CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor's Thesis

An Environmnet for Evaluation of
Robotic Experiments

Tomas Verner

May 2023

Supervisor: RNDr. Miroslav Kulich, Ph.D.

£t BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

I. Personal and study details
4)
Student's name: Verner Tomas Personal ID number: 492388

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics
_

Il. Bachelor’s thesis details

4 A
Bachelor’s thesis title in English:

An Environmnet for Evaluation of Robotic Experiments

Bachelor’s thesis title in Czech:

Prostfedi pro vyhodnocovéni robotickych experiment

Guidelines:

In the Intelligent and Mobile Robotics (IMR) group, we develop a range of algorithms whose properties with different
parameter settings need to be experimentally verified and compared with existing methods. The work will aim to create
an application in the programming language Julia that will process experimental results and generate LaTeX tables in the
user-specified format. Specifically:

1. Design and implement an application that processes a experimental results as a batch of text files and stores them in
a database.

2. Design, based on provided examples, a language for specification of an output table format.

3. Design and implement a tool that produces a user-specified table from experimental results stored in a database.

4. Choose 1-2 robotic problems with existing implementation of several approaches. Run experiments to compare these
approaches, and generate tables using the realized tools to demonstrate usability and flexibility of the tools.

Bibliography / sources:

[1] S. Nagar. Beginning Julia Programming for Engineers and Scientists, Apress Berkeley, CA, 2017

[2] K. Okumura, Y. Tamura and X. Défago. Iterative Refinement for Real-Time Multi-Robot Path Planning, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021, pp. 9690-9697
[3] J. Rosol, Fast Computation of Visibility Polygons, diploma thesis, Dept. of Cybernetics, FEE, CTU in Prague, 2023

Name and workplace of bachelor’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D. Intelligent and Mobile Robotics CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 01.02.2023 Deadline for bachelor thesis submission: 26.05.2023

Assignment valid until: 22.09.2024

RNDr. Miroslav Kulich, Ph.D. prof. Ing. Tom&s Svoboda, Ph.D. prof. Mgr. Petr Péata, Ph.D.
Supervisor's signature Head of department’s signature Dean'’s signature

_ J
[ll. Assignment receipt

N

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

cvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
4 N
PFijmeni: Verner Jméno: Tomas Osobni Cislo: 492388

Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/Ustav: Katedra kybernetiky

Studijni program: Kybernetika a robotika

& J
Il. UDAJE K BAKALARSKE PRACI
4 N

Nazev bakalarské prace:
Prostiedi pro vyhodnocovani robotickych experiment
Nazev bakalaiské prace anglicky:

An Environmnet for Evaluation of Robotic Experiments

Pokyny pro vypracovani:

Seznam doporucéené literatury:

[1] S. Nagar. Beginning Julia Programming for Engineers and Scientists, Apress Berkeley, CA, 2017

[2] K. Okumura, Y. Tamura and X. Défago. Iterative Refinement for Real-Time Multi-Robot Path Planning, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021, pp. 9690-9697
[3] J. Rosol, Fast Computation of Visibility Polygons, diploma thesis, Dept. of Cybernetics, FEE, CTU in Prague, 2023

Jméno a pracovisté vedouci(ho) bakalarské prace:

RNDr. Miroslav Kulich, Ph.D. inteligentni a mobilni robotika CIIRC

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalafské prace:

Datum zadani bakalarské prace: 01.02.2023 Termin odevzdani bakalarské prace: 26.05.2023
Platnost zadani bakalarské prace: 22.09.2024

RNDr. Miroslav Kulich, Ph.D. prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis vedouci(ho) ustavu/katedry podpis dékana(ky)

_ J
Il. PREVZETI ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalaiské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement

I would like thank the members of
the Intelligent and Mobile Romotics
(IMR) Group of the Czech Institute of
Informatics, Robotics and Cybernetics
(CIIRC) for providing me with great
feedback for my implementation. 1
would like to especially thank Miroslav
Kulich Ph.D., my supervisor, for keep-
ing up with my often lazy approach and
maintaining me in a productive state at
all times.

/ Declaration

I hereby declare that this thesis is the
result of my work and my work only.
All sources have been properly cited in
accordance with the methodical instruc-
tions for observing the ethical principles
in the preparation of university thesis.

In Prague, on May 10th 2023

Abstrakt

Tato priace implementuje prostredi
pro vyhodnocovani vysledkii robo-
tickych experimenti, pro které se da
takové prostiedi oznacit za dosud nepro-
badané téma, jelikoz momentalné zadny
takovy program neni k méni. Aplikace
se soustfedi na zpracovavani sady sou-
bort s experimentalnimi vysledky do
databéze, ze které poté data exportuje
do LaTeXové tabulky. Pro nastaveni
uzivatelskych pozadavku bylo navrzeno
rozhrani s cilem maximalizovat komfort
uzivatele.

Klicova slova: SQLite databaze,
LaTeX tabulky, vyhodnocovani robotic-
kych experimentii, analyza dat.

Preklad titulu: Prostiedi pro vyhod-
nocovani robotickych experiment

/ Abstract

Vi

This work implements an environ-
ment for experimental evaluation. In
particular, it focuses on robotic exper-
iments, for which it can currently be
classified as an unexplored area, as no
programs of similar functionality were
found online. The application focuses
on processing a batch of experimental
result files into a more organized and
usable database, after which it extracts
the data into a table. The table is
written in LaTeX format to suit the
parameters of robotic and other tech-
As the table design and
the evaluation process should be to the
desires of the user, an interface for the
input of table evaluation specifications
was designed with the attempt to min-
imize time consumption and maximize
user comfort. The final version of the
environment implementation should
satisfy all of the user’s prerequisites
while being as easy-to-use as possible.

Keywords: SQLite database, LaTeX
tables, robotic experiment evaluation,
data analysis.

nical works.

/ Contents

Vii

1 Introduction 1
1.1 Premise/Scenario 1
1.2 Design decisions 2

2 Saving results to a database 3
2.1 Parsing files 3
2.2 Creating a database 3
2.3 Optimization 5)

3 Userinterface 6
3.1 Database input 6
3.2 Table input 8

3.2.1 General 8

322 Top 11

3.23 Ratio 13

324 Left 13

3.2.5 Order (Left) 14

3.2.6 Bottom 16
3.3 Mixing YAML with LaTeX . . 17
3.4 How ToRun 17

4 Testing process 19
4.1 General examples 20
4.2 Performance v. Comfort 22
4.3 OpTeX conversion 24

5 Libraries 26
51 MAPF-IR 26
5.2 MAPF-LNS2 27

6 Conclusion 28

A Evaluation Environment

Source Code 29
References 30

1.1
2.1

3.1

3.2
3.3

34
3.5

3.6

3.7

3.8

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1

Tables /

The general output table 2
PRAGMA statements used

for optimization 5)
Database input parameter
OptionSovvvvii i 7
Table input sections.............. 9
Table input: General param-

eter options................oile. 9
Table partscocoven. 10
Table input: Top parameter
options........coovviiiiiiin.... 12
Table input: Ratio parame-

ter options...................... 13
Table input: Left parameter
OptioNS . . .vvvv i 14
Table input: Bottom param-

eter options..................... 16
Default table example.......... 20
Selected problem and

method items................... 21
Table with arrows 21
Transposed table 22
Table with a tail 23
Simple table example 23
Complex table example 24
LaTeX table 25
OpTeX table.................... 25
Table example 27

viii

Chapter 1
Introduction

After successfully conducting an experiment, the researcher’s work is not done as the
produced experimental results still need to be evaluated. It is no secret that this
particular part of experimenting, in any field, can be a prolonged and boringly repetitive
experience. All the fun from the testing phase suddenly disappears as the researcher
has to dig deep into data analysis.

