
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Task-Aware Relation Type Selection for
Machine Learning Algorithms on Graphs

Michal Mareš

Supervisor: Ing. Pavel Procházka, Ph.D.
Field of study: Open Informatics
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474428 Personal ID number: Mareš Michal Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Task aware relation-types selection for machine learning algorithms on graph

Master’s thesis title in Czech:

Výběr vhodných typů relací pro algoritmy strojového učení na grafech

Guidelines:

Machine learning algorithms on heterogenous graphs present a powerful framework for AI problems exhibiting both
entity-specific and relational information. Whereas the primary focus of the research community is related to design of a
particular method (typically GNN) best performing on a given graph dataset, industrial applications typically need to establish
the dataset from the available data prior application of these powerful methods. Since the source data is usually very
specific for a given problem and often also with confidentiality restrictions, the dataset creation is typically outside of the
main research stream. In traditional machine learning, this task is known as feature engineering, where the goal is to
represent each example by features as relevant to the downstream task as possible.
This thesis aims to relevant relation-types selection or their creation for a given task from input data (graph-variant feature
engineering). The particular goals of the thesis can be summarised as follows:
* Provide a survey of related literature.
* Describe the problem formally.
* Identify and describe an algorithm/method of suitable relation types selection or creation:
* For a given graph algorithm, preferably a custom graph algorithm that is used in Cisco for malicious content retrieval.
* Discuss/provide generalization of this method to an arbitrary graph algorithm.
* Implement and verify the suggested algorithm on:
* Malicious content retrival taks with priprietary Cisco data,
* A suitable public dataset for demonstration of the proposed algorith.

Bibliography / sources:

Dvorak, Stepan, Pavel Prochazka, and Lukas Bajer. "GNN-Based Malicious Network Entities Identification In Large-Scale
Network Data." In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1-4. IEEE, 2022.
P. Procházka, M. Mareš, M. Dědič, Downstream Task Aware Scalable Graph Size Reduction
for Efficient GNN Application on Big Data, in: Information Technologies - Applications
and Theory (ITAT 2022), Zuberec, Slovakia, 2022
Khalil, Issa, Bei Guan, Mohamed Nabeel, and Ting Yu. "Killing two birds with one stone: Malicious domain detection with
high accuracy and coverage." arXiv preprint arXiv:1711.00300 (2017).
Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip. "A comprehensive survey
on graph neural networks." IEEE transactions on neural networks and learning systems 32, no. 1 (2020): 4-24
Schlichtkrull, Michael, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling. "Modeling relational
data with graph convolutional networks." In European semantic web conference, pp. 593-607. Springer, Cham, 2018.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Pavel Procházka, Ph.D. Cisco

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 01.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Pavel Procházka, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
Throughout my studies, I have been

fortunate to have the unwavering support
of numerous individuals, without whom
this thesis would have remained a distant
dream. I would like to express my heart-
felt gratitude to all those who have sup-
ported me on my path and offered their
wisdom, love, and encouragement.

To my esteemed supervisor, who has
been a source of inspiration, guidance,
and knowledge. I am truly grateful for
your belief in my abilities and your tire-
less dedication to my progress which have
been instrumental for this work, especially
when I doubted myself. Your keen insights
and patience have not only made me a bet-
ter researcher but also a more inquisitive
and thoughtful individual.

To my loving family, who have always
been the bedrock of my life, thank you
for your unconditional love, support, and
understanding. Your sacrifices, faith in
my dreams, and countless words of en-
couragement have been the pillars upon
which I have built my academic pursuits.
I dedicate this achievement to you, for
you have instilled in me the values and
determination.

To my dearest girlfriend, whose love
and support have been my refuge in times
of doubt and my celebration in times of
triumph. Your presence has been a con-
stant reminder of the beauty and joy that
life has to offer, and your belief in me has
been a source of immeasurable strength.
I am honored to share this milestone with
you.

To my friends, who have been an incred-
ible source of encouragement, I extend my
deepest appreciation. Our shared laugh-
ter, shared struggle with some, and mu-
tual support have enriched my academic
journey and created memories that I will

cherish forever.
To my colleagues, who have become my

friends over such short period of time and
had kind and supportive words ready any
day of the week. Our engaging discus-
sions and exchange of ideas have not only
enhanced my research but also fostered a
sense of community and shared purpose.

Thank you everyone, I could not have
done it without you.

v

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague on May 26, 2023

vi

Abstract
This thesis explores the connection be-

tween graph structure and the perfor-
mance of graph algorithms in retrieval
task. The main goal is to identify struc-
tural features that contribute to better
performance and can be used to select
relevant relation types. The research is
conducted on private datset of network
flows provided by Cisco and public graph
datasets.

A novel approach is introduced for eval-
uating the importance of structural fea-
tures on graphs. This method uses a re-
gression meta-model on datapoints con-
sisting of graph features and task perfor-
mance obtained using the studied graph
machine learning algorithm. The thesis
studies multiple graph features, and pro-
poses a novel definition of an edge-based
confusion matrix for retrieval tasks on a
graph.

Experimental results indicate that
important graph features vary across
datasets, algorithms and performance
metrics. An additional application of the
proposed approach is shown in accelerat-
ing hyperparameter search, which shows
promising results but requires further re-
search to provide theoretical boundaries.

Despite its limitations, this work con-
tributes to the field of graph machine
learning by providing a more comprehen-
sive and explainable approach for evalu-
ating the importance of graph features.
Future work should focus on normaliz-
ing graph features, refining feature im-
portance analysis, and conducting a thor-
ough investigation of the hyperparameter
search application.

Keywords: graph theory, graph
algorithms, graph neural networks, node
classification, message passing, indicators
of compromise, cybersecurity,

information retrieval, malware detection,
network traffic, machine learning

Supervisor: Ing. Pavel Procházka,
Ph.D.

vii

Abstrakt
V této závěrečné práci zkoumám souvis-

lost mezi strukturou grafu a výkonem gra-
fových algorithmů pro úlohu vyhledávání
uzlů se specifickou vlastností. Hlavním cí-
lem je identifikovat strukturální vlastnosti,
které přispívají k lepším výsledkům a mo-
hou být použity pro výběr vhodných typů
relací při stavbě grafu. Výzkum probíhá
na soukromém datasetu síťové komuni-
kace poskytnutém společností Cisco a na
volně dostupných grafových datasetech.

Představuji nový přístup k vyhodnoco-
vání důležitých strukturálních vlastnostní
na grafech. Metoda využívá "meta-model"
pro regresi využívající strukturální vlast-
nosti grafu jako příznaky a výsledek vý-
konnostní metriky algorithmu jako predi-
kovanou hodnotu. Strukturální vlastnosti
jsou navrženy podle odborné literatury
a zároveň zavádím novou definici matice
záměn orienovanou na hrany při úkolu
vyhledávání uzlů cílové třídy.

Experimentální vyhodnocení naznačuje,
že důležité grafové vlastnosti se liší napříč
datsety, algoritmy a metrikami výkonu.
Zajímavým uplatněním navrhovaného pří-
stupu je vyhledávání hyperparametrů, kde
dosahujeme povzbudivých výsledků které
by mohly mít za následek snížení nároč-
nosti optimalizace hyperparametrů pro al-
goritmy strojového učení na grafech. Tato
aplikace ale vyžaduje další výzkum, aby
mohly být stanoveny hranice aplikace a
její teoretický základ.

Navzdory svým limitacím tato práce
přispívá oblasti strojového učení na gra-
fech zavedením nové metody vysvětlování
a určování důležitosti strukturálních grafo-
vých vlastností. V budoucnu bych se rád
zaměřil na normalizaci grafových vlast-
ností, zlepšení analýzy výsledků důleži-
tosti vlastnostní a důkladnější prozkou-
mání aplikace této metody pro hledání
hyperparametrů.

Klíčová slova: teorie grafů, grafové
algoritmy, grafové neuronové sítě,
klasifikace uzlů grafu, kyberbezpečnost,
získávání informací, detekce malwaru,
síťová komunikace, strojové učení

Překlad názvu: Výběr vhodných typů
relací pro algoritmy strojového učení na
grafech

viii

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Contribution 2
1.3 Method . 3
1.4 Outline . 5

2 Related work 7

2.1 Graph structure and feature
engineering . 7

2.2 Machine Learning on Graphs 8
2.3 Cybersecurity 9
2.4 Interpretability 10

3 Theoretical Background 13

3.1 Data Representation Using
Graphs . 13

3.2 Graph Theory 13
3.2.1 Multipartite Graphs 14
3.2.2 Relation Types 15

3.3 Tasks on Graph 16
3.3.1 Node Classification 16
3.3.2 Information Retrieval 17

4 Algorithmic Foundations and
Theoretical Framework 19

4.1 Machine Learning Graph
Algorithms . 20
4.1.1 Graph Neural Networks 21

4.2 Regression Algorithms 23
4.2.1 Decision Trees 23
4.2.2 Random Forests 24

4.3 Model Interpretation 24
4.3.1 Shapley Value 25
4.3.2 SHAP . 26

5 Datasets, Algorithms and Graph
Features 29

5.1 Formal Problem Description . . . 29
5.2 Datasets . 30

5.2.1 Public Datasets 30
5.2.2 Adapting Public Datasets for

Retrieval Task 30
5.2.3 Private Datasets 31

5.3 Specific Machine Learning Graph
Algorithms . 33
5.3.1 GraphSAGE 33
5.3.2 Risk Map Graph 33

5.4 Graph Features 34
5.4.1 Unipartite Graph Features . . 35
5.4.2 Bipartite Graph Features . . . 38
5.4.3 Common Graph Features . . . 40

5.5 Datapoint Construction 42

6 Experimental Evaluation 45

6.1 Network Telemetry IoC Retrieval 46
6.1.1 Metric Correlation 47
6.1.2 Cross Modality Validation . . 48
6.1.3 Generalization in Time 49

6.2 Node Retrieval on Public Datasets 52
6.2.1 Graph Feature Correlation . . 53
6.2.2 Plausability Validation 54
6.2.3 Random Split 55
6.2.4 Model Generalization Across

Datasets . 56
6.2.5 Hyperparameter Search 58
6.2.6 F1 score 61

6.3 Experiment’s Conclusion 64

7 Conclusion 67

7.1 Discussion 67
7.2 Limitations & Future Work 67
7.3 Conclusion 68

ix

Bibliography 71

A Additional Material 77

A.1 Correlation Plots 77
A.2 SHAP Bar Plots 81
A.3 Implementation Details 84

x

Chapter 1
Introduction

Graphs are mathematical structures used to represent objects called vertices
or nodes and their relations using links also called edges. In computer science,
they are especially useful for capturing network topology, network flows or
other non-euclidean data.

As a result, developing graph algorithms capable of solving different tasks
with graph data on the input has been of major interest to the scientific
community. Graph neural networks (GNNs) have been especially popular in
the last few years and have shown excellent performance in a number of tasks,
such as node and graph classification, link prediction or community detection.
Successful applications range from link prediction in social networks [1] and
drug discovery [2] to cybersecurity [3], [4], [5].

However, simpler methods are still actively researched with one of the
reasons for their advantage being explainability, which is usually lacking in
the GNN architectures. This property can be especially valuable in critical
applications such as cybersecurity or medicine.

Very little research has been done on the topic of graph building strategies.
The data variability across different applications and sometimes even confi-
dentiality restrictions limit the mainstream research in this area. Oftentimes,
edges between nodes can be defined in multiple ways based on the input data
and its interpretation with small nuances possibly influencing the algorithm
performance substantially.

What complicates things even more is the fact, that the optimal graph may
vary across the machine learning graph algorithms and tasks. Works such as
[6] exist which present the idea of graph rewiring in order to improve the per-
formance of message passing algorithms. Nevertheless, in some applications,
this is simply not possible as this introduces artificial relations between the
data which do not correspond with reality and therefore have a detrimental
impact on the ability to explain the results.

The goal of this work is to study graph structures in connection to the
downstream task and find the structural features contributing to better
performance. Based on these findings, relevant relation types will be selected

1

1. Introduction
to improve the graph algorithm performance.

1.1 Motivation

This work has been done in collaboration with Cisco TD&R Data Science
team. Their main goal is to provide threat detections based on customer
network telemetry in their product Global Threat Alerts [7]. Machine learning
(ML) plays a great part in delivering these detections swiftly as an enormous
number of threat researchers would be needed to keep up with the network
flows without the help of ML algorithms.

A specific retrieval algorithm used in the production pipeline is responsible
for retrieving indicators of compromise (IoC) on top of domain names. Part
of our effort in this work is to improve its precision and coverage by using
additional relations. In order to do that, we have been given access to a
subset of Cisco’s network telemetry for the purpose of this research.

As those data are confidential and cannot be published, we are also going
to attempt to reproduce the results by applying more general ML graph algo-
rithms on publicly available datasets. Nonetheless, that might not be possible
in full due to the differences and limitations of the data and algorithms.

The main goal of this work is to improve our understanding of building
a graph representation of the data in order to maximize the performance of
the task. Such graph building is not thoroughly explored in the scientific
literature despite being extremely important in our opinion. One of the main
reasons might be the frequent usage of proprietary data and the restrictions
it poses. Moreover, any conclusions drawn from specific data might not be
applicable across datasets.

1.2 Contribution

This thesis introduces a novel approach for evaluating the importance of
structural features on graphs. The proposed method, described in more detail
in Section 1.3, uses a regression meta-model on datapoints consisting of graph
features and task performance using the studied graph ML agorithm.

In Chapter 2, we provide a comprehensive review of related literature. The
main topic of graph structure and feature engineering is supplemented by the
topic of state-of-the-art ML algorithms on graphs and their applications in
cybersecurity.

Compared to the existing research aiming to improve the algorithm perfor-
mance by graph rewiring ([8], [6]), this work studies multiple graph features
instead of just one. We do so by considering explainability instead of arbi-
trarily changing the edges as in the mentioned works.

2

....................................... 1.3. Method

A large number of structural and structure-agnostic graph features are
proposed in Section 5.4. Many of them are modified to reflect different class
distribution in the same graph structure. In addition to already established
graph features, a novel definition of an edge-based confusion matrix for
retrieval task on a graph is proposed. In one of the proposed confusion matrix
features (Definition 5.32) we show that precision corresponds to attribute
homophily from [9], which further validates our new concept.

The experimental section explores feature importance for both the private
network telemetry in combination with the custom IoC retrieval algorithm
and a popular GNN architecture on public datasets. Graph features that
are important in the same manner across datasets were not be found. On
public dataset we explore an additional performance metric and discover that
despite two performance metrics might have some intersecting important
features, they influence the performance in the exact opposite ways.

As an indirect result of the proposed approach, an attempt to use the
graph features to accelerate the hyperparameter search was made. Initial
trials indicate promising results as we are able to approximate the best
model with little deviation from optimum by evaluating as little as 5% of the
hyperparameter configurations.

1.3 Method

Because there were no directly applicable solutions for the problem at hand in
the related literature, we first attempted to find a proxy metric in the form of
a graph property that would be highly correlated with task performance. Had
such graph property existed, its optimization would directly lead to building
an optimal graph for the task. Unfortunately, no such graph property was
found, so we modified the approach to cover the graph structure with multiple
features.
Hypothesis 1.1 (Foundational hypothesis). Consider a regression model trained
on datapoints consisting of graph feature vectors as the input variables and a
performance metric as the ground truth. The goal of the regression model
is performance prediction. Assuming the model is able to generalize on
new datapoints and does not overfit on the training examples, its feature
importance is going to indicate which graph features benefit performance the
most. The illustration of this approach is captured in Figure 1.1.

Knowledge of important graph features would enable building the graph in
a way to optimize them and therefore maximize the task performance, which
is the ultimate goal of this thesis. Graph property optimization could be
done by selecting which relations to include in the graph and which not to
include, thus satisfying the explainability requirement.

By applying the custom Cisco retrieval algorithm to private network teleme-
try and GraphSAGE to public datasets modified to retrieval tasks, true

3

1. Introduction

Figure 1.1: Thesis approach illustration. Graph features of the original graph
and task performance dependent on the algorithm are used to train the regression
meta-model. Meta-model provides the feature importance which can be used
to optimize the original graph to maximize task performance. Meta-model’s
performance prediction is not the main goal and serves only as a validation to
verify the model reflects graph structure and task and doesn’t just over-fit on
the training data.

performance to use the ground truth was obtained. Graph features were also
computed for each of the datapoints.

We attempted to utilize the negative curvature from [6] as a graph feature
for this work. However, as we are only able to use aggregations and not
information for each node, we could not find negative curvature aggregation
that would be evaluated as an important feature by the explanation algo-
rithm, therefore it was omitted from further experiments because of its high
computational complexity.

In the end, we are going to provide multiple experimental setups to evalu-
ate different aspects of practical applications, such as generalization across
datasets or generalization through time. For each setup, a feature explanation
algorithm will be used to find the most important graph features.

4

....................................... 1.4. Outline

1.4 Outline

The thesis is organized as follows. Chapter 2 explores current related work
and state-of-the-art approaches to outline the possible approaches. Chapter
3 provides the theoretical background on graphs, establishes notation used
throughout the thesis and introduces the targeted tasks on graphs. In Chapter
4, theoretical framework for algorithms used to solve targeted tasks is described
along with the regression algorithm used for the meta-model and method for
interpreting the feature importance. Both public and custom Cisco datasets
and specific algorithms used are presented in Chapter 5, along with definitions
of utilized graph features. Chapter 6 follows with the experimental evaluation
which explores different scenarios for the regression meta-model training and
attempts to answer which graph features influence task performance the most.
The thesis is concluded in Chapter 7, where Section 7.3 contains summary of
accomplishments with respect to the thesis assingment.

5

6

Chapter 2
Related work

As a part of this thesis, literature related to this work was studied, such as
malicious domain retrieval in cybersecurity, graph structure, feature engineer-
ing, feature importance and ML graph algorithms and their explainability in
general. To the best of my knowledge, none of them take a similar approach to
the problem concerned in this work. In this chapter, a summary of literature
that is related and in some cases influenced the direction of our work is going
to be provided.

