
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Parallelization of ETL processes DW CTU - case study

Kristina Zolochevskaia

Ing. Michal Valenta, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The aim of the thesis is to propose an appropriate parallelization of the current ETL

processes of the CTU data warehouse (DW CTU) and to verify the proposal on a relevantly

selected example (part of the ETL process) in the form of POC (Proof of Concept). Two

concurrent bachelor theses are proposed, each of them trying to solve the problem using

a different technology. In the conclusion of the theses there will be an evaluation of the

advantages and disadvantages of each respective solution, which will allow to choose a

more favorable path for further DW CTU development.

1. Along with the concurrent bachelor thesis, specify the requirements for parallelization

of DW CTU ETL processes.

2. Along with the concurrent bachelor thesis, select a suitable part of DW CTU ETL

processes to be parallelized in the chosen technology.

3. Undertake research on two or more tools suitable for use in this problem.

4. Select one of the tools from step 3, analyze its possibilities in terms of fulfilling the

requirements from step 1.

5. Propose and implement the parallelization of selected DW CTU ETL part from step 2

using the tool chosen in step 4.

Electronically approved by Ing. Michal Valenta, Ph.D. on 6 December 2022 in Prague.

6. Evaluate the implemented solution in terms of accomplishing the requirements from

step 1 and also in terms of future use for the management of the entire DW CTU ETL

process.

Electronically approved by Ing. Michal Valenta, Ph.D. on 6 December 2022 in Prague.

Bachelor’s thesis

Parallelization of ETL processes
DW CTU – case study

Kristina Zolochevskaia

Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.

May 11, 2023

Acknowledgements

First and foremost, I would like to express my gratitude to my academic super-
visor, Ing. Michal Valenta, Ph.D., for their priceless advice, human approach,
and the opportunity to write this thesis under their guidance.

Furthermore, the support of my dear colleagues has been invaluable, es-
pecially from Bc. Adam Makara and Adam Marhefka.

Last but certainly not least, I would like to extend my deep appreciation
to my friends and cherished parents, whose faith and support have always
encouraged me and given me the strength to overcome difficulties.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 11, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Kristina Zolochevskaia. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zolochevskaia, Kristina. Parallelization of ETL processes DW CTU – case
study. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.

Abstrakt

Tato bakalářská práce se zabývá paralelizaćı proces̊u Extract, Transform,
Load (ETL) v rámci datového skladu Českého vysokého učeńı technického
(DW ČVUT) s ćılem zlepšit výkon. Stávaj́ıćı řešeńı, které se oṕırá o sekvenčńı
př́ıstup, je časově náročné a omezuje efektivitu systému. Hlavńım ćılem této
studie je navrhnout nový paralelńı př́ıstup a implementovat d̊ukaz konceptu
(POC) pomoćı odlǐsné technologie jako alternativu k současnému nástroji Pen-
taho Data Integration (PDI).

Byl proveden d̊ukladný přehled literatury, aby byly identifikovány po-
tenciálńı řešeńı, přičemž Apache Airflow se ukázal jako moderńı a spoleh-
livá možnost. Implementace se skládá ze dvou hlavńıch komponent: ručně
kódovaných ETL proces̊u v Pythonu a Apache Airflow, který orchestruje,
monitoruje, organizuje a plánuje paralelńı prováděńı úkol̊u ETL. Nové řešeńı
úspěšně sńıžilo čas nač́ıtáńı na polovinu, což dokazuje jeho účinnost při zlepšo-
váńı výkonu DW ČVUT.

Hlavńım př́ınosem této práce je vývoj efektivněǰśıho paralelńıho ETL řešeńı,
které snižuje zat́ıžeńı server̊u Výpočetńıho a informačńıho centra (VIC) a
uvolňuje prostředky pro ostatńı procesy.

Kĺıčová slova paralelńı ETL, datový sklad ČVUT, Apache Airflow, Python,
pandas

vii

Abstract

This bachelor’s thesis addresses the parallelization of Extract, Transform,
Load (ETL) processes within the Data Warehouse of Czech Technical Uni-
versity (DW CTU) to improve performance. The existing solution, which
relies on a sequential approach, is time-consuming and limits the system’s
efficiency. The primary objective of this study is to propose a new paral-
lelization approach and implement a proof of concept (POC) using different
technology as an alternative to the current Pentaho Data Integration (PDI)
tool.

A thorough literature review was conducted to identify potential solu-
tions, with Apache Airflow emerging as a modern and reliable option. The
implementation consists of two main components: hand-coded ETL processes
in Python and Apache Airflow, which orchestrates, monitors, organizes, and
schedules the parallel execution of the ETL tasks. The new solution success-
fully decreased the loading time by half, demonstrating its effectiveness in
enhancing the DW CTU’s performance.

The main contribution of this thesis is the development of a more efficient
parallel ETL solution, which reduces the workload on the Computing and
Information Centre (VIC) servers and frees up resources for other processes.

Keywords parallel ETL, data warehouse CTU, Apache Airflow, Python,
pandas

viii

Contents

Introduction 1

Aims 3

I Theoretical Background 5

1 Data Warehouse 7
1.1 Notions and definitions . 7
1.2 Data Warehouse Architecture 8

1.2.1 Inmon’s Approach . 9
1.2.2 Kimball’s Approach . 10

1.3 Data Modelling . 12
1.3.1 Data Modeling Approaches 12

1.4 Data Integration . 13
1.5 Business Intelligence . 14

2 Extract, Transform, Load 17
2.1 ETL Process Stages . 17

2.1.1 Extract . 17
2.1.2 Transform . 19
2.1.3 Load . 21

2.2 Parallel Optimization of ETL Processes 22
2.2.1 Parallel Processing of ETL 23

II Practical Implementation 25

3 Current State Analysis of the CTU Data Warehouse 27
3.1 CTU Data Warehouse Architecture 27

ix

3.1.1 Staging Layer . 28
3.1.2 Target Layer . 29
3.1.3 Access Layer . 29

3.2 Current ETL processes of CTU Data Warehouse 30
3.2.1 Source to Pre-Stage, or Export 31
3.2.2 Pre-Stage to Stage-Increment, or Transform 32
3.2.3 Stage-Increment to Target, or Load 34

3.3 Orchestration and Logging . 35

4 Requirements Analysis and Specification 37
4.1 Parallelization Requirements 37

4.1.1 Functional Requirements 38
4.1.2 Non-functional Requirements 39

4.2 Selection of ETL Parallelization Part 39

5 Parallelizing ETL: Tool Research and Analysis 41
5.1 Research and Selection . 41
5.2 Analysis . 42

5.2.1 Apache NiFi . 42
5.2.2 Talend . 43
5.2.3 Apache Airflow . 43

5.3 Final Assessment . 44

6 Implementation 47
6.1 Introduction to Apache Airflow 47
6.2 Basic Components of Apache Airflow 48

6.2.1 Workloads . 49
6.2.2 Control Flow . 49
6.2.3 Executors . 49
6.2.4 User Interface . 50

6.3 Design of Implementation . 50
6.3.1 ETL Processes Design 50
6.3.2 Airflow Configuration 51

6.4 Initial Setup . 53
6.5 ETL Implementation . 54

6.5.1 Database Connections 54
6.5.2 Extraction . 56
6.5.3 Transformation . 57
6.5.4 Loading . 58

6.6 Task Parallelism Implementation 59
6.7 Scheduling and Orchestration 62

6.7.1 UI Graphs and Task Monitoring 62
6.7.2 Logging and Error Handling 62
6.7.3 Task Statuses and Dependencies 62

x

6.7.4 Crontab Time Defining and Scheduling 62
6.7.5 Configuration and Customization 63

6.8 Testing . 63
6.9 Further Development and Optimization 64

7 Evaluation 65
7.1 Comparison . 65
7.2 Requirements Evaluation . 67
7.3 Result . 68

Conclusion 71

Bibliography 73

A List of Acronyms 77

B Apache Airflow Screenshots 79

C Contents of Digital Attachment 87

xi

List of Figures

1.1 Inmon’s top-down approach [6] . 9
1.2 Kimball’s bottom-up approach [6] 11

2.1 The topology of ODBC in the ETL process [3] 18
2.2 Overview of entire ETL process [17] 19

3.1 CTU DW 3.0 Architecture [32] . 28
3.2 Current ETL processes in PDI [34] 31
3.3 ‘TEKOSOBY CHECK JOB’ job in PDI [34] 31
3.4 ‘J MAKE INCREMENT’ job in PDI [34] 32
3.5 ‘t osob osoba kos stara’ transformation in PDI [34] 35

6.1 Architecture of Apache Airflow and Its Components [37, 36] 48
6.2 Final Architecture [37, 36] . 52
6.3 Airflow Working Directory Tree Structure 54
6.4 Apache Airflow Connections: KOS – Oracle [37] 55
6.5 Apache Airflow DAG – Grades Parallel ETL Tasks [37] 61

B.1 Apache Airflow – DAG List with Tasks Running [37] 80
B.2 Apache Airflow – Grades DAG [37] 81
B.3 Apache Airflow – KOS DAG [37] 82
B.4 Apache Airflow – EZOP DAG [37] 83
B.5 Apache Airflow – Usermap DAG [37] 84
B.6 Apache Airflow – Logs of Grades DAG [37] 85

xiii

List of Tables

4.1 Dependencies between selected tables 40

5.1 Tool Analysis . 44

7.1 Sequential and Parallel Loading: Comparison 66

xv

Introduction

This year marks the 10th anniversary of Czech Technical University Data
Warehouse (DW CTU), which originated from Stanislav Kuznetsov’s master
thesis, ‘Faculty Data Warehouse,’ at FIT CTU [1]. Over the years, multiple
students’ theses have contributed to its development, resulting in three ver-
sions and the establishment of a full-fledged department of Computing and
Information Centre (known as VIC ČVUT). The DW CTU integrates up to
seven university and faculty systems operated within the CTU in Prague. It
plays a critical role in providing dependable and high-quality data that serves
various purposes, including generating trustworthy reports and other outputs
for decision-making by CTU leadership and individual departments, facilitat-
ing analysis and research, and supplying data to support various university
web endpoints. Although the DW CTU currently covers only the Study do-
main, it processes around 450 GB of pure text data. As new data is added
daily and new systems are integrated regularly, the uploading time has in-
creased, highlighting the need for optimization.

This thesis aims to improve performance, increase scalability, and enable
better utilization of hardware resources by parallelizing Extract–Transform–
Load (ETL) processes. Currently, the DW CTU executes ETL jobs sequen-
tially, taking almost a full day to upload data, making it inefficient. To
address this issue, two concurrent bachelor theses were proposed to study
the possibilities and solve the problem in different ways. While my colleague,
Adam Marhefka, in their bachelor thesis ‘Parallelization of DW CTU ETL pro-
cesses in the Pentaho tool’, FIT CTU, (Slovak: ‘Paralelizácia ETL procesov
DW ČVUT s využit́ım nástroja Pentaho’, FIT ČVUT) focuses on enhancing
the existing implementation in Pentaho Data Integration (PDI), this thesis
will explore other tools and create parallel ETL processing of data using a
selected tool identified in previous studies. The solutions will be evaluated
in terms of performance, deployment requirements, and potential for further
development, to determine the best path for the future growth of the DW
CTU.

1

Aims

The aim of this bachelor thesis is to propose an applicable approach for par-
allelizing the current ETL processes of DW CTU and to verify the proposal
on a relevantly selected example (part of the current ETL processes graph) in
the form of Proof of Concept (POC). The main objectives of this thesis are:

1. To establish the requirements for parallelization of DW CTU ETL pro-
cesses along with the concurrent bachelor thesis.

2. To select a suitable part of DW CTU ETL processes graph to be par-
allelized in the chosen technology along with the concurrent bachelor
thesis.

3. To undertake research on at least two tools suitable for addressing this
problem.

4. To select one of the tools from step 3, analyze its capabilities in fulfilling
the requirements from step 1.

5. To propose and implement the parallelization of selected DW CTU ETL
part from step 2 using the tool chosen in step 4.

6. To evaluate the effectiveness of the proposed solution in meeting the re-
quirements outlined in step 1, as well as its potential for managing
the entire ETL process of the DW CTU in the future.

The theoretical part of this thesis aims to describe the concept and pur-
poses of data warehousing and the current state of DW CTU. It also aims
to analyze methods and concepts for parallel uploading that will be used in
the implementation and include additional information concerning optimiza-
tion of ETL processes.

The practical part of this thesis aims to propose and implement the so-
lution, as well as describe the steps taken to complete this implementation.

3

Introduction

Additionally, it aims to evaluate the solution in terms of overall performance
improvement and platform/framework/software support community.

The contribution of this thesis is to improve the future development of DW
by providing a better solution and to increase the flexibility of ETL processes
by allowing greater configuration options, rather than relying solely on existing
software.

4

Part I

Theoretical Background

5

Chapter 1
Data Warehouse

A data warehouse (DW), or enterprise data warehouse (EDW), is a large,
centralized repository that stores historical and up-to-date data from vari-
ous sources within a company. Its primary purpose is to facilitate efficient
data querying, reporting, and analysis for decision-making. By providing a
consistent, accurate, and reliable perspective of data throughout an organiza-
tion, data warehouses significantly contribute to business intelligence (BI), as
they enable companies to gain insights from their data, make well-informed,
data-driven decisions, and propel strategic growth.

The benefits of DW lie in their ability to assemble data from different
sources into a single, cohesive format, offering organizations a complete pic-
ture of their data view. They make it possible to store and analyze mas-
sive amounts of historical data, helping businesses identify trends, recognize
patterns, and predict future outcomes. ETL processes ensure data quality
and consistency, while the DW’s design for analytical processing accelerates
query and reporting tasks. Moreover, DWs can easily grow and adapt to meet
changing business needs and integrate new data sources and analytic tools.
Strong data security and governance measures keep the data safe and compli-
ant with regulations, protecting its confidentiality, integrity, and availability.
In essence, DW form the foundation for effective data analysis, reporting,
and decision-making, enabling businesses to uncover valuable insights, drive
strategic development, and stay ahead in the competitive market.

1.1 Notions and definitions

In constructing a DW, a large-scale database that stores data from multiple
sources, various technologies and concepts must be taken into account. To
get a better understanding of what’s involved in analysis, planning, and im-
plementing the different aspects of a DW, it is helpful to explore a collection
of related terminology:

7

1. Data Warehouse

• Data Warehouse architecture: The architecture of a DW refers to its
structure and organization, including data storage, integration, and ac-
cess. Two commonly used architectures are the Kimball and Inmon
approaches. The Kimball architecture focuses on building data marts
first and integrating them into a larger DW over time, while the Inmon
architecture focuses on building a centralized DW first and creating data
marts as needed. The choice of architecture depends on the needs and
priorities of the organization and the nature of the data and business
processes involved. [2, 3]

• Data Modeling: To develop a reliable data model for a DW, it is funda-
mental to define and analyze the data generated by an organization. By
having a clear understanding of the data and the relationships between
the, it becomes easier to design a suitable model. This approach helps to
create an efficient and effective way to store and access data in the DW.
[4]

• Data Integration: The process of combining data from different sources
into a single, consistent format, which can be used in a DW. It includes
stages such as data modelling, cleansing, ETL mapping, and transfor-
mation. [5]

• ETL (Extract, Transform, Load): ETL, or ETL process, is a foundation
stone of the DW architecture and its activities. The process is responsi-
ble for extracting data from source systems, transforming it into a unified
format, and loading it into the DW for storage and analysis. A well-
designed ETL process can ensure that the integrated data is accurate,
consistent and reliable. [2]

• Business Intelligence (BI): Business Intelligence involves a process that
includes collecting and storing data, analyzing it to generate informa-
tion, and presenting it to end-users for various use-cases. It helps to
monitor business results and predict future outcomes accurately.