Specifically in robotics, the experimental results usually contain mountains of data
and the researchers need to implement programs that go through them all and store
them in a neat place, this is more often than not a database. Then after processing the
data their work continues as the stored results need to be transferred into a table or a
graph to actually display the experimental evaluation. The table is usually preferred,
and this can create more time problems for the researchers as they spend great amounts
of time writing the results into the tables and then editing the table to their liking.

The thesis describes the implementation for an environment that can both process
results from robotic experiments into a database, and subsequently generate a table,
where the table appearance is specified through a user interface. The created tables
are in LaTeX format, as LaTeX is the most commonly used environment for writing
technical papers.

The current state of this problem is that every person has to write their own program
for the data evaluation. These programs are not universal most of the time, and it can
be stated thet there are currently no known alternatives for an environment that could
be consideered a solution to this assignment. The main goal of the thesis is therefore
not to outperform some already existing version, but to focus purely on creating a
functional application that will provide a solution to the given assignment.

The environment was written in the Julia language, which was chosen for its speed
and clear syntax. The syntax takes inspiration from the Python, MATLAB, R, and
Ruby languages, while the speed often nears that of statically-compiled languages like
C [1]. The Julia REPL (read-eval-print loop) can also be considered one of Julias main
strengths and is perfect for continuous function testing, as it provides fast and easy
statement evaluation.

The thesis is written in the CTUstyle3 template [2] often used by the students of
CTU in Prague for the purpose of writing papers about technical topics. This raises a
few problems, as the assignment is meant to generate tables that are in LaTeX format,
while CTUstyle3 is OpTeX-based [3]. The tables presented in this paper are all in the
LaTeX format to satisfy the proposed thesis assignment and are imported as figures.

I 1.1 Premise/Scenario

In robotic experiments, there is usually a problem or a set of problems. These problems
are solved using several methods and the goal of the experiment is to compare the quality
of each method. The problems can be given as one parameter, but it is possible to have
an extra specification that divides each problem into subproblems.

After an experiment is conducted, the researcher has generated a data set of exper-
imental results. The data is stored in data files, which contain different parameters,
that each has its own assigned value. The individual pairs will be referred to as the
parameter:value pairs. The file format should look like this:

problem_title: problem,
divider_title: divider,
method_title: method,
parameterl: valuel,
parameter2: value2,
parameter3: value3

Looking at the proposed data file format, it is expected that at least two of the
parameters define the problem and method titles, and if a problem specifier is present,
a parameter setting the divider title is also mandatory. The three parameters, or two if
a divider is not included, are the basis for creating tables, as they specify what the row
and column variables will be. It is for this reason why these are the main experimental
parameters and they will be referred to as such from now on.

The scenario is that after using the environment discussed in this thesis on a batch
of such data files, the output will be a table written in LaTeX format, that should look
something like table 1.1.

L method1 method2 method3
Problem Divider avg min avg min avg min
dividerl
problem]1 divider2
dividerl
problem2 divider2 Data,
dividerl
problem3 4 idero

Table 1.1. The general table format for the application output relating to one parameter.

I 1.2 Design decisions

After about 4 months of work, the assignment progress was presented to members of
the Intelligent and Mobile Robotics (IMR) Group of the Czech Institute of Informatics,
Robotics and Cybernetics (CIIRC'). It was with their feedback that it became apparent
how divisive the user requirements could be. Many argued that if there is too much
information needed to be provided by the user, then the program fails to achieve its
goal of saving the user time. The argument was why use a program where the time it
takes to write the YAML files is longer than the time it would take to write the table
in LaTeX? Then there were some who liked the presented variety of parameters and
were looking forward to creating very specific tables without the need to edit them in
LaTeX afterwards.

The end result is made with the desire to please both sides. This is done mainly
via default settings for each parameter, which means the user doesn’t need to specify
any parameter, although there are some parameters that are recommended to be set
explicitly. In addition, two functions that each generate an input file template for the
user to fill out have been implemented. Chapter 3 discusses both the usage of default
values and the template generating functions.

Chapter 2
Saving results to a database

After finishing the testing phase of an experiment, one is left to deal with a large chunk
of data. The data is usually stored in files which are formatted in a way where defined
parameters are assigned their respective values. These will be referred to as data pairs
or parameter:value pairs. The path from raw data files to a sophisticated database
where all the useful experimental results are stored has many steps.

I 2.1 Parsingfiles

For the purposes of this assignment, a YAML parser was chosen as the default file
reader. It was chosen because YAML is a superset of JSON, so both YAML and JSON
file formats are acceptable and ready for parsing without additional modifications.

There is no such thing as a universal parser for data files. The truth is there is no
one correct format and each person is going to prefer a specific file structure for their
data representation. It is not uncommon for the user to have the data files in a format
that is not YAML-friendly. In that case they will unfortunately be left to implement
their own file-reading function to suit their data file formatting. The variance in user
data formatting is evident just from the few examples that have been used for testing
the code, see chapters 4 and 5.

The end result of the parsing process for each file is a dictionary containing the
parameters (keys) and their found values.

I 2.2 Creating a database

After the parsing process of a file is complete, we are left with a dictionary of parameters
and their respective values. It is now time to store the found data into a database. This
will be done with the INSERT INTO SQL query for every data file. The database path
is set as " /database.db” by default.

For the database part implementation, the decision was made to use SQLite. The
main reason behind this decision was the popularity of this SQL database engine.
According to the official SQLite webpage [4], it is the most used database engine in
the world. It is also very fast, without the need for many dependencies (stand-alone).
In addition, as explained in chapter 2.3, SQLite provides a great utility for database
optimization, the PRAGMA statement, which is an SQL extension specific to SQLite.

During the creation of the database, many tables with different purposes are gener-
ated. This ensures that the program doesn’t use excessive data where it is not necessary.
It also organizes the data in a very neat way and simplifies the usage of specific groups
of values later on.