2.1 Graph structure and feature engineering

Graph structure and its impact on graph algorithm performance is gaining
more traction in the research community in the last few years. Despite that,
graph building is not often addressed, which is understandable as in order for
the edges to be interpretable, building strategy is usually given by the nature
of the data. Graph rewiring methods are studied instead, which modify
the edges in order to increase performance. Grap rewiring is similar to our
approach but fails when explainability is an important factor.

There had been research exploring feature selection, such as [10], where
authors proposed a feature ranking algorithm. They then use it to select
a subset of features from widely adopted datasets while maintaining high
accuracy. For example, the Cora dataset with 1433 features was reduced
to 225, and the accuracy dropped from 83.5% to 68.2%. They also use the
algorithm to extract new features as linear combinations of the original ones.
This way, they are able to increase the performance to 73.8% for the Cora
dataset by extracting top 225 features.

Authors of [11], of which I am a co-author, approach the graph structure
differently: they contract the edges and join nodes based on a node similarity
measure computed from a simple base model. In some cases, this enables
them to use a distilled graph almost 50% smaller than the original while
maintaining approximately the same accuracy. Their goal is to lower the
computational resources needed while keeping the same accuracy or given an

7

2. Related work.....................................
accuracy use the least amount of computational resources possible.

In [6], authors explore graph structure more generally with respect to the
usual message-passing paradigm, specifically a concept called oversquashing.
That occurs when the performance of the task relies on long-distance interac-
tions and the number of neighbors grows rapidly with increasing distance to
the origin. They present a potential solution in the form of a graph rewiring
algorithm which adds supporting edges for the edge with highest negative
curvature and optionally removes the edge with most positive curvature while
keeping the degree distribution. Long range dependecies are especially im-
portant in heterophilic graphs which will be considered in this work. Earlier
work, [8], also introduces a graph rewiring algorithm DIGL, which removes
all edges in the beginning and then creates new ones. However, neither of
these works are applicable when interpretation is important, as mentioned
at the beginning of this sections, as arbitrarily added edges do not have any
evidence in the real world data.

2.2 Machine Learning on Graphs

In the past, traditional ML methods were applied to graphs usually using
structure-agnostic approach utilizing only the node features. For probability
networks, for example Bayesian networks or Markov random fields, bayesian
message-passing framework could be used to utilize the graph structure,
usually without the features. One such algorithm is Belief Propagation [12].
Random walk based methods, such as node2vec [13], also generate a node
embedding based on the graph topology.

With the advent of deep learning, various architectures within the Graph
Neural Networks (GNNs) family have been introduced in recent years. Their
main advantage is the combination of both the local (node features) and struc-
tural information (edges between the nodes), which results in a performance
boost in many applications.

A survey of GNN architectures until 2019 is well summarized in [14].
GNN architectures are ordered into new taxonomy consisting of 4 types:
Recurrent GNNs [15], Convolutional GNNs [16], Graph Autoencoders and
Spatial-temporal GNNs. In addition, different applications are discussed and
authors suggest possible future research directions.

One of the suggested research directions is the exploration of new methods
for heterogeneous graphs as most of the architectures assume homophilic
graphs. In those, edges usually connect similar nodes rather than different
ones. This might have been caused by initially using graph networks in the
social network scenario. Still, there are many examples of heterophilic graphs,
for example, computers (personal devices connect to routers) or (heterosexual)
dating networks, as mentioned in Zheng [17]. The homophilic assumption
is mitigated by redefining and extending the neighborhood, addressing the

8

.................................... 2.3. Cybersecurity

aggregation, and updating functions to boost the expressivity or both.
In contrast to others, in [18], instead of proposing a new GNN architecture,

the authors explore different design options such as number of layers or
different activation functions. A similarity metric is also proposed and
authors use it to transfer the best models across different tasks. This has
been a direct inspiration for this work and will be described in more detail in
Section 5.3.1.

Authors of [15] are solving the task of link prediction or "recovery of missing
facts" and entity classification in knowledge graph. Knowledge graph consists
of nodes, which they also call entities, and labeled edges, which means there
are multiple edge types to consider. This is similar to the case of network
telemetry we are dealing with in this work, as domains are interconnected with
for example both server IPs and network devices. In the paper, a new RGCN
architecture is built to handle the target tasks. Authors further elaborate,
that an important aspect of the performance is the presence of an autoencoder
in the network whose addition also noticebaly improves architectures they
are comparing themselves with.

2.3 Cybersecurity

Similar to this work, in [19], an automated way of processing network telemetry
is proposed with the goal being to identify indicators of compromise (IoCs).
The input is a multipartite graph with multiple node types: domains, IP
addresses and users. There’s an edge between user and domain when user has
visited the domain and an edge between IP address and a domain when the
domain has been resolved to that IP address. Multiple GNN architectures
and simpler algorithms such as Random Forest or SVM are compared at the
classification task, all intialized just with an initial set of known malicious
domains. In the end, there was little difference in the performance, contrary
to the authors’ expectations that GNNs should perform better.

In [5], Kahlil et al. propose a DNS-specific algorithm for malicious domain
detection. They use definitions established in their earlier work [20] that
establish an explicit association between two domains if they share common
IPs that do not all come from the same Autonomous Systems (AS). For the
classification itself a semi-supervised random forest is used with impressive
results (classification accuracy of 98%). They also explore the importance of
attributes.

In [4], authors present EvilSeed algorithm for detecting malicious websites.
They improve the concept of using web crawlers to suggest new malicious
websites based on a set of known website threats called seeds, which are then
filtered and finally evaluated using a detection system. The final detection
system is sometimes refered to as oracle in the literature. Oracle provides
reliable results but it is costly to use it, so the budget of calls is usually

9

2. Related work.....................................
limited. Because of this, the candidates sent to the oracle must be carefully
selected to contain as many positive pages as possible. EvilSeed replaces
the crawler with a guided search by automatically generating search queries
based on the seeds and leveraging search engines to retrieve URLs sharing the
desired properties. Queries are generated based on different aspects of the
seeding pages such as their word corpus or DNS data. With 604 seeds and
226 140 analyzed URLs (oracle calls), EvilSeed can obtain 3 036 malicious
domains while crawler approach (seeded with terms that were trending) was
able to find 604 malicious pages out of 437 251 oracle calls.

Similar to the works above, part of this work is a custom algorithm used
to retrieve IoCs in the domain name space using a connection map created
from network telemetry. In addition, mentioned algorithm also uses an oracle
for the non-trivial domain evaluation with limited budget. For more details,
see Section 5.3.2.

2.4 Interpretability

For simpler methods such as linear model or decision trees, the intrepretations
are easy to understand. With the rise of deep learning and ever increasing
number of their parameters, interpretability and explainability have yet to
catch up, although being a hot topic for about the past 10 years. In addition
to improved debugging of model mistakes, being able to explain the results to
customers or making sure the model does not discriminate is slowly becoming a
must. Regarding the goals of this work, explainability and feature importance
is a crucial part of learning more about what makes algorithms perform good
on graphs.

Popular paper regarding explainability of GNNs is [21]. In there, GN-
NExplainer model-agnostic framework is proposed with the goal of providing
interpretable explanations of predictions on any ML task on a graph. The
problem of explainability is formulated as "optimization task that maximizes
the mutual information between GNN’s prediction and distribution of possible
subgraph structures" [21, p. 1]. The result is an subgraph and a subset of
node features important for the prediction. Both quantitative and qualitative
analysis are provided. Ying’s GNNExplainer outperforms both of the com-
pared attention and gradient explanation methods on all considered synthetic
datasets. From the qualitative side, the explainer is able to identify the
mutagenic groups in the MUTAG dataset consisting of molecule graphs with
the goal of predicting the mutagenicity on a specific type of bacteria to give
an example.

Unrelated to graphs, SHAP is a commonly used framework introduced in
[22]. It originates in collaborative game theory from a concept of Shapley
value, which solves the issue of gain distribution among cooperating members
based on their contribution. Applying this in the ML field, authors present
an approach for interpreting results across different models. To deal with

10

.................................... 2.4. Interpretability

the complexity of exact computation, paper further introduces custom ap-
proximation methods with optional assumptions of feature independence and
model linearity.

11

12

Chapter 3
Theoretical Background

In this chapter, theoretical background and notation are going to be provided
for graph theory as well as graph tasks.

3.1 Data Representation Using Graphs

Graphs are a popular method of data representation. Besides being easy
to interpret for humans, they can also provide good reasoning based on the
neighboring nodes in applications where explainability is important. They
often appear in the world around us, spanning from the "Seven Bridges of
Königsberg", through the railroad network, electric grid, chemical molecules,
and most recently the internet. Many popular graph algorithms were invented
to solve a particular issue, such as Borůvka’s algorithm for finding the
minimum spanning tree, which was used to construct the electricity network
for Moravia. In the last half-century, the internet emphasized the importance
of network theory, a specialized graph theory field.

Even though graph construction from the data is straightforward for some
applications, very often it is not. For data such as network logs, we can build
many different graphs based on the definition of what should be considered
a node and what should be considered an edge between the nodes. It is
non-trivial to construct the graph to optimize the task performance for a
specific graph task.

3.2 Graph Theory

As mentioned earlier, graphs are mathematical structures used to represent
objects called vertices or nodes and their relations using edges or links. There
are multiple types of graphs. The two main types are probably considered to
be directed and undirected, whose difference lies in the edges. In the most

13

3. Theoretical Background

A

B

C

D

E

Figure 3.1: Example of a directed graph on five vertices. Undirected graphs are
usually drawn with simple lines instead of arrows.

basic definition, a graph G is defined as a tuple

G = (V, E) (3.1)

where V is a set of nodes and E is the set of edges. In an undirected graph,
edges do not have a direction and therefore are defined as an unordered pair
of nodes

ei = {vj , vk} = {vk, vj}. (3.2)

Directed graphs contain directed edges, and thus elements in E are ordered
pairs of nodes

ei = (vj , vk). (3.3)

In the case of a directed graph, we can also write:

E ⊆ V × V (3.4)

Both have relevant usage; for example, we might use a directed graph to
capture a citation network, where the first (source) node is a paper A and
the second (target) node is a paper B being cited by paper A. An undirected
graph might be better suited for a friendship network on social media, as the
relationship between the users is mutual.

There are several graph modifications: graphs with weighted edges, parallel
edges, self-loops, or other specifics but those are irrelevant to this work.

3.2.1 Multipartite Graphs

A special type of graph relevant to this work is a multipartite graph. In a
k-partite graph, nodes can be divided into sets Pi ⊆ V where i ∈ {1, ..., k}
such that there is no edge between the nodes in the same set:

Pi × Pi ∩ E = ∅ (3.5)

14

.................................... 3.2. Graph Theory

For k = 1 the graph is called unipartite and in that case P1 = V . For k = 2
the graph is called bipartite and it has the following properties:

G = (V, E) (3.6)
V = P1 ∪ P2 (3.7)
P1 ∩ P2 = ∅ (3.8)
E = {{u, v} | u ∈ P1, v ∈ P2} (3.9)

Example of a bipartite graph can be graph where P1 are nodes representing
user devices and P2 are nodes representing websites (domain names). There
is an edge between a user device and a website when the website was visited
on the device according to a internet service provider’s network log. There
are no connections between websites or between user devices.

Sometimes it is useful to convert a bipartite graph to unipartite. In that
case, only nodes from one of the sets are kept in the graph (let’s assume P1
is kept) and an edge exists between the nodes when they have at least one
common neighbor in the second node set P2 in the original graph G. Let’s
first define node neighborhood N (u) which is a set of nodes connected to
node u and degree of a node d(u):

N (u) = {v | {u, v} ∈ E} (3.10)
d(u) = |N (u)| (3.11)

Then the constructed unipartite graph G′ is

G′ = (V ′, E′) (3.12)
V ′ = P1 (3.13)
E′ = {{u, v} | NG(u) ∩ NG(v) ̸= ∅} (3.14)

where NG(u) is the set of neighboring nodes in the original bipartite graph
G.

3.2.2 Relation Types

Relation type, sometimes also reffered to as edge type, is an edge establishing
a specific relationship between the two nodes. It encodes a specific shared
property into the graph structure. Notation R will be used for the set of
relation types.

In our network telemetry datasets, described in Section 5.2.3, we refer to
these relations as modalities and encode it using a bipartite graph where
instead of a relation edge (for example device has connected to a specific
domain) we encode it by a ordinary edge and a set of property (modality)
nodes P2. Regarding to the example given, there is an edge between P1 (user)
and P2 (domain) when user has visited that domain.

15

3. Theoretical Background
3.3 Tasks on Graph

In addition to the graph itself, ML algorithms on graphs usually take advan-
tage of node features1. For this reason, let’s consider a graph

G = (V, E, X, Y) (3.15)

where V , E have been defined earlier, X ∈ Rn×m is a feature matrix with
n = |V | and m being the number of features. Note, that rows of the matrix
X are feature vectors xv of specific nodes.

Y is a function assigning a true class label to each node. C is a set of class
labels.

Y : V → C, u 7→ yu (3.16)

For node u this functions assigns the true label yu ∈ C. True labels for each
node together form a vector y ∈ Rn containing a true label for all of the
nodes in V .

3.3.1 Node Classification

A node classification algorithm A aims to predict node labels based on the
input graph G. Label predictions vector will be denoted ŷ ∈ Rn. Predicted
labels ŷ and true labels y are then compared using a performance metric P,
such as accuracy. The result is a real number p ∈ R.

P : (ŷ, y) 7→ p (3.17)

Usually, we also divide the nodes into a training set Vtrain and a testing set
Vtest. As the name suggests, the training set is used for algorithm training and
testing set for evaluation on never before seen nodes. This implies transductive
learning setup, where all nodes were seen by the algorithm during the training
phase but only a subset (Vtrain) had the labels available. Inductive learning,
on the other hand, is shown never-before seen observations during the testing
phase. Although our main focus is on transductive setup, there is no reason
why this method should not work in the inductive setup.

One more notation I am going to use from now on is the subset of nodes
belonging to class k:

V (k) = {u ∈ V | yu = k} (3.18)

Neighbors of node u belonging to class k will be denoted N (u)(k) and node
u’s class degree d(u)(k):

N (u)(k) = N (u) ∩ V (k) (3.19)
d(u)(k) = |N (u)(k)| (3.20)

1Edge features are also possible but will not be considered in this work.

16

................................... 3.3. Tasks on Graph

3.3.2 Information Retrieval

As defined in [23]: "Information retrieval (IR) is finding material (usually
documents) of an unstructured nature (usually text) that satisfies an informa-
tion need from within large collections (usually stored on computers)." The
primary goal of IR is to obtain relevant information to a particular search
query and rank the results based on their relevance.

Due to the varying capacity of users to consume information, the relevant
results can be further reduced to a certain maximum number, also known
as "window size". This is where ranking of the relevant results comes into
play: it aims to sort the obtained results from the most relevant to the least
relevant. A common example of an IR system with ranking is a search engine,
which strives to return the most relevant websites based on the user’s search
query, with the most pertinent results appearing at the beginning of the list.

It is important to note that IR is typically an imbalanced problem: there
are often significantly more irrelevant results than relevant ones. This poses
a challenge to developing effective retrieval systems that accurately identify
and prioritize relevant information.

Let us now consider the IR task in the context of graphs. This task is
different from the original concept in many ways, but I will use the same
terminology when possible. In this scenario, the objective is to retrieve nodes
with specific properties not directly present in the input data. This can be
thought of as a special case of node classification.

The main distinction between IR and node classification is obtaining the
top k relevant results in the retrieval context. Here, k represents the window
size, i.e. the number of relevant results to be retrieved. To evaluate the
performance of such a retrieval-based node classification system, we can
employ the precision at k metric, also referred to as prec@k, which measures
the proportion of relevant results in the top k retrieved items. Suppose
we rank the nodes based on the class probability for the target class to
be retrieved t and number them from 1 to n with v1 having the highest
probability for class t. Then given the true class labels yi for each node, the
equation for calculating prec@k is as follows:

prec@k =
∑k

i=1[yi = t]
k

(3.21)

where [P] is the Iverson bracket, which for statement P is defined as:

[P] =
{

1 if P is true,
0 otherwise.

(3.22)

17

18

Chapter 4
Algorithmic Foundations and Theoretical
Framework

In this chapter, the theory behind the algorithms used for the experimental
part of this work is going to be introduced. This includes the general working
principles of GNNs, decision trees and how they are used together in a
Random Forest algorithm, and how a concept of Shapley values is used in
machine learning for model interpretability. In the thesis flowchart (Figure
4.1), this corresponds to the graph algorithm, regression meta-model, and
model interpretation blocks.

19

4. Algorithmic Foundations and Theoretical Framework....................

Figure 4.1: Thesis approach illustration. Graph features of the original graph
and task performance dependant on the algorithm are used to train the regression
meta-model. Meta-model provides the feature importance which can be used
to optimize the original graph to maximize task performance. Meta-model’s
performance prediction is not the main goal and serves only as a validation to
verify the model reflects graph structure and task and doesn’t just over-fit on
the training data. (Repeated Figure 1.1.)

4.1 Machine Learning Graph Algorithms

Machine learning graph algorithms operate on an input graph. An algorithm
can be limited to a specific graph type, such as directed, undirected, weighted,
and more. In some cases, graphs can be converted to another type under
some assumptions; for example, an unweighted graph to weighted with the
same weight.

In the past, traditional ML methods were applied to graphs usually using
structure-agnostic approach utilizing only the node features. For probability
networks, for example Bayesian networks or Markov random fields, bayesian
message-passing framework could be used to utilize the graph structure. One
such algorithm is Belief Propagation [12].

With the growing demand for network applications such as social network
analysis or recommendation systems, new methods appeared such as node2vec
[13]. Node2vec is an algorithm generating an embedding based on random
walks through the graph, which can then be used for downstream tasks such
as node classification.

With the rise of deep learning, different architectures in the family of Graph
Neural Networks (GNNs) were introduced in the past few years. GNNs are

20

.......................... 4.1. Machine Learning Graph Algorithms

designed to combine both the graph topology and node features. This has
made them popular choice for graph-structured data applications.

