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grateful to Ing. Tomáš Čejka, Ph.D. for sharing his expertise and
technical support in the realization of the Proof-of-Concept experi-
ment. Finally, I would like to express my gratitude to my family
and friends who supported me on this journey.

viii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Section 2373(2) of Act No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-
exclusive authorization (licence) to utilize this thesis, including all computer programs that are
part of it or attached to it and all documentation thereof (hereinafter collectively referred to as
the ”Work”), to any and all persons who wish to use the Work. Such persons are entitled to
use the Work in any manner that does not diminish the value of the Work and for any purpose
(including use for profit). This authorisation is unlimited in time, territory and quantity.

In Prague on May 11, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix



Abstract

Real-time communication using online collaboration platforms plays an important role in every-
day business operations. Its prioritization in our networks can help mitigate problems imposed
by the network’s limitations. This thesis aims to design a prioritization solution for real-time pro-
tocol. The solution utilizes machine learning for real-time traffic recognition and Open vSwitch
subsystem for prioritization. The solution was designed based on a thorough study of related
works. Anonymized network traffic dataset was captured on real-world ISP lines. Additionally,
the prioritization software prototype was implemented into open-source flow exporter IPFIX-
probe and tested using a small home-office router Turris.

Keywords traffic prioritization, real-time, network flow control, traffic recognition, machine-
learning, Open vSwitch, IP flow

Abstrakt

Real-time komunikace pomoćı online platforem zastává d̊uležitou roli v každodenńıch ak-
tivitách mnoha společnost́ı. Prioritizace této komunikace umožňuje zmı́rnit dopady zapř́ıčiněné
limitacemi śıt́ı. Ćılem této bakalářské práce je navrhnout a implementovat řešeńı prioritizace pro
real-time protokoly. V rámci tohoto řešeńı bylo využito strojového učeńı pro rozpoznáńı real-
time śıt’ového provozu a technologie Open vSwitch pro zajǐstěńı prioritizace. Navržené řešeńı
vycháźı z podrobné analýzy použ́ıvaných real-time protokol̊u na reálné śıti. Nav́ıc pro vytvořeńı
modelu strojového učeńı byla vytvořena nová a rozsáhlá anonymizovaná datová sada zachycená
na śıti reálného poskytovatele internetového připojeńı. Prototyp softwaru prioritizace real-time
protokol̊u byl zakomponován do open-source exportéru śıt’ových tok̊u IPFIXprobe a otestován
pomoćı routeru Turris určeného pro domácnosti a malé podniky.

Kĺıčová slova prioritizace śıt’ového provozu, real-time, ř́ızeńı śıt’ových tok̊u, rozpoznáńı śıt’ového
provozu, strojové učeńı, Open vSwitch, IP toky
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Introduction

Organizations all around the world rely on real-time communication/collaboration platforms.
These platforms hold an essential role in organizations because they provide means to communi-
cate with colleagues and customers located at different geographical locations across the world.
These services are often offered via the Internet and it introduces a potential challenge for the
organizations as they must be connected to the Internet via a stable and reliable connection
catering to all network-traffic-related needs of the organization. Internet connection available
to the organization may be limited by the environment, location, and other factors. To meet
all the needs and prioritize the business needs, an organization must develop a new model of
managing its network ensuring that the most critical applications and platforms are prioritized
network-wise.

Conventional approaches to network prioritization rely on a pre-defined set of rules and
configurations that may not be able to adapt to the dynamic and unpredictable nature of modern
network traffic. Machine learning techniques can provide a more flexible and adaptive approach
to network flow control by analyzing network traffic patterns and predicting optimal flow rates
in real-time.

One popular tool for implementing network flow control is Open vSwitch (OVS), which is
a flexible and scalable virtual switch that can be used to manage network flows in a variety of
environments. By combining OVS with machine learning algorithms, it is possible to create a
real-time flow control system that can adapt to changing network conditions and optimize flow
rates to improve overall network performance.

We explore the use of machine learning techniques to implement real-time network flow control
using OVS. We will review the challenges involved in designing such a system and discuss how
machine learning algorithms can be used to overcome these challenges. We will also present
experimental results demonstrating the effectiveness of our approach in a variety of network
environments. Addressing potential limitations and risks of using machine learning in network
flow control will be mentioned, few examples include the need for large amounts of training data
and the potential for unexpected behavior.

Traffic prioritization depending on flow-based analysis has multiple advantages, it is more
efficient resource-wise and less invasive to user privacy as it prioritizes the flow based on network
flow characteristics rather than examining the content of the communication. Our current digital
society puts more emphasis on user privacy than ever before. The data transferred over our net-
works contain lots of personal information that can be misused by malicious actors. Establishing
trust between a user and a network operator is essential in our digital society. Shattering that
trust could lead to a breakdown of mutual trust established via our networks.

Another advantage of using machine learning for network flow control is that it can be cus-
tomized to suit the specific needs of a particular network environment. Different machine learning
algorithms can be trained on different types of data to optimize flow control for different network
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2 Introduction

configurations and traffic patterns.
Overall, the combination of machine learning and OVS presents an opportunity to develop

more advanced and effective real-time network flow control systems. As network traffic continues
to grow in complexity and volume, such systems will become increasingly important in ensuring
reliable and efficient network performance.

This thesis will be centered around audio/video and screen-sharing types of traffic. It focuses
on the research and design part, but it will also include an implementation (Proof of Concept)
that can be used for demonstration purposes.

The first chapter 1 establishes the necessary concepts needed for the following parts of the
thesis, it consists mainly of an introduction to topics of network flow monitoring, protocols,
used concepts, and technologies. The second chapter 2 addresses the topic of dataset creation.
It emphasizes the process of creating such a dataset and the methods used for it. The third
chapter 3 guides us through the process of machine learning. Its viability, advantages, and
disadvantages of the proposed solutions are discussed there. The fourth chapter 4 pursues the
prioritization part and prepares the foundation for our Proof-of-Concept. The next chapter 5
aims to evaluate the machine learning model and discuss the PoC. The last chapter 6 concludes
the outcome of this thesis.



Chapter 1

Background

1.1 Network traffic monitoring

Network monitoring is a crucial part of network management. By monitoring and analyzing
network traffic, an organization can get more insight into the performance and security of its
network. Due to the increasing complexity of our networks and their role in organizations,
administrators must manage the network in a way where all the critical applications are accessible
at all times and with reliability in mind. Network monitoring combined with network analysis
gives the administrator strong tools to manage the network.

Our emphasis on secure communications has been increasing in the last decades to the level
that most of the communication happening on the Internet is encrypted. [1] Not only has the
encryption of payloads been getting more common, but encryption of the metadata (protocol
metadata) as well, sometimes to the degree when a regular classification system depending on
reading protocol headers is not able to detect the sub-protocol, but only a transport-level protocol
(such as TCP or UDP). This approach is great for security, but not very much for network
management purposes.

We have multiple methods of analysis available, one of them is based on deep packet inspec-
tion (abbreviated as DPI), and another method is flow-based analysis. Each one has its own
advantages and disadvantages. This section aims to explain the differences between them and
their pluses and their drawbacks.

1.1.1 Packet based - Deep Packet Inspection
Deep Packet Inspection is defined by Fortinet as “a method of examining the content of data
packets as they pass by a checkpoint on the network” [2]. DPI examines not only the headers of
a packet but metadata and payload as well. This approach enables the classification algorithms
to detect the type of traffic with more precision.

One of the advantages compared to packet headers inspection is more precise classification
which enables network administrators to set up more specific rules rather than generic ones.

Unfortunately, this approach does not only consist of advantages but has multiple disadvan-
tages as well. DPI requires additional processing which is usually very resource-consuming as
protocol detection and parsing have to take place. Due to the nature of DPI, more processing is
required to make a judgment which can result in delays in communication.

Nowadays push for security and privacy in our networks changes the structure of packets
being sent and delivered over our networks. More and more metadata (including packet sub-
headers) is being encrypted thus making DPI less efficient to the point when DPI is not able to

3



4 Background

say anything more than basic packet header reading method. Deep packet inspection will not be
described further as the thesis focuses on a flow-based approach.

1.1.2 IP Flow based
IP flow monitoring is based on the concept of flows, which can be described as a sequence of
packets that share the same key attributes [3] (in our case: destination and source IP addresses,
protocol, and source and destination port numbers). The very same key attributes are called flow
keys. Flows can also have additional specific characteristics – for example inter-packet delays
etc.

Flows are usually delimited by a time frame starting from the first packet processed until the
last one observed. There is often introduced a maximum timespan of a flow to prevent keeping
stale flows from overloading the system and for logging purposes. A flow can reach its end in
multiple ways: reaching the maximum time limit introduced for the flow, reaching the maximum
time introduced for the inter-packet delay and detecting the end of the connection (for stateful
connections), and many more.

According to Hofstede et al. [4], flows are divided into two categories: unidirectional and
bidirectional. Unidirectional flows contain characteristics for traffic in one direction. On the
contrary bidirectional flows merge two unidirectional flows into one in a way when direction-
less key attributes are the same but direction-relevant key attributes stay the same in ‘forward’
direction and ‘backward’ flow attributes are inverted. The direction-relevant key attributes
for the flow are set up based on the first packet processed in most cases however exceptions
exist. [5] This thesis considers the method based on the first packet processed. Direction-relevant
attributes are doubled for bidirectional flows (examples include a count of source/destination
packets, a count of bytes coming in source/destination directions, etc.).

Extended IP flows are an extension to an IP flow concept, they contain additional information
compared to basic IP flows. This information can be: information about packet payloads, semi-
parsed protocol information, and flow statistics and many more. Flow statistics can contain
information ranging from the number of packets, and the number of bytes transferred to intra-
packet delay combined with approximated standard deviation of packet size.

This additional information allows network administrators to monitor and troubleshoot prob-
lems on the network with more insight.