By diving deeper into these key topics, a reader can gain a better un-
derstanding of basic concepts of data warehousing and business intelligence.
The following sections and chapters will provide valuable insights into these
aspects.

1.2 Data Warehouse Architecture

The origins of data warehouses can be traced back to the mid-1970s, but they
peaked in popularity in the late 1980s, when two founders William H. Inmon
and Ralph Kimball contributed significantly to the development of the concept
and architecture of data warehouses.

8

1.2. Data Warehouse Architecture

1.2.1 Inmon’s Approach

William H. Inmon was the first to introduce the term ‘data warehouse’ and
define the concept in his 1990 book ‘Building the Data Warehouse’. [2] Often
referred to as the ‘father of data warehousing,’ Inmon proposed the top-down,
or data-driven, approach. According to him, a data warehouse is a ‘subject-
oriented, nonvolatile, integrated, time-variant collection of data in support
of management’s decisions.’ [2] This approach promotes the development of
a centralized data warehouse that integrates data from all sources across an
organization. It also involves creating data marts as subsets of the main data
warehouse to support specific departments or organization functions.

Data

Sources

DB

csv

xlsx

XML

Extract

Transform

Load

Data

Warehouse

Data Marts

Figure 1.1: Inmon’s top-down approach [6]

The top-down approach in this case refers to first defining and analyzing
the data, followed by ETL processes and finally providing endpoint access for
BI or other purposes [7, 8]. The key steps to building an Inmon-like data
warehouse are:

1. Analyzing data from different sources and defining a data model to
understand their data structures, relationships, and data quality. In
Inmon’s approach, the data warehouse is designed using a normalized,
entity-relationship (ER) model to reduce data redundancy and maintain
integrity. This approach results in a third normal form (3NF) schema
design, which is more suitable for handling large-scale data integration
and storage.

2. Data extraction, transformation, and loading (ETL). After designing
the data model, ETL processes can begin to ensure data is in uniform
format. The first step is to extract identified and analyzed data from
sources. During the transformation process, data is cleansed, validated,
and standardized to ensure quality and consistency. The normalized
data is then loaded into the centralized data warehouse.

3. The data from DW is further divided into multiple data marts based on
different departmental needs.

9

1. Data Warehouse

Advantages of Inmon’s approach:

• One unified data source for the entire organization;

• Low data redundancy, simplifying ETL process;

• Flexible and tailored data marts: This approach enables the creation of
separate data marts for different departments, providing tailored insights
while maintaining a comprehensive overview;

• Greater adaptability to changes in business requirements or source data;

• Enterprise-wide reporting: This method can handle diverse reporting
requirements across the organization;

• Lower maintenance costs: the overall maintenance costs are reduced due
to the centralized and normalized data structure.

Disadvantages of Inmon’s approach:

• Increased complexity: As more tables are added to the model, complex-
ity increases, making it harder to manage and query;

• High initial costs: the primary setup of Inmon’s approach can be costly
and time-consuming, requiring high-skilled professionals which may not
be feasible for all organizations.

1.2.2 Kimball’s Approach

On the other hand, Ralph Kimball, another key figure in the history of data
warehousing, introduced the bottom-up approach. In this method, the focus
is on building data marts first, which are then combined to form a larger,
integrated data warehouse. Kimball’s approach emphasizes the importance of
dimensional (denormalized) modeling and the star schema, which simplifies
querying and enhances query performance. [9]

Kimball’s approach focuses on designing and building data marts first,
then integrating them into a larger data warehouse. The process involves
the following steps:

1. Understanding and identifying the most critical business processes and
needs. This helps in building a denormalized data model. The most com-
monly used data models are the star schema or the snowflake schema,
where central fact tables are surrounded by dimensions tables.

2. Design and build ETL processes to populate the data warehouse, ex-
tracting data from the source systems and loading them into a denor-
malized data model.

10

1.2. Data Warehouse Architecture

Data

Sources

DB

csv

xlsx

XML

Extract

Transform

Load

Data

Warehouse

Data Marts

Figure 1.2: Kimball’s bottom-up approach [6]

Advantages of Kimball’s approach:

• Faster implementation and easier execution of the initial phase of data
warehouse;

• Better performance for querying: the denormalized, dimensional model
typically results in fewer joins and simpler queries, leading to better
query performance for end-users;

• Focused on particular business processes, it requires less database stor-
age and is simpler to handle.

Disadvantages of Kimball’s approach:

• Potential for data redundancy: Since data is stored in a denormalized
form in data marts, there may be some redundancy, which can lead to
data inconsistencies and increased storage requirements;

• Increased ETL complexity: the ETL processes in Kimball’s approach
may be more complex due to the need to transform and aggregate data
for the denormalized dimensional models;

• Less suited for enterprise-wide reporting: While Kimball’s approach is
well-suited for departmental or functional reporting, it may not be ideal
for handling diverse, enterprise-wide reporting requirements, as it may
require additional effort to integrate data from different data marts.

Summary

Both Inmon’s and Kimball’s architectures have played a crucial role in leading
the development of data warehousing, and their methods continue to influence
modern data warehouse implementation.

Choosing between Inmon’s and Kimball’s approaches depends on the spe-
cific needs and goals of the organization. Inmon’s approach is best for a
complete and consistent data warehouse, while Kimball’s approach is ideal for

11

1. Data Warehouse

incremental development and achieving faster returns on investment. Even-
tually, the decision should be based on unique requirements, resources, and
data strategy.

1.3 Data Modelling

Data modeling is a critical component in the development of a data ware-
house, as it establishes the foundation for efficient data storage, retrieval, and
analysis. A well-designed data model ensures that the data warehouse ef-
fectively supports an organization’s requirements by presenting a consistent,
accurate, and reliable depiction of its data. [4] This is usually achieved in
three steps, with each step requiring a different level of abstraction:

1. The conceptual data model is a description of the data to be stored in
a database that is independent of any specific technology. It is used
by data modelers and business stakeholders to communicate their ideas.
This type of model is usually presented as a diagram with additional
documentation, providing a high-level view of the data entities and re-
lationships between them.

2. The logical model translates the conceptual model into implementable
structures within a database management system (DBMS). It typically
specifies tables and columns forming the foundation of relational data-
bases that support data warehousing. This step requires careful consid-
eration of technical attributes – e.g. historization concerning columns –
to ensure data accuracy and consistency.

3. The physical data model defines the physical storage and access mecha-
nisms required for data to be stored in a DBMS, along with the specific
details about the data such as field lengths, types, and relationships be-
tween the data elements. It uses tables and columns to present the data
structure and is designed to ensure data integrity, consistency, and high
performance while minimizing storage requirements.

1.3.1 Data Modeling Approaches

Most modern data warehouses are build on relational data models. However,
alternative models, such as hierarchical data models, exist. They are primarily
used to organize data in a tree-like structure with parent-child relationship
between data elements.

Turning back to relational data model, it is important to specify its basic
approaches:

• The entity-relationship (ER) model is a data modeling approach that
incorporates significant semantic information from the real world. It

12

1.4. Data Integration

introduces a diagrammatic technique as a valuable tool for database de-
sign, along with implications for data integrity, information retrieval,
and data manipulation. The model also serves as a foundation for uni-
fying different views of data and resolving semantic ambiguities found
in other models. [10]

• Object-oriented data modeling is a database design approach that sup-
ports complex and multimedia objects. The model should support object
structures and interrelationships, behaviors, and dynamic constraints.
In addition, it helps OODBMS to provide persistent storage and schema
definition for objects, a query language, access optimization, concur-
rency control, authorization mechanisms, and recovery. [11]

• (Multi-)Dimensional data modeling is a data modeling approach that is
commonly used in data warehousing (Kimball’s methodology). It orga-
nizes data into dimensions and measures, where dimensions represent
the descriptive attributes of the data and measures represent the nu-
merical or quantitative data. The main objective of this approach is
to facilitate complex queries and analysis of large volumes of data. In
dimensional data modeling, data is organized into a star schema or a
snowflake schema, which are optimized for efficient data retrieval and
aggregation. [4]

Two data modeling techniques that are relevant in a data warehousing envi-
ronment are ER data modeling and dimensional data modeling. [5] While ER
models focuses on efficient storage, dimensional models increase redundancy to
simplify information reporting and retrieval, typically employed across Online
Analytical Processing (OLAP) systems.

1.4 Data Integration

Data integration is an essential process for organizations building a data ware-
house. It involves combining data from various sources, such as databases,
applications, and file systems, into a unified and consistent view. This pro-
cess aims to provide a complete and correct view of an organization’s data
to enable reporting, analysis, and decision-making. Nevertheless, challenges
arise when attempting to integrate data from external applications or different
providers, resulting in uncontrollable data replication and increased storage
and update expenses.

The principal difficulty in data integration lies in addressing inconsisten-
cies in data formats, structures, and the like while also ensuring data quality,
dependability, and comprehensiveness. Frequently, organizations create and
maintain data models for individual applications and an enterprise-wide data
model to offer a strategy for integration. Nevertheless, reaching a high level

13

1. Data Warehouse

of data integration continues to be an important challenge for many organi-
zations.

Data warehouses need to be more than just a gathering of records from
source systems; they should be databases that ‘make sense’ on their own.
This often involves defining target tables and translating, reformatting, or
summarizing data to serve data marts. These constraints can complicate the
data modeling and integration processes. This is exactly the point, where ETL
tools prove useful in automating these processes. Efficient and properly imple-
mented ETL techniques enable continuous and high-quality data integration.
[12, 7]

Data integration systems include a global schema and multiple sources
containing the actual data. The mapping between sources and the global
schema is required step and can be achieved through two basic approaches:
global-as-view and local-as-view. Moreover, the data integration system must
not only combine data from various sources but also be able to handle queries
in terms of the global schema. This requires the system to restructure the
query into terms that the sources can understand and process. Inconsistencies
among sources can arise, and data integration systems must address them
through transformation and cleaning procedures. [13, 14]

In conclusion, proper data integration is necessary for the successful data
warehouse. Careful planning and execution ensure that the data warehouse
meets the organization’s requirements. The most challenging tasks to achieve
an efficient and dependable data warehouse are fixing data inconsistencies,
mapping sources to global schema, and processing queries.

1.5 Business Intelligence

Effective decision-making is absolutely essential for the success of any orga-
nization or business. However, this process can be complicated, as there are
various factors to consider including available resources customer preferences,
competitor analysis, etc. Managing these diverse data becomes difficult when
it is stored across multiple systems within an organization. This is where data
warehouses come into play, combining these data sources into a single, rich
repository with consistent and trustworthy information. DW supply reliable
data to support Business Intelligence (BI) platforms and software in evaluat-
ing the contemporary state of an organization and giving valuable basis for
future growth.

BI plays a crucial role in ensuring a company’s success. It serves as both a
process and a product, helping organizations to develop and apply critical in-
formation to enhance their growth and competitiveness in the global economy.
BI systems combine operational data and analytical tools, providing complex
and valuable insights for decision-makers. [15]

14

1.5. Business Intelligence

The emergence of data warehouses, advances in data cleansing, and im-
provements in hardware and software capabilities, along with the rise of web
architecture, have all contributed to a richer BI environment. BI systems
are extensively used across various industries, such as manufacturing, retail,
financial services, transportation, telecommunications, utilities, and health-
care. [15]

To conclude, the importance of BI in modern organizations cannot be
overestimated. With data warehouses serving as a vital component for BI sys-
tems, they facilitate decision-making processes. It is essential for researchers
and practitioners to persistently investigate and improve BI systems and ap-
proaches, ensuring that organizations can make well-informed and timely de-
cisions. As a final point, this contributes to their success in a competitive
global marketplace.

Conclusion

This chapter has provided a thorough overview of the core components and
purposes of data warehouses, laying the foundation for a deeper exploration of
the main issues addressed in this thesis. The following chapter delves into the
ETL processes, their challenges, and methods for optimization. Although ETL
is an key part of data warehousing, it is treated separately, as it represents the
primary focus of this thesis. By building upon the knowledge gained in this
chapter, readers will be better prepared to grasp the details of ETL processes
and their problematics.

15

Chapter 2
Extract, Transform, Load

This chapter will dive into the heart of data warehousing – the ETL processes.
ETL, which stands for Extraction-Transformation-Loading, refers to the soft-
ware processes that facilitate the population of data warehouses. In addition
to describing each step within the ETL abbreviation, this chapter will cover
the challenges faced by ETL developers and potential solutions. It will also ex-
plore techniques for ETL optimization and parallelization, including methods
of orchestration.

2.1 ETL Process Stages

To better understand the details of ETL processes, it is beneficial to examine
the individual steps involved. ETL processes have the responsibility of ex-
tracting the required data from the sources and transporting it to a specialized
area (commonly called Data Staging Area, or DSA) within the data ware-
house for processing; transforming the source data and computing new values
(and, potentially records) to integrate with the structure of the DW relation
that it targets, isolating and cleansing problematic tuples to ensure compli-
ance with business rules and database constraints; and loading the cleansed
and transformed data into the appropriate relation within the Integrated Data
Layer (IDL) of the data warehouse, while refreshing its related indexes and
materialized views. [16]

2.1.1 Extract

Once the appropriate data warehouse architecture and modeling have been
established and configured, and the logical data map (LDM) has been defined,
it is time to populate the data warehouse with data. The first step in this
process is to extract data from various sources for further processing and
integration.

17

2. Extract, Transform, Load

Put simply, extract means ‘the process of selecting data from one environ-
ment and transporting it to another environment.’ [7] The data sources from
which data can be extracted may cover a wide range of formats, including flat
files (such as CSV, XML, JSON, etc.), as well as relational databases (such as
Oracle, PostgreSQL, MySQL, etc.). While the extraction of data from flat files
may not pose a significant challenge, establishing connections with relational
databases can be a complex task.

Open Database Connectivity (ODBC) can be a helpful solution that en-
sures access to databases from multiple applications without needing to recode
and recompile the application layer when the underlying database changes.
ODBC drivers are available for almost every DBMS on any platform and can
also be used to access flat files. [3]

Native
Database

Connection

Bypass ODBC
Manager

Typical ODBC
Connection

ETL Tool

ODBC Manager

ODBC Driver

Source Database

Figure 2.1: The topology of ODBC in the ETL process [3]

Despite its flexibility, ODBC comes with a performance cost due to the
added layers of processing and data passing involved in data manipulation.
When using ODBC in the ETL process, two layers are added between the
ETL system and the underlying database: the ODBC manager and the ODBC
driver (Figure 2.1). The ODBC manager maintains the connection between
the application and the ODBC driver, while the ODBC driver translates
ODBC SQL to the native SQL of the underlying database. Although ODBC
has improved significantly over the years, it is recommended to use native
database drivers for optimal performance and functionality. However, ODBC
can still be a valuable tool for accessing data from sources that are otherwise
difficult to extract. [3]

18

2.1. ETL Process Stages

After successfully establishing a connection to the source database, the
next step is to transfer the source data to the staging area. The staging area
is a temporary storage location where data is collected, validated, cleansed,
and transformed before being loaded into the target data warehouse. The
following transformation step covers all these tasks.