4.1.1 Graph Neural Networks

The evolution of GNNs is well documented and explained in [24] which has
also been used as the main source for this section. For the node classification
task the main goal is to calculate a node embedding hu for all nodes u ∈ V
dependent on both the node feature information xu and the graph topology
captured by edges e ∈ E.

The main difference between graph deep learning and more classical deep
learning such as Convolutional Neural Networks (CNNs) or Recurrent Neural
Networks (RNNs) is that the classical approach performs the computations
on euclidean data in the CNN case or sequences in the RNN’s while GNNs
have to work in non-euclidean space. This also inspired one of the two works
where graph networks initially emerged: authors of [25] were attempting to
generalize convolutional networks for graph data. The other work was [26]
which proposed a belief propagation algorithm with differentiation.

The solve the problem of non-euclidean space, GNN architectures utilize a
form of message passing to exchange information between the nodes in the
graph u ∈ V . This can be divided into two component functions: UPDATE
and AGGREGATE. In interation k, the AGGREGATE function distills the
information from node u’s neighborhood into a message vector m(k)

N (u). Then
the UPDATE function updates the embedding using the acquired message,
creating h

(k+1)
u to be used in the next iteration k + 1.

m(k)
N (u) = AGGREGATE(k)

(
{h(k)

v , ∀v ∈ N (u)}
)

(4.1)

h(k+1)
u = UPDATE(k)

(
h(k)

u , m(k)
N (u)

)
(4.2)

These functions are usually separate differentiable and learnable functions
such as an instance of multi-layer perceptron (MLP). The initial embedding
have to be initialized by using the original node feature vectors xu, therefore:

h(0)
u = xu (4.3)

After the first message passing iteration at k = 1, each node’s embedding is
updated using the aggregated information from 1-hop neighborhood.

There are many possible improvements for the AGGREGATE function.
[27] proposes a Graph Convolutional Network (GCN) using an aggregation
function with symmetric normalization. It normalizes the embedding vector
of each node v in the u’s neighborhood hv based on the size of Nu and Nv

before the aggregation. In [28]’s GraphSAGE, normalization in conjunction
with a learnable node pooling function to sample the neighboring nodes
achieves comparable results while significantly reducing the computational

21

4. Algorithmic Foundations and Theoretical Framework....................
complexity. Authors of [29] propose using learnable neighborhood attention
in the aggregation function resulting in Graph Attention Network (GAT).

Modifying the UPDATE function is also a viable research direction. Con-
catenation and skip-connections aim to elevate the embedding from the
previous iteration by using one function to combine the embedding with the
update message and then a second function to combine the new embedding
with the one from previous step. Alternative approach of Jumping Knowledge
Connections produces the final embedding by combining the node’s embed-
ding from each step instead of simply using the last one. Gated updates
inspired by RNNs such as Gated Recurrent Unit (GRU) or Long Short-Term
Memory (LSTM) networks have also been used to improve learnability by
using the node embedding instead of the RNNs hidden state.

All of these modifications aim to solve a common issue of GNNs when after
multiple iterations the node embeddings become very similar to each other.
This is reffered to as oversmoothing. It has been a persistent issue preventing
deeper GNNs models.

Up until this point we have been describing message passing concerned
only with node features. Approaches considering multiple edge types or
edge features also exist. RGCN architecture from [15] is able to deal with
multiple edge types by using different weight matrices. Simple solution for
considering edge features is to concatenate with the node features them during
the neighborhood aggregation phase.

Once the final node embedding zu is calculated, we can use it to solve the
desired task. For node classification, each embedding is used to calculate a
label using another learnable function:

yu = f1(zu) (4.4)

For edge classification, edge source and target nodes along with the edge
feature (if available) are taken into account:

yuv = f2(zu, zv, euv) (4.5)

Graph classification can be solved by either pooling all of the nodes to receive
a graph classification or can use graph coarsening, which leverages the graph
topology once more for the final judgement. During the coarsening process,
edges are collapsed and neighboring nodes joined together until a final node
is produced distilling the information of the whole graph and producing the
final graph label. Other tasks on graphs exist such as relation prediction or
many forms of regression which build upon the described concepts but are
not relevant to this work.

Each of the described approaches can be considered a separate GNN
architecture. Making a fair comparison between multiple architectures would
require using the same computational resources including memory and using
optimal hyperparameters for each one which is itself a difficult (and unsolved)
task. We are instead going to explore how hyperparameters affect performance

22

.................................4.2. Regression Algorithms

of a specific architecture, GraphSAGE. Direct inspirations was [18], where a
design space for GNNs is proposed.

4.2 Regression Algorithms

This section describes the meta-model block in the flowchart in Figure 4.1. It
will be used to predict the performance based on the graph features (defined
in Section 5.4 alone without the access to the original graph. Multiple
algorithms were considered but because of the relatively small number of
datapoints in the case of the Risk Map Graph (Section 5.3.2, 56 datapoints1),
the model needs to be a rather simple one. Any gradient based method, such
as multi-layer perceptron, would fail to generalize on such small dataset and
more samples were not possible to obtain within the limited time frame.

Simple linear regression or decision trees usually perform well even on
smaller datasets. However, some non-linear dependencies of the graph features
are to be expected. For example, high value of feature 1 can be an indicator
of good performance if feature 2 is low, however high feature 1 can indicate
the exact opposite when feature 2 also has high value. This rules out linear
regression but can be captuterd by decision trees. Furthermore, a random
forest model can perform even better than a decision tree, especially in the
case of many variables, because it utilizes multiple decision trees each time
on a subset of variables to avoid overfitting.

4.2.1 Decision Trees

Decision trees are a supervised ML algorithm supporting both classification
and regression [30]. It can deal with both continuous and categorical variables
and is computationally inexpensive in today’s standards. When given a set of
training samples, samples are repeatedly splitted into subgroups by a selected
variable. These splits are represented as tree nodes. Once there are no more
variables on which to split the subgroups, a leaf node containing one or more
samples is created.

The variable to split is selected to minimize the impurity measure such
as Gini impurity in the classification scenario, which bascially expresses the
error given a specific classification label. In the regression scenario, variable
is chosen to minimize the loss function such as mean squared error as much
as possible.

For a decision tree to be able to generalize, the maximum depth has to be
limited. If each leaf node of the tree contains one sample in the end, the tree
becomes a lookup table and the model is necessarily overfitted.

114 days times 4 modality types

23

4. Algorithmic Foundations and Theoretical Framework....................

Figure 4.2: Illustration of Random Forest and its underlying decision trees [33].

4.2.2 Random Forests

A Random Forest ([31], [32]), as the name suggests, consists of multiple
decision trees. Each of the trees operates on a subset of variables a tries
to minimize the impurity (classification) or loss (regression). The results of
each tree are then recorded and either the majority vote (classification) or an
average result (regression) is given as an output.

The main benefit of combining multiple trees together is increased resistance
to overfitting as the trees are uncorrelated2 since they are using different
subset of features. According to [31], "using a random selection of features to
split each node yields error rates that compare favorably to Adaboost".

Random Forest also provides a feature importance information based on the
splitting. However, this information can be biased towards high cardinality
features ([34], [35]), which give the algorithm option to obtain better split
and form small sized leaf groups. To avoid this issue, permutation based
feature importance approach, specifically Shapley Additive Explanations, is
going to be used.

4.3 Model Interpretation

In this section I am going to provide a tool to describe how to interpret the
regression meta-model and analyze the importance of variables used to train
it. As described in the previous section, the model used for regression is not
directly interpretable as a linear regression or a single decision tree would be,
therefore some tool needs to be used. It is worth noting that other methods

2If the features are also not correalted.

24

................................. 4.3. Model Interpretation

exist, such as Local interpretable model-agnostic explanations (LIME) [36].
However, the presented method is easy to implement, has a strong theoretical
foundation, which is also presented in the next section, and has an efficient
calculation method for tree-based algorithms.

4.3.1 Shapley Value

The Shapley value, introduced in [37], is a concept originally developed in
coalitional game theory that provides a solution to the problem of distributing
the reward among a coalition of players based on their contribution to the
goal. This concept is based on the idea that the total value generated by a
group of players is a function of the individual contributions of each player.

It is computed as the marginal contribution of each player to each possible
coalition meaning each player’s contribution is calculated based on the reward
of each possible coalition with and without them.

Mathematically speaking, Shapley value φS(v) is a mapping from the set
of all games over a set of players Γ to a real values vector.

φS : Γ → Rn, φS = (φS
1 , ..., φS

n) (4.6)

where φS
i (v) is the Shapley value of player i. Given a set of players N, |N | = n

and value of the game for coalition A as v(A), Shapley value for player i can
be computed as:

φS
i (v) =

∑
A⊆N\i

|A|!(n − |A| − 1)!
n! (v(A ∪ i) − v(A)) (4.7)

One of the key benefits of the Shapley value is that it is additive, efficient,
symmetric and satisfies the null player property. Let Γ be the set of all games
over the set of players N . Additivity axiom means that the total value of the
coalition is equal to the sum of the values of each individual player. Therefore,
for games u, v ∈ Γ

φS(u + v) = φS(u) + φS(v) (4.8)

Efficiency states that the cumulative reward received by individual player of
the coalition must be exactly equal to the total reward obtained, so that no
reward is undistributed. Mathematically:

φ1(v) + ... + φn(v) = v(N) (4.9)

Additionally, the Shapley value is symmetric, which means that the value
assigned to each player is the same regardless of the order in which the players
are added to the coalition. Consider players i, j ∈ N , a coalition of players
A ⊆ N \ i, j and a game v. Then:

v(A ∪ i) = v(A ∪ j) =⇒ φi(v) = φj(v) (4.10)

25

4. Algorithmic Foundations and Theoretical Framework....................
Finally, the Shapley value satisfies the null player property, which means that
a player who does not contribute anything to the coalition is assigned a value
of zero.

v(A ∪ i) = v(A) =⇒ φi(v) = 0 (4.11)

This notation was taken from [38].
Overall, the Shapley value is a powerful tool for solving cooperative games

and is widely used in various fields, including economics, political science,
and computer science.

In the computer science field, Shapley value can be used as is for feature
importance computation. However, as all marginal contributions have to be
computed, it becomes rather computationally expensive with 2n possible com-
binations where n is the number of players (or features in feature explanation
scenario). Thankfully, polynomial approximation methods for Shapley value
computation exist as well as methods building on top of this concept, such as
Shapley Additive Explanations.

4.3.2 SHAP

Shapley Additive Explanations (SHAP) [22] is a method for interpreting
machine learning models that is based on the Shapley value. It is able
to explain individual predictions or combine them together to provide a
global explanation, therefore the additive explanation. Interpretation of
which values of the features (high/low) benefit the final prediction and which
decrease it is also available. That is not possible with simpler interpretations
such as Random Forest built-in feature importance. Combination of these
informations allows us to gain insights into how the model works and why
it makes certain decisions. For thorough explanation please refer to the
original paper [22] or [39, ch. 9] which has also been used to improve our
understanding.

The basic idea behind SHAP is that the feature values of a data instance act
as players in a coalition. The Shapley value tells us how to fairly distribute the
payout (i.e., the prediction) among the features. In other words, it provides a
way to measure the contribution of each feature to the final prediction, taking
into account the interactions between features.

The SHAP method introduces two computation methods: KernelSHAP
and TreeSHAP. KernelSHAP is model agnostic and can be applied to any
ML model, while TreeSHAP is specific to tree-based models. TreeSHAP is
particularly efficient as it computes in polynomial time instead of exponential
thanks to the tree structure. However, there are also drawbacks to the
TreeSHAP approximation, such that it "can assign non-zero attributions to
features that are not even referenced by the model" as shown in [40].

One of the strengths of SHAP is that because of its theoretical Shapley
value foundation the four axioms of additivity, efficiency, symetry and the null

26

................................. 4.3. Model Interpretation

player property hold even for this method. This means that the attribution
of the prediction to each feature is consistent and fair.

Overall, SHAP provides a way to gain insights into how the model works and
why it makes certain decisions, which is particularly important in applications
where transparency and accountability are crucial. By introducing TreeSHAP,
it also makes it possible to compute exact Shapley values for a wide variety
of tree-based models in polynomial time.

We will be using the TreeSHAP computation method for the explanation of
the meta-model and interpreting the contribution of each feature. Additionally,
we will be able to find out whether each feature should increase or decrease
to improve the performance.

27

28

Chapter 5
Datasets, Algorithms and Graph Features

This chapter starts with a formal problem formulations. Next section will
focus on the graph data used for the experimental evaluation and the specifics
of machine learning graph algorithms used to evaluate performance. Graph
features to capture the graph data reprerentation are going to be defined
and last section will describe how all of these information build together the
distilled retrieval task representation for the regression meta-model.

5.1 Formal Problem Description

The goal of this thesis is to propose a systematical way of selecting or creating
relations in a way that maximizes downstream task performance. On the
input, we have the network telemetry containing multiple relations R.

Because the construction of the graph G is given by the nature of the
telemetry, we focused on selecting an optimal subset of relation types R∗ ⊆ R
in order to maximize performance metric P of graph ML algorithm A. This
subset of realations R∗ implicitly defines a subgraph G∗ on the original graph
G.

Our approach is to create a feature vector f(G) and use the algorithm A
performance P on graph G as a label for regression meta-model M. The
goal of the model M is to predict the performance P. This prediction will
be reffered to as P̂.

Regression meta-model M will be analyzed to find out which variables of
the feature vector f(G) are most influential to the prediction P̂ . We will also
use the available tools to figure out whether the feature should be increased
or decreased to optimize the performance metric. This is captured in the
foundational Hypothesis 1.1.

Once the important features are selected, we will be able to evaluate
different subgraphs purely based on the feature vector f(G). As each subset
of relations R′ ⊆ R can be assigned this feature vectors, the relation type
selection is then reduced to finding the optimal relations subset R∗.

29

5. Datasets, Algorithms and Graph Features
5.2 Datasets

As mentioned earlier, this work is focusing on a retrieval task performed
with custom algorithm on private data and a more general approach utilizing
GNNs on public datasets.

5.2.1 Public Datasets

GNNs are often benchmarked on citation networks. In this work I adopted the
Cora [41] and DBLP [42] datasets in the form introduced in [43]. In citation
networks, nodes are specific papers and edges stand for citation between the
papers. Cora’s node features represent presence or absence (zero or one) of
selected words in the text. PubMed [44] is another citation network. Node
feature vectors are bag-of-words representations of the papers.

The largest citation network used is ArXiv from the Open Graph Benchmark
collection [45]. It contains only computer science related papers with directed
edges indicating that one paper cites the other which will be modified to be
undirected. Features are 128-dimensional averaged embeddings of the words
from the abstract and title.

In order not be limited only to citation networks, we will also include a few
more datasets. Squirrel is a Wikipedia dataset initially created for a regression
task of predicting average monthly traffic from [46]. Nodes of the graph are
webpages from English Wikipedia as of December 2018 containing the topic
of squirrels and edges as links between them. Node fetaures correspond to
selected words occuring in the text. We will be using a modification of this
dataset introduced in [16], where the nodes are divided into five classes based
on the average monthly traffic of the page.

Amazon Computers from [47] is a graph where nodes are products and
edges link two products when they are frequently bought together. Features
are bag-of-words vectors based on the product reviews and class is the product
category.

In the Flickr dataset [48] images are represented by nodes. Edge exists
between two images if they share common properties such as geographical
location, same user interaction or occur in the same gallery. Node features are
based on a 500-dimensional bag-of-words representation of image descriptions.

Table 5.1 shows some basic statistical properties of each of the datasets.
All of the datasets consist of a single graph.

5.2.2 Adapting Public Datasets for Retrieval Task

As the original task on used public datasets is multiclass node, they have to
be modified for the node retrieval task (Section 3.3.2), which is a special case

30

...................................... 5.2. Datasets

Dataset PubMed DBLP Cora Squirrel
Number of nodes 19 717 17 716 19 793 5 201
Number of edges 88 648 105 734 126 842 217 073
Number of features 500 1 639 8 710 2 089
Number of classes 3 4 70 5
Homophily 0.79 0.81 0.59 0.09
Dataset Computers Flickr ArXiv
Number of nodes 13 752 89 250 169 343
Number of edges 491 722 899 756 1 166 243
Number of features 767 500 128
Number of classes 10 7 40
Homophily 0.79 0.32 0.43

Table 5.1: Statistics of the used public datasets. The homophily value represents
node homophily as defined by [16].

of binary node classification. We are going to create multiple retrieval tasks
from each graph, each time retrieving a specific class (target class) denoted t.

The modification strategy is described below...1. Select target class t ∈ C as the class to be retrieved...2. Relabel other classes C \ t to class 0 (negative)...3. Relabel target class t to class 1 (positive).

This conversion effectively increases the number of retrieval datasets to the
total number of classes from all datasets (139).

This approach comes with both its drawback and an advantage. The
drawback is that graph features, defined in the next Section 5.4, have to be
defined in a way to give different results based on the node class labels in
order to be differentiable across the same dataset. However, this can be also
considered an advantage as such graph features should reflect the distribution
and structural relations between positive and negative nodes more accurately.

5.2.3 Private Datasets

As menitoned previously, the second part of this work is focused on Cisco
use-case of detecting malicious domains (IoC retrieval). This requires specific
data to work with, in our case we are going to use Stealthwatch flows.

Stealthwatch is a security analytics solution by Cisco. It uses either dedi-
cated network probes, routers and switches to monitor network communication
or flows. As defined in RFC 7011 [49]: "A Flow is defined as a set of packets
or frames passing an Observation Point in the network during a certain time
interval. All packets belonging to a particular Flow have a set of common

31

5. Datasets, Algorithms and Graph Features
secondleveldomain Second level domain URL.
serverip IP to which the second level domain was

resolved using DNS.
networkdeviceid Unique identifier of the user network de-

vice.
autonomoussystem Autonomous system of the server.
tlsrequestfingerprintja3 Client fingerprint computed from the client

hello packet.

Table 5.2: Description of available network flow properties.

properties." Those common properties are for example source and target IP
address or port.