1.2 Network monitoring architecture

In recent years flow-based network analysis has been gaining popularity. The whole process starts
at an observation point where flow exporters operate. [5] A flow exporter is a network device
that generates flow from the network traffic it goes through. Parsing and extracting information
from passing packets and creating or updating flows is its main responsibility. The flow exporter
creates or updates new flows based on key flow characteristics.

The flow exporter sends the flow information to the flow collector. The next phase takes
place in a flow collector. A flow collector is a software or hardware component receiving flows
from a flow exporter [5]. It aggregates flow records from multiple flow exporters, pre-processes
them, and then stores them for additional analysis. A general overview of flow-based network
monitoring architecture can be seen in figure 1.1.

There are many flow exporters available on the market ranging from proprietary to open-
source. Some of the popular flow export protocols are NetFlow, sFlow, J-Flow, and IPFIX.

“NetFlow is a network protocol developed by Cisco for collecting IP traffic information and
monitoring network flow” [6]. It is mostly used in Cisco devices – routers and switches. Netflow
has gone through many revisions. The most widely used is Netflow version 5 which offers basic
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Figure 1.1 General overview of flow monitoring architecture

flow data, meanwhile newer version offer more advanced features (support for custom fields and
more).

1.2.1 IPFIX
IPFIX is a newer flow export protocol based on NetFlow v9 [3]. It provides a flexible and ex-
tensible way to export flow data and supports a wide range of transport protocols. It supports
IPv6 as well as IPv4. It also provides support for message authentication and encryption. IPFIX
uses a template-based approach to define the structure of flow records. The structure contains
the names of the fields and their type. It allows an administrator to define custom fields and
incorporate organization-relevant data to be passed into the flow analysis. This dynamic ap-
proach improves scalability. IPFIX is also supported by big players in the networking market –
Cisco [7], Juniper [8], HPE Aruba [9] and Fortinet [10] and many more. There are various IP-
FIX flow exporters on the market, such as Cisco’s Joy [11], Yet Another Flowmeter [12], and
IPFIXprobe [13]. The IPFIXprobe is the most relevant for this thesis, therefore it will be further
described.

1.2.1.1 IPFIXprobe
IPFIXprobe [13] is an open-source flow exporter. It creates biflows (bidirectional-flows) either
from network traffic captures, from a network interface, and exports them to an output interface.
IPFIXprobe system is an extensible platform offering multiple plugins on their GitHub page [13].
The modules are often running on multiple threads to increase the processing throughput.

Its plugins fall into one of three categories:

input plugins are plugins responsible for ‘feeding’ the input data in the correct format to
the processing plugins

processing plugins are plugins responsible for data processing (protocol recognition, statis-
tics collection and so on)

output plugins are plugins responsible for outputting the processed data (exported flows)
for further processing
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Due to the nature of this thesis, we will mostly focus on the processing category of plugins. The
processing consists of multiple phases:

1. Metadata initialization phase

2. Metadata enriching

3. Flow export phase

The metadata initialization phase consists of memory allocation of the necessary metadata
for the plugin and flows and its initialization. The metadata enriching phase has two stages:
pre update and post update. The pre update stage is invoked when a new packet is received
but is not processed by the internal IPFIXprobe flow metadata enricher. The post update stage
is invoked after the internal metadata of flow has been enriched. The processing order of plugins
is determined by the order of plugins in the initialization phase.

1.3 VoIP real-time traffic
Real-time communication such as calling, video-calling, and streaming are important part of our
everyday life. The amount of data transferred and its importance over the interconnected global
network rise day by day. The combination of more data transferred and at the same time offering
stable, fast, low-delay connections is a very hard task. Some organizations already reached a
point when their throughput comes close to the limit, in that case, they have to prioritize some
type of communication. Unfortunately for the case of network management, our traffic is getting
more obfuscated than before because of security and privacy reasons. [14] It is hard to distinguish
the ‘intention’ behind the communication without proper analysis. This analysis without proper
hardware and software backing introduces another complex variable into the game of network
management and prioritization.

Many real-time protocols build their protocol on top of the UDP transport protocol for IP-
based networks. This thesis will focus on real-time communication such as calling, video-calling,
and screen-sharing. Our models can also be applicable in other cases. Lots of modern protocols
rely on a network stack called WebRTC.

1.3.1 WebRTC
WebRTC is “a technology that enables Web applications and sites to capture and optionally
stream audio and/or video media, as well as to exchange arbitrary data between browsers without
requiring an intermediary.” [15] All WebRTC components must use encryption, the encryption
scheme used is DTLS. It is very popular among real-time messaging app providers. It is used in
applications such as Google Meet [16], Facebook Messenger [17], Discord [18] and many more.
WebRTC consists of multiple frameworks: ICE (Interactive Connectivity Establishment), SDP,
and many other data/signaling protocols. Data channels in WebRTC typically use SRTP, a
secure derivation of the RTP protocol.

1.3.1.1 NAT and ICE
NAT (Network Address Translation) holds a very important role in our networks. Its role is to
connect private networks to public ones. RFC 3022 describes Network Translations as follows:

“Basic Address translation would (. . . ) allow hosts in a private network to transparently access
the external network and enable access to selective local hosts from the outside. Organizations
with a network setup predominantly for internal use, with a need for occasional external access
are good candidates for this scheme.” [19]
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The need for network address translations has been constantly rising due to the limited
number of IPv4 public addresses. The number of devices connecting to the intra-connected
global network has been exponentially rising in the last decades and the trend with the presence
of IoT is not showing any signs of a significant slowdown. Private IPv4 addresses are not and
should not be routable outside of internal networks, the routability of these addresses would defy
the core concept of private addresses. Theoretically, we could assign a public IPv4 address to
each device in an organization so the devices can communicate with the Internet, unfortunately,
this approach is unfeasible due to the vast amount of devices wanting to communicate and the
scarce amount of public IPv4 addresses available. Another approach how to solve the problem
could be: translating private addresses into public space and vice versa.

Symmetric NAT is a type of NAT that maps a unique combination of an internal IP address,
port, and protocol to a unique combination of external IP and a port. The symmetric NAT takes
into account the protocol, destination IP and destination port thus not allowing to send a packet
from a different external IP address or a different port to the mapped address and port. [20] For
visual explanation please refer to figure 1.4.

1.3.1.2 ICE
ICE provides a framework allowing a client to form a connection with another client without
direct network visibility (f.e. being behind NAT). The framework is complemented by two
protocols: STUN and TURN. SDP is often used with it and shall be mentioned as well.

STUN is a protocol allowing you to obtain your public IP address and determine any restrictions
that might prevent you from forming a connection with a peer. Figure 1.2 shows the process
of establishing a connection if no restrictions are found. If a restriction caused by Symmetric
NAT is found, TURN will be used.

TURN is a protocol allowing to bypass the restrictions of Symmetric NAT. The client opens
a connection to a TURN server and sends the information through the TURN server. The
second peer applies the same principles. All the connections are conveyed over the TURN
server. It causes overhead and introduces delays, this method is only used in the cases when
direct connection is not available. [21] Figure 1.3 shows a process of communication between
peers using TURN.

SDP is a framework for describing multimedia content of the connection, such as codecs, reso-
lution, encryption, and such. SDP is made of at least one line of UTF-8 text, each line starts
with one character type and ‘=’ and its value or description. [21]

Due to the reasons of peer-to-peer communication happening we cannot do pri-
oritization based on IP address ranges given by platform providers. [22]

1.3.2 RTP protocol and its derivatives
The real-time transport protocol is a data transport protocol designed for the delivery of data
with real-time characteristics, for example, audio and video. RTP offers multiple features such
as payload identification, sequence numbering, timestamping, and delivery monitoring. RTP is
mainly used in combination with UDP, thanks to multiplexing and checksum support. It also
supports multicast communications. [24]

Since RTP is only a data transport protocol, it should be accompanied with a management-
plane protocol. Designers of this protocol thought about that and developed a lightweight version
of the management protocol called RTCP. Its features include QoS monitoring, sharing informa-
tion about participants etc. [25] Multiplexing of sessions is provided by the destination transport
address (IP address and port). For example, in a VoIP scenario, audio and video should be
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Figure 1.2 STUN connection schema, from [21]

Figure 1.3 TURN connection schema, from [21]
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Figure 1.4 Symmetric NAT, from [23]

carried in different sessions. Thanks to this design prioritization can be done per flow (f.e. just
audio in our case). Figure 1.5 shows the RTP header’s structure and it comprises of:

flags consisting of version, padding, exten-
sion, CSRC count, and marker bit

payload type

sequence number

timestamp

SSRC

CSRC list

Version field indicates the version of the revision of the RTP protocol used. Current version
revision is two. Padding flag specifies whether the packet contains one or more octets at the end
that are not part of the payload. The last byte of padding specifies a count of padding bytes.
RTP allows extensions, its presence is defined by bit set by extension flag. CSRC count field
specifies the number of CSRC identifiers following the fixed header (if the extensions field is used
CSRC identifiers come after the extension fields). Marker bit is a flag not having a fixed meaning,
its meaning depends on a profile. The profile is a description of modifications and additional
interpretations related to a certain app towards the RTP protocol. It contains a set of payload
type codes and their mapping payload formats. It also defines extensions and modifications to
the RTP protocol.