All the parameter values extracted from the data files are stored in the main one,
which is titled results by default. Both the database path and the name of the main
table in the database can be changed from their default values through a database

input file, which is the concern of chapter 3.1. The main table consists of a primary key
column (identification integers starting at 1) and columns named after every different
parameter found in the data files.

The problems can sometimes come with the inclusion of a numeric specification at
the end of their name. For example “berlin52” or even something like "berlin52-13.2”
can be classified as having numerical information at their ends.

Additional columns are added to the main table if the problem names are formatted
as problem__nameN, where N is the numeric specification. This can define anything
from of the amount of vertices a map has (pathfinding environments) to the version
number of a problem.

The environment discussed by this thesis was tested mainly on agent path-finding
search algorithms. This is the reasoning behind the design decision to have the database
column names relating to the problem numerical specifications be Nodes and Node Type.
For example, “berlin52” is a problem definition that will have a value of 52 stored in
the Nodes column, while “berlin52-13.2” will also have a value of 15.2 added under
the NodeType column. These database columns are useful for the ordering of problem
columns in the final LaTeX table, more on this topic in chapter 3.2.5.

An interesting scenario is when some result files contain a parameter that others do
not. In this case the value stored for such parameters for the files is either the value
found in the data file, or the NULL value. NULL cells in the database do not interfere
with any of the calculations later conducted by SQL queries, for example the SELECT
GROUP BY command used for aggregate functions like the average or minimum values.

This is another set of very useful data and it is also saved into a separate table. Be-
cause this table consists of values calculated with aggregate functions, the table is titled
Aggs. It has the problem, divider, and method columns, and columns which contain
the data for each aggregate function provided by the GROUP BY SQL query. These
columns are count, avg, min, and maz. They contain the total amount of instances, the
average, minimum, and maximum values respectively.

When using the GROUP BY option for the SELECT SQL query for the creation
of the Aggs table, the grouping is done for the problem, divider, and method columns.
That means that the aggregate parameters are computed for each permutation of the
problem, divider, and method names.

A very important parameter which is used in many tables and is otherwise often
utilized for additional parameter calculations is the Best-Known-Solution (BKS) pa-
rameter. It was considered as too important not to warrant its own table. The table is
titled BKS and has the primary key, problem_ name, divider _name, and best columns,
with numeric specifier columns being added for ordering purposes if they are present
in the problem names.

It is not expected nor required for the BKS values to be provided by the user, but if
a path to the BKS files is given as one of the inputs (chapter 3.1), the BKS table will
be created through the parsing of these files, the same way the main table is created
from the data files.

In most cases, the Best-Known-Solution values will have to be computed separately.
This is where the Aggs table comes in handy. The program looks through all methods
to find the minimum value, which is then stored in the best column in th BKS table.

It is not always that every instance of an experiment finishes successfully and provides
valid results. If it is given as one of the input parameters (chapter 3.1), the data file
validity rate will be examined during the data parsing process based on parameters set

4

by the user. This brings us to the last table that can be generated in the database, the
Valid table.

As opposed to the main table, where only valid instances are stored in order to
preserve only the relevant data and protect the parameter calculations from being
corrupted by invalid values, the Valid table stores data from every single file, regardless
of validity. Apart from the primary key column and the file parameter columns, this
table also includes the valid column. The column consists of ones and zeros, where ones
are assigned to the valid instances and zeros to the invalid ones.

The table for the validity information creates a new parameter option for the method
comparison, the wvalid parameter. This and all the other parameter options will be
described in detail in chapter 3.2.

I 2.3 Optimization

We live in a time and age where the speed at which an application operates is at the
top of the user’s priority list. A program, especially one made with the intention of
saving the user’s time, becomes redundant if it runs for too long.

For the proposed environment, the database creation during the data file parsing pro-
cess was the most time-consuming part of the solution. For example, one instance of the
environment dealt with a directory containing 1440 data files, averaging approximately
12 parameters each and without optimization, the database would take anywhere from
2 to 5 minutes to store the experimental data from these files.

To minimize the runtime, SQLite provides many tools. As mentioned at the beginning
of chapter 2, one of the best ways to simplify database operations is with the SQLite-
specific PRAGMA statements. Table 2.1 showcases the statements included in the
solution, which modify the database operation settings. The particular values used
were recommended by Karel Kosnar Ph.D., a member of the IMR Group.

Statement Set Value Default Value
synchronous OFF FULL
page_ size 4096 4096
cache_ size 16384 -2000
temp_ store MEMORY DEFAULT
journal__mode OFF DELETE
locking_mode EXCLUSIVE NORMAL

Table 2.1. PRAGMA statements and their settings used for optimizing the evaluation
environment.

To fully understand the purpose of each PRAGMA statement, see the official SQLite
documentation [5]. It is important to mention that the journal _mode = OFF setting
disables the COMMIT and ROLLBACK commands for the transaction SQLite feature.
Transactions are otherwise also a great optimization tool for SQL queries.

After the implementation of the utilities listed in table 2.1, the program was tested
numerous times and its average runtime can be estimated at around 3 seconds for a set
of approximately 17 000 parameter:value pairs. It goes without saying that for larger
data sets, say 100 000 data pairs and above, the evaluation will of course take longer.

Chapter 3
User interface

Probably the most important and definitely the most challenging part of the envi-
ronment implementation was designing the interface through which the user gives the
program instructions on how to both save the experimental results into a database and
how to then make a LaTeX table out of that database.

The two input formats considered for the design of the interface were JSON and
YAML. Though JSON is more popular among programmers, this application is meant
to be used by all people. YAML was chosen as the default format mainly for its human-
friendly syntax. However, it is also great because if the user is a JSON conservative
who refuses to use any other input format, their input files will still be parsed correctly.
This is because YAML is a superset of JSON, as was already mentioned in chapter 2.1.

The files are parsed into a dictionary, therefore the order in which the parameters
are listed doesn’t have an effect on the functionality, unlike the data files, where the
paremeter order can have great impact on how the environment runs.

Due to our solution being separated into two major sections (data files -> database,
database -> LaTeX table), I have opted to split the input into two separate YAML
files.

I 3.1 Database input

The first part concerns the experimental result files and their parsing and storing to
an SQLite database. For this section the user may want to change the outlook of their
database, define which parameters are relevant for the evaluation, if any parameters
are missing, how the values should be saved, and set whether or not all the results are
valid.

The database YAML input contains specifications providing the user with the means
to handle all of these requests. The possible input specifiers with their respective default
values are listed in table 3.1.

There are 11 key options, with the limitation that only one of the Include and Ezclude
parameters can be used at once. So each database input file can contain anywhere from
0 up to 10 different specifications.

For some of the input keys, if a value is not set for them, the first data file of the
parsing process is used for their definition. The particular parameters are Main and
Ezamine.

The path to the data files containing experimental results used for analysis, more
precisely for this thesis table generation, can and needless to say in most cases should
be specified through the use of the Path parameter. If not specified, the assumed path
will be 7 /results/”.