Based on the analysed traffic, a baseline of normal network activity is
created mainly so that anomalous events can be more easily distinguished.
In this work, only the anomalous subset of the Stealthwatch telemetry from
the anomaly detection layer will be used.

The telemetry flows contain multiple properties of which we are going to
use a subset. Selected properties are listed in Table 5.2 along with their brief
descriptions. Each of those properties can be an indicator of a malicious
activity when shared with a known malicious domain. Domains (SLDs)
resolving to the same IP address (serverip) as a known threat is suspicious
or when a device tries to connect to a blocked known botnet command and
control (C&C) server and so it tries an alternative C&C right after that
(networkdeviceid). Note that there are no additional features included in
the data besides these properties.

All of these flows together create a multipartite graph with multiple edge
and node types (five to be exact). The graph is 5-partite as there are no
edges between the same type of flow property. However, IoC retrieval is only
interested in retrieving nodes from the SLD node set and the other node
sets are used only as features. We are also going to refer those node and
edge types as modalities. To evaluate each modality (e.g. "networkdeviceid"
modality) on its own, only bipartite subgraph of the whole flow graph will be
considered at once. This results in four bipartite graphs per day, therefore
total of 56 datapoints in total from the 14-day network telemetry data.

Because the original data cannot be shared as a part of the thesis, we will
provide at least some basic statistical information about the data in Table
5.3. The reason days 18, 19, 25, 26 have around half of the edges (flows)
than the others is because they are weekends when less traffic is commonly
observed than on week days.

32

.......................5.3. Specific Machine Learning Graph Algorithms

Date 14 15 16 17 18
Edges 19 005 567 18 059 254 18 207 499 18 060 270 9 242 554
SLDs 365 364 329 932 325 634 322 409 157 867
Date 19 20 21 22 23
Edges 8 484 966 19 109 058 19 776 480 20 049 115 19 915 321
SLDs 148 728 320 565 314 912 313 055 319 887
Date 24 25 26 27
Edges 18 628 743 9 838 469 8 952 773 18 918 494
SLDs 308 940 166 405 150 366 315 348

Table 5.3: Statistics of the used private datasets.

5.3 Specific Machine Learning Graph Algorithms

5.3.1 GraphSAGE

GraphSAGE is one of the very popular GNN architectures proposed in [28].
It is much faster compared to other popular choices such as GCN [16] or GAT
[29] thanks to utilizing uniform sampling while constructing the message to be
passed in the AGGREGATE function while keeping comparable performance.

The AGGREGATE and UPDATE functions from Equation 4.1 take the
following form:

m(k)
Ns(u) = AGGREGATE(k)

(
{h(k−1)

v , ∀v ∈ Ns(u)}
)

(5.1)

h(k+1)
u = σ

(
Wk · CONCAT

(
h(k−1)

u , m(k)
Ns(u)

))
(5.2)

The uniform sampling of neighboring nodes is captured by Ns(u) which is a
modified neighborhood nodes set (s for sampling). Other than that the first
equation keeps it’s ability to use arbitrary differentiable function to aggregate
the sampled embeddings h

(k−1)
v . UPDATE function is defined with σ acting

as the activation function and a trainable weight matrix Wk controlling the
information propagation between different layers of the model.

However, as hyperparameter tuning is an unsolved problem and can have
an enormous impact on performance, I decided to experiment with different
hyperparameters of this GNN architecture. This approach was directly
inspired by [18] already mentioned in related literature in Section 2.2. Design
space parameters used in this work are described in Table 5.4.

5.3.2 Risk Map Graph

Risk Map Graph is a custom Cisco algorithm used for malicious domain
retrieval, also called Indicators of Compromise (IoC) retrieval. It is based
on the label propagation algorithm (LPA) [50], which propagates labels of

33

5. Datasets, Algorithms and Graph Features
Hyperparameter Values
Layers 1, 2, 3
Hidden channels 16, 32, 64
Dropout probability 0, 0.3, 0.6
Activation function ReLU, PReLU
Aggregation function mean, max

Table 5.4: Design space considered for the GraphSAGE architecture. Inspired
by [18].

known labeled nodes to unknown nodes through the graph edges. It can be
used in scenarios with few labeled nodes and has guaranteed convergence.

LPA was modified to operate with multiple modalities at once. Thanks to
the algorithm’s simplicity it scales very well on the large network telemetry
data. Because of the confidentiality restrictions I am not at liberty to provide
the implementation of the algorithm. Nevertheless, the implementation is
not the main focus of this thesis and for the feature importance explanations
information about the LPA algorithm should be sufficient. Even a black-box
approach would be enough for studying the effects of graph features on the
resulting performance using presented methods as long as there is a way of
obtaining the performance.

5.4 Graph Features

This section describes the graph features, whose goal is to capture properties
of the graph which are important for the task performance. In the thesis
flowchart 5.1 this corresponds to the feature extraction block. Some well
defined concepts, such as homophily, already exist. I am going to employ
both graph features used in the literature and attempt to suggest new ones.

The idea behind graph features is that nodes belonging to the same class
should:..1. have similar nodes features if available..2. be connected by an edge

This esentially describes the concept of homophily, which is thoroughly
explored in [51]. The main idea is that nodes "soak up" the features from
their neighborhood making them more alike and thus more likely to be
assigned to the same class. Because of this phenomenon, homophily is usually
an assumption for the graph but not necessarily true. This is why the
two concepts mentioned above should summarize the properties of a good
performing graph fairly well.

However, in a real-world scenario, only a subset of true labels (training set)
is available to us and therefore there’s no way of evaluating these properties.

34

....................................5.4. Graph Features

Figure 5.1: Thesis approach illustration. Graph features of the original graph
and task performance dependant on the algorithm are used to train the regression
meta-model. Meta-model provides the feature importance which can be used
to optimize the original graph to maximize task performance. Meta-model’s
performance prediction is not the main goal and serves only as a validation to
verify the model reflects graph structure and task and doesn’t just over-fit on
the training data. (Repeated Figure 1.1.)

We are only able to compute their value based on the training subset which
provides some form of estimation.

In the following sections, I am going to present graph features based on
these concepts. First I am going to explore the graph features computed
on the unipartite graph of public datasets, then on the bipartite graph for
network telemetries and finally define graph features that can be used for
both types of graphs.

5.4.1 Unipartite Graph Features

For the public datasets, the graph is unipartite meaning each node can be
connected to any other node. Datasets also come with a training and testing
masks which divide the nodes into two groups. Therefore, the graph feature
computation can use both of the positive and negative class but only on the
training nodes.

35

5. Datasets, Algorithms and Graph Features
Structure Agnostic

Definition 5.1 (Number of nodes). For graph G = (V, E) the number of nodes
is equal to

nodes = |V | (5.3)

Definition 5.2 (Number of positive training nodes - num_positive).

num_positive = |{ui | ui ∈ Vtrain ∧ ui ∈ V (1)}| (5.4)

Definition 5.3 (Number of negative training nodes).

num_negative = |{ui | ui ∈ Vtrain ∧ ui ∈ V (0)}| (5.5)

Definition 5.4 (Class feature MSE). This feature was designed specifically for
this work to capture the feature vector difference between the classes. It is a
four element matrix computing the class MSE from average feature vector.
Consider x̄k as an average feature vector of class k and V

(k)
train set of training

nodes in its class. Let’s call x̄k the average feature vector of class k:

x̄k = 1
|V (k)

train|

∑
v∈V

(k)
train

xv (5.6)

Then the class feature MSE matrix is:

M =
[
m1,1 m1,2
m2,1 m2,2

]
=

∑v∈V
(0)

train

(xv − x̄0)2 ∑
v∈V

(0)
train

(xv − x̄1)2∑
v∈V

(1)
train

(xv − x̄0)2 ∑
v∈V

(1)
train

(xv − x̄1)2

 (5.7)

feat_dist_XY = mX,Y (5.8)

Structure Aware

Definition 5.5 (Number of connected components). Component of a graph
is a maximal set of nodes between which there exists a path. Path is an
order of nodes such that there exists an edge between each two consecutive
nodes. Number of connected components is the number of such node sets.
The minimum number of connected components is one, meaning there exists
a path between all of the nodes.

num_components ∈ N (5.9)

Definition 5.6 (Number of edges).

edges = |E| (5.10)

Definition 5.7 (Positive node ratio from nodes of degree > N).

pos_node_ratio_N = |{ui | ui ∈ Vtrain ∧ ui ∈ V (1) ∧ d(ui) > N}|
|{deg(ui) > N}|

(5.11)

36

....................................5.4. Graph Features

Definition 5.8 (Average node degree).

degree_avg =
∑

u∈V d(u)
|V |

(5.12)

Definition 5.9 (Average positive node degree).

degree_pos_avg =
∑

u∈V (1) d(u)
|V (1)|

(5.13)

Definition 5.10 (Assortativity). Assortativity indicates how likely are nodes
in the graph connected to similar nodes based on node degree. More details
can be found in [52]. Result is a real number:

assortativity ∈ ⟨−1; 1⟩ (5.14)

Definition 5.11 (Conductance). Conductance is a measure of how many edges
lead between two disjunctive node sets normalized by the number of edges
inside the larger set. In this work, the conductance is calculated on a cut
given by positive training nodes V

(1)
train and the other nodes.

EA = {{u, v} ∈ E | u, v ∈ V
(1)

train} (5.15)

EB = {{u, v} ∈ E | u, v ∈ V \ V
(1)

train} (5.16)

conductance = |{{u, v} ∈ E | u ∈ V
(1)

train ∧ v ∈ V \ V
(1)

train}|
max(|EA|, |EB|) (5.17)

Definition 5.12 (Neighborhood cosine similarity). Second feature designed
specifically for this work. Neighborhood cosine similarity represents average
cosine similarity between the node’s feature vector xv and its neighborhood’s
average feature vector x̄N (v). As expected, this only considers the feature
vector’s direction and not magnitude. I am expecting magnitude to be
captured by one of the other feature based metrics.

x̄N (v) = 1
|N (v)|

∑
u∈N (v)

xu (5.18)

cos_similarity = 1
|V |

∑
v∈V

xv · x̄N (v)
||xv|| ||x̄N (v)||

(5.19)

Definition 5.13 (Attribute homophily). Homophily in general is a measure of
node similarity based on class labels. Attribute homophily rate proposed in
[9] is attempting to give similar information but based on node features. The
attribute homophily rate is formulated for each feature f independently as:

βf = 1∑
v∈V xvf

∑
v∈V

βvf = 1∑
v∈V xvf

∑
v∈V

(
xvf

∑
u∈N (v) xuf

d(v)

)
(5.20)

We can see the first fraction is a feature normalization as it adds up all of
the feature f ’s values over all nodes in the graph. βvf is the feature value of

37

5. Datasets, Algorithms and Graph Features
node v times average feature value of the nodes in its neighborhood. I am
going to take an average attribute homophily rate computed as follows:

β = 1
|F |

∑
f∈F

βf (5.21)

where F is the set of all features. I am going to calculate attribute homophily
for nodes u ∈ V

(1)
train.

Definition 5.14 (Edge homophily). Edge homophily from [51] is ratio between
edges connecting the same class and total number of edges. I am going to
adjust the calculation by dividing the node sets into V

(1)
train and V \ V

(1)
train to

receive different values based on the retrieved class k = 1 from the original
class labels.

homophily_edge (5.22)

Definition 5.15 (Node homophily). Node homophily [16] is edge homophily
normalized by the size of the neighborhood for each node. Similarly to
edge homophily, I am going to divide the nodes to V

(1)
train and V \ V

(1)
train and

calculate the value based on them.

homophily_node (5.23)

5.4.2 Bipartite Graph Features

Network flows are bipartite graphs. In the node retrieval task, only a starting
set of positive nodes (seeds, class 1) is specified, all other nodes are unknown
(class 0). I am going to use unknown and negative interchangably in the case
of network telemetry graphs. Because of the absence of training nodes for
the negative (unknown) class and extremely large number of edges, some
unipartite metric could not be computed at all. Therefore, I am going to
suggest graph features specifically for bipartite graphs.

Structure Agnostic

Definition 5.16 (Number of nodes). Number of nodes for bipartite graphs
will be given but the number of SLD nodes in the graph. This corresponds
to the number of nodes in unipartite graph induced by the bipartite graph,
as described in Section 3.2.1.

nodes = |Vdomains| (5.24)

Definition 5.17 (Number of modality nodes). Number of modality nodes can
be computed by subtracting the number of unique SLDs (number of nodes in
the first part of the graph) form the total number of nodes in the graph.

nodes_mod = |Vmodality| = |V | − |Vdomains| (5.25)

38

....................................5.4. Graph Features

Definition 5.18 (Number of positive nodes). Number of positive nodes (SLDs).

nodes_pos (5.26)

Definition 5.19 (Number of negative nodes). Number of negative nodes
(SLDs).

nodes_neg (5.27)

Structure Aware

Definition 5.20 (Clique number). Clique number of a graph is another property
used in graph theory. Clique in a graph G is a subset of nodes which induce
a complete subgraph on G. Clique number of a graph is then equal to the
number of node in the largest clique.

clique (5.28)

Definition 5.21 (Expansion ratio). Expansion ratio describes how many nodes
are in the neighborhood of positive modalities compared to the number of
seeds. This gives an idea how many nodes can the information propagation
reach in one step.

expansion =
∑

(u,v)∈E1 d(v)(1)

|S|
(5.29)

Definition 5.22 (Mean modality positivity). The first one, mean modality
positivity, indicates how many seeds are on average connected to the modalities
with at least one positive node (positive modalities) in their neighborhood.
To define it mathematically:

mod_positivity = 1
|E1|

∑
(u,v)∈E1

d(v)(1)

d(v) (5.30)

E1 = {(u, v) | u ∈ S, v ∈ VB} (5.31)

where S is the seed set, VB is the node set of the second part of the graph
(modalities), E1 are the edges originating in one of the seeds, d(v) is the
number of neighbors of v and d(v)(1) is the number of neighbors of v belonging
to class 1 (seeds). This number will be lower for graphs where seeds are
unique to the modalities and higher when multiple seeds share modalities
often.
Definition 5.23 (Number of positive edges). Number of positive edges, e.g.
leading from seed nodes (SLDs).

edges_pos (5.32)

Definition 5.24 (Number of bipartite edges). Number of edges from positive
modalities, e.g. modalities connected to at least one positive seed node (SLD).

edges_bip_pos (5.33)

39

5. Datasets, Algorithms and Graph Features
5.4.3 Common Graph Features

Structure Agnostic

Definition 5.25 (Positive to negative class ratio).

class_ratio = |V (1)
train|

|V \ V
(1)

train|
(5.34)

Structure Aware

Definition 5.26 (Class insensitive homophily). One of the well established
graph properties is homophily, which expresses how intertwined are the nodes
of the same class. There are many variations of homophily such as edge
homophily ratio [51], node homophily ratio [16] or class insensitive edge
homophily ratio [53]. Because in the retrieval scenario only a small portion
of the nodes is of known class, class insensitive homophily ĥ is best because
of the ability to evaluate each class individually. Definition is as follows:

ĥ = 1
C − 1

C−1∑
k=0

(
hk − |Ck|

n

)
(5.35)

hk =
∑

u∈Ck
d(u)(ku)∑

u∈Ck
d(u) (5.36)

where C is the number of classes, hk is the class homophily, Ck is the set of
all nodes belonging to the class k, du is the degree of node u which equals the
number of neighbours of node u and d

(ku)
u is the number of node u’s neighbors

that belong to the same class. I am going to compute this only for the seed
class

ĥ =
(

hk − |Ck|
n

)
(5.37)

and refer to this metric shortly as class_homophily.

Confusion matrix

The motivation behind establishing an edge-based confusion matrix is that a
graph can be considered to be a classificator whose goal is to connect nodes
of the same class using an edge. The better the model (graph), the better it
is suited for the considered task.

Therefore, I decided to create an edge centric graph features based on
the notion of which nodes should be connected and which not. An edge is
considered to be a true positive (TP) when it connects two nodes positive for
the retrieval task. False positive (FP) edge connects positive and a negative
nodes. Negatives are concerned with an edge absence, thus true negative (TN)

40

....................................5.4. Graph Features

TP

FP

TN

FN

Figure 5.2: Line expresses an edge between two nodes, dotted line stands for
absence of an edge. Filled an emtpy nodes are considered to belong into different
classes.

is when there’s an absence of edge between a positive an a negative node, while
false negative (FN) means there isn’t an edge between two positive nodes. A
visual representation is diplayed in Figure 5.2. Using these concepts I am
able to define a confusion matrix and with that all the derived concepts, such
as precision or recall, while interpreting them in the new retrieval-oriented
graph environment.