The type of the RTP payload can be found in payload type field. It determines the inter-
pretation for the application. An application using RTP can change the payload type. The
number of RTP packets send is saved to sequence number field. It can be used to detect packet
loss. The initial value should be random. Timestamp representing the sampling moment of the
first data contained in the RTP packet. The sampling must be derived from a clock that incre-
ments monotonically and linearly in time. If an application uses fixed-rate sequencing, then the
timestamp clock can be incremented by 1 for each sampling period. If an application processes
blocks covering f.e 173 sampling periods, the timestamp should be increased by 173, despite
being transmitted or dropped. The initial value of timestamp should be random. SSRC field
complements the header with an identification of the synchronization source. It should be chosen
randomly. No two synchronization sources should have the same SSRC in the same RTP session.
RTP implementation should take into consideration the possibility of a collision and implement
a procedure to solve it. Synchronization source can change its identifier but must choose a new
SSRC identifier to avoid ambiguity. CSRC list field contains contributing source identifiers. [24]
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Figure 1.5 RTP header, from [24]

1.3.2.1 SRTP
SRTP (Secure RTP) is built on top of RTP and is one of the most used protocols for real-time
communications, especially audio and video. As SRTP is built on top of RTP, it follows its
principles and the SRTP header is a small modification/extension to the original RTP header.
SRTP header adds authentication and encryption to the services provided by RTP, its scope
can be seen in figure 1.6. Additionally, it contains an authentication tag. Encryption and
authentication mechanisms are agreed upon via a different channel.

Wide usage of this SRTP by popular platforms such as Microsoft Teams [26], Zoom [27],
Google Meet [28], Skype [29], Facetime [30], Whatsapp [31] and Signal [32] make this protocol a
great target for analysis. This thesis shall focus entirely on this protocol.

1.3.2.2 RTCP
RTP is accompanied by another protocol providing a management plane of the connection.
This role can be done by RTCP. An application using RTCP transmits regular messages to all
participants in the session. [24]

RTCP has multiple roles:

provide feedback on the quality of transmission

provides persistent identifiers (CNAMEs) for an RTP session

synchronization protocol between hosts

furnishes the protocol with basic session control

The last role is optional. All other roles should be used in all environments. They should work
also in multicast environments.

1.3.3 SRTP and MS Teams
MS Teams is one of the most common applications for audio and video calls in many organizations
around the world. The documentation provided by Microsoft for MS Teams in terms of protocols
used and its endpoint is more detailed compared to its competitors. According to [34, 35], MS
Teams uses four defined ports, each for a different traffic type. The port numbers and their
assigned services are written in table 1.1. The IP ranges used by MS Teams and Skype for
Business are then shown in table 1.2.



Machine learning methods for traffic recognition 11

Figure 1.6 SRTP header, from [33]

Table 1.1 Ports used by MS Teams for real-time communication

Port Purpose
3478 Relay Discovery allocation and real-time traffic (ICE - STUN and TURN)
3479 Audio
3480 Video
3481 Video Screen Sharing

Table 1.2 IP address ranges used by MS Teams for real-time communication

IP address range
13.107.64.0/18
52.112.0.0/14
52.122.0.0/15
2603:1063::/39

1.4 Machine learning methods for traffic recognition
Machine learning methods can be divided into multiple categories:

supervised “learning is a machine learning approach that’s defined by its use of labeled datasets.
These datasets are designed to train or “supervise” algorithms into classifying data or pre-
dicting outcomes accurately. Using labeled inputs and outputs, the model can measure its
accuracy and learn over time.” [36]

unsupervised “learning uses machine learning algorithms to analyze and cluster unlabeled data
sets. These algorithms discover hidden patterns in data without the need for human interven-
tion (hence, they are “unsupervised”).” [36]

The most popular algorithms for traffic recognition [37] include Decision Trees [38], k-nearest
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Figure 1.7 Example of a Decision Tree, from [42]

neighbours [39], Random Forests [40], boosted algorithms [41] (based on Decision Trees and
Forests) and neural networks.

1.4.1 Decision Trees
Decision Trees are a supervised ML (Machine Learning) algorithm that represents a decision-
making process. [38] They can be used for classification and regression problems. The algorithm
is illustrated as a tree seen in figure 1.7 where every internal node represents an IF condition over
a feature in a learning dataset. The internal nodes’ direct children represent one of the outcomes
of the condition. Each leaf node represents a decision made by the decision algorithm based on
the input data. The decision can have a form of probability of binary classification.

1.4.1.1 Criterions for splitting

The splitting criterions determine how is the data divided into different branches of the tree
based on the data features. The two most common ones are Gini impurity and entropy.

Gini impurity is a criterion for measuring the impurity/uncertainty of a set of data points
in a group. For example: in Decision Trees, we can measure the purity of split groups – the
desired result is to have higher purity (all points in a group belong to the same group). The Gini
coefficient ranges from < 0; 0.5 >. Zero represents a pure dataset, meanwhile, 0.5 represents an
impure dataset (an equal number of data points belonging to different classes). The Gini impurity
measures the probability that a random data sample (data point) would be misclassified.

Entropy is similar to Gini impurity, it is also a criterion for measuring impurity/randomness
of a set of data points in a group. The range for entropy is < 0; 1 >. Entropy represents the
degree of randomness in the distribution.
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1.4.1.2 Building a Decision Tree
They are built by recursively splitting the initial set of learning data into smaller subsets using
a top-down approach. The building algorithm selects a feature based on certain criteria, the
most common are Gini impurity and entropy, it splits the dataset into n-parts (n depends on the
number of possible outcomes) and continues the process until the stopping condition is reached.
Stopping conditions can be defined in several ways, such as exhaustion of available features,
reaching maximum depth, etc.

Decision Trees are great at handling both categorical and numerical data without requiring
any additional transformations, which makes them flexible and versatile.

They are susceptible to overfitting. Overfitting happens when the model incorporates noise in
the learning data, rather than generalizing it. It can reflect in poor performance when evaluating
the model on new data. They also offer limited capabilities in terms of handling continuous
features, as they only do splits into n-intervals.

1.4.2 Trees ensembles
Tree ensembles is a generic term describing a combination of several base estimators (in our case
Decision Trees) into a new algorithm. [43] Simplified graphic overview can be seen in figure 1.8.
Random Forest is an algorithm belonging to the average-based category and boosted forests
belong to the boosted-based category. The tree ensembles are usually distinguished into two
categories:

average-based “The driving principle is to build several estimators independently and then to
average their predictions. On average, the combined estimator is usually better than any of
the single base estimator because its variance is reduced.” [43]

boosting-based “Base estimators are built sequentially and one tries to reduce the bias of the
combined estimator. The motivation is to combine several weak models to produce a powerful
ensemble.” [43]

1.4.2.1 Random Forest
Random Forest is an ML algorithm combining outputs of multiple Decision Trees into a single
result. [40] The algorithm is an extension to the category of bagging algorithms. “The algorithm
relies on a pseudorandom procedure to select components of a feature vector, and Decision Trees
are generated using only the selected feature components. Each tree generalizes classification to
unseen points in different ways by invariances in the unselected feature dimensions. Decisions
of the trees are combined by averaging the estimates of posterior probabilities at the leaves.” [45]
Random Forests’ advantages compared to Decision Trees are reduced overfitting, and higher
robustness related to handling missing values and noise in the data.

1.4.2.2 Boosted forest
Boosted forests is an ML algorithm combining principles of Decision Trees and gradient boosting.
In boosted forests, Decision Trees are created sequentially, each additional tree is trained to
correct the errors of the previous tree. Each training phase starts with assigning weights to the
data points, with weights of misclassified points increased to emphasize their importance. The
goal of boosted forests is to create a more robust model by adding weaker learners to the ensemble.
Advantages of the ensemble include improved accuracy. It is still prone to overfitting, but
there are available countermeasures. We can find many implementations, AdaBoost (Adaptive
Boosting) [46] XGBoost (eXtreme Gradient Boosting) [47] are one of the most popular ones.
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Figure 1.8 Graphical visualization of Decision Trees/Forests/Boosted forests, from [44]

1.5 Open vSwitch
“Open vSwitch is a (. . . ) virtual switch (. . . ) designed to enable massive network automation
through programmatic extension, while still supporting standard management interfaces and pro-
tocols (e.g. NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag)” [48] It allows network
administrators to manage virtualized network infrastructure.

1.5.1 OpenFlow protocol
“OpenFlow is a network communication protocol used between controllers and forwarders in an
SDN architecture. The core idea of SDN is to separate the forwarding plane from the control
plane. (...) OpenFlow introduces the concept of flow table, based on which forwarders forwards
data packets. Controllers deploy flow tables on forwarders through OpenFlow interfaces, achieving
control on the forwarding plane.” [49] Figure 1.9 generalizes the architecture of SDN into 3 planes,
resp. 2 planes: control plane and forwarding plane.

1.5.2 Open vSwitch and flows
OVS (Open vSwitch) stack has multiple kinds of flows:

OpenFlow flows are used by OpenFlow controllers to define a switch’s policy. They support
wildcards, priorities, and multiple tables. [50]

Kernel flows also called Datapath flows, are bare flows without support of priorities. They exist
only in one table, which makes them suitable for caching. [50]

Further in the thesis, all flows mentioned in the context of Open vSwitch technologies will be
implicitly OpenFlow flows if not defined otherwise.
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Figure 1.9 Role of OpenFlow in SDN, from [49]

1.5.2.1 Flow prioritization
Flow prioritization in OVS can be achieved by creating a QoS system. It requires having multiple
queues for traffic classes and assigning flows to them. The assignment is done based on the Open-
Flow rules created by a separate system (in our case RTP recognition algorithm). The queues
have many interesting parameters, the most important for our case are other-config:max-rate
and other-config:min-rate, values for both of the parameters are specified in bits per second.
The OVS QoS subsystem first tries to fulfill the min-rate needs of all relevant queues (with
guaranteed min-rates) and after that, it fulfills other traffic needs.

The rule’s priority sets the order of processing and matching the flows against the rules set
by OVS. The priority values range from 0 to 65 535. Higher priorities will get matched sooner.
If two rules have the same priority, then the order during evaluation is undefined. The flow’s
priority defaults to 32 768 if not specified explicitly [51].

Version 1.4 [51] introduces a new field called ‘importance’, which defines the order of flow
eviction. Importance values range from 0 to 65 535. Zero is the default value and makes the flow
non-evictable in terms of importance [51].

The rule defines the ‘treatment’ of the packets (in our case prioritization) in a flow defined
by the flow key. Flows in OVS are uni-directional, therefore we need to create rules for both
directions. According to OVS manual [51], the rule (or OVS flow) consists of:

Match condition (information identifying the flow, could be source and destination IP ad-
dresses, transport protocols, etc.)

