) ∈ Z are
received at time t, where Z stands for set of all measurements. The origins of the measurements
are not known, and therefore the order in which the measurements were taken is not known,
which implies that the order has no significance. Only some of these measurements are actually
generated by the targets. Moreover, they are indistinguishable from false measurements. As
mentioned, the main goal of tracking multiple targets is to jointly estimate the number of targets
and their states from measurements with uncertain origins.

Derivation of Probability Hypothesis Density filter 19

Let Xt and Zt denote the RFS of the multi-target states and the measurements at time step
t, respectively,

Xt = {xt,1, . . . , xt,M(t)} ∈ F(X),
Zt = {zt,1, . . . , zt,N(t)} ∈ F(Z),

(3.1)

where F(X) and F(Z) are the respective collections of all finite subsets of X and Z.
The key in the random finite set formulation is to treat the target set Xt, and measurement set

Zt as the multiple-target state and multiple-target observation, respectively. The multiple-target
tracking problem can then be posed as a filtering problem.

Now let us list what the state model consists of. The Xt is formed by merging three RFS,
namely the set of surviving targets, the set of spawn targets, and finally, the set of newborn
targets.

The set of surviving targets is formed by computing, for each state xt−1 ∈ Xt−1 at time t−1,
an RFS St|t−1(xt−1) such that it contains either {xt} when the target survives or {∅} when the
target dies. The set of spawn targets Bt|t−1(xt−1) arises analogously. The set of newborn targets
Γt is created by adding targets to all birthplaces as described in Section 3.2.1.

Thus, in total, Xt can be written in the following way,

Xt =

 ⋃
ζ∈Xt−1

St|t−1(ζ)

 ∪

 ⋃
ζ∈Xt−1

Bt|t−1(ζ)

 ∪ Γt. (3.2)

Similarly to the single-target tracking in Section 2.2.2, multiple-target tracking requires work-
ing with the probability of target detection. For a target xt ∈ Xt, pD,t(xt) is the probability of
detecting the target, and 1 − pD,t(xt) is the probability of missing the target.

At time t, each state xt ∈ Xt generates an RFS Θt(xt), that can take on either {zt} when
target is detected or ∅ when target is not detected.

Furthermore, we need to work with clutter measurements similarly to Section 2.2.1. Thus,
at each time instant, we obtain a set of Kt of false measurements. Altogether, the set Zt is the
union of the false measurements and the received detection from the targets

Zt = Kt ∪

[⋃
x∈Xt

Θt(x)
]

. (3.3)

3.2.3 Multiple-target Bayes filter
Let us now rewrite the principles of filtering from Section 1.1 for the RFS variables. The optimal
multi-target Bayes filter propagates the multi-target posterior density πt(.|Z1:t) conditioned on
the sets of observations up to time t, with the following recursion,

πt|t−1(Xt|Z1:t−1) =
∫

ft|t−1(Xt|X)πt−1(X|Z1:t−1)µs(dX), (prediction)

πt(Xt|Z1:t) =
gt(Zt|Xt)πt|t−1(X|Z1:t−1)∫

gt(Zt|Xt)πt|t−1(X|Z1:t−1)µs(dX)
, (update)

(3.4)

where the motion model is governed by the transition density ft|t−1(Xt|X) and multi-target
likelihood gt(Zt|Xt) and µs is an appropriate reference measure on F(X).

The function gt(Zt|Xt) is the joint multi-target likelihood function, or global density, of
observing the set of measurements Z given the set of target states X, which is the total probability
density of association between measurements in Z and parameters in X.

20 Multiple target tracking

3.3 The Probability Hypothesis Density (PHD) filter
The computational complexity of the joint multi-target likelihood grows exponentially with the
number of targets and thus becomes numerically intractable. The PHD filter was derived to
provide a sub-optimal strategy for determining the set of target states at each iteration using
the first-order statistical moment of the posterior distribution of multiple targets [21].

3.3.1 Intensity
For an RFS X on X with probability distribution P , its first-order moment is a non-negative
function v on X , called the intensity, such that for each region S ⊆ X ,∫

|X ∩ S|P (dX) =
∫

S

v(x)dx, (3.5)

where || denotes the cardinality of the set. Thus, the integral v over the region S gives the
expected number of targets X that are in the region S. The integral over the v then indicates
the number of targets in X.

The local maxima of intensity v are the points in X with the highest local concentration of
the expected number of targets and can therefore be used to generate estimates of the targets
of X. One possible way to estimate the number of targets in X is to choose among the highest
intensity peaks, those that exceed a predetermined threshold.

For the PHD filters, the RFS of X must have a Poisson distribution. This means the cardi-
nality distribution of X is from a Poisson distribution with mean N̂ , and the elements of x from
X are independently identically distributed. Their intensities can fully characterize these RFS.
Therefore, the intensities can then be used as prior and posterior distributions.