The calculation will be the same for both private a public datasets. Positive
training nodes (seeds) of the retrieved class are considered to be class 1, all
other nodes class 0.
Definition 5.27 (True positive). Number of edges connecting two nodes of
class 1.

cm_tp (5.38)

Definition 5.28 (True negative). Number of absent edges between node of
class 1 and node of class 0.

cm_tn (5.39)

Definition 5.29 (False positive). Number of edges between node of class 1
and node of class 0.

cm_fp (5.40)

Definition 5.30 (False negative). Number of absent edges between two nodes
of class 1.

cm_fn (5.41)

Definition 5.31 (Number of edges between negative nodes). Number of edges
between two nodes of class 0. This was defined to capture the last combination
of nodes.

edges_00 (5.42)

Definition 5.32 (Precision). Precision expresses how exclusively is the positive
class interconnected. It is equal to 1 when there are only edges between
nodes of class 1 and no edges to nodes of class 0 from class 1. As there would
be no information propagation to the class 0 (unknown) with FP = 0, our
expectation is for the performance to increase with increasing precision up
until some threshold when the information propagation is so low that the

41

5. Datasets, Algorithms and Graph Features
algorithm is not able to find any new positives in the unkown. We found
that this definition of edge precision is the same as class homophily hk from
Equation 5.35. Because class homophily is used in the related literature, We
are going to use it further in this work instead of the precision. However, we
consider this to be a small confirmation that the definition of the confusion
matrix is sensible.

precision = TP

TP + FP
=
∑

u∈C1 d(u)(1)∑
u∈C1 d(u) = h1 (5.43)

Definition 5.33 (Recall). Recall states how interconnected is the class 1.

recall = TP

TP + FN
(5.44)

Definition 5.34 (Prevalence). Prevalence is a concept used in epidemiology
where it describes how many specimens are affected by a medical condition
from the total population. With the confusion matrix defined on edges, the
interpretation is how many edges could lead between the class 1 nodes over
total possible edges where at least one node is from class 1.

prevalence = TP + FN

TP + FP + TN + FN
(5.45)

Prevalence feature correlates highly with class ratio defined earlier for both
private and public datasets. Possible explanation is that the size of class 1 is
very small so the number of possible edges between class 0 nodes and class 1
nodes is much greater than possible edges between nodes of class 1. Therefore,
prevalence cannot be used in unbalanced dataset which we unfortunately deal
with.
Definition 5.35 (False positive ratio). False positive rate (FPR) is a ratio
between how many edges between class 1 and class 0 nodes exist out of all
the possible combinations. In other words, it gives an approximate notion of
how well the information can be propagated from the class 1 nodes to the
class 0. It is also a complement of specificity, also called true negative rate
(TNR).

fpr = FP

FP + TN
= 1 − TNR (5.46)

Definition 5.36 (Negative predictive value). Negative predictive value (NPV):

npv = TN

TN + FN
(5.47)

5.5 Datapoint Construction

The construction of datapoints for the regression meta-model goes as follows.
Graph features are considered to be the features or variables for the method.

42

................................ 5.5. Datapoint Construction

Measured performance is the ground truth, the true label. These datapoints
are divided into training and testing sets based on the experiment’s goal.
The model is trained using the training samples and evaluated using the test
samples which it has never seen before.

For the public datasets, hyperparameters from Table 5.4 are also used as
variables. The goal is to capture the hyperparameter as another variable, as
some graphs might perform better with different parameters than others based
on their structure. There are total of 108 hyperparameter configurations and
total of 139 binary classification tasks for the public datasets. This results in
15 012 datapoints for public datasets in total.

For network telemetry there are just 14 days of data for 4 bipartite graph
each day, which sums up to 56 datapoints.

43

44

Chapter 6
Experimental Evaluation

In this chapter, experimental evaluation is provided to validate the effective-
ness of proposed approach. Proposed method is training a random forest
regression meta-model (described in Section 4.2.2) on a vector of graph fea-
ture variables introduced in Section 5.4 and the true performance of a graph
algorithm as the ground truth. The goal of the regression meta-model is
to predict the performance, based on which the importance of individual
features will be evaluated using the SHAP method described in Section 4.3.
The method illustration is in Figure 6.1.

The experiments are designed to cover different aspects of the problem
at hand and will be divided into two sections. The first one will focus on
the Cisco use-case of applying Risk Map Graph algorithm (Section 5.3.2)
to network telemetry (Section 5.2.3). Second one will be focusing on the
generalized problem of applying GNNs (Section 5.3.1) to retrieval task on
public graph datasets (Section 5.2.1).

In each section, we start by presenting a correlation analysis of the proposed
graph features to the performance metric. We will be using the Spearman
correlation, which does not evaluate the linear dependacy of the two variables
but rather the monocity of the resuting function by ranking the observations.
Spearman correlation coefficient will be refered to as ρ.

Information about datapoints can be found in Section 5.5.

45

6. Experimental Evaluation................................

Figure 6.1: Thesis approach illustration. Graph features of the original graph
and task performance dependant on the algorithm are used to train the regression
meta-model. Meta-model provides the feature importance which can be used
to optimize the original graph to maximize task performance. Meta-model’s
performance prediction is not the main goal and serves only as a validation to
verify the model reflects graph structure and task and doesn’t just over-fit on
the training data. (Repeated Figure 1.1.)

6.1 Network Telemetry IoC Retrieval

The task of IoC retrieval is going to be performed using the Risk Map
algorithm (Section 5.3.2) on 14 days of network telemetry data, described in
Section 5.2.3. Each modality was evaluated separately on each day, which
means there are total of 56 datapoints, each corresponding to a single graph.
Not all of the graph features could be computed due to the large size of the
data, therefore only the following will be considered:. Number of edges between negative nodes (edge_00). Number of bipartite edges (edges_bip_pos). Class homophily (class_homophily). Class ratio (class_ratio). Clique number (clique)

46

............................ 6.1. Network Telemetry IoC Retrieval

. Expansion ratio (expansion). Number of true positive edges (cm_tp). Number of true negative edges (cm_tn). Number of false positive edges (cm_fp). Number of false negative edges (cm_fn). False positive ratio (fpr). Number of modality nodes (nodes_mod).Modality positivity (mod_positivity). Number of negative domains (nodes_negs). Number of nodes (nodes). Negative predictive value (npv). Number of positive domains (nodes_poss). Precision (precision). Prevalence (prevalence). Recall (recall). Number of seed edges (edges_pos)

6.1.1 Metric Correlation

As the initial goal was to find a proxy-metric which could be used to capture
the performance of the task on the graph, all of the graph features were plotted
with the number of IoCs performance metric in Figure A.1. Unfortunately,
none of them correlate with the performance enough across the modalities
to consider them to capture the performance alone. Combination of graph
features might still be able to approximate the performance at least to some
degree, which is why I will be training the meta-model regressor.

The RF regressor should not be given multiple highly correlated variables.
In order to statisfy this assumption, pairwise correlation for graph features is
visualized in Figure 6.2. In the left plot, regressor’s prediction for training
set are presented, while the right plot displays results for the test set. There
are four highly correlated groups of features:. Class homophily & precision. Number of nodes & number of negative domains. Class ratio & prevalence

47

6. Experimental Evaluation................................

cla
ss

_h
om

op
hi

ly
cla

ss
_r

at
io

cli
qu

e
cm

_f
n

cm
_f

p
cm

_t
n

cm
_t

p
ed

ge
_0

0
ed

ge
s_

bi
p_

po
s

ed
ge

s_
po

s
ex

pa
ns

io
n fp
r

m
od

_p
os

iti
vi

ty
no

de
s

no
de

s_
m

od
no

de
s_

ne
g

no
de

s_
po

s
np

v
pr

ec
isi

on
pr

ev
al

en
ce

re
ca

ll

class_homophily
class_ratio

clique
cm_fn
cm_fp
cm_tn
cm_tp

edge_00
edges_bip_pos

edges_pos
expansion

fpr
mod_positivity

nodes
nodes_mod
nodes_neg
nodes_pos

npv
precision

prevalence
recall 0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Correlation of graph features used to describe the network traffic
graphs.

.TN & FN & number of positive domains

I am going to keep the first graph feature from each group. The decision was
made according to interpretability of each metric with the most interpretable
kept.

6.1.2 Cross Modality Validation

To study the generalization ability across the modalities, I employed a leave-
one-out strategy on the modalities, meaning the training of the RF regressor
considered three out of four modalities and the one left out was considered
for testing. Results can be seen in Figure 6.3. In all cases but one, both the
Spearman correlation coefficients and the root mean squared error (RMSE)
indicate poor results. Only for the server IP as testing modality, Figure 6.3d,
the correlation coefficient is ρ = 0.83 but that alone does not prove good
results as RMSE is still high at RMSE = 114.63.

These results suggest that each of the modalities is quite different from the
rest and there probably is no single indicator between the proposed graph
metrics. However, the fact that the regressor seems to be able to learn well

48

............................ 6.1. Network Telemetry IoC Retrieval

among the modalities presented during the training indicates there cound be
a systematic way of combining multiple variables (graph features) in a non-
linear way. This corresponds with the conclusion drawn from the correlations
alone.

6.1.3 Generalization in Time

To uncover the non-linear combination of graph metrics, the classificatior first
has to provide reasonable predictions for the test examples. As the network
telemetries are gathered across 14 consecutive days, next experiment is aiming
to generalize from first 9 days onto the last 5. The results are shown in Figure
6.4. Most of test datapoint’s predictions are close to the ground truth except
for the three ones in lower right corner of the plot. The maximum absolute
error is 250.03. However, without these 3 points, which account for 12% of
the test set, the maximum error decreases to 95.99, RMSE = 43.22 and
correlation increases to ρ = 0.95.

I tried looking into the reasons these 3 datapoints get classified incorrectly
as they even come from different modalities. One common property they
share is that they are a weekend datapoints, which contain generally about
half of the connections of a normal weekday. However, there are total of
8 weekend datapoints meaning the other 5 get relatively good predictions.
Despite this, the model might still provide some valuable insight into the
general behavior of the graph metrics and further analysis could reveal them.

Figure 6.5 presents a beeswarm plot of SHAP feature importance. The
features are ordered from the most important to the least important. X-axis
displays the SHAP values which represent the impact on the prediction.
Color scales from highest feature value in red to the lowest in blue. Notice
we are able to interpret which values (higher or lower) increase or decrease
the prediction based on the dot’s color. When the colors are mixed across
the x-axis, we can assume the feature is a pair-wise (or group-wise) feature
meaning the influence is dependant on other (one or more) features. This is
thanks to the expressive ability of the RF method, as it can build decision
trees and consider variable values linked to anothers.

Such group-wise features appear to be the most important number of true
positive edges. On the other hand, clique number and class ratio both benefit
the model when their values are high. Higher class ratio means higher number
of initial positive seeds, which intuitively enables discovery of more nodes
than when the ratio is lower. Lower number of modality nodes appears to
increase the prediction. We can interpret this that graphs with lower number
of modality entities probably dilute the information less and algorithm is
therefore able to discover more positive nodes. Well divided are the red and
blue points for number of true negative edges. True negative edge stands
for an absence of edge between different classes, which could propagate the
information in wrong direction, therefore less of these edges (higher true
negative count) increases the performance.

49

6. Experimental Evaluation................................

0 100 200 300 400 500
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Train: RMSE = 24.90, Corr = 0.99
Modality

serverip
networkdeviceid
autonomoussystem

0 100 200 300 400
Prediction [-]

0

25

50

75

100

125

150

175

Nu
m

be
r o

f I
oC

s [
-]

Test: RMSE = 227.98, Corr = 0.19

Modality
tlsrequestfingerprintja3

(a) : Testing on TLS fingerprint, training on the rest.

0 100 200 300 400 500
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Train: RMSE = 27.67, Corr = 0.98
Modality

serverip
networkdeviceid
tlsrequestfingerprintja3

0 50 100 150 200 250 300 350
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Test: RMSE = 168.49, Corr = 0.62
Modality

autonomoussystem

(b) : Testing on autonomous system, training on the rest.

0 100 200 300 400 500
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Train: RMSE = 25.08, Corr = 0.99
Modality

serverip
autonomoussystem
tlsrequestfingerprintja3

0 100 200 300 400
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Test: RMSE = 110.78, Corr = 0.25
Modality

networkdeviceid

(c) : Testing on network device, training on the rest.

0 100 200 300 400 500
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Train: RMSE = 29.70, Corr = 0.98
Modality

networkdeviceid
autonomoussystem
tlsrequestfingerprintja3

0 100 200 300 400
Prediction [-]

0

100

200

300

400

Nu
m

be
r o

f I
oC

s [
-]

Test: RMSE = 126.48, Corr = 0.74
Modality

serverip

(d) : Testing on server IP, training on the rest.

Figure 6.3: Meta-model predictions on network telemetry. Results of generaliza-
tion experiments from three modalities to the missing one.

50

............................ 6.1. Network Telemetry IoC Retrieval

0 100 200 300 400 500
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Train: RMSE = 30.03, Corr = 0.98
Modality

serverip
networkdeviceid
autonomoussystem
tlsrequestfingerprintja3

0 100 200 300 400 500
Prediction [-]

0

100

200

300

400

500

Nu
m

be
r o

f I
oC

s [
-]

Test: RMSE = 98.97, Corr = 0.79
Modality

serverip
networkdeviceid
autonomoussystem
tlsrequestfingerprintja3

Figure 6.4: Meta-model predictions on network telemetry. Results of generaliza-
tion through time, training examples were taken from the first 9 days, testing
examples from the remaining 5.

40 20 0 20 40 60
SHAP value (impact on model output)

Sum of 9 other features
mod_positivity

npv
cm_tn

class_homophily
cm_fn

nodes_pos
nodes_mod
class_ratio

clique
cm_tp

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.5: Summarization of SHAP values in the training examples. Features
are ordered with the most influential on the top. Interpretation for time general-
ization scenario, predictor displayed in Figure 6.4. Magnitue bar plot available
in Figure A.6.

51

6. Experimental Evaluation................................
6.2 Node Retrieval on Public Datasets

For node retrieval on public datasets, total of seven graph datasets with
various number of nodes, number of edges and different type of source data
were used. As the considered task is node retrieval, the nodes have to be
redistributed into a positive and a negative class. Considering original classes
C = {1, 2, ..., c} and a selected target positive class t, the nodes are re-labeled
so that nodes of class t in the original graph are positive (1) and all other
classes C \ t are negative (0). That means for one dataset with c classes
there are c binary classification tasks. For more details about the public
datasets, please refer to Section 5.2.1. For more detail about the datapoints,
see Section 5.5.

As mentioned in 5.3.1, hyperparameter search is alone a difficult field.
Therefore, I decided to experiment with different hyperparameters in a defined
design space. Those will also be included as variables for the datapoints
in addition to the graph features. This will also make the datapoints more
representative of the graph compared to when only one set of hyperparameters
would be used for all of them.

The performance of the task will be evaulated using the precision at k
metric with k = 100. I am also going to look into the F1 score which will
have better representation of the overall performance and will not be limited
to the top 100 nodes for the positive class.

The following graph features have been used:

.Assortativity (assortativity). Class homophily (class_homophily). Positive to negative class ratio (class_ratio). Conductance (conductance). Neighborhood feature vector cosine similarity (cos_similarity).Average degree (degree_avg).Average degree of positive nodes (degree_pos_avg). Number of edges between negative nodes (edge_00). Number of edges (edges).MSE eucledian distance of class X feature vector to mean class Y feature
vector (feat_dist_XY). Number of true positive edges (cm_tp). Number of true negative edges (cm_tn)

52

........................... 6.2. Node Retrieval on Public Datasets

. Number of false positive edges (cm_fp). Number of false negative edges (cm_fn). False prediction ratio (fpr).Attribute homophily (homophily_attr). Edge homophily (homophily_edge). Node homophily (homophily_node). Number of nodes (nodes). Negative predictive value (npv). Number of connected components (num_components). Number of negative trainig nodes (num_negative). Number of positive training nodes (num_positive). Ratio of positive nodes among nodes of degree > 1 (pos_node_ratio_1). Ratio of positive nodes among nodes of degree > 2 (pos_node_ratio_2). Ratio of positive nodes among nodes of degree > 3 (pos_node_ratio_3). Precision (precision). Prevalence (prevalence). Recall (recall)

6.2.1 Graph Feature Correlation

Figure 6.6 displays pair-wise correlation between all of the graph features.
For graph features correlated with ρ = 1 only one feature from the group
will be kept. There are some other highly correlated groups, which provide
complementary information, such as feat_dist_AB. For this reason, they
have been kept despite the correlation.

Groups correlated with ρ = 1, the first graph feature in the group was kept:

. Class ratio & NPV & prevalence. Number of positive nodes & FN

53

6. Experimental Evaluation................................

as
so

rta
tiv

ity
cla

ss
_h

om
op

hi
ly

cla
ss

_r
at

io
cm

_f
n

cm
_f

p
cm

_t
n

cm
_t

p
co

nd
uc

ta
nc

e
co

s_
sim

ila
rit

y
de

gr
ee

_a
vg

de
gr

ee
_p

os
_a

vg
ed

ge
_0

0
ed

ge
s

fe
at

_d
ist

_0
0

fe
at

_d
ist

_0
1

fe
at

_d
ist

_1
0

fe
at

_d
ist

_1
1 fp
r

ho
m

op
hi

ly
_a

ttr
ho

m
op

hi
ly

_e
dg

e
ho

m
op

hi
ly

_n
od

e
no

de
s

np
v

nu
m

_c
om

po
ne

nt
s

nu
m

_n
eg

at
iv

e
nu

m
_p

os
iti

ve
po

s_
no

de
_r

at
io

_1
po

s_
no

de
_r

at
io

_2
po

s_
no

de
_r

at
io

_3
pr

ec
isi

on
pr

ev
al

en
ce

re
ca

ll

assortativityclass_homophilyclass_ratiocm_fncm_fpcm_tncm_tp
conductancecos_similaritydegree_avgdegree_pos_avgedge_00edgesfeat_dist_00feat_dist_01feat_dist_10feat_dist_11fprhomophily_attrhomophily_edgehomophily_nodenodesnpvnum_componentsnum_negativenum_positivepos_node_ratio_1pos_node_ratio_2pos_node_ratio_3precisionprevalencerecall 0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.6: Absolute correlation of graph metrics between each other.

6.2.2 Plausability Validation

The fist two experiments were performed as a means of validation to ensure
the consistency and plausibility of the findings. In Figure 6.7, results of
training on the graph features alone are shown. In Figure 6.8, conversely,
only hyperparameters were used to distinguish the observations. The training
and testing examples were randomly divided with two-thirds allocated for
training and the remaining one-third for testing.

In the hyperparameter only scenario, the predictions align with the ideal
trendline a little and correlation ρ = 0.79 is achieved for training, ρ = 0.80
for testing. This can be explained by the fact that number of layers influence
the performance (in this case precision at 100) greatly and these two are
therefore highly correlated as shown in Figure 6.6. Despite that, the model
still predicts the same value for multiple observations. Predictions are even
more off in the case of graph feature only scenario. The model in incapable
of learning on the presented data.

All of that is expected, as there are insufficient information to distinguish
the datapoints from each other: the graph features are shared between

54

........................... 6.2. Node Retrieval on Public Datasets

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 1.11e-01, Corr = 0.79
Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
PubMed
Flickr

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 1.11e-01, Corr = 0.80
Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
Flickr
PubMed

Figure 6.7: Meta-model predictions on public datasets. Only graph feautres
were used. Random split with 2

3 used for training, 1
3 for testing.

