
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

DevOps concepts - CI/CD, implementation of authorization &

authentication, presented on a BI-DBS portal frontend

Volha Chukava

Ing. Oldřich Malec

Informatics

Web and Software Engineering, specialization Web Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The BI-DBS portal undergoes an evolutionary transfer to a microservice architecture with

a Vue.js frontend. Therefore, the frontend needs new automated deployment, testing,

and a clear permissions structure.

Fulfill the requirements:

- Describe the current and planned state of the BI-DBS portal.

- Analyze and describe DevOps principles, focus on CI/CD.

- Configure and describe an automated deployment for the BI-DBS portal.

- Analyze roles and permissions of the BI-DBS portal.

- Implement and describe the authorization and authentication services and provide

suitable regression tests for a CI pipeline.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 26 January 2023 in Prague.

Bachelor’s thesis

DevOps concepts – CI/CD,
implementation of authorization &
authentication, presented on a BI-DBS
portal frontend

Volha Chukava

Department of Software Engineering
Supervisor: Ing. Oldřich Malec

May 10, 2023

Acknowledgements

Firstly, I would like to thank my supervisor Ing. Oldřich Malec for giving me
the flexibility in creating my thesis, constructive and valuable feedback and
assistance. Secondly, I would like to thank a person who made it possible for
me to write this thesis, the maintainer of the project Ing. Jiri Hunka. Thirdly,
I would like to acknowledge the contribution of Ing. Adnrii Plyskach and
Bc. Max Hejda, who have shared their knowledge, expertise, and resources,
and have played an important role in helping me to achieve my thesis goals.
Finally, I would also like to thank the testers, who contributed their time and
effort. My family and friends who supported me throughout my study period.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 10, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Volha Chukava. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Chukava, Volha. DevOps concepts – CI/CD, implementation of authorization
& authentication, presented on a BI-DBS portal frontend. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstrakt

Pro předmět BI-DBS na FIT ČVUT v Praze je vyv́ıjena nová aplikace. Požadavky
pro tuto aplikaci jsou odvozeny z již existuj́ıćı aplikace. Tato bakalářská práce
se zaměřuje na zlepšeńı proces̊u vývoje a údržby nového frontendu webové
aplikace na základě analýzy stavu stávaj́ıćı aplikace a plánovaného stavu.
Hlavńımi oblastmi zlepšeńı jsou přijet́ı metodiky DevOps a navržeńı nového
zjednodušeného a přehledného systému ř́ızeńı př́ıstup̊u. Nakonec hlavńım ćılem
této práce je implementace autentizace a autorizace, včetně omezeńı oprávněńı,
a automatizace proces̊u testováńı a nasazováńı.

Kĺıčová slova webová aplikace, frontend, CI, CD, OAuth, autentizace, au-
torizace

vii

viii

Abstract

A new application is being developed for teaching the BI-DBS subject at
FIT CTU in Prague. The requirements for the application are derived from
the existing application. This bachelor’s thesis is focused on improving the
development and maintenance processes of the new frontend for the web ap-
plication based on analyses of the state of the existing application and the
planned state. The main improvement points are adopting DevOps method-
ology and designing a new simplified and clear access management system.
Conclusively, the main goal of the thesis is the implementation of authenti-
cation and authorization including restricting permissions, and automation of
testing and deployment.

Keywords web application, frontend, DevOps, CI, CD, OAuth, authenti-
cation, authorizarion

ix

Contents

List of Code Examples xix

Introduction 1

1 Analysis of the application state 3
1.1 The BI-DBS portal . 3
1.2 Current state of the application 3

1.2.1 Architecture . 4
1.2.2 Technologies . 5

1.3 Planned state of the application 6
1.3.1 Architecture . 7
1.3.2 Technologies . 8

1.4 Summary and implications . 9
1.4.1 Summary . 9
1.4.2 Implications . 10

2 Analysis of the DevOps model 13
2.1 What is DevOps? . 13
2.2 DevOps concepts . 13

2.2.1 Automation . 14
2.2.2 Data-Based Decision Making 14
2.2.3 Responsibility Throughout the Lifecycle 14
2.2.4 Constant Improvement 15
2.2.5 Collaboration . 15

2.3 DevOps cycle and practices . 16
2.3.1 Continuous development 16
2.3.2 Continuous integration (CI) 16
2.3.3 Continuous delivery (CD) 16
2.3.4 Continuous deployment (CDE) 17
2.3.5 Continuous monitoring (CM) 17

xi

2.3.6 Infrastructure as Code (IaC) 17
2.3.7 Containerization . 17

2.4 DevOps adoption . 17

3 Analysis and design of the access control system 19
3.1 Roles . 19

3.1.1 KOS roles . 19
3.1.2 Other roles . 22

3.2 Permissions . 23

4 Implementation 27
4.1 Used software . 27

4.1.1 Pinia. 27
4.1.2 Router . 28
4.1.3 Axios . 28

4.2 Authentication and authorization 28
4.2.1 OAuth protocol . 28
4.2.2 Tokens . 28

4.2.2.1 Access token 28
4.2.2.2 Refresh token 29

4.2.3 Authorization server . 29
4.2.4 Apps manager . 30
4.2.5 Authentication and authorization flow 31
4.2.6 Refresh token flow . 32

4.3 Security . 33
4.3.1 Tokens storage . 33

4.3.1.1 Solution for the refresh token 34
4.3.1.2 Solution for the access token 35

4.3.2 Communication with backend 36
4.3.2.1 Communication 36
4.3.2.2 HTTP headers 36

4.4 Access control . 37
4.4.1 Role-based access control 37
4.4.2 Authentication control for requests 40

5 Automation – CI/CD 43
5.1 Used tools . 43

5.1.1 Docker . 43
5.1.2 GitLab . 43
5.1.3 CloudFIT . 44
5.1.4 Buildah . 44
5.1.5 Nginx . 44
5.1.6 Yarn . 44

5.2 Implementation . 44

xii

5.2.1 Containerization . 45
5.2.2 CI/CD pipeline configuration 45

5.2.2.1 Test . 46
5.2.2.2 Build . 46
5.2.2.3 Deploy . 48

5.3 Documentation . 50

6 Testing 51
6.1 Tests for CI . 51

6.1.1 Vitest . 51
6.1.2 Tests . 51

6.2 Manual testing . 54

Conclusion 59

Sources 61

A Acronyms 67

B Contents of enclosed media 69

xiii

List of Figures

1.1 Monolithic architecture, MVP pattern 4
1.2 Microservice architecture . 7

2.1 Devops cycle and practices . 16

3.1 KOS roles . 21
3.2 Other roles . 22

4.1 Example of encoded and decoded JWT token from jwt.io. [41] . . 29
4.2 The example of the application registry in the App Manager [44] . 30
4.3 Sequential diagram of generating an access token 31
4.4 Sequential diagram of refresh an access token using refresh token . 32
4.5 Access denied component . 39

5.1 CI/CD pipeline in GitLab . 46
5.2 Documentation of server and CI/CD management 50

6.1 CI tests . 54

xv

List of Tables

1.1 Visualisation of changes. 10

6.1 Scenario for manual testing. 56

xvii

xviii

List of Code Examples

4.1 Cookies setting on server . 34
4.2 Pinia store configuration for user states 35
4.3 Base Axios configuration . 37
4.4 The example of component configuration in Router 38
4.5 Validation of access by role . 38
4.6 Role validation . 40
4.7 Filtering displayed components by role 40
4.8 Access verification for making requests 41
5.1 Dockerfile . 45
5.2 Gitlab CI/CD stages . 45
5.3 Test stage in the CI/CD pipeline 46
5.4 Build stage in the CI/CD pipeline 47
5.5 Deploy stage in the CI/CD pipeline 48
5.6 Deployment script . 48
5.7 docker-compose.yml . 49

xix

Introduction

This thesis is a continuation of my development journey of the BI-DBS web
application, which started in February 2022 as a part of the frontend develop-
ment team. The project was very complex and challenging for maintenance
and development. Not a long time after our team got into analyzing and
developing the current application, a new solution to the maintenance prob-
lem was introduced to us by Ing. Andrii Plyskach. He came up with a new
architectural design based on microservices architecture for the application,
which he described in his master thesis[1]. The decision was made to follow
that design, which meant creating a new project based on the requirements of
the current application. The development process, as well as the project, was
divided into client and server side parts.
For our team, it meant starting frontend development from the very begin-
ning using the new technologies. Thus it gave us a lot of space for our ideas,
but also a big responsibility. Therefore, since the creation of a new frontend
project, my goal was to configure the project in a way to make it structured
and secure, organize efficient development in a team as well as work on the
implementation of the features. This goal remains the same for this thesis.
Firstly, I am going to analyze the current application state and the planned
state, to see what we can expect from the changes. Secondly, for improving
the efficiency of the software development process and application improve-
ment and maintenance I will introduce the DevOps model and the instruction
for its adoption. Besides, I will use that instruction for automating testing
and development processes for the frontend. Finally, I am going to implement
authorization and implementation based on OAuth 2.0 protocol[2] using the
authorization microservice implemented in Andrii’s thesis[1].

1

Chapter 1
Analysis of the application state

In this chapter, I will introduce the educational web application helping to
teach database systems subject at the university. Furthermore, I will describe
the current and planned state of the application from the perspective of soft-
ware architectural patterns and the used set of core technologies with a focus
on the frontend. The goal is to identify the existing problems of the current
application, outline how they will be solved in a new portal, as well as to
indicate what difficulties we can face developing the new application using a
new stack of technologies and new architecture.

1.1 The BI-DBS portal

The BI-DBS portal is a web application used for teaching database systems
subject in a bachelor’s study program at the Czech Technical University at the
Faculty of Information Technology. The portal is complex and has many useful
functionalities. It allows managing and tracking all the student’s studying
progress during the semester, including semester tests, complex semester work,
and exams. Besides, teachers have an overview of all their student’s work in
one application.
The application is developed by students and teachers in subjects BI-SP1,
BI-SP2 subjects, bachelor and master theses. That is a unique fact about this
project. Every year, new students begin working on application development.
They are open to sharing their ideas for improving the application. Thus, we
are designing and implementing a better and better product each year.

1.2 Current state of the application

The current BI-DBS portal was deployed for the first time in 2016 [3]. Over
time it gained new features and grew large. Currently, it has a total of around

3

1. Analysis of the application state

120000-140000 lines of code [1]. Used technologies became less relevant and it
became difficult to maintain it.

1.2.1 Architecture

The current application was built in a traditional way, using a monolithic
architecture approach and following the Model-View-Presenter architectural
pattern [4] [5]. Figure 1.1 shows the visualization of the architecture. The
application is presented as one monolithic unit, and it is composed of three
components.

• The model: Communicates with the database and handles domain and
business logic.

• The view: Provides visualization and directs user commands to the pre-
senter, does not contain logic.

• The presenter: Manages interactions between the database and the view.
Receives data from the model and formats it to display in the view.

Figure 1.1: Monolithic architecture, MVP pattern

4

1.2. Current state of the application

This architecture’s main concept is having one code base that benefits in
simplifying development, testing, debugging, and deployment.
However, we can have those benefits only until the application grows large.
Then all those processes get slower, more complex, and become problematic.
In addition, with a lack of flexibility and scalability, it becomes challenging to
maintain the application and keep it secure.

The BI-DBS portal is being developed by students. Students generally do not
have much experience developing large applications and dealing with complex
dependencies. Besides, they have limited time to progress in learning and
then designing and developing the portal. Therefore it takes a lot of time
for students to learn before contributing to the project. Thus it is more
problematic for students to benefit from learning and for maintainers to keep
it functioning correctly.

1.2.2 Technologies

PHP. PHP is a general-purpose, open-source scripting language that can
be integrated into HTML. [6, 7] It differs from client-side scripting languages
in that its HTML is generated on a server and then sent to a client. That
feature allows rapidly building a web application with a thick server and thin
client. This is one of the approaches to using PHP to build an application,
and it is used in the current project.
Using this approach leads to creating dependencies between the user interface
and the application logic, which makes any changes more effortful since a
developer needs to adjust it on both sides.