3.3.2 PHD recursion
Before we move on to defining the recursion, we need to state the assumptions:

1. Each target evolves and generates observations independently of one another.

2. Clutter is Poisson-distributed and independent of target-originated measurements.

3. The predicted multiple-target RFS is Poisson-distributed.

Now we can define the recursion using the prediction and update steps. It is worth noting
that the intensities vt(x) and vt|t−1(x) are used here as conjugate priors

vt|t−1(x) =
∫

pS,t(ζ)ft|t−1(x|ζ)vt−1(ζ)dζ +
∫

βt|t−1(x|ζ)vt−1(ζ)dζ + γt(x),

vt(x) = [1 − pD,t(x)]vt|t−1(x) +
∑
z∈Zt

pD,t(x)gt(z|x)vt|t−1(x)
κt(z) +

∫
pD,t(ξ)gt(z|ξ)vt|t−1(ξ)dξ

,
(3.6)

γt(.) is intensity of the birth RFS Γt at time t.

βt|t−1(.|ζ) is intensity of the RFS Bt|t−1(ζ) spawned at time t by a target with previous state
ζ.

pS,t(ζ) probability that a target still exists at time t given that its previous state is ζ.

pD,t(x) probability of detection given a state x at time t.

κt(.) is the intesity of clutter RFS Kt at time t.

Linear Gaussian PHD filter 21

From the above formulas, it can be seen that the PHD filter avoids combinatorial calcu-
lations resulting from the unknown assignment of measurements to the corresponding targets.
Moreover, since the posterior intensity is a function of the state space X with a single target,
the PHD recursion requires much less computational power than Bayesian recursion on multiple
targets. Unfortunately, the PHD recursion does not admit closed-form solutions, and numerical
integration suffers from the ”curse of dimensionality”.

3.4 Linear Gaussian PHD filter
The linear Gaussian model requires the following three assumptions in addition to the PHD
recursion assumptions in Section 3.3.2:

4. Each target follows a linear Gaussian dynamical model, and the sensor has a linear Gaussian
measurement model. We use the following models,

ft|t−1(x|ζ) = N (x; Ft−1ζ, Qt−1),
gt(z|x) = N (z; Htx, Rt),

(3.7)

where N (.; m, P) denotes a Gaussian density with the mean m and the covariance P , Ft−1
is the state transition matrix, Ht is the observation matrix, Qt−1 and Rt is the process noise
covariance and the observation noise covariance respectively.
Please note that these formulas are essentially the same as those in (2.2).

5. The survival and detection probabilities are state independent,

pS,t(x) = pS,t,

pD,t(x) = pD,t.
(3.8)

6. The intensities of the birth and spawn RFS are Gaussian mixtures of the form

γt(x) =
Jγ,t∑
i=1

w
(i)
γ,tN (x; m

(i)
γ,t, P

(i)
γ,t),

βt|t−1(x|ζ) =
Jβ,t∑
j=1

w
(j)
β,tN (x; F

(j)
β,t−1ζ + d

(j)
β,t−1, Q

(j)
β,t−1),

(3.9)

where Jγ,t, w
(i)
γ,t, m

(i)
γ,t, P

(i)
γ,t , are given model parameters that determine the shape of the birth

intensity, similarly Jβ,t, w
(j)
β,t, F

(j)
β,t−1, d

(j)
β,t−1, Q

(j)
β,t−1 determine the shape of the spawning in-

tensity of a target with previous state ζ.

We now have everything we need to derive the recursion for the linear Gaussian PHD model.

3.4.1 Prediction step
Suppose we have a posterior intensity vt−1(x) from time point t − 1 and that it is a Gaussian
mixture that is the following,

vt−1(x) =
Jt−1∑
i=1

w
(i)
t−1N (x; m

(i)
t−1, P

(i)
t−1). (3.10)

22 Multiple target tracking

We know that the resulting prior intensity at time t is the sum of the intensity of the surviving
targets vS,t|t−1(x), the intensity of the spawn targets vβ,t|t−1(x) and the intensity of the newborn
targets γt(x).

From Formula (3.9), we know the intensity of the newborn targets γt(x). However, the other
two intensities we have to compute. Let us first derive the intensity of the surviving targets,

vS,t|t−1(x) = pS,t

Jt−1∑
i=1

w
(i)
t−1N (x; m

(i)
S,t|t−1, P

(i)
S,t|t−1), (3.11)

where
m

(i)
S,t|t−1 = Ft−1m

(i)
t−1,

P
(i)
S,t|t−1 = Qt−1 + Ft−1P

(i)
t−1F ⊺

t−1.
(3.12)

Now we calculate the intensity of the spawned targets,

vβ,t|t−1(x) =
Jt−1∑
i=1

Jβ,t∑
j=1

w
(i)
t−1w

(j)
β,tN (x; m

(i,j)
β,t|t−1, P

(i,j)
β,t|t−1), (3.13)

where
m

(i,j)
β,t|t−1 = F

(j)
β,t−1m

(i)
t−1 + d

(j)
β,t−1,

P
(i,j)
β,t|t−1 = Q

(j)
β,t−1 + F

(j)
β,t−1P

(i)
β,t−1(F (j)

β,t−1)⊺.
(3.14)

It should be noted that Formula (3.12) and Formula (3.14) are nothing but Kalman predictions.
The predicted intensity can therefore be written as,

vt|t−1(x) = vS,t|t−1(x) + vβ,t|t−1(x) + γt(x). (3.15)

In Algorithm 1, we can see the pseudocode for the prediction part of the Gaussian mixture PHD
filter.

