
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Deep learning for computational chemistry
with differentiable background knowledge

Emir Hodžić

Supervisor: Ing. Gustav Šír, Ph.D.
Field of study: Artificial Intelligence
Study program: Open Informatics
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

510705 Personal ID number: Hodžić Emir Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Deep learning for computational chemistry with differentiable background knowledge

Master’s thesis title in Czech:

Hluboké učení pro výpočetní chemii s diferencovatelnou doménovou znalostí

Guidelines:

The subject of this master's thesis is to develop deep learning architectures for generic molecular prediction tasks.
Particularly, the student is expected to extend the modern Graph Neural Network principles [1], which constitute the current
state-of-the-art, with various background knowledge from the domain of chemistry. An existing framework for differentiable
logic programming [2], allowing to use expressive relational logic for encoding both complex domain knowledge and neural
models, should be utilized for the task. The student is expected to:
1) Review the domain of computational chemistry [3], existing frameworks, and state-of-the-art over various molecular
datasets.
2) Review the principles of Graph Neural Networks [1] and Lifted Relational Neural Networks [2], and get acquainted with
the framework [4].
3) Propose suitable modes of incorporating chemical background knowledge into GNN models. Focus on structural
generalizations of the GNN principles, not just features.
4) Evaluate proposed modeling concepts on common molecular benchmarks.

Bibliography / sources:

[1] Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open 1 (2020): 57-81.
[2] Šourek, Gustav, Filip Železný, and Ondřej Kuželka. "Beyond graph neural networks with lifted relational neural networks."
Machine Learning 110.7 (2021): 1695-1738.
[3] Goh, Garrett B., Nathan O. Hodas, and Abhinav Vishnu. "Deep learning for computational chemistry." Journal of
computational chemistry 38.16 (2017): 1291-1307.
[4] NeuraLogic framework: https://github.com/GustikS/NeuraLogic

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Gustav Šír, Ph.D. Intelligent Data Analysis FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 31.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Gustav Šír, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements

I am eternaly grateful to my parents
for their immeasurable love and support,
alongside my siblings and the rest of my
family, friends and close ones for their
understanding and encouragement.

I am grateful to my mentor for his pa-
tience and willingness to guide me. I am
grateful to everyone and everything that
helped me in my path so far.

Finally, I thank myself for pushing
through and promise to make everyone,
including myself, proud.

Declaration

I hereby declare this thesis was written
solely by myself, and all used literature is
properly cited.

In Prague, 26. May 2023

v

Abstract

This thesis explores the application of
Graph Neural Networks (GNNs) in com-
putational chemistry, aiming to enhance
the accuracy and predictive capabilities
of machine learning models for molecular
properties.

The study investigates state-of-the-art
GNN architectures and proposes novel im-
plementations leveraging relational learn-
ing techniques. By integrating domain-
specific chemical rules into the models,
the results indicate improved accuracy
and predictive power on some benchmark
datasets. This knowledge-based approach
taps into the vast potential for refining
and expanding the set of chemistry con-
cepts encoded in relational rules, allow-
ing for a better representation of complex
chemical systems

This thesis contributes to the grow-
ing field of computational chemistry by
demonstrating the effectiveness of GNNs
augmented with a chemistry knowledge
base. The findings offer valuable insights
for researchers and practitioners seeking
to leverage machine learning in the discov-
ery of new molecules and materials, with
the potential for transformative advance-
ments in drug development and chemical
research.

Keywords: chemistry, molecule, deep
learning, background knowledge

Supervisor: Ing. Gustav Šír, Ph.D.

Abstrakt

Tato práce se zabývá použitím grafových
neuronových sítí (GNN) ve výpočetní che-
mii s cílem zvýšit přesnost a predikční
schopnosti modelů strojového učení pro
molekulární data.

Studie zkoumá nejmodernější architek-
tury GNNs a navrhuje nové implemen-
tace využívající techniky relačního učení.
Díky integraci modelů a chemických pra-
videl, specifických pro danou oblast, vý-
sledky ukazují na zvýšenou přesnost a
prediktivní schopnost na některých refe-
renčních souborech dat. Tento přístup za-
ložený na znalostech využívá potenciál
pro zpřesnění a rozšíření souboru chemic-
kých pojmů zakódovaných v relačních pra-
vidlech, což umožňuje lepší reprezentaci
složitých chemických systémů.

Tato práce přispívá k rostoucímu oboru
výpočetní chemie tím, že demonstruje
efektivitu GNN rozšířených o bázi che-
mických znalostí. Zjištění nabízejí cenné
poznatky pro výzkumné pracovníky a od-
borníky z praxe, kteří se snaží využít stro-
jové učení při objevování nových molekul
a materiálů, s potenciálem pro transfor-
mační pokrok ve vývoji léčiv a chemickém
výzkumu.