Set of actions applied to the IP flow (normal, modify, drop, forward, etc.)

For prioritization purposes, we are interested in set queue action, which is followed by the
name of the queue created in the QoS phase.
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Chapter 2

Dataset creation

As this thesis focuses on supervised learning algorithms for flow recognition, we need a labeled
dataset. 1.4 We were not able to find a suitable dataset for our purpose; thus after a discussion
with the thesis supervisor, we decided to create the dataset ourselves. The modular architecture
of IPFIXprobe allows us to write custom processing plugins 1.2.1.1 that can be used for our
case of creating a labeled dataset. The plugins described in this chapter are created only for the
purpose of creating the dataset and shall not be used further in the prioritization mechanism.

2.1 Design
One of the challenges facing us is the classification of the data. IPFIXprobe does not currently
support RTP protocol (and its derivatives) recognition. Therefore we had to design a solution to
face this difficulty. The design phase consists of two parts. The first part focuses on creating a
general architecture. Following the architectural design of IPFIXprobe modules and the Single
Responsibility Principle in software design, two modules have to be created: RTP DPI classifier
(shall be further referred as DPI classifier) and RTP DPI exporter (shall be further referred as
DPI exporter). The purpose behind the DPI exporter lies in exporting the information from
the classifier. Another reason for creating two modules lies in the limitations of the IPFIXprobe
system, which usually exports the information once and upon the termination of the flow. This
introduces a problem with UDP traffic as it does not have any state, and therefore the flow ends
and is exported upon a specific timeout is reached.

2.1.1 Modules design
The two modules are closely intertwined. They run independently, and the processing order
is ensured by processing the packets for the DPI classifier in the pre update phase and the
DPI exporter in the post update phase (more information about the phases can be found in
section 1.2.1.1). The DPI classifier module can be run independently. DPI exporter has a
dependency on the DPI classifier module.

2.1.1.1 DPI classifier
The DPI classifier module follows the architecture of the generic IPFIXprobe module. The
classification process is split into multiple parts.

The first part is general validation if a UDP packet satisfies the conditions of the RTP packet
(RTP header). RTP header has a minimum length of 12 bytes. For simplification, we will
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consider only IPv4 packets not having source or destination ports equal to port 53 (DNS). The
requirement was set up to avoid overloading the testing system. Further validation validates the
RTP version field and RTP payload type. RTP version field must be equal to 2 in accordance
with RFC 3550 [24]. RTP payload type must not be 7210 and 7310 as the RFC 3550 [24] specifies.
The recommendation set by the RFC 5761 [52] states that payload type should not be in the
range 64–95. More weak validation steps are defined in RFC 3550 [24] and they relate to packet
length validation.

After the validation phase, the verification phase comes. The verification is done per flow
(not in bi-flow style as before). The rest of the algorithm can be represented with an extended
state machine. The state machine has 3 states:

HEADER EMPTY initial state

HEADER MATCHING state representing having potential valid RTP header

HEADER INITIALIZED final state representing having passed the validation and verifica-
tion

The initial state is HEADER EMPTY. After successful validation, the state is changed to
HEADER MATCHING and it saves the RTP header for further verification purposes.

When a packet is received and passes the validation, the further verification process begins.
It consists of comparing the payload type of the received packet and the saved packet from the
previous phase if they match SSRC fields are compared, and for sequence numbers and timestamp
fields differences are calculated and then compared with constants. This approach is there to
ensure recognition even if some packets are lost during the transmission. If the payload types in
the verification do not match, then only SSRC field is checked. If verification is not successful,
the saved RTP header is replaced with the current potential RTP header, and the state stays
as HEADER MATCHING. If the verification is successful, then the saved RTP header is only
updated with relevant information (to have the most recent timestamp and sequence information
saved), and the state is changed to HEADER INITIALIZED.

When a packet is received in state HEADER INITIALIZED validation and verification occur;
if both checks are successful, then the saved RTP header is updated, otherwise, the RTP header
is not updated. In both cases, the state HEADER INITIALIZED remains unchanged.

The extended state machine (see figure 2.1) also includes counters to calculate the num-
ber of matched and unmatched possible RTP packets, but it is omitted in the explanation for
simplification reasons.

2.1.1.2 DPI exporter
The DPI exporter module also follows the architecture of the generic IPFIXprobe module. The
module is distinctive from regular IPFIXprobe modules, as they usually work standalone, but
this module is tightly bound to the DPI classifier and won’t work without it.

As previously noted, to ensure the correct processing order, the packets are processed in the
post update processing phase. The module follows a very simple concept: it stores metadata
for the flow and once it reaches the threshold defined by a constant in the code, it flushes the
packet metadata into a file. Because plugins can be run on multiple threads simultaneously,
the exporter creates a file stream (opening a unique file at /tmp/ location) per thread. Once a
threshold of packets is reached, it writes the metadata to the file. Metadata consists of:

RTP counters

Last time of communication

Last time of communication in the direction from SRC → DST

Last time of communication in the direction from DST → SRC
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2.2 Implementation

Implementation is split into two main tasks: implementation of the DPI classifier and DPI
exporter. Both of the modules follow the traditional architecture of processing plugins in IPFIX-
probe. Due to the plugin dependency as mentioned in the chapter above, additional steps need
to be taken into consideration while implementing the plugin.

2.2.1 DPI classifier
The module was created following the official guide available on the GitHub page of IPFIXprobe
project [13] using a shell script called create plugin.sh located in the process folder of the project.
Instructions given by the script were followed.

The plugin creates a record, saving all the information needed for the plugin to process the
flow in the module. The information includes but is not limited to example bare RTP headers as
described in section 1.3.2. The simplified implementation of RTP headers in C++ can be seen in
listing 2.1. It also contains RTP counters for both directions, they can be seen in listing 2.2 and
a state variable saving the state of the extended state machine described in the design section
chapter 2.1.1.1.
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Code listing 2.1 Simplified RTP header used for used in DPI classifier module
struct rtp_header {

uint16_t csrc_count : 4;
uint16_t extension : 1;
uint16_t padding : 1;
uint16_t version : 2;
uint16_t payload_type : 7;
uint16_t marker : 1;
uint16_t sequence_number ;
uint32_t timestamp ;
uint32_t ssrc;

};

Code listing 2.2 Additional metadata stored for DPI classifier
struct rtp_counter {

uint32_t total_src_after_recognition ;
uint32_t rtp_src ;

uint32_t total_dst_after_recognition ;
uint32_t rtp_dst ;

};

Implementation closely follows the design principles described in section 2.1.1. It implements
the extended state machine described there and updates the state variable in the plugin record.
It also increments the RTP counters in case the algorithm decides that the processed packet is
an RTP packet.

The DPI classifier module has additional methods for validation, verification, and helper
methods. The validation and verification methods follow the design. Helper methods mostly
help with ETL operations.

2.2.2 DPI exporter
The module was created following the official guide available on the GitHub page of IPFIXprobe
project [13] using a shell script called create plugin.sh located in the process folder of the project.
Instructions given by the scripts were followed.

DPI exporter starts collecting the RTP record metadata called rtp exporter capture group
at soon as the first packet arrives (can be configured to skip the first n packets via chang-
ing macro RTP EXPORTER EXPORT CAPTURE GROUP START in rtp.hpp) and exports the metadata
after processing 200 packets (can be configured by changing the define macro in rtp.hpp that
is called RTP EXPORTER EXPORT CAPTURE GROUP SIZE). The to-export metadata stores states of
flow metadata after each packet is processed, it creates a sequence of states to be exported. The
to-export metadata contains the flow key, rtp exporter capture group, and additional flow infor-
mation (such as the number of packets transferred, number of bytes transferred, etc.). The struc-
ture of rtp exporter capture group can be seen in listing 2.3. The labeling feature RTP RATIO is
calculated as PACKETSRT P RECOGNIZED/PACKETSALL and is exported as well with the
flow metadata.

Due to the multi-threaded nature of IPFIXprobe modules, we need to create a separate
file stream per thread to export the information. For creating the files we need to set up a
unique identifier, we decided to go with ‘std::this thread::get id()’ as it should be unique across
all the threads in the current process. The ‘this thread::get id()’ might be reused in case a
thread finishes, this situation might arise in IPFIXprobe in two cases: correct shutdown of the
application terminates all threads and the second case happens when an exception is thrown or
a segmentation fault happens, in that case, the program is not able to continue successfully. The
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direction in rtp exporter capture group is defined in listing 2.4 — false meaning direction from
SRC → DST and true otherwise.

Code listing 2.3 RTP captured information exporter additional metadata
struct rtp_exporter_capture_group {

struct rtp_counter rtp_counter ;
struct timeval time_last ;
struct timeval time_last_src ;
struct timeval time_last_dst ;

uint64_t src_bytes ;
uint64_t dst_bytes ;
uint32_t src_packets ;
uint32_t dst_packets ;

uint16_t packet_len ;
uint16_t payload_len ;

bool direction ;

rtp_exporter_capture_group (): time_last_src {0}, time_last_dst {0} {}

} rtp_exporter_capture_group ;

Code listing 2.4 DPI exporter macros
# define RTP_EXPORTER_SOURCE_SRC_TO_DST false
# define RTP_EXPORTER_SOURCE_DST_TO_SRC !( RTP_EXPORTER_SOURCE_SRC_TO_DST )

Once the nth (defined by macros as described in the paragraph above) packet is processed,
the export starts. The output format is CSV. The exported data is saved to the file opened
during the initialization of the module (per thread).

The DPI exporter module follows the design in section 2.1.1. The validation mechanism is
weaker compared to the DPI classifier and it is included in the packet handling method. It
consists of checking if the flow is IPv4-based, UDP and not running on port 53.