3.4.2 Update step
Now we have the predicted intensity vt|t−1(x) for time t is a Gaussian mixture of the form,

vt|t−1(x) =
Jt|t−1∑

i=1
w

(i)
t|t−1N (x; m

(i)
t|t−1, P

(i)
t|t−1). (3.16)

In order to calculate the resulting intensity vt(x), we first have to calculate the intensity for
one detected measurement z ∈ Zt,

vD,t(x, z) =
Jt|t−1∑

i=1
w

(i)
t (z)N (x; m

(i)
t|t(z), P

(i)
t|t), (3.17)

where

w
(i)
t (z) =

pD,tw
(i)
t|t−1q

(i)
t (z)

κt(z) + pD,t +
∑Jt|t−1

j=1 w
(j)
t|t−1q

(j)
t

,

m
(i)
t|t(z) = m

(i)
t|t−1 + K

(i)
t (z − Htm

(i)
t|t−1),

P
(i)
t|t =

[
I − K

(i)
t Ht

]
P

(i)
t|t−1,

K
(i)
t = P

(i)
t|t−1H⊺

t (HtP
(i)
t|t−1H⊺

t + Rt)−1.

(3.18)

Linear Gaussian PHD filter 23

Algorithm 1 Pseudocode of the prediction step of the Gaussian Mixture PHD filter

given
{

w
(i)
t−1, m

(i)
t−1, P

(i)
t−1

}Jt−1

i=1
.

step 1. (prediction for newborn targets)
i = 0.
for j = 1, . . . , Jγ,t:

i := i + 1.
w

(i)
t|t−1 = w

(j)
γ,t.

m
(i)
t|t−1 = m

(j)
γ,t.

P
(i)
t|t−1 = P

(j)
γ,t .

end
step 2. (prediction for spawn targets)

for j = 1, . . . , Jβ,t:
for l = 1, . . . , Jt−1:

i := i + 1.
w

(i)
t|t−1 = w

(l)
t−1w

(j)
β,t.

m
(i)
t|t−1 = d

(j)
β,t−1 + F

(j)
β,t−1m

(l)
t−1.

P
(i)
t|t−1 = Q

(j)
β,t−1 + F

(j)
β,t−1P

(l)
t−1(F (j)

β,t−1)⊺.
end

end
step 3. (prediction for surviving targets)

for j = 1, . . . , Jt−1:
i := i + 1.
w

(i)
t|t−1 = pS,tw

(j)
t−1.

m
(i)
t|t−1 = Ft−1m

(j)
t−1.

P
(i)
t|t−1 = Qt−1 + Ft−1P

(j)
t−1(Ft−1)⊺.

end
Jt|t−1 = i.

output
{

w
(i)
t|t−1, m

(i)
t|t−1, P

(i)
t|t−1

}Jt|t−1

i=1
.

It is worth noting that the Formula (3.18) are just alternative transcriptions of the Formula (2.9)
from the Kalman update.

The resulting intensity is then obtained by summing the intensity from the prediction step
multiplied by the probability that no target was detected and the sum of the intensities over all
measurements. We can write this equation in the following way:

vt(x) = (1 − pD,t)vt|t−1(x) +
∑
z∈Zt

vD,t(x, z). (3.19)

In Algorithm 2, we can see the pseudocode for the update part of the Gaussian mixture PHD
filter.

24 Multiple target tracking

Algorithm 2 Pseudocode of the update step of the Gaussian Mixture PHD filter

given
{

w
(i)
t|t−1, m

(i)
t|t−1, P

(i)
t|t−1

}Jt|t−1

i=1
, and the measurement set Zt.

step 1. (counting the auxiliary variables)
for j = 1, . . . , Jt|t−1:

η
(j)
t|t−1 = Htm

(j)
t|t−1.

S
(j)
t = Rt + HtP

(j)
t|t−1(Ht)⊺.

K
(j)
t = P

(j)
t|t−1(Ht)⊺

[
S

(j)
t

]−1
.

P
(j)
t|t =

[
I − K

(j)
t Ht

]
P

(j)
t|t−1.

end
step 2. (update)

for j = 1, . . . , Jt|t−1:
w

(j)
t = (1 − pD,t)w(j)

t|t−1.
m

(j)
t = m

(j)
t|t−1.

P
(j)
t = P

(j)
t|t−1.

end
l := 0
for each z ∈ Zt:

l := l + 1.
for j = 1, . . . , Jt|t−1:

w
(lJt|t−1+j)
t = pD,tw

(j)
t|t−1N (z, η

(j)
t|t−1S

(j)
t).

m
(lJt|t−1+j)
t = m

(j)
t|t−1 + K

(j)
t (z − η

(j)
t|t−1).

P
(lJt|t−1+j)
t = P

(j)
t|t .

end
for j = 1, . . . , Jt|t−1:

w
(lJt|t−1+j)
t := w

(lJt|t−1+j)
t

κt(z)+
∑Jt|t−1

i=1 w
(lJt|t−1+i)
t

.

end
end
Jt = lJt|t−1 + Jt|t−1.

output
{

w
(i)
t , m

(i)
t , P

(i)
t

}Jt

i=1
.