Operational
Sources

Data
Warehouse

Scheduling, Logging, Orchestrating, Recovery & Backup

Pre-stage
Area

Staging
Area

Schema Extraction
and Translation

Instance Extraction
and Translation

Schema Matching
and Integration

Instance Matching
and Integration

Schema
Implementation

Filtering and
Aggregation

Extraction, Transformation & Loading

Extraction Transformation Loading

Figure 2.2: Overview of entire ETL process [17]

2.1.2 Transform

While the extraction and loading steps are typically considered straightfor-
ward, it is the transformation step that adds value to the entire ETL system.
[3] ‘Transformation is a data integration function that modifies existing data
or creates new data through functions such as calculations and aggregations.’
[18] In addition, the transformation step involves a variety of tasks, including
data validation, cleaning, data type and value converting, handling missing
values and data enrichment, computing technical values, (de)normalization,
aggregating and filtering data, among others. All of these ensure that in
production target data warehouse data will be reliable, consistent and accu-
rate. This section will delve into the most significant processes from the ones
mentioned above, providing detailed explanations.

Data Cleaning

Data cleaning, or data cleansing, refers to the process of identifying and cor-
recting corrupt, inaccurate, or incomplete records within a database or record
set. This step involves detecting and addressing data that is irrelevant, incor-
rect, or incomplete, and modifying, deleting, or replacing that data as needed.
[19] Some researches include data validation to this step, which guarantees
compliance with predefined business rules and constraints. In addition, data
cleaning techniques can be applied to various data types, including structured

19

2. Extract, Transform, Load

and unstructured data, in order to improve overall data quality. However it is
important to note, that while data cleaning is inherently related to the ETL
process, it is considered a distinct field of its own, with a primary focus on
record matching and addressing challenges associated with textual attributes.
[16, 20]

Data Conversion and Formatting

During the transformation step of the ETL process, data conversion and for-
matting are essential for ensuring accurate and consistent data representation
in the target data warehouse. When determining data types, careful consider-
ation must be given to the trade-offs between query efficiency and the category
of data type used. For example, numeric data not intended for calculations,
such as Social Security numbers, can be stored as either VarChar or Integer.
However, integer-defined columns offer greater query efficiency compared to
VarChar. [18]

Various challenges may arise in applying format masks, including different
value representations (e.g., for sex: ’Male’, ’M’, ’1’) and interpretations of val-
ues (e.g., date formats: American ’mm/dd/yy’ vs. European ’dd/mm/yy’).
Other value-level issues involve surrogate key management, substituting con-
stants, setting values to NULL or DEFAULT based on conditions, and utilizing
common SQL operators like UPPER, TRUNC, and SUBSTR. Addressing these chal-
lenges is crucial for ensuring a smooth and effective data integration process.
[21]

Composite Technical Transformations

In a data warehouse, which is an integrated storage system supporting data
historization, challenges occur due to diverse production keys across data
sources and processes that maintain the proper functioning of historical data
storage. Managing different key systems from various data sources can be
complex, as mapping data from one source to another, representing the same
real-world object, is not always straightforward. To address this issue, surro-
gate keys are generated, replacing production keys to optimize performance
and achieve semantic consistency. Surrogate keys resolve potential conflicts
among data sources by allowing for globally unique, reconciled keys in the
table. [3, 21]

To maintain the integrity of the historical data within the data warehouse,
two preferable solutions are purposed: Slowly Changing Dimensions (SCD)
and Change Data Capture (CDC). SCDs primarily manage historical changes
in dimension tables within a data warehouse by providing different ways to
store and track changes. SCD has three major types – Type 1, Type 2,
and Type 3 – that determine how new and old values are managed. Type 1
overwrites old values and is used when history tracking is unnecessary. Type 2

20

2.1. ETL Process Stages

retains history by creating new tuples with new surrogate keys, while Type 3
modifies existing tuples by keeping both old and new values, making it useful
for history tracking. [21]

Change Data Capture (CDC) is a technique for capturing changes in the
source data and efficiently applying these changes to the target data ware-
house. CDC tracks and identifies insertions, updates, and deletions in the
source data, and then it incrementally applies these changes to the target
system. This technique reduces the need for full data loads and minimizes
the latency in data updates, thereby improving the overall performance and
efficiency of the ETL process. [18, 22]

Capturing changes in records can be time-consuming and performance-
intensive, requiring a comparison of the previous and updated states of data-
base records. Efficiency can be achieved through several techniques, such as
calculating row hashes for comparison with the business key, using advanced
frameworks (e.g., Delta Framework [23]), or applying CDC pattern.

Implementing SCD for a data warehouse implies that additional columns
may be needed during the transformation phase. These columns may include
status, version, hash, update timestamp, etc. [23]

Lookups and Filtering

Lookups involve the process of combining data fields from records with values
from reference tables, creating an enriched dataset. This process allows tables
to be expanded with attributes from other tables, providing a more compre-
hensive view of the data, reducing calculations during queries on target tables,
and maintaining data integrity. [24, 18]

The final step in the entire process is filtering columns to be loaded into
the target layer of a data warehouse. Some attributes from fetched tables
originating from different sources may be duplicated or redundant. Therefore,
it is considered good practice to exclude certain information and populate the
data warehouse only with valuable and relevant data.

2.1.3 Load

Loading to the target database of a data warehouse represents the final step
in the entire ETL process. At this stage, data is transformed and ready for
uploading, as it has been cleaned, made consistent, filtered, and equipped with
all necessary technical attributes for subsequent loading. Typically, loading is
closely related to the implementation of Slowly Changing Dimensions (SCD),
particularly Type 2. When a data warehouse is notified of a required change
in an existing dimension record, a new dimension record is issued for the
corresponding object at the moment of the change, rather than overwriting
the existing record. Previously created technical attributes, such as status
and update timestamp, support the ’perfectly partitioned history’ scenario,

21

2. Extract, Transform, Load

which is later extracted to additional target columns like version, start date,
end date, and last update. This approach provides a clear overview of when
and how the data changed. [3]

Furthermore, the loading stage addresses another challenge: loading tech-
niques. [5] There are several types:

• Initial load: the first extraction of source data;

• Incremental load for each change: updated data is loaded each changed,
tracked by DBMS log capture, triggered capture, or application-assisted
capture;

• Periodic incremental load: changes are captured and loaded periodi-
cally (e.g., hourly, daily, weekly, monthly, etc.), which involves change
tracking by timestamp-based capture or file comparison capture.

2.2 Parallel Optimization of ETL Processes

In today’s data-driven world, end-users rely heavily on the information pro-
vided by data warehouses for purposes ranging from business intelligence re-
ports to up-to-date web endpoints. As the volume of data continues to grow,
the need for efficient data processing becomes increasingly important.

Data warehouses depend on ETL processes and their techniques, which are
often the most time and resource-intensive aspects of data warehousing. [25]
Traditionally, ETL process efficiency encounters several challenges, including:

• Large volumes of data: The vast amounts of operational data present
significant data management problems across all three phases of the ETL
process;

• Data quality: Data is not always clean, requiring cleansing during the
ETL process;

• Evolution of data stores: Changes in the sources and the data warehouse
can lead to frequent maintenance operations;

• Performance issues: The ETL process must be completed within a spe-
cific time window, demanding optimization of execution time. Any pro-
cess failures must also be addressed within the established time windows
to maintain data quality and efficiency.

The extraction step in ETL processes is typically straightforward, while
the transformation and loading steps demand more attention. Numerous re-
searchers have developed techniques and methods to improve ETL process
efficiency, but several challenges still persist. Addressing these issues often
involves revisiting the entire data warehouse design and employing advanced

22

2.2. Parallel Optimization of ETL Processes

techniques for enhanced data processing and storage, such as incremental data
extraction, indexing, and partitioning at the target database. Parallel process-
ing is another valuable approach that can significantly improve ETL perfor-
mance.

2.2.1 Parallel Processing of ETL

Parallel computing, also known as parallel processing, is a computational ap-
proach where multiple calculations or processes occur simultaneously. [26]
This method has been widely used in high-performance computing and has
emerged as the leading paradigm in computer architecture, mainly through
multi-core processors. [27] Parallel computing can be categorized into various
forms, including bit-level, instruction-level, data, and task parallelism. In this
section, the latter two forms – data and task parallelism – will be discussed.

Data Parallelism

Data parallelism is a type of parallelism that concentrates on improving the
processing flow and structure of information, rather than depending on concur-
rent processes or tasks. The goal of data parallelism is to enhance processing
throughput by breaking down the dataset into concurrent processing streams,
each carrying out the same set of operations. This approach, known as domain
decomposition or ‘data parallelism,’ involves assigning a single portion of data
to a single process, with data portions being roughly equal in size. [28]

When portions require varying amounts of processing time, performance
may be limited by the slowest process. In such cases, the issue can be moder-
ated by dividing the data into a larger number of smaller portions. Processes
then take on another portion upon completing the previous one, with faster
processes being assigned more portions. This is usually achieved in SIMD
mode (Single Instruction, Multiple Data mode) and can involve either a sin-
gle controller directing parallel data operations or multiple threads operating
similarly on individual compute nodes (SPMD). [29]

Another example of data parallelism is the parallelization of a loop with-
out loop-carried dependencies, where processes execute the same loop body
but for different loop indices and, as a result, different data. This approach
centers on distributing data across various nodes in the parallel execution en-
vironment, enabling simultaneous subcomputations on the distributed data
across different compute nodes. [30] Data parallelism represents a more re-
fined form of parallelism, as it enhances performance by applying the same
small set of tasks iteratively across multiple data streams.

23

2. Extract, Transform, Load

Task Parallelism

In contrast, task parallelism emphasizes the distribution of parallel execution
threads among multiple computing nodes. These threads might execute the
same or different tasks. They communicate with each other through shared
memory or explicit communication messages, depending on the parallel algo-
rithm. In a task-parallel system, threads can perform entirely different tasks
while coordinating to solve a specific problem. In simpler cases, all threads
execute the same program, with variations in task responsibility determined
by their node-IDs. [29]

Task-parallel algorithms often adopt the Master-Worker model, where a
single master and multiple workers are involved. The master assigns com-
putations to different workers based on scheduling rules and task allocation
strategies. [29] In task parallelism or functional decomposition, processes are
assigned to individual pieces of code, which work on the same data. For ex-
ample, computing the average and standard deviation on the same data can
be executed by separate processes in task parallelism. Another example is the
parallelization of a loop containing an if-then-else construct, resulting in the
execution of different code during different iterations. [30]

Conclusion

In conclusion, this chapter provided an in-depth exploration of the Extract,
Transform, and Load (ETL) process, a key component in data warehousing.
The three primary stages of the ETL process were examined, including the
extraction of data from various sources, the transformation of data through
cleaning, conversion, formatting, technical transformations, lookups, and fil-
tering, and finally, the loading of transformed data into the target data ware-
house.

Furthermore, the chapter delved into the parallel optimization of ETL
processes as a means of improving efficiency and performance. It highlighted
the importance of parallel processing in ETL and discussed two main types of
parallelism: data parallelism and task parallelism. Data parallelism focuses
on enhancing the processing flow and structure of information by decompos-
ing the dataset into concurrent processing streams, while task parallelism
emphasizes the distribution of parallel execution threads across multiple com-
puting nodes. Both data and task parallelism, especially when combined, can
significantly improve the performance of ETL processes, ensuring that data
warehouses remain up-to-date and capable of handling the growing demands
of modern data-driven environments.

By understanding the issues of the ETL process and leveraging parallel
optimization techniques, data professionals can develop more efficient and
effective data warehousing systems, ultimately enabling organizations to make
better-informed decisions based on reliable and accurate information. [31]

24

Part II

Practical Implementation

25

Chapter 3
Current State Analysis of the

CTU Data Warehouse

While theoretical principles provide a foundational understanding of how a
data warehouse should ideally function, the reality often diverges due to an
organization’s unique requirements, increasing data flow (which may cause
the current solution to lose relevance and effectiveness over time), and evolv-
ing techniques that establish new standards. Adaptation and progress are
essential, particularly when there are opportunities and areas for growth and
improvement. This chapter will explore the design and overall state of the
current CTU data warehouse, highlighting its strengths, aspects that may
benefit from reconsideration, and potential areas for enhancement.

3.1 CTU Data Warehouse Architecture

The architecture of the CTU Data Warehouse follows Inmon’s model, which
entails a centralized storage system that integrates data from multiple Infor-
mation Systems (IS) to serve as a single source for creating data marts and
addressing Business Intelligence (BI) reporting needs. At present, the CTU
DW integrates seven data sources, including Usermap, KOS (Study Informa-
tion System / Komponenta Studium), Anketa, EZOP, Uvazkostroj, Grades,
and Projects (as well as several flat-file data exports). These systems utilize
either PostgreSQL or Oracle as their Database Management Systems (DBMS).

The entire CTU DW, encompassing all three layers – stage, target, and
access – is stored in PostgreSQL. The stage layer (Data Staging Area), is a
database that houses raw data extracted from the sources. This layer also con-
tains PL/pgSQL procedures employed during the transformation processes.
Once the data is transformed, it is loaded from the stage layer to the tar-
get layer (Integrated Data Layer), which is a centralized integrated database
utilizing the third normal form (3NF).

27

3. Current State Analysis of the CTU Data Warehouse

The access layer is closely connected to the target layer and extracts data
from it to populate data marts for end users. The primary goal of this ar-
rangement is to facilitate efficient data management and retrieval for various
analytical and reporting purposes within the organization. [32]

<database>

Ostrý KOS

Source/Landing
Layer

Staging Layer Integrated Data Layer Access Layer
Information Delivery

Layer

<database>

Anketa ČVUT

<database>

Grades

<database>

dwh3_stage

<schema>

dwh

<schema>

semantic

<schema>

semantic

<schema>

dm_1

<schema>

dm_2

<schema>

dm_n

ETL

ETL

<database>

dwh3_target

<database>

dwh3_access

db
views db foreign

tables (using
fdw)

db
materialized

views

Data reports

Figure 3.1: CTU DW 3.0 Architecture [32]

3.1.1 Staging Layer

The staging layer, also referred to as the stage, exists as a separate database
within the CTU Data Warehouse and is named dwh3 stage. This layer inte-
grates data from all seven source systems and organizes it into three groups,
corresponding to various stages of transformation. These groups are:

• ps : This prefix is used for the schema names of each exported domain.
In this context, PS stands for ’pre-stage’. These schemas contain raw
data loaded from sources without any transformations applied. As a
result, the dwh3 stage (staging database) contains several schemas with
names such as ps kos, ps grades, ps ezop, and so on, which hold table
copies from the source databases.

• psc : This prefix denotes schemas that store cleansed data (PSC repre-
sents pre-stage clean). Data is loaded here after being processed through
various transformations, such as removing data inconsistencies, dupli-
cates of keys, unnecessary columns, etc. Currently, these transforma-
tions are applied using PL/pgSQL procedures, which are triggered by

28

3.1. CTU Data Warehouse Architecture

PDI (the data integration tool currently in use). It is important to note
that not all domains are stored here, as some source systems are reliable
and their data is consistent and meets the requirements (e.g., there are
no psc grades or psc anketa tables). The data in this stage is cleaned
and ready for further processing.