Klíčová slova: chemie, molekuly,
hluboké učení, postranní znalost

vi

Contents

1 Introduction 1

Part I
Theoretical background

2 Graph Neural Networks 5

2.1 Architecture of GNNs 7

2.1.1 Propagation Modules 7

2.2 Weisfeiler-Lehman algorithm 9

3 Relational learning 11

3.1 First-order Logic 11

3.2 Logic Programming 12

3.3 Rule structure 13

3.4 Architecture representation 14

4 Organic Chemistry 17

4.1 Functional groups 18

4.1.1 Hydrocarbons 18

4.1.2 Oxygen-containing compounds 19

4.1.3 Nitrogen-containing
compounds 21

4.1.4 Sulfur-containing compounds 23

Part II
Literature Review

5 Datasets 27

6 State-of-the-art models 29

6.1 Standard Graph Neural Networks 29

6.2 Relational Graph Convolutional
Networks . 30

6.3 Higher-order Graph Neural
Networks . 32

6.4 Ego-Graph Neural Networks . . . 34

6.5 Diffusion Convolutional Neural
Networks . 35

6.6 Cellular Weisfeiler-Lehman
Networks . 36

6.7 Subgraph Networks 37

Part III
Implementation

7 NeuraLogic framework 41

vii

7.1 Syntax . 41

7.2 Computational graphs 42

8 Dataset preprocessing 45

9 Subgraph patterns 47

9.1 Basic patterns 47

9.2 Y-shaped patterns 48

9.3 Neighborhood patterns 49

9.4 Cyclic patterns 50

9.5 Collective patterns 51

Part IV
Testing and results

10 Testing pipeline 55

11 Results 57

12 Discussion 67

13 Conclusion 71

Appendices

A Bibliography 75

B Model implementation 79

B.1 Standard Graph Neural Networks 79

B.2 Relational Graph Convolutional
Networks . 80

B.3 Higher-order Graph Neural
Networks . 80

B.4 Ego Graph Neural Networks . . . 80

B.5 Diffusion Convolutional Neural
Networks . 81

B.6 Cellular Weisfeiler-Lehman
Networks . 81

B.7 Subgraph Networks 82

C Chemical patterns 85

C.1 General patterns 85

C.2 Hydrocarbons 86

C.3 Oxygen-containing compounds . 87

C.4 Nitrogen-containing compounds 88

C.5 Sulfur-containing compounds . . 91

C.6 Relaxations 91

D Result details 95

viii

Figures

2.1 General model architecture, as well
as the design pipeline in steps (image
taken from [42]). 7

2.2 A simple example of
non-isomorphic graphs that cannot
be distinguished by WL algorithm.
[20] [27] . 9

2.3 An example of two distinct
molecules, decalin and bicyclopentyl,
which cannot be distinguished by
1-WL [27]. 9

3.1 Simple template grounding on two
examples. This figure is taken from
[32]. 15

4.1 Alkene and alkyne bonds
respectively. 19

4.2 Benzene (phenyl) group, and
pyridine, an example of
heterocycles. 19

4.3 Alcohol (hydroxyl) group. 20

4.4 Aldehydes, ketones and acyl
halides. 20

4.5 Carboxylic acids and their
anhydrides. 20

4.6 Ethers, esters and carbonate
esters. 21

4.7 Primary, secondary, tertiary amines
and quaternary ammonium ions. . . 21

4.8 Amides, carbamates, imines and
imides. 22

4.9 Azides, azo compounds (nitrogen
bridge), cyanates and isocyanates. 22

4.10 Nitro and nitrate group. 22

4.11 Azidrine. 23

4.12 Thiocyanates and
isothiocyanates. 23

4.13 Thiols, sulfides and disulfides. . 23

6.1 Message passing in standard GNNs.
The colors are representing node
features, and how they propagate
throughout the graph. Each color in
the next layer is composed of a
combination (in this case the average)
of the colors in the previous layer.
Which colors are used for the
computation is denoted by the
colored arrows. 31

6.2 Message passing in an RGCNs
layer. The different edge types,
drawn by full and dashed lines,
represent different types of relations.
The messages are first passed
between nodes based on relations,
and then aggregated together. 32

6.3 Message passing in a k-GNN layer
and the difference between local and
global variants. 33

ix

6.4 The difference between the
connectivity in a local and global
2-GNN, constructed from the same
original graph. 34

6.5 Message passing in an ego-GNN
layer. The messages are passed inside
of the ego-graph and then passed
between them. 35

6.6 Message passing in a DCNN layer.
This is a representation of how
messages from one node (center node
in this example) gets transmitted to
others. 36

6.7 Message passing in an CW-net
layer. There are two types of
messages, the "top-down" messages
are passed between the cells which
are a part of the same
higher-dimensional cell, while
"bottom-up" messages pass
information from lower to higher
dimensional cells. In the original
paper these messages were called
"upper" and "boundary" messages
respectively. 37

6.8 Message passing in an SGN layer.
The process of constructing an first-
and second-order SGN is shown. The
first-order SGN is constructed by
creating new nodes from edges in the
original graph, and merging their
node representations. Then a
second-order SGN is constructed
analogously from the first-order
SGN. 38