Chapter 4

Implementation

In this chapter, we show the important parts of our Gaussian mixture PHD filter implementation.
We first discuss the GaussianMix class and then the PHD class.

4.1 GaussianMix class
The class is only used to encapsulate variables. It has only three arguments, an array of weights,
an array of means, and an array of covariance matrices. Together, these three arrays represent
a Gaussian mixture that represents the RFS of the target states at each time instant t.

This class has only one method, newborn targets, which does nothing more than create a
copy of its instance. This method comes in handy in the prediction step and is purely to make
the code cleaner.

4.2 PHD class
This class is much more complicated than the GaussianMix class, as it controls the entire filtering
process. When creating a PHD instance, you need to pass a dictionary argument that contains
all the required variables for the task. This dictionary must contain the following:

ps: probability of target survival

pd: probability of target detection

F : state transition matrix

Q: process noise covariance matrix

H: measurement matrix

R: measurement noise covariance matrix

Birth: list of parameters for newborn targets

w, F, d, Q: parameters for spawning targets

T, U, J max: parameters for truncation

clutter rate: clutter intensity, the average number of false detections

region size: the size of the measuring area where we work

25

26 Implementation

Code listing 1 Code of the filter data method
def filter_data(self, Z: List[List[np.ndarray]]):

v = GaussianMix([], [], []), estimates = []
for z in Z:

v = self.prediction(v)
v = self.update(v, z)
v = self.pruning(v)
est = self.state_estimation(v)
estimates.append(est)

return estimates

Thus initialized class can already serve as a full-fledged Gaussian Mixture PHD filter just call
the method filter data Code1 to which we pass all the measurements that we have measured at
each point in time. Inside this method, we first create an empty Gaussian mixture since we have
no information yet. We then loop this mixture through all the methods. We do the following
sequentially: prediction, update using the measurements at a given point in time, then prune
those peaks that are not probable, and finally make an estimate of the number of targets and
store their parameters in an array. After going through all the measurements, we return an array
of estimates where each index contains the number of estimates at a given time instant.

4.2.1 Prediction method
In the prediction method Code 2, the following happens, we prepare a Gaussian mixture of
newborn targets, which is just a copy of the Gaussian mixture self.birth. Next, we prepare a
mixture of surviving targets and a mixture of spawned targets. Finally, we only need to combine
these three mixtures together as the resulting Gaussian mixture.

Code listing 2 Code of the prediction method
def prediction(self, x: GaussianMix) -> GaussianMix:

v_birth = self.birth.newborn_targets()
v_survived = compute_survivals(x, self.p_s, self.F, self.Q)
v_spawn = self.spawn(x)
return GaussianMix(v_birth.w + v_survived.w + v_spawn.w,

v_birth.m + v_survived.m + v_spawn.m,
v_birth.P + v_survived.P + v_spawn.P)

The calculation of surviving targets and spawned targets are shown in Code 3 and Code 4.
This code fully corresponds to equations (3.12) and (3.14) and therefore does not need further
explanation.

Code listing 3 Code of the compute survivals function
def compute_survivals(x: GaussianMix, p, F: np.ndarray, Q: np.ndarray):

w = list(np.multiply(copy.deepcopy(x.w), p)), m = [], P = []
for target in x.m:

m.append(F @ target)
for matrix in x.P:

P.append(Q + F @ matrix @ F.T)
return GaussianMix(w, m, P)

PHD class 27

Code listing 4 Code of the spawn method
def spawn(self, x: GaussianMix) -> GaussianMix:

w = [], m = [], P = []
for i, w_v in enumerate(x.w):

for j, w_spawn in enumerate(self.w_spawn):
w.append(w_v * w_spawn)
m.append(self.F_spawn[j] @ x.m[i] + self.d_spawn[j])
P.append(self.Q_spawn[j] + self.F_spawn[j] @ x.P[i] @ self.F_spawn[j].T)

return GaussianMix(w, m, P)

Code listing 5 Code of the update method
def update(self, x: GaussianMix, Z: List[np.ndarray]) -> GaussianMix:

Counting auxiliary parameters
v_tmp = compute_survivals(x, self.p_s, self.H, self.R)
eta = v_tmp.m, S = v_tmp.P
S_inv = inversion_matrices_in_list(S)
K_k = [], P_kk = []
kappa = self.clutter / (self.region_size * 2)**2
for i in range(len(x.w)):

k = (x.P[i] @ self.H.T @ S_inv[i])
P_kk.append(x.P[i] - k @ self.H @ x.P[i])
K_k.append(k)

In case no measurement is from the target.
w = [], m = copy.deepcopy(x.m), P = copy.deepcopy(x.P)
for item in x.w:

w.append((1 - self.p_d) * item)

for z in Z:
if z == []:

continue
values = []
for j in range(len(x.w)):

values.append(self.p_d * x.w[j] * mvn.pdf(z, eta[j], S[j]))
m.append(m[j] + K_k[j] @ (z - eta[j]))
P.append(P_kk[j])

denominator = np.sum(values) + kappa
for j in range(len(x.w)):

numerator = values[j]
w.append(numerator / denominator)

return GaussianMix(w, m, P)

28 Implementation

4.2.2 Update method
This key PHD filter method, which can be seen in Code 5, takes as parameters the Gaussian
mixture after the prediction step and the measurement field measured at a given time instant.
In the first part of the method, we need to compute auxiliary parameters that are used later for
the update. These equations correspond to Equations (3.18).