• si : SI stands for stage increment, and this name partially explains
the data transformation process at this stage. Transformations applied
include computing state flags for new, modified, and deleted data. This
transformation is discussed in more detail in the following section (3.2).
In brief, it compares newly loaded data with the data since the last
refreshment of the data warehouse.

3.1.2 Target Layer

The target layer in the CTU DW, named dwh3 target, serves as the central
repository where data is loaded after the final transformations are processed.
This layer is organized into several schemas, with the most important ones for
this thesis being:

• ciselniky (English: code lists) contains tables with codes for reporting.
These tables usually remain unchanged, so they are not updated regu-
larly;

• dwh functions as the integrated data storage, where transformed data
from the stage layer is uploaded. At present, it houses 185 tables de-
signed to closely adhere to the third normal form (3NF). This schema
not only includes data from all provided sources but also historical data.
The structure of this schema is discussed in detail in Section 3.2;

• semantic is a schema used for creating and storing data views, primarily
to combine data from multiple target tables for improved comprehen-
sibility. Once views are prepared, they are imported into the access
layer for endpoint use. By employing the semantic agent user and Post-
greSQL Foreign Data Wrapper technology, views from the dwh3 target’s
semantic schema are connected to the dwh3 access’s semantic schema as
foreign tables using the IMPORT FOREIGN SCHEMA command. [33]

3.1.3 Access Layer

The third and final layer of the CTU Data Warehouse is formed by the
dwh3 access database, which serves as the primary point of access for users.
Users can connect to this layer either directly through SQL queries or in-
directly via reporting tools. Unlike the stage and target layers, this layer
contains schemas with materialized views that store aggregated data, offering

29

3. Current State Analysis of the CTU Data Warehouse

a more user-friendly representation of the underlying information. Material-
ized views offer rapid access to data by eliminating the need to repeatedly
execute complex queries.

3.2 Current ETL processes of CTU Data
Warehouse

In the context of the CTU Data Warehouse, the ETL processes play a cru-
cial role in managing the data flow between various databases and schemas.
These processes are responsible for extracting, transforming, and loading data
to ensure smooth operation and data consistency. To provide a clear under-
standing of the CTU Data Warehouse ETL processes, this section will serve
as an introduction to the primary transformations and tools employed in the
system.

The entire data flow between these databases and schemas is facilitated
by ETL processes. These processes are either implemented using PL/pgSQL
scripts or tools’ transformations; however, both types are ultimately triggered
or processed by PDI, the data integration tool currently employed in the
system. This section will explore the essential transformations necessary for
the proper functioning of the CTU Data Warehouse.

Currently, the Pentaho Data Integration (PDI) tool holds the position of
the master-chief in all ETL processes within CTU Data Warehouse. PDI,
also known as Kettle, is an open-source data integration and ETL (Extract,
Transform, Load) tool developed in Java for processing and transforming large
amounts of data. Consequently, it is platform-independent and compatible
with any operating system that supports Java Virtual Machine (JVM). PDI
offers an wide range of features, including data extraction from various sources,
data transformation, and data loading into target systems such as databases
or data warehouses.

In Figure 3.2, the entire ETL routine is presented using the Kettle job
named ‘J DWH routine’. Generally, all tasks in PDI are either jobs or trans-
formations. The main distinction is that transformations focus on data pro-
cessing, while jobs concentrate on workflow orchestration and coordination
of multiple data processing steps. Due to this separation, all PDI tasks are
prefixed with ‘J ’ (job) or ‘T ’ (transformation). The ‘J LOAD PRE STAGE’
box is responsible for data extraction, including certain transformations, as
well as the ‘J MAKE INCREMENT’ box. The final loading process is ensured
by the ‘J IDL LOAD’ box.

30

3.2. Current ETL processes of CTU Data Warehouse

Figure 3.2: Current ETL processes in PDI [34]

3.2.1 Source to Pre-Stage, or Export

The ‘J LOAD PRE STAGE’ box hides the loading of all data source systems
accessible to CTU Data Warehouse administrators. As previously mentioned,
it extracts data from seven ISs. The extraction process occur sequentially,
meaning each domain is loaded one after another. A more detailed view of
the extraction from source and subsequent loading into the pre-stage area is
illustrated in Figure 3.3

Figure 3.3: ‘TEKOSOBY CHECK JOB’ job in PDI [34]

Most of the processes are similar to one another, so the analysis will focus
on describing the target table ‘t osob osoba kos stara’, which is loaded and
transformed from KOS (the name of the original table is ‘TEKOSOBY’).

The first step in the graph is ‘Transformation - check if load’ utilizes
PL/pgSQL function fc should table be loaded to ps. This function relies

31

3. Current State Analysis of the CTU Data Warehouse

on a metadata table to determine whether or not to load the table into the
pre-stage area. The following ‘LOAD’ box extracts data from the source, ap-
pends an MD5 hash (calculated from the row’s values with PDI function ‘Add
a checksum’) to each row, and loads the resulting data (with PDI PostreSQL
Bulk Loader) into the pre-stage area within the corresponding schema (in this
case, it would be ‘ps kos’). MD5 hash, along with the business key, helps
catch changes. Although it is not collision-resistant, it still proves valuable
and efficient within this context. [32]

3.2.2 Pre-Stage to Stage-Increment, or Transform

The data transferring from pre-stage area to stage increment area is done in
the ‘J MAKE INCREMENT’ box shown in the Figure 3.2. The content of
this step is illustrated in Figure

Figure 3.4: ‘J MAKE INCREMENT’ job in PDI [34]

In the first step, PDI triggers PL/pgSQL script using the ‘Execute SQL
script’ function, named ‘clean stage’ in Figure 3.4. The script is as follows:

VACUUM;
ANALYZE;

BEGIN;
SELECT public.create_clean_pre_stage();
SELECT public.inc_clear_state_flag();
COMMIT;

Listing 3.1: Clean Stage Box Script

VACUUM reclaims unused space, and ANAYLZE updates statistics about ta-
bles to improve query performance. Subsequently, it executes predefined func-
tions (specified in public.create clean pre stage) to clean and filter data.
These functions additionally check whether a record is deleted in the source
system, ensure business keys are free of duplicates, create indices for faster
querying, and load the data into a pre-stage clean area, ensuring its cleanli-
ness and accuracy for further processing. As previously mentioned, data from
some sources is reliable enough to skip this step. The inc clear state flag
function removes the state flags (‘N’ – New record, ‘M’ – Modified record, or

32

3.2. Current ETL processes of CTU Data Warehouse

‘D’ – Deleted record) that were computed during the previous data warehouse
refreshment to avoid interfering with new, upcoming changes in records. Each
function is executed in sequence, as before.

The next step is crucial, as it detects changes and assigns an ‘N’, ‘M’, or
‘D’ flag/state to the corresponding case. PDI triggers the SQL script below:

BEGIN;

SELECT inc_find_modified_in_pre_stage();
SELECT inc_find_new_in_pre_stage();
SELECT inc_find_deleted_in_pre_stage();

COMMIT;

Listing 3.2: get M N D flags Box Script

Changes are captured by applying CDC technique described in the theo-
retical part of this thesis, in which data is downloaded into a pre-stage area,
changes are identified relative to the previous state, and altered records are
marked accordingly. Three types of changes are monitored: new records
(marked with ‘N’), modified records (marked with ‘M’), and deleted records
(marked with ‘D’). Changes are identified using two parameters: an MD5 hash
of the record and a predetermined business key. During data loading, an MD5
hash is created for each record and added as a text column.

After data is loaded into the stage database, change detection is performed
using three database procedures mentioned in Listing 3.2. The number of
modified records is found, and these counts are sent to the administrator
via email along with the transformation log. To find these records, dynamic
SQL is used, sequentially processing each pre-stage table, executing prepared
commands, and propagating changes to the stage-increment with appropriate
change markings.

To find new, deleted, and modified records, database joins are utilized with
business keys. For each table, the process iterates through and inserts records
into the stage-increment that meet certain conditions. [32]

• New records are those present in the pre-stage but not in the stage-
increment;

• Deleted records are identified as those present in the stage-increment
but not in pre-stage. The inc find deleted in pre stage function
also updates their state to ‘D’ (deleted) and active to 0;

• Modified records are identified by comparing hashes and selecting
those not in the stage-increment, then comparing business keys of these
records and the stage-increment to exclude new records.

33

3. Current State Analysis of the CTU Data Warehouse

3.2.3 Stage-Increment to Target, or Load

The final process of CTU Data Warehouose ETL is loading the changed data
from the stage-increment area into the target. Continuing the description of
the process using the ‘t osob osoba kos stara’ table from KOS, the concluding
stage is presented in Figure 3.5.

The process begins with the ‘Table input’ step, where data is extracted
from the stage-increment area using an SQL query with a specific constraint:
WHERE si kos.tekosoby IS NOT NULL. This ensures that only changed re-
cords are loaded. Before proceeding to ‘Select values’ step, the last trans-
formations are applied. These may include database lookup, row filtering,
value replacement, or adjusting strings, as in this case. In the ‘Select values’
step, data types are fixed, column names are changed, and fields are chosen
from the input data. Then data is then separated by their state (‘N’, ‘M’,
or ‘D’). Data with each state is loaded differently. Loading new data is the
simplest, as it only requires inserting values using PDI Bulk Loader. ‘Loading’
deleted records is slightly more complex and is implemented using a different
technique. PDI executes the following SQL script:

UPDATE dwh.{table_name}
SET date_to = CURRENT_TIMESTAMP
WHERE osoba_peridno_bk = ’{business_key}’

AND (date_to = ’2199-12-31 00:00:00’);

Listing 3.3: SQL Script for Loading Deleted Rows

This script essentially finds the last version of the deleted record and sets
the date to column to CURRENT TIMESTAMP, signifying that the validity of the
record expired at the moment of loading. The script is executed for one record
at a time, processing all deleted rows individually.

The last branch of the loading process is updating and inserting modified
records. This is the most complex and time-consuming operation. It is also im-
plemented using an SQL script, which calls the public.inc historize case m
procedure. The procedure takes four parameters: one row, with values con-
catenated using the ‘\x1f’ separator; the table name to load into; and two val-
ues from stage-increment table: active and last update. In simple terms, it
terminates the validity of the last version of the modified record (similarly to
the deleted case) and inserts a valid record with an incremented version num-
ber. Although every table is loaded sequentially, this step has been optimized
to execute in 30 parallel processes.

34

3.3. Orchestration and Logging

Figure 3.5: ‘t osob osoba kos stara’ transformation in PDI [34]

3.3 Orchestration and Logging

In Pentaho Data Integration (PDI), processes can be orchestrated using Jobs
and Transformations. Jobs manage high-level control flow and coordinate
multiple data processing steps, while Transformations focus on detailed data
manipulation tasks. Jobs and Transformations can be organized hierarchi-
cally, with Jobs calling other Jobs or Transformations, and Transformations
calling sub-transformations. This hierarchical organization allows users to
create complex workflows by breaking them down into smaller, manageable
components.

35

3. Current State Analysis of the CTU Data Warehouse

PDI provides built-in logging capabilities to track and monitor the progress
of Jobs and Transformations. Logging settings can be configured to capture
various levels of detail, ranging from basic execution statistics to fine-grained
debugging information. The logs can be stored in text files, databases, or sent
to remote log servers for centralized management.

Conclusion

Throughout the analysis of the CTU Data Warehouse and, primarily, its ETL
processes, several hidden issues were discovered. Among them are:

• Redundant state counting: Some tables in the stage area are used for
lookups only, making it unnecessary to find changes in them. Cleaned
data from sources is sufficient;

• False-positive modified flags: In cases where not all columns are up-
loaded to the target, MD5 hash is still computed for unfiltered data. If
a value (that is not integrated into the target) changes, the entire row
is marked as modified, but the filtered row remains the same;

• Some transformations are implemented with errors.

Addressing these issues will lead to more efficient processing and improved
data quality.

The current ETL processes are governed by Pentaho Data Integration
(PDI). PDI is a powerful tool for working with data migration, offering rapid
and straightforward design as well as versatility. Despite its many advantages,
PDI has some drawbacks, such as limited support, optimization options, up-
grade migration difficulties, poor scalability, occasional random behavior, and
issues with proper functioning on Linux OS systems (based on the author’s
personal experience). To fulfill the requirements for parallelizing ETL pro-
cesses, author’s colleague has been tasked with developing a custom extension
to address table dependencies and other challenges.

This thesis aims to explore alternative tools for migrating the ETL pro-
cesses and addressing the identified problems in a different manner. The
requirements for such a tool are structured and analyzed in the following
chapter.

36

Chapter 4
Requirements Analysis and

Specification

In this chapter, the focus will be on the Requirements Analysis and Speci-
fication for the implementation of parallel ETL processes in the CTU Data
Warehouse. This work is part of a collaborative effort between two bachelor
theses, both focusing on improving the current ETL solution for CTU DW.
One thesis, ‘Parallelization of DW CTU ETL processes in the Pentaho tool’,
FIT CTU, (sk.: ‘Paralelizácia ETL procesov DW ČVUT s využit́ım nástroja
Pentaho’, FIT ČVUT) authored by Adam Marhefka, is dedicated to improv-
ing the existing solution, while the other thesis, to which this chapter belongs,
is centered on investigating alternative approaches to implementing parallel
ETL processes. The authors have worked together to develop the requirements
and goals of both theses.

Given the shared context and goals of the two theses, this chapter on Re-
quirements Analysis and Specification will be identical in both works. The fol-
lowing sections will present a detailed discussion of these requirements, which
have been jointly identified by the authors. These requirements will serve as a
foundation for the subsequent exploration and evaluation of potential parallel
ETL implementations for the CTU Data Warehouse.

4.1 Parallelization Requirements

In order to base both bachelor theses on the same requirements and provide a
clear goal for comparing the solutions found in the proof of concept (POC) in
the conclusion, the authors have jointly defined the following functional and
non-functional requirements (functional – F, non-functional – N).

37

4. Requirements Analysis and Specification

4.1.1 Functional Requirements

F1. Dependency Management between Tasks

The solution must provide dependency management between ETL tasks to
maintain the correct order of loading required by the CTU Data Warehouse’s
database architecture. The solution must emphasize adherence to dependen-
cies since inconsistencies in the data warehouse’s data history may arise if
they are not maintained.

F2. Loading of a Single IDL Table with History

Currently, it is only possible to run a complete data warehouse loading pro-
cess, which loads all tables contained in the IDL. The solution must en-
able loading of a single table or a list of tables, allowing separate loading
of pre stage/pre stage clean tables and the history processes only for the nec-
essary stage increment tables for the correct loading of data into the chosen
IDL table or tables.

F3. Loading from Various Source Systems

The solution must allow loading from different types of source systems. Cur-
rently, only PostgreSQL and Oracle database systems are used, and they must
be included in the solution. Other database systems should be easily added if
needed in the future.

F4. Parallelization of Components Using Data or Task
Parallelization

Independent ETL processes should be executed in parallel, which corresponds
to the definition of task parallelization. Data parallelization is also an option
for processes that handle large amounts of data or where it makes sense.
Parallelization should be performed on a single server, which the CTU DW
has available for ETL loading.

F5. Clarity of Logging

When running processes in parallel, it is not possible to write log information
to a single file due to context switching between different threads or processes.
The solution must ensure easy retrieval of log information for specific loading
of one or more tables or the complete data warehouse loading process.

38

4.2. Selection of ETL Parallelization Part

4.1.2 Non-functional Requirements

N1. Scalability of Parallelization

The solution will allow for the scalability of parallelization, whether it is data
or task parallelization. Scalability can be changed by assigning more or fewer
resources to parallelization processes.