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 1.82e-01, Corr = 0.08
Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
PubMed
Flickr

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
 a

t K
 [-

]
Test: RMSE = 1.85e-01, Corr = -0.00

Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
Flickr
PubMed

Figure 6.8: Meta-model predictions on public datasets. Only GNN hyperparam-
eters were used. Random split with 2

3 used for training, 1
3 for testing.

datapoints with different parameters1 and vice versa2. As a result, the RF
regressor merely returs the expected value of all observations sharing the
same variable values.

6.2.3 Random Split

Let’s now apply the meta-model to all available variables (both the hyperpa-
rameters and graph features). With two-thirds of total number of datapoints
used for training and the remaining one-third for testing, predictions of the RF
meta-model regressor are displayed in Figure 6.9. Correlation with precision
at k for the test predictions is above ρ = 0.9 and visually the predictions
generally follow the trendline.

Feature importance inspection using SHAP is shown in Figure 6.10. The
first positive outcome is that the most important features are not just the
hyperparameters in combination with one or two graph features as that

1The same graph features are shared between 108 points as the are only 139 different
graph feature value sets.

2The same hyperparameters are shared between 139 points as the are only 108 different
hyperparameter cofigurations

55

6. Experimental Evaluation................................

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 2.83e-02, Corr = 0.99
Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
PubMed
Flickr

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 7.61e-02, Corr = 0.91
Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
Flickr
PubMed

Figure 6.9: Meta-model predictions on public datasets. Both hyperparameters
and graph features were used. Random split with 2

3 used for training, 1
3 for

testing.

would be enough to distinguish all of the observations. Instead, only 3
hyperparameters (number of layers, aggregation function and number of
hidden channels) are present in the top 10 features and only one of them in
the top 5.

There are only two graph features I would consider to provide a good split
based on the feature value. The first one is number of edges between negative
nodes, where higher value results in higher prediction. Second one is the ratio
of positive nodes among nodes of degree 3 where higher value decreases the
prediction. That means it is more important for the performance to have
less neighbors to propagate the information than more, which corresponds
with the precision at k metric which wants the results to be as confident as
possible.

The most important features of class ratio and node homophily seem to
be pair variables as there is a mixture of high and low feature values that
decrease the prediction. For class ratio, low value increases the prediction
more often than not, for node homophily the same is true for high feature
values. Third most important feature, the number of negative nodes, almost
exclusively increases the prediction for high values.

The hyperparameter variables are very noisy and must be dependant
upon other variables. I would expect for example higher number of layers
clearly correlate with higher predictions. However, this can be caused by
the used performance metric precision at 100, which (especially for small
windows k) prefers confident predictions over the total number. Higher model
expressability is able to propagate the information through the graph over
longer distances, which can sometimes be a drawback.

6.2.4 Model Generalization Across Datasets

In this study, a random forest regressor was employed to predict precision
at 100, taking into account both hyperparameters and graph features. The

56

........................... 6.2. Node Retrieval on Public Datasets

0.3 0.2 0.1 0.0 0.1
SHAP value (impact on model output)

Sum of 24 other features
num_positive

pos_node_ratio_3
edge_00

hidden_channels
aggr

num_layers
homophily_edge

num_negative
homophily_node

class_ratio

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.10: SHAP feature importance analysis of model from 6.9, random split
on public datasets with prec@k as the performance metric. Magnitue bar plot
available in Figure A.7.

primary focus of this investigation was to explore the potential generalization
of the meta-model across datasets, wherein the model was initially trained on
a selection of datasets and subsequently applied to a novel dataset without
any further training.

Unfortunately, the results obtained from this approach (shown in Figure
6.11) were unsatisfactory. Even when each testing dataset is explored sepa-
rately, there’s no noticable trendline, the meta-model predicts all the eamples
into some range different for each dataset. For Pubmed the approximate range
is 0.7 to 0.9 and the around 0.98. Squirrel predictions are mostly between 0.6
and 0.8. A potential explanation for this outcome could be attributed to the
significant differences between the datasets used for training and the novel
dataset. This disparity may have hindered the model’s ability to generalize
and accurately predict precision at 100, thus emphasizing the need for further
research and optimization in the realm of cross dataset generalization.

To explore this more in depth, I also conducted an experiment utilizing
only the citation network datasets PubMed, DBLP, Cora and ArXiv. All
combinations were performing approximately the same with part of the testing
samples indicating the trendline but others completely wrong. Example is
presented in Figure 6.12 with DBLP dataset used for testing.

To conclude this experiment, meta-model generalization does not seem to
be viable even for datasets based on similar types of data.

57

6. Experimental Evaluation................................

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 2.29e-02, Corr = 0.99
Dataset
DBLP
CoraFull
Computers
ArXiv

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 3.07e-01, Corr = 0.16
Dataset

PubMed
Squirrel
Flickr

Figure 6.11: Meta-model predictions on public datasets. Both hyperparameters
and graph features were used. Datasets DBLP, CoraFull, Computers and ArXiv
were used for the training, PubMed, Squirrel and Flickr for the testing.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 1.89e-02, Corr = 0.99
Dataset

PubMed
CoraFull
ArXiv

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 2.64e-01, Corr = 0.32
Dataset

DBLP

Figure 6.12: Meta-model predictions on public datasets. Both hyperparameters
and graph features were used. Datasets PubMed, CoraFull and ArXiv were used
for the training, DBLP for the testing. All of these datasets are citation network
data.

6.2.5 Hyperparameter Search

In the subsequent experiment, the focus shifted to conducting a hyperparam-
eter search on a specific dataset. Consider a situation when only a handful
of GNN runs with different hyperparameters in combination with the graph
features could train a good enough meta-model predicting the performance for
the rest of the hyperparameters. If that is the case, we could effectively limit
the hyperparameter search to just those runs used to train the meta-model.

Our experiments indicate that this indeed could be true. See Figure 6.13,
where the meta-model regressor is trained for the Flickr dataset on just 38
(5% out of the total 756) observations. The predictions for the rest of the
observations may seem fairly scattered upon first glance. However, for this
scenario we are only interested in configurations that perfom the best. Suppose
we are interested in node retrieval of arbitrary class t. After specifying a
GNN design space, running approximately those 5% of total configurations
with different target classes, we will be able to get very close to the optimal
GNN configuration for our target class t. Note, that this could not be done by

58

........................... 6.2. Node Retrieval on Public Datasets

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 8.19e-02, Corr = 0.97
Target class

0
1
2
3
4
5
6

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 2.39e-01, Corr = 0.52
Target class

0
1
2
3
4
5
6

Figure 6.13: Meta-model predictions on public datasets. Both hyperparameters
and graph features were used. Thirty randomly selected observations from ArXiv
dataset were used for training, the rest for testing.

Train Test Optimal Deviation
Class prec@k Prediction prec@k Prediction prec@k Train Test

0 0.90 0.82 0.97 0.82 0.98 0.08 0.01
1 0.88 0.79 0.81 0.77 0.92 0.04 0.11
2 0.65 0.59 0.86 0.62 0.92 0.27 0.06
3 0.95 0.91 0.95 0.91 0.99 0.04 0.04
4 0.73 0.67 0.28 0.67 0.78 0.05 0.50
5 0.98 0.84 0.88 0.87 0.98 0.00 0.10
6 0.79 0.77 0.77 0.76 0.86 0.07 0.09

Table 6.1: Overview of predictions and prec@k performance for each class in the
Flickr dataset corresponding to results in Figure 6.13. Lowest deviation from
the optimal performance for each class is in bold.

training on the hyperparameters alone as the meta-model would not be able
to distinguish two target classes with the same hyperparameter configuration.

Table 6.1 pesents the meta-model performance predictions and true perfor-
mances measured by precision at 100 for each class for the training presented
in Figure 6.13. The approach is following. In the training set, we can choose
the best configuration according to the real performance (prec@k) as we
have computed those samples. In test set, we choose the best predicted
configuration for each class and evaluate it. Best performing configuration
from the two chosen is then compared to the optimum.

Compared to the best performing datapoints, the worst performance is
found for class 6 retrieval where the difference is 7% compared to the best
performing configuration. For classes 0 and 5 we are able to obtain best
possible hyperparameters for class 5 and almost best, losing 1% to the optimal
configuration, for class 0.

In Figure 6.14, the training sample size is further explored for Flickr and
Squirrel datasets. Both the maximum class deviation and average deviation
from optimum decrease with growing sample size, however, the values stabilize

59

6. Experimental Evaluation................................

0 20 40 60 80 100
Number of training samples [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
vi

at
io

n
fro

m
 o

pt
im

um
 [-

]

Class Maximum
Class Average

(a) : Squirrel dataset

0 20 40 60 80 100 120 140
Number of training samples [-]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
vi

at
io

n
fro

m
 o

pt
im

um
 [-

]

Class Maximum
Class Average

(b) : Flickr dataset

Figure 6.14: Dependance of deviation from optimum on training sample size for
two datasets. Maximum and average values from all binary classification tasks
are shown for each training sample size. Training sample sizes were chosen to be
from range between number of classes to 20% of observations. Note that both
the x and y axes have different ranges for each plot.

fairly quickly and little to no change is visible beyond the 10% mark.
It is important to state, that when the training observations exhibited

low variance, the predictions on the test set deviated considerably from the
true values and the results were not as promising. Illustrative examples are
displayed in Figure 6.15. This outcome is not unexpected, as it is common
phenomenon in ML methods when dealing with datasets characterized by
minimal variation. The model’s low performance in such cases highlights
the importance of having diverse and representative training data to ensure
accurate predictions. In the real-worl usage however, we would be able to
detect this case and simply add more training samples to cover different
hyperparameter configurations and various performance.

Despite these challenges, the results appear promising, as the optimal
hyperparameters could potentially be predicted by integrating structural
information. Consequently, this would enable the execution of only a few
trials, as opposed to conducting an extensive grid search.

Upon inspection of the SHAP analysis in Figure 6.16, three of the hyper-
parameter variables appear on top of the importance list and even provide a
fairly good segregation based on their values. Aggregation mean (1) performs
better than maximum (0) and ReLU activation (1) better than PReLU (0).
Higher number of layers increase the prediction as expected. Suprisingly,
higher number of hidden channels decrease the prediction and further research
is needed to explain this. Unforutnately, none of the top 10 features are the
same as the ones from random split experiment presented in Figure 6.10.

60

........................... 6.2. Node Retrieval on Public Datasets

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 7.94e-03, Corr = 0.99
Dataset

CoraFull

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 1.32e-01, Corr = 0.48
Dataset

CoraFull

(a) : Training examples consisted from observations of classes 1 and 2, which are very
similar. Despite the 216 training samples, model fails to learn properly.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Train: RMSE = 1.38e-02, Corr = 1.00
Dataset

CoraFull

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 a
t K

 [-
]

Test: RMSE = 8.86e-02, Corr = 0.81
Dataset

CoraFull

(b) : Training examples consisted from observations of classes 1 and 13, which are
diverse. Despite the same number of training samples as in the figure above, model
outputs reasonable predictions for the other classes.

Figure 6.15: Comparison of two meta-models trained on Cora dataset with
different training examples.

6.2.6 F1 score

As mentioned above, precision at k metric, although important for the retrieval
task, might be making the feature importance harder to interpret, especially
for k = 100. To provide an alternative view, I am going to investigate
alternative performance metric F1 score, which is also suitable for imbalanced
datasets. F1 score is calculated as the harmonic mean of precision and recall:

F1 = 2 precision · recall

precision + recall
(6.1)

This is ideal for the meta-model training, as it needs to be trained on one
metric as ground truth and neither precision nor recall could express the
whole information, while F1 combines both of them.

The random split training and testing results can be seen in Figure 6.17.
Samples in the training set are more uniformly distributed along the first
quadrant axis than in the case of precision at k, which seems to benefit the
training, reaching correlation ρ = 0.93 for testing set.

61

6. Experimental Evaluation................................

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
SHAP value (impact on model output)

Sum of 24 other features
dropout

recall
activation

feat_dist_10
degree_seed_avg

feat_dist_11
fpr

hidden_channels
num_layers

aggr

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.16: SHAP feature importance analysis of model from 6.13, hyperpa-
rameter search. Magnitue bar plot available in Figure A.8.

Top 10 important features for F1 score, shown in Figure 6.18, include many
of the features seen in top 10 for precision at k in Figure 6.10. However,
each one of them has exactly the opposite influence on the final prediction,
this time class ratio increases prediction for higher values, number of edges
between negative nodes for low values and number of negative nodes also
increases the prediction for lower values. This is unexpected and further
research will be needed to fully understand this outcome.

The hyperparameter features, on the other hand, are very well segregated
this time compared to the prec@k case, as F1 score is more capable to
capture the learning on all of the nodes, not only the k nodes included in the
window. Both hidden channels and number of layers raise the prediction for
higher values as expected. However, aggregation and activation importance
is swapped compared to hyperparameter feature importance scenario (Figure
6.16).

62

........................... 6.2. Node Retrieval on Public Datasets

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

F1
 [-

]

Train: RMSE = 3.42e-02, Corr = 0.99
Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
PubMed
Flickr

0.0 0.2 0.4 0.6 0.8
Prediction [-]

0.0

0.2

0.4

0.6

0.8

F1
 [-

]

Test: RMSE = 9.06e-02, Corr = 0.93

Dataset
CoraFull
ArXiv
DBLP
Computers
Squirrel
Flickr
PubMed

Figure 6.17: Meta-model predictions on public datasets. F1 score was used as
the ground truth performance metric. Random split with 2

3 used for training, 1
3

for testing.

0.2 0.1 0.0 0.1 0.2 0.3 0.4
SHAP value (impact on model output)

Sum of 24 other features
dropout

precision
activation

class_ratio
conductance

hidden_channels
num_layers

num_negative
aggr

edge_00

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.18: SHAP feature importance analysis of model from 6.17, random
split on public datasets with F1 score as the performance metric. Magnitue bar
plot available in Figure A.9.

63

6. Experimental Evaluation................................
6.3 Experiment’s Conclusion

In conclusion, there exist graph features which appear repeatedly among the
top 10 important, such as edge_00, class_ratio or num_negative. However,
they may influence the predicted value differently based on the task or the
performance metric, so there do not seem to be any universal graph features.
A comparison of three main SHAP beeswarm plots is presented in Figure
6.19.

The differences in influence might have been caused by the use of improper
graph feartures. For example, mentioned edge_00 feature was imprudently
defined as an absolute number instead of normalizing the value by the total
number of edges. Similar issues arise for multiple graph features defined in
Section 5.4 and have to be fixed during continued research effort.

Promising results were shown in the hyperparameter search scenario. Fur-
ther research is still needed to fully describe the scope of application and
provide theoretical boundaries for the results. Nevertheless, the idea of effec-
tive hyperparameter search for graph algorithms would benefit the research
community not to mention the possible applications and possible time savings.

64

................................6.3. Experiment’s Conclusion

40 20 0 20 40 60
SHAP value (impact on model output)

Sum of 9 other features
mod_positivity

npv
cm_tn

class_homophily
cm_fn

nodes_pos
nodes_mod
class_ratio

clique
cm_tp

Low

High

Fe
at

ur
e

va
lu

e

(a) : SHAP beeswarm for Risk Map time generalization scenario,
model from Figure 6.4. (Repeated)

0.3 0.2 0.1 0.0 0.1
SHAP value (impact on model output)

Sum of 24 other features
num_positive

pos_node_ratio_3
edge_00

hidden_channels
aggr

num_layers
homophily_edge

num_negative
homophily_node

class_ratio

Low

High

Fe
at

ur
e

va
lu

e

(b) : SHAP beeswarm for GNN random split with prec@100, model
from Figure 6.9. (Repeated)

0.2 0.1 0.0 0.1 0.2 0.3 0.4
SHAP value (impact on model output)

Sum of 24 other features
dropout

precision
activation

class_ratio
conductance

hidden_channels
num_layers

num_negative
aggr

edge_00

Low

High

Fe
at

ur
e

va
lu

e

(c) : SHAP beeswarm for GNN random split with F1 score, model
from Figure 6.17. (Repeated)

Figure 6.19: Comparison of SHAP feature importance for different setups.

65

66

Chapter 7
Conclusion

7.1 Discussion

The work provides a comprehensive review of related literature on graph
structure and feature engineering, as well as state-of-the-art machine learning
algorithms on graphs and their applications in cybersecurity.

A novel approach for evaluating the importance of graph structural features
using a regression meta-model on datapoints consisting of graph features
and task performance is proposed. The approach explores a large number of
structural and structure-agnostic graph features, including a novel definition
of an edge-based confusion matrix for retrieval tasks on a graph.

Multiple experimental scenarios were examined such as generalization
across datasets or temporal generalization on the network telemetry datasets.
Experimental results indicate that important graph features vary across
datasets and performance metrics.

Additionally, the proposed approach shows promise in accelerating hyper-
parameter search. Despite strong assumptions and a narrow application area
for the time being, continued research in this area has the potential to yield
significant advancements in graph machine learning.

Overall, this work contributes to the field of graph machine learning by
providing a more comprehensive and explainable approach to evaluating the
importance of graph features.

7.2 Limitations & Future Work

While providing valuable insights, the research presented in this thesis is not
without its limitations and areas for improvement.

There are some absolute number graph features, such as the number of
edges between negative class, which should have been defined in a more "graph

67

7. Conclusion......................................
size resistant" way. A way of normalizing these graph features could prevent
distinguishing the datapoints based on graph size and help generalization
across datasets.

We also realized, that one way to provide more insight into the feature
importance analysis might have been to select the most important features
in one of the experiment scenario and apply only this subset of features into
the meta-model for another experiment. This would also result in a more
comparable output.

The hyperparameter search, which was an unexpected side effect of our
approach, requires a thorough theoretical investigation. Furthermore, the
average deviation from the optimum for each class across configurations
should have been provided to give context to the presented results.

To fully verify the main Hypothesis 1.1, further experiments and more data
need to be evaulated in the future.