Once we have all the auxiliary variables ready, the update step is divided into two variants.
First, the case where all of the measurements we got do not correspond to any of the objects and
are, therefore, all false. In this case, we just need to copy the values from the prediction step and
reduce the weights on these measurements accordingly, which corresponds to the first part of
Equation (3.19). The second option corresponds to the interpretation of our measurements from
the targets, and we update our components with them. It is important to note that every single
measurement updates all the components from the prediction step. This exponentially increases
the number of components in our space. However, only the components with high weights have
a real value. The other components just cover all the possibilities that may occur.

From the above, it is clear that such an algorithm would be computationally feasible. There-
fore a simple pruning method is added to the implementation to only let some components into
the next time instant.

4.2.3 Pruning and state estimation method
The main purpose of this method is to make the overall complexity of the algorithm computable
and not exponential. Code 6 starts by selecting components from the Gaussian set that have
weights higher than the threshold T . Those components that have lower weights are already so
unlikely that there is no point in propagating them to the next time step.

Once we have selected the components, we iterate them sequentially, starting from the ones
with the highest weights to the smallest ones. At each iteration, we try to see if the current
component has other components that are close to it. If it does have such components, they were
probably created from the same target, and there is no point in keeping them all in memory, so
we merge them into one component by averaging the values of those components. Then we just
remove all the components we worked with in that iteration from the set I and continue to the
next iteration of the loop.

Once set I is empty, we look at how many components we have, and if there are more than
J max, we only select the J max component with the highest weight. The result of this method
is a pruned Gaussian mixture that makes our algorithm computable.

The last method we want to mention here is the state estimation method. Its purpose is
simple: select the components with the highest weights and declare them as real targets, thus
determining the number of targets on the surface and their position. Indeed, if we did not have
this method, we would most likely label all the components of the Gaussian mixture that survived
the pruning method as targets. This would certainly not be a correct solution since some of these
components may have survived the pruning method, but their weights may still be very small
and, therefore, improbable. The implementation itself is then very simple. We declare as targets
those components that have weights higher than a predefined threshold. In our code, we use a
threshold value of 0.5.

PHD class 29

Code listing 6 Code of the pruning method
def pruning(self, x: GaussianMix):

Iw = [], Im = [], IP = [], idxI = [], cnt = 0
for i in range(len(x.w)):

if x.w[i] > self.T:
Iw.append(x.w[i]), Im.append(x.m[i]), IP.append(x.P[i])
idxI.append(cnt)
cnt += 1

invIP = inversion_matrices_in_list(IP)

w = [], m = [], P = []
while len(idxI) > 0:

Finding argmax
j = idxI[0]
for i in idxI:

if Iw[i] > Iw[j]:
j = i

Gaussian components that are close together
L = []
for i in idxI:

if ((Im[i] - Im[j]) @ invIP[i] @ (Im[i] - Im[j])) <= self.U:
L.append(i)

w_new = 0.0, m_new = np.zeros(len(Im[0]))
P_new = np.zeros((len(Im[0]), len(Im[0])))

Merging components
for i in L:

w_new += Iw[i]
m_new += (Iw[i] * Im[i].T).T

m_new /= w_new
for i in L:

P_new += Iw[i] * (IP[i] + np.outer(m_new - Im[i], m_new - Im[i]))
P_new /= w_new
w.append(w_new), m.append(m_new), P.append(P_new)

Reducing the set I
new_I = []
for element in idxI:

if element not in L:
new_I.append(element)

idxI = new_I

if len(w) > self.J_max:
tmp = np.array(w).argsort()[-self.J_max:]
w = [w[i] for i in tmp]
m = [m[i] for i in tmp]
P = [P[i] for i in tmp]

return GaussianMix(w, m, P)

30 Implementation

Chapter 5

Experiments

This chapter provides simulation examples to demonstrate that the described implementation
is feasible and robust. The examples show that the filter is able to localize the targets under
various conditions. We stress that the goal is not to study the estimation performance itself.

All examples are based on the CVM model known from Section 1.3.3. We think of these
examples as tracking aircraft on a 2D surface using a radar instrument. The radar measuring
period is one second. The state space model is characterized as follows: The transition matrix
F and the process noise covariance matrix Q have the form

F =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Q = q2

∆t3

3 0 ∆t2

2 0
0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

 , (5.1)

where ∆t is the time step, in this case, one second, and q is the parameter of the noise matrix,
which we consider as q = 5.

The measurement matrix H and the measurement noise covariance matrix R are

H =
[
1 0 0 0
0 1 0 0

]
, R = r2

[
1 0
0 1

]
, (5.2)

where r is the parameter of the noise matrix, using this parameter we know how inaccurate our
sensor is. In our case, we set r = 5.

