
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Improving prediction of storm structure by spectral methods

Adam Barla

Mgr. Petr Šimánek

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Deep learning methods are very successful in the short-term prediction of rain and

storms. The current methods are very good at predicting the motion of the storms but

usually, the predicted storm lacks the internal structure of a realistic storm. This is

problematic for meteorologists and their approach to analyzing the weather. This issue

can be attributed to spectral bias [1]. We want to improve current methods (like U-Net) by

Guided Upsampling as described in [2] or by FREA-Unet [3].

1) Survey current literature on spectral bias and weather nowcasting.

2) Understand and describe the dataset provided by Meteopress.

3) Understand and describe one method to improve UNet (Guided Upsampling or FREA-

UNet).

4) Choose one method, and implement it in PyTorch.

5) Train standard Unet and improved Unet on the provided dataset.

6) Compare, analyze and describe the results in detail. The important metrics are MSE,

MAE and SSIM.

[1] On the Spectral Bias of Neural Networks, Rahaman, et al.

[2] Spectrally consistent UNet for high fidelity image transformations, Mernerides, et al.

[3] FREA-Unet: Frequency-aware U-net for Modality Transfer, Emami, et al.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 31 October 2022 in Prague.

Bachelor’s thesis

Improving prediction of storm structure by
spectral methods

Adam Barla

Department of Applied Mathematics
Supervisor: Mgr. Petr Šimánek

May 12, 2023

Acknowledgements

I thank Mgr. Petr Šimánek for guiding me, offering insightful suggestions,
and providing consultation during this project. Additionally, I extend my
appreciation to all those who devoted their time to proofreading my thesis,
including my supportive parents and my friend Aleš Sršen.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in partic-
ular that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 12, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Adam Barla. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has
been submitted at Czech Technical University in Prague, Faculty of Information Tech-
nology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Barla, Adam. Improving prediction of storm structure by spectral methods. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2023. Also available from: ⟨https://github.com/barlaada/GUNet-
nowcasting⟩.

https://github.com/barlaada/GUNet-nowcasting
https://github.com/barlaada/GUNet-nowcasting

Abstract

Short-term weather forecasting (nowcasting) is crucial in predicting extreme
weather events. This thesis focuses on structural biases that can be introduced
into convolutional neural network predictions.

I investigated whether guided upsampling, used instead of transposed
convolution, can improve the accuracy and reliability of weather forecasts. To
this end, I trained UNet and Guided UNet (GUNet) models on radar images
from a network of meteorological radars created by the OPERA radar pro-
gram. I analyzed both models using performance indicators such as mean
squared error (MSE), mean absolute error (MAE), and the structural similar-
ity index (SSIM).

The results showed that the GUNet model slightly outperformed the UNet
model regarding average MAE and MSE and demonstrated a better ability to
capture higher frequencies in the Fourier spectrum of radar images. More-
over, the GUNet model achieved marginally better results on images with
higher radar echo intensity, essential for predicting severe weather events.

The study suggests that the GUNet model can improve short-term weather
predictions, and the results provide a basis for further research in this area.

Keywords weather nowcasting, convolutional neural networks, transposed
convolution, UNet, guided UNet, guided filter, guided upsampling

vii

Abstrakt

Krátkodobá predpoveď počasia (nowcasting) zohráva kľúčovú úlohu pri
predvídaní extrémnych výkyvov počasia. V tejto práci sa zaoberám chybami,
ktoré môžu byť vnesené do predikcí konvolučných neurónových sietí.

Skúmal som, či aplikácia usmerneného prevzorkovania (Guided Upsam-
pling) namiesto transponovanej konvolúcie môže zlepšiť presnosť a spoľahli-
vosť predpovedí počasia. Na tento účel som vytrénoval modely UNet a GU-
Net (Guided UNet) na radarových snímkoch zo siete meteorologických rada-
rov vytvorených radarovým programom OPERA. Na analýzu oboch modelov
som použili ukazovatele výkonnosti, ako sú stredná kvadratická chyba (MSE),
stredná absolútna chyba (MAE) a index štrukturálnej podobnosti (SSIM).

Výsledky ukázali, že model GUNet mierne prekonal UNet z hľadiska pri-
emernej strednej absolútnej chyby a strednej kvadratickej chyby. Navyše pre-
ukázal lepšiu schopnosť zachytiť vyššie frekvencie vo Fourierovom spektre
radarových snímkov. Okrem toho GUNet dosahoval sčasti lepšie výsledky
na snímkach s vyššou intenzitou radarového echa, čo je významné pre pred-
povedanie závažných poveternostných udalostí.

Na základe týchto výsledkov možno konštatovať, že model GUNet má po-
tenciál na zlepšenie krátkodobých predpovedí počasia. Výsledky mojej práce
poskytujú priestor pre ďalší výskum v tejto oblasti.

Kľúčové slová krátkodobá predpoveď počasia, konvolučné neurónové siete,
transponovaná konvolúcia, UNet, Guided UNet, guided filter, guided upsam-
pling

viii

Contents

Introduction 1

Thesis’s Objective 3

1 Literature Review 5
1.1 Weather Nowcasting . 5

1.1.1 Radars . 6
1.2 Convolutional Neural Networks 7

1.2.1 Convolution . 7
1.2.2 Transposed Convolution 10
1.2.3 Pooling . 11
1.2.4 Validation Metrics . 11

1.3 UNet . 12
1.4 Bias in Neural Networkts . 14

1.4.1 Structural Bias . 14
1.4.2 Spectral Bias . 16

1.5 GUNet: Guided UNet . 17
1.5.1 Guided Image Filtering 18
1.5.2 Guided Upsampling . 19
1.5.3 Guided UNet Architecture 20

2 Methodology 23
2.1 Dataset . 23

2.1.1 Data Preprocessing and Augmentation 24
2.1.2 Creating Data Points . 25

2.2 UNet . 26
2.3 GUNet . 27

2.3.1 Feature Channel Count Discrepancy 28
2.4 Model Optimization . 29

2.4.1 Hyperparameter Tuning 29

ix

2.4.2 Training . 30

3 Evaluation and Results 33
3.1 Comparison of Forecasts . 33

3.1.1 Forecast of Higher Intensity Storms 36
3.2 Impact of Guided Upsampling on Spectral Bias 36

4 Discussion 39
4.1 Interpretation of Results . 39
4.2 Limitations and Potential Improvements 40

Conclusion and Future Work 41
Summary of Findings . 42
Future Research Directions . 42

Bibliography 43

A Guided Image Filtering algorithms 47
A.1 Guided Filter . 47
A.2 Fast Guided Filter . 48

B Model comparisons 49

C Acronyms 55

D Contents of the Archive 57

x

List of Figures

1.1 2D convolution with 4×4 and 3×3 kernel 8
1.2 2D convolution with multiple channels and kernels 8
1.3 2D convolution with padding and strides 9
1.4 Convolution represented as matrix multiplication 9
1.5 2D transposed convolution . 11
1.6 Differences between evaluation metrics 12
1.7 Types of layers in the UNet architecture 13
1.8 UNet architecture . 14
1.9 Grid patterns in generative models 15
1.10 Demonstration of artifact formation in transposed convolution . 15
1.11 Results of experiments showcasing the spectral bias 17
1.12 Decoder layer in the GUNet architecture 21
1.13 GUNet architecture . 22

2.1 Example of radar images from the dataset 23
2.2 Distribution of radar echo intensities in the dataset 24
2.3 Process of generating data points from the dataset 25
2.4 UNet implementation diagram . 27
2.5 GUNet implementation diagram 28
2.6 Training progress . 31

3.1 Cutout which was used for the comparisons of predictions 34
3.2 Comparison of weather predictions of both models (1) 35
3.3 Higher intensity storm prediction metrics 36
3.4 Comparison of average fourier spectra 37
3.5 Difference between the target and output spectra (3D plot) 38

B.3 Comparison of weather predictions of both models (2) 51
B.4 Comparison of weather predictions of both models (3) 52
B.5 Comparison of weather predictions of both models.(4) 53

xi

B.6 Comparison of weather predictions of both models (5) 54

xii

Introduction

Weather forecasting has long been a critical aspect of human life, with accu-
rate predictions allowing us to plan and protect ourselves from the potential
impact of severe weather events. While long-term weather predictions offer
valuable insights into general trends and patterns, they need more precision
to address the immediate threats of severe storms and other fast-changing
conditions.

Weather nowcasting is the practice of making short-term weather predic-
tions on the scale of minutes to a few hours. It is a vital tool in our efforts to
anticipate and respond to these rapidly evolving weather events. It is bene-
ficial for anticipating the evolution of rapidly changing weather phenomena,
like storms, thunderstorms, or heavy rainfall, which can significantly impact
public safety, infrastructure, and our daily activities.

In recent years, deep learning techniques like Convolutional Neural Net-
works (CNNs) have significantly advanced the field of weather nowcasting,
especially in predicting storm evolution using radar images. However, de-
spite these advancements, limitations in the quality and accuracy of these
predictions persist, which is the focus of my thesis.

The UNet architecture, a popular CNN model for image processing tasks,
has shown its potential in various applications, including weather nowcast-
ing. Nonetheless, it is known to suffer from structural bias, which can intro-
duce unwanted artifacts and reduce the quality of the predicted storm struc-
tures. To enhance the reliability and accuracy of storm structure predictions,
I aim to address these issues and develop a more spectrally consistent model.

Inspired by the work of Demetris Marnerides et al. [1], which proposed
the Guided UNet (GUNet) architecture for high-fidelity image transforma-
tions, this thesis aims to adapt and apply the concept of spectrally consistent
models to the problem of weather nowcasting.

The main objective is to investigate and remove the structural biases present
in deep learning models, such as UNet, to improve the prediction of storm
structures from radar images. By leveraging spectral analysis methods, I aim

1

Introduction

to identify and mitigate the adverse effects of artifacts on the predictions and
examine the improvement in the prediction quality.

Initially, the thesis provides a comprehensive literature review covering
weather nowcasting, convolutional neural networks, the UNet architecture,
and its improvement using Guided Upsampling (GU). Then, the methodol-
ogy chapter provides an introduction to the dataset of radar images produced
by OPERA, along with details about the preprocessing and data splitting tech-
niques used on it. The chapter continues with implementation details of the
UNet and the GUNet architectures and the model training process.

The evaluation and results chapter follows, comparing the standard and
improved UNet models using metrics such as Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Structural Similarity Index Measure (SSIM)
while also analyzing the impact of GU on the spectral bias. The discussion
delves into the interpretation of results, limitations, potential improvements,
and the implications for weather nowcasting. Finally, the thesis concludes by
summarizing the findings, highlighting contributions to the field, and outlin-
ing possible future research directions.

In summary, my thesis strives to advance the field of weather nowcasting
by addressing the structural biases present in deep learning models, thereby
improving the prediction of storm structures and contributing to the ongoing
efforts to develop more accurate and reliable weather forecasts.

2

Thesis’s Objective

The primary objective of this thesis is to enhance the accuracy and reliability
of short-term weather predictions, notably storm structure predictions from
radar images, by addressing the spectral biases present in deep learning mod-
els like the UNet architecture. By adapting and applying the GU technique
from the GUNet architecture to weather nowcasting, the thesis aims to de-
velop a more spectrally consistent model, effectively mitigating the adverse
effects of artifacts on the predictions and contributing to the ongoing efforts
to develop more accurate and reliable weather forecasts.