One of the most useful parameters when it comes to comparing different solvers is
the best-known solution (BKS). While it is not a necessity, the user can have BKS
values already calculated and stored (in files separate from the data files). It is in this
case where the user can utilize the BKS input to specify the path to such files. The

6

Name Type Default Value Examples
Path String ./results/ -
BKS String none ./bks/
Database String ./database.db/ -
Title String results -
Main String, none [Problem, NumRobots,
Vector{String} Method]
Include String, all WCost, [WCost, Time]
Vector{String}
Exclude String, I Path, [Cost, Path]
Vector{String}
Examine String none WCost
Add String, none delay, [collision, 0.9],
Vector{Any} [delay, [collision, 0.9]]
Precision Int, String 2 all
Valid String, none [makespan, -1]
Vector Any

Table 3.1. Parameter options for the database input with their default value.

best-known solution values are otherwise computed during the parsing process from the
given data files.

The Database input specifies the file path to the SQL database, where all important
data is saved. The default file path is ” /database.db”. If the database does not exist a
new one will be created at the given file path.

Out of the 10 specifiers, Title is the least complicated. It defines a title for the main
table in the user’s SQL database. In other words it serves a purely cosmetic purpose.
The default table name is set as "results”.

As mentioned in chapter 1.1, in robotic experiments, there are 2 or 3 main variables.
The ”problem” parameter which for example defines the environment that is being
searched, which is often then further specified by the “divider” parameter, e.g., the
amount of agents conducting the exploration. Then there is the "method” parameter,
specifying the method or solver used to search said environment. The method is the
subject of comparison in most cases and will almost exclusively be placed at the top of
a table. These variables are defined with the Main input. If a "divider” is not present
Main should be given as a [problem, method] 2-item vector, where the items are the
corresponding names of the previously described parameters as they are written in the
data files. A 3-item vector [problem, divider, method] is to be given otherwise.

The default value of Main is “none” and if the user doesn’t specify the names of the
main variables, then their values will be defined using the first parsed file. If the third
parameter is not a string, the ”problem” and “method” names, in that order, will be
set to the first 2 parameters found, otherwise the first 3 parameters will assume the
names for the “problem?”, “divider”, and “method” variables respectively. This is where
the order of parameter listings in the data files matters.

Usually there is a lot of parameters in each data file, and it is often too many. Not
all the data found in the result files has to be relevant for the evaluation. If it is not
necessary for the user to store every parameter from every file in the database, it is

recommended to utilize one of the Include or Fxclude inputs. Quite self-explanatory, the
former specifies parameters that should be stored, discarding any that are not specified,
while the latter discards the specified parameters and keeps those that are not included.
For a large number of parameters, the Include option should be chosen in the case of
the need to discard more than half of the parameters and the Fzclude option otherwise.

When the data files are parsed into a database, a table titled "Aggs” is created. The
table contains the SQL-friendly aggregate functions count, avg, min, and maz, which
have been calculated for the "examined parameter”, see chapter 2.2. This parameter can
be specified using the Fzxamine key. Its default value is "none” and if left unspecified,
the "examined parameter” is equal to one of two options. If there are specific parameters
given with the Include input, it is equal to the first of them. It is otherwise the last
numeric parameter found in the first file during the parsing process.

For some experiments there are parameters which are not included in the data files,
but the user would still like to have them stored in their database for further use. This
can be done via the Add input being given as a list of parameters that should be added
to the database. A string is also acceptable if the user only wants to add 1 parameter.
It needs to be said that these parameters will be too specific in most cases and a way
to calculate them will have to be implemented manually.

The Precision parameter specifies how numeric values should be rounded, if at all,
when being stored into the database. It can either be given as ”all” in which case no
rounding will take place or it can be set as a non-negative integer. After examining a
few tables from theses about robotic experiments, path-finding algorithms in particular
77, the default value has been set to 2.

It is not always that every instance of a robotic experiment runs as planned and
finishes successfully. If that is the case, the user can provide the program with a
validity check option by setting the Valid key as a [parameter, invalid_value] 2-item
vector. The environment then searches every file for a parameter:invalid_value data
pair and if such a pair is found, deems the file as an invalid instance. The default option
is “none” and assumes all data files as valid instances.

I 3.2 Table input

As for the table generation part of the solution, it can be expected that the user will
want to control how the table is designed, like setting what lines should be present,
where the table cells should be bold, which columns to align where, etc. They can also
want only some of the database data to be displayed in the table. There can also be a
desire to order the cells by certain criteria, or to expand the table with a tail. Maybe
the final table is too wide and the user would like to have it be transposed.

Based on requirements like these, the table input file specifies how the final product,
the LaTeX table, should look according to the user. For this file there are 5 main
parameters which each has its own subkeys. Due to this it is more complex than the
input file for our database and requires a deeper description.

B 3.2.1 General

The General key contains general information regarding our table. This mainly defines
the overall appearance of the table (inner and outer lines, bold sections, and table
transposition), but it can also be used for parameter and unit definitions, or set if BKS
values are to be incorporated.

Table 3.3 gives an overview of the 8 subkey options for the General parameter that
help deal with such specifics.

Section Description
General Contains general information about the table design.
Top Information about the header.
Left Information about the first columns.
Bottom Information about the tail.
Ratio Information about comparison columns at the end of the table.
Table 3.2. The available keys for the table YAML input.
Name Type Default Value Examples
BKS Bool, String True Best
Transpose Bool False -
Bold String top none,
xbottom
Verticals String none left, Method
Horizontals String none header,
Problem
Border String none all, ver
Params Vector{String} [Min, [PDB, \%), Avg, -
[PDM, \7], SD]
Units String, [side, square] under
Vector{String}
Table 3.3. Parameter options for the General key in the table input with their default

values.

Whether the table should contain a column with BKS values is specified with the
BKS key. Apart from all the other boolean options in both YAML files, BKS has the
default value True. It can also be given as a "new__bks_title” string which then changes
the column title from "BKS” to the input.

The final table can sometimes be too wide to fit on a page. In this scenario the user
can set the Transpose parameter to True to transpose the table. This utility is off by
default.

To define which part of the table should be in bold, the Bold input is used. As can
be seen in Figure 3.4, there are 6 major parts to a table. For this program, all parts
except for Data can be in bold.

The possible values for Bold are “top”, "left”, and ”bottom”. “top” includes the top-
left and top parts, ”left” includes the top-left, left, and bottom-left parts, and “bottom”
includes the bottom-left and bottom parts of the table. In addition, the input can be
adjusted in 2 ways. If no table part is supposed to be in bold, the parameter is set to
“none”.

The option can begin with 'x’ to reverse the effected part. For instance, the default
value "top” bolds the top-left and top sections, whereas “ztop” bolds the top-left, left,
bottom-left, and bottom table parts.

Next up is the Verticals input. It defines vertical lines inside the table and is set to
"none” by default. Other values are as follows,

9

Top-left Top

Left Data

Bottom-left Bottom

Table 3.4. The chosen names for each table part.