Areas for the birth of new targets, which we use for all subsequent simulations, are as follows:
We consider that targets can only be born at coordinates [0, 0]⊺ and [20, 20]⊺. We can think of
these points as two airports from which planes take off, i.e., our new targets. These locations
have the same scatter matrix P and weight w with which the new targets are born. In addition,
we describe everything using the following equations,

w1 = w2 = 0.05, m1 =

0
0
0
0

 , m2 =

20
20
0
0

 , P1 = P2 =
[
100 100 100 100

]
. (5.3)

These parameters give a Gaussian mixture Birth, which we then pass to the PHD class.
The parameters used in the pruning procedure are as follows: The parameter T is a threshold,

once the weight of the component w falls below this threshold, the component is removed. The
parameter U determines the threshold of the distance between two components, where if the

31

32 Experiments

distance is smaller then the components are merged into one. Finally, the parameter J max
determines the maximum number of components that can pass to the next step. The values of
these parameters are following,

T = 0.00005, U = 4, J max = 100. (5.4)

Finally, the last two parameters that we consider the same for all examples are the survival
probability of the component pS and the detection probability of the target pD, their values are
following,

pS = 0.98, pD = 0.95. (5.5)

5.1 Example 1: One target with clutter
The first example demonstrates the movement of a single target in the monitored area, namely
a square [−500, −500]⊺ × [500, 500]⊺. The simulation starts at time 0 seconds and ends at time
50 seconds. The clutter rate is set to 5. We simulated that the object is created at time 0 at
position [0, 0]⊺.

This experiment demonstrates that if only one object exists in the space, then the PHD filter
behaves like a Kalman filter. The results of our experiment can be seen in Figure 5.1. In the

Figure 5.1 Real trajectory of an airplane, started at point [0, 0]⊺ and PHD filter estimations of
position, simulated for 50 seconds. Only the interesting part of the space is depicted. The clutter
measurements are not depicted as they differ at each time instant.

graph, we can observe that our PHD filter was able to determine the actual position of the
aircraft quite accurately despite the clutter measurements. We can also observe that sometimes

Example 2: Three objects without clutter 33

over time, more clutter measurements probably occurred around our birth locations (airports),
causing two erroneous estimates in the area around the coordinates [30, 30]⊺. These estimates
most likely arose from clutter measurements. It is noticeable that these estimates were not
further supported by the measurements leading to their weight dropping so much that they were
removed.

5.2 Example 2: Three objects without clutter

This example considers the simulation of three objects in space with the clutter measurement
turned off. It follows that if we take any measurements, they surely belong to one of our real
objects in space.

Figure 5.2 shows three trajectories of the targets. All targets originated at time 0 at position
[0, 0]⊺ and moved for 50 seconds. Since all measurements originated from real targets, we see
that all red dots (estimates) are close to one of the real trajectories. It can be seen that the

Figure 5.2 Real trajectories of three airplanes, started at point [0, 0]⊺ and PHD filter estimations
of position, simulated for 50 seconds. Only the interesting part of the space is depicted. The clutter
measurements are not depicted as they differ at each time instant.

PHD filter easily handled the situation at the beginning of the simulation. All three targets
were in close vicinity. There were measurements coming in that could not be clearly identified
as belonging to which target. A simple Kalman filter could not solve this.

34 Experiments

5.3 Example 3: Three objects with clutter
Let us simulate the same trajectories as in Example 5.2, but this time add clutter measurements.
We simulate on a square surface with corners [−500, −500]⊺ to [500, 500]⊺. We set the clutter rate
to 200, so at each time instant, we get approximately 200 false measurements uniformly spread
over our surface. As in the previous examples, we let the simulation run for 50 seconds.

The evolution of the situation is depicted in Figures 5.3, 5.4 and 5.5 for specific time instants
10s, 30s, and 50s. It can be seen that the initialization went well since each trajectory has at least
one component (red dots) connected. Moreover, we can say that the estimation is accurate since
it corresponds to the real trajectory of the objects. We can also see that the yellow trajectory has
two components bound since we received two measurements near this trajectory at time t = 10.

Figure 5.3 Simulation of three aircraft at time instant t = 10.

Figure 5.4 Simulation of three aircraft at time instant t = 30.

Example 3: Three objects with clutter 35

In Figure 5.6 we then see the complete trajectories with all estimates. Many times our
PHD filter makes more estimates than how many targets are actually in the space which we
unfortunately have to accept. With this example, we have shown that our PHD filter is robust
enough to handle spurious measurements.

Figure 5.5 Simulation of three aircraft at time instant t = 50.

Figure 5.6 Real trajectories of three airplanes with clutter, started at point [0, 0]⊺ and PHD filter
estimations of position, simulated for 50 seconds.

36 Experiments

5.4 Example 4: Birth, Spawn, and Dead of objects
In the last example, we show the maximum coverage of our filter. We consider that not all objects
are born at time 0. Next, we consider that objects can be terminated before the simulation ends.
Finally, we assume that other objects can be spawned from one object. In the real world,
this example can be thought of as an aircraft carrier from which planes take off (are spawned)
sequentially.