In the first part of the thesis, I aim to introduce the reader to CNNs and
their application in weather nowcasting. I will describe the UNet architecture,
present the concept of structural bias, and discuss how it may arise and affect
the network’s performance. Furthermore, I will present the GU technique
and its use in the GUNet architecture. I will also provide an overview of
the dataset used for training the Neural Networks (NNs), characterizing its
features and relevance to weather predictions.

The second part of the thesis focuses on creating a more spectrally consis-
tent model for weather predictions using the provided dataset of radar im-
ages, which covered the area above the Czech Republic. I intend to design
and implement two models, GUNet and UNet, in PyTorch and analyze the
impact of GU on spectral bias by comparing their performance using metrics
such as MSE, MAE, and SSIM.

3

CHAPTER 1
Literature Review

1.1 Weather Nowcasting

When asked to predict future rainfall, meteorologists often get it wrong. At
first glance, forecasting rainfall should be manageable as it is one of the main
focuses of weather predictions, but the opposite turns out to be the case. Rain
is tough to forecast on a small scale.

Rainfall forms in two main ways. The first one happens when two fronts
of different temperatures meet. Because of that, it is called frontal rain. The
warmer air mass is lifted above, the colder as it is less dense. It then cools at
a higher altitude, which causes the water trapped in the previously warmer
air to condense due to a drop in the temperature. Meteorologists can predict
this type of rainfall by studying these air masses using available weather in-
struments. Frontal rain often lasts longer and amounts to 40 percent of all
rainfall.

The other 60 percent comes from a process known as convection. This
type of rain happens when the ground warmed by the sun transfers heat to
the nearby air. Warming can cause the air to rise to the higher layers of the at-
mosphere, where the water vapor condenses. Convective rainfall sounds very
similar to frontal rain. Predicting precipitation accurately can be challenging
due to several factors. These include determining the ground’s temperature,
whether the heat is enough to make the air rise, and how long the air will
stay above the warm ground to absorb the heat. Knowing the amount of wa-
ter vapor in the air mass is also crucial. The areas this type of rain covers are
minor and likely undetectable by methods used for frontal rain predictions.
Convective rain is also shorter and, therefore, harder to predict.

Weather nowcasting aims to address predictions in this shorter horizon.
Keith Browning originally defined it as “the description of the current state of the
weather in detail and the prediction of changes that can be expected on a timescale of a
few hours”[2]. Later, the World Meteorological Organization (WMO) defined
nowcasting as forecasting with local detail, by any method, over a period from

5

1. Literature Review

the present to 6 hours ahead, including a detailed description of the current
weather.

1.1.1 Radars

Nowcasting is highly dependent on observational data. While surface and
upper-air observations are essential, only remote sensing systems can ade-
quately provide high-resolution spatial coverage. A weather radar is the most
crucial instrument for nowcasting, particularly for severe local storms asso-
ciated with thunder, lightning, heavy rain, hail, strong winds, and sudden
temperature changes.

Radar has an advantage over all other observing systems in weather for-
casting because it directly observes precipitation particles in three dimensions
over a large area with an update rate of a few minutes. At radar ranges of less
than 60 kilometers, the resolution of the precipitation is better than 1 kilome-
ter squared. Radar makes it possible to estimate rainfall rates and amounts,
observe the 3D structure of a storm, which has proven useful in estimating
storm severity, and obtain the movement of storms, which is central to now-
casting. With the addition of Doppler capability¹, it is possible to estimate the
wind direction and speed. The further addition of dual-polarization² enables
differentiation of the precipitation particle type, such as rain, snow, or hail,
and to identify non-precipitation echoes, such as insects and ground clutter.
Dual polarization is particularly useful for data quality control. [3]

The radar collects the measurements in reflectivity, a measure of the power
returned to the radar, from atmospheric targets, such as raindrops, snow-
flakes, or hailstones. The radar reflectivity is measured in dBZ and is rep-
resented on a logarithmic scale in decibels (dB) to accommodate the obser-
vations in a wide range of signal strengths. The unit dBZ expresses radar
reflectivity relative to a reference value (Z), which is the radar reflectivity of
a 1 mm diameter droplet of water at a standard distance from the radar. The
higher the radar reflectivity, the more intense the precipitation is likely to be.

Radar attributes, such as radar wavelength, Doppler capabilities, dual-
polarization, sensitivity, and scanning capabilities, affect the radar’s abilities.
The primary one is the radar wavelength. There are three wavelengths: S-
band (∼10 cm), C-band (∼5 cm), and X-band (∼3 cm). For example, if the
primary use of the radar is for estimating heavy rainfall over large regions and
to warn of high-wind events from thunderstorms, then an S-band, Doppler,
dual-polarization radar is the most suitable. However, if the primary use of
the radar is for nowcasting snow, then C-band or even X-band may be suitable.
[3]

¹ Doppler shift of the radar waves allows the radar to determine the speed and direction (only
toward or away from the radar) of precipitation particles.

² Transmitting and receiving two differently polarized waveforms.

6

1.2. Convolutional Neural Networks

1.2 Convolutional Neural Networks
NNs are computational models inspired by biological neural networks. Their
goal is to minimize errors between outputs and given target values computed
by loss function, e.g., MSE. The function is minimized by adjusting the weights
inside the network based on these errors using error backpropagation and
gradient descent algorithm³. After a sufficient number of successive adjust-
ments, NN produces an output similar to the target output, and the training
can be terminated based on specific criteria. NNs can theoretically learn to
represent and model any given continuous function, no matter how complex,
as long as the network has an appropriate architecture and the function is
well-defined within a particular domain ⁴.

CNNs first appeared in the 90s, but their widespread use can be attributed
to breakthroughs in the ImageNet image classification challenge [6]. CNNs
have enormously impacted the world of image processing, making them a
worthy candidate for predicting the weather phenomena captured in radar
images. CNNs leverage ideas, such as sparse interactions, parameter shar-
ing, and equivariant representations, to improve machine learning systems.
To understand the benefits convolutional CNNs bring, I need to introduce a
mathematical operation that makes CNN a CNN.

1.2.1 Convolution

Under the hood CNNs use, as the name implies, an operation called convolu-
tion. Bread and butter of NNs are affine transformations. Vector of inputs is
received, then multiplied by some transformation matrix⁵. These operations
can be applied to various input types, such as images or sounds. Every input
can be represented as a multi-dimensional array, which can then be flattened
to apply the transformation. There often are dimensions along which order-
ing of the data matters⁶. Similarly, the data often has something we can call
“channel axis”, which represents different views of the data ⁷. Flattening the
data does not consider these relationships, which may be important in solving
tasks like computer vision and speech recognition. [7, pg. 6-8]

Discrete convolution is the answer to this concern. An excellent way to
imagine the convolution operation is through a window called the kernel,
sliding across the input. The input values are multiplied by the corresponding
value in the overlapping window and summed up to obtain the convolution
output in the window’s current location. The window is then moved to the

³ I will not go into the inner workings of this algorithm, as it is not the main focus of this
thesis. I assume a basic understanding of forward and backward passes from the reader in
feed-forward NNs. See paper [4] in which was the backpropagation first proposed.

⁴ See paper [5]
⁵ A bias vector is added before passing the result to non-linear function
⁶ Width and height of images or time axis in sound
⁷ Different color channels in images or audio channels in sound

7

1. Literature Review

next position. Output for all valid kernel positions⁸ is called output feature
map. This whole procedure can be repeated with many more kernels to form
as many output feature maps as desired. In figure 1.1, we see an example of
convolution with 4×4 input and 3×3 kernel. From now on, I will focus on 2D
convolution, in which the input and the kernel are two-dimensional.

Figure 1.1: Convolving a 3×3 kernel over a 4×4 input. [7]

There can be several feature maps in the input, e.g., representing different
image color channels. In that case, the kernel can have multiple dimensions.
Using a multi-dimensional kernel is equivalent, to creating the output feature
map, by using multiple kernels and summing the resulting unique feature
maps element by element. The usage of a collection of kernels to both create
multiple output feature maps and convolve over input with multiple channels
is illustrated in figure 1.2.

+

+

+

Figure 1.2: A convolution mapping from two input feature maps to three out-
put feature maps using three 3×3 kernel pairs w. In the top pathway, input
feature map 1 is convolved with kernel w1,1 and input feature map 2 is con-
volved with kernel w1,2, and the results are summed together elementwise to
form the first output feature map. The same is repeated for the middle and
bottom pathways to form the second and third feature maps, and all three
output feature maps are grouped to form the output.[7]

⁸ Position of a kernel on top of input is valid when an input value exists for every kernel value.

8

1.2. Convolutional Neural Networks

Convolution has two parameters: stride and padding. They, among other
things, change the size of the output. Strides represent the size of the step
that the kernel window takes when moving to the next position⁹. Padding is
the “thickness” of a border of zeros that are added around the input¹⁰. These
parameters can be seen at work in figure 1.3.

Figure 1.3: Convolving a 3×3 kernel over a 5×5 input padded with a 1×1 bor-
der of zeros using 2×2 strides. [7]

Convolution can also be represented as a multiplication of the input by
matrix C. An example of such matrix for the same case as in figure 1.1 can be
seen in figure 1.4.

©«
𝑤0,0 𝑤0,1 𝑤0,2 0 𝑤1,0 𝑤1,1 𝑤1,2 0 𝑤2,0 𝑤2,1 𝑤2,2 0 0 0 0 0

0 𝑤0,0 𝑤0,1 𝑤0,2 0 𝑤1,0 𝑤1,1 𝑤1,2 0 𝑤2,0 𝑤2,1 𝑤2,2 0 0 0 0
0 0 0 0 𝑤0,0 𝑤0,1 𝑤0,2 0 𝑤1,0 𝑤1,1 𝑤1,2 0 𝑤2,0 𝑤2,1 𝑤2,2 0
0 0 0 0 0 𝑤0,0 𝑤0,1 𝑤0,2 0 𝑤1,0 𝑤1,1 𝑤1,2 0 𝑤2,0 𝑤2,1 𝑤2,2

ª®®®¬
Figure 1.4: Convolution with 4×4 input and 3×3 kernel represented as matrix
multiplication. Inputs and outputs are concatenated.

We can see that multiplying the input by this matrix gives us the same re-
sult as sliding the kernel window over the input. The backward pass is easily
obtained from this representation by transposing C. The error is backpropa-
gated by multiplying the loss with C𝑇 .

If we look at the matrix, we can see the properties of convolution men-
tioned above. This representation is closer to the actual implementation used
in NNs, as it employs matrix multiplication ¹¹. The matrix is sparse. There-
fore fewer parameters need to be stored, reducing memory requirements. It
also means we can compute the convolution result faster than in the fully
connected case. These efficiency improvements are pretty significant. Most
algorithms used in practice run in 𝑂(𝑚𝑛) time where 𝑚 and 𝑛 are input and
output sizes, respectively. For kernel with 𝑘 parameters, convolution can be
run in 𝑂(𝑘𝑛) time. Speed improvement is evident when we realize that 𝑘 can
often be orders of magnitude smaller than 𝑚 while obtaining a good perfor-
mance.

⁹ Size of this step can be different in each dimension of the input.
¹⁰ Padding can also be defined to be different in each dimension of the input.
¹¹ Software implementations will typically not perform the useless zero multiplications.