Finally, the approach using the regression meta-model is clearly limited
by how well the graph features describe the input graph. All the features
provide aggregated information about the graph. In the future, a more
sophisticated approach could be designed to first divide the graph into related
subgraphs based on a criterion and compute the graph features for each of
them separately. This way, the expressive power of the aggregation features
would increase dramatically and better results could be obtained.

All of these limitations can be considered a future research direction for
this topic. To enhance the effectiveness of our approach, future work should
focus on normalizing graph features to ensure better generalization across
datasets, refining feature importance analysis for more comparable results, and
conducting a thorough investigation of the hyperparameter search application.

By addressing these limitations and exploring the proposed future research
directions, we believe that significant progress can be made in the under-
standing and application of graph features for relation selection on graphs.

7.3 Conclusion

This section summarizes how different parts of the thesis assignment were
accomplished.

A comprehensive survey of the related literature and exploration of possible
directions has been provided in Chapter 2.

A formal description of the problem at hand was formulated in Section 5.1.
Method for suitable relation types selection was proposed using the regres-

sion meta-model operating on graph structural features and an evaluated set
of samples providing the true performance used as a meta-model label. An
explanation of how the proposed graph features relate to graph performance

68

..................................... 7.3. Conclusion

was given in Section 5.4. Section 5.1 describes the relation selection process
once the graph feature importance is established. This approach could be
applied to an arbitrary graph algorithm but requires a set of evaluated data.

Experiments were carried out in Chapter 6 in order to find the graph features
to use for the relation selection. However, performed experiments suggest
that the graph feature importance is not universal across graph algorithms
and performance metrics. Separate sets of graph features important for the
performance of the custom Cisco algorithm and GNN on public datasets were
found. The final relation type selection has not been performed because of
the complexity of the previous parts of the assignment. Still, it is planned to
be concluded in an oncoming paper based on this thesis.

69

70

Bibliography

[1] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2018/file/
53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf

[2] T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and S. Venkatesh,
“GraphDTA: Predicting drug-target binding affinity with graph neural
networks,” Bioinformatics, vol. 37, no. 8, pp. 1140–1147, 10 2020.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btaa921

[3] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program semantics
via graph neural networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf

[4] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova, and
G. Vigna, “EvilSeed: A guided approach to finding malicious web pages,”
in 2012 IEEE Symposium on Security and Privacy, 2012, pp. 428–442.

[5] I. Khalil, B. Guan, M. Nabeel, and T. Yu, “Killing two birds with one
stone: Malicious domain detection with high accuracy and coverage,”
arXiv preprint arXiv:1711.00300, 2017.

[6] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M.
Bronstein, “Understanding over-squashing and bottlenecks on graphs
via curvature,” arXiv preprint arXiv:2111.14522, 2021.

[7] Cisco, “Global Threat Alerts in Secure Endpoint - Dashboard [Cisco
Secure Endpoint] - Cisco,” 2023, last accessed April 22 2023. [On-
line]. Available: https://www.cisco.com/c/en/us/td/docs/security/amp/
endpoints/global-threat-alerts-in-secure-endpoint/m_dashboard.html

71

https://proceedings.neurips.cc/paper_files/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://doi.org/10.1093/bioinformatics/btaa921
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://www.cisco.com/c/en/us/td/docs/security/amp/endpoints/global-threat-alerts-in-secure-endpoint/m_dashboard.html
https://www.cisco.com/c/en/us/td/docs/security/amp/endpoints/global-threat-alerts-in-secure-endpoint/m_dashboard.html

7. Conclusion......................................
[8] J. Gasteiger, S. Weißenberger, and S. Günnemann, “Diffusion improves

graph learning,” 2022.

[9] L. Yang, M. Li, L. Liu, bingxin niu, C. Wang, X. Cao, and
Y. Guo, “Diverse message passing for attribute with heterophily,” in
Advances in Neural Information Processing Systems, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021. [Online].
Available: https://openreview.net/forum?id=4jPVcKEYpSZ

[10] D. B. Acharya and D. H. Zhang, “Feature selection and extraction for
graph neural networks,” 2019.

[11] P. Procházka, M. Mareš, and M. Dědič, “Scalable graph size reduction
for efficient GNN application,” Information Technologies – Applications
and Theory 2022, 2022.

[12] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical
approach,” in Proceedings of the Second AAAI Conference on Artificial
Intelligence, ser. AAAI’82. AAAI Press, 1982, pp. 133–136.

[13] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” 2016.

[14] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[15] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in The Semantic Web: 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings
15. Springer, 2018, pp. 593–607.

[16] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-GCN:
Geometric graph convolutional networks,” 2020.

[17] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph neural
networks for graphs with heterophily: A survey,” 2022.

[18] J. You, R. Ying, and J. Leskovec, “Design space for graph neural
networks,” CoRR, vol. abs/2011.08843, 2020. [Online]. Available:
https://arxiv.org/abs/2011.08843

[19] Š. Dvořák, P. Procházka, and L. Bajer, “GNN-based malicious network
entities identification in large-scale network data,” in NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2022, pp. 1–4.

[20] I. Khalil, T. Yu, and B. Guan, “Discovering malicious domains
through passive DNS data graph analysis,” in Proceedings of the
11th ACM on Asia Conference on Computer and Communications

72

https://openreview.net/forum?id=4jPVcKEYpSZ
https://arxiv.org/abs/2011.08843

..................................... 7.3. Conclusion

Security, ser. ASIA CCS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 663–674. [Online]. Available:
https://doi.org/10.1145/2897845.2897877

[21] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNEx-
plainer: Generating explanations for graph neural networks,” 2019.

[22] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” 2017.

[23] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval, ser. An Introduction to Information Retrieval. Cambridge
University Press, 2008.

[24] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159,
2020.

[25] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” 2014.

[26] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” 2020.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

[28] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2018.

[29] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” 2018.

[30] J. Drchal, “Lecture 12: Ensembling,” 2020, last accessed May 12
2023. [Online]. Available: https://cw.fel.cvut.cz/b201/_media/courses/
be4m33ssu/ensembling_w2020.pdf

[31] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp.
5–32, Octorber 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[32] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, 1995, pp.
278–282 vol.1.

[33] “What is Random Forest? | IBM — ibm.com,” https://www.ibm.com/
topics/random-forest, last accessed May 12 2023.

[34] [Online]. Available: https://scikit-learn.org/stable/auto_examples/
inspection/plot_permutation_importance.html

73

https://doi.org/10.1145/2897845.2897877
https://cw.fel.cvut.cz/b201/_media/courses/be4m33ssu/ensembling_w2020.pdf
https://cw.fel.cvut.cz/b201/_media/courses/be4m33ssu/ensembling_w2020.pdf
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/random-forest
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html

7. Conclusion......................................
[35] M. Saad, “Detailed Explanation of Random Forests Fea-

tures importance Bias — eng.mohammed.saad.18,” https:
//medium.com/@eng.mohammed.saad.18/detailed-explanation-of-
random-forests-features-importance-bias-8755d26ac3bc, last accessed
May 12 2023.

[36] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should i trust you?":
Explaining the predictions of any classifier,” 2016.

[37] L. S. Shapley, “Notes on the n-person game—ii: The value of an n-person
game.(1951),” Lloyd S Shapley, 1951.

[38] T. Kroupa, “The shapley value,” 2020, last accessed May 12
2023. [Online]. Available: https://cw.fel.cvut.cz/b201/_media/courses/
be4m36mas/cg02_lectures.pdf

[39] C. Molnar, Interpretable Machine Learning, 2nd ed. Independently
published, 2022. [Online]. Available: https://christophm.github.io/
interpretable-ml-book

[40] M. Sundararajan and A. Najmi, “The many shapley values for model
explanation,” 2020.

[41] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Information
Retrieval, vol. 3, pp. 127–163, 2000.

[42] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “ArnetMiner:
Extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’08. New York, NY, USA:
Association for Computing Machinery, 2008, pp. 990–998. [Online].
Available: https://doi.org/10.1145/1401890.1402008

[43] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking,” 2018.

[44] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” 2016.

[45] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[46] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node
embedding,” 2021.

[47] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of
graph neural network evaluation,” 2019.

[48] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” 2020.

74

https://medium.com/@eng.mohammed.saad.18/detailed-explanation-of-random-forests-features-importance-bias-8755d26ac3bc
https://medium.com/@eng.mohammed.saad.18/detailed-explanation-of-random-forests-features-importance-bias-8755d26ac3bc
https://medium.com/@eng.mohammed.saad.18/detailed-explanation-of-random-forests-features-importance-bias-8755d26ac3bc
https://cw.fel.cvut.cz/b201/_media/courses/be4m36mas/cg02_lectures.pdf
https://cw.fel.cvut.cz/b201/_media/courses/be4m36mas/cg02_lectures.pdf
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1145/1401890.1402008

..................................... 7.3. Conclusion

[49] P. Aitken, B. Claise, and B. Trammell, “Specification of the
IP Flow Information Export (IPFIX) Protocol for the Exchange
of Flow Information,” RFC 7011, Sep. 2013. [Online]. Available:
https://www.rfc-editor.org/info/rfc7011

[50] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” Carnegie Mellon School of Computer Science,
2002.

[51] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” 2020.

[52] M. E. J. Newman, “Mixing patterns in networks,” Physical
Review E, vol. 67, no. 2, feb 2003. [Online]. Available: https:
//doi.org/10.1103%2Fphysreve.67.026126

[53] D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S.-N.
Lim, “Large scale learning on non-homophilous graphs: New benchmarks
and strong simple methods,” 2021.

[54] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[55] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[56] T. pandas development team, “pandas-dev/pandas: Pandas,” Jan. 2023,
if you use this software, please cite it as below. [Online]. Available:
https://doi.org/10.5281/zenodo.7549438

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” 2019.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

75

https://www.rfc-editor.org/info/rfc7011
https://doi.org/10.1103%2Fphysreve.67.026126
https://doi.org/10.1103%2Fphysreve.67.026126
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.7549438

76

Appendix A
Additional Material

A.1 Correlation Plots

77

A. Additional Material

0 2 4
1e9

100

200

300

400

500

nu
m

_io
cs

variable = 00
corr = 0.18

0 2 4 6 8
1e6

variable = bip_edges
corr = -0.39

0.00 0.02 0.04 0.06

variable = class_homophily
corr = 0.30

0.000050.000100.000150.00020

variable = class_ratio
corr = 0.38

0 10 20 30
100

200

300

400

500

nu
m

_io
cs

variable = clique
corr = 0.75

0.0 0.2 0.4 0.6 0.8

variable = expansion
corr = 0.59

0 500 1000 1500 2000

variable = fn
corr = 0.65

0 100000 200000 300000

variable = fp
corr = 0.42

0.00 0.02 0.04
100

200

300

400

500

nu
m

_io
cs

variable = fpr
corr = -0.01

0 2 4 6 8
1e6

variable = mod_nodes
corr = -0.48

0.0 0.2 0.4 0.6

variable = mod_positivity
corr = -0.46

100000 200000 300000

variable = neg_domains
corr = 0.61

100000 200000 300000
100

200

300

400

500

nu
m

_io
cs

variable = nodes
corr = 0.61

0.0000000.0000250.0000500.000075
+9.999e 1

variable = npv
corr = -0.36

0 20 40 60

variable = pos_domains
corr = 0.69

0.00 0.02 0.04 0.06

variable = precision
corr = 0.31

0.0000250.0000500.0000750.000100
100

200

300

400

500

nu
m

_io
cs

variable = prevalence
corr = 0.39

0.0 0.1 0.2 0.3 0.4
value

variable = recall
corr = 0.45

25 50 75 100
value

variable = seed_edges
corr = 0.57

0.0 0.5 1.0 1.5 2.0
value 1e7

variable = tn
corr = 0.65

0 200 400 600
value

100

200

300

400

500

nu
m

_io
cs

variable = tp
corr = 0.75

modality
serverip
networkdeviceid
autonomoussystem
tlsrequestfingerprintja3

Figure A.1: Scatter plots of dependance of graph structure metrics (x-axis)
with number of retrieved IoCs (y-axis) on private datasets. Correlation value is
computed using Spearman correlation.

78

...................................A.1. Correlation Plots

cla
ss

_h
om

op
hi

ly

cla
ss

_r
at

io

cli
qu

e

cm
_f

n

cm
_f

p

cm
_t

n

cm
_t

p

ed
ge

_0
0

ed
ge

s_
bi

p_
po

s

ed
ge

s_
po

s

ex
pa

ns
io

n fp
r

m
od

_p
os

iti
vi

ty

no
de

s

no
de

s_
m

od

no
de

s_
ne

g

no
de

s_
po

s

np
v

pr
ec

isi
on

pr
ev

al
en

ce

re
ca

ll

class_homophily

class_ratio

clique

cm_fn

cm_fp

cm_tn

cm_tp

edge_00

edges_bip_pos

edges_pos

expansion

fpr

mod_positivity

nodes

nodes_mod

nodes_neg

nodes_pos

npv

precision

prevalence

recall

1.0

0.66

0.43

0.75

0.43

0.72

0.48

0.65

0.18 0.82

0.33
*

0.76

0.3
*

0.49

0.26 0.49

0.7

0.79

1.0

0.66

0.07

0.66

1.0

0.72

0.73

0.12 0.69

0.73

0.27
*

0.51

0.65

0.62

0.21 0.13 0.26 0.57

0.26 0.74

0.89

0.67

0.99

0.45

0.43

0.72

1.0

0.7

0.53

0.75

0.98

0.18 0.35
**

0.62

0.86

0.07 0.49

0.52

0.44

0.52

0.78

0.54

0.44

0.73

0.79

0.75

0.73

0.7

1.0

0.05 0.97

0.74

0.22 0.35
**

0.93

0.52

0.45

0.03 0.74

0.44

0.74

0.99

0.83

0.76

0.75

0.2

0.43

0.12 0.53

0.05 1.0

0.14 0.52

0.83

0.17 0.08 0.54

0.82

0.67

0.16 0.2 0.16 0.15 0.13 0.42
**

0.13 0.65

0.72

0.69

0.75

0.97

0.14 1.0

0.79

0.1 0.24 0.91

0.56

0.38
**

0.01 0.8

0.34
*

0.8

0.98

0.76

0.72

0.73

0.29
*

0.48

0.73

0.98

0.74

0.52

0.79

1.0

0.14 0.32
*

0.7

0.87

0.03 0.44

0.58

0.42
**

0.58

0.82

0.57

0.48

0.74

0.77

0.65

0.27
*

0.18 0.22 0.83

0.1 0.14 1.0

0.0 0.38
**

0.15 0.77

0.49

0.08 0.02 0.08 0.14 0.42
**

0.65

0.25 0.35
**

0.18 0.51

0.35
**

0.35
**

0.17 0.24 0.32
*

0.0 1.0

0.15 0.25 0.08 0.45

0.01 0.98

0.01 0.34
*

0.52

0.2 0.49

0.14

0.82

0.65

0.62

0.93

0.08 0.91

0.7

0.38
**

0.15 1.0

0.5

0.56

0.14 0.74

0.27
*

0.74

0.91

0.75

0.83

0.67

0.19

0.33
*

0.62

0.86

0.52

0.54

0.56

0.87

0.15 0.25 0.5

1.0

0.17 0.51

0.33
*

0.32
*

0.33
*

0.59

0.39
**

0.33
*

0.6

0.86

0.76

0.21 0.07 0.45

0.82

0.38
**

0.03 0.77

0.08 0.56

0.17 1.0

0.61

0.32
*

0.04 0.32
*

0.37
**

0.45

0.75

0.22 0.4
**

0.3
*

0.13 0.49

0.03 0.67

0.01 0.44

0.49

0.45

0.14 0.51

0.61

1.0

0.07 0.43
**

0.07 0.06 0.13 0.3
*

0.12 0.62

0.49

0.26 0.52

0.74

0.16 0.8

0.58

0.08 0.01 0.74

0.33
*

0.32
*

0.07 1.0

0.13 1.0

0.75

0.37
**

0.49

0.31
*

0.13

0.26 0.57

0.44

0.44

0.2 0.34
*

0.42
**

0.02 0.98

0.27
*

0.32
*

0.04 0.43
**

0.13 1.0

0.13 0.44

0.59

0.28
*

0.56

0.2

0.49

0.26 0.52

0.74

0.16 0.8

0.58

0.08 0.01 0.74

0.33
*

0.32
*

0.07 1.0

0.13 1.0

0.75

0.37
**

0.49

0.31
*

0.13

0.7

0.74

0.78

0.99

0.15 0.98

0.82

0.14 0.34
*

0.91

0.59

0.37
**

0.06 0.75

0.44

0.75

1.0

0.79

0.71

0.76

0.31
*

0.79

0.89

0.54

0.83

0.13 0.76

0.57

0.42
**

0.52

0.75

0.39
**

0.45

0.13 0.37
**

0.59

0.37
**

0.79

1.0

0.8

0.9

0.11

1.0

0.67

0.44

0.76

0.42
**

0.72

0.48

0.65

0.2 0.83

0.33
*

0.75

0.3
*

0.49

0.28
*

0.49

0.71

0.8

1.0

0.67

0.07

0.66

0.99

0.73

0.75

0.13 0.73

0.74

0.25 0.49

0.67

0.6

0.22 0.12 0.31
*

0.56

0.31
*

0.76

0.9

0.67

1.0

0.44

0.07 0.45

0.79

0.2 0.65

0.29
*

0.77

0.35
**

0.14 0.19 0.86

0.4
**

0.62

0.13 0.2 0.13 0.31
*

0.11 0.07 0.44

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.2: Pair-wise Spearman correlation absolute values of graph structure
metrics on private datasets. Asterisks represent the statistical significance level
at 1% (***), 5% (**) and 10% (*).

m
od

_p
os

iti
vi

ty

cli
qu

e

ex
pa

ns
io

n tp fp 00

po
s_

do
m

ai
ns

ne
g_

do
m

ai
ns

no
de

s

m
od

_n
od

es

bi
p_

ed
ge

s

se
ed

_e
dg

es tn fn

pr
ec

isi
on

re
ca

ll fp
r

pr
ev

al
en

ce np
v

cla
ss

_h
om

op
hi

ly

cla
ss

_r
at

io

num_iocs

0.0

0.5

1.0

Figure A.3: Spearman correlation absolute values of graph structure metrics to
performance metric of number of IoCs on private datasets.