Doctrine. ”Doctrine ORM is an object-relational mapper for PHP 7.1+
that provides transparent persistence for PHP objects. It sits on top of a
powerful database abstraction layer. One of its key features is the option
to write database queries in a proprietary object-oriented SQL dialect called
Doctrine Query Language.” [8]
This framework did not cause problems during the development process and
has no significant disadvantages for the correct operation of the BI-DBS.

Nette. Nette is an open-source framework for creating web applications in
PHP. It helps with developing both the client and server sides of the applica-
tion and also reduces security vulnerabilities. Moreover, it manages applica-
tion states using sessions and routing. [9]
Frontend and backend dependencies are strengthened, indicating that they
are a single unit. The fact that they are so strongly dependent is a drawback.
Because of this, it is difficult to make changes to one side without having an
impact on the other.

5

1. Analysis of the application state

Latte. Nette framework uses a template system called Latte. It compiles
templates down to the optimal PHP code. [10]

AdminLTE. AdminLTE is a fully responsive administration template. Based
on Bootstrap 4.6 framework and also the JS/jQuery plugin. [11]

Vue 2. Vue.js is a javascript framework for building user interfaces and
single-page applications.
Most of the frontend is implemented using Latte templates and AdminLTE
bootstrap. However, in order to reduce dependencies between the frontend
and the backend and also modernize it, a few components were refactored
to the Vue.js version 2. The logic is defined using the Options API. It is a
traditional object-oriented way, and up until Vue 2 it was the only way to
create components in Vue. [12, 13]

Javascript. JavaScript is a high-level programming language used for defin-
ing the behavior of webpages. It is a dynamically-typed scripting language
that lets you control multimedia, animate graphics, and generate dynamically
changing content. [14]
In the current BI-DBS portal it is used for defining logic on the frontend.
Dynamically-typed languages are easy for development, but this feature re-
duces the code’s readability, requires more testing and are prone to run-time
errors. Large applications like BI-DBS are likely to experience problems as a
result of its drawbacks because it is better suited for smaller applications with
simple logic.

Webpack. Primarily, Webpack is a static module bundler for modern JavaScript
programs. When Webpack processes your application, it internally creates a
dependency tree from one or more entry points and then merges every module
your project requires into one or more bundles. [15]
Webpack is used in a current application for bundling a few modernized fron-
tend components implemented in Vue.js and javascript.

1.3 Planned state of the application

The main reason for creating a new application instead of refactoring the cur-
rent one is a change in the application’s architecture. A new modernized archi-
tectural design of the BI-DBS portal was composed by Ing. Andrii Plyskach
in his master thesis [1]. We are aiming to correct all the mistakes made in the
current application. It is essential to ascertain that we have chosen the right
stack of technologies according to the newly chosen architecture.

6

1.3. Planned state of the application

1.3.1 Architecture

Microservices architectural pattern [5] is based on the concept of a series of
loosely-coupled services. They can be developed using different technologies
and deployed independently. It is more complex architecture than a standard
monolithic one. You can see the diagram illustrating microservices architec-
ture in Figure 1.2.

Figure 1.2: Microservice architecture

Advantages:

• Code readability: When services are not strongly dependent the code
appears to be better structured and easier to understand, which is a
significant benefit for the BI-DBS portal.

• Independency in choosing a stack of technologies: Microservices can be
developed using different technologies which can be chosen according to
each microservice functionality without affecting other microservices.

• Faster deployments: Since all microservices can be deployed indepen-
dently, the deploying part is much smaller and the time for deploying
one service is rather shorter.

• Fault tolerance: Because of loose-coupling, failing one of the microser-
vices will not bring down the entire application.

7

1. Analysis of the application state

Disadvantages:

• Difficult debugging and testing: Each service needs to be first tested
separately and only then as one unit. Besides, it is more difficult to
track down errors.

• DevOps required: To benefit from the fast deployment it should be con-
figured and maintained. It requires knowledge of development opera-
tions.

• Longer development time and limited reuse of code: Microservices need
to be managed separately, therefore it requires more time.

1.3.2 Technologies

PHP. Since version 5.0, PHP supports object-oriented functionality [16].
PHP is easy to learn, flexible, and supports all required functionalities for our
application. It is used in a new project for a domain and business logic on the
backend for API implementation.

Symfony. Symfony is a powerful backend framework for creating complex
applications which consists of reusable components. [17] Thanks to Doctrine
Symfony provides all of the tools required to use databases in the application.
It is constantly growing and improving, besides it has a strong community. It
is easy to learn and has well-written documentation.

Vue 3. When the decision to create a new BI-DBS portal had not yet been
made, its frontend was getting modernized by rewriting components to Vue.js
version 2. In the new project, it was chosen to carry on using the Vue.js frame-
work but use a new version 3. This version comes with certain advantages for
the application. [18]

New features:

• Composition API: Composition API is a set of APIs that allow us to
create Vue components by importing functions rather than defining op-
tions. It mainly benefits our project in better code organization, thus
making the project better structured and the code easier to read. More-
over, Composition API enables efficient logic reuse. [19]

• Vite: Vite is a frontend build tool from the creator of Vue.js - Evan
You. It is a module bundler that bundles the entire project on startup,
hot reloads, and compilation. The primary purpose for the change is for
speed. The server starts instantly since it uses native browser support
for JavaScript modules. [20]

8

1.4. Summary and implications

• Increased rendering performance.

• Smaller Vue core.

Typescript. Typescript is based on JavaScript, which is dynamically typed.
TypeScript has an additional syntax that makes it statically typed. That
has advantages in catching errors during development. It also gives a code
more structure and makes it predictable. Typescript is more suitable for big
applications than JavaScript. For our project, writing code that will be easy
to read is crucial. [21]

Quasar. Quasar is a web framework based on Vue.js. It provides us with
ready-to-use components which are customizable and easy-extendable. More-
over, it makes the application less vulnerable to XSS attacks due to its escaping
feature. When using Quasar, developers do not need deep knowledge of CSS
and scripting languages to build a good-looking and responsive application.
Besides, it is suitable for developing single-page applications(SPA). [22]

Pinia. Pinia is a Vue.js storage library and state management framework.
It is mainly designed for the development of front-end web applications, and
it uses declarative syntax as well as its own state management API. It allows
sharing a state across components and pages securely. Moreover, it has server-
side rendering support. With Pinia plugins we can also persist the state across
page reloading using local or session storage. [23]

1.4 Summary and implications

The BI-DBS development team aims to dispose of problems and modernize the
current project in every single aspect of development. Starting from choosing
the right stack of technologies and designing a suitable architecture to imple-
menting more complex and valuable features. However, even correctly chosen
technologies and architecture for reducing the problems of the current project
do not save us from the potential new challenges brought by the changes.

1.4.1 Summary

In order to summarize all changes and provide a better visualization of them,
I arranged them all in Table 1.1.
Evidently, the Nette framework is the core of the current project, which is
responsible for managing the application in many ways. Although it can func-
tion well, it creates dependencies between the functionalities and makes the
project less flexible, which is a significant disadvantage for large applications
like the BI-DBS portal.

9

1. Analysis of the application state

The planned state does not have dominating technologies that would cause
this problem. Most of them are replaceable and flexible.

Current state Planned state
Architecture Monolitic Microservices
Backend language PHP 7.2 PHP 8.0
Backend framework Nette Symfony
Frontend framework Nette, Vue.js 2 Vue.js 3
Frontend templates and styling Latte, AdminLTE Quasar
Scripting language Javascript Typescript
Frontend templates and styling Latte, AdminLTE Quasar
Module bundler Webpack Vite
State management Nette Sessions Pinia
Routing Nette Router Vue.js Router

Table 1.1: Visualisation of changes.

1.4.2 Implications

From the analyses in sections 1.2 and 1.3, we can see that existing problems
in the current project are eliminated by chosen architecture and technologies
for the planned state. Let’s examine the main possible negative effects of the
changes and how to deal with them.

• Microservices architecture provides such advantages as agility and fast
deployment. This architecture is more complex in comparison with a
monolithic one. Therefore it comes along with establishing some of the
DevOps principles for the project. Mainly configuring continuous inte-
gration and automated deployment. DevOps concepts and automation
including CI and CD are described in the chapter 2.

• In the current application, Nette is a core full-stack framework that
is also responsible for managing the application’s security. Besides, the
monolithic architecture allows you to store all the data on the server side.
The communication between the client side and server side is secure.
In microservices applications, there is constant communication between
the frontend and the backend and exchanging sensitive data. Therefore
it is crucial to control every step of that communication with control of
permissions and inputs validation on both the client and server sides.
Thus the application should have a clearly defined access management
system which I will introduce in the chapter 3.

• Since all the services are developed, deployed and tested separately, there
is a higher chance of failure in communication between them. Obviously,

10

1.4. Summary and implications

It is not enough to test only the functionalities of singles services but to
test their integration. Therefore it is essential to design a new integra-
tion testing system for the application. It is necessary to eliminate the
possibility of the cascade failure of services.

11

Chapter 2
Analysis of the DevOps model

The DevOps and microservices are two important trends in application de-
velopment. Considering that both of them are mainly focused on providing
better agility, flexibility, and operational efficiency, we can assume that they
would work better together. [24]
In this chapter, I will describe the main DevOps concepts and practices, ana-
lyze their possible advantages for the BI-DBS application and decide whether
adopting the DevOps model would be beneficial.

2.1 What is DevOps?

The term DevOps is derived from the combination of software development
and IT operations.
DevOps is a relatively new term. Around 2007 and 2008 concerns about the
separate work of software creators and software operators were raised. The
concept started to grow on online forums and meet-ups. The first conference
named ”DevOps” was held in 2009. [25]
DevOps is a software development methodology composed of a set of cultural
philosophies, practices, and tools that improve an organization’s ability to
deliver applications, services, and improve products faster than traditional
software development and infrastructure management processes. It represents
a cultural shift that significantly affects a team that adopted that methodology
and the software they make. [26]

2.2 DevOps concepts

DevOps concepts are a common set of rules which are the core of this method-
ology. It is not just a set of tools, but a cultural philosophy, a way of project
lifecycle organization. Those rules are not strictly defined, they come from a
DevOps culture and can be interpreted differently describing the same model.

13

2. Analysis of the DevOps model

In this section, I will analyze and combine the culture philosophy and most
frequently mentioned rules [27, 28] in five concepts that represent the DevOps
methodology.

2.2.1 Automation

DevOps approach is meant to benefit in fast development and improvement.
Needless to mention that automation is one of the golden rules for increasing
the speed of the application lifecycle. Everyone in a team should aim to
automate as many phases of the process as it is possible. As a result, team
members are satisfied with a decreased need for doing repetitive tasks. Thus
they can focus on significant tasks and work on new features. Overall it helps
minimize human errors and boosts team output.

Usage in the BI-DBS project This concept was the main reason for me to
consider adopting DevOps model in the BI-DBS project. Due to microservices
architecture the project needs to have new automated deployment and testing
processes. These and other automation practices we might want to adopt are
described in subsection 2.4.

2.2.2 Data-Based Decision Making

With the DevOps approach, decisions from choosing a technology stack for
the application to adding features should be made based on collected data.
The first part of making a decision should always be collecting as much rel-
evant data as it is possible. Then, based on the collected data analysis of
the team, a decision should be made. It helps to create software that solves
real problems effectively. Decisions made without considering client feedback
data, colleagues’ opinions, and proper analysis would lead to creating badly-
functional software full of useless features which does not fulfill the client’s
needs.

Usage in the BI-DBS project This concept is very suitable for our new
growing project since in the current phase we create are creating a core which
should be done properly based on analyses of collected data to avoid having
useless features, too complex design and irrelevant technologies.