9

1. Literature Review

Parameter sharing can also be seen in the matrix. Kernel weights are
reused multiple times, unlike in traditional NN, where each element of the
weight matrix is used only once. Parameter sharing does not affect the for-
ward propagation’s runtime but further reduces the model’s storage require-
ments.

Equvariance to translation is another property of CNNs. Equivarience of
function 𝑓 (𝑥) to function 𝑔 means that 𝑓 (𝑔(𝑥)) = 𝑔 (𝑓 (𝑥)). In other words,
equivariance to translation means that if I shifted the input by some number
of pixels, I would get the same output but also shifted by the same amount.
It is perhaps harder to see from the examples, but it is nonetheless useful. [8,
pg. 329-335]

CNN is defined as a NN that has at least one convolutional layer.

1.2.2 Transposed Convolution

Transposed convolutions are quite useful, especially in generative models.
The need arises from the desire to use a transformation that goes in the op-
posite direction of normal convolution. It is easy to assume that transposed
convolution is the “opposite” operation of a regular convolution without giv-
ing it much thought. Its purpose is to go from something with the shape of
some convolution output to something with the shape of its input. This op-
eration should be done while maintaining a consistent connectivity pattern
with said convolution. It is important to remember that there does not exist
a reverse operation for convolution¹². [7, 9]

Every convolution boils down to an efficient implementation of a matrix
operation. A transposed convolution works by swapping forward and back-
ward passes of a convolution. One kernel defines matrix C, an example of
which can be seen in figure 1.4, and its transposition C𝑇 . The matrix used for
a forward and backward pass determines the convolution type. In the trans-
posed convolution, C𝑇 is used for the forward pass instead of C in standard
convolution.

It is always possible to emulate a transposed convolution with a direct con-
volution. The disadvantage is that it usually involves adding many columns
and rows of zeros to the input, resulting in a much less efficient implementa-
tion. It is a more useful representation of transposed convolution. It is neces-
sary to zero-pad the input if the same connectivity pattern, in the equivalent
convolution to the transposed one, is to be maintained. It must be done so
that the kernel’s first (top-left) application only touches the top-left pixel.

Suppose we now imagine a convolution with non-unit strides and an “op-
posite” transposed convolution to it. In that case, the strides in the trans-
posed convolution need to be fractional, as we are now increasing the output’s

¹² Sometimes the term “deconvolution” is used instead of transposed convolution, which may
be misleading.

10

1.2. Convolutional Neural Networks

size. Hence, we need to take steps smaller than one¹³. Fractional steps can
be achieved in the representation of transposed convolution by the standard
one by inserting zeros between input units. Inserting zeros between rows and
columns of the input makes the kernel move around at a “slower pace” than
with unit strides¹⁴. Figure 1.5 illustrates the fractional strides. Transposed
convolution in figure 1.5 is “opposite” of the convolution in figure 1.3. [7] ¹⁵

Figure 1.5: Transposed convolution to convolving a 3×3 kernel over a 5×5
input padded with a 1×1 border of zeros using 2×2 strides (figure 1.3). It is
equivalent to convolving a 3×3 kernel over a 3×3 input (with one zero inserted
between inputs) padded with a 1×1 border of zeros using unit strides. [7]

1.2.3 Pooling

Pooling operations reduce the size of the feature maps by using some function
to summarize subregions of the input, such as taking the average or the max-
imum value. Pooling works like discrete convolution as it slides a window
across the input, but it uses a different function instead of the linear combi-
nation used in convolution. In addition to discrete convolutions, the pooling
operation makes up another vital building block in CNNs.

1.2.4 Validation Metrics

Different evaluation metrics are used for assessing the performance of CNNs,
particularly in image processing and computer vision tasks. Here is a brief
overview of metrics that I will use later in the thesis.

• SSIM is a perceptual metric that quantifies the similarity between two
images. It considers the images’ luminance, structure information, and
contrast, which are more aligned with human visual perception. SSIM
values range from -1 to 1, with 1 indicating a perfect match between the

¹³ This is why transposed convolution is sometimes also called fractionally-strided convolu-
tion.

¹⁴ The padding has to be equal to the size of the kernel minus one.
¹⁵ For more visualizations and a deeper explanation of how different convolution parameters,

such as padding and strides, influence the output size, you can refer to [7].

11

1. Literature Review

two images. In the context of NNs, SSIM can be used to evaluate the
quality of generated or reconstructed images, such as in image denois-
ing, super-resolution, or image-to-image translation tasks.

• MAE is a simple and easy-to-interpret metric that measures the average
absolute difference between the predicted and actual values. It is used
for both regression and image-processing tasks. For image processing,
MAE calculates the average absolute difference between the pixel val-
ues of two images. A lower MAE indicates better model performance,
which signifies fewer predicted and actual value discrepancies.

• MSE is another metric used to measure the difference between predicted
and actual values. It calculates the average squared difference between
the two sets of values. In image processing, MSE measures the average
squared difference between the pixel values of two images. Similar to
MAE, a lower MSE value indicates better performance. MSE tends to pe-
nalize more significant errors more severely than MAE, as the squared
term magnifies the differences.

Figure 1.6 captures differences between each metric. These metrics are
used to evaluate and compare the performance of different neural network
models or configurations in various tasks, such as image synthesis, denoising,
segmentation, and more. Models can be fine-tuned to achieve better results
by analyzing the performance using these metrics.

Figure 1.6: Differences between evaluation metrics. Modified images have the
same MSE, but one was created from the original by adding a random noise
and the other by adding a constant. Image used for the comparison: [10].

1.3 UNet

UNet is a CNN that was first proposed for biomedical image segmentation in
the paper [11]. The architecture of this network consists of there main parts,
encoder layers, bottleneck, and decoder layers. Encoders are typical convolu-

12

1.3. UNet

tion layers that consist of convolution stage, nonlinearity, and pooling stage¹⁶.
The convolution and nonlinearity stages can be repeated multiple times in
one layer. A diagram showing this layer can be seen in figure 1.7a. The pool-
ing stage reduces the resolution of the images. The convolution inside the
encoder is also used for increasing the number of features.

2D convolution ReLU pooling transposed convolution skip-connection
repeater

n1

w
1×

h 1

n2

w
2×

h 2

input skip

output

n2

(a) Encoder

repeater

n2

skip output

input

n3

(b) Decoder

Figure 1.7: Types of layers in the UNet architecture

Figure 1.7b illustrates that the decoder layer starts with upsampling the
output of the previous decoder layer or bottleneck. Upsampling is done using
a transposed convolution, which increases the resolution and decreases the
number of features. The bottleneck is practically the same as the encoder
layer but without the pooling stage at the end.

Each encoder layer in the architecture acts as a low-pass filter, suppressing
details and higher spatial frequencies in the input. For the higher frequencies
to be transmitted to the output, the encoder must acquire the ability to encode
them in the intermediate features of the network. [1]

The original paper [11] introduced skip-connections in order to achieve
this goal. These concatenate the encoder features before the pooling stage
with the upsampled features in the decoder. Concatenation is done at each
“level” of the network, effectively bypassing the network’s lower levels. These
“fast-forward” connections, as they are sometimes called, allow for the de-
tails from the input to be transferred directly to the output without passing
them through a bottleneck. Removing the need to encode the higher spatial
frequencies allows, the lower levels to better capture global features. Skip
connections can be seen in figures 1.7 and 1.8.

Similarly to the encoder, convolution with activation stages can be re-
peated multiple times in the decoder.

¹⁶ There are two conventions when it comes to the term “layer” in CNNs. In one, the convo-
lution, nonlinearity, and pooling are all called layers, and in the other layer is a term for all
of them together. I will use the latter one.

13

1. Literature Review

Encoder Bottleneck Decoder

Figure 1.8: UNet architecture

The architecture can be designed for tiling to take advantage of the prop-
erties of NNs that I mentioned, particularly the equivariance to translation.
Tiling means that the NN output can be extended without increasing the net-
work size by running the net on different “tiles” of the image separately to
produce output in a mosaic. For this to work near the edges of the tiles, the
convolutional stages cannot have padding, which means the output of the NN
will be smaller than the input. An example of this can be seen in paper [11,
fig. 2].

1.4 Bias in Neural Networkts
Bias in machine learning, also sometimes called algorithm bias or AI bias, is
a phenomenon that occurs when an algorithm produces systemically preju-
diced results. It is separate from the bias parameter inside NNs.

1.4.1 Structural Bias

Many CNN architectures employed a similar architecture to the one described
in the section 1.3 about UNet. When examining images created by these
CNNs, one may observe a distinct checkerboard pattern of irregularities, as
shown in figure 1.9. When generating images from NNs, the common practice
is to start from lower-resolution images and gradually upscale them, which al-
lows the NNs to describe the rough image and then fill in some details in mul-
tiple steps. In order to achieve this, a technique for converting low-resolution
images into high-resolution images is required. Transposed convolution is a
commonly used method for this task, as explained in section 1.2.2. Layers of
transposed convolutions are often found in the decoder of AutoEncoders or
the generator part of Generative Adversarial Networks (GANs). The UNet is
based on the AutoEncoder architecture and therefore uses transposed convo-
lution.

Unfortunately, transposed convolution can easily lead to artifacts due to
uneven overlap. In particular, uneven overlap in transposed convolution hap-

14

1.4. Bias in Neural Networkts

Figure 1.9: These instances show generative models that exhibit checkerboard
artifacts in their outputs. The image used is sourced from [9].

pens, when the kernel size is not divisible by the stride. In the section 1.2.2,
I talked about fractional strides in transposed convolution and how they can
be pictured as padding between input columns and rows. It is evident from
the visualization in figure 1.10 that the kernel occasionally overlaps one, two,
or four inputs. This behavior forms grid-like artifacts. CNNs generally have
multiple layers with transposed convolution, so these artifacts compound on
each other. [9]

Figure 1.10: Demonstration of artifact formation on the same transposed con-
volution as in figure 1.5. [7]

The models are learning weights used in convolution and, in theory, could
learn to mitigate the effects of uneven overlap. Learning to reduce these arti-
facts can be challenging, particularly when the convolution is done on multi-
ple channels that impact each other. While possible, it significantly restricts
the potential filters and therefore sacrifices the model’s capacity. In practice,
CNNs struggle with completely avoiding these artifacts. In fact, not only do
NNs with uneven overlap not learn to avoid this, but models with even over-
lap often learn kernels that cause similar artifacts! While it is not their default
behavior the way it is for uneven overlap, it is still very easy for transposed

15

1. Literature Review

convolution with even overlap to cause artefacts¹⁷. Completely avoiding arti-
facts in models with even overlap is still a significant restriction on filters, and
in practice, the artifacts are still present in these models, although they seem
milder.[9]

While many factors are at play here, the transposed convolution is a big
part of the problem. It is fragile because it easily represents artifact-creating
functions, even when the size is carefully chosen. At worst, creating artifacts is
the default behavior of transposed convolution. In the upcoming section 1.5,
I will explain a method to increase the resolution of an image less susceptible
to these visual abnormalities.

1.4.2 Spectral Bias

Recent study [12] focused on deep ReLU networks through the lens of Fourier
analysis found that while NNs can approximate arbitrary functions¹⁸, they fa-
vor low-frequency ones. Therefore they exhibit a bias towards smooth func-
tions. This phenomenon is called spectral bias. I will focus on two experi-
ments in the study mentioned above.