2.3 Data collection
The data collection process is divided into two fragments. The first fragment focuses on data col-
lection on the local network to observe the ‘real’ communication pattern created by MS Teams,
the dataset created shall be referred as local traffic dataset. The second fragment focuses on
anonymized filtered flow information captured in CESNET [53] network. The dataset created
in the CESNET network shall be referred as core-network dataset. After the analysis of the
local traffic dataset, information gained in the process can help tailor the configuration for cap-
turing the core-network dataset. Additionally, the local traffic dataset can be used for testing
purposes during development (as the dataset contains traffic captured in the process), allowing
reproducibility. The core-network dataset will be used further for training the machine-learning
models.

2.3.1 Local traffic capture
The activity data was captured on the local network by a tool called Wireshark (captured on an
interface handling the traffic going to the default gateway) and saved as a PCAPNG file. This will
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Figure 2.2 General overview of the local capture process

allow further processing either by IPFIXprobe or manual inspection of the traffic. The capture
activity was a call via MS Teams. After fifteen seconds in the call, video-sharing was turned
on. The whole communication lasted approximately thirty seconds. The capture was conducted
three times. The first experiment was conducted on a virtualized machine connected to the
main networking stack of the host via NAT, the virtualized machine was running Fedora 38 OS,
and the other side receiving the call was running Fedora 38 OS as well. The same experiment
was repeated, but the sides of the caller and callee were reversed. The third experiment was
conducted on a virtualized machine connected to the main networking stack of the host via
NAT, and the other side receiving the call was running iOS 16.0. The following analysis was
focused on ports 3478–3481 (more information in section 1.1) as these ports were used by the MS
Teams platform. A diagram demonstrating the local capture process can be seen in figure 2.2.

2.3.1.1 Dataset analysis
The next step was an analysis of the PCAPNG files. The very first few packets of the call
excluding DNS packets were ICE (see section 1.3.1.2) packets – STUN/TURN. These few pack-
ets can theoretically influence the recognition process, therefore the RTP exporter module (see
section 2.2.2) supports an option to skip the very first few packets in the export analysis.

2.3.2 Core-network traffic capture
The capture environment, as well as the capturing process, vastly differ compared to the local
traffic capture. The capture activity started with IPFIXprobe processing data directly from
the interface located at the outer perimeter of the CESNET2 public network. The captured
data, including source and destination IP addresses, contained sensitive information (personal
information) and therefore they had to be anonymized. Due to the anonymization, labeling the
flows based on the IP addresses was not feasible.

Two types of capture were conducted:

UDP traffic using ports 3478–3481, limited to known IP addresses used by MS Teams

UDP traffic using ports 3478–3481 with no IP address limitation

The combination of IP addresses, ports, and protocols used are known for MS Teams (see
section 1.3.3), these combinations were used for both of the capture types. In the first case,
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Figure 2.3 General overview of the capturing architecture for core-network traffic capture

filters for IP addresses and ports were applied, and in the second case, only filters for ports were
applied.

The MS Teams platform prefers direct connection between ‘call peers’, we can expect most of
the traffic directed at MS Teams servers to be relayed over TURN servers. The second capture
may contain more direct connections between ‘call peers’, however, we cannot be sure of the true
purpose of the traffic as other protocols can be used. When dealing with a direct connection
established via STUN, the ports may differ and therefore can’t be part of the planned captures.
The second type of capture was limited to ports used by MS Teams to limit the scope of capture,
even though it’s not as effective as STUN may allocate different port than the ones used in
the filter, some implementations of STUN use the destination port as preferred one, if free, and
allocate it for the communications.

The process started with filters applied in IPFIXprobe. The data source for IPFIXprobe
was a network interface attached to the CESNET public infrastructure. IPFIXprobe had two
modules turned on: DPI classifier and DPI exporter. The DPI classifier classified the flow and
upon a threshold was reached DPI exporter exported recorded flow data (see section 2.2.2).

2.4 Resulting dataset
The resulting dataset consists of features mentioned in table 2.2. The dataset requires additional
preprocessing, which shall be discussed in section 3.2. Upon testing many combinations of
thresholds, we decided to set the RTP recognition threshold to 0.3. The table 2.1 shows the total
number of recognized RTP flows and the number of packets available for further analysis in the
dataset.

Table 2.1 Dataset creation basic dataset analysis

Feature name Flow count Packets metadata count
IS RTP 9 743 1 948 600
IS NOT RTP 40 257 8 051 400
Total 50 000 10 000 000
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Table 2.2 Dataset creation feature list

Dataset feature name
time first.tv sec
time first.tv usec
src ip
dst ip
src port
dst port
direction
packet len
payload len
src packets
dst packets
src bytes
dst bytes
time last.tv sec
time last.tv usec
time last src.tv sec
time last src.tv usec
time last dst.tv sec
time last dst.tv usec
rtp counter.rtp src
rtp counter.rtp dst
rtp counter.total src after recognition
rtp counter.total dst after recognition
ratioRtp



Chapter 3

Machine learning design

This chapter describes creation of a machine learning model and creation of an ‘adapter’ IP-
FIXprobe module for machine learning. The first part focuses on data preprocessing, the second
part focuses on the machine learning model creation, and the third one on designing and im-
plementation of IPFIXprobe module that will be used as an ‘adapter’ for the machine learning
model.

3.1 Requirements
The ML RTP recognition model should be able to recognize real-time traffic (RTP traffic) and
run in IPFIXprobe environment. The IPFIXprobe project is programmed in C++, so there
has to be a synergy between the machine learning model and the IPFIXprobe modules. After
a discussion with the supervisor, we have decided to implement the recognition algorithm as
a native IPFIXprobe module. This will require porting the model from Python which limits
the ML models/algorithms available, porting the model will be further discussed in section 4.1.
The ML model must be able to decide the recognition output, so it does not lower network flow
throughput of IPFIXprobe modules significantly. The available ML algorithms were discussed
with the supervisor and we have decided to choose tree-based algorithms and their boosted
alternatives.

3.2 Data preprocessing
The dataset created in chapter 2 contained raw data that required further processing. The dataset
containing flow metadata was explored and further processed via an interactive Jupyter Note-
book [54] using the Python programming language. Following libraries were used: numpy [55],
pandas [56] and matplotlib [57].

The process started with the normalization of the dataset. The dataset features can be
divided into two categories:

Direction-less

Direction-relevant

The difference between these two categories has been described in section 1.1.2. It is ben-
eficial to distinguish between traffic going from caller to MS Teams server and vice versa for
machine learning. The flows are often recognized in the opposite direction than they started in,
therefore normalization is needed. The list of all features and their categories can be found in
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table 3.1. Normalization of direction requires all direction-relevant features to be switched via
their direction counterparts (src with dst and vice versa). The time normalization consists of
converting time-related features from format .tv sec, .tv usec and merging them to one variable.

Table 3.1 Features’ categories of the raw dataset generated by IPFIXprobe after time normalization

Feature name Category
time first direction-less
src ip direction-relevant
dst ip direction-relevant
src port direction-relevant
dst port direction-relevant
packet len direction-less
payload len direction-less
src packets direction-relevant
dst packets direction-relevant
src bytes direction-relevant
dst bytes direction-relevant
time last direction-less
time last src direction-relevant
time last dst direction-relevant
rtp src direction-relevant
rtp dst direction-relevant
total src after recognition direction-relevant
total dst after recognition direction-relevant

Upon discussion with the thesis supervisor, we decided to enrich the dataset with biproducts
of the data records (flow metadata) and also add statistical features describing the flow as a
whole. These statistical features can offer more insight into communication and can be used
further for machine learning as additional features. The list of enriched features, including the
added statistical ones can be seen in table 3.2.

The dst or src in the name of a feature represents the direction of flow, the source is set
up as a caller and the destination as MS Teams server. The avg represents an average for the
flow metadata, std represents a standard deviation, time diff represents a difference between
the two last consecutive records, ratios are calculated as the featuresrc/featuredst and rates as
feature/duration. Time duration is calculated as timelast − timefirst. Packets and bytes as a
sum of featuresrc + featuredst. Upon discussion with the supervisor, we decided to normalize
rtpRatio to a boolean value called is rtp. The decision boundary has been set to 30%. The only
flow-key information preserved is dst port as it represents the service used (more in section 1.3.3).

3.2.1 Basic dataset analysis
As the figure 3.1 shows, there is a large imbalance between RTP-classified traffic and other traffic.
The ML model used must take the imbalance into consideration and work with it. As figure 3.1
states the ratio of RTP recognized traffic with non-RTP traffic is approximately 1:4. We can also
look at the RTP ratios from the dst port perspective for ports 3478, 3479 (see figure 3.2) and
ports 3480 and 3481 (see figure 3.3). The ports usage in MS Teams can be found in section 1.3.3.

3.2.2 Feature selection
“Feature selection (...) has been proven to be effective and efficient in preparing data (especially
high-dimensional data) for various data-mining and machine-learning problems. The objectives
of feature selection include building simpler and more comprehensible models, improving data-
mining performance, and preparing clean, understandable data.” [58]
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Table 3.2 List of all the features created by the preprocessing and their status (enriched)

Feature name
time duration
src bitrate
dst bitrate
bitrate
src packet rate
dst packet rate
packet rate
packet ratio
bytes ratio
time src diff avg
time dst diff avg
time diff avg
time src diff std
time dst diff std
time diff std
src bytes
dst bytes
bytes
src bytes per packet avg
dst bytes per packet avg
bytes per packet avg
src bytes per packet std
dst bytes per packet std
bytes per packet std
src packets
dst packets
packets
packet len
dst port
is rtp
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Figure 3.1 Ratio of RTP traffic to non-RTP traffic

(a) RTP ratio for port 3478 (b) RTP ratio for port 3479

Figure 3.2 Ratio of RTP traffic to non-RTP traffic for port 3478 and 3479
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(a) RTP ratio for port 3480 (b) RTP ratio for port 3481

Figure 3.3 Ratio of RTP traffic to non-RTP traffic for port 3480 and 3481

Figure 3.4 Visualisation of RFECV and min-features taken (the three lines represent cross-validation
scores)

Feature selection is closely intertwined with the machine learning algorithm used. We used
the ‘RFECV ’ with ‘RandomForestClassifier ’ (with these parameters class weight=’balanced’,
n estimators=100, max depth=20), the scoring mechanism chosen was F1 score and as cross-
validation algorithm has been chosen ‘StratifiedKFold(3)’. The selected feature set has a recom-
mendation character as other modifications to the dataset might be needed, especially if another
classifier is used.