79

A. Additional Material

as
so

rta
tiv

ity

cla
ss

_h
om

op
hi

ly

cla
ss

_r
at

io

cm
_f

n

cm
_f

p

cm
_t

n

cm
_t

p

co
nd

uc
ta

nc
e

co
s_

sim
ila

rit
y

de
gr

ee
_a

vg

de
gr

ee
_p

os
_a

vg

ed
ge

_0
0

ed
ge

s

fe
at

_d
ist

_0
0

fe
at

_d
ist

_0
1

fe
at

_d
ist

_1
0

fe
at

_d
ist

_1
1 fp
r

ho
m

op
hi

ly
_a

ttr

ho
m

op
hi

ly
_e

dg
e

ho
m

op
hi

ly
_n

od
e

no
de

s

np
v

nu
m

_c
om

po
ne

nt
s

nu
m

_n
eg

at
iv

e

nu
m

_p
os

iti
ve

po
s_

no
de

_r
at

io
_1

po
s_

no
de

_r
at

io
_2

po
s_

no
de

_r
at

io
_3

pr
ec

isi
on

pr
ev

al
en

ce

re
ca

ll

assortativity

class_homophily

class_ratio

cm_fn

cm_fp

cm_tn

cm_tp

conductance

cos_similarity

degree_avg

degree_pos_avg

edge_00

edges

feat_dist_00

feat_dist_01

feat_dist_10

feat_dist_11

fpr

homophily_attr

homophily_edge

homophily_node

nodes

npv

num_components

num_negative

num_positive

pos_node_ratio_1

pos_node_ratio_2

pos_node_ratio_3

precision

prevalence

recall

1.0

0.2

0.17

0.46

0.31

0.72

0.2

0.21

0.64

0.11

0.19

0.46

0.5

0.67

0.67

0.67

0.67

0.82

0.08

0.23

0.16

0.79

0.15

0.48

0.72

0.45

0.38

0.37

0.33

0.15

0.16

0.73

0.2

1.0

0.2

0.01 0.14

0.01 0.25

0.89

0.08

0.23

0.09

0.4

0.27

0.13

0.1

0.13

0.13

0.01 0.06

0.05

0.09

0.22

0.19

0.34

0.36

0.01 0.02
*

0.04

0.06

0.94

0.2

0.25

0.17

0.2

1.0

0.72

0.7

0.4

0.81

0.37

0.05

0.08

0.39

0.36

0.12

0.15

0.05

0.2

0.23

0.24

0.53

0.94

0.98

0.41

1.0

0.08

0.65

0.73

0.33

0.35

0.35

0.38

1.0

0.36

0.46

0.01 0.72

1.0

0.93

0.89

0.9

0.1

0.5

0.39

0.34

0.18

0.44

0.33

0.4

0.28

0.25

0.35

0.41

0.6

0.73

0.24

0.73

0.58

0.02
*

1.0

0.13

0.15

0.18

0.17

0.72

0.8

0.31

0.14

0.7

0.93

1.0

0.78

0.89

0.05

0.52

0.6

0.61

0.3

0.54

0.27

0.3

0.2

0.18

0.14

0.41

0.63

0.75

0.17

0.7

0.67

0.04

0.93

0.35

0.38

0.41

0.0 0.7

0.64

0.72

0.01 0.4

0.89

0.78

1.0

0.72

0.01 0.73

0.43

0.2

0.41

0.64

0.45

0.53

0.43

0.4

0.64

0.3

0.27

0.41

0.61

0.41

0.67

0.36

0.89

0.03

0.01 0.02
*

0.08

0.4

0.86

0.2

0.25

0.81

0.9

0.89

0.72

1.0

0.35

0.42

0.41

0.52

0.06

0.33

0.21

0.24

0.14

0.12

0.08

0.4

0.69

0.81

0.0 0.81

0.45

0.25

0.9

0.31

0.34

0.36

0.41

0.81

0.49

0.21

0.89

0.37

0.1

0.05

0.01 0.35

1.0

0.12

0.31

0.03

0.52

0.41

0.15

0.13

0.16

0.15

0.15

0.16

0.25

0.27

0.39

0.36

0.4

0.52

0.1

0.02
**

0.02
**

0.01 0.95

0.37

0.2

0.64

0.08

0.05

0.5

0.52

0.73

0.42

0.12

1.0

0.58

0.32

0.67

0.77

0.46

0.4

0.41

0.41

0.49

0.11

0.12

0.01 0.66

0.05

0.71

0.59

0.5

0.1

0.1

0.15

0.06

0.05

0.47

0.11

0.23

0.08

0.39

0.6

0.43

0.41

0.31

0.58

1.0

0.53

0.81

0.88

0.22

0.22

0.22

0.22

0.17

0.15

0.03

0.13

0.32

0.08

0.8

0.31

0.4

0.33

0.34

0.37

0.26

0.08

0.18

0.19

0.09

0.39

0.34

0.61

0.2

0.52

0.03

0.32

0.53

1.0

0.18

0.35

0.1

0.22

0.21

0.21

0.45

0.23

0.5

0.46

0.09

0.38

0.34

0.14

0.35

0.84

0.86

0.88

0.06

0.39

0.09

0.46

0.4

0.36

0.18

0.3

0.41

0.06

0.52

0.67

0.81

0.18

1.0

0.92

0.35

0.32

0.4

0.41

0.52

0.09

0.46

0.31

0.66

0.36

0.81

0.76

0.19

0.04

0.03

0.06

0.46

0.36

0.27

0.5

0.27

0.12

0.44

0.54

0.64

0.33

0.41

0.77

0.88

0.35

0.92

1.0

0.41

0.41

0.41

0.41

0.53

0.05

0.22

0.06

0.72

0.11

0.87

0.67

0.44

0.14

0.14

0.18

0.34

0.12

0.43

0.67

0.13

0.15

0.33

0.27

0.45

0.21

0.15

0.46

0.22

0.1

0.35

0.41

1.0

0.84

0.71

0.71

0.55

0.29

0.2

0.14

0.52

0.13

0.48

0.45

0.32

0.38

0.37

0.33

0.09

0.14

0.44

0.67

0.1

0.05

0.4

0.3

0.53

0.24

0.13

0.4

0.22

0.22

0.32

0.41

0.84

1.0

0.88

0.85

0.64

0.21

0.15

0.05

0.52

0.04

0.48

0.39

0.4

0.51

0.5

0.48

0.06

0.05

0.57

0.67

0.13

0.2

0.28

0.2

0.43

0.14

0.16

0.41

0.22

0.21

0.4

0.41

0.71

0.88

1.0

0.99

0.63

0.34

0.28

0.19

0.52

0.18

0.48

0.47

0.28

0.48

0.48

0.46

0.1

0.19

0.45

0.67

0.13

0.23

0.25

0.18

0.4

0.12

0.15

0.41

0.22

0.21

0.41

0.41

0.71

0.85

0.99

1.0

0.63

0.35

0.32

0.23

0.52

0.22

0.48

0.49

0.25

0.47

0.47

0.44

0.1

0.23

0.41

0.82

0.01 0.24

0.35

0.14

0.64

0.08

0.15

0.49

0.17

0.45

0.52

0.53

0.55

0.64

0.63

0.63

1.0

0.09

0.42

0.27

0.8

0.22

0.51

0.71

0.35

0.55

0.57

0.54

0.04

0.23

0.68

0.08

0.06

0.53

0.41

0.41

0.3

0.4

0.16

0.11

0.15

0.23

0.09

0.05

0.29

0.21

0.34

0.35

0.09

1.0

0.47

0.54

0.18

0.53

0.05

0.31

0.42

0.22

0.24

0.26

0.15

0.53

0.27

0.23

0.05

0.94

0.6

0.63

0.27

0.69

0.25

0.12

0.03

0.5

0.46

0.22

0.2

0.15

0.28

0.32

0.42

0.47

1.0

0.95

0.45

0.93

0.02
**

0.66

0.6

0.43

0.47

0.47

0.22

0.94

0.25

0.16

0.09

0.98

0.73

0.75

0.41

0.81

0.27

0.01 0.13

0.46

0.31

0.06

0.14

0.05

0.19

0.23

0.27

0.54

0.95

1.0

0.39

0.98

0.13

0.61

0.73

0.37

0.41

0.4

0.27

0.98

0.37

0.79

0.22

0.41

0.24

0.17

0.61

0.0 0.39

0.66

0.32

0.09

0.66

0.72

0.52

0.52

0.52

0.52

0.8

0.18

0.45

0.39

1.0

0.39

0.57

0.92

0.24

0.21

0.22

0.19

0.33

0.4

0.54

0.15

0.19

1.0

0.73

0.7

0.41

0.81

0.36

0.05

0.08

0.38

0.36

0.11

0.13

0.04

0.18

0.22

0.22

0.53

0.93

0.98

0.39

1.0

0.08

0.64

0.74

0.32

0.34

0.34

0.37

1.0

0.38

0.48

0.34

0.08

0.58

0.67

0.67

0.45

0.4

0.71

0.8

0.34

0.81

0.87

0.48

0.48

0.48

0.48

0.51

0.05

0.02
**

0.13

0.57

0.08

1.0

0.52

0.58

0.12

0.12

0.16

0.32

0.08

0.54

0.72

0.36

0.65

0.02
*

0.04

0.36

0.25

0.52

0.59

0.31

0.14

0.76

0.67

0.45

0.39

0.47

0.49

0.71

0.31

0.66

0.61

0.92

0.64

0.52

1.0

0.02
**

0.21

0.22

0.2

0.48

0.65

0.33

0.45

0.01 0.73

1.0

0.93

0.89

0.9

0.1

0.5

0.4

0.35

0.19

0.44

0.32

0.4

0.28

0.25

0.35

0.42

0.6

0.73

0.24

0.74

0.58

0.02
**

1.0

0.13

0.16

0.18

0.17

0.73

0.79

0.38

0.02
*

0.33

0.13

0.35

0.03

0.31

0.02
**

0.1

0.33

0.84

0.04

0.14

0.38

0.51

0.48

0.47

0.55

0.22

0.43

0.37

0.21

0.32

0.12

0.21

0.13

1.0

0.98

0.97

0.03

0.33

0.27

0.37

0.04

0.35

0.15

0.38

0.01 0.34

0.02
**

0.1

0.34

0.86

0.03

0.14

0.37

0.5

0.48

0.47

0.57

0.24

0.47

0.41

0.22

0.34

0.12

0.22

0.16

0.98

1.0

0.99

0.04

0.35

0.25

0.33

0.06

0.35

0.18

0.41

0.02
*

0.36

0.01 0.15

0.37

0.88

0.06

0.18

0.33

0.48

0.46

0.44

0.54

0.26

0.47

0.4

0.19

0.34

0.16

0.2

0.18

0.97

0.99

1.0

0.05

0.35

0.23

0.15

0.94

0.38

0.17

0.0 0.08

0.41

0.95

0.06

0.26

0.06

0.46

0.34

0.09

0.06

0.1

0.1

0.04

0.15

0.22

0.27

0.33

0.37

0.32

0.48

0.17

0.03

0.04

0.05

1.0

0.38

0.13

0.16

0.2

1.0

0.72

0.7

0.4

0.81

0.37

0.05

0.08

0.39

0.36

0.12

0.14

0.05

0.19

0.23

0.23

0.53

0.94

0.98

0.4

1.0

0.08

0.65

0.73

0.33

0.35

0.35

0.38

1.0

0.36

0.73

0.25

0.36

0.8

0.64

0.86

0.49

0.2

0.47

0.18

0.09

0.27

0.43

0.44

0.57

0.45

0.41

0.68

0.27

0.25

0.37

0.54

0.38

0.54

0.33

0.79

0.27

0.25

0.23

0.13

0.36

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.4: Pair-wise Spearman correlation absolute values of graph structure
metrics on public datasets. Asterisks represent the statistical significance level
at 1% (***), 5% (**) and 10% (*).

ed
ge

_0
0

nu
m

_p
os

iti
ve

nu
m

_n
eg

at
iv

e

co
nd

uc
ta

nc
e

nu
m

_c
om

po
ne

nt
s

no
de

s

ed
ge

s

as
so

rta
tiv

ity

ho
m

op
hi

ly
_a

ttr

co
s_

sim
ila

rit
y

po
s_

no
de

_r
at

io
_1

po
s_

no
de

_r
at

io
_2

po
s_

no
de

_r
at

io
_3

fe
at

_d
ist

_0
0

fe
at

_d
ist

_1
0

fe
at

_d
ist

_1
1

fe
at

_d
ist

_0
1

de
gr

ee
_a

vg

de
gr

ee
_p

os
_a

vg

ho
m

op
hi

ly
_e

dg
e

ho
m

op
hi

ly
_n

od
e

cm
_t

p

cm
_f

p

cm
_t

n

cm
_f

n

pr
ec

isi
on

re
ca

ll fp
r

pr
ev

al
en

ce np
v

cla
ss

_h
om

op
hi

ly

cla
ss

_r
at

io

prec@k

f1
0.0

0.5

1.0

Figure A.5: Spearman correlation absolute values of graph structure metrics to
performance metric of number of IoCs on public datasets.

80

................................... A.2. SHAP Bar Plots

A.2 SHAP Bar Plots

81

A. Additional Material

0 5 10 15 20 25 30
mean(|SHAP value|)

cm_tp

clique

class_ratio

nodes_mod

nodes_pos

cm_fn

class_homophily

cm_tn

npv

mod_positivity

Sum of 9 other features

cm_tp

clique

class_ratio

nodes_mod

nodes_pos

cm_fn

class_homophily

cm_tn

npv

mod_positivity

Sum of 9 other features

+23.05

+14.1

+12.42

+11.64

+10.81

+7.53

+7.15

+7.12

+6.86

+6.74

+30.93

Figure A.6: SHAP feature importance magnitude plot for time generalization
experiment on private dataset. Model in Figure 6.4

0.00 0.01 0.02 0.03 0.04 0.05
mean(|SHAP value|)

class_ratio

homophily_node

num_negative

homophily_edge

num_layers

aggr

hidden_channels

edge_00

pos_node_ratio_3

num_positive

Sum of 24 other features

class_ratio

homophily_node

num_negative

homophily_edge

num_layers

aggr

hidden_channels

edge_00

pos_node_ratio_3

num_positive

Sum of 24 other features

+0.04

+0.03

+0.02

+0.02

+0.02

+0.01

+0.01

+0.01

+0.01

+0.01

+0.05

Figure A.7: SHAP feature importance magnitude plot for prec@k random split
generalization experiment on public dataset. Model in Figure 6.9

82

................................... A.2. SHAP Bar Plots

0.00 0.02 0.04 0.06 0.08 0.10
mean(|SHAP value|)

aggr

num_layers

feat_dist_11

fpr

hidden_channels

activation

degree_pos_avg

dropout

feat_dist_10

recall

Sum of 25 other features

aggr

num_layers

feat_dist_11

fpr

hidden_channels

activation

degree_pos_avg

dropout

feat_dist_10

recall

Sum of 25 other features

+0.1

+0.05

+0.02

+0.02

+0.02

+0.01

+0.01

+0.01

+0.01

+0.01

+0.05

Figure A.8: SHAP feature importance magnitude plot for prec@k hyperparame-
ter search experiment on Flickr dataset. Model in Figure 6.13

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
mean(|SHAP value|)

edge_00

aggr

num_negative

num_layers

hidden_channels

conductance

class_ratio

activation

precision

dropout

Sum of 24 other features

edge_00

aggr

num_negative

num_layers

hidden_channels

conductance

class_ratio

activation

precision

dropout

Sum of 24 other features

+0.05

+0.04

+0.04

+0.03

+0.03

+0.02

+0.02

+0.01

+0.01

+0.01

+0.07

Figure A.9: SHAP feature importance magnitude plot for F1 score random split
generalization experiment on public dataset. Model in Figure 6.17

83

A. Additional Material
A.3 Implementation Details

Algorithms in this work were implemented mainly using the PyTorch [57] and
PyTorch Geometric [54] frameworks. Other libraries used include NumPy
[55], Pandas [56], OGB [45] and scikit-learn [58].

Code for the public dataset evaluation is provided with this work along with
the precomputed Jupyter notebook containing all the results. For the private
dataset part, only the precomputed Jupyter notebook can be provided.

84

	Introduction
	Motivation
	Contribution
	Method
	Outline

	Related work
	Graph structure and feature engineering
	Machine Learning on Graphs
	Cybersecurity
	Interpretability

	Theoretical Background
	Data Representation Using Graphs
	Graph Theory
	Multipartite Graphs
	Relation Types

	Tasks on Graph
	Node Classification
	Information Retrieval

	Algorithmic Foundations and Theoretical Framework
	Machine Learning Graph Algorithms
	Graph Neural Networks

	Regression Algorithms
	Decision Trees
	Random Forests

	Model Interpretation
	Shapley Value
	SHAP

	Datasets, Algorithms and Graph Features
	Formal Problem Description
	Datasets
	Public Datasets
	Adapting Public Datasets for Retrieval Task
	Private Datasets

	Specific Machine Learning Graph Algorithms
	GraphSAGE
	Risk Map Graph

	Graph Features
	Unipartite Graph Features
	Bipartite Graph Features
	Common Graph Features

	Datapoint Construction

	Experimental Evaluation
	Network Telemetry IoC Retrieval
	Metric Correlation
	Cross Modality Validation
	Generalization in Time

	Node Retrieval on Public Datasets
	Graph Feature Correlation
	Plausability Validation
	Random Split
	Model Generalization Across Datasets
	Hyperparameter Search
	F1 score

	Experiment's Conclusion

	Conclusion
	Discussion
	Limitations & Future Work
	Conclusion

	Bibliography
	Additional Material
	Correlation Plots
	SHAP Bar Plots
	Implementation Details