In the first experiment, the researchers trained six layers deep and 256 unit
wide fully-connected ReLU network on an output defined by the mapping
𝜆 : [0, 1] → R given by

𝜆(𝑧) =
∑
𝑖

𝐴𝑖 sin(2𝜋𝑘𝑖𝑧 + 𝜑𝑖), (1.1)

where 𝜅 = (𝑘1 , 𝑘2 , ...) are the frequencies with corresponding amplitudes 𝛼 =
(𝐴1 , 𝐴2 , ...) and phases 𝜙 = (𝜑1 , 𝜑2 , ...). Network was trained to regress 𝜆
with 𝜅 = (5, 10, ..., 45, 50) and 𝑁 = 200 input samples spaced equally over
[0, 1]. The spectrum of the output was monitored as training progressed. In
the first setting, equal amplitudes 𝐴𝑖 = 1 were set for all frequencies, and in
the second setting, the amplitude gradually increased from 𝐴1 = 0.1 to 𝐴10 =
1. Figure 1.11a shows that lower frequencies are regressed first, regardless of
their amplitudes. [12]

The same setup as the first experiment was used for the second experi-
ment. Once the network had converged on certain parameters 𝜃∗, the authors
made random perturbations 𝜃 = 𝜃∗ + 𝛿�̂� of a specific size 𝛿, where �̂� is a ran-
dom unit vector in the parameter space. They evaluated the network function
𝑓𝜃 at the perturbed parameters and computed the magnitude of its discrete
Fourier transform at frequencies 𝑘𝑖 to get | 𝑓𝜃(𝑘𝑖)|. To obtain | 𝑓E𝜃(𝑘𝑖)|, which
was then normalized by | 𝑓𝜃∗(𝑘𝑖)|, they averaged the results over 100 samples
of �̂�. | 𝑓E𝜃(𝑘𝑖)| was then averaged over the phases 𝜙 from equation 1.1,. Figure
1.11b displays the experiment’s outcome. [12]

¹⁷ Even overlap happens when the kernel size is divisible by the stride.
¹⁸ See paper [5]

16

1.5. GUNet: Guided UNet

(a) Evolution of the spectrum during
training. The colors show the measured
amplitude of the network spectrum at
the corresponding frequency, normal-
ized by the target amplitude at the same
frequency. [12]

(b) Spectrum of the model with per-
turbed parameters as a function of pa-
rameter perturbation. Amplitudes are
normalized by the amplitudes obtained
from the network without the perturbed
parameters. [12]

Figure 1.11: Results of experiments from the study [12] showcasing the spec-
tral bias.

The second experiment discovered that higher frequencies are more sus-
ceptible to changes in parameters than lower frequencies. This result suggests
that precise tuning of the parameters is necessary for higher frequencies to be
expressed effectively. In other words, parameters that contribute towards ex-
pressing high-frequency components occupy a small volume in the parameter
space. [12]

I hypothesize that the use of transposed convolution negatively impacts
the learning of higher frequencies. It may not be possible to fine-tune the pa-
rameters required for capturing higher frequencies due to the limitations on
filters in transposed convolution, as discussed in section 1.2.2. Increasing the
likelihood of the model learning higher frequencies can be achieved by re-
moving the structural biases that arise from upscaling using transposed con-
volution. In the following section 1.5, I will focus on one upsampling method
that aims to accomplish this by replacing the transposed convolution with
guided upsampling.

1.5 GUNet: Guided UNet

Transposed convolution in the decoder layers of the UNet architecture can
cause checkerboard artifacts, as mentioned in section 1.4.1. Other non-learned
upsampling methods can cause blurring since they are based on pre-defined
interpolation.

17

1. Literature Review

Several methods that attempt to alleviate these upsampling artifacts have
been proposed. A resize convolution technique is introduced in the research
paper [9]. This method utilizes a technique that separates upsampling from
convolution to ensure more precise feature computation. Before the convo-
lution process, the image is resized using either nearest-neighbor or bilinear
interpolation. Other methods try to reduce the checkerboard artifacts by cor-
relating the kernel weights in transposed convolution. An example of such a
method can be found in the paper [13], which proposes a specialized initial-
ization scheme for transposed convolutional layers that correlates the kernel
weights at initialization. These methods generally eliminate the artifacts, but
they fail to use the high-frequency details from the encoder efficiently and are
trying to extract the information in the decoder. Non-learned methods are
also prone to blurring. Furthermore, it should be noted that utilizing learned
upsampling through transposed convolutions, even when the kernel weights
are correlated, does not assure the avoidance of minima that produce artifacts
during optimization, as previously discussed in section 1.4.1. [1]

This section describes the GUNet architecture proposed in the paper [1].

1.5.1 Guided Image Filtering

Guided Image Filter (GIF) is an edge-preserving smoothing filter. Its main
advantage over bilateral filters is the computational complexity. The output
image of the GIF is consistent with the gradient direction of the guidance
image, which prevents gradient reversal prominent in the bilateral filters.

GIF works by assuming that there is a local linear model between the guid-
ance 𝐼 and the filtering output 𝑞. The following definition of the filter is taken
directly from the paper [14], in which the filter was proposed.

We assume that 𝑞 is a linear transform of 𝐼 in a window 𝜔𝑘 centered at the pixel 𝑘:

𝑞𝑖 = 𝑎𝑘 𝐼𝑖 + 𝑏𝑘 ,∀𝑖 ∈ 𝜔𝑘 , (1.2)
where 𝑎𝑘 and 𝑏𝑘 are some linear coefficients assumed to be constant in 𝜔𝑘 . We use a
square window of a radius 𝑟.
To determine the linear coefficients 𝑎𝑘 and 𝑏𝑘 , we need constraints from the filtering
input 𝑝. We model the output 𝑞 as the input 𝑝 subtracting some unwanted compo-
nents 𝑛 like noise/textures:

𝑞𝑖 = 𝑝𝑖 − 𝑛𝑖 . (1.3)
We seek a solution that minimizes the difference between 𝑞 and 𝑝 while maintaining
the linear model in equation 1.2. Specifically, we minimize the following cost function
in the window 𝜔𝑘 :

𝐸(𝑎𝑘 , 𝑏𝑘) =
∑
𝑖∈𝜔𝑘

((
𝑎𝑘 𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖

)2 + 𝜖𝑎2
𝑘

)
. (1.4)

18

1.5. GUNet: Guided UNet

Here, 𝜖 is a regularization parameter penalizing large 𝑎𝑘 . Equation 1.4 is the linear
ridge regression model, and its solution is given by

𝑎𝑘 =
1
|𝜔 |

∑
𝑖∈𝜔𝑘

𝐼𝑖𝑝𝑖 − 𝜇𝑘 �̄�𝑘

𝜎2
𝑘 + 𝜖

, 𝑏𝑘 = �̄�𝑘 − 𝑎𝑘𝜇𝑘 . (1.5)

Here, 𝜇𝑘 and 𝜎2
𝑘 are the mean and variance of 𝐼 in 𝜔𝑘 , |𝜔 | is the number of pixels

in 𝜔𝑘 , and �̄�𝑘 = 1
|𝜔 |

∑
𝑖∈𝜔𝑘

𝑝𝑖 is the mean of 𝑝 in 𝜔𝑘 . Having obtained the linear
coefficients 𝑎𝑘 and 𝑏𝑘 , we can compute the filtering output 𝑞𝑖 by equation 1.2.
However, a pixel 𝑖 is involved in all the overlapping windows 𝜔𝑘 that covers 𝑖, so the
value of 𝑞𝑖 in equation 1.2 is not identical when it is computed in different windows.
A simple strategy is to average all the possible values of 𝑞𝑖 . So after computing 𝑎𝑘 and
𝑏𝑘 for all windows 𝜔𝑘 in the image, we compute the filtering output by

𝑞𝑖 =
1
|𝜔 |

∑
𝑘 |𝑖∈𝜔𝑘

(𝑎𝑘 𝐼𝑖 + 𝑏𝑘). (1.6)

Noticing that
∑

𝑘 |𝑖∈𝜔𝑘
𝑎𝑘 =

∑
𝑘∈𝜔𝑖

𝑎𝑘 due to the symmetry of the box window, we
rewrite equation 1.6 by

𝑞𝑖 = �̄�𝑖 𝐼𝑖 + 𝑏𝑖 , (1.7)

where �̄�𝑖 = 1
|𝜔 |

∑
𝑘∈𝜔𝑖

𝑎𝑘 and 𝑏𝑖 = 1
|𝜔 |

∑
𝑘∈𝜔𝑖

𝑏𝑘 are the average coefficients of all
windows overlapping 𝑖.

The definition of the guided filter is provided by equations 1.5 and 1.7.
Local linear model in equation 1.2 ensures that 𝑞 has an edge only if 𝐼 has an
edge because the gradient of 𝑞 is just scaled gradient of 𝐼 (∇𝑞 = 𝑎∇𝐼). After
the modifications in equation 1.7, this no longer holds true because the linear
coefficients �̄�𝑖 and 𝑏𝑖 vary spatially. Nevertheless, as �̄�𝑖 and 𝑏𝑖 are the output
of a mean filter, their gradients can be expected to be much smaller than that
of 𝐼 near strong edges. In this situation, we can still have ∇𝑞 ≈ �̄�∇𝐼, meaning
that abrupt intensity changes in 𝐼 can be mostly preserved in 𝑞. [14]

The algorithm constructed from this definition runs in 𝑂(𝑁) and can be
improved to 𝑂(𝑁/𝑠2), where 𝑠 is a subsampling ratio. Improvement is achie-
ved using a Fast Guided Filter (FGF) described in paper [15]. In various appli-
cations, this leads to a speedup of more than ten times with almost no visible
degradation. A pseudocode to both algorithms can be found in the appendix
A.

1.5.2 Guided Upsampling

Due to computational and memory costs, it is beneficial to downsample large
images when performing image analysis and enhancement tasks such as tone

19

1. Literature Review

mapping, colorization, stereo depth rendition, and photomontage. The result
is then obtained by upsampling the solution computed on the smaller images.
This upsampling does not consider the additional information in the original
high-resolution image. Images upsampled by convolving the low-resolution
image with an interpolation kernel typically also suffer from a blurring of
sharp edges because of the smoothness inherent in the linear interpolation
filters. A Joint Bilateral Upsampling (JBU) operation was proposed in the
paper [16], which leverages this information and produces outstanding full-
resolution results from stereo depth rendition, image colorization, adaptive
tone mapping, and graph-cut based image composition computed at very low
resolutions.

Just like JBU, GIF can be utilized for upsampling by using an initial image
as a basis for the operation. The algorithm differs from the one in section 1.5.1
because we now have a guidance image at a different scale than the filtering
input. In this case, we compute the linear coefficient 𝑎 and 𝑏 in using the
equation 1.5 at the coarse scale, bilinearly upsample them to the fine-scale
(replacing the mean filter on 𝑎 and 𝑏) and compute the output by 𝑞 = 𝑎𝐼 + 𝑏
at this scale. The result of GU is visually comparable to the JBU. [14]

GIF provides a better performance than the bilateral filter used in JBU, as
I previously mentioned. The upsampling adjustments can also be made on
FGF for an even faster algorithm.