These features have been excluded from the training:

dst port

packets

src packets

dst packets

The optimal amount of features evaluated by the ‘RFECV ’ was 20 features. These features
were chosen to be excluded by the feature selection algorithm:

time src diff avg

time dst diff avg

time diff avg

src bytes

bytes
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3.3 Machine learning methods

After compiling the datasets with preprocessed features, a machine learning algorithm shall be
used to categorize the traffic. The ML model can be either supervised (labeled datasets) or
unsupervised (more information in section 1.4). This thesis focuses on supervised forms. The
compiled dataset has been already labeled. Several machine learning algorithms were chosen
to achieve the classification task, consisting of Decision Tree, Random Forest, AdaBoost, and
XGBoost.

To facilitate the ML process, all the machine learning models are trained and evaluated in
Jupyter Notebook in Python, using these libraries: numpy [55], pandas [56], matplotlib [57],
scikit-learn [59] and XGBoost library [47].

3.3.1 Approach
There are two main approaches, building the data model for each type of traffic: voice, video,
and screen-sharing, or building one ‘fits-all’ model. Both these options have their benefits and
drawbacks.

The one-type-one-model is able to classify the traffic in more precise way as the traffic char-
acteristics are more consistent, nonetheless, it requires a ML model per type of traffic. Having
multiple models turned on can degrade the performance of the classification system. Another
disadvantage related to our work is possible misclassification of other voice protocols as this
paper focused only on RTP and other voice protocols can have different characteristics.

Contrary the one-model-fits-all is more robust in processing multiple types of traffic as the
models were built to recognize the real-time traffic patterns rather than the type of traffic.

After evaluating the benefits and drawbacks of both models, we decided to select the one-
model-fits-all.

3.3.2 Model design
As discussed in section 2.2.2, the created dataset consists of ‘history’ chunks of flow analysis
enriched with additional (mainly statistical) features. We can train the machine learning model
on the whole dataset or on smaller chunks (representing the state after nth packet is processed).
In order to emphasize the ‘stable’ (in terms of not changing throughout the communication)
features of the communication, we decided to implement the strategy of using the whole dataset.

The dataset will be split into training and testing parts with stratify option enabled. Stratify
ensures that the split dataset follows the distribution of the values in the core dataset. The ratio
for training and splitting the dataset was after a few experiments set to 80%. The method used
for splitting the dataset was train test split available in scikit-learn library.

In order to simplify machine learning model retraining we included an option to exclude
certain columns from the model training. The training paradigm includes comparisons of ML
models with multiple metrics in mind, however for training one main metric must be chosen.
After proper evaluation of the metrics suitable for our cause and their availability in the machine
learning framework used we chose F1 score. It is calculated as 2∗T P

2∗T P +F P +F N , where TP, FP, and
FN are part of a confusion matrix (see figure 3.5).

Each of the models offers multiple hyperparameters, refining the machine learning model. The
most popular ones for tree-based ML algorithms include maximum depth of a tree and number
of estimators for ensemble algorithms. The tree-based algorithms in scikit-learn (Decision Tree,
Random Forest, and XGBoost) also offer class weight hyperparameter, which is mainly used to
balance the dataset in relation to the algorithm.
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Figure 3.5 Confusion matrix explanation, from [60]

3.3.3 Model training
The ML model training process followed the design principles (see section 3.3.2). For testing
various hyperparameters, we chose to use GridSearchCV feature with the combination of scikit-
learn’s Pipelines. It trains the ML model testing all the combinations of hyperparameters,
evaluates them, and returns the best model. The combinations of hyperparameters tested can
be seen in figure 3.1.

Code listing 3.1 Python dictionary showing hyperparameters used for model training
training_methods = {

’decision_tree ’: {
’pipeline ’: Pipeline ([

(" classifier ", tree. DecisionTreeClassifier (
class_weight =’balanced ’))

]),
’params ’ : {

’classifier__max_depth ’: range (5, 50, 5)
},
’jobs ’:max_jobs ,
’jobs_method ’:1,
’metric ’: metric_default ,

},
’random_forest ’: {

’pipeline ’: Pipeline ([
(" classifier ", ens. RandomForestClassifier (

class_weight =’balanced ’))
]),
’params ’: {

’classifier__n_estimators ’: range (100 , 225, 25),
’classifier__max_depth ’: range (5, 25, 5)

},
’jobs ’: max_jobs ,
’metric ’: metric_default ,

},
’adaboost ’: {

’pipeline ’: Pipeline ([
(" classifier ", ens. AdaBoostClassifier (

tree. DecisionTreeClassifier ( max_depth =20,
class_weight =’balanced ’,algorithm =’SAMME ’)

))
]),



32 Machine learning design

’params ’ : {
’classifier__n_estimators ’: range (100 , 225, 25),

},
’jobs ’:max_jobs ,
’metric ’: ’f1’,

},
’xgboost ’: {

’pipeline ’: Pipeline ([
(" classifier ", xgb. XGBClassifier ( tree_method =’hist ’))

]),
’params ’ : {

’classifier__n_estimators ’: range (100 , 225, 25),
’classifier__max_depth ’: range (5, 25, 5)

},
’jobs ’:max_jobs ,
’metric ’: ’f1’,

}

The next part of the model evaluation was manual, it focused on comparing the models. The
tree ensemble methods based on bagging (see section 1.4.2.2) heavily relied on a few features,
having high feature importance. The decision made by the ML algorithm primarily depended
on a small set of features, that were relevant to certain types of traffic but did not necessarily
have to be relevant for all real-time traffic.

Following the design decisions (see section 3.1), the machine learning shall be run in the
IPFIXprobe ecosystem. The ML model must be ported to C++ (see section 4.1.1), to be able
to be integrated with IPFIXprobe. Therefore the model testing comprises of an additional step
– porting the model into C++ and integrating it into the IPFIXprobe subsystem. The models
trained using the hyperparameters defined in listing 3.1 were exported via m2cgen utility (further
described in section 4.1.1). The models were too big to be considered (hundreds of MBs of C++
code). We tried integrating them into the IPFIXprobe subsystem, but we were met with very long
compilation times and in some cases compilation failures. Another aspect of the ML model is its
size, our ML recognition subsystem should not significantly increase the memory footprint of the
IPFIXprobe system. Upon discussion with the thesis supervisor, we decide to limit the number
of all nodes (in decision-tree-based algorithms) to 215. The internal nodes shall be translated into
IF conditions (see section 1.4.1). This imposes additional limits for hyperparameters. In order
to utilize the advantages of tree ensembles, the number of estimators must be higher than one.
The perfect binary tree (representing the maximum possible size of a decision tree) has 2h+1 − 1
nodes [61], where h is equal to the depth of the tree. Upon thorough manual testing, the most
performant combination of hyperparameters was chosen – the maximum number of estimators
was set to 100 and the maximum depth to 7. For the decision tree, the limits imposed are related
only to the maximum depth and are equal to 14.

The training followed the same settings in terms of hyperparameters except for the ones
explicitly mentioned in this section. The model’s statistical information can be seen in table 3.3.
The two best models according to F1 scores were Decision Tree and XGBoost, upon comparison
of F1 scores and confusion matrixes, we decided to choose XGBoost as the to-go model. The
comparison of the models’ performance after n packets were processed can be seen in figure 3.6.

3.3.4 Final model
The chosen model upon analysis is the XGBoost-based model. The feature significance can be
found in table 3.4. The model’s performance analysis over the first nth packets can be seen in
figure 3.6.



IPFIXprobe module 33

Figure 3.6 Comparison of trained ML models – limited hyperparameters

Table 3.3 Comparison of machine learning algorithms test scores – smaller models

ML model #E. M.D. F1 CM

Decision Tree 1 14 0.847 641727 50676
7 109 160 471

Random Forest 100 7 0.775 618 533 73 870
14 756 152 824

AdaBoost 100 7 0.793 628 975 63 428
15 653 151 927

XGBoost 100 7 0.891 676 166 16 237
19 876 147 704

Table 3.4 Feature significance of XGBoost selected model

Feature name Feature significance
dst packet rate 0.590
packet rate 0.058
dst bitrate 0.058
dst bytes per packet std 0.057
src packet rate 0.037
bytes per packet std 0.033
dst bytes per packet avg 0.033
bitrate 0.025
bytes ratio 0.024
time diff std 0.024
bytes per packet avg 0.019
src bytes per packet std 0.015
src bytes per packet avg 0.015
time src diff std 0.011

3.4 IPFIXprobe module



34 Machine learning design

3.4.1 Data preprocessing
The data generated by IPFIXprobe have been processed outside of the IPFIXprobe ecosystem,
however as the ML shall have a form of an IPFIXprobe module (see section 3.1), the preprocessing
has to be also moved to the module. This introduces multiple challenges, some of the calculations
need to be moved to on-the-fly calculations. On top of standard mathematical calculations, such
as addition, division, etc., we need to find on-the-fly algorithms for the calculation/approximation
of standard deviation. For running calculation/approximation of standard deviation, we can use
Knuth’s or Welford’s online algorithm. Upon testing the algorithms, we decided to use Welford’s
online algorithm.

The additional flow metadata required for calculations are mostly time-based ones: time first,
time src last, time dst last, time last. For the listed statistical features, we need Welford’s cal-
culators: time src diff, time dst diff, time diff, src bytes per packet, dst bytes per packet, and
bytes per packet.