2.2.3 Responsibility Throughout the Lifecycle

DevOps methodology comes with a requirement for team members to fully
understand the process of software development from the feature idea to im-
plementation and deployment and take responsibility for it. End-to-end re-
sponsibility helps to reduce failures and resolve bugs quickly.

14

2.2. DevOps concepts

Usage in the BI-DBS project From my experience, students usually want
to finish their part of the job as fast as it is possible. Therefore they sometimes
tend to skip spending time to understand the idea of the task properly. Thus
they get to implement it without thinking of the consequences their changes
might cause. Moreover, they do not always get to test it properly. It is
essential to integrate this concept more into development student teams to
increase the quality of produced code.

2.2.4 Constant Improvement

Constant improvement is a special concept and practice of DevOps methodol-
ogy. The main idea is a focus on improvements, updates, and experimenting.
It tells each team member not to be afraid of failures but take them as an
opportunity to learn. Whatever the outcome of an experiment, a person will
have a deeper understanding of what works and what does not. Besides, this
rule gives more responsibility to a person and allows them to consistently
push code changes to minimize waste, do speed optimization and improve
development efficiency.

Usage in the BI-DBS project This concept is friendly for students in a
way that they can try new things without fear of failure if things do not work
out. Adopting this concept will benefit the project in case it is used with the
two previous concepts, otherwise, students might take the development less
seriously and do experiments only for the purpose of faster finishing the task,
but not improving.

2.2.5 Collaboration

This concept is a collaboration of different IT departments on the project.
That means that the team’s roles are not as strict and independent as in a
traditional work and team organization. Developer and operation roles are
getting closer to full-stack roles, leading to a better understanding of the
software development lifecycle by the whole team.

Usage in the BI-DBS project This illustrating DevOps methodology
concept is beneficial in two ways for the BI-DBS portal. Firstly, students will
learn essential operation processes and understand the basics of automation.
Secondly, the portal always needs at least one person to be available to manage
application operations. Using this concept will increase the number of people
who understand the processes and thus are able to manage operations in case
of a need.

15

2. Analysis of the DevOps model

2.3 DevOps cycle and practices

DevOps concepts reflect in a set of practices during the DevOps delivery cycle.
The cycle is visualized in Figure 2.1. These practices mainly represent the
automation concept but also come together with other concepts. [29]

Figure 2.1: Devops cycle and practices

2.3.1 Continuous development

Continuous development is a practice composed of agile planning and coding.
The goal of agile planning is to divide big problems into smaller logical prob-
lems, estimate the complexity of created tasks and plan the amount of tasks
for some short time period(sprint), usually it is from one to four weeks period.
This method allows getting some large significant tasks done in a shorter time,
because after its division developers can work on the subtasks simultaneously
and it is more effortless for testing.

2.3.2 Continuous integration (CI)

In order to avoid a problem with the integration of large parts of code, DevOps
CI offers continuous pushing the code changes to the remote shared repository
on the server. Every change pushed to the repository triggers a build and tests
configured in a CI pipeline to make sure new changes do not affect already
functioning features and also does not contain new errors.

2.3.3 Continuous delivery (CD)

Continuous delivery is an extension of continuous integration. After building
and testing the code from the repository it automatically deploys releases to
the testing environment and also prepares it to be deployed to the production.

16

2.4. DevOps adoption

It requires human intervention to deploy a release to production. This is a
safer version of fast and frequent deployment, in a case when the pipeline
does not contain strong testing tools and the application needs to be tested
manually.

2.3.4 Continuous deployment (CDE)

Coupled with continuous delivery, the continuous deployment also deploys
the release to the production. Using this practice no human intervention is
required. Every change pushed to the main shared remote repository will be
automatically deployed to production. The only obstacle to the deployment
would be a failed build or test.

2.3.5 Continuous monitoring (CM)

Continuous monitoring is an automated method that allows to observe and
discover compliance concerns and security vulnerabilities throughout the De-
vOps lifecycle. It also finalizes the cycle by providing feedback on monitoring
and informing about existing or possible failures. It helps to resolve issues in
real-time.

2.3.6 Infrastructure as Code (IaC)

Infrastructure as a code is a practice of managing infrastructure that enables
automation in the DevOps lifecycle. It offers using scripts for configuring
deployment environment and other infrastructure, including establishing a
version control system.

2.3.7 Containerization

Containerization is the practice of packaging an application in one container.
It provides better flexibility for deployment and needs fewer resources to run.
Currently, Docker provides the most frequently used container toolset.

2.4 DevOps adoption

The idea of adopting the DevOps model came to me with a need to configure
the new deployment of the new BI-DBS portal due to the transfer to microser-
vices architecture. Before analyzing the DevOps concepts, I assumed that the
DevOps model is just an automation idea. In fact, I was wrong and did not
know it is a solid methodology bringing huge advantages to the project. From
my own observations, it is a pretty common misunderstanding of the DevOps
model, which leads to missing out important concepts.

17

2. Analysis of the DevOps model

”Even while automation helps speed up manual operations, cooperation and
communication are the key objectives of DevOps. Automating your operations
won’t bring about the desired business benefits unless everyone involved in
the software development, delivery, testing, and operating processes adopts
excellent communication and collaborative practices.” [30]
The analysis makes it clear that the DevOps model is suitable and valuable
for the BI-DBS portal project management and development.

Adoption steps:

1. Devops philosophy. This thesis can be used to introduce the DevOps
methodology to students. Before getting to development as well as
learning the processes of development students should learn team or-
ganization management including DevOps concepts.

2. DevOps Practices. Analyze which practice we would like to adopt and
how it will be beneficial and then complete the three next steps:

a) Choosing relevant tools for a practice we would like to adopt
b) Application of the practice using chosen tools
c) Document the configuration of the practice for a team

I will adopt the most important DevOps practices for the BI-DBS portal
in the chapter 5 using these steps.

18

Chapter 3
Analysis and design of the

access control system

The BI-DBS portal uses role-based access control which is the way of granting
access to the authorized user based on their role that is associated with their
identity. [31]
In this chapter I will describe the access control system designed for the new
BI-DBS portal frontend, based on roles and permissions analysis. I will intro-
duce existing roles, the main application modules and their components from
the perspective of different roles. My goal is to make an access control system
as clear as possible and provide an overview of the permissions for the roles.

3.1 Roles

The role itself is a collection of permissions. To decide what roles the appli-
cation needs and what permissions those roles would have, we have to start
by analyzing the users of the application and their needs. My analysis will be
based on the existing roles and access control system.
Since it is the best practice to assign as few roles to one user as it is possi-
ble [31] to avoid creating an excessively complex management system I will
aim for simplification of the current access control system. In this section I
will describe the roles of the current BI-DBS portal and offer a simplification
for the new application, which I will use for my implementation of role-based
access control described in section 4.4.1.

3.1.1 KOS roles

The BI-DBS portal receives information about an authorized user from the
study information system(KOS) based on the course information. The course
information contains the identifier of the semester and the type of study pro-
gram. Generally, there are seven user roles that are defined by the KOS for

19

3. Analysis and design of the access control system

subjects and courses. [32]

KOS roles for subjects and their general description: [33]

• Guarantor. Guarantor is a course administrator. Thus a person with
this role typically has all permissions across all course management.

• Examiner. Examiners are responsible for managing and estimating stu-
dents’ exams. Therefore, this role would usually provide access to exam
materials and students’ grades view and management.

• Editor. Editor is a person who can edit the information about the sub-
ject. This role would provide access to subject information management.

• Lecturer. Lecturer role indicates that an individual with this role would
need to be provided with access to manage course content including
lectures, assignments and other study materials.

• Instructor. Instructor is the role for teachers of exercises parallels. This
role implies that a user needs permission to manage exercise materials
and also estimate students’ tests, semester works and other assignments.

• Teacher. The teacher is a general role for a person, who does teaching
in the course.

• Student. It is a base role for students, that usually grants basic permis-
sions to a user like access to their personal information, study program
information and its resources, and also allows managing their projects
and submitting assignments.

One of those roles is not used for the BI-DBS portal. It is the editor role, the
BI-DBS portal does not provide functionalities for changing the information
about the subject. Therefore, we have a total of six roles used for permissions
control in the current application.
Based on the feedback from the teachers and developers of the current BI-DBS
portal and also my own research, we came to the conclusion that the access
management system can be simplified by grouping the roles into three roles
in total.

Reasons for simplifying the access management:

1. Based on the permissions research of the current project, I can report
that most of the roles for teachers have the same or almost the same
permissions. And the differences are insignificant.

2. All the analyses and requirements of the BI-DBS portal designed by
students including the theses are made for only three roles.

20

3.1. Roles

3. Due to a lack of information about the roles developers often do not
have a good understanding of all roles meaning and thus they tend to
forget to permit access for some roles or confuse them with others.

I am offering the simplification, which is based on grouping teaching roles that
do not have significant permissions differences such as lecturer, examiner, in-
structor and teacher into one role. As I have already mentioned above, all the
analyses are usually built on three roles where these four roles are taken as
one role - teacher role, then there is a student and guarantor roles left which
makes it a total of three.

Figure 3.1: KOS roles

After researching the functionalities and permissions structure of the current
project and discussing the possible change with developers and managers, I
came to the conclusion that it is absolutely safe to generalize the permissions
for those four teacher roles. As a result, I got a new clear KOS roles structure,
which is visualized in Figure 3.1.

21

3. Analysis and design of the access control system

3.1.2 Other roles

However, the user roles defined by KOS are not fulfilling all the requirements
for the application. There are some special cases that require additional roles
such as:

• Impersonation as a student. For the purpose of demonstrating the pro-
cess of creating a semester work and its management, teachers need to
have a functionality that will allow them to authorize as a student to
show the whole process from the students’ side. This feature requires
creating a test student, which is identical to a usual student but needs to
differ from the usual KOS student role to exclude such student records
from counting the statistics.

• Development and testing. For the development and testing processes
there is a need to have a test admin user, which will have access to all
functionalities.

Figure 3.2: Other roles

For these requirements there were created two corresponding special roles:

• Test student. This role is identical to the KOS student role from the
perspective of permissions. Therefore on the frontend we do not need

22

3.2. Permissions

to differ those two roles and the student test role will be mapped to a
usual student role.

• Admin(Root). Role with access to all functionalities.

Conclusively, the solution for the access control system lowered complexity and
added flexibility, due to the rule that one user can have only one role. Besides,
now the roles system is very intuitive in usage. The result of constructing a
roles system for the role-based access control is visualized in Figure 3.2.

3.2 Permissions

One user can have only one role at the same time, but one role has many
permissions. The BI-DBS portal is a complex application composed of several
modules. For giving an overview of the permissions for the defined roles I will
describe the modules and their functionalities first and then classify them for
groups and describe permissions to them from the perspective of users with
different roles.

Modules and their functionalities:

• Administration. The administration module provides functionalities for
semester configurations.

• Semester work. The semester work module contains all the features for
managing the semester work from creation to evaluation.

• Tests. All components for the management of demo, semester and exam
tests are placed in the tests module.

• Connections. The module which provides the configuration of the database
connection is the connections module.

• Students’ score. Users of the application can see the results of the stu-
dent’s performance during the semester in the student’s score module.

• Users. Users module provides an overview of the users of the portal.

• Data modeler. Data modeler is a playground for drawing conceptual
schemas.

• Transformation modeler. Transformation modeler is an extension of the
data modeler, which also provides the generation of a create script based
on the drawn schema.

• Home. The home page is composed of the overview of the semester.

23

3. Analysis and design of the access control system

• Authorization. The authorization module provides login and logout fea-
tures.

These modules can be divided into three groups:

1. Modules with the same permissions for all roles: transformation modeler,
data modeler, connections, authorization.

2. Modules available only for a certain role: administration, users.

3. Modules available for all the roles but with different permissions for their
components: semester work, tests, students’ score, home.