1.5.3 Guided UNet Architecture

GIF can be incomported in the UNet architecture discussed in section 1.3.
Using GIF, we can benefit from the filter’s edge-preserving nature and use
the higher-level features from the encoder as guidance in the upsampling.
UNet takes advantage of skip connections and combines them with features
that pass through the bottleneck by concatenating them and combining them
with convolution. GUNet architecture proposed in paper [1] replaces this
with GU.

In contrast to the UNet method, two skip connections are used in the up-
sampling process, which involves two levels of resolution: high and low. We
can upscale the low-resolution feature by utilizing information from features
in the skip connections of encoders from both levels.

Both of these features are used as guides in the filter. Let’s call them 𝐼hr

and 𝐼lr. Input to the filter is an output of the previous decoder or bottleneck
layer¹⁹. The illustrations of how this works can be found in figures 1.12 and
1.13.

The operations of the GU are modified to accommodate two guides. Ac-
cording to the paper [1], lower-resolution guide 𝐼lr and input 𝑝 are used to

¹⁹ When upsampling the bottleneck features in the first decoder, there is no skip-connection
of lower-resolution we can use. One effective way to address this issue is to utilize the bot-
tleneck as a lower resolution guide and as an input for the filter.

20

1.5. GUNet: Guided UNet

compute �̄�lr
𝑘 and 𝑏lr

𝑘 on the lower resolution. The coefficients are then up-
sampled back to the higher resolution to form �̄�hr

𝑘 and 𝑏hr
𝑘 , using bilinear up-

sampling. The coefficients are then applied on the higher resolution guidance
feature 𝐼hr to compute the final filtered decoder feature:

𝑞𝑖 = �̄�hr
𝑖 𝐼hr + 𝑏hr

𝑖 . (1.8)

The dotted arrows in figure 1.12 represent the abovementioned opera-
tions. Some readers might have noticed the discrepancy in the channel counts
of lower coefficients (�̄�lr

𝑘 , 𝑏lr
𝑘) and higher coefficients (�̄�hr

𝑘 , 𝑏hr
𝑘). The authors

of the paper state that the upsampling is done on each channel separately,
but this poses a challenge, which I will discuss in the section 2.3.1. One solu-
tion might be to use convolution to decrease channel counts of low-resolution
coefficients.

guided upsampling repeater

Ihr output

input

2D convolution ReLU guided upsampling skip-connection

Ilr blralr

ahr bhr

Figure 1.12: Decoder layer in the GUNet architecture

Guided feature upsampling combines the encoder and decoder features
of the architecture and aims to guide its features at each upsampling stage in
the output to be structurally similar to the corresponding feature set of the
input features in the encoder. It is worth pointing out that GUNet results in
fewer parameters than UNets with transposed convolutions since the upsam-
pling is parameter-free²⁰ and the concatenation layer is avoided. The paper
[1] later investigates the effects of the structural biases of CNNs on network
outputs. The improvement attained by GUNet was evident in the Fourier do-
main. The effectiveness of this approach was demonstrated in the inverse tone

²⁰ Even if we use convolution to decrease the channel counts of the low-resolution coefficients
�̄�lr
𝑘 and 𝑏lr

𝑘

21

1. Literature Review

mapping and colorization of grayscale images. State-of-the-art performance
was achieved in the inverse tone mapping application. In colorization, GUNet
exhibited benefits compared to alternative UNet architectures. [1]

My goal is to apply this architecture to weather nowcasting and compare
it with the traditional UNet both in the Fourier domain and using traditional
metrics such as SSIM, MAE, and MSE.

Encoder Bottleneck Decoder

Figure 1.13: GUNet architecture

22

CHAPTER 2
Methodology

2.1 Dataset
I used a collection of radar images to train and evaluate the models. These
radar images were composites from a heterogeneous network of operational
weather radars created by OPERA [17]. In October 2013, the network con-
sisted of 202 operational radars, of which 184 had Doppler capability and
48 were dual-polarization radars. Most radars operate at the C band (168
sites). However, several S-band radars are installed in the south of Europe
(33 sites)²¹.

Figure 2.1: Example of images from the dataset after preprocessing. Val-
ues smaller than the lower bound of the color bar are transparent, and those
higher than the upper bound are displayed as if they were equal to it. Posi-
tions of Czech radars are marked with symbols × (Brdy-Praha) and + (Skalky).

The OPERA Radar Data Center (Odyssey) has been operational since 2011.

²¹ For more information about different radars used in weather nowcasting, refer to section
1.1.1

23

2. Methodology

Polar volume data are collected from 134 radar sites in 21 countries, and con-
tinental scale mosaic products (surface rain rate, rainfall accumulation, and
maximum reflectivity) are generated in real-time. These mosaic products are
generated on a Cartesian grid covering Europe (3800×4400 km2). [17]

The images I used cover the area above the Czech Republic, as illustrated
in figure 2.1. The resolution of images is 544×352 pixels, where one pixel rep-
resents an area of 1 km2. Images are generated every 10 minutes, but some
may be missing. Absent images were taken into account when creating net-
work inputs and targets. The dataset covers the period from October 23, 2015,
to July 21, 2020.

2.1.1 Data Preprocessing and Augmentation

The radar data from OPERA was already cleaned using a combination of
anomaly removal and hit-accumulation clutter filtering, which was done by
the anomaly-removal module²².

In the mosaic, each pixel comprises of data from different multiple radars
and elevations. The highest value from all the available heights and radars
is chosen for each pixel. The dataset’s images have a maximum reflectivity
captured in 16 values ranging from 0 to 60 dBZ. These values are then mapped
to a range of 0 to 255. I utilized min-max normalization to ensure all values
ranged from 0 to 1. I then cropped a rectangle of 512×256 pixels from the
images, preventing pooling problems²³.

(a) Distribution of maximum, median,
and mean values for each image in the
dataset.

(b) Distribution of individual pixel
values in the dataset.

Figure 2.2: Distribution of radar echo intensities in the dataset.

²² Some anomalies are still visible in the figure 2.1 in the form of circles around the radars.
²³ Pooling is used in both models with 2×2 stride and 2×2 kernel, which halves the feature

resolution in both axes. This pooling can be performed without padding or dropping values
when the images have sides equal to powers of two. See section 1.2.1 about convolution and
section 1.2.3 about pooling.

24

2.1. Dataset

I did not exclude any images from the data. In hindsight, it may have been
a mistake not to do this because the dataset includes numerous almost empty
images, as illustrated in figure 2.2a.

2.1.2 Creating Data Points

Both models were trained on a sequence of consecutive images spaced by pa-
rameter stride²⁴. The dataset was split into chunks, each containing chunk_-
size of images from the sequence. Data points were generated by setting an
input_length, and target_length.

A sliding window of length input_length+target_length is then moved
along the images in one chunk. Each position of the sliding window repre-
sents one data point for the models. The corresponding data point will not be
created if the dataset has a missing image in data points inputs or outputs.

The dataset is split by randomly assigning generated chunks to some of
the datasets. Two consecutive chunks have no overlap, which is essential for
creating training, validation, and testing datasets. The probability of assign-
ing a chunk to one of the datasets is given by parameters test_frac and val_-
frac representing fractions of the dataset which will be used for testing and
validation respectively²⁵. Data points in assigning chunks are then concate-
nated to create the datasets. The random assigning can be seeded by setting
the seed parameter. This way, the same datasets are generated each time.

80
 m

in

70
 m

in

60
 m

in

50
 m

in

40
 m

in

30
 m

in

chunk

20
 m

in

10
 m

in

0
m

in

input target
data point

Figure 2.3: Generating data points from the dataset in chunks. Datapoint is
added to the chunk only if it has no missing images in the input or target
images. There is no overlap of data points between different chunks.

Adjusting the chunk_size²⁶ changes the number of data points overall as
smaller chunks skip more images to maintain no overlap between the chunks.
I chose these values for the parameters:

²⁴ Parameter stride is in minutes.
²⁵ The probability that these datasets will contain the same number of images is small, because,

aside from the randomness, the chunks do not contain the same number of data points due
to the missing images.

²⁶ Parameter chunk_size needs to be ≥ than input_length + target_length.

25

2. Methodology

stride = 10, test_frac = 0.1, val_frac = 0.1, seed = 42,
chunk_size = 100, input_length = 8, target_length = 8.

This resulted in training, validation, and testing datasets with 168110, 21108,
and 20957 data points, respectively. The whole process is depicted in figure
2.3.

2.2 UNet
I chose similar architecture as in the original paper [11]. The network has five
“levels”, meaning five pooling and transposed convolution layers exist. The
encoder layer consists of a convolution block and max pooling. As mentioned
earlier, max pooling is done with 2×2 strides and 2×2 kernel.

Convolution block is a sequence of 2D convolution followed by Batch nor-
malization, ReLU, and Dropout. The convolution block can be repeated mul-
tiple times. I chose to do three repetitions. All 2D convolutions in the block
are executed with 1×1 stride and 3×3 kernel and 1×1 padding²⁷.

Batch normalization is a technique used in deep learning to improve the
training process of artificial neural networks²⁸. I used it as it has been shown to
improve training speed, enable the use of higher learning rates, and often lead
to better generalization performance. Dropout is a regularization technique
used in neural networks to prevent overfitting and improve generalization²⁹.
During the training process, Dropout randomly “drops out”³⁰ a proportion of
the neurons in a given layer at each training step. The dropped-out neurons
do not contribute to that training iteration’s forward or backward pass. A
hyperparameter called the dropout_rate can set the probability of a neuron
being dropped.

The number of output channels from the convolution block can be ad-
justed by setting different values of parameters in_channels and out_chan-
nels. The first convolution in the block changes the number of feature maps
as described in the section 1.2.1 and figure 1.2. In the encoder, the number of
features is doubled each time.

The decoder layer begins with a transposed convolution. The output of
this operation is then combined with a feature from the skip connection. Con-
volution block follows, but this time the number of features is halved. The
transposed convolution also halves the number of features. It has a 2×2 stride

²⁷ In practice, it would be better to use no padding and therefore have smaller output than
input. Doing it this way guarantees the same network output near edges when tiling larger
surfaces. See [11, fig. 2]

²⁸ See paper [18].
²⁹ See paper [19]
³⁰ I. e. temporarily removes or sets to 0.

26

2.3. GUNet

and variable kernel size, which is given by parameter kernel_size when the
network is initialized. I will examine how this parameter’s best value was
found later in the section 2.4.1. Padding in transposed convolution must be
adjusted based on the kernel size to ⌊(𝑘 − 2)/2⌋.

Finally, preventing some artifacts which may appear from the transposed
convolution is achieved by 2D convolution with 1×1 stride and 1×1 kernel.
Moreover, I added a sigmoid activation as the network’s last layer to make
the network outputs in the correct range. Figure 2.4 shows a diagram of the
implementation. The network used for eventual training had 11 713 080 pa-
rameters, all trainable. The size of the weights is 44.68 MB.

block(16,8)block(8,8)

concatenation

25
6×

12
8

8

8

12
8×

64

16

input

64
×3

2

64

32

32
×1

6

128

16
×8 256

128

64

32

16

output

legend
Convolution block
Conv2d (3×3), BatchNorm2d, ReLU, Dropout
MaxPool2d (2×2)
Skip-connection
ConvTranspose2d (k×k)
Conv2d (1×1), Sigmoid

8

51
2×

25
6

block(n,m)

m

×2

input output

w
×h

n m

Figure 2.4: UNet implementation diagram.