3.4.2 Module structure
The module shall be divided into two logical parts. The first part shall be responsible for
processing the flow metadata and calculation of statistics-based features. It shall also take care
of storing all necessary flow metadata required for the calculations. The second part shall be
responsible for handling model evaluation and communication between IPFIXprobe and OVS.

3.4.3 Module implementation
The module consists of two parts. After IPFIXprobe recognized a new flow, the post create
function is called. It creates a record for storing metadata for the flow. In our case, the record
contains the metadata required for calculations. After initialization of the record, we call a
method manage packet that performs basic validation of the packet (could be RTP or not). The
validation consists of checking if the used protocol is UDP and if the IP stack used is version
4, IPv6 cannot be considered due to its unavailability in the dataset. It also filters out port
53/UDP as it is mostly used for DNS. After passing the validation, metadata are updated. The
evaluation of the machine learning model is set up to happen every 25 packets (if validation is
passed). The number of packets can be changed by changing a macro ANALYSIS STEP. The
evaluation of the ML model can be delayed by changing macro ANALYSIS THRESHOLD. The
default value is set to 25 for both.

The ML vector is represented by structure rtp ml vector (can be seen in listing 3.2), it
also contains a function predict that returns true only if the machine learning model decides
that the flow is RTP based on the features. The rtp ml vector necessarily does not need to
contain all available features, as it might use only a small part of them. We included all the
features in the rtp ml vector vector, as it might be easier to replace the model without needing
to modify the IPFIXprobe module responsible for detection. The evaluation model is located in
the process/rtp-ml-model.hpp.

Code listing 3.2 C++ ML vector
struct rtp_ml_vector {

double time_duration ;
double src_bitrate ;
double dst_bitrate ;
double bitrate ;
double src_packet_rate ;
double dst_packet_rate ;
double packet_rate ;
double packet_ratio ;
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double bytes_ratio ;
double time_src_diff_avg ;
double time_dst_diff_avg ;
double time_diff_avg ;
double time_src_diff_std ;
double time_dst_diff_std ;
double time_diff_std ;
double src_bytes ;
double dst_bytes ;
double bytes;
double src_bytes_per_packet_avg ;
double dst_bytes_per_packet_avg ;
double bytes_per_packet_avg ;
double src_bytes_per_packet_std ;
double dst_bytes_per_packet_std ;
double bytes_per_packet_std ;
double packet_len ;

bool predict ();
};

The evaluation of the model is run twice; it is caused by not having the direction normalized
(see section 3.2). If any of the runs are evaluated as true, the flow is marked as RTP and sends
a command via the system function to instruct OVS to prioritize the flow.
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Chapter 4

Implementation of traffic
prioritization

This chapter focuses on transferring the ML model trained in chapter 3 and setting up the
prioritization subsystem using OVS. It also includes a part where a PoC is designed, implemented,
and tested.

4.1 Machine learning model transfer to lower-level lan-
guage

4.1.1 Design
As previously discussed (see section 3.1), the model will need to run as a native IPFIXprobe
module classifying the data. This imposes a challenge of porting the trained ML models. The
scikit-learn library offers a list of related packages, which contains several packages focused
on exporting ML models to other languages. We are most interested in porting to C/C++.
The listed options include sklearn-porter [62], m2cgen [63] and treelite [64]. Sklearn-porter
only supports porting of Decision Trees, whereas m2cgen supports porting Decision Trees, tree
ensembles such as Random Forests, and XG-boosted trees. Treelite introduces an additional
library dependency to the IPFIXprobe stack, which violates the requirements set in the design
phase (see section 3.1) and therefore it cannot be considered. Upon evaluation of available
options with the requirements set, the most suitable module for our use-case is m2cgen.

4.1.2 Implementation
The m2cgen library needs a fitted model, the export command can be found in listing 4.1. It
generates a function called score with declaration available in listing 4.2. It must be re-adjusted
to fit the interface of the program. The input, in our case pointer, is to an array of doubles
(representing the features), and the output is a pointer to an array of 2 doubles. The memory
must be allocated before running the function. The list of input variables follows the order set up
in design, with the exception of: dst port, packets, src packets, dst packets. The output array’s
first value is between < 0, 1 > inclusive. It represents the probability of not being RTP. The
output array’s second value represents the probability of being RTP. The probability of being
RTP is 1 − valuefirst.

37
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Code listing 4.1 Python code for model conversion to C language
# classifier must be supported and fitted
code = m2c. export_to_c ( classifier )

Code listing 4.2 Generated scoring function by m2cgen
void score( double * input , double * output );

Code listing 4.3 C++ interface for ML prediction
bool rtp_ml_vector :: predict ();

The m2cgen generates a C/C++ code (methods). It converts all features to doubles. As
shown in figure 4.2, the method signature does not match the standard IPFIXprobe code interface
and therefore has to be remade. Another challenge is the usage of ‘memcpy’ instead of assignment.
We prepared a Python script converting the most essential features to the IPFIXprobe format. It
changes the method signature to ‘bool rtp ml vector::predict()’, and converts all input[x] variables
to the proper feature fields. It also replaces ‘memcpy’ with regular assignments. The script does
not currently do all the necessary work, but rather the most repetitive. We have to insert the
method into the template. The process shall be described in the README.md file located next
to the script. The rtp ml vector structure contains all the features (see section 3.2) converted to
double and a function ‘predict’ returning true if the vector has been classified as real-time traffic
(as RTP) or false if not.

4.2 Traffic prioritization via OVS
Open vSwitch provides numerous methods (see section 1.5.2.1) for traffic prioritization. One of
the methods for prioritization is creating a QoS subsystem in OVS and creating multiple queues
with min-rate and max-rate parameters. After creating and assigning the queues to interfaces
in OVS subsystem, a network administrator is required to create a set of rules assigning the
network flows into the proper queues, thus realizing the prioritization. The min-rate parameter
can ensure guaranteed minimal packet bandwidth in terms of packet scheduling. The max-rate
parameter limits the maximum speed of a flow.

The prioritization follows the design principles described in section 4.2. First, we create an
OVS bridge system. Our bridge shall be called br0. Our input interface shall be called eth0 and
the output interface eth1.

Commands for creating a bridge and adding the interfaces can be seen in figure 4.4. OVS QoS
system creation can be seen in figure 4.5. We introduced multiple parameters to artificially limit
the speeds to be able to test it (more information about the design can be found in section 4.2
and about the parameters and their influence in section 1.5.2.1). The QoS subsystem must be
assigned to the output interface.

Code listing 4.4 Initialization of OVS
ovs -vsctl add -br br0 # create OVS bridge
ovs -vsctl add -port br0 eth0 # add eth0 interface to the bridge

ip link set br0 up # bring up the OVS bridge interface

Code listing 4.5 OVS QoS system set-up
ovs -vsctl -- \

--id= @newqos create qos type=linux -htb \
queues =0= @q0 ,1= @q1 -- \
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--id=@q0 create queue \
other - config :max -rate =5000000 \
other - config :min -rate =5000000 -- \

--id=@q1 create queue \
other - config :max -rate =20000000 \
other - config :min -rate =20000000 \

-- set port br0 qos= @newqos

After creating the QoS system, we need to add flow rules to define how the flows should be
treated. First, we remove all the flow rules in the table, as there might be some remnants of the
default configuration. After that, we add the rules and we should not forget about adding the
default handler. Figure 4.6 shows the process with adding one bi-flow rule (two uni-flows rules)
stating that traffic transferred via UDP protocol coming from IP address 1.2.3.4 to IP address
4.3.2.1 from port 1234 to port 4321 and vice versa (direction-wise) should be prioritized. The
priority of the rule has to be higher than the default priority value 32 768 (more in section 1.5.2.1).

Code listing 4.6 OVS flows assignment to queues
ovs -ofctl del -flows br0 # remove all previous flow rules in br0
# ...

# add flow rule
ovs -ofctl add -flow br0 \

priority =40000 ,ip , nw_src =1.2.3.4 , nw_dst =4.3.2.1 ,
udp , udp_src =1234 , udp_dst =4321 , actions = set_queue :1, normal

# add reversed flow rule
ovs -ofctl add -flow br0 \

priority =40000 ,ip , nw_dst =1.2.3.4 , nw_src =4.3.2.1 ,
udp , udp_dst =1234 , udp_src =4321 , actions = set_queue :1, normal

# ...
ovs -ofctl add -flow br0 \

actions = set_queue :0, normal # add default action

4.3 Proof of Concept demonstration

4.3.1 Design
The Proof of Concept consists of a concrete test of the created ML model. The test shall have
multiple phases, first phase is focused on testing the model on PCAPNG files and comparing the
results of the ML model with the manual observation of the PCAPNG files (captured during the
dataset-creation phase – see section 2.3.1). This part however cannot test the prioritization part
of the OVS.

The second part consists of running the ML model on a Turris router [65] having installed
OVS and IPFIXprobe with our model recognition incorporated. We shall connect our device to
the network running the OVS set up for prioritization and IPFIXprobe with the ML model.

4.3.2 Implementation
The implementation followed the design principles defined in section 4.3.1. The first phase
consisted of testing the ML model on PCAPNG files.
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lan1

lan0

Turris0 - ISP SOHO router

Turris1 - OVS prioritizer
(acting as a switch)

Figure 4.1 Simplified diagram of the PoC architecture

The second phase consisted of testing the ML model on physical hardware. The architecture
of the network stack consisted of two Turris Omegas. First Turris was acting as a regular ISP-
provided SOHO router performing NAT and providing DHCP and DNS services on the LAN
interfaces. The IP range used for testing was 192.168.0.0/24. The second Turris had the default
LAN bridge disassembled. The lan0 port was connected to the first Turris. The lan1 port was
connected to a testing laptop running on Fedora 38 OS.