First, let us describe all terms that drive the simulation. The hidden process model is char-
acterized by the spawning matrices Fspawn and Qspawn these are identical to the standard
target process model variables F and Q, respectively. This corresponds to the idea that the
spawned targets inherit the behavior of their parents. The initial weight of spawned targets is
wspawn = 0.05, and the vector driving the distance between the spawned target and its par-
ent is dspawn = [5, 5, 5, 5]⊺. Similarly to the previous cases, the simulation area is a square
[−400, 400] × [−400, 400]. The clutter rate is 150. The simulation horizon is 90 seconds. The
events are as follows:

t = 1, ..., 9 – no target,

t = 10 – a target (aircraft carrier) is detected at the position [0, 0]⊺,

t = 30 – a newly spawned target occurs (the first aircraft takes off),

t = 40 – another spawned target occurs (the second aircraft takes off),

t = 60 – the aircraft carrier disappears from the area,

t = 90 – both spawned targets (aircrafts) disappear and the simulation ends.

In Figure 5.7 we see the current situation of the space at time t = 5. So far, no objects have
appeared, and all measurements are from clutter. Our filter estimates correctly, there are no
objects in the area.

Figure 5.7 Simulation of the aircraft carrier and two planes at time t = 5.

Example 4: Birth, Spawn, and Dead of objects 37

In Figure 5.8 we can see the situation at time t = 38. Two trajectories are visible. Our PHD
filter has captured both of these trajectories since it estimates that there are targets. Then in
Figure 5.9 we see the situation at time t = 65. The aircraft has already disappeared, and the
PHD filter no longer estimates its position while it tracks both born aircrafts.

Figure 5.8 Simulation of the aircraft carrier and two planes at time t = 38.

Figure 5.9 Simulation of the aircraft carrier and two planes at time t = 65.

In Figure 5.10 we can see the estimates of the number of targets on the surface at each time
instant made by our PHD filter and also the real number of objects. With this graph, we want

38 Experiments

to show that the PHD filter can be used to estimate the number of targets quite accurately.
The filter shares the common feature of the multiple target tracking algorithms: the number
of estimated targets is often higher than their true number. However, the false (nonexistent)
targets do not follow the prescribed state-space model, which makes them improbable at the
next iteration of the algorithm. These false targets are hence quickly pruned.

Figure 5.10 Estimation of the number of targets on the surface during the time and real number of
targets.

Conclusion

In this final chapter, we summarise what has been done and also what improvements could be
made.

Summary of thesis
The main aims of this thesis were:

1. Explore the area of single-target tracking using the Kalman filter.

2. Study all the necessary knowledge to track multiple targets using the PHD filter.

3. Implement our own linear Gaussian PHD filter and experimentally verify its performance.

The necessary prerequisites to derive the Kalman filter are explained in Chapter 1. Then, in
Chapter 2, the Kalman filter itself is derived and its application to single-target tracking is
shown. With these two chapters, we have covered the first objective of our thesis. In Chapter
3, we explained all the important concepts for understanding the PHD filter in a step-by-step
manner. We pointed out the high connection between the PHD filter and the Kalman filter.
This fully covered the second objective of our thesis. Next, in Chapter 4, we explained the main
parts of our implementation of the PHD filter. We have described the imperfections of the PHD
filter, including the necessity of a pruning function. Finally, in Chapter 5, we demonstrated the
functionality of our implementation on simulated data and then discussed the simulation results.
These chapters then covered the third goal of our thesis.

Possible future works
As mentioned earlier, the main goal of this work was to understand linear Gaussian PHD filtering.
However, we can still extend our work to nonlinear PHD filtering models. This would mean that
the process of states and measurements would be nonlinear. Such a model would then use the
following equations:

xt = φt(xt−1, νt−1),
zt = ht(xt, εt),

(5.6)

where φt and ht are known nonlinear functions and νt−1 and εt are zero-mean Gaussian process
noise and measurement noise with covariances Qt−1 an Rt, respectively [17]. These equations
would then lead to the extended Kalman PHD filter, which is a nonlinear PHD filter.

39

40 Conclusion

Bibliography

1. BISHOP, Christopher M; NASRABADI, Nasser M. Pattern recognition and machine learn-
ing. Vol. 4. Springer, 2006. No. 4.

2. BENHAMOU, Eric; SALTIEL, David; VEREL, Sebastien; TEYTAUD, Fabien. BCMA-es:
A Bayesian approach to CMA-ES. SSRN Electronic Journal. 2019. Available from doi:
10.2139/ssrn.3365449.

3. SCHLAIFER, Robert; RAIFFA, Howard. Applied statistical decision theory. Harvard Uni-
versity, 1961.

4. KOOPMAN, Bernard O. On distributions admitting a sufficient statistic. Transactions of
the American Mathematical Society. 1936, vol. 39, no. 3, pp. 399–409. Available from doi:
10.1090/s0002-9947-1936-1501854-3.

5. CASELLA, George; BERGER, Roger L. Statistical Infence. Duxbury Press, 2002.
6. DEDECIUS, Kamil. Laboratory of Statistical Modelling - Sequential estimates [[online]].

2023. Available also from: https://gitlab.fit.cvut.cz/dedeckam/ni-lsm-cviceni.
Accessed: 2023-03-27.

7. MARKOV, Konstantin; MATSUI, Tomoko; SEPTIER, Francois; PETERS, Gareth. Dy-
namic speech emotion recognition with state-space models. In: 2015 23rd European Signal
Processing Conference (EUSIPCO). 2015, pp. 2077–2081. Available from doi: 10.1109/
EUSIPCO.2015.7362750.