The first group does not need to be provided with an access management
structure as all the modules from the group are available for any authorized
user with any of the roles described in the previous section. Therefore the
access validation to these modules and their components is simple and clear.
The modules from the second group are available only for two roles: guarantor
and root.
Finally, the last group of modules has a more complex access management
structure. These modules mostly have two types of components. The first
type is components accessible for student, test student and root roles and the
second type is accessible for teacher, guarantor and root roles. Therefore in
the short description of the module’s permissions by roles, I will use only two
roles, student for the first type and teacher for the second type.

Semester work

• Permissions for student.

– Semester work editor

– Check and submission

– Classification requirements

• Permissions for teacher.

– Submitted semester works and submission status view

– Semester works evaluation

– Import and set deadlines

– Classification requirements

24

3.2. Permissions

Tests

• Permissions for student.

– Taking demo tests
– Taking assigned tests

• Permissions for teacher.

– Create and edit assignments
– Create and edit questions
– Create test templates
– Assign and start tests
– Evaluate tests
– Tests classification and statistics

Students’ score

• Permissions for student.

– View students’ score with anonymized personal data

• Permissions for teacher.

– View students’ score

Home

• Permissions for student.

– View of personal and course data
– View of personal progress in a course

• Permissions for teacher.

– View of the course statistics of students progress and activity

The detailed accesses to the components and functionalities of the BI-DBS
portal are going to be presented by the use case diagrams by students, who
will be implementing them. An example of such work is Bc. Radoslav Hašeks’s
master thesis [34] which focuses on analyses, designing and implementation of
the tests module.

25

Chapter 4
Implementation

Authentication is a process of identification and verification of the user’s access
to the application. Authorization is a process of granting or denying access
to the application based on the authorized user’s identity and the permissions
for that identity. [35] In this chapter, I will describe the implementation of
those two processes for the client side along with the role-based access control
described in the third chapter.
My implementation uses the authentication microservice that was designed
and described along with the general authorization flow for this service by Ing.
Andrii Plyskach in his master thesis [1]. For the purpose of reducing security
vulnerabilities, I will also describe a few adjustments to the functionalities of
that microservice.

4.1 Used software

The technologies used for the development of the BI-DBS portal are described
in section 1.3. In this section I will mention which of them I have used for the
implementation part of this thesis and also describe the used libraries.
The UI is implemented in Vue.js [36] together with the Quasar framework [22]
for creating good-looking components and Typescript [21] as a programming
language.

4.1.1 Pinia.

Pinia is a reactive state management library. It allows to easily update data
and react to changes in the application’s state. Besides, it provides type safety
and thus integrates well with Typescript. In my implementation I have used
it for storing the state of users’ authorization along with the user’s identity
information such as their role. [37]

27

4. Implementation

4.1.2 Router

Vue Router is a routing library that provides mapping URLs to the compo-
nents, allowing SPA to load pages based on the given URL dynamically. I
have used it for managing access to the components based on the user’s au-
thentication state and identity. More about role-based access control is in
section 4.4.1. [38]

4.1.3 Axios

Axios is a Javascript library for making HTTP requests from the browser of
various request methods. It automatically transforms the response data to its
response type and allows it to intercept requests and responses. I have used
it for communication with the backend. [39]

4.2 Authentication and authorization

Authentication and authorization processes are implemented using the secure
OAuth 2.0 protocol [2]. The whole procedure is based on communication and
data exchange between four roles and components: the resource owner(user)
the client app, the authorization server and the authorization microservice.

4.2.1 OAuth protocol

OAuth protocol is a modern industry-standard protocol for authorization. In
general, the OAuth protocol enables users to provide a client with secure ac-
cess to server resources and without a need for users to share their credentials
directly with an application they want to access. OAuth is widely used by
major companies to allow users to grant access to their resources to trusted
third-party applications. [2] This protocol is also obviously suitable for uni-
versity applications and the BI-DBS portal in particular.

4.2.2 Tokens

Token in this context is a string that has some value for authentication and
authorization processes. In the implementation, the client gets the authoriza-
tion code from the authorization server and exchanges it for access and refresh
tokens with the server.

4.2.2.1 Access token

The OAuth protocol uses an access token to represent the authorization status
in the application. The access token is a short-time living token used to verify
the user’s access to the application. [40] An access token is sent in every
HTTP request made to the server. Thus the server can verify if the token is

28

4.2. Authentication and authorization

valid and then complete a request. It can be used for communication with the
application server until that token expires. The expiration time is set to one
hour.
The implementation uses a JWT token type for creating the access token.

JWT token. JSON web token(JWT) is a token type standard that allows
securely transmitting JSON objects. It consists of three parts: header which
specifies the algorithm used to sign the token, payload containing the data
being sent and signature that validates the token’s integrity and assures it has
not been modified. [41]

Figure 4.1: Example of encoded and decoded JWT token from jwt.io. [41]

4.2.2.2 Refresh token

Refresh token is a type of token used for requesting a new access token when
the current one expires. It is a long-time living token because it is meant to
live longer than an access token due to its existence purpose. With the help
of a refresh token user does not need repeatedly log in every hour which helps
to improve user experience. [42]

4.2.3 Authorization server

The authorization server is a key component of the authorization and authen-
tication processes based on the OAuth 2.0 protocol. For the authentication
and authorization in the BI-DBS portal, we use the faculty’s authorization
server called Zuul OAAS. It is open-source and available for anybody from
CTU. [43] Zuul OAAS provides three endpoints:

29

4. Implementation

• Authorization endpoint: /oauth/authorize. It is used for the authenti-
cation and authorization processes of a user. It displays the login form
for a user and after the submission of that form, it validates credentials
and in a case of success does a redirect back to the BI-DBS client app
server with the authorization code.

• Token Endpoint: /oauth/token. This endpoint provides us with two
important functionalities:

– Exchanging authorization code from the authorization endpoint for
access and refresh tokens.

– Generating new access token by accepting the refresh token.

• Check Token Endpoint: /oauth/check token. For controlling the valid-
ity of the token, the authorization server provides this endpoint which
checks the token for being valid.

With the use of these endpoints we have constructed the authentication and
authorization processes, which are more deeply described in 4.2.5 and shown
in Figure 4.3.

4.2.4 Apps manager

To communicate with the authorization server, the application must be reg-
istered in the Apps Manager [44]. For further communication with the server
we will need three parameters: client id, client secret and redirect URL. The
first two parameters are generated by the app manager. These are simplified
login and password for our application. But the redirect URL can be set to
the URL we want, this URL will be used for the redirect back to our ap-
plication after the successful authorization of a user. These parameters are
used as a part of the HTTP requests, that frontend and backend send to the
authorization server.

Figure 4.2: The example of the application registry in the App Manager [44]

30

4.2. Authentication and authorization

4.2.5 Authentication and authorization flow

For better visualization I have provided the implicit flow of the implemented
services and a sequential diagram in Figure 4.3.

Explicit flow:

1. Unauthorized user is trying to access the application and access valida-
tion redirects a user to the login page.

2. By clicking on the login button user gets transferred to the page provided
by the authorization server with a form for submitting credentials.

3. After submitting credentials authorization server redirects the user back
to the BI-DBS client with an authorization code which the client ex-
changes with the backend for the JWT access and refresh tokens.

4. Finally the user is redirected to the page they wanted to access.

Figure 4.3: Sequential diagram of generating an access token

31

4. Implementation

4.2.6 Refresh token flow

Another very important part of the implementation is refreshing the access
token with the usage of the refresh token. A user does not know about that
process and does not participate in it. This process replaces the constant
logging in by a user, which improves security since a user does not need to
enter credentials repeatedly and also does not annoy or interrupt a user. The
explicit flow and sequential diagram of the token refreshing process in Figure
4.4 are provided for showing the implementation details.

Explicit flow:

1. A user who has already been authorized in the application is trying to
make a request. However, the access token has expired and cannot be
used anymore for the requests.

2. The client detects that the access token has expired and sends a request
to the authorization microservice for a new access token in exchange for
the current access token and the refresh token.

3. After receiving a new access token client completes the request for a user
with the usage of that access token.

Figure 4.4: Sequential diagram of refresh an access token using refresh token

32

4.3. Security

4.3 Security

Needles to say that the development process comes together with analyzing
security vulnerabilities and implementing the solution to reduce them. My
implementation contains two points where the setup plays a big role: the
solution for storing sensitive data such as access and refresh tokens and the
configuration of communication between the client and server sides.

4.3.1 Tokens storage

Access and refresh tokens are both very sensitive pieces of data. In the case
of successfully stealing the refresh token, an attacker will get long-term access
to the application, or a short term in the case with the access token. That is
why it is important to store these tokens as securely as it is possible.

Most common attacks: [45]

• Cross-site scripting (XSS) attacks. This is a type of attack where an
attacker injects malicious scripts into a web page viewed by other users.
It basically happens when an application trusts a user and the content,
which can be inserted by them.

• Cross-site request forgery (CSRF) attacks. In general, this attack can
be described as tricking a user into unintentionally performing some
action. In this way, attackers just use the user’s account to perform
some harmful requests.

Types of browser storages: [46]

• Local storage. Local storage is web storage that allows the saving of
key-value pairs of data. It provides the stored data persistence across
the page reloading and can fit up to 5MB of data. Content from the
local storage cannot be automatically sent and it makes it prone to
CSRF attacks. However, it is not considered secure storage for keeping
sensitive data due to the vulnerability to XSS attacks.

• Session storage. Session storage is client-base storage available by the
browser which is very similar to the local storage. It has the same
memory limit and vulnerabilities. But in addition to that it does not
provide the persistence of data, which is a disadvantage to the user
experience due to the need for repeated authentication.

• Cookies. Cookies are another way of storing data using a browser. Cook-
ies can store much less data - up to 4KB, which might not always be
enough for storing big tokens, but it is absolutely enough for my imple-
mentation. Cookies are vulnerable to both CSRF and XSS attacks, but

33

4. Implementation

with a proper configuration of secure attributes they are less vulnera-
ble than local or session storage. Cookies can also be configured to be
automatically sent with every HTTP request or some certain request.

4.3.1.1 Solution for the refresh token

The perfect solution for storing sensitive data in a browser does not exist
and in order to keep the data secure there should be also implemented other
vulnerability-reducing features like input data validation, escaping and oth-
ers. However, with the proper use of security attributes, cookies are much
more likely to mitigate those attacks. [47] Moreover, using cookies for storing
tokens is recommended by the OWASP [48] community due to their secure
configuration options. [49]
I have come to the solution of storing the refresh token, which is the most
sensitive token requiring persistence across page reloads, in httpOnly cookies.
HttpOnly cookies must be set on the server side as they are not accessible
for JavaScript. Therefore, I had to adjust the implementation of sending and
receiving the refresh token in the authentication microservice from the body of
requests to cookies. Listing 4.1 shows the configuration of security attributes
for the refresh token cookie.

1 public function setRefreshTokenCookie (View $view , JWTToken $token
): View

2 {
3 $cookie = new Cookie (
4 name: ’refresh_token ’,
5 value: $token -> getRefreshedToken (),
6 path: ’/refresh -token ’,
7 secure : true ,
8 httpOnly : true ,
9 sameSite : ’Strict ’

10);
11 $view -> getResponse () ->headers -> setCookie ($cookie);
12 return $view;
13 }

Listing 4.1: Cookies setting on server

Security attributes: [50]

• Path. URL path to which the cookie will be automatically sent.

• Secure. This flag specifies that the cookie can be sent only through
HTTPS encrypted connections.

• HttpOnly. The httpOnly flag is created to mitigate XSS attacks. With
this flag, cookies can not be accessed by the Javascript.

34

4.3. Security

• SameSite. The strict value of that parameter means that the cookie
is only sent if you are on the site that the cookie is set for. SameSite
attribute is introduced for protection against CSRF.