N2. Portability of the Solution

The created POC must be executable on various types of systems to simplify
its use by future users.

4.2 Selection of ETL Parallelization Part

ETL processes currently load nearly all tables from the target database dur-
ing each loading process. This involves approximately 180 tables in the
dwh3 target database, which use a similar number of tables in the dwh3 stage
database. Given that the implementation of the entire ETL process would be
considerably time-consuming, a smaller subset of tables (a part of the ETL
process) has been selected for demonstrating the proposed solutions. In Table
4.1, the interdependencies among the chosen tables in the stage and target
databases are explicated. The selection was made to cover all possible rela-
tionships in loading between stage and target tables, namely 1:1, 1:N, N:1,
and N:M. Additionally, two tables with a large volume of data and frequent
changes (resulting in extended loading times) in the source system (tables tci-
tation affiliations, tcitation authors) were selected. To ensure completeness, a
table without history has been added, featuring a different loading mode that
does not use stage tables (table with the nohist suffix).

39

4. Requirements Analysis and Specification

Ta
bl

e
4.

1:
D

ep
en

de
nc

ie
s

be
tw

ee
n

se
le

ct
ed

ta
bl

es

So
ur

ce
D

BM
S

So
ur

ce
sy

st
em

St
ag

e
ta

bl
e

Ta
rg

et
ta

bl
e

U
se

of
PS

C

Po
st

gr
eS

Q
L

G
ra

de
s

cl
as

sifi
ca

tio
n

te
xt

t
kl

as
kl

as
ifi

ka
ce

N
o

cl
as

sifi
ca

tio
n

us
er

t
kl

as
kl

as
ifi

ka
ce

,t
kl

as
kl

as
ifi

ka
ce

st
ud

en
t

cl
as

sifi
ca

tio
n

st
ud

en
t

cl
as

sifi
ca

tio
n

t
kl

as
kl

as
ifi

ka
ce

st
ud

en
t

bo
ol

ea
n

st
ud

en
t

cl
as

sifi
ca

tio
n

nu
m

be
r

st
ud

en
t

cl
as

sifi
ca

tio
n

st
rin

g
st

ud
en

t
cl

as
sifi

ca
tio

n

O
ra

cl
e

U
se

rm
ap

os
ob

y
t

os
ob

os
ob

a
Ye

s

K
O

S

tu
se

rs
N

o

tk
on

ta
kt

t
ko

ud
ad

re
sa

Ye
s

t
ko

ud
em

ai
l

t
ko

ud
te

le
fo

nn
ic

isl
o

te
kn

s
t

or
gj

or
ga

ni
za

cn
ij

ed
no

tk
a

t
or

gj
or

ga
ni

za
cn

ij
ed

no
tk

a
ex

te
rn

i

EZ
O

P

to
rg

an
iz

at
io

ns
tc

ita
tio

n
affi

lia
tio

ns
t

ex
te

rn
io

rg
an

iz
ac

ni
je

dn
ot

ka
ex

te
rn

ic
ita

ce
au

to
r

re
l

tc
ita

tio
n

au
th

or
s

t
vv

vs
ex

te
rn

ic
ita

ce
au

to
r

-
t

vv
vs

ve
de

ck
y

vy
sle

de
k

bi
bl

in
di

k
no

hi
st

-

40

Chapter 5
Parallelizing ETL: Tool Research

and Analysis

This chapter focuses on researching and analyzing various tools and platforms
to identify the most suitable solution for implementing parallelized ETL pro-
cesses. The analysis will be conducted in three main stages:

1. Research and selection: Initially, a few prominent ETL tools and plat-
forms will be chosen from the vast range of available solutions for in-
depth examination.

2. Analysis: The selected tools will be compared based on their ability
to meet the functional and non-functional requirements outlined in the
previous chapter.

3. Final Assessment: The most suitable tool will be chosen not only based
on its ability to fulfill the requirements but also considering other factors
such as flexibility, community support, ease of integration with existing
systems, adaptability to future changes, convenient orchestration, and
documentation quality.

A thorough exploration of various ETL tools and platforms is conducted
with the goal of identifying the most suitable solution for implementing par-
allelized ETL processes within the scope of the CTU Data Warehouse.

5.1 Research and Selection

The IT market offers a wide range of solutions concerning data warehousing
and beyond.The research conducted during this thesis suggests that most tools
suitable for this case can be divided into three categories: data integration
tools, ETL tools, and data flow management tools.

41

5. Parallelizing ETL: Tool Research and Analysis

• Data Integration Tools: These tools focus on combining data from dif-
ferent sources and making it available for further analysis or processing.
They handle data extraction, transformation, and loading (ETL), but
their scope may also include other tasks like data cleansing, deduplica-
tion, and data synchronization. Examples include Talend, Apache Nifi,
and Microsoft SQL Server Integration Services (SSIS).

• ETL Tools: ETL tools are a subset of data integration tools, specifi-
cally designed for the extraction, transformation, and loading of data.
They provide a means of transferring data from various sources into a
data warehouse or another central repository, where it can be analyzed
and transformed. Apart from data warehousing, ETL tools are often
used in other field, such as machine learning, etc. ETL tools often in-
clude features such as data profiling, data quality management, and data
mapping. Examples include Informatica PowerCenter, IBM InfoSphere
DataStage, and Microsoft SSIS.

• Data Flow Managers: Data flow managers focus on controlling and or-
chestrating the flow of data between different processing stages and com-
ponents in a data processing pipeline. They provide a means of man-
aging dependencies, scheduling tasks, and monitoring the execution of
data processing tasks. Data flow managers often include features for
handling failures, retries, and parallelization of tasks. Examples include
Apache Airflow, Apache NiFi, and Luigi.

Given the circumstances, it is important to mention that only open-source
software can proceed to the next step of analysis. Therefore, deeper explo-
ration of the following tools will be done: Apache NiFi, Apache Airflow, and
Talend. Luigi was not included in this list, as after further researching it
appeared to share very similar functionality with Apache Airflow.

5.2 Analysis

The comparison of Apache NiFi, Apache Airflow, and Talend in Table 5.1
shows that how all three solutions meet the functional and non-functional
requirements specified for the ETL parallelization process.

5.2.1 Apache NiFi

Apache NiFi is a data integration and data flow management tool that offers
a wide range of features and capabilities. However, upon further analysis, it
appears that it may not be the most suitable option for this specific project.
The potential limitations of NiFi include:

42

5.2. Analysis

1. Dependency Management between Tasks (F1): While NiFi allows for the
configuration of data flow dependencies, its primary focus is on data flow
management rather than specifically managing ETL task dependencies.
Ensuring proper dependency management between ETL tasks might
necessitate additional work or custom solutions.

2. Clarity of Logging (F5): NiFi provides comprehensive logging informa-
tion, primarily centered around data flow components. Although it is
possible to access log information for specific ETL tasks, this process
might not be as straightforward as with other dedicated ETL tools. Ad-
ditional effort may be required to guarantee clear and easily retrievable
logging for parallel processes.

5.2.2 Talend

Talend is a comprehensive data integration and ETL tool that offers a wide
range of features for various data management scenarios. In the context of
the previously outlined requirements, Talend presents a viable option.

1. Dependency Management between Tasks (F1): Offers robust support for
managing ETL task dependencies, with potential challenges in complex
scenarios.

2. Loading Single IDL Table (F2): Supports loading individual or multiple
tables, although requiring manual configuration.

3. Various Source Systems (F3): Provides strong support for multiple
source systems, including PostgreSQL and Oracle.

4. Parallelization (F4): Features parallel processing capabilities, but per-
formance may not be optimal compared to specialized tools.

5. Clarity of Logging (F5): Offers detailed logging information; however,
accessing logs for specific parallel processes could be challenging.

6. Scalability and Portability (N1 & N2): Meets scalability and portability
requirements.

5.2.3 Apache Airflow

Apache Airflow is a platform developed by Airbnb for programmatically cre-
ating, scheduling, and monitoring data pipelines. Similar to Taled, it appears
to fulfill the requirements:

1. Dependency Management between Tasks (F1): Excels at managing ETL
task dependencies through its Directed Acyclic Graph (DAG) structure,
ensuring proper execution order.

43

5. Parallelizing ETL: Tool Research and Analysis

2. Loading Single IDL Table (F2): Supports loading individual or multiple
tables, with a flexible approach for defining specific tables to load.

3. Various Source Systems (F3): Provides extensive support for multiple
source systems, including PostgreSQL and Oracle, and can be easily
extended to accommodate others.

4. Parallelization (F4): Offers native parallel processing capabilities, opti-
mizing performance for both task and data parallelization.

5. Clarity of Logging (F5): Delivers clear and easy-to-retrieve logging in-
formation, even for parallel processes, simplifying monitoring and trou-
bleshooting.

6. Scalability and Portability (N1 & N2): Meets scalability and portability
requirements, allowing for flexible resource allocation and compatibility
with various systems.

Both Talend and Apache Airflow seem to be the leaders of this analysis.
The next section will dive deeper into details to define the winner.

Table 5.1: Tool Analysis
Requirement Apache NiFi Apache Airflow Talend

F1. Dependency Management /
F2. Loading Single IDL Table
F3. Various Source Systems
F4. Parallelization
F5. Clarity of Logging /
N1. Scalability of Parallelization
N2. Portability of the Solution

5.3 Final Assessment

After a thorough comparison of Talend and Apache Airflow in the context
of the requirements outlined earlier, it is evident that both tools have their
unique strengths and limitations. However, it seems that Apache Airflow offers
a more profitable solution for the specific needs of this CTU DW.

In terms of support, Apache Airflow has a more extensive community and
better support compared to Talend. Additionally, Airflow is entirely free,
whereas Talend offers a paid version for advanced features such as cloud stor-
age integration. This aspect may limit the potential for future development
and expansion when using Talend.

While Talend’s documentation can be difficult to navigate, Airflow’s doc-
umentation is more user-friendly, making it easier for developers to work with

44

5.3. Final Assessment

the tool. Furthermore, Airflow’s scheduling and orchestration capabilities are
superior, which is particularly important for the management of ETL pro-
cesses.

It is important to note that Talend is a ready-to-use software solution,
while Airflow requires the creation of hand-coded ETL processes. Although
this may initially seem more time-consuming, it ultimately results in greater
flexibility and customization, which can be advantageous for the specific needs
of this project.

However, it is also necessary to acknowledge that the hand-coding aspect
of Airflow may lead to a longer debugging process. It is essential to remember
that no tool is perfect, and each comes with its own set of trade-offs.

In conclusion, while Apache NiFi, Talend and Apache Airflow are viable
options, Apache Airflow stands out as the most suitable choice for CTU DW,
considering the fulfillment of the previously established requirements and fur-
ther analysis. This evaluation should not be seen as a dismissal of other tools,
as they may still be appropriate for different use cases and scenarios.

45

Chapter 6
Implementation

In the previous chapter, Apache Airflow emerged as the most suitable solution
for implementing the required data flow in this thesis. This chapter aims to
offer a comprehensive understanding of Apache Airflow’s concepts and archi-
tecture, followed by an in-depth discussion of its practical application within
the context of this thesis. Once the desired results are obtained, the imple-
mentation will undergo testing, and suggestions for possible improvements will
be put forward.

6.1 Introduction to Apache Airflow

Apache Airflow is an open-source platform for data engineers to build, sched-
ule, and monitor batch-oriented workflows. [35] Airflow’s extensible Python
framework enables seamless integration with various technologies, and its web
interface helps in managing workflow states. The platform can be deployed in
diverse ways, from a single laptop process to large-scale distributed setups.

One of the key characteristics of Airflow workflows is their definition in
Python code, enabling ‘Workflows as code.’ This approach serves multiple
purposes, such as dynamic pipeline generation, extensibility, and flexibility.
It also allows workflows to be stored in version control systems, facilitating
collaboration and testing. [36]

Apache Airflow is particularly suitable for orchestrating processes, man-
aging connection pools, and establishing dependencies between tasks. Its pri-
mary use case is the development of data pipelines. Airflow supports parallel
execution, focusing on task parallelism, and its high configurability allows for
hand-coded ETL processes, providing data parallelism capabilities. The plat-
form’s user interface offers comprehensive views of pipelines and individual
tasks, as well as insightful logging and statistics.

Additionally, Airflow has a vibrant open-source community, ensuring con-
tinuous development, testing, and knowledge sharing among users worldwide.

47

6. Implementation

6.2 Basic Components of Apache Airflow

Apache Airflow is a versatile platform designed for creating and managing
workflows, which are represented as Directed Acyclic Graphs (DAGs). These
DAGs consist of individual Tasks, organized according to their dependencies
and data flows.

Webserver Workers

ExecutorScheduler

DAG

DirectoryData

Engineer

Airflow

UI

monitors DAG

runs and results

Metadata

DB

reads DAGs

schedules

tasks

assigns tasks

stores

results

gets runs

and results

visualizes runs

and results

writes DAGs

tracks and syncs tasks

Figure 6.1: Architecture of Apache Airflow and Its Components [37, 36]

An Airflow installation typically includes the following components:

• A scheduler that triggers scheduled workflows and submits Tasks to the
executor for execution.

• An executor responsible for running Tasks. While the default installa-
tion runs Tasks within the scheduler, production-ready executors gener-
ally utilize worker processes for task execution.

• Workers, which are separate processes or machines responsible for exe-
cuting the Tasks assigned by the executor. They ensure better resource
utilization and parallelism in Airflow.

• A webserver providing a user interface for inspecting, triggering, and
debugging DAGs and Tasks.

• A directory containing DAG files, which is accessed by the scheduler,
executor, and any workers.

• A metadata database used by the scheduler, executor, and webserver to
store state information.

48

6.2. Basic Components of Apache Airflow

Airflow is capable of orchestrating and running a wide range of Tasks, ei-
ther through high-level support via providers or directly using Shell or Python
Operators.

6.2.1 Workloads

In Airflow [36], Tasks are the fundamental units of execution within a DAG
and can be categorized into three types:

• Operators: Predefined Tasks that can be quickly combined to form most
parts of a DAG. Along with Airflow’s basic Operators (such as Bash-
Operator, PythonOperator, HttpOperator, etc.), it is possible to write
custom Operators with more complex code.

• Sensors: A specialized subclass of Operators that wait for external events
to occur.

• TaskFlow-decorated @task: Custom Python functions packaged as Tasks.

Derived from the BaseOperator, Tasks are organized into a DAG with spec-
ified upstream and downstream dependencies to determine their execution
order. Tasks can have various states during their lifecycle, such as scheduled,
queued, running, and success. Other possible states include failed, skipped,
and up for retry, which help manage error handling and task retries. In a
well-functioning DAG, Tasks progress from the initial state of none to the
final state of success by satisfying their dependencies and executing without
errors. [36]

6.2.2 Control Flow

In Apache Airflow, DAGs (Directed Acyclic Graphs) are workflows that define
a sequence of Tasks and their dependencies. Each DAG represents a pipeline
where Tasks are executed in a specific order, ensuring that all dependencies
are met before proceeding to the next task.

DAGs are designed for multiple, parallel runs and are parameterized to
include an interval for data processing, as well as other optional parameters.
Tasks have dependencies on each other, determining the order in which they
are executed. Data can be passed between Tasks using XComs, file uploads/
downloads from storage services, or TaskFlow API with implicit XComs.