« left - one vertical line precedes the Data table part (see figure 3.4);
« method__title - vertical lines surround each method column;
* all or params - vertical lines surround every column.

Working in a very similar way is the Horizontals parameter, though it applies to
horizontal lines instead. Its default setting is "none” as well and the rest of the options
are

+ header - one horizontal line follows the top part of the table;

« tail - one horizontal line precedes the bottom part of the table;
« both or data - a combination of the header and tail options;

« problem__title - horizontal lines surround each problem row;

« all or divider_title - horizontal lines surround every row.

The Border key deals with lines outside the table. As usual, it is set to "none” by
default and can otherwise have these values,

* top, left, bottom, or right - one line on the top, left, bottom, or right of the table
respectively;

« hor - horizontal lines at the top and bottom of the table;

- ver - vertical lines on the left and right of the table;

+ all - the border is on all sides.

For the first 4 options, the ones with a 1-line border, there is some resemblance to the
Bolden parameter. They can all be preceded by ’x’ in order to flip their effects and
generate a 3-line border opposite to the 1-line one.

To specify variables for the examined parameter (see Ezamine in chapter 3.1) and
their units, if there are any, the user can list them in the Params input. Parameters
that have been stored in the database but are not being exmined can also be included,
but only their average values will be displayed. If there is only 1 parameter the user
wants to use, a "param__name” string can be used, though it is recommended that there
be more then 1 parameter. The expected input is a vector of parameters, which can
each be defined as the previously mentioned “param__name” string, or a [param__name,
param,__unit] 2-item vector. The default list is /[Min, [PDB, %], Avg, [PDM, %], SD].

Acceptable parameters are:

« count, avg, mazx, min - Aggregate functions provided by the GROUP SQL query, for
which the data is stored in the Aggs table in the database, see chapter 2.2;

« PDB - The percent deviation of the best solution value found by the method to BKS,
calculated as 100*(best - BKS)/BKS;

10

« PDM - The percent deviation of the mean solution value found by the method to
BKS, calculated as 100*(avg - BKS)/BKS;

« SD, stdev - Standard deviation;

+ Vulid - The percentage of valid instances relating to the total;

+ param__name - If the name of a one of the data file parameters is given, the output
will be the calculated average for that parameter;

« custom - Any additionally implemented parameters can also be given.

The custom parameters should be implemented in the getAdditionalParams() func-
tion in the customParameters.jl file with input specifications and the means to calculate
them.

The position and appearance of the parameter units can be specified via the Units key.
Initially set to display units inside square brackets next to their respective parameters,
it can be given as a “unit_position” string or a unit_position] 1-item vector to define
a new unit position. There are only two options other than ”side”,

« under - units and parameters each have their own row, the units are below the
parameters;
+ none - disables the displaying of units.

It can otherwise be set as a [unit_position, bracket_type] 2-item list, where the bracket
types are

« square - [unit], the default setting;

« round - (unit);

« curly - {unit};

« angle - {(unit);

* none - unit is displayed without brackets.

B 3.2.2 Top

Information about the header of our table is stored in the Top input. This includes
method specifications, parameter choices, column alignments, whether or not the
method title should be displayed in the top-left corner, etc. As was the case for the
Table key, there are 8 subkey options, though they have nothing in common with the
8 Table parameters. The 8 new options are listed in table 3.5 below.

Title provides an option to rename the method row from its default "Method” title.
The renaming process precedes the calling of the method__title parameter, which defines
what particular methods should be included in the header. If left unspecified (set to
all”), the table will contain every method that has been saved to the database during
the parsing process.

The Params input expects a vector of the [first_method, ..., last_method] for-
mat, where each item defines parameters for the respective method with either a
"param__name” string or a [param__namel, param__name2, ...] vector. Given parame-
ter names can be substituted by index values corresponding to those in the Params list
from the Table key. The parameter name or index must always exist in or be in range
of the vector from the Table part. The input vector must not consist of more items
than the number of defined methods. If it contains less, the final item will be used for
all remaining methods. For example, the default value of [[1, 2]] assigns the first and
second parameter from the Table list to each method.

When the user wants to change the appearance of specific methods, the Rename
and Rotate utilities are used. The Rename input renames one method specified as

11

Name Type Default Value Examples
Title String method_title Solver
method__title String, all [greedy, kmeans,
Vector{String} multi]
Params Vector{Any} [[1, 2]] [avg, [min, PDB], [1,
2, 3]]
Rename Vector{Any} none [greedy, Gr], [[1,
Greedy], [kmeans,
KMeans|]
Rotate Bool, String, False, none greedy, [[greedy,
Int, kmeans|, 90]
Vector{Any}
Lines/Line Bool False -
Display Bool False -
Align String, right center, left
Vector{String}

Table 3.5. Parameter options for the Top key in the table input with their default values.

[old_name, new_name] or multiple methods [[old_namel, new_namel], [old_name?2,
new_nameZ2, ...J. Indexes relating to the defined methods, in the order as they are in
the table header, can be given in the place of old names.

Rotate can rotate method names in the top part of our table. The possible input
options are

+ False or "none” - nothing in the header is rotated, the default setting;

« True or "all” - rotates all method names by 90 degrees;

» "method” - the method name is rotated by 90 degrees;

« degrees - if the input type is an integer then all method names are rotated by that
many degrees;

« [method1, method2, ...] - the method names listed get rotated by 90 degrees;

« [method_name, degrees/ - the given method name is rotated by the given amount of
degrees;

« [[methodl, method2, ..., degrees] - the method names listed are rotated by a set
amount of degrees;

« [[methodl, degrees1], method?2, ...] - a list of methods where each is either a string
and is rotated by 90 degrees (method2) or a 2-item vector where methodl is rotated
by degreesl.

The Line(s) key is set to False by default. When set to True there are horizontal
lines inside the header. Display is also set to False by default and when turned on
(True) the top-left part of the table displays the “method__title” next to the method
TOW.

Finally the Align parameter sets how each column pertaining to a method name is
aligned. It can be given as ”left”, "middle”, or “center”, but the default value is "right”,
as this alignment effects the data part of our table, where it is best the numbers be
aligned to the right.

12

B 3.2.3 Ratio

The Ratio input describes whether columns with method comparisons should be in-
cluded after the method columns. It can be set without any subkeys as

- False - no ratio columns will be included, the default setting;

« True - there will be method_number - 1 ratio columns containing the ratios
method:reference, where the first method is the reference and each column is titled
R, cthod>» Where "method” is every method except the first one;

* 7ratio__title” - creates a ratio column comparing the second method to the first;

. [ratiol__title, ratio2 _title, ...] - n-item vector, where the ratio columns are compar-
isons of the n-th method to the first.

However, there are multiple subkey options as well. These are listed in table 3.6.