4.3.1.2 Solution for the access token

The access token is represented as a JWT token, it contains important in-
formation about the expiration time of the token and the user’s identity. It
cannot be stored in the same way as a refresh token as a client needs to have
access to that token directly.
Another way of storing sensitive data which is considered more secure than
local and session storage and cookies is storing it in memory(in a variable).
This way is considered more secure because it is more prone to XSS attacks.
The disadvantage of that method is that it doesn’t provide persistence, but
in a case with an access token it is a resolvable challenge.
First of all, I have decided to store the access token and parsed information
about a user in the Pinia store, which is more secure than global variables.
The visualization of a Pinia store is shown in Listing 4.2.

1 export const useUserStore = defineStore (’auth ’, {
2 state: () => ({
3 isLoggedIn : false ,
4 user: emptyUser ,
5 token: ’’,
6 previousPage : ’/’
7 }),
8 actions : {
9 login(user: User , token: string) {

10 this. isLoggedIn = true
11 this.user = user
12 this.token = token
13 },
14 logout () {
15 this. isLoggedIn = false
16 this.user = emptyUser
17 this.token = ’’
18 },
19 setPreviousPage (page: string) {
20 this. previousPage = page
21 }
22 }
23 })

Listing 4.2: Pinia store configuration for user states

The fact that Pinia store is flexible and simple to use is important, as the
stored information is frequently used for making requests, verifying accesses
on the frontend and other functionalities.
Pinia storage does not provide data persistence on its own, but with the use of

35

4. Implementation

plugins it can enable this functionality with the use of local or session storage.
Surely it is not suitable for the implementation as I am trying to use as most
secure ways to store data as it is possible. Therefore the users’ data will be
lost together with an access token after the page reloads.
The BI-DBS is a SPA application, meaning that page reloads are not a part
of the usual functioning of the web page. However, for the case when a user
does the page reload and store resets to the default values I have implemented
the silent sign-in. Silent sign-in is shortened way of the authentication and
authorization process described in 4.2.5. The user does not participate in
this process, the client just quickly gets the access token as the authorization
server already knows the user and does not require to provide the credentials
before the access token expires.

4.3.2 Communication with backend

Backend plays a huge role in the application and without it the frontend
features I have implemented would be non-functional. The backend and the
frontend in the new BI-DBS portal are two separate units that communicate
through HTTP requests. It is essential to correctly configure communication
between them.

4.3.2.1 Communication

Frontend sends HTTP requests [51] to the backend using promised-based
HTTP client Axios. Axios offers a wide range of configurations of the re-
quest. Starting from choosing a request type, setting an URL and body to
interceptors for request and response. The example of configuring the Axios
client is shown in Listing 4.3.

4.3.2.2 HTTP headers

HTTP headers are vital components of communication between client and
server. They provide detailed control over how requests and responses are
managed, which leads to improvements in such aspects as security, perfor-
mance, and user experience. Headers provide additional information about the
HTTP request or response including security-related information like Cross-
Origin Resource Sharing(CORS) [52] and authorization [53]. While access
allowance is set on the server side, the authorization is provided by the client.

Base configuration For the base configuration of headers on the client
side I have sent an accepted content type to application/json which can
automatically be serialized and parsed to objects by Axios. The next header
I have configured is the authorization header to contain the access bearer
token. It is necessary for getting the data from a backend when it comes

36

4.4. Access control

to different microservices from the authorization one. Other microservices
require authentication and must be provided with the access token in every
request to validate the user and their access for making that request, which is
implemented for security reasons. Header configuration is visualized in Listing
4.3.

1 const BASE_URL = import .meta.env. VITE_BASE_URL
2 export const axiosClient = axios. create ({ baseURL : BASE_URL })
3
4 axiosClient . interceptors . request .use ((config) => {
5 return verifyAccess ().then ((token) => {
6 config . headers . Authorization = ’Bearer ’ + token
7 config . headers . Accept = ’application /json ’
8 return config
9 })

10 }, (error) => {
11 return Promise . reject (error)
12 })

Listing 4.3: Base Axios configuration

4.4 Access control

The BI-DBS portal uses role-based access control [31]. In the chapter 3 I have
designed the roles system and described their permissions. With the use of
that system I have implemented the regulation of displaying the components
and controlling access by roles and also verification of users’ authorization for
accessing components and making requests.

4.4.1 Role-based access control

Vue Router is first of all responsible for displaying the components by the
given path. However, it has multiple other features which I have used for my
implementation.
Firstly it allows dynamically setting of different parameters in meta object,
you can see the example of a component configuration and meta object in
Listing 4.4.

Meta parameters for the component:

• requireAuth. This flag simply tells if authorization is required for access-
ing the component.

• allowAccess. This flag specifies the role that has permission to that
component.

37

4. Implementation

• sidebar. Sidebar parameter tells the name of the configuration for navi-
gation sidebar items.

• showSideBar. This attribute is defining whether the navigation sidebar
should be displayed.

• showTopBar. This flag is used for the configuration of the top navigation
bar and it makes clear if that bar should be displayed for that component.

1 {
2 path: ’/ administration ’,
3 component : ImportSemester ,
4 meta: {
5 requireAuth : true ,
6 allowAccess : Role.GUARANTOR ,
7 sidebar : ’administration ’,
8 showSideBar : true ,
9 showTopBar : true

10 }
11 }

Listing 4.4: The example of component configuration in Router

First two meta parameters are used for the access control, which is imple-
mented as Router configuration. The Router allows to set a set of function-
alities before each routing which I have used for the verification of a user’s
access to the component. This validation is presented in Listing 4.5.

1 export function configureGuard () {
2 Router . beforeEach ((to , from , next) => {
3 if (to.meta. requireAuth === false) {
4 next ()
5 } else if(verifyAccess (to , from)){
6 next ()
7 }
8 })
9 }

10
11 function verifyAccess (to: RouteLocationNormalized , from:

RouteLocationNormalized) {
12 const userStore = useUserStore ()
13 userStore . setPreviousPage (from.path)
14
15 if (! userStore . isLoggedIn) {
16 login ()
17 } else {
18 if (userStore .user. exp_time < new Date ()) {
19 refreshToken ()
20 } else {
21 return verifyRole (to)
22 }

38

4.4. Access control

23 }
24 return false
25 }
26
27 function verifyRole (to: RouteLocationNormalized) {
28 if (to.meta. allowAccess == undefined || hasRole (to.meta.

allowAccess as Role)) {
29 return true
30 } else {
31 Router .push(’/ error403 ’)
32 return false
33 }
34 }

Listing 4.5: Validation of access by role

Firstly this configuration checks the users’ authorization status if the autho-
rization is required for the component. Secondly, it verifies that a user does
have permission to access this component. In a case user is trying to access
some component directly without having access they will be redirected to the
error page with an option to get to the previous page, the error component is
shown in figure 4.5.

Figure 4.5: Access denied component

Display control of components. Another example of role-based access
control benefits and usage is using it for the display control of UI components.
A developer can easily control displaying of any component by setting the
required role for it and using the hasRole() function shown in Listing 4.6.
The code Listing 4.7. shows exactly the case like that. In the top navigation
bar configuration I have set the required role for displaying the administration

39

4. Implementation

component and used a filter for displaying only the components user has access
to.

1 export function hasRole (role: RoleTOBE) : boolean {
2 switch (role) {
3 case RoleTOBE . GUARANTOR :
4 return isGuarantor ()
5 case RoleTOBE . TEACHER :
6 return isStudent ()
7 case RoleTOBE . STUDENT :
8 return isTeacher ()
9 default :

10 return false
11 }
12 }

Listing 4.6: Role validation

1 function useTopBarConfig () {
2 return computed (() => {
3 const { t } = useI18n ()
4 return {
5 tabs: [
6 { name: t(’base.home ’), path: ’/’ },
7 { name: t(’admin. administration ’), path: ’/

administration ’ , allowAccess : Role. GUARANTOR },
8]. filter (item => item. allowAccess == undefined ||

hasRole (item. allowAccess))
9 }

10 })
11 }

Listing 4.7: Filtering displayed components by role

The implementation of regulating accesses and displaying components is clear,
flexible and easy to use. It is possible due to the role-based access control,
which allows simplified permissions management. Moreover, such system de-
creases the risk of data leaking and provides good visibility over the applica-
tion.

4.4.2 Authentication control for requests

Another important validation is verification of access for making requests to
avoid the pointless calling of backend services when the user is not authorized
or the access token has expired. Especially in the case when the access token
has expired we need to detect it and execute the refresh process.
In 4.3.2.2 I have provided a code Listing 4.3 of the configuration of the Axios
interceptors for the request. That configuration contains a verifyAccess()
function which makes sure the user is authorized before making the request.

40

4.4. Access control

That function is illustrated in Listing 4.8.

1 function verifyAccess () : Promise <string >{
2 return new Promise ((resolve , reject) => {
3 const userStore = useUserStore ()
4
5 if(! userStore . isLoggedIn){
6 reject (’Unauthorized ’)
7 } else if (userStore .user. exp_time < new Date ()) {
8 Auth. refreshToken ({
9 access_token : userStore .token

10 }).then ((response) => {
11 processResponseToken (response .data. access_token)
12 resolve (userStore .token)
13 }).catch (() => {
14 reject (’Unauthorized ’)
15 })
16 } else {
17 resolve (userStore .token)
18 }
19 })
20 }

Listing 4.8: Access verification for making requests

41

Chapter 5
Automation – CI/CD

Automation is the base of DevOps methodology. My implementation of au-
tomation includes containerization, automated testing and deployment. With
the use of DevOps adoption instruction from 2.4 I will describe all the used
tools, the implementation of the automation itself and also provide documen-
tation.

5.1 Used tools

First step of adopting the automation concept is choosing suitable tools for
the planned automation of processes.

5.1.1 Docker

Docker is an open-source platform that allows to build, run and deploy applica-
tions quickly using virtualization of server hardware in containers. Containers
are lightweight units created by the containerization of the application. The
containerization provided by Docker is a technology of software packaging in-
cluding code, libraries and other necessary dependencies and configurations
for building the application.
Docker was already chosen as a tool for running the application and I have de-
cided to also use it for the automation of building and development processes
due to its flexibility, lightweight containers and speed. [54, 55]

5.1.2 GitLab

GitLab is a web service based on the Git version control system that is also
a DevSecOps [56] platform with multiple functionalities. It allows to plan,
track and manage issues, as well as manage automation processes using CI/CD
pipelines. Besides it lets to schedule jobs, create merge requests, do code re-
views and provides many other features. Its main benefit is that a software

43

5. Automation – CI/CD

development team can use GitLab instead of using many other tools as it
combines many features. [57, 58]
GitLab is generally used for many school applications including the BI-DBS
portal. Therefore it was the obvious choice to use it for the automation pro-
cesses.

5.1.3 CloudFIT

CloudFIT is a platform for everyone from FIT CTU, which provides server
management from usual web applications hosting to complex calculations and
simulations. [59]
I have chosen CloudFIT for hosting the BI-DBS frontend, because the servers
are managed by the faculty and faculty workers are open to consulting the
server parameters. Besides, it is free of charge, has well-written documentation
and is recommended for hosting school applications.

5.1.4 Buildah

Buildah is a tool for containerization which is compatible with for example
Docker. I have decided to use Buildah because the faculty provided an im-
age with Buildah for building docker containers, which is ready to use. Be-
sides, from my own small research comparing it with for instance Docker in
Docker(dind) it turned out to be the most stable and efficient variant. [60]

5.1.5 Nginx

Nginx is an open-source web server that can run in a docker container and
allows numerous configuration options such as reverse proxy, load balancing,
caching and others. The decision to use Nginx was made due to its simplicity
in configuration. [61, 62]

5.1.6 Yarn

Yet Another Resource Negotiator(Yarn) is a JavaScript package manager
which helps to manage project dependencies. It assists the application with
managing packages, managing scripts and caching. Yarn was already in use
in the BI-DBS frontend project, it has valuable benefits over other package
managers like for instance parallel installation of packages and installation of
packages without an internet connection. [63, 64]

5.2 Implementation

Second step of adopting the automation practices is setting up the processes
using chosen tools.