6.2.3 Executors

Airflow can be installed in various configurations, from a single machine (easy
to set up but not scalable) to multiple machines (requires more initial work

49

6. Implementation

but offers horizontal scalability). The execution mode depends on the cho-
sen executor, which can be SequentialExecutor (default), LocalExecutor, Cel-
eryExecutor, or KubernetesExecutor.

SequentialExecutor is the simplest and runs Tasks sequentially, suitable
for testing and demo purposes but limited to a single machine. LocalExecutor
runs multiple Tasks in parallel on a single machine using a Python First-In-
First-Out (FIFO) queue, supporting up to 32 parallel processes by default.

For distributing workloads across multiple machines, the options are Cel-
eryExecutor and KubernetesExecutor. These are suitable for cases where
resource limits are reached, redundancy is needed, or faster workloads are
desired. CeleryExecutor uses Celery for queuing Tasks, with workers process-
ing Tasks from the queue. It supports RabbitMQ, Redis, and AWS SQS as
brokers and includes a monitoring tool called Flower. The main difference
between CeleryExecutor and LocalExecutor is that the former can distribute
tasks across multiple machines. [38]

6.2.4 User Interface

Airflow includes a user interface for monitoring the status of the entire installa-
tion and individual DAGs, triggering DAG runs, viewing logs, and performing
limited debugging and problem resolution.

6.3 Design of Implementation

With the essential components explained, the next step is to propose an imple-
mentation design. This involves defining the configuration for Apache Airflow
and outlining the ETL processes, as they will be triggered and executed by
Airflow.

Airflow does support data passing between tasks using XComs, but with
a 512MB limitation, it is unsuitable for managing large data volumes. As
a result, data storage between processes is still required. In order to pre-
serve the existing data warehouse architecture, the primary implementation
strategy will involve creating hand-coded ETL processes in Python, leveraging
Pandas for data processing. Airflow will then be employed to parallelize and
orchestrate these processes more effectively.

6.3.1 ETL Processes Design

Preserving the existing CTU DW architecture allows for the reuse of PL/pgSQL
procedures with minor modifications. The basic flow remains the same: ex-
tracting from source to pre-stage area; cleaning data, counting flags, and load-
ing it to the stage-increment area; transforming data and eventually loading it
to the target database. The responsibility of executing Python code for data
extractions, transformations, and loading, managing connections, and running

50

6.3. Design of Implementation

database scripts has now shifted to Airflow, instead of relying on PDI as it
was previously.

As previously mentioned, the Pandas module will be utilized for data pro-
cessing. Although more complex and potentially superior modules exist, Pan-
das is deemed sufficient for the current proof-of-concept implementation.

Due to the large volume of data, processing it in chunks is recommended.
This involves dividing data into equal-sized parts and processing them itera-
tively.

Each Task in a DAG represents a separate stage of the ETL process.
By configuring Airflow, dependencies between these Tasks will be resolved.
Whenever possible, one DAG will be created for each source system to pro-
vide a clearer view of the whole processing. In cases of interdependencies
between multiple source systems, the TriggerDagRunOperator will be utilized
to address the issue.

6.3.2 Airflow Configuration

It is crucial to establish platform configurations tailored to each specific case.
These configurations include: setting the maximum connection pool size, as
both source and target databases have limits on the number of connections;
setting the maximum number of parallel processes; selecting and configur-
ing a specific executor; configuring connections; and addressing DAG man-
agement and error resolution (dag import timeout, default task retry delay,
etc.). These configurations are set in a config file called airflow.cfg.

Another important aspect is defining DAGs correctly, ensuring proper im-
port and build. For this, a well-defined template is required, which Airflow
parses and approves for further use. Proper Task/Operator definitions and
dependencies must also be established.

The LocalExecutor is suitable for development or testing, but for deploy-
ment in a production environment, the CeleryExecutor or KubernetesExecu-
tor is typically recommended. In this implementation, the CeleryExecutor,
along with the RabbitMQ queue broker, will be applied. The final architecture
is depicted in Figure 6.2. It consists of several components, also mentioned in
Section 6.2:

It consists of several components also mentioned in Section 6.2:

• Workers – Execute the assigned Tasks;

• Scheduler – Responsible for adding the necessary Tasks to the queue;

• Webserver – HTTP Server provides access to DAG/Task status infor-
mation;

• Database – Contains information about the status of Tasks, DAGs,
Variables, connections, etc.;

51

6. Implementation

• Celery – Queue mechanism.

It is worth noting that the Celery queue consists of two components:

• Broker – Stores commands for execution;

• Result Backend – Stores status of completed commands.

Cluster

WorkersWebserver 1 Scheduler

Metadata

DB

5

DAG

Files

4

2

Celery

Result

Backend

Queue broker

(RabbitMQ)

7
6

3 8

9

10

11

Figure 6.2: Final Architecture [37, 36]

The components communicate with each other at several points, as illus-
trated in Figure 6.2:

1. Webserver −→ Workers: Fetches Task execution logs;

2. Webserver −→ DAG files: Reveals the DAG structure;

3. Webserver −→ Database: Fetchs the status of the Tasks;

4. Workers −→ DAG files: Reveals the DAG structure and execute the
Tasks;

5. Workers −→ Database: Gets and stores information about connection
configuration, variables and XCOM;

6. Workers −→ Celery’s result backend: Saves the status of Tasks;

7. Workers −→ RabbitMQ: Stores commands for execution;

52

6.4. Initial Setup

8. Scheduler −→ DAG files: Reveals the DAG structure and executes
the Tasks;

9. Scheduler −→ Database: Store a DAG run and related Tasks;

10. Scheduler −→ Celery’s result backend: Gets information about the
status of completed Tasks;

11. Scheduler −→ RabbitMQ: Put the commands to be executed.

The complete implementation will entail rewriting ETL processes in Python
using Pandas as Tasks in DAGs and setting up and configuring Apache Air-
flow so that these DAGs are parallelized and assume control over the entire
process. [36]

6.4 Initial Setup

To start working with Apache Airflow, it is essential to understand the pre-
requisites [36]. This implementation will be executed using the following spec-
ifications: Python 3.10, PostgreSQL 14, 16GB RAM, and Fedora 36. These
specifications are compatible with the latest Apache Airflow version at the
time of writing – 2.5.3.

The installation process is relatively straightforward if one adheres to the
instructions provided in the official documentation [36]. Some aspects that
require specific attention include:

• Metastore database: The default database for Airflow is SQLite, which
does not support parallel task processing. As parallelism is a core fo-
cus of this thesis, an alternative DBMS is recommended. In this case,
PostgreSQL 14 running in Docker is used;

• DAG directory: It is crucial to create a folder named ‘dags’ to store
DAGs. Additionally, proper directory organization is vital. The struc-
ture employed for this project, shown as a tree in Figure 6.3, diverges
from the one provided in the Airflow documentation. The path to
the home directory (airflow) must be stored as a variable: export
AIRFLOW HOME=∼/airflow.

• Webserver and Scheduler: These are two distinct components. To ex-
ecute DAGs from the webserver, it is necessary to start the Scheduler
in a separate terminal window. The Scheduler is responsible for parsing
DAGs and checking for errors. The same applies to the CeleryExecutor
and its auxiliary components;

• CeleryExecutor: When implementing the CeleryExecutor, the initial
step is to set up the following components: Celery, Flower UI, and a

53

6. Implementation

airflow workspace
airflow............................Main folder/ AIRFLOW HOME

airflow.cfg...Config file
airflow.db.......................................Metastore DB
dags..DAG folder

* dag.py....................................DAG definitions
logs...Log files
plugins Plugins and custom Operators folder

init .py.. Init file
custom operators.........................Custom Operators
target transformations....................Transformations

webserver config.py.......................Webserver config file
airflow env...................................Virtual environment

Figure 6.3: Airflow Working Directory Tree Structure

queue broker (RabbitMQ in this instance). Finally, modify the configu-
rations in airflow.cfg.

6.5 ETL Implementation

In this section, the focus is on the implementation of ETL processes for the
DW CTU using hand-coding methods. The discussion covers all stages of
the process, from extracting data from various sources to data cleansing, for-
matting, and ultimately loading into the Integrated Data Layer (IDL). The
aim is to provide a comprehensive, step-by-step overview of the ETL process,
shedding light on best practices and pitfalls to avoid.

6.5.1 Database Connections

Before delving into the transformations, it is necessary to obtain source data.
As outlined in the Requirements Analysis chapter (see Chapter 4), raw data
from four source systems will be processed: Grades, Usermap, KOS, and
EZOP. While Grades employs the PostgreSQL DBMS, the others utilize Or-
acle. For this purpose, SQLAlchemy, a popular Object Relational Map-
per (ORM) in Python, is required. SQLAlchemy supports a wide range of
databases and employs specific drivers for each database system. Depending
on the database, it is essential to install the appropriate driver package using
the following pip commands:

(venv)$ pip install psycopg2 # for PostgreSQL databases access
(venv)$ pip install cx_Oracle # for Oracle databases access

Listing 6.1: PIP commands to install database access drivers

54

6.5. ETL Implementation

SQLAlchemy is installed along with Apache Airflow. In Apache Airflow,
database connections are managed using the Connections feature, which of-
fers a built-in mechanism for managing and retrieving these connections in a
centralized and secure manner.

Connecting to PostgreSQL databases did not pose any issues. However,
the Airflow documentation does not provide clear guidance on connecting to
an Oracle database. Since PostgreSQL and Oracle have different connection
parameters, challenges arise. PostgreSQL uses a URL-based connection string
format, whereas Oracle employs a more complex format that includes a service
name or SID (System Identifier). It was not immediately clear where to place
the service name or SID, but the trial-and-error method helped resolve this
issue:

Figure 6.4: Apache Airflow Connections: KOS – Oracle [37]

In cases where the SID is used, it should also be entered in the Extra field
as a JSON dictionary.

55

6. Implementation

Next, a connection within the code needs to be created. As Airflow al-
lows for connection management, utilizing ‘hooks’ offers a more convenient
approach. In Apache Airflow, the PostgresHook/OracleHook is a hook class
that simplifies interactions with PostgreSQL/Oracle databases. The follow-
ing example demonstrates how to use hooks to establish a connection with
PostgresHook:

from airflow.providers.postgres.hooks.postgres \
import PostgresHook

def create_connection_pg(pg_conn_id: str, db: str):
pg_hook = PostgresHook(

postgres_conn_id=pg_conn_id,
database=db

)
return pg_hook.get_conn()

Listing 6.2: Establishing connection with PostgresHook

6.5.2 Extraction

Before delving into the data extraction process, it is crucial to note that data
is processed in chunks, which are equal-sized subsets of the initial dataset.
This approach helps prevent running out of random access memory (RAM).
A for loop is employed to process data in a single transaction so that in case
of an error, the previously uploaded data is rolled back. Data is fetched using
the cursor.execute(select stmt) and cursor.fetchmany() functions, and
subsequently stored in a NumPy array (since loading to stage does not require
any transformations) before being uploaded to the staging area. Additionally,
an MD5 hash is calculated using the hashlib module. The data upload pro-
cess is facilitated by the COPY statement, which enables efficient bulk data
loading through its optimized binary data format. Psycopg2’s copy expert
reqiured string iterator. The get data iterator function takes an array as
input, converts it to a list of tuples, and returns a StringIteratorIO object.
This object is an iterator that allows reading the data row by row as strings,
with fields separated by the delimiter, making it suitable for use with the
copy expert function for data loading. The following code snippet illustrates
a simplified implementation of the extraction process:

def load_table(self, **kwargs):
Connect to staging database and create cursor
with create_connector(self.stg_conn_id,

self.stg_db) as stg_conn:
try:

src_conn = create_connection(

56

6.5. ETL Implementation

self.src_conn_id,
self.src_db)

stg_cursor = stg_conn.cursor()

Load data in chunks into staging database
self.load_table_in_chunks(

src_conn=src_conn,
stg_cursor=stg_cursor)

Commit changes to staging database and close cursor
stg_cursor.close()
stg_conn.commit()

except Exception as error:
Rollback changes and raise the error
stg_conn.rollback()
print("Error: ", error)
raise

finally:
Close source database connection
src_conn.close()

Listing 6.3: Loading table in chunks

It is important to mention that these functions are methods defined within
the LoadToStageOperator class. The PythonOperator is not suitable in this
scenario, as it is typically used for executing simpler Python code. This custom
operator allows for greater flexibility and, ultimately, results in a more efficient
and faster parsing of the DAG with Airflow.

6.5.3 Transformation

This stage of the ETL process is extensive and, as a result, is divided into
separate parts, each implemented in the MakeIncrementOperator and Load-
ToTargetOperator.

MakeIncrementOperator implements methods that call stored procedures.
public.inc clear state flag schema table args, the first stored proce-
dure in the stage database, performs the same tasks as stored procedure
public.inc clear state flag described in Section 3.2.2. However, it has
been slightly modified to process specific tables rather than all tables, tak-
ing schema and table names as arguments to determine which table needs
processing. The next function calls a set of three procedures:

• public.inc find modified in pre stage schema table args,
• public.inc find new in pre stage schema table args,
• public.inc find deleted in pre stage schema table args.

57

6. Implementation

Their functionalities were also described in Section 3.2.2 and underwent similar
modifications.

Before the final data loading, the LoadToTargetOperator performs several
transformations on the data. For most tables, the data withstands minimal
transformation, such as replacing Python’s NaN and NaT with NULL. However,
some dependent tables require database lookups and individual transforma-
tions. As a result, the LoadToTargetOperator is implemented in a general
manner, allowing developers to provide only necessary data information (e.g.,
database, schema, table names, columns, data types, etc.) without further
coding. When custom transformations are required, they can be implemented
in separate files (in target transformation folder shown in Figure 6.3) and
then passed as higher-order functions to the LoadToTargetOperator. These
processes are also applied by dividing data into smaller chunks.

6.5.4 Loading

The subsequent implementation phase of the LoadToTargetOperator is fo-
cused on the data loading process. A similar approach to the extraction
process is applied, which involves connecting to the staging database and pro-
cessing data in chunks. After all transformations, the dataset is divided into
three groups: new data – ‘N’, modified data – ‘M’, and deleted data – ‘D’.
Each group is processed differently, as described in Section 3.2.2

A similar bulk loading implementation is used to upload new records,
utilizing the same COPY statement concept as in the extraction stage. Pro-
cessing deleted records remains the same as in the existing solution, executing
the SQL script shown in Section 3.2.3.

However, a challenge arises when loading modified data. This task is
performed by calling the public.inc historize case m stored procedure in
the target database. Executing this procedure one row at a time is time-
consuming, indicating the need for data parallelism. To address this issue and
improve performance, data parallelism is employed. This approach involves
creating n connections and using the ThreadPoolExecutor to create n threads
to handle the data processing simultaneously. The implementation ensures
efficient processing and enhances the overall performance of the data loading
process.

The following code snippet demonstrates a basic data parallelism imple-
mentation to mitigate this issue:
def load_modified(self, modified_data, tg_cursor):

...
def process_rows_in_parallel(modified_data, num_conns):

Divide the DataFrame into smaller DataFrames
data_splits = np.array_split(modified_data, num_conns)

58

6.6. Task Parallelism Implementation

Create connections and process records in parallel
using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=num_conns) as exec:

Submit tasks and wait for their completion
futs = [exec.submit(process_rows, data_split, conns[i])

for i, data_split in enumerate(data_splits)]
for future in futs:

future.result()

Close connections after processing all rows
...