Name Type Default Value Examples
Name String, none $R_{greedyl}$, [$R_1§,
Vector{String} $R._29]
Ref String first_method kmeans
Set String, all greedy, [greedy,
Vector{String} multi]

Table 3.6. Parameter options for the Ratio key in the table input with their default values.

Name works as the general settings listed above, where Fulse is not an option and
"none” is expected in place of True, but the rest is the same. Ref sets the reference
method, the default being the first one and Set specifies which methods should be
compared to the reference method.

Set is “all” by default and works as the Ratio: True setting. It can also be given as
“none”, which is equivalent to the Ratio: Fulse setting or it can list the methods that
should be compared to the reference. A string is acceptable if there is only 1 expected
ratio column.

B 324 Left

To describe how the first columns are supposed to look, the instructions are given with
the Left key. The columns included are the ones before the data section (see table
3.4). The 10 subkey options and their respective default settings are shown in table 3.7
below.

There are a few subkeys that are shared with the previously described Top key. The
Rename and Rotate parameters are identical in usage to the ones in the top part of the
table, with the effected table cells being the problem and divider names in place of the
method names in Top.

The Title input renames the problem column with a “problem_ title” string or a
[problem__title] 1-item vector. A [problem__title, divider _title] list is used if the divider
column title is also desired to be changed. In addition, “problem_name” and ”“di-
vider_name” replace the “method__name” input, they work the same for the problem
and divider columns as they did for the method row in Top, and they keep "all” as
their default value.

Similar to other parameters carried over from the Top section, the Line(s) key func-
tions the same (False by default), but refers to vertical lines inside the left part of the
table instead of horizontal lines in the top part.

13

Name Type Default Value Examples
Title String, [problem_title, Map, [Instance,
Vector{String} divider_title] Agents]
problem__title String, all [berlinb2, 1in318,
Vector{String} rat575]
divider name Int, Float, all [50, 70, 100]
String,
Vector{Any}
Rename Vector{Any} none [berlinb2,
berlin|, [[1,
Berlin52|,
[1in318, Lin318]|
Rotate Bool, String, False, none berlinb2,
Int, [[berlinbk2,
Vector{Any} 1in318], 90]
n Bool, String False Nodes
Lines/Line Bool False -
Arrow Bool False -
Align String, center, middle right, left
Vector{String}
Order Bool problem xproblem,
[[NumRobots, desc],
[Map, problem]

Table 3.7. Parameter options for the Left key in the table input with their default values.

A new input option is the n key, which is used to set whether or not a column
containing the numeric specification at the end of problem names, as was described in
detail in chapter 2.2, should be added to the table. It is not included by default (set to
False), but can be with True or a ”"n__title” string, which, appart from adding it to the
table as the second column (after the problem column), also renames the column (it is
titled “n” by default).

Another Left-specific parameter is a cosmetic option which adds a top-to-bottom
arrow icon to the left column names. It is off by default, but can be activated by
setting the Arrow key to True. This utility can be used to clarify that a column title
does not relate to the row to the right of it.

The Align parameter has a default value of "middle” or “center”, instead of "right”
as it was in the top table part. It aligns the problem, divider, and "n” columns if they
exist.

B 3.2.5 Order(Left)

Though it is still a part of the Left parameter, the Order input is a rather complicated
and very important one, and it deserves its own chapter. It defines the ordering type
for the problem and divider table columns.

In its simpler form, the input is a string. If possible, it applies to both columns and
keeps the priority sequence: problem first, divider second. If it is not possible, the
columns which can not be affected by the given order type keep their default value, see

14

equations (2) and (3) for further clarification. To set the ordering type, it can have the
following values:

« asc - the basic alphabetical (a-z) or numerical (min-max) order for numbers;

+ desc - the reverse alphabetical (z-a) or numerical (max-min) order for numbers;

+ problem - is an option only for the problem column, where the problems go from least
amount of vertices/nodes to most and if node numbers are not present, it behaves as
the asc order;

« xproblem - which is the ordering opposite to problem and when node numbers are
not present, it behaves as the desc order. It is again available only for the problem
column.

To set which of the 2 columns should be sorted with priority, the string is equivalent to
the name of the first-to-be-sorted column (see NumRobots in equation (4)). The default
setting is problem for the problem column and asc for the divider column.

In the case the user wants to set different ordering rules for each column or change
the priority from its default state with specific sorting definitions, the parameter can
be given as a 2-item vector. If the user wants to change the default ordering for a single
column and have it prioritized, the input is given as [column name, order type], see
[NumRobots, desc] in equation (5). The other way to set the Order parameter is with
the vector [primary column, secondary column], where each column is defined either as
a “column name” string with default ordering for that column, see [NumRobots, Map]
in equation (4), or as a [column name, order type] vector, see the first item in equations
(1)-(5).

Here are a few examples of the Order parameter settings that have been described
above. Each of the following equations shows different acceptable inputs which set
identical sorting rules for our problem column called "Map” and divider column titled
"NumRobots”,

[[Map, problem], [NumRobots, asc|| = [Map, problem| = problem = no input, (1)

[[Map, desc], [NumRobots, desc]| = desc, (2)
[[Map, zproblem], [NumRobots, asc|] = xproblem, (3)
[[NumRobots, asc], [Map, problem]| = [NumRobots, Map] = NumRobots, (4)

[[NumRobots,desc], [Map, problem]] = [NumRobots, desc]. (5)

Equation (1) shows the default setting, where the first sorted column is the problem
column titled "Map” and it is ordered from the least amount of nodes to the most. The
divider column called "NumRobots” is second and is sorted alphabetically (a-z). In
equation (2), the columns keep their default sorting order and are both ordered reverse
alphabetically. For equation (3), "Map” is ordered from most amount of nodes to least
and "NumRobots” is ordered numerically (min-max). The columns sorting priorities are
switched and have the columns have their default ordering in equation (4). Equation
(5) again has the flipped order of sorting by "NumRobots” first, then by "Map”, and
has the "NumRobots” column in reverse numerical order.

15

Name Type Default Value Examples
Name String, none Title, [none, 4]
Vector{Any}
Names Vector{Any} - [none, 3, 4], [[Titlel,
Title2], 4]
Data String, none, [] [none, 4], [[A, B, C], [2,
Vector{Any} 4, 4]
Lines/Line Bool False -
Align String, center, middle right, left
Vector{String}
Table 3.8. Parameter options for the Bottom key in the table input with their default
values.

B 3.2.6 Bottom

On rare occasions, perhaps to group or further describe the table columns, the user
may want to add a tail section to the bottom of the table.

If that is the case, the Bottom key is utilized. It is set to Fualse by default as there
is no tail expected in a basic table. If it is desired though, there are 5 subkeys that
specify the tail details. The default values of these subkeys are listed in table 3.8.

There are 2 scenarios:

1) The table tail has one row of data, where the Name input is used to title this row and
the bottom-left table corner is left blank if it is set to "none”. It can be given as a
“row__title” string, which assumes the width of the title so that it fits the bottom-left
section of our table. Otherwise it is a [row__title, title_width] type of vector.