44

5.2. Implementation

5.2.1 Containerization

I have adopted containerization using Docker for use in CI/CD pipeline. The
Dockerfile simply contains the instruction for building a Docker image. It is
composed of specific commands which tell how to build the image. A Docker
image is a read-only file containing a set of instructions. When these instruc-
tions are executed, a Docker container is created.

1 FROM node: latest as build
2 WORKDIR /app
3 COPY package *. json ./
4 RUN yarn
5 COPY ./ .
6 RUN yarn run build
7
8 FROM nginx
9 RUN mkdir /app

10 COPY --from=build /app/dist /app
11 COPY nginx.conf /etc/nginx/nginx.conf

Listing 5.1: Dockerfile

Dockerfile showed on Listing 5.1 contains installing dependencies on the fifth
row and application bundling on the six’s row using Yarn and also adding
Nginx configuration from the nginx.conf file on the last row, which defines
parameters like hostname, listen port and others.

5.2.2 CI/CD pipeline configuration

CI/CD pipeline is a set of steps that are executed when the pipeline was
triggered.
Listing 5.2 shows all the stages of the CI/CD pipeline. The first two stages
were configured by Ing. Oldřich Malec with the first setup of the frontend
projects. The download stage installs all the dependencies required for the
application to run. The codestyle stage provides linting of the source code.
Other three stages I have implemented in this thesis.

1 stages :
2 - download
3 - codestyle
4 - test
5 - build
6 - deploy

Listing 5.2: Gitlab CI/CD stages

GitLab provides the visualization of the pipeline steps and allows to execute
any steps manually as well as monitor the log of any job from the pipeline.
Figure 5.1 shows how the passed pipeline looks in the BI-DBS portal frontend.

45

5. Automation – CI/CD

Figure 5.1: CI/CD pipeline in GitLab

The pipeline stages are executed from left to right and if any of the stages
fails all the other ones will be skipped. It helps to avoid the pointless running
of jobs because the stages are put in a way that they depend on the result of
the previous ones.

5.2.2.1 Test

Test stages contain one job which I have named Vitest, because it executes
unit tests implemented using Vitest framework which will be introduced in
the chapter 6. For running the tests I have used Yarn, which provides the
execution of the tests by running just one command which is added to the
script section on line fifteen of the Listing 5.3.

1 . image_template : &image
2 image: $CI_REGISTRY /ict/ images / alpine /ci :3.16
3 before_script :
4 - apk add -U nodejs yarn
5
6 . cache_pull_template : &cache
7 key: $CI_COMMIT_REF_SLUG
8 paths:
9 - node_modules /

10
11 vitest :
12 <<: *image
13 stage: test
14 script :
15 - yarn run test
16 cache:
17 <<: *cache

Listing 5.3: Test stage in the CI/CD pipeline

For the test execution setup in the pipeline I have used image and cache
pull templates, which were already prepared and used for the download and
codestyle stages.

5.2.2.2 Build

Build stage is focused on building an image and adding it to the GitLab
container registry of the project. I have used the faculties image containing

46

5.2. Implementation

buildah and buildah itself for the script which is shown in Listing 5.4. Com-
mand from row number seven will create the image and the next command
from row number eight will upload it to the GitLab registry.

1 build:
2 image: $CI_REGISTRY /ict/ images / buildah :v1
3 stage: build
4 variables :
5 IMAGE_TAG : $CI_REGISTRY_IMAGE : $CI_COMMIT_REF_NAME
6 script :
7 - buildah build --squash --tag $IMAGE_TAG -f Dockerfile
8 - buildah push $IMAGE_TAG
9 only:

10 - master

Listing 5.4: Build stage in the CI/CD pipeline

The last two rows of the listing define the only branch for which this job will
be executed. The BI-DBS frontend does not have a production version yet.
Therefore I have decided to create the environment for deploying the applica-
tion for testing during the development process. The changes are configured
to be built and deployed only from a master branch.

Change in the deployment flow. In the current application the master
branch is configured to be a production state branch, while the branch named
devtest is used for deployment to the test environment. From my implemen-
tation there is a change that is going to be established to the new project,
when a master will be to representing a state of a test environment and the
deployment to the deployment to the production environment will be imple-
mented by using tags for the master branch with the application version. This
approach has several advantages for the BI-DBS frontend project.

• Easier maintenance and flexibility. Using just one branch reduces the
complexity of merging branches and maintenance of multiple branches.

• Simulation of a production. The master branch state always represents
a state which is very similar to the production state. It means that
developers can see how their changes would behave in production. This
implies a few next benefits.

– It allows to thoroughly test the application before deploying to the
production.

– Provides a possibility to give faster and higher quality feedback on
code and changes.

47

5. Automation – CI/CD

5.2.2.3 Deploy

When it comes to deploy stage, it means that the application went through
all the previous pipeline stages and is ready to be deployed. The deployment
process of the CI/CD pipeline is composed of the execution of the deployment
script by the server. For the connection to the server GitLab uses CI/CD
variables that allow securely storing sensitive data, which need to be used in
the pipeline like for example deployment user showed on line number six of
Listing 5.5.

1 deploy :
2 stage: deploy
3 dependencies :
4 - build
5 script :
6 - ssh -A "${ DEPLOYER_IP_ADDRESS }" -l ${ DEPLOYER_USER } ’cd ˜/

dbs - frontend && git pull && cd ./. docker / server && bash
deploy -dbs - frontend .sh’

7 only:
8 - master

Listing 5.5: Deploy stage in the CI/CD pipeline

Deployment script. In a difference with a current application the deploy-
ment script is now being versioned and stored in the git remote repository
instead of a server only. Therefore, before the script execution the server pulls
all the changes from the remote repository.
The deployment script, which is shown in Listing 5.6 contains a few steps
such as pulling the Docker image from the GitLab created in the build stage
on row number seven, then running a container defined and configured in the
docker-compose.yaml file showed in Listing 5.7. Then the script provides the
”healthcheck” of the environment, which is a check for controlling the avail-
ability of the resource. And finally on the last two rows script starts showing
the logging of the container and removes unused images from the local docker
host for removing the disk space.

1 #!/ bin/bash
2
3 set -e
4
5 HEALTHCHECK_URL ="https :// dbs3.fit.cvut.cz"
6
7 docker compose pull
8 docker compose up -d
9

10 attempt_counter =0
11 max_attempts =30
12

48

5.2. Implementation

13 until $(curl --output /dev/null --silent --head --fail "${
HEALTHCHECK_URL }")

14 do
15 if ["${ attempt_counter }" -eq "${ max_attempts }"]
16 then
17 echo "Max attempts reached "
18 docker logs dbs - microservices - frontend
19 exit 1
20 fi
21
22 attempt_counter =$(($attempt_counter +1))
23 echo " Waiting for URL ${ HEALTHCHECK_URL }... (${ attempt_counter

}/${ max_attempts })"
24 sleep 2
25 done
26
27 docker logs dbs - microservices - frontend
28 docker image prune --force

Listing 5.6: Deployment script

Listing 5.7 shows the file which is used for the configuration and run of the
container. Firstly, it defines the image which will be downloaded from GitLab.
Secondly, it defines a network, that allows communication with the services
from the same network. Thirdly it tells the service to restart automatically
in case it stops for any reason. Then it specifies the container ad host names
as well as port mapping. Finally it gives a label, which can be used for the
service identification as a microservice of the application.

1 version : ’3.8 ’
2 services :
3 dbs - frontend :
4 image: ’gitlab .fit.cvut.cz :5000/ dbs/dbs - frontend : master ’
5 networks :
6 - internal
7 restart : always
8 container_name : ’dbs - microservices - frontend ’
9 hostname : ’dbs3.fit.cvut.cz. internal ’

10 ports:
11 - ’8080:80 ’
12 labels :
13 cz.cvut.fit.dbs. microservice : ’Frontend ’
14 networks :
15 internal :
16 external : true

Listing 5.7: docker-compose.yml

49

5. Automation – CI/CD

5.3 Documentation

The last step from the DevOps practices adoption instruction is the docu-
mentation for the team. I have written the documentation shown in Figure
5.2 in the new documentation project created by Dana Suchomelová, which
is used for frontend project documentation. It contains all the sources with
needed information, instructions on how to get access to the server and of
course the file containing the 5.1 and 5.2 sections of this chapter which have
all the necessary information about the pipeline setup and used technologies.

Figure 5.2: Documentation of server and CI/CD management

50

Chapter 6
Testing

I have provided two types of tests. First of them is unit tests, created specially
for the CI pipeline, which tests the main functionalities like managing the data
and processing of authentication and authorization processes. Second type of
tests is manual functional tests. I have created test scenarios for manuals
testing of all the implemented features, including the cases for different roles.

6.1 Tests for CI

Providing a set of regression tests for the CI pipeline is clearly good practice
since they will be executed with every change provided to the remote reposi-
tory and make sure that if any of those changes will affect the functionality of
the tested code the pipeline will fail and the code with defects will not be de-
ployed. Moreover, tests will tell the developer exactly what unit was affected
by their changes and require a fix.

6.1.1 Vitest

Vite is a frontend build tool used for the BI-DBS frontend. Vitest is a unit
test framework built on top of Vite. It is a suitable tool for implementing
tests in the project like the BI-DBS frontend which uses Vite. Vitest cares a
lot about performance and speed, which makes it a good choice for tests that
will be a part of CI pipeline. [65]

6.1.2 Tests

The authorization module is composed of four main services which I have im-
plemented for authentication and authorization processes including additional
features like a refreshing of token and logging out. Therefore I have created
unit tests for the functionalities of those services.

51

6. Testing

Generating the access token service. The process of getting the access
token enables the application to log in the user on the frontend after an au-
thorization server has successfully authorized the user and provided the client
with the authorization code. This service is focused on exchanging that code
for an access token with the backend and handling the response from the
server.

Test cases for the token generating service

• Positive scenario.

– Conditions: A valid token is successfully returned in the valid re-
sponse.

– Expected result: User was successfully authorized.

• Negative scenario.

– Conditions: An invalid token is successfully returned in the valid
response.

– Expected result. The errors from parsing the token are successfully
handled and the user was not authorized.

• Negative scenario.

– Conditions: The request for getting the access token fails.
– Expected result: The errors from the request are successfully han-

dled and the user was not authorized.

Refreshing the access token service. Refreshing process prolongs the
authorized status for a user without the need of submitting credentials, which
is implemented by exchanging the refresh token and current access token for
the new access token with the backend.

Test cases for the token refreshing service

• Positive scenario.

– Conditions: User is authorized and the request for refreshing the
access token succeeded and the server returned a new valid access
token.

– Expected result: The authorization time for a user was prolonged
to the expiration time of the newly received access token.

• Negative scenario.

52

6.1. Tests for CI

– Conditions: User is authorized and the request for refreshing the
access token succeeded but returned an invalid token.

– Expected result. The errors from parsing the token are successfully
handled and the user was logged out.

• Negative scenario.

– Conditions: The request for refreshing the access token fails.
– Expected result: The errors from the request are successfully han-

dled and the user was not logged out.

Rejecting the access token. The process of logging out is implemented as
a rejection of a token which includes removing all of the user’s data from the
user’s store along with permissions to access the components which require
authorization.

Test cases for the token rejecting service

• Positive scenario.

– Conditions: User is authorized and the request for rejecting the
access token succeeded.

– Expected result: User was successfully logged out.

Negative scenario test for the rejection of the token does not have to be pro-
vided as the service behavior as for the positive scenario.

Authorization service. The services described above also need some addi-
tional functionalities like parsing the data from the request and preparing the
URL for communication with the authorization server which are implemented
in the authorization service with both positive and negative scenarios.

Test cases for the authorization service

• Positive scenario.

– Conditions: The frontend calls the function to create an URL to
initiate an authorization process by sending a request to the au-
thorization server,

– Expected result: The URL is valid.

• Positive scenario. This scenario is used for the implementation of four
tests for each user’s role: admin, guarantor, teacher and student

53

6. Testing

– Conditions: The frontend calls the function to process the access
JWT token it got from the server for authorization of a user with
a certain role.