2.3 GUNet

My implementation of the GUNet architecture is inspired by the one in the
paper [1]. It is similar to the UNet, as portrayed in figure 2.5. The convolution
block, which follows the same structure as in the UNet architecture, uses 1×1
stride, 3×3 kernel, and 1×1 padding for all 2D convolutions. The network’s
final layers utilize 2D convolution with a 1×1 stride and 1×1 kernel, along
with sigmoid activation.

Upsampling modules inside the decoder are replaced by GU³¹. The GIF in
GU has two parameters³²: 𝜖, a regularization parameter penalizing large 𝑎𝑘
and 𝑟 which is a radius defining 𝜔𝑘 . The value of these parameters was found

³¹ Workings of GU are described in section 1.5.2
³² See section 1.5.1

27

2. Methodology

by hyperparameter search, which I explore in the section 2.4.1. Using GIF in-
stead of transposed convolution lowered the number of trainable parameters
to 10 578 728, which take up 40.35 MB.

JGU

JGU

JGU

JGU

Joint Guided Upsampling

block(8,8)block(8,8)

25
6×

12
8

8

8

12
8×

64

16

input

64
×3

2

64

32

32
×1

6

12816
×8 256

128

16

output

8

51
2×

25
6

block(n,m)

m

×2

input output

w
×h

n m

64

32

legend
Convolution block
Conv2d (3×3), BatchNorm2d, ReLU, Dropout
MaxPool2d (2×2)
Skip-connection
Joint Guided Upsampling
Conv2d (1×1), Sigmoid

Figure 2.5: GUNet implementation diagram.

2.3.1 Feature Channel Count Discrepancy

The GU was implemented by slightly adjusting the GIF implementation from
the paper [20]. In the paper [1], the authors mention that the GIF should
be applied on each channel separately. Here I ran into an issue because, as
shown in figure 2.5 and discussed previously in the section 1.5.3, the GUNet
architecture’s lower layers have more channels than the higher ones.

The issue with the feature channels in the ”higher” and ”lower” skip-
connections is that the number of channels in the feature from the ”higher”
skip-connection used as the higher resolution guide, 𝐼hr, is not the same as
the number of channels in the feature from the ”lower” skip-connection used
as the lower resolution guide, 𝐼lr. The filter, therefore, cannot be applied on
each channel separately, as implied in the paper [1].

I contacted the authors of this paper about this issue and learned that
they used an identical channel count on each “level” of their networks, which
seemed odd because the diagram in [1, fig. 2] displayed higher channel counts
in the ”lower” layers of the UNet. After further consultation with my advisor,
I decided to reduce the number of channels in the coefficients �̄�hr

𝑘 and 𝑏hr
𝑘 ,

using 2D convolution with 1×1 stride and 1×1 kernel. The coefficients then
can be utilized with the higher resolution guidance feature 𝐼hr to compute
the final filtered decoder feature with equation 1.8.

28

2.4. Model Optimization

2.4 Model Optimization

Both networks were implemented in PyTorch and trained on the NVIDIA
A100-SXM4-40GB graphics card.

2.4.1 Hyperparameter Tuning

For finding values of tunable hyperparameters of both networks, I used a hy-
perparameter optimization framework called Optuna, from paper [21]. I used
the default Tree-structured Parzen Estimator (TPE) algorithm³³. I created a
study of 50 trials for each model. Each trial could have run for at most five
epochs, where one epoch passed over all data points in the training dataset.
Batch sizes for both models were set to 70. I used the Adam optimizer [23].
Trials were compared based on average SSIM³⁴ value on the whole validation
dataset. Based on this validation metric, trials could be pruned sooner than
after five epochs. The parameters from the trial with the highest SSIM score
were selected after conducting 50 trials. These parameters were then used for
training the networks. The search space for the UNet consisted of parameters:

learning_rate ∈ [10−5 , 10−1], dropout_rate ∈ [10−5 , 0.5],
loss ∈ {mse, mae}, kernel_size ∈ {2, 4, 6, 8}.

Odd sizes of kernels were skipped because of artifacts mentioned in the sec-
tion 1.4.1, created when the kernel size is not divisible by the stride, which is
2×2 in the case of transposed convolution in the UNet. The best values from
the search were:

learning_rate ≈ 0.0100, dropout_rate ≈ 0.0160, loss = mse,
kernel_size = 2.

The search space for the GUNet consisted of parameters:

learning_rate ∈ [10−5 , 10−1], dropout_rate ∈ [10−5 , 0.5],
loss ∈ {mse, mae}, epsilon ∈ [10−5 , 1],
radius ∈ {1, 2, 3}.

The best values from the search were:

learning_rate ≈ 0.0031, dropout_rate ≈ 0.0024, loss = mse,
epsilon ≈ 0.1483, radius = 2.

³³ To learn more about the TPE algorithm, please refer to the paper cited as [22, pg. 4].
³⁴ See the section 1.2.4.

29

2. Methodology

2.4.2 Training

Both models were trained with the parameters found in the search for 100
epochs, again with the Adam optimizer. During training, I measured the
progress with SSIM, MAE, and MSE. When computing these metrics, I have
set the models to evaluation mode. When the models are in this mode, partic-
ular layers like Dropout and BatchNorm will behave differently to ensure the
network produces deterministic outputs. In this mode, dropout layers will
not drop any activations, and batch normalization layers will use the running
mean and variance calculated during training rather than the statistics of the
current batch.

The best values in these metrics measured on the validation dataset for
the UNet were:

SSIM : 0.8713, MAE : 0.01269, MSE : 0.0019390

and the best values for the GUNet were:

SSIM : 0.8693, MAE : 0.01290, MSE : 0.0019398.

Progress of the training is captured in figure 2.6. Both networks’ capabil-
ities are comparable, although UNet performed slightly better in all metrics-
The UNet was trained in a shorter amount of time, as shown in figure 2.6b³⁵.

³⁵ The model architecture may not have affected this as the training was not the only process
running on the GPUs

30

2.4. Model Optimization

(a) (b)

(c) (d)

Figure 2.6: Training progress quantified by SSIM, MAE and MSE. Relation-
ship between SSIM and the number of epochs can be seen in (a), while (b)
shows SSIM as a function of training time. MAE on the validation dataset is
in (c). MSE was measured on the training data, too, as it was used as a loss
function for training. Comparison between training and validation loss can
be seen in (d).

31

CHAPTER 3
Evaluation and Results

Models that achieved the best validation SSIM values during the training were
analyzed. For the investigation, I used the third distinct dataset. I used full
resolution 544×352 images, without cropping, as the factors of the image sides
are 544 = 25 × 171 and 352 = 25 × 111. Therefore the five max-pooling layers
with 2×2 kernel and 2×2 will behave the same as in training. I tested the mod-
els in evaluation mode and on the same metrics as in the section 2.4.2. While
the models in evaluation mode are not inherently stochastic, they can intro-
duce some level of randomness if there are any numerical instabilities during
the computation. I ran ten tests on the dataset to obtain accurate results and
calculated the average. Average values over the runs for the UNet were:

SSIM : 0.8784421, MAE : 0.0126786, MSE : 0.0021389

and for the GUNet were:

SSIM : 0.8782260, MAE : 0.0125654, MSE : 0.0020741.

3.1 Comparison of Forecasts
Both networks generally fail to predict the location of the most intense storms
and tend to spread the higher-intensity clusters more and more as the predic-
tions advance. To present the differences in the weather forecasts produced
by the models, I created a visualization of the outputs side by side with the
observed weather phenomena. I decided to crop all the ground truth obser-
vations and network outputs to images with resolution 256×256, as portrayed
in figure 3.1, to better visualize the cloud structure.

For further improvements in the visual comparison, I restricted the color
bar in the visualization to only show values between lower bound 𝑙 and upper
bound ℎ. I adjusted the alpha value of each pixel 𝑥 in each image to have the
value:

33

3. Evaluation and Results

Figure 3.1: Cutout which was used for images in figure 3.2.

f(𝑥) = max
(
0, tanh

(
4𝜋 (𝑥 − 𝑙)

ℎ − 𝑙

))
. (3.1)

The alpha values guarantee a smooth change to transparency when the
pixel’s value approaches 𝑙. If a pixel’s value is greater than ℎ, it is adjusted to
match the value of ℎ.

Figure 3.2 illustrates the predictions made by GUNet and UNet for a par-
ticular set of inputs and targets. Only four out of the eight targets and outputs
are displayed, while the inputs are not shown. The predictions are spaced 20
minutes apart, enabling more evident observation of cloud movement and
future prediction changes. The SSIM and MAE computed from the cutouts
are provided below each prediction.

To see additional examples, please refer to figures B.3, B.4, B.5, and B.6
in appendix B. In figure B.3, you will find a situation with higher-intensity
radar echoes, while figure B.4 displays more complex cloud formations on
radar images. The other images were chosen from a randomized batch of data
points from the test dataset to ensure an unbiased selection. To guarantee that
the images included radar echoes, To sort the data points, I utilized the mean
value of the pixels in the inputs and then chose the images that had the highest
mean values.

34

3.1. Comparison of Forecasts

Figure 3.2: Comparison of UNet and GUnet outputs with ground truth ob-
servations.

35

3. Evaluation and Results

3.1.1 Forecast of Higher Intensity Storms

To evaluate the performance of the models on higher-intensity storms, I set the
values in the output and target tensors to 0 if they were below some threshold.
I measured the metrics SSIM, MAE, and MSE for different threshold values
on the test dataset, the same way as I mentioned at the beginning of the chap-
ter. Figure 3.3 shows that GUNet achieved better performance than the UNet
when threshold ≥ 0.2.

As the threshold increases, fewer pixels are available for model compar-
ison, leading to a decrease in performance differences between the models.
At a threshold ≈ 0.35, both models achieved the same level of performance
in all metrics. Therefore, the discrepancy observed at threshold = 0.2 is
unrelated to the natural decrease of the differences. If the threshold is high
enough, both models can achieve an MSE and MAE of 0 and an SSIM of 1.
The appendix includes figures B.1a and B.1b, demonstrating the relationship
between threshold and MAE and MSE.

Figure 3.3: The test dataset was used to calculate the average SSIM, comparing
outputs and targets. Any values below a specified threshold were considered
to be 0. The chart on the right displays the difference between ssim_gunet −
ssim_unet based on the threshold value. Negative values indicate that UNet
performed better in SSIM, and positive values indicate that GUNet had better
SSIM.

3.2 Impact of Guided Upsampling on Spectral Bias

In order to determine whether the GU had any influence on the spectral bias
by eliminating the structural bias³⁶, I followed a similar method to the one in
the paper [1]. I compared the average Fourier spectra of the targets and both
models. I did this by averaging all outputs over the whole test dataset and

³⁶ Reasoning behind this hypothesis was explained in section 1.4

36

3.2. Impact of Guided Upsampling on Spectral Bias

computing a spectrum of the average using a 2D Fourier transform, equiva-
lent to computing the Fourier spectra for each image and averaging that³⁷. Let
𝒟 = {𝑑1 , 𝑑2 , . . . , 𝑑𝑁 } be the set of data points, where each 𝑑𝑖 = {𝐼𝑖1 , 𝐼𝑖2 , . . . , 𝐼𝑖8}
represents a set of 8 images. I defined the function AvgMagSpectrum to com-
pute the magnitude spectrum of the average images across all data points and
within each data point:

AvgMagSpectrum(𝒟) =
������ℱ ©« 1

8𝑁

𝑁∑
𝑖=1

8∑
𝑗=1

𝐼𝑖 𝑗
ª®¬
������ , (3.2)

where ℱ {·} denotes the Fourier Transform, and | · | represents the magnitude
of the complex Fourier coefficients.