8. BROGAN, William L. Modern Control Theory. [3rd ed.] Prentice Hall, 1991.
9. KALMAN, Rudolf E. A New Approach to Linear Filtering and Prediction Problems. Journal

of Basic Engineering. 1960, vol. 82, no. 1, pp. 35–45. Available from doi: 10.1115/1.
3662552.

10. THRUN, Sebastian; BURGARD, Wolfram; FOX, Dieter. Probabilistic Robotics. [1st ed.]
Cambridge: The MIT Press, 2006.

11. GURAJALA, Ramakrishna; CHOPPALA, Praveen B.; MEKA, James Stephen; TEAL,
Paul D. Derivation of the Kalman filter in a Bayesian filtering perspective. In: 2021 2nd
International Conference on Range Technology (ICORT). 2021, pp. 1–5. Available from doi:
10.1109/ICORT52730.2021.9581918.

12. BREKKE, Edmund. Fundamentals of Sensor Fusion. [1st ed.] Norwegian University of
Science and Technology, 2020.

13. WOLFF, Christian. Radar basics [[online]]. 2023. Available also from: https : / / www .
radartutorial.eu/11.coherent/co04.en.html. Accessed: 2023-04-28.

14. BLACKMAN, Samuel S. Multiple-target tracking with radar applications. Artech House,
1986.

41

https://doi.org/10.2139/ssrn.3365449
https://doi.org/10.1090/s0002-9947-1936-1501854-3
https://gitlab.fit.cvut.cz/dedeckam/ni-lsm-cviceni
https://doi.org/10.1109/EUSIPCO.2015.7362750
https://doi.org/10.1109/EUSIPCO.2015.7362750
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/ICORT52730.2021.9581918
https://www.radartutorial.eu/11.coherent/co04.en.html
https://www.radartutorial.eu/11.coherent/co04.en.html

42 Bibliography

15. BAR-SHALOM, Yaakov; FRED, Daum.; HUANG, Jim. The probabilistic data association
filter. IEEE control systems. 2010, vol. 29, no. 6, pp. 82–100. Available from doi: 10.1109/
MCS.2009.934469.

16. STONE, Lawrence David; STREIT, Roy L.; CORWIN, Thomas L.; BELL, Kristine L.
Bayesian multiple target tracking. [2st ed.] Artech House, 2014.

17. VO, Ba-Ngu; MA, Wing-Kin. The Gaussian Mixture Probability Hypothesis Density Filter.
IEEE Transactions on Signal Processing. 2006, vol. 54, no. 11, pp. 4091–4104. Available from
doi: 10.1109/TSP.2006.881190.

18. STREIT, Roy L.; LUGINBUHL, Tod E. Point target probabilistic multiple hypothesis
tracking. NUWC-NPT Technical Report. 1995.

19. PRIHODA, Zachary; JAMGOCHIAN, Arec; MOORE, Ben; LANGE, Bernard. Probability
Hypothesis Density Filter Implementation and Application. Stanford University. 2019.

20. XIA, Yuxuant. Lecture 4: Random finite sets [[online]]. 2021. Available also from: https://
chalmersuniversity.app.box.com/s/kbkmglktznkb2tjlr9pqefz3ezbiyw8p. Accessed:
2023-04-13.

21. MAHLER, Ronald P.S. Multitarget Bayes filtering via first-order Multitarget Moments.
IEEE Transactions on Aerospace and Electronic Systems. 2003, vol. 39, no. 4, pp. 1152–
1178. Available from doi: 10.1109/taes.2003.1261119.

https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/TSP.2006.881190
https://chalmersuniversity.app.box.com/s/kbkmglktznkb2tjlr9pqefz3ezbiyw8p
https://chalmersuniversity.app.box.com/s/kbkmglktznkb2tjlr9pqefz3ezbiyw8p
https://doi.org/10.1109/taes.2003.1261119

Enclosed medium contents

readme.txt.......................................the file with media contents description
implementation..............................the directory of code of the implementation
src .. the directory of source codes

thesis...............................the directory of LATEX source codes of the thesis
thesis.pdf.. the thesis text in PDF format

43

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Bayesian modeling
	Bayes Theorem
	Prior and Posterior distributions
	Conjugate prior distribution
	Example

	State-space model
	Hidden process model
	Measurement model
	Example: Constant velocity model

	Kalman filter: Single target tracking
	Derivation of the Kalman filter
	Prediction step
	Update step
	Example

	Single-target tracking
	Clutter
	Misdetections
	Data association

	Multiple target tracking
	Introduction to multiple target tracking
	Derivation of Probability Hypothesis Density filter
	Possible target states
	Random finite sets
	Multiple-target Bayes filter

	The Probability Hypothesis Density (PHD) filter
	Intensity
	PHD recursion

	Linear Gaussian PHD filter
	Prediction step
	Update step

	Implementation
	GaussianMix class
	PHD class
	Prediction method
	Update method
	Pruning and state_estimation method

	Experiments
	Example 1: One target with clutter
	Example 2: Three objects without clutter
	Example 3: Three objects with clutter
	Example 4: Birth, Spawn, and Dead of objects

	Conclusion
	Enclosed medium contents