– Expected result. Successfully parsed the token and the data in the
user store matches the user’s identity sent in a token including the
role.

The results of unit testing. Frankly speaking, in the beginning I under-
estimated the importance of the unit tests implementation as I was very con-
fident about my code as it was structured and clear for me to work correctly.
Moreover, multiple times I have successfully tested all the functionalities man-
ually myself.
Unexpectedly, The implementation of the unit tests process helped me to un-
cover and correct some weaknesses in the implementation of some functions.
But most importantly, thanks to the creation of tests with also negative sce-
narios I have found some unhandled errors and was able to test the implemen-
tation in the various conditions.
The full set of tests is added to the CI pipeline and executed by every change
pushed to the repository. The duration of tests as you can see in Figure 6.1
is less than four seconds, which is a remarkably good result.

Figure 6.1: CI tests

6.2 Manual testing

I have asked four people to do the manual user acceptance tests of the func-
tionalities I have implemented. The implementation does not contain many

54

6.2. Manual testing

UI components, but is focused on the proper functioning. As it was very im-
portant for me to make sure, that I get all the features tested I have offered
each tester a scenario, which is shown in Table 6.1. Moreover, I have created a
list of the requirements shown below, which they also must use for testing the
features in random order and also estimate the look for a few UI components.
Besides, I have defined the roles that testers should use for testing and the
conditions they need to establish.

Roles. The test must be provided for the role I have assigned to the tester
for checking the correctness of the access control system. Each tester has one
of the next four roles assigned: admin, guarantor, teacher, and student. All
testers have different roles assigned.

Conditions.

• Client and Server applications are running.

• Course was imported, the user’s username exists in the database for that
course and has an assigned role for the imported course.

• The expiration time of the access token is recommended to be mocked
for five minutes.

Requirements for the application.

• No access to the application for non-authorized users.

• Clear and fast login procedure.

• Access control responds to the role permissions.

• Application allows persistent authorization across the page reloads.

• Application does not require repeated authorization after the access to-
ken expiration (five minutes in a case of a mocked expiration time in-
structed in the conditions section or sixty minutes if not mocked).

• Logout procedure includes the modal window for submitting the option
to log out.

• Logout process is clear and fast.

• Login and logout UI components are good-looking.

55

6. Testing

Offered scenario.

Test Step: Expected result:

1. Try to access the home
page of the application. Redirection to the login page.

2. Clicks on the login button. Redirected to the login form.

3. Submitted login form with
valid credentials. Redirected to the home page.

4.
Control all the displayed
navigation tabs to be
correct for your role.

Tabs are displayed correctly.

5. Refresh the page.
Page was successfully refreshed,
user still has access to the
application.

6.

Leave a browser page with an
application open for 5 minutes
and then click to one of the tabs
from the navigation bar

Component loaded by the path
of navigation tab.

7. Click the logout button. The modal window displayed and
requires the submission to log out.

8. Submit. Redirected to the login page.

Table 6.1: Scenario for manual testing.

Results.

• Tester 1. Anonymous with the admin role

– Scenario: passed
– Requirements: passed
– Feedback: ”Page reload takes longer from time to time. Access

control works good as well as login and logout.”

• Tester 2. Bc. Darya Litvinenka with the guarantor role

– Scenario: passed
– Requirements: passed
– Feedback: ”Everything works fine. ”

• Tester 3. Bc. Adam Vonášek with the teacher role

– Scenario: passed
– Requirements: passed

56

6.2. Manual testing

– Feedback: ”I did’t find any problem and would rate the experience
usage as positive. The only thing I’m not sure about is the access
control for my role as the application doesn’t have many tabs and
functionalities yet.”

• Tester 4. Anonymous with the student role

– Scenario: passed
– Requirements: passed
– Feedback: ”The speed of the login was not very fast. Otherwise i

didnt have a problem with anything.”

57

Conclusion

First of the thesis goals was contributing to the project by improving the
development efficiency and maintenance, which was achieved by introducing
the DevOps methodology and also automating such processes as testing and
development. The next goal was defined as adjusting the project to make it
more structured and secure. Therefore, I have analyzed the current access
management structure and came to the conclusion that it is unnecessarily too
complicated. I have managed to logically simplify it and provide a design of
a new access management system. Moreover, based on the clear permissions
system I have strengthened the security by providing validation before every
user’s request. Finally, I planned to implement the authentication and au-
thorization features. These functionalities were created using the OAuth 2.0
protocol and authorization microservice. Furthermore, I have reduced secu-
rity vulnerabilities by providing a suitable way of storing sensitive data.
In my opinion, this thesis will definitely be useful for developers and managers
of the BI-DBS portal. It can be used as a part of introduction materials to
DevOps methodology for new students before getting to the application de-
velopment as well as the documentation of the access management system for
managers and developers.
From the analysis of the current and planned application state, I have out-
lined three challenges, which we are facing in the new application state due to
the microservices architecture. I have provided the solutions for two of them.
The deployment problem was resolved by automation of this process. Possi-
ble security vulnerabilities were decreased by creating an access management
system. The testing challenge still remains unresolved. The application needs
a strong set of integration tests. Ideally, they should be a part of CI/CD
pipeline to reduce the probability of deploying errors. This is an idea for fur-
ther improvement which can become a topic for a thesis or a set of tasks for
the teams of BI-DBS developers.
An integral part of working on the development of the BI-DBS portal is work-
ing in a team. I am endlessly grateful for the collaboration with such amazing

59

Conclusion

and skillful people and the experience I have gained. Thanks to this the-
sis and the BI-DBS project, I have learned a lot about application security
and efficient development. Additionally, through the development of various
features, I have gained experience working with modern technologies such as
Vue.js, TypeScript, Pinia, and others.

60

Sources

1. PLYSKACH, Ing. Andrii. Modernization and Migration of DBS portal.
Master thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2023.

2. OAuth 2.0 - OAuth [online]. 2023. [visited on 2023-04-23]. Available from:
hhttps://oauth.net/2/.

3. MALEC, Ing. Oldřich. Project and infrastracture management of BI-DBS
teaching portal. Bachelor thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2017.

4. MIKE, Potel. MVP: Model-View-Presenter The Taligent Programming
Model for C++ and Java [online]. 1996. [visited on 2023-04-04]. Available
from: https://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

5. HARRIS, Chandler. Microservices vs. monolithic architecture [online].
1996. [visited on 2023-04-08]. Available from: https://www.atlassian.
com/microservices/microservices-architecture/microservices-
vs-monolith.

6. What is PHP? [online]. 2023. [visited on 2023-04-05]. Available from:
https://www.php.net/manual/en/intro-whatis.php.

7. HTML: HyperText Markup Language [online]. 2023. [visited on 2023-04-
06]. Available from: https://developer.mozilla.org/en-US/docs/
Web/HTML.

8. Doctrine [online]. 2022. [visited on 2023-04-05]. Available from: https:
//github.com/doctrine/orm.

9. Nette [online]. 2023. [visited on 2023-04-05]. Available from: https://
nette.org/en/.

10. Latte [online]. 2023. [visited on 2023-04-07]. Available from: https://
latte.nette.org/en/.

61

hhttps://oauth.net/2/
https://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.php.net/manual/en/intro-whatis.php
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://github.com/doctrine/orm
https://github.com/doctrine/orm
https://nette.org/en/
https://nette.org/en/
https://latte.nette.org/en/
https://latte.nette.org/en/

Sources

11. AdminLTE [online]. 2022. [visited on 2023-04-08]. Available from: https:
//github.com/ColorlibHQ/AdminLTE.

12. The Progressive JavaScript Framework. Vue 2 [online]. 2023. [visited on
2023-04-07]. Available from: https://v2.vuejs.org/.

13. ZAKELŠEK, Haidi. Options API vs. Composition API [online]. 2022.
[visited on 2023-04-08]. Available from: https://medium.com/codex/
options-api-vs-composition-api-4a745fb8610.

14. JavaScript [online]. 2023. [visited on 2023-04-08]. Available from: https:
//en.wikipedia.org/wiki/JavaScript.

15. Webpack concepts [online]. 2023. [visited on 2023-04-06]. Available from:
https://webpack.js.org/concepts/.

16. PHP OOP - Object-Oriented Programming in PHP [online]. 2022. [vis-
ited on 2023-04-08]. Available from: https://www.phptutorial.net/
php-oop/.

17. What is Symfony [online]. 2023. [visited on 2023-04-06]. Available from:
https://symfony.com/what-is-symfony.

18. What’s new in Vue 3 — a roundup [online]. 2023. [visited on 2023-04-08].
Available from: https://medium.com/front-end-weekly/whats-new-
with-vue3-5b6562d3898b.

19. Composition API FAQ — Vue.js [online]. 2023. [visited on 2023-04-08].
Available from: https://vuejs.org/guide/extras/composition-
api-faq.html.

20. Why Vite [online]. 2023. [visited on 2023-04-08]. Available from: https:
//vitejs.dev/guide/why.html.

21. TypeScript is JavaScript with syntax for types. [online]. 2023. [visited on
2023-04-08]. Available from: https://www.typescriptlang.org.

22. Why Quasar? [online]. 2015. [visited on 2023-04-08]. Available from:
https://quasar.dev/introduction-to-quasar.

23. Pinia [online]. 2023. [visited on 2023-04-09]. Available from: https://
en.wikipedia.org/wiki/Pinia.

24. Microservices and DevOps: Better together [online]. 2023. [visited on
2023-04-15]. Available from: https://www.mulesoft.com/resources/
api/microservices-devops-better-together.

25. DEvOps [online]. 2023. [visited on 2023-04-11]. Available from: https:
//en.wikipedia.org/wiki/DevOps.

26. What Is DevOps? [online]. 2023. [visited on 2023-04-11]. Available from:
https://www.atlassian.com/devops.

62

https://github.com/ColorlibHQ/AdminLTE
https://github.com/ColorlibHQ/AdminLTE
https://v2.vuejs.org/
https://medium.com/codex/options-api-vs-composition-api-4a745fb8610
https://medium.com/codex/options-api-vs-composition-api-4a745fb8610
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://webpack.js.org/concepts/
https://www.phptutorial.net/php-oop/
https://www.phptutorial.net/php-oop/
https://symfony.com/what-is-symfony
https://medium.com/front-end-weekly/whats-new-with-vue3-5b6562d3898b
https://medium.com/front-end-weekly/whats-new-with-vue3-5b6562d3898b
https://vuejs.org/guide/extras/composition-api-faq.html
https://vuejs.org/guide/extras/composition-api-faq.html
https://vitejs.dev/guide/why.html
https://vitejs.dev/guide/why.html
https://www.typescriptlang.org
https://quasar.dev/introduction-to-quasar
https://en.wikipedia.org/wiki/Pinia
https://en.wikipedia.org/wiki/Pinia
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/DevOps
https://www.atlassian.com/devops

Sources

27. 6 Principles of DevOps – DevOps Agile Skills Association (DASA) [on-
line]. 2023. [visited on 2023-04-12]. Available from: https://www.devopsagileskills.
org/dasa-devops-principles.

28. 7 Principles of DevOps for Successful Development Teams [online]. 2021.
[visited on 2023-04-15]. Available from: https://blog.hubspot.com/
website/devops-principles.

29. DevOps: Principles, Practices, and DevOps Engineer Role [online]. 2021.
[visited on 2023-04-15]. Available from: https://www.altexsoft.com/
blog/engineering/devops- principles- practices- and- devops-
engineer-role/.

30. DevOps: Principles, Practices, and DevOps Engineer Role [online]. 2023.
[visited on 2023-04-16]. Available from: https://appinventiv.com/
blog/devops-adoption-and-implementation/.

31. Role-Based Access Control [online]. 2023. [visited on 2023-05-02]. Avail-
able from: https://auth0.com/docs/manage-users/access-control/
rbac.