The function can be applied to the sets 𝒟GUNet, 𝒟UNet, and 𝒟tgt to com-
pute the magnitude spectra �̄�GUNet, �̄�UNet, and �̄�tgt for the respective GUNet
outputs, UNet outputs, and targets. After computing the magnitude spectra,
the zero-frequency component was shifted to the center of the spectrum for
better visualization and analysis. �̄�GUNet, �̄�UNet, and �̄�tgt are displayed in
figure 3.4.

Figure 3.4: Average magnitude spectrum of UNet outputs �̄�UNet, GUnet out-
puts �̄�GUNet and ground truth �̄�tgt on a logarithmic scale.

At first glance, the differences may not be immediately apparent. GUNet
seems to capture more of the higher frequencies³⁸. To investigate this more
thoroughly, I calculated the absolute value of the difference between the aver-
age spectrum of the targets and the average spectrum of the network outputs
by computing:

diff
(
�̄�𝑚

)
=
���̄�tgt − �̄�𝑚

�� , (3.3)

where �̄�𝑚 is �̄�UNet or �̄�GUNet. The result of this can be seen in figure 3.5. In the
appendix B, I included figure B.2a, which shows a different plot of the same

³⁷ The reason behind it is the linearity of the Fourier transform
³⁸ Higher frequencies are the ones further away from the center.

37

3. Evaluation and Results

data, and figure B.2b that shows the difference between the output spectra of
both models. Values were passed through moving average with a window
size of 32×32, so the differences between the two spectra can be seen more
clearly.

Figure 3.5: Absolute difference between the amplitudes of the average target
spectrum and the average output spectra of models on a logarithmic scale.
Values were smoothed by moving average with kernel size 32×32. An un-
smoothed 2D chart is in figure B.2a. A higher pixel value means that the
amplitude, at the frequency corresponding to that pixel, differed more from
the desired amplitude of the average target spectrum.

38

CHAPTER 4
Discussion

4.1 Interpretation of Results
From the average Fourier spectrum of the UNet �̄�UNet in figure 3.4 is clear
that the network did not produce the structural artifacts³⁹ because it produced
�̄�UNet without the checkerboard-like structure which was present in results of
a similar experiment in the paper [1, fig. 3]. The UNet in the paper⁴⁰ utilized a
4x4 kernel in their transposed convolution, while my UNet used a 2x2 kernel⁴¹.

The smaller kernel may have helped to mitigate the artifacts since with 2×2
kernel with a 2×2 stride means that each pixel in the output of the transposed
convolution is a function of just one input pixel. Whereas with a 4×4 kernel
and the same stride, each output pixel is affected by four input pixels. In
contrast, the GIF in GUNet was used with radius = 2, which means that
output pixels are assumed to be a linear transformation of the input image
with coefficients computed on a window 𝜔𝑘 , so in the case of radius = 2, the
size of this window is |𝜔𝑘 | = (2𝑟 + 1)2 = 25.

UNet may have learned to mitigate these artifacts, or they were not created
due to the tiny kernel. Either way, it may have been at the expense of worse
performance than the GUNet when I compare the average MAE and MSE on
the test dataset. While the UNet was better in both metrics on the validation
dataset, on the test dataset, GUNet outperformed the UNet. The SSIM is also
interesting to compare. UNet scored better, but the margin has shrunk ten
times from 0.002 to 0.0002. Intriguingly, the SSIM values improved on the
testing dataset. The reason behind it could be the randomness in creating the
datasets. Both networks were tested and trained on the same datasets so they
could be compared on them. The SSIM on the validation dataset has practi-
cally only risen during training, so it is unlikely that overfitting of the UNet

³⁹ See the section 1.4.1.
⁴⁰ The paper [1] presents various UNet architectures. Specifically, I am talking about the one

called Transposed Convolution UNet or“TC-UNet,” as named in the paper.
⁴¹ Size of the kernel was found in hyperparameter search. See section 2.4.1.

39

4. Discussion

is the reason for its declined performance. However, it has more parameters
than the GUNet, which would make it more likely to do so.

Another critical difference between the models, which can be seen in the
results, is the ability of the GUNet to capture higher frequencies than the
UNet. By itself, capturing higher frequencies does not imply better weather
predictions, but the improvement is significant because of the spectral bias
present in NNs⁴² .

Weather nowcasting aims to anticipate severe weather conditions and safe-
guard us from dangers caused by rapidly changing weather patterns. In this
regard, predicting high-intensity levels in radar images is more advantageous.
Figures 3.3, B.1a, and B.1b indicate that the performance of the GUNet was
superior to that of the UNet in images where lower intensities were removed.
Although the improvement was relatively small, as shown in the figures.

Granting all these differences, when the weather predictions of both net-
works are compared to the target predictions, they look nearly identical.

4.2 Limitations and Potential Improvements
My approach has some limitations, some of which I already mentioned ear-
lier. Firstly, I did not remove nearly empty images from the dataset, which
may have impacted the training time and the performance of the models.

The second limitation I already mentioned is padding in the convolutions.
If I instead allowed the convolution outputs to decrease each time, the net-
work’s final output would be much smaller than the input, but it would lead
to better performance around the edges of the image.

Next, I would improve the speed of the GUNet. In the implementation of
GUNet, I used the standard GIF algorithm A, but there is a faster algorithm
A.2, which may improve the long training time observed in the figure 2.6b.

Finally, while the differences in the performance of the models are there,
it is paramount to mention that they were observed on just one pair of net-
works and trained only once, which means that the results are not statistically
significant and to obtain more definite outcomes, additional, comprehensive
research is necessary. This research could involve exploring additional hy-
perparameters, like varying kernel sizes in each layer and parameterizing the
model depth. The search for hyperparameters could also be longer, letting
the networks run for more epochs. Final training could be done for more
epochs and multiple times. Different, more complex loss functions could also
be tried.

⁴² I. e. tendency of neural networks to learn lower frequencies more easily. See the section
1.4.2.

40

Conclusion and Future Work

This thesis has sought to enhance the accuracy and reliability of short-term
weather predictions, notably storm structure predictions from radar images,
by addressing the structural biases present in deep learning models like the
UNet architecture. By adapting and applying the Guided Upsampling tech-
nique from the Guided UNet (GUNet) architecture to weather nowcasting,
I could effectively mitigate the adverse effects of transposed convolution on
weather predictions. This approach led to the development of a more spec-
trally consistent model.

Through a comprehensive literature review, the reader was introduced
to the concepts of weather nowcasting, CNNs, the UNet architecture, GIF,
and spectral bias. A dataset of radar composites from a network of weather
radars created by OPERA was utilized for training and evaluating the GUNet
and UNet models. The impact of GU was analyzed on the GUNet and UNet
models using metrics such as MSE, MAE, and SSIM.

The results demonstrated that, while the UNet successfully mitigated the
structural artifacts, the GUNet model outperformed it in terms of average
MAE and MSE on the test dataset. Additionally, the GUNet demonstrated an
improved ability to capture higher frequencies compared to the UNet, which
is a significant finding considering the spectral bias issue in neural networks.

Despite the improvements observed in the GUNet model, some limita-
tions and potential improvements were identified, including the removal of
nearly empty images from the dataset, addressing padding in convolutions,
improving the speed of the GUNet using a faster GIF algorithm, and conduct-
ing a more exhaustive investigation of the models by multiple training runs
with more hyperparameters.

The implications for weather nowcasting suggest that the GUNet model’s
improved performance on images with higher radar echo intensities may con-
tribute to better predictions of severe weather events, which are of utmost im-
portance for public safety and infrastructure protection. Although the perfor-
mance improvement is relatively small, it still signifies progress in the ongo-

41

Conclusion and Future Work

ing efforts to create more precise and dependable weather forecasts.
In conclusion, this thesis has successfully, even if marginally, advanced the

field of weather nowcasting by addressing structural biases in convolutional
neural networks used in this field.

Summary of Findings
The key findings of this thesis are as follows:

• The GUNet model, which incorporates GU, demonstrated improved
performance compared to the UNet model in terms of average MAE
and MSE on the test dataset while achieving nearly identical average
SSIM, which suggests that the GUNet model provides a marginal im-
provement in accurate and reliable short-term weather predictions from
radar images.

• The GUNet model more successfully captured higher spatial frequen-
cies than the UNet model.

• The GUNet model performed better than the UNet model on images
with higher radar echo intensities, which is particularly important for
predicting severe weather events in the context of weather nowcasting.

Future Research Directions
Based on the findings and limitations of this thesis, the following future re-
search directions are proposed:

• More extensive hyperparameter searches, including parameters such as
model depth and different kernel sizes in each layer, could lead to a
better comparison of both models and improvements in performance.

• Utilizing a faster GIF algorithm in the GUNet model could reduce train-
ing time, allowing for more extensive experimentation and potentially
better model performance in the same training time. Removing nearly
empty images from the dataset could also lead to similar improvements.

• Testing different, more complex loss functions may improve the model’s
ability to predict storm structures and contribute to more accurate and
reliable weather forecasts.

• Investigating if using GIF in other deep learning models and techniques,
such as recurrent GANs or stable diffusion, could improve their perfor-
mance.

42

Bibliography

[1] Marnerides, D.; Bashford-Rogers, T.; et al. Spectrally Consistent UNet for
High Fidelity Image Transformations. 2020, 2004.10696.

[2] Browning, K. A. Conceptual Models of Precipitation Systems.
Weather and Forecasting, volume 1, no. 1, 1986: pp. 23 – 41, doi:
https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.
Available from: https://journals.ametsoc.org/view/journals/
wefo/1/1/1520-0434_1986_001_0023_cmops_2_0_co_2.xml

[3] Wang, Y.; Coning, E.; et al. Guidelines for Nowcasting Techniques. 11 2017,
ISBN 978-92-63-11198-2.

[4] Rumelhart, D. E.; Hinton, G. E.; et al. Learning representations by
back-propagating errors. Nature, volume 323, no. 6088, 1986: pp. 533–
536, doi:10.1038/323533a0. Available from: https://doi.org/10.1038/
323533a0

[5] Hornik, K.; Stinchcombe, M.; et al. Multilayer feedforward net-
works are universal approximators. Neural Networks, volume 2, no. 5,
1989: pp. 359–366, ISSN 0893-6080, doi:https://doi.org/10.1016/0893-
6080(89)90020-8. Available from: https://www.sciencedirect.com/
science/article/pii/0893608089900208

[6] Krizhevsky, A.; Sutskever, I.; et al. ImageNet Classification with Deep
Convolutional Neural Networks. Neural Information Processing Systems,
volume 25, 01 2012, doi:10.1145/3065386.

[7] Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learn-
ing. ArXiv e-prints, mar 2016, 1603.07285.