...

Define the number of connections
num_conns = 10
process_rows_in_parallel(modified_data, num_conns)

Listing 6.4: Data parallelism implementation

1. load modified function takes the modified data and a target cursor as
input parameters.

2. Inside load modified, the modified data is first concatenated using the
concat fields function.

3. The process rows in parallel function is called, which does the fol-
lowing:

• Splits the modified data into smaller DataFrames based on the
number of connections.

• Creates a list of connections.
• Utilizes ThreadPoolExecutor to process the data splits in parallel,

with each worker handling a data split and connection.
• Submits the tasks to the executor and waits for completion.
• Closes the connections after processing.

This implementation improves the performance of the data loading process
by processing rows simultaneously, using multiple connections.

6.6 Task Parallelism Implementation

After analyzing the ETL processes, it became evident that the Producer-
Consumer pattern is the most suitable solution in this case. The Producer-

59

6. Implementation

Consumer pattern is a concurrency design pattern where one component (pro-
ducer) generates data, and another component (consumer) processes it, typ-
ically using a shared buffer or queue. This pattern helps to decouple task
generation from task execution, allowing for better scalability and parallelism.
Using the Celery executor in Airflow implements a distributed task queue pat-
tern, which can be viewed as a variation of the Producer-Consumer pattern.
In this context, the Airflow scheduler acts as the producer, while the Celery
worker nodes act as consumers.

The producer (Airflow scheduler) creates tasks and puts them into the
task queue (message broker like RabbitMQ or Redis). The consumers (Celery
worker nodes) fetch tasks from the queue and execute them in parallel. This
pattern allows efficient distribution of tasks across multiple workers, enabling
parallel processing and load balancing.

To achieve effective task parallelism, it is crucial to analyze table depen-
dencies and, according to them, build a proper Directed Acyclic Graph (DAG).
As an example, the Grades tables will be analyzed.

Implementing the loading of this domain implies that there will be 7 stage
tables, which will subsequently be loaded into 2 target tables only. During
the loading stage, those 2 tables make database lookups on the remaining
ones. This means that the target table t klas klasifikace, as a primary
source, will use the stage table classification, and for database lookup,
classification text is used. As for the second target table, referred to as
t klas klasifikace student, the stage table is student classification;
lookup tables are classification user, boolean student classification,
number student classification, and string student classification. In-
terestingly, thanks to parallel processing and dependency resolution between
tables, there is a great possibility to avoid redundant flag calculation for lookup
tables since lookups are held on the pre-stage tables.

Through this, it is rather evident that primary and lookup tables should
be loaded and processed before final loading to the target table. This can
be achieved by declaring dependencies between DAG’s Tasks. There are two
ways to do so:

1. >> and << operators as shown in Listing 6.5
2. set upstream and set downstream methods:

first_task.set_downstream(second_task, third_task)
third_task.set_upstream(fourth_task)

The Airflow UI webserver shows the following:

task_start_grades >> [task_load_boolean_student_classification,
task_load_classification,

60

6.6. Task Parallelism Implementation

task_load_classification_text,
task_load_student_classification,
task_load_classification_user,
task_load_number_student_classification,
task_load_string_student_classification
]

task_load_classification >> task_make_increment_classification
task_load_student_classification >> task_make_increment_student_classification
[task_make_increment_student_classification,
task_load_boolean_student_classification,
task_load_number_student_classification,
task_load_string_student_classification,
task_load_classification_user] >> task_load_t_klas_klasifikace_student
[task_make_increment_classification,
task_load_classification_text] >> task_load_t_klas_klasifikace

Listing 6.5: Task Dependencies – Grades DAG

The Airflow UI webserver shows the following result:

Figure 6.5: Apache Airflow DAG – Grades Parallel ETL Tasks [37]

61

6. Implementation

6.7 Scheduling and Orchestration

Upon successful implementation of the ETL processes and the construction of
the DAG, it becomes necessary to address the scheduling and orchestration
of the entire process. As Apache Airflow is widely employed for the pro-
grammatic authoring, scheduling, and monitoring of workflows, it facilitates
a practical approach to accomplishing these tasks.

6.7.1 UI Graphs and Task Monitoring

Airflow’s web-based user interface (UI) enables users to visualize DAG struc-
ture and progress. It includes multiple views like tree view, graph view, and
Gantt chart view, offering different perspectives on DAG execution. Users
can monitor task statuses, view logs, and manage DAG runs through the web
interface. The UI also allows users to trigger DAG runs manually and manage
user roles and permissions.

6.7.2 Logging and Error Handling

Airflow provides robust logging capabilities that help users track and monitor
workflows. Task logs are stored in a specified directory (Figure 6.3), and log
storage can be customized using Python’s logging module. Airflow supports
log aggregation using services like Elasticsearch. Error handling mechanisms
include email notifications, task retries, retry intervals, and custom error han-
dling functions.

6.7.3 Task Statuses and Dependencies

Each Task has a status indicating its progress within the workflow, such as
‘queued’, ‘running’, ‘success’, ‘failed’, ‘up for retry’, and ‘skipped’. Task sta-
tuses can be viewed in the Airflow UI. Users can view the status of each Task
within the DAG through the Airflow UI, which uses color coding to visually
represent each status. Task statuses provide valuable information for identi-
fying issues and bottlenecks within the workflow. Users can also set up task
dependencies, ensuring that Tasks are executed in the correct order.

6.7.4 Crontab Time Defining and Scheduling

Airflow uses a cron-like syntax for scheduling DAGs. Users can specify fre-
quency, interval, and exact times for executing workflows. Airflow supports
advanced scheduling features like dynamically generated schedules and rela-
tive time scheduling.

62

6.8. Testing

6.7.5 Configuration and Customization

Airflow provides numerous configuration options, such as task parallelism,
timeouts, and retries. Users can also extend its functionality using custom
operators, sensors, and hooks, allowing for integration with various external
systems.

6.8 Testing

Testing is a crucial aspect of this thesis. The primary challenge lies in the
large volume of data that undergoes the ETL processes. Additionally, new
input data is often unpredictable, making it difficult to determine when the
transformation processes may fail. In consultation with the supervisor, the
following testing methodology was agreed upon:

1. Create all necessary tables for testing in the staging and integrated data
layers, and copy the data from the tables processed and loaded by the
existing solution into the newly created tables.

2. Run the DW refreshment on the original tables using the existing solu-
tion and run the DW refreshment on the copied tables using this imple-
mentation.

3. Compare the data in the tables after the refreshments have been com-
pleted.

This methodology is also applied in evaluating performance comparisons.
Specifically, it measures the time taken by the existing PDI implementation
to load the tables and compares it to the time taken by the solution presented
in this thesis. This comparison helps assess the efficiency and effectiveness of
the new implementation relative to the existing one.

The results obtained show that the target tables have the same number
of new, modified, and deleted data records for each tested table. There are,
however, some non-critical differences in the data:

1. Different MD5 hashes in stage-increment tables: This discrepancy is due
to variations in data types and methods for calculating hashes between
PDI and Python’s hashlib library.

2. Different types of boolean values: PDI converts True/False to Y/N,
while this implementation maintains the source values. However, this
issue can be easily resolved.

63

6. Implementation

3. Different value formats: In the IDL table t klas klasifikace student,
there is a column hodnota (English: value) of type TEXT, which con-
tains three types of values: boolean, string, and number. The number
values are of type double precision in the source table. However, PDI
distinguishes between integers and floats and loads them accordingly,
while this implementation always loads them as float numbers. This
means that if the number is an integer, it is loaded as a float, such as 7
being loaded as 7.0.

6.9 Further Development and Optimization

Based on the current ETL implementation using Apache Airflow, there are
several opportunities for further development and optimization to enhance
performance, maintainability, and scalability. The following points outline
some potential improvements:

• Optimize data processing with more efficient Python libraries:
While the current implementation leverages Pandas, which is a popular
and versatile library, there are other libraries that can potentially offer
better performance and more efficient memory usage. Future work could
involve exploring alternatives, such as Dask, Vaex, or Modin, to further
optimize data processing.

• Parallelize processing of new, modified, and deleted branches:
The loading process could benefit from parallelizing the execution of
new, modified, and deleted branches in terms of code and database ca-
pability. This would require analyzing the possibilities for concurrent
execution and making necessary adjustments to the implementation to
ensure correct and efficient processing.

• ETL code refactoring: As with any software project, continuous
refactoring of the ETL codebase can lead to more maintainable and
modular code. This includes identifying and addressing redundancies,
simplifying complex logic, and improving code readability and documen-
tation.

• Address issues discussed in previous sections: Some issues were
mentioned in Section 3.3, which could be further investigated and re-
solved. By addressing these concerns, the overall stability, performance,
and maintainability of the ETL pipeline can be enhanced.

By pursuing these further development and optimization efforts, the ETL
implementation using Apache Airflow can continue to evolve, offering im-
proved performance, scalability, and ease of maintenance. This, in turn, will
provide a more robust and efficient data processing pipeline for the CTU Data
Warehouse.

64

Chapter 7
Evaluation

This chapter presents the results of the implementation and a comparison
between the existing sequential solution in PDI and the proposed solution in
terms of performance.

7.1 Comparison

The primary goal of this thesis is to enhance the performance of DW refresh-
ment by parallelizing ETL processes, thereby reducing the overall loading
time. The methodology for this evaluation is described in the previous chap-
ter in Section 6.8.

DW refreshment is a highly time and resource-consuming process. Conse-
quently, the performance of the sequential loading currently used in produc-
tion was measured once and for both concurrent bachelor theses to establish
a baseline. The following are the characteristics of the computing device used
for this evaluation:

• Processor: Intel Core i7-8565U 1.8GHz (8th Generation) featuring 4
cores and 8 threads;

• Memory: 16GB LPDDR3 RAM;
• Transfer speed: 90-100 MB/s.

The sequential loading process took 8 hours and 27 minutes to complete. In
contrast, the solution proposed in this thesis was executed on a machine with
the following characteristics:

• Processor: Intel Core i5 7200U 2.5 GHz (7th Generation) featuring 2
cores and 4 threads;

• Memory: 16GB LPDDR3 RAM;
• Transfer speed: 90-100 MB/s.

65

7. Evaluation

The overall DW refreshment time for the proposed solution was 3 hours and
52 minutes.

Table 7.1: Sequential and Parallel Loading: Comparison
Loading Task Sequential Parallel

boolean student classification 0:00:04 0:00:18
classification + SI 0:00:03 0:00:20
classification text 0:00:01 0:00:08
classification user 0:00:01 0:00:04
number student classification 0:00:16 0:01:03
string student classification 0:00:03 0:00:18
student classification + SI 0:00:26 0:02:30
osoby + PSC + SI 0:01:05 0:01:40
tusers 0:00:30 0:00:13
tkontakt + PSC + SI 0:02:18 0:02:44
tekns + PSC + SI 0:00:03 0:00:03
torganizations + PSC + SI 0:00:04 0:00:04
tcitation affiliations + PSC + SI 3:16:47 1:50:31
tcitation authors + PSC + SI 3:46:58 3:52:13
t klas klasifikace 0:02:25 0:00:50
t klas klasifikace student 0:16:41 0:28:48
t osob osoba 0:00:11 0:03:27
t koud adresa 0:17:40 0:15:04
t koud email 0:09:41 0:03:12
t koud telefonni cislo 0:09:50 0:03:44
t orgj organizacni jednotka 0:00:01 0:00:05
t orgj organizacni jednotka externi 0:00:01 0:00:01
t externiorganizacnijednotka externicitaceautor rel 0:00:27 0:00:18
t vvvs externi citace author 0:01:15 0:00:36
t vvvs vedecky vysledek bibl indik nohist 0:00:28 0:00:16
In total 8:07:19 3:52:13

In the selected portions of ETLs, the tables tcitation affiliations
and tcitation authors are the largest, with over 65 million and 75 million
records, respectively. Consequently, the loading time for these tables varies
significantly compared to the others. The loading time for the new parallel
solution, which includes prestage-clean and stage-increment operations, is de-
termined by the time taken to load the data into the staging area (0:58:55) and
the time spent counting flags (0:51:36) using a database stored function. Due
to differences in MD5 hashing between PDI and Python’s hashlib, the loading
time increases for the first load with this new solution. However, subsequent
calculations are expected to take less time.

66

7.2. Requirements Evaluation

It is a noteworthy observation that the performance of the parallel solution
is slightly lower in some smaller tables compared to the sequential PDI im-
plementation. These differences can primarily be attributed to the following
factors:

• The sequential solution was tested on more efficient hardware, which
could have contributed to its better performance in comparison to the
parallel implementation.

• The Python implementation employs distinct connections and data fetch-
ing technologies, such as cx Oracle and psycopg2, as opposed to the
JDBC connections utilized by PDI.

• The new MD5 hashes calculated in the Python implementation differ
from those in PDI, resulting in an increased amount of time required
to compute new, modified, and deleted flags during the stage-increment
process.

These factors collectively explain the observed performance disparities be-
tween the parallel and PDI implementations. Further optimization and re-
finement of the parallel solution may help bridge this performance gap.

7.2 Requirements Evaluation

Functional Requirements

1. F1. Dependency Management between Tasks: The implemented
solution effectively manages dependencies between ETL tasks, ensuring
the correct order of loading as required by the CTU Data Warehouse’s
database architecture. By adhering to these dependencies, the solution
prevents inconsistencies in the data warehouse’s data history.

2. F2. Loading of a Single IDL Table with History: The solution
enables the loading of a single table or a list of tables, allowing separate
loading of pre stage/pre stage clean tables and history processes only
for the necessary stage increment tables for the correct loading of data
into the chosen IDL table or tables.

3. F3. Loading from Various Source Systems: The solution supports
loading from different types of source systems. It currently supports
PostgreSQL and Oracle database systems and is designed to easily ac-
commodate other database systems in the future, if needed.

4. F4. Parallelization of Components Using Data or Task Par-
allelization: Independent ETL processes are executed in parallel, cor-
responding to the definition of task parallelization. Parallelization is

67

7. Evaluation

performed on a single server, which the CTU DW has available for ETL
loading.

5. F5. Clarity of Logging: The solution ensures easy retrieval of log
information for specific loading of one or more tables or the complete
data warehouse loading process, even when running processes in parallel.
This is crucial as it is not possible to write log information to a single
file due to context switching between different threads or processes.

Non-functional Requirements

1. N1. Scalability of Parallelization: The solution allows for the scal-
ability of parallelization. Scalability can be adjusted by assigning more
or fewer resources to parallelization processes, ensuring that the system
can adapt to changes in workload.

2. N2. Portability of the Solution: The implemented POC is exe-
cutable on Linux and macOS systems. For execution on Windows ma-
chines, a virtual environment is required.

7.3 Result

The overall result of this work demonstrates that the implementation of task
parallelism for ETL processes using Apache Airflow as the core platform for
constructing, managing, orchestrating, and scheduling the loading was suc-
cessful. The implementation utilized Pandas and NumPy libraries, and the
code is structured in a way that simplifies the migration to this solution. The
following are the strengths and weaknesses of the solution and its potential
for future use.

Strengths

• The solution provides flexibility in the ETL process, allowing for better
adaptation to changes in data sources and requirements.

• The code is designed in a way that requires only minimal configuration
(such as connection settings and table information), making it easier to
set up and use.

• The implemented solution outperforms the existing ETL process in terms
of speed and efficiency.