32. Course - KOSapi [online]. 2015. [visited on 2023-04-25]. Available from:
https://kosapi.fit.cvut.cz/projects/kosapi/wiki/Course.

33. TeacherRole KOSapi [online]. 2015. [visited on 2023-05-02]. Available
from: https : / / kosapi . fit . cvut . cz / projects / kosapi / wiki /
TeacherRole.

34. HAŠEK, Bc. Radoslav. dbs.fit.cvut.cz – tests. Master thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2023.

35. Authentication vs. authorization [online]. 2023. [visited on 2023-05-02].
Available from: https://auth0.com/docs/get-started/identity-
fundamentals/authentication-and-authorization.

36. The Progressive JavaScript Framework [online]. 2023. [visited on 2023-
05-02]. Available from: https://vuejs.org.

37. Introduction — Pinia [online]. 2023. [visited on 2023-05-02]. Available
from: https://pinia.vuejs.org/introduction.html.

38. The official Router for Vue.js [online]. 2023. [visited on 2023-04-09].
Available from: https://router.vuejs.org.

39. Promise based HTTP client for the browser and node.js [online]. 2023.
[visited on 2023-05-02]. Available from: https://github.com/axios/
axios.

40. Access Tokens [online]. 2023. [visited on 2023-05-02]. Available from:
https://auth0.com/docs/secure/tokens/access-tokens.

41. JSON Web Tokens - jwt.io [online]. 2023. [visited on 2023-05-02]. Avail-
able from: https://jwt.io.

63

https://www.devopsagileskills.org/dasa-devops-principles
https://www.devopsagileskills.org/dasa-devops-principles
https://blog.hubspot.com/website/devops-principles
https://blog.hubspot.com/website/devops-principles
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://www.altexsoft.com/blog/engineering/devops-principles-practices-and-devops-engineer-role/
https://appinventiv.com/blog/devops-adoption-and-implementation/
https://appinventiv.com/blog/devops-adoption-and-implementation/
https://auth0.com/docs/manage-users/access-control/rbac
https://auth0.com/docs/manage-users/access-control/rbac
https://kosapi.fit.cvut.cz/projects/kosapi/wiki/Course
https://kosapi.fit.cvut.cz/projects/kosapi/wiki/TeacherRole
https://kosapi.fit.cvut.cz/projects/kosapi/wiki/TeacherRole
https://auth0.com/docs/get-started/identity-fundamentals/authentication-and-authorization
https://auth0.com/docs/get-started/identity-fundamentals/authentication-and-authorization
https://vuejs.org
https://pinia.vuejs.org/introduction.html
https://router.vuejs.org
https://github.com/axios/axios
https://github.com/axios/axios
https://auth0.com/docs/secure/tokens/access-tokens
https://jwt.io

Sources

42. Refresh Tokens [online]. 2023. [visited on 2023-05-02]. Available from:
https://auth0.com/docs/secure/tokens/refresh-tokens.

43. OAuth 2.0 [online]. 2017. [visited on 2023-05-02]. Available from: https:
//rozvoj.fit.cvut.cz/Main/oauth2.

44. APPS MANAGER BETA [online]. 2014. [visited on 2023-05-02]. Avail-
able from: https://auth.fit.cvut.cz/manager/app-types.xhtml.

45. XSS vs CSRF — Web Security Academy [online]. 2023. [visited on 2023-
05-02]. Available from: https://portswigger.net/web- security/
csrf/xss-vs-csrf.

46. Local Storage vs Session Storage vs Cookie [online]. 2022. [visited on
2023-05-02]. Available from: https://www.xenonstack.com/insights/
local-vs-session-storage-vs-cookie.

47. LocalStorage vs Cookies: All You Need To Know About Storing JWT
Tokens Securely in The Front-End [online]. 2020. [visited on 2023-05-02].
Available from: https://dev.to/cotter/localstorage-vs-cookies-
all-you-need-to-know-about-storing-jwt-tokens-securely-in-
the-front-end-15id.

48. OWASP Foundation [online]. [visited on 2023-05-02]. Available from:
https://owasp.org.

49. Local Storage Versus Cookies: Which to Use to Securely Store Session
Tokens [online]. 2023. [visited on 2023-05-02]. Available from: https:
//www.pivotpointsecurity.com/local-storage-versus-cookies-
which-to-use-to-securely-store-session-tokens/.

50. Cookie Security Flags [online]. 2023. [visited on 2023-05-02]. Available
from: https://www.invicti.com/learn/cookie-security-flags/.

51. requests - IBM Documentation [online]. 2021. [visited on 2023-05-02].
Available from: https://www.ibm.com/docs/en/cics-ts/5.3?topic=
protocol-http-requests.

52. Cross-Origin Resource Sharing (CORS) [online]. 2023. [visited on 2023-
05-02]. Available from: https : / / developer . mozilla . org / en - US /
docs/Web/HTTP/CORS.

53. HTTP authentication [online]. 2023. [visited on 2023-05-02]. Available
from: https://developer.mozilla.org/en- US/docs/Web/HTTP/
Authentication.

54. Docker: Accelerated, Containerized Application Development [online]. [vis-
ited on 2023-05-03]. Available from: https://www.docker.com.

55. CASTRO, Santiago. 8 Reasons Why Docker Matters For Dev [online].
2023. [visited on 2023-05-03]. Available from: https://www.jobsity.
com/blog/8-reasons-why-docker-matter-for-devs.

64

https://auth0.com/docs/secure/tokens/refresh-tokens
https://rozvoj.fit.cvut.cz/Main/oauth2
https://rozvoj.fit.cvut.cz/Main/oauth2
https://auth.fit.cvut.cz/manager/app-types.xhtml
https://portswigger.net/web-security/csrf/xss-vs-csrf
https://portswigger.net/web-security/csrf/xss-vs-csrf
https://www.xenonstack.com/insights/local-vs-session-storage-vs-cookie
https://www.xenonstack.com/insights/local-vs-session-storage-vs-cookie
https://dev.to/cotter/localstorage-vs-cookies-all-you-need-to-know-about-storing-jwt-tokens-securely-in-the-front-end-15id
https://dev.to/cotter/localstorage-vs-cookies-all-you-need-to-know-about-storing-jwt-tokens-securely-in-the-front-end-15id
https://dev.to/cotter/localstorage-vs-cookies-all-you-need-to-know-about-storing-jwt-tokens-securely-in-the-front-end-15id
https://owasp.org
https://www.pivotpointsecurity.com/local-storage-versus-cookies-which-to-use-to-securely-store-session-tokens/
https://www.pivotpointsecurity.com/local-storage-versus-cookies-which-to-use-to-securely-store-session-tokens/
https://www.pivotpointsecurity.com/local-storage-versus-cookies-which-to-use-to-securely-store-session-tokens/
https://www.invicti.com/learn/cookie-security-flags/
https://www.ibm.com/docs/en/cics-ts/5.3?topic=protocol-http-requests
https://www.ibm.com/docs/en/cics-ts/5.3?topic=protocol-http-requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://www.docker.com
https://www.jobsity.com/blog/8-reasons-why-docker-matter-for-devs
https://www.jobsity.com/blog/8-reasons-why-docker-matter-for-devs

Sources

56. What is DevSecOps? [online]. 2023. [visited on 2023-05-03]. Available
from: https://www.ibm.com/topics/devsecops.

57. The DevSecOps Plsatform [online]. 2023. [visited on 2023-05-03]. Avail-
able from: https://about.gitlab.com.

58. GitLab documentation [online]. 2023. [visited on 2023-05-03]. Available
from: https://docs.gitlab.com.

59. CloudFIT [online]. 2023. [visited on 2023-05-03]. Available from: https:
//help.fit.cvut.cz/cloud-fit/index.html.

60. What is Buildah? [online]. 2023. [visited on 2023-05-03]. Available from:
https://www.redhat.com/en/topics/containers/what-is-buildah.

61. Deployment — Vue CLI [online]. 2022. [visited on 2023-05-03]. Available
from: https://cli.vuejs.org/guide/deployment.html#docker-
nginx.

62. What is NGINX? [online]. 2023. [visited on 2023-05-03]. Available from:
https://www.nginx.com/resources/glossary/nginx/.

63. Yarn - Package Manager [online]. [visited on 2023-05-04]. Available from:
https://yarnpkg.com.

64. KRISHNA, Ashutosh. Yarn vs NPM: Which One is Best to Choose?
[online]. 2023. [visited on 2023-05-04]. Available from: https://www.
knowledgehut.com/blog/web-development/yarn-vs-npm.

65. Vitest Blazing Fast Unit Test Framework [online]. 2023. [visited on 2023-
05-05]. Available from: https://vitest.dev.

65

https://www.ibm.com/topics/devsecops
https://about.gitlab.com
https://docs.gitlab.com
https://help.fit.cvut.cz/cloud-fit/index.html
https://help.fit.cvut.cz/cloud-fit/index.html
https://www.redhat.com/en/topics/containers/what-is-buildah
https://cli.vuejs.org/guide/deployment.html#docker-nginx
https://cli.vuejs.org/guide/deployment.html#docker-nginx
https://www.nginx.com/resources/glossary/nginx/
https://yarnpkg.com
https://www.knowledgehut.com/blog/web-development/yarn-vs-npm
https://www.knowledgehut.com/blog/web-development/yarn-vs-npm
https://vitest.dev

Appendix A
Acronyms

BI-DBS Database systems

BI-SP1 Team software project 1

BI-SP2 Team software project 2

CI Continuous integration

CD Continuous development

CSRF Cross-site request forg

DevOps Development and Operations

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IT Informational technology

JS JavaScript

MVP Model View Presenter

OAuth Open authorization

ORM Object Relational Mapping

PHP Hypertext Preprocessor

SPA Single-page application

SQL Structured Query Language

URL Uniform Resource Locator

XSS Cross-site scripting

67

Appendix B
Contents of enclosed media

BT Chukava Volha.pdf............. the file with the thesis in pdf format
README.md......................the file with media contents description
src.......................................the directory of source codes

access control.........the directory with services for access control
api........................the directory with prepared API requests
authorization the directory with components and services
automation..............the directory with files used for automation
language config the directory with translation configuration
model.......................the directory with interfaces and enums
tests..................................the directory with unit tests

text..the thesis text directory
pdf.............the directory with media of pdf format used in thesis
png............ the directory with media of png format used in thesis
template........................the directory with LaTeX template
tex............................the directory with LaTeX source files

69

	List of Code Examples
	Introduction
	Analysis of the application state
	The BI-DBS portal
	Current state of the application
	Architecture
	Technologies

	Planned state of the application
	Architecture
	Technologies

	Summary and implications
	Summary
	Implications

	Analysis of the DevOps model
	What is DevOps?
	DevOps concepts
	Automation
	Data-Based Decision Making
	Responsibility Throughout the Lifecycle
	Constant Improvement
	Collaboration

	DevOps cycle and practices
	Continuous development
	Continuous integration (CI)
	Continuous delivery (CD)
	Continuous deployment (CDE)
	Continuous monitoring (CM)
	Infrastructure as Code (IaC)
	Containerization

	DevOps adoption

	Analysis and design of the access control system
	Roles
	KOS roles
	Other roles

	Permissions

	Implementation
	Used software
	Pinia.
	Router
	Axios

	Authentication and authorization
	OAuth protocol
	Tokens
	Access token
	Refresh token

	Authorization server
	Apps manager
	Authentication and authorization flow
	Refresh token flow

	Security
	Tokens storage
	Solution for the refresh token
	Solution for the access token

	Communication with backend
	Communication
	HTTP headers

	Access control
	Role-based access control
	Authentication control for requests

	Automation – CI/CD
	Used tools
	Docker
	GitLab
	CloudFIT
	Buildah
	Nginx
	Yarn

	Implementation
	Containerization
	CI/CD pipeline configuration
	Test
	Build
	Deploy

	Documentation

	Testing
	Tests for CI
	Vitest
	Tests

	Manual testing

	Conclusion
	Sources
	Acronyms
	Contents of enclosed media