[8] Goodfellow, I.; Bengio, Y.; et al. Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

43

2004.10696
https://journals.ametsoc.org/view/journals/wefo/1/1/1520-0434_1986_001_0023_cmops_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/wefo/1/1/1520-0434_1986_001_0023_cmops_2_0_co_2.xml
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
1603.07285
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[9] Odena, A.; Dumoulin, V.; et al. Deconvolution and Checkerboard Ar-
tifacts. Distill, 2016, doi:10.23915/distill.00003. Available from: http:
//distill.pub/2016/deconv-checkerboard

[10] Careddu, G. Italiano: Ravenna, radar dell’aeroporto. 2018, [Online; ac-
cessed 2023-05-08]. Available from: https://commons.wikimedia.org/
wiki/File:Ravenna,_radar_dell%27aeroporto_(04).jpg

[11] Ronneberger, O.; Fischer, P.; et al. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 2015, 1505.04597.

[12] Rahaman, N.; Baratin, A.; et al. On the Spectral Bias of Neural Networks.
2019, 1806.08734.

[13] Aitken, A.; Ledig, C.; et al. Checkerboard artifact free sub-pixel convolu-
tion: A note on sub-pixel convolution, resize convolution and convolu-
tion resize. 2017, 1707.02937.

[14] He, K.; Sun, J.; et al. Guided Image Filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, volume 35, no. 6, 2013: pp. 1397–1409,
doi:10.1109/TPAMI.2012.213.

[15] He, K.; Sun, J. Fast Guided Filter. 2015, 1505.00996.

[16] Kopf, J.; Cohen, M. F.; et al. Joint Bilateral Upsampling. ACM Trans.
Graph., volume 26, no. 3, jul 2007: p. 96–es, ISSN 0730-0301, doi:
10.1145/1276377.1276497. Available from: https://doi.org/10.1145/
1276377.1276497

[17] Huuskonen, A.; Saltikoff, E.; et al. The Operational Weather Radar
Network in Europe. Bulletin of the American Meteorological Society, vol-
ume 95, no. 6, 2014: pp. 897 – 907, doi:https://doi.org/10.1175/BAMS-
D-12-00216.1. Available from: https://journals.ametsoc.org/view/
journals/bams/95/6/bams-d-12-00216.1.xml

[18] Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015, 1502.03167.

[19] Hinton, G. E.; Srivastava, N.; et al. Improving neural networks by pre-
venting co-adaptation of feature detectors. 2012, 1207.0580.

[20] Wu, H.; Zheng, S.; et al. Fast End-to-End Trainable Guided Filter. In
CVPR, 2018.

[21] Akiba, T.; Sano, S.; et al. Optuna: A Next-generation Hyperparameter
Optimization Framework. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2019.

44

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://commons.wikimedia.org/wiki/File:Ravenna,_radar_dell%27aeroporto_(04).jpg
https://commons.wikimedia.org/wiki/File:Ravenna,_radar_dell%27aeroporto_(04).jpg
1505.04597
1806.08734
1707.02937
1505.00996
https://doi.org/10.1145/1276377.1276497
https://doi.org/10.1145/1276377.1276497
https://journals.ametsoc.org/view/journals/bams/95/6/bams-d-12-00216.1.xml
https://journals.ametsoc.org/view/journals/bams/95/6/bams-d-12-00216.1.xml
1502.03167
1207.0580

Bibliography

[22] Bergstra, J.; Bardenet, R.; et al. Algorithms for Hyper-Parameter
Optimization. In Advances in Neural Information Processing Sys-
tems, volume 24, edited by J. Shawe-Taylor; R. Zemel; P. Bartlett;
F. Pereira; K. Weinberger, Curran Associates, Inc., 2011. Available from:
https://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[23] Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. 2017,
1412.6980.

45

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
1412.6980

APPENDIX A
Guided Image Filtering

algorithms

A.1 Guided Filter
Input: filtering input image 𝑝, guidance image 𝐼, radius 𝑟,

regularization 𝜖
Output: filtering output 𝑞
1: mean𝐼 = 𝑓mean(𝐼 , 𝑟)

mean𝑝 = 𝑓mean(𝑝, 𝑟)
corr𝐼 = 𝑓mean(𝐼. ∗ 𝐼 , 𝑟)
corr𝐼𝑝 = 𝑓mean(𝐼. ∗ 𝑝, 𝑟)

2: var𝐼 = corr𝐼 − mean𝐼 . ∗ mean𝐼

cov𝐼𝑝 = corr𝐼𝑝 − mean𝐼 . ∗ mean𝑝

3: 𝑎 = cov𝐼𝑝 ./ (var𝐼 + 𝜖)
𝑏 = mean𝑝 − 𝑎. ∗ mean𝐼

4: mean𝑎 = 𝑓mean(𝑎, 𝑟)
mean𝑏 = 𝑓mean(𝑏, 𝑟)

5: 𝑞 = mean𝑎 . ∗ 𝐼 + mean𝑏

The dot before the operation denotes that it is performed elementwise.
𝑓mean(·, 𝑟) denotes a mean filter with a radius 𝑟. Pseudocode was taken from
paper [14].

47

A. Guided Image Filtering algorithms

A.2 Fast Guided Filter
Input: filtering input image 𝑝, guidance image 𝐼, radius 𝑟,

regularization 𝜖, subsampling scale 𝑠
Output: filtering output 𝑞
1: 𝐼′ = 𝑓subsample(𝐼 , 𝑠)

𝑝′ = 𝑓subsample(𝑝, 𝑠)
𝑟′ = 𝑟/𝑠

2: mean𝐼 = 𝑓mean(𝐼′, 𝑟′)
mean𝑝 = 𝑓mean(𝑝′, 𝑟′)
corr𝐼 = 𝑓mean(𝐼′. ∗ 𝐼′, 𝑟′)
corr𝐼𝑝 = 𝑓mean(𝐼′. ∗ 𝑝′, 𝑟′)

3: var𝐼 = corr𝐼 − mean𝐼 . ∗ mean𝐼

cov𝐼𝑝 = corr𝐼𝑝 − mean𝐼 . ∗ mean𝑝

4: 𝑎 = cov𝐼𝑝 ./ (var𝐼 + 𝜖)
𝑏 = mean𝑝 − 𝑎. ∗ mean𝐼

5: mean𝑎 = 𝑓mean(𝑎, 𝑟′)
mean𝑏 = 𝑓mean(𝑏, 𝑟′)

6: mean𝑎 = 𝑓upsample(mean𝑎 , 𝑠)
mean𝑏 = 𝑓upsample(mean𝑏 , 𝑠)

7: 𝑞 = mean𝑎 . ∗ 𝐼 + mean𝑏

The dot before the operation denotes that it is performed elementwise.
𝑓mean(·, 𝑟) denotes a mean filter with a radius 𝑟. Pseudocode was taken from
paper [15]. Subsampling (nearest-neighbor or bilinear) of the input 𝑝 and the
guidance 𝐼 by a ratio 𝑠 is preformed to speed up the guided filter. All the
box filters are performed on the low-resolution maps, which are the major
computation of the guided filter. The two coefficient maps �̄� and 𝑏 are bilin-
early upsampled to the original size. Finally, the output 𝑞 is still computed
by 𝑞 = �̄�𝐼 + 𝑏. In this last step, the image 𝐼 is the full-resolution guidance that
is not downsampled, and it will still faithfully guide the output. [15]

48

APPENDIX B
Model comparisons

(a) Average MAE on the test dataset, computed from outputs and targets, which had
some values, that were below some threshold, set to 0. Chart on the right shows
the difference mae_gunet − mae_unet. Negative values mean that GUNet had better
MAE, and positive values that UNet had better MAE.

(b) Average MSE on the test dataset, computed from outputs and targets, which had
some values, that were below some threshold, set to 0. Chart on the right shows the
difference mse_gunet − mse_unet. Negative values signify better GUNet MSE.

49

B. Model comparisons

(a) Absolute difference between the amplitudes of the average target spectrum �̄�tgt
and the average output spectra of the models �̄�UNet and �̄�GUNet, on a logarithmic
scale. Higher value of a pixel means, that the amplitude at the frequency correspong-
ing to that pixel, differed more from the desired amplitude of average target spectra
�̄�tgt.

(b) Amplitudes of the average UNet output spectrum �̄�UNet subtracted from the am-
plitudes of the average GUNet outputs �̄�GUNet on a logarithmic scale. Values were
passed through moving average with kernel size 32×32. Higher value of a pixel
means, that GUNet outputs had higher average amplitude than the UNet outputs, at
the frequency corresponging to the given pixel.

50

Figure B.3: Model comparison on radar images with very high echo intensi-
ties, which are not captured by either one of the models.

51

B. Model comparisons

Figure B.4: Model comparison on radar images with complex cloud forma-
tions.

52

Figure B.5

53

B. Model comparisons

Figure B.6

54

APPENDIX C
Acronyms

OPERA The European Operational Program for Exchange of Weather Radar
Information. 2, 23, 24, 41

CNN Convolutional Neural Network. 1, 3, 7, 10–15, 21, 41

FGF Fast Guided Filter. 19, 20

GAN Generative Adversarial Network. 14, 42

GIF Guided Image Filter. 18, 20, 27, 28, 39–42

GU Guided Upsampling. 2, 3, 20, 27, 28, 36, 41, 42

GUNet Guided UNet. 1–3, 18, 20–22, 27–29, 33, 34, 36, 37, 39–42

JBU Joint Bilateral Upsampling. 20

MAE Mean Absolute Error. 2, 3, 12, 22, 30, 31, 33, 34, 36, 39, 41, 42, 49

MSE Mean Squared Error. 2, 3, 7, 12, 22, 30, 31, 33, 36, 39, 41, 42, 49

NN Neural Network. 3, 7, 9, 10, 12, 14–16, 40

SSIM Structural Similarity Index Measure. 2, 3, 11, 12, 22, 29–31, 33, 34, 36,
39, 41, 42

TPE Tree-structured Parzen Estimator. 29

WMO World Meteorological Organization. 5

55

APPENDIX D
Contents of the Archive

README.md information about the contents of the archive
src.............................directory containing the implementation

dataset.py.........................script for generating the datasets
tuning.py..........................script for hyperparameter tuning
train.py.....................................model trainining script
gunet.py implementation of GUNet in PyTorch
unet.py implementation of UNet in PyTorch
gunet_weights_best.pt..................weights of the best GUNet
unet_weights_best.pt.....................weights of the best UNet
visualization.ipynb..notebook used for creating the visualizations

thesis.....................................directory containing the text
chapters....................directory containing text of the chapters
images directory containing images used in the thesis
thesis.tex....................................main LATEX source file
bibliography.bib......................................bibliography
thesis.pdf..this pdf

57

	Introduction
	Thesis's Objective
	Literature Review
	Weather Nowcasting
	Radars

	Convolutional Neural Networks
	Convolution
	Transposed Convolution
	Pooling
	Validation Metrics

	UNet
	Bias in Neural Networkts
	Structural Bias
	Spectral Bias

	GUNet: Guided UNet
	Guided Image Filtering
	Guided Upsampling
	Guided UNet Architecture

	Methodology
	Dataset
	Data Preprocessing and Augmentation
	Creating Data Points

	UNet
	GUNet
	Feature Channel Count Discrepancy

	Model Optimization
	Hyperparameter Tuning
	Training

	Evaluation and Results
	Comparison of Forecasts
	Forecast of Higher Intensity Storms

	Impact of Guided Upsampling on Spectral Bias

	Discussion
	Interpretation of Results
	Limitations and Potential Improvements

	Conclusion and Future Work
	Summary of Findings
	Future Research Directions

	Bibliography
	Guided Image Filtering algorithms
	Guided Filter
	Fast Guided Filter

	Model comparisons
	Acronyms
	Contents of the Archive