• The user-friendly UI offers an intuitive way to control the process, with
clear visualizations and loggings for effective monitoring.

• Apache Airflow is a modern and highly supported open-source software
with a robust ecosystem.

68

7.3. Result

Weaknesses

• The implementation process can be challenging and time-consuming due
to the complexity of the solution and the need for hand-coding ETL
tasks. Thus, it takes more time than using other drag-and-drop, ready-
to-use software.

• The solution may still be somewhat unstable, as multiple testing is chal-
lenging to perform. This may result in further refactoring requirements.

• Longer initial loading.
• Like any coded project, it requires proper maintenance.

Despite the weaknesses, the solution is functional and recommended for
future use, provided that the necessary resources are allocated for its devel-
opment and maintenance. The evaluation of whether the bachelor’s thesis
assignment has been fulfilled is as follows:

1. The requirements for parallelization of the DW CTU ETL processes
were specified in Chapter 4.

2. A suitable part of the DW CTU ETL processes to be parallelized was
selected and represented in Table 4.1.

3. Research on two or more tools suitable for use in this problem was
undertaken in Chapter 5.

4. The tool was selected and analyzed in Section 6.2.

5. The parallelization of the selected DW CTU ETL part using Apache
Airflow was proposed and implemented in Chapter 6.

6. The solution was evaluated in terms of meeting the requirements and in
terms of its potential for future use in managing the entire DW CTU
ETL process.

69

Conclusion

In conclusion, the primary objective of this thesis was to propose and im-
plement parallel ETL processes for the CTU Data Warehouse with the aim
of achieving improved performance and faster processing times. A proof of
concept (POC) was successfully developed and implemented, focusing on a
selected portion of the entire ETL process for the DW CTU. The solution
leverages the power of Apache Airflow, providing a user-friendly UI, easy-to-
understand code structure, and flexibility in handling ETL tasks.

The main contribution of this work is the optimization of the DW refresh-
ment process, significantly reducing the workload on VIC servers. By mini-
mizing the time required for the entire DW refreshment process, additional
resources are made available for other tasks within the CTU Data Warehouse
environment, improving overall efficiency.

For future development, it is recommended to explore the use of more effi-
cient packages and libraries forenhanced data processing. Additionally, further
refactoring and applying the developed parallel ETL approach to the remain-
ing DW CTU tables would be beneficial. The implementation presented in
this thesis serves as a solid foundation for these future improvements, ulti-
mately leading to a more efficient and performant Data Warehouse for the
CTU.

71

Bibliography

1. KUZNETSOV, S. Datový sklad fakulty. Prague, 2013. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technol-
ogy.

2. INMON, William H. Data architecture: The information paradigm. QED
Information Sciences, Inc., 1992.

3. KIMBALL, Ralph; CASERTA, Joe. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and Deliver-
ing Data. Indianapolis, IN: Wiley, 2004. isbn 978-0764579233.

4. SIMSION, Graeme; WITT, Graham. Data modeling essentials. Elsevier,
2004.

5. BALLARD, Chuck. Data Modeling Techniques for Data Warehousing.
Upper Saddle River, NJ: Prentice Hall PTR, 2000. isbn 9780130673046.

6. EKANAYAKE, I. Inmon vs. Kimball: The Great Data Warehousing De-
bate [online]. 2021. [visited on 2023-04-24]. Available from: https://
medium . com / cloudzone / inmon - vs - kimball - the - great - data -
warehousing-debate-78c57f0b5e0e.

7. INMON, W. H. Building the Data Warehouse. 4th ed. Foster City, CA:
Hungry Minds, 2005.

8. ARIYACHANDRA, Thilini; WATSON, Hugh J. Which data warehouse
architecture is most successful? Business intelligence journal. 2006, vol. 11,
no. 1, p. 4.

9. KIMBALL, Ralph; ROSS, Margy. The Data Warehouse Toolkit: The
Definitive Guide to Dimensional Modeling. 3rd. John Wiley & Sons, 2013.

10. CHEN, Peter Pin-Shan. The entity-relationship model—toward a uni-
fied view of data. ACM transactions on database systems (TODS). 1976,
vol. 1, no. 1, pp. 9–36.

73

https://medium.com/cloudzone/inmon-vs-kimball-the-great-data-warehousing-debate-78c57f0b5e0e
https://medium.com/cloudzone/inmon-vs-kimball-the-great-data-warehousing-debate-78c57f0b5e0e
https://medium.com/cloudzone/inmon-vs-kimball-the-great-data-warehousing-debate-78c57f0b5e0e

Bibliography

11. BERTINO, Elisa; MARTINO, Lorenzo. Object-oriented database man-
agement systems: concepts and issues. Computer. 1991, vol. 24, no. 4,
pp. 33–47.

12. BRUCKNER, Robert M; LIST, Beate; SCHIEFER, Josef. Striving to-
wards near real-time data integration for data warehouses. In: Data
Warehousing and Knowledge Discovery. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 317–326. Lecture notes in computer science.

13. ZIEGLER, Patrick; DITTRICH, Klaus R. Data integration—problems,
approaches, and perspectives. Conceptual modelling in information sys-
tems engineering. 2007, pp. 39–58.

14. CALVANESE, Diego; DE GIACOMO, Giuseppe; LENZERINI, Mau-
rizio; NARDI, Daniele; ROSATI, Riccardo. Data integration in data
warehousing. International Journal of Cooperative Information Systems.
2001, vol. 10, no. 03, pp. 237–271.

15. NEGASH, Solomon. Business intelligence. Communications of the asso-
ciation for information systems. 2004, vol. 13, no. 1, p. 15. Available from
doi: 10.17705/1cais.01315.

16. VASSILIADIS, Panos. A survey of extract–transform–load technology.
International Journal of Data Warehousing and Mining (IJDWM). 2009,
vol. 5, no. 3, pp. 1–27. Available from doi: 10.4018/jdwm.2009070101.

17. FATIMA, Anosh; NAZIR, Nosheen; KHAN, Muhammad Gufran. Data
cleaning in data warehouse: A survey of data pre-processing techniques
and tools. Int. J. Inf. Technol. Comput. Sci. 2017, vol. 9, no. 3, pp. 50–
61.

18. GIORDANO, Anthony David. Data integration blueprint and modeling:
techniques for a scalable and sustainable architecture. Pearson Education,
2010.

19. WU, Shaomin. A review on coarse warranty data and analysis. Reliability
Engineering & System Safety. 2013, vol. 114, pp. 1–11. Available from
doi: 10.1016/j.ress.2012.12.021.

20. CASERTA, Joe; KIMBALL, Ralph. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and Deliver-
ing Data. Wiley, 2013. isbn 978-0764579233.

21. VASSILIADIS, Panos; SIMITSIS, Alkis. Extraction, Transformation, and
Loading. Encyclopedia of Database Systems. 2009, vol. 10.

22. BALA, Mahfoud; BOUSSAID, Omar; ALIMAZIGHI, Zaia. A Fine-Grained
Distribution Approach for ETL Processes in Big Data Environments.
Data & Knowledge Engineering. 2017, vol. 111, pp. 114–136.

74

https://doi.org/10.17705/1cais.01315
https://doi.org/10.4018/jdwm.2009070101
https://doi.org/10.1016/j.ress.2012.12.021

Bibliography

23. KUKREJA, Manoj. Handling Slowly Changing Dimensions (SCD) us-
ing Delta Tables [online]. 2023. [visited on 2023-04-24]. Available from:
https : / / towardsdatascience . com / handling - slowly - changing -
dimensions-scd-using-delta-tables-511122022e45.

24. BHARGAV, Nikhil. Lookup Table in Databases. 2023. Available also from:
https://www.baeldung.com/cs/lookup-table-in-databases.

25. VASSILIADIS, Panos; SIMITSIS, Alkis. Near real time ETL. In: New
trends in data warehousing and data analysis. Springer, 2008, pp. 1–31.

26. ALMASI, George S; GOTTLIEB, Allan. Highly parallel computing. Benjamin-
Cummings Publishing Co., Inc., 1994. isbn 978-0-8053-0177-9.

27. ADVE, S; ADVE, Vikram S; AGHA, Gul; FRANK, Matthew I; GARZARÁN,
MJ; HART, JC; HWU, W-m; JOHNSON, RE; KALE, L; KUMAR, R, et
al. Parallel computing research at Illinois: The UPCRC agenda. Urbana,
IL: Univ. Illinois Urbana-Champaign. 2008.

28. LOSHIN, D. High-Performance Business Intelligence. In: Business Intel-
ligence. 2013, pp. 211–235. Available from doi: 10.1016/b978-0-12-
385889-4.00014-4.

29. SITARAM, D.; MANJUNATH, G. Paradigms for Developing Cloud Ap-
plications. In: Moving To The Cloud. 2012, pp. 205–253. Available from
doi: 10.1016/b978-1-59749-725-1.00005-6.

30. VITOROVIĆ, A.; TOMAŠEVIĆ, M. V.; MILUTINOVIĆ, V. M. Man-
ual Parallelization Versus State-of-the-Art Parallelization Techniques. In:
Advances in Computers. 2014, pp. 203–251. Available from doi: 10.1016/
b978-0-12-420232-0.00005-2.

31. ALI, Syed Muhammad Fawad; WREMBEL, Robert. From conceptual
design to performance optimization of ETL workflows: current state of
research and open problems. The VLDB Journal. 2017, vol. 26, no. 6,
pp. 777–801.

32. KOTLÁŘ, Robert. Datový sklad ČVUT - zp̊usoby datové integrace. 2017.
Master’s thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology.

33. MAKARA, Adam. Návrh a implementace klientské části a rolı systému
Reports. 2022. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology.

34. Pentaho Data Integration [https : / / sourceforge . net / projects /
pentaho/]. 2015. Accessed: April 23, 2023.

35. THOMAS J., Tatarczak E. Airflow Survey 2022 [online]. 2022. [visited
on 2023-04-24]. Available from: https://airflow.apache.org/blog/
airflow-survey-2022/.

75

https://towardsdatascience.com/handling-slowly-changing-dimensions-scd-using-delta-tables-511122022e45
https://towardsdatascience.com/handling-slowly-changing-dimensions-scd-using-delta-tables-511122022e45
https://www.baeldung.com/cs/lookup-table-in-databases
https://doi.org/10.1016/b978-0-12-385889-4.00014-4
https://doi.org/10.1016/b978-0-12-385889-4.00014-4
https://doi.org/10.1016/b978-1-59749-725-1.00005-6
https://doi.org/10.1016/b978-0-12-420232-0.00005-2
https://doi.org/10.1016/b978-0-12-420232-0.00005-2
https://sourceforge.net/projects/pentaho/
https://sourceforge.net/projects/pentaho/
https://airflow.apache.org/blog/airflow-survey-2022/
https://airflow.apache.org/blog/airflow-survey-2022/

Bibliography

36. APACHE SOFTWARE FOUNDATION. Apache Airflow Documentation
[https://airflow.apache.org/docs]. 2023. Accessed: 19 April 2023.

37. Airflow [https://airflow.apache.org/]. 2023. Accessed: April 23,
2023.

38. HARENSLAK, Bas P; RUITER, Julian de. Data Pipelines with Apache
Airflow. Simon and Schuster, 2021.

76

https://airflow.apache.org/docs
https://airflow.apache.org/

Appendix A
List of Acronyms

3NF Third Normal Form

BI Business Intelligence

CTU/ČVUT Czech Technical University in Prague (Czech: České vysoké
učeńı technické v Praze)

DBMS Database Management System

DW Data Warehouse

EDW Enterprise Data Warehouse

ER Entity-Relationship

ETL Extract, Transform, Load

EZOP Electronic Study Support System (Czech: Elektronická Základna
Odborných Praćı)

FIFO First In, First Out

FIT Faculty of Information Technology

IDL Integrated Data Layer

JSON JavaScript Object Notation

KOS Study Components (Czech: Komponenta studium)

OODBMS Object-Oriented Database Management System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

77

A. List of Acronyms

PL/pgSQL Procedural Language/PostgreSQL

POC Proof of Concept

SCD Slowly Changing Dimensions

SID System Identifier

SQL Structured Query Language

UI User Interface

VIC Computing and Information Centre (Czech: Výpočetńı a Informačńı
Centrum)

78

Appendix B
Apache Airflow Screenshots

This appendix presents a series of screenshots showcasing the implementa-
tion of the ETL processes in Apache Airflow. These images provide a visual
representation of the developed DAGs and tasks, highlighting the organiza-
tion and parallelization of the ETL processes. In addition to the screenshots,
a README file is provided in the attachments, which includes detailed in-
structions on the installation and execution of the developed ETL solution
using Apache Airflow.

79

B. Apache Airflow Screenshots

Figure B.1: Apache Airflow – DAG List with Tasks Running [37]

80

Figure B.2: Apache Airflow – Grades DAG [37]

81

B. Apache Airflow Screenshots

Figure B.3: Apache Airflow – KOS DAG [37]

82

Figure B.4: Apache Airflow – EZOP DAG [37]

83

B. Apache Airflow Screenshots

Figure B.5: Apache Airflow – Usermap DAG [37]

84

Figure B.6: Apache Airflow – Logs of Grades DAG [37]

85

Appendix C
Contents of Digital Attachment

readme.md.................the file with attachment contents description
src............................the directory containing the source code

airflow......the directory containing the DAGs and transformations
source code
readme.md.....the file containing installation and execution guidance

src thesis.............the directory of LATEX source codes of the thesis
BP Zolochevskaia 2023.pdf the thesis text in PDF format

87

	Introduction
	Aims
	Theoretical Background
	Data Warehouse
	Notions and definitions
	Data Warehouse Architecture
	Inmon's Approach
	Kimball's Approach

	Data Modelling
	Data Modeling Approaches

	Data Integration
	Business Intelligence

	Extract, Transform, Load
	ETL Process Stages
	Extract
	Transform
	Load

	Parallel Optimization of ETL Processes
	Parallel Processing of ETL

	Practical Implementation
	Current State Analysis of the CTU Data Warehouse
	CTU Data Warehouse Architecture
	Staging Layer
	Target Layer
	Access Layer

	Current ETL processes of CTU Data Warehouse
	Source to Pre-Stage, or Export
	Pre-Stage to Stage-Increment, or Transform
	Stage-Increment to Target, or Load

	Orchestration and Logging

	Requirements Analysis and Specification
	Parallelization Requirements
	Functional Requirements
	Non-functional Requirements

	Selection of ETL Parallelization Part

	Parallelizing ETL: Tool Research and Analysis
	Research and Selection
	Analysis
	Apache NiFi
	Talend
	Apache Airflow

	Final Assessment

	Implementation
	Introduction to Apache Airflow
	Basic Components of Apache Airflow
	Workloads
	Control Flow
	Executors
	User Interface

	Design of Implementation
	ETL Processes Design
	Airflow Configuration

	Initial Setup
	ETL Implementation
	Database Connections
	Extraction
	Transformation
	Loading

	Task Parallelism Implementation
	Scheduling and Orchestration
	UI Graphs and Task Monitoring
	Logging and Error Handling
	Task Statuses and Dependencies
	Crontab Time Defining and Scheduling
	Configuration and Customization

	Testing
	Further Development and Optimization

	Evaluation
	Comparison
	Requirements Evaluation
	Result

	Conclusion
	Bibliography
	List of Acronyms
	Apache Airflow Screenshots
	Contents of Digital Attachment