On the second Turris, we set up the OVS following the guide in section 4.2 with a few
adjustments. The adjustments included add-port commands (adjusted to our use-case: lan0 and
lan1 ). The second adjustment was related to queues, we designed q0 as the default one with
max-rate limit set to 1Mbps. The q1 queue had a limit set up to 20Mbps. The QoS subsystem
was assigned to out-interface: lan0. The default flow rule assigned all the traffic to the limited
queue (q0). When the IPFIXprobe ML module recognized real-time traffic (RTP traffic in our
case), it triggers an invoke of system function and sends the prioritization command to the OVS
via ovs-ofctl. The command structure can be seen in section 4.2. The IP address and ports
have to be modified. The simplified diagram can be seen in figure 4.1.



Chapter 5

Evaluation

5.1 Model evaluation

In chapter 3 we tested multiple machine learning models, then designed a solution integrating
the model into the IPFIXprobe ecosystem.

Figure 5.1 shows an improving trend for the model’s performance – the more packets we
process, the more precise the detection gets. The first few packets might not be RTP, but rather
TURN and STUN (see section 2.3.1). The RTP exporter can be set up to skip the very first few
packets.

The improving trend can be also seen in figure 5.2, which shows the number of False Positives
and False Negatives (visual explanation can be seen in figure 3.5) regarding the number of packets
processed in the communication.

5.2 Model transfer evaluation

As mentioned in sections 4.1.1, and 4.1.2, the exported model is not the same model as we trained
in Python, all the features were converted to doubles. It can introduce a potential challenge as
it can affect the model’s accuracy. Based on our observations the model’s performance has not
changed significantly.

Figure 5.1 General stats of the chosen ML model
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Figure 5.2 Confusion matrix - trend of FP and FN of the chosen ML model

5.3 Proof of Concept demonstration evaluation

5.3.1 Evaluation of PCAPNG files
The ML was also tested on the local-traffic dataset consisting of PCAPNG files. IPFIXprobe has
the option to input data from PCAP-like files rather than connecting to an interface. We used
that option and processed our captures, all of them were recognized as real-time traffic (RTP).

5.3.2 Model evaluation on SOHO network
The ML model was also tested on the local network. The experiment was running on Fedora 38
and ran the trained ML model. The expected outcome was to prioritize the calls. We simulated
the environment of a throttled network by having two queues (see section 4.2), one very slow
(simulating congested network), and one fast (prioritized). The experiment consisted of multiple
calls, initiated by different parties. Video-sharing was turned on after 15s. The experiment was
successful and all the calls were recognized. We also simulated an outage of connection and the
ML module was able to re-detect it (prioritize it) in the middle of the connection.

5.4 Performance statistics
Based on the design decision (see section 4.3.1) and implementation choices (see section 4.3.2)
made, the project is not ready to be used in production environment. It serves as a demonstration
of the project and shall be run in a testing environment. The communication between IPFIX-
probe and OVS is implemented as C++ system calls, which might affect the overall performance
of the whole IPFIXprobe subsystem.



Chapter 6

Conclusion

Real-time communication is a crucial element in many organizations across the world, more
emphasized by the trend of home office and globalism. The global trend in communication
platforms is offering their services via the Internet. It introduces a potential challenge as the
receiving organizations must ensure that their connection to the Internet is able to handle all
the traffic produced by the organization. This proves to be a difficult task as a bottleneck can
be introduced by the environment.

Traffic prioritization can help partially mitigate the negative effect on the organization by
prioritizing the traffic crucial to the organization. The standard approach for traffic prioritization
is based on rules defined by a combination of source and destination IP addresses, protocols, and
ports. This proves to be inefficient as these communication platforms are often hosted in clouds,
and IP addresses and ports can change from minute to minute. Cloud-based services often share
the very same IP, therefore prioritization based solely on IP addresses is inefficient. All said
related to prioritization stands only if the communication platform provider guarantees that the
combination of IP addresses and/or ports is only used by specific services.

This thesis was focused on designing, implementing (Proof of Concept), testing, and evaluat-
ing a solution developed for the purpose of real-time traffic prioritization combined with machine
learning and Open vSwitch (OVS). Traffic recognition focuses on RTP-based protocols as they are
prevalent protocols used for many popular communication platforms such as Microsoft Teams,
Zoom, Discord, etc.

As no relevant public datasets of real-time traffic have been found in the research part,
dataset creation has been a fundamental part of this thesis. It consisted of the creation of
new IPFIXprobe modules, an RTP classifier based on deep-packet-inspection, and an exporting
module. The created dataset contained several types of traffic, ranging from audio, video, screen-
sharing, etc. It contained information about approximately 50 000 flows (with history, it consisted
of circa 10 million records). Traffic recognition focuses on RTP-based protocols, which are
prevalent protocols used for many popular communication platforms such as Microsoft Teams,
Zoom, Discord, etc.

Various machine learning algorithms were tested, ranging from simple machine learning al-
gorithms to more advanced ones. The requirement of running the final machine learning model
inside of IPFIXprobe introduced several challenges. They had to be taken into account during
the learning phase. The results of the machine learning were promising as some of the models
reached F1 scores around 90%. The most accurate machine learning models suitable for usage in
the IPFIXprobe ecosystem included a Decision Tree and a XG-boosted tree ensemble. The cho-
sen ML model was XG-boosted ensemble due to its performance. The machine learning model
has been comprehensively evaluated.

Transferring the model into IPFIXprobe ecosystem proved not to be an easy task, we re-
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searched several open-source projects focused on porting machine-learning models to the native
language of IPFIXprobe. The most promising one was m2cgen, which was able to convert some
scikit-learn models into the native language of IPFIXprobe. An ‘adapter’ IPFIXprobe module
capable of hosting the machine learning model had to be designed and implemented.

The Proof Of Concept testing consisted of setting up a real-life network environment using
Turris routers (capable of running OVS and IPFIXprobe) and integrating our Proof of Concept
prioritization solution into them. The solution was tested by conducting a video call via the
MS Teams platform with an artificially speed-throttled environment. The proposed solution was
able to detect the video and prioritize the call-related traffic. Artificially created disruptions were
introduced to the network to test the model stability in a network-unstable environment; the
solution was able to handle the situation and prioritize the relevant traffic. The created solution
was thoroughly tested. Overall, all points of the thesis assignment were fulfilled.

6.1 Future work
Future work could include extending the training dataset with additional protocols and retraining
the models and comparing the accuracy of such models. The implementation was programmed
only for demonstration purposes and is not production-ready. In making the system usable for
production use, further testing is required. The prioritization subsystem can be only deployed in
small networks, it is not suitable for medium and large networks. The design and implementation
of the modules responsible for the prioritization were not aimed to be production ready as that
would impose additional complexity into the project, f.e. communication between the module
responsible for the evaluation of flow traffic and OVS was set up in a demonstrative way, in larger
networks the overhead caused by the design choice could outweigh the benefits. Redesigning
the communication between the machine-learning flow evaluation module and OVS would be
necessary for deployment to larger networks.



Appendix A

IPFIXprobe integration guide

A.1 Compilation
1. Follow the IPFIXprobe compilation guide on GitHub [13]

a. In GIT clone phase: run this command instead of the recommended one in the guide
i. Run: git clone --branch rtp simekst --recurse-submodules

https://github.com/CESNET/ipfixprobe
ii. Replace these files local path with remote path

source/ipfixprobe-module/process/rtp.hpp with
ipfixprobe/process/rtp.hpp
source/ipfixprobe-module/process/rtp.cpp with
ipfixprobe/process/rtp.cpp
source/ipfixprobe-module/process/rtp-exporter.hpp with
ipfixprobe/process/rtp-exporter.hpp
source/ipfixprobe-module/process/rtp-exporter.cpp with
ipfixprobe/procertp-exporter.cpp
source/ipfixprobe-module/process/rtp-ml.hpp with
ipfixprobe/process/rtp-ml.hpp
source/ipfixprobe-module/process/rtp-ml.cpp with
ipfixprobe/process/rtp-ml.cpp
source/ipfixprobe-module/process/rtp-ml-model.hpp with
ipfixprobe/process/rtp-ml-model.hpp

iii. Update Makefile.am in ipfixprobe folder
A. Add these lines to ipfixprobe process src

process /rtp -ml.hpp \
process /rtp -ml.cpp \
process /rtp -ml -model.hpp

The result should look like this:

ipfixprobe_process_src =\
process /http.cpp \
process /http.hpp \
process /rtsp.cpp \
process /rtsp.hpp \
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process /sip.cpp \
...
process /rtp.hpp \
process /rtp.cpp \
process /rtp - exporter .hpp \
process /rtp - exporter .cpp \
process / common .hpp \
process /rtp -ml.hpp \
process /rtp -ml.cpp \
process /rtp -ml -model.hpp

B. Add these lines to ipfixprobe headers src

include / ipfixprobe /stats - welford .cpp \
include / ipfixprobe /stats -ml.cpp

The result should look like this:

ipfixprobe_headers_src =\
include / ipfixprobe / plugin .hpp \
include / ipfixprobe /input.hpp \
include / ipfixprobe / storage .hpp \
...
include / ipfixprobe /byte -utils.hpp \
include / ipfixprobe /ipfix - elements .hpp \
include / ipfixprobe /stats - welford .cpp \
include / ipfixprobe /stats -ml.cpp

2. Follow the rest of the guide on the GitHub

A.2 Usage
PCAP options enabled

Run on the network interface

./ ipfixprobe -i ’pcap;ifc=< interface_name >’ -p rtp -ml -o text

Run on PCAP file

./ ipfixprobe -i ’pcap;file=<pcap_file >’ -p rtp -ml -o text
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Content of attached storage
device

readme.txt..................description of the attached storage’s content and its structure
source........................... folder containing all source codes of the implementation

helpers...............................................folder containing helper scripts
ipfixprobe-modules ....... folder containing the source codes for IPFIXprobe modules
notebooks............folder containing Jupyter notebooks used during the development
models ................................. folder containing final machine learning model

thesis.pdf ................................... text for the bachelor thesis in PDF format
thesis.zip.................archive containing LaTEX source files for the thesis document
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