For the Name option, the bottom part of the table is specified via the Data key,
which can be given as

* “none” or [] - The default setting, which means that each cell after the tail title
has a 1-column width and is assigned a capital letter, going alphabetically from
left to right;

« [none, cell_width] - Same as "none”, but the cells have a set width;

« [datal, data?2, ...] - The values for cells after the tail title are listed and the cells
have a 1-column width;

« [[datal, data2, ...], cell width] - Same as the previous option, but the cells have a
set width;

« [[datal, data2, ...], [widthl, width?2, ...]] - Again, same as the previous option, but
here each cell has its own specific width.

2) The table tail has multiple rows and the Names parameter is used. The input options
are

« [none, tail _height] - The title cells are blank and the tail consists of tail _height
rOWS;

« [none, tail _height, title_width] - Same as the first option, with a custom width
set for the blank title cells;

. [title1, title2, ...] - A list of titles is given and the amount of rows present is the
length of this list. If "none” is given as an item the respective cell will be blank;
- [[titlel, title2, ...], title_width] - In addition to the previous setting, here the title

cells have a set width.

16

The Data parameter is given as a vector where each item is a row definition which
has the same input options as in the Name scenario.

Out of the two scenarios, Name is set as the default one, hence Names do not have
a default value.

Then there are parameters which are not concerned with how many rows the table
tail has. The Line(s) key is set to True if horizontal lines are supposed to be inside the
table tail. The tail columns are aligned to the center by default and can be set to "left”
or “right” with the Align parameter.

I 3.3 Mixing YAML with LaTeX

When it comes to YAML files, the user must be careful when using YAML sensitive
characters in their inputs. Some of the main examples of such characters are: '[’, 7],
{7, 7}, 2 with a space after, ’?’, I, or "%’ For a few of these, like the exclamation
mark and the percent character, an escape character will ensure that no problems will
arise during the parsing process. For all the other ones the desired input must be put
inside quotation marks.

The most frequent scenario is that the user will want to give a TEX math expression
as an input. The ’$’ character is surprisingly not one of the YAML sensitive characters
and it is therefore not always necessary to enquote the input.

Here are some YAML-friendly expressions which do not need any additional modifi-
cations to be parsed correctly,

$Solver_1: Solver 2%, xbottom+.

The underscore character is not YAML sensitive. Neither is the colon, because in
this case, there is no space after it. The '+’ character also does not cause any problems.

In contrast, the following expressions need to be adjusted in some way, before being
in the correct YAML format,

$Ratio_{greedy}$, 'top, [PDB,%].

The underscore is ok, but the curly brackets raise problems. The whole first ex-
pression has to be enquoted as a result. Quotation marks are not necessary for the
remaining two, but a backslash character must be placed in front of the ’!” and *%’
characters. The /top example will be further discussed in the paragraph below.

The initial character that was used for reversing effects of inputs was ’!’, as it is used as
the NOT command for boolean expressions in programming. Due to the inconvenience
of it being YAML sensitive, it was eventually decided to change it to the 'x’ character, so
that there would be no need to add escape characters or quotation marks to the inputs.
This change includes the Border input in the Table key and the Order parameter in
the Left key, both of which are in the YAML input for the table.

I 3.4 How To Run

The environment is implemented in the main.jl file and the instructions for the usage
of this application are as follows.
The program should be run from the command line with

Julia main.jl [switches],

where the switch options are

17

+ =h, —-help — Prints a help message with switch explanations and instructions on how
to run the program. It is a shorter version of this chapter;

- -s, ——save — Enable the data file parsing process and create a new database before
generating a table. If this parameter is not given, an already existing database is
expected to be located in the workspace;

« —=d, --db-input [FILE_PATH] — Set the database input file path. A .yaml, .yml, or
.json extension is expected;

« —t, ——table-input [FILE_PATH] — Set the table input file path. As for the previous
switch, a .yaml, .yml, or .json extension is expected;

+ -0, ——output [FILE_PATH] — Set the table output file path. The default one is
./tablel tex;

+ —p, ——optex — Convert the resulting table from LaTeX format to OpTeX format;

« =D, ——-db-template [FILE_PATH] — Create a template file for the database input;

+ -T, -—table-template [FILE_PATH] — Create a template file for the table input.

In most cases, the user will want to specify the database and table inputs, the output
file, and set whether the data needs to be stored in a database or whether a database
already exists. The usual form of the run command is therefore something along the
lines of

julia main.jl -d db_input.yaml -t table_input.yaml -o output.tex -s.
The format of the help message displayed after using one of the ~h or —~help switches
takes inspiration from the format used by Keisuke Okumura PhD. in his mapf-IR library

[6], which was one of the robotic problems used to test our environment, see chapter
5.1.

18

Chapter 4
Testing process

The purpose of this chapter is to showcase a variety of input files and the corresponding
tables, in order to give a graphic explanation of the YAML input files described in
chapter 3.

During the implementation of the environment, the current state of the solution
was constantly tested on a set of data files, which were provided by the assignment
supervisor Miroslav Kulich PhD. The format for each of these data files is can be seen
below.

{
"Problem": "berlinb2",
"NumRobots": "2",
"Method": "greedy",
"Route _0": {
"path": "0 21 30 ... 32 16",
"cost": "161650"
o
"Route_1": {
"path": "0 48 31 ... 6 1",
"cost": "317831"
i
"Cost": "479481",
"Total": "322",
"WCost": "1489.071428571429",
"Time": "0.318"
}

The files are the results of a multi-agent pathfinding experiment, where an environ-
ment, defined under the Problem parameter, is searched by a total number of 2, 4, or
8 agents (NumRobots). The particular problems are berlin52, bier127, gil262, 1in318,
pcb442; and rat575.

The experiment’s goal is to compare methods for searching these environments with
the solver options being greedy, grwmp, kmeans, and multi. The method is specified
with the Mathod parameter.

The files are written in JSON syntax and are therefore parsable by a YAML parser.
This means that no additional file-reading functions were needed for the testing of these
files.

The first three parameters were set as the main parameters. We therefore have the
following settings,

problem = Problem,
divider = NumRobots,
method = Method.

19

The WCost or weighted cost parameter was chosen to be the examined parameter, as
it is the most relevant out of all the options. The route path and route cost parameters
were discarded for the sake of keeping the database easy to navigate and to save time
on the database generation process.

The following database input file is going to be the default one for all the tables in
this chapter, unless a different data input file is specified,

Path: ./results

BKS: none

Database: ./database.db

Include: [WCost, Cost, Total, Timel
Examine: WCost

Precision: 2

I 4.1 General examples

greedy grwdmp kmeans multi
Problem - NumRobots — BKS Min PDB[%] Min PDB[%] Min PDB[%] Min PDB [%]
2 1183.28 1489.07 25.84 1322.19 11.74 1289.37 8.97 1183.28 0.00
berlin52 4 661.76 775.49 17.19 711.96 7.59 748.29 13.08 661.76 0.00
8 471.17 525.30 11.49 510.92 8.44 539.63 14.53 471.17 0.00
2 16449.88 19807.69 20.41 16922.80 2.87 17119.76 4.07 16449.88 0.00
bier127 4 8521.63 9931.36 1654 9015.81 580 9334.79 9.54 8521.63 0.00
8 4736.58 5420.84 14.45 5297.57 11.84 5911.70 24.81 4736.58 0.00
2 542.52 628.76 15.90 555.46 2.39 555.53 2.40 542.52 0.00
211262 4 302.66 353.51 16.80 324.61 7.25 356.33 17.73 302.66 0.00
8 202.59 217.63 742 208.03 2,60 242.54 19.72 202.59 0.00
2 9335.22 11413.25 22.26 10287.64 10.20 9790.94 4.88 9335.22 0.00
lin318 4 5190.72 6135.12 18.19 5620.29 8.28 5T732.17 1043 5190.72 0.00
8 343213 3806.34 1353 3728.53 8.64 3933.45 14.61 3432.13 0.00
2 11193.62 12978.45 15.95 12104.62 8.14 11750.33 497 11193.62 0.00
pcb442 4 5085.17 6428.72 741 6077.00 1.53 7001.67 16.98 5985.17 0.00
8 3479.95 3755.38 7.91 3634.55 4.44 4461.43 28.20 3479.95 0.00
2 1565.36 1834.54 17.20 1628.98 4.06 1626.49 3.91 1565.36 0.00
rath7h 4 833.91 993.22 19.10 886.68 6.33 940.49 12.78 833.91 0.00
8 477.37 558.01 16.89 528.37 10.68 581.84 21.88 477.37 0.00
Table 4.1. Table created with an empty table input YAML file.
General:
Horizontals: header
Border: hor
Params: [avg, min, stdev]
Top:
Method: [greedy, kmeans, multi]
Params: [[1, 2, 3]]
Left:
Title: [Problem, M]
Problem: [bier127, 1in318, gil262, rat575]
n: N
Ratio:
Set: kmeans

20

4.1 General examples

greedy kmeans multi
Problem N M BKS avg min stdev avg min stdev avg min stdev Riemeans [%]
2 16449.8% 19807.69 19807.69 0.00 18865.86 17119.76 141427 1714806 1644988 335.18 95.25
bierl27 127 4 8521.63 9931.36 9931.36 0.00 10658.23 933479 953.96 8723.96 8521.63 104.47 107.32
8 4736.58 5420.84 5420.84 0.00 6429.14 5911.70 304.12 481849 473658 31.68 118.60
2 54252 62876 62876 0.00 577.17 555.53 1626 553.77 54252 7.19 91.79
gil262 262 4 30266 35351 35351 000 357.7 356.33 079 31183 30266 415 101.21
8 20259 217.63 217.63 0.00 25453 242.54 478 20536 20259 146 116.96
2 933522 11413.25 1141325 0.00 9883.74 9790.94 3849 9560.68 933522 126.81 86.60
lin318 318 4 5190.72 613512 613512 0.00 595545 573217 8221 5337.20 5190.72 55.79 97.07
§ 343213 3896.34 3896.34 0.00 410441 393345 16142 348342 343213 3543 105.34
2 1565.36 1834.54 1834.54 0.00 164210 1626.49 6.43 150495 156536 1342 89.51
rat575 575 4 833.91 99322 99322 0.00 97437 94049 2562 84563 83391 6.07 98.10
8 47737 55801 55801 0.00 588.38 581.84 758 48315 47737 3.05 105.44
Table 4.2. Table with selected problem and method items.
General:
BKS: False
Verticals: left
Horizontals: Problem
Bold: left
Params: [avg, max, [Time, ms]]
Top:
Method: [greedy, kmeans, multi]
Params: (1, 31, [1, 2, 311
Display: True
Left:
n: N
Arrow: True
Order: xproblem
Method greedy kmeans multi
Problem | N | NumRobots | avg Time [ms] avg max Time [ms] avg max Time [ms]
2 1834.54 18.04 1642.10 1650.78 47593.50 159495 1616.74 35887.94
rat575 575 4 993.22 12.07 974.37 1011.63 21655.86 845.63 854.19 9007.18
8 558.01 11.66 588.38 605.60 8614.40 483.15 487.33 9527.15
2 12978.45 11.47 12046.45 12266.84 20864.45 11484.09 11727.02 14385.78
pchb442 442 4 6428.72 777 7040.14 7114.21 8855.52 6060.83 6155.10 3541.36
8 3755.38 7.501 455194 4664.96 3649.27 351877 3540.65 2848.93
2 11413.25 5.09 9883.74 9944.53 6918.84 9560.68 9914.32 3471.43
1lin318 318 4 6135.12 3.64 595545 6134.60 2490.07 5337.20 5445.77 1361.71
8 3896.34 3.83 410441 4510.05 1354.28 3483.42 3545.77 1517.15
2 628.76 3.47 57717 638.21 4407.77 553.77 566.29 2494.33
gil262 262 4 353.51 2.53 357.79 359.06 2700.82 311.83 320.65 779.66
8 217.63 2.65 254.53 265.62 1079.10 205.36 207.62 696.21
2 19807.69 1.00 18865.86 20887.70 623.40 17148.06 17778.53 289.10
bier127 127 4 9931.36 0.88 10658.23 12989.03 311.14 872396 8953.88 100.51
8 5420.84 0.94 6429.14 6980.32 153.98 4818.49 4855.01 74.10
2 1489.07 0.33 1381.59 1525.12 64.66 119499 1227.79 25.87
berlin52 52 4 775.49 0.32 785.09 825.11 40.59 666.22 671.83 9.67
8 525.30 0.37 566.23 596.96 15.23 474.43 477.75 9.21

Table 4.3. Table with arrow signs and problem order flipped based on the problem specifier

General:
Transpose:
Verticals:

N.

True
Method

21

Horizontals:

all

Params: lavg, [PDM, \%], [Time, ms]]
Top:
Method: [greedy, kmeans, multi]
Params: [[1, 31, [1, 2, 3]]
Display: True
Left:
Problem: [berlinb2, 1in318, pcb442]
Rename: [[berlinb2, Berlin], [1in318, Lin], [pcb442, PCB]]
Rotate: True
n: N
2 @
3] g O
Problem M = A
N 52 318 442
Method G Robots p) 1 8) i 8 p) i 8
BKS 1183.28 | 661.76 | 471.17 | 9335.22 | 5190.72 | 3432.13 | 11193.62 | 5985.17 | 3479.95
d avg 1489.07 | 775.49 | 525.30 | 11413.25 | 6135.12 | 3896.34 | 12978.45 | 6428.72 | 3755.3