7.1 Template for the given model. . . 43

7.2 Computational graph for the given
example. The node types as shown in
Table 7.1 are visible. 44

8.1 Ethylene molecule. 45

9.1 The most common ring sizes in
organic chemistry are 3, 5, 6 atoms,
but often up to 14 or more atoms.
The examples in the bottom row are:
ethylene oxide, cyclobutene,
imidazole and morpholine. All of
them, aside from cyclobutene, are
heterocycles. 48

9.2 The proposed Y shape, as well as
an example of carbonyls and imines. 48

9.3 Glyceraldehyde molecule
enantiomers on the left and their
mirror images on the right. 50

9.4 Cyclobenzadiene and the "brick"
structure. 51

9.5 Benzophenone molecule with the
bridging carbon atom and biphenyl,
which has a shared atom between
rings. 52

11.1 Benchmark performance across
models with and without added
chemical and subgraph rules on
MUTAG dataset. 57

11.2 Benchmark performance across
models with and without added
chemical and subgraph rules on PTC
MR dataset. 59

x

11.3 Benchmark performance across
models with and without added
chemical and subgraph rules on PTC
FR dataset. 60

11.4 Benchmark performance across
models with and without added
chemical and subgraph rules on PTC
FM dataset. 61

11.5 Benchmark performance across
models with and without added
chemical and subgraph rules on PTC
MM dataset. 62

11.6 Highest performing models on
MUTAG dataset. 63

11.7 Highest performing rules on
MUTAG dataset. 64

12.1 Train and test loss on the PTC
MR dataset. 68

12.2 Train and test loss on the
MUTAG dataset. 69

D.1 Train and test loss on the PTC
FR dataset. 96

D.2 Train and test loss on the PTC
FM dataset. 96

D.3 Train and test loss on the PTC
MM dataset. 97

D.4 Highest performing models on
PTC MR dataset. 98

D.5 Highest performing rules on PTC
MR dataset. 99

D.6 Highest performing models on
PTC FR dataset. 100

D.7 Highest performing rules on PTC
FR dataset. 101

D.8 Highest performing models on
PTC FM dataset. 102

D.9 Highest performing rules on PTC
FM dataset. 103

D.10 Highest performing models on
PTC MM dataset. 104

D.11 Highest performing rules on PTC
MM dataset. 105

xi

Tables

2.1 Output structure based on the
type of task, where L is the set of
labels for classification tasks and K is
the number of prediction features. . 6

7.1 Node types in the computational
graph and their logical counterparts. 42

11.1 Best performing rule
combinations on MUTAG dataset. 58

11.2 Table of test loss distribution
details for every model on the
datasets. 65

xii

Chapter 1

Introduction

In recent years, there has been a significant paradigm shift in the types
of data that are being used in machine learning and artificial intelligence
applications. While traditional machine learning models such as linear and
logistic regression are designed to handle tabular data, real-world problems
often involve data that is not easily represented in this format. Graph data,
on the other hand, provides a natural way to represent complex relationships
between entities, making it ideal for handling many real-world problems. In
a graph, data is represented as a set of nodes and edges, where each node
represents an entity and each edge represents a relationship between two
entities. Graphs can capture complex relationships and dependencies between
entities, which is not possible with tabular data.

To tackle this shift, new models are being developed, among which are
Graph Neural Networks. Graph Neural Networks (GNNs) are a class of deep
learning models that are explicitly designed to process data represented as
graphs. They work by representing each node in the graph as a feature vector,
known as the node embedding, and then learning the relationship between
the nodes and edges in the graph. This is achieved by iteratively updating
the node embeddings through a series of layers, where each layer performs
some computation on the node embeddings alongside the edge information.

GNNs have been successfully applied to a wide range of tasks in different
domains of science, including chemistry [13], which is the focus of this thesis.
Computational chemistry is an important branch of chemistry, which uses
computational methods and simulations to study the properties and behavior
of molecules and materials. It plays a vital role in new drug discovery with

1

1. Introduction
software simulations or models that can predict the behavior of potential
drugs and identify new drug candidates. It can also be used to study the
interactions between drugs and their target molecules, which can lead to the
development of new drugs with improved efficacy and safety.

It has already been shown that GNNs can effectively model complex atomic
and intermolecular interactions, making them particularly useful in the field
of computational chemistry. This makes them a powerful tool for predicting
various properties of molecules, simplifying and directing the process of
discovering molecules of interest. Tools such as GNNs serve as a guiding light
in the discovery process, ensuring the scientists’ creativity, focus and time is
directed to more important stages following the discovery, which cannot yet
be enhanced with machine learning methods and artificial intelligence.

However, despite their success, standard GNN models lack an inherent
understanding of common chemical structures, such as rings or specific
arrangements of atoms, which are crucial for accurately capturing molecular
properties. This raises the question of whether the performance of GNNs can
be enhanced by incorporating domain-specific background knowledge that
directs the model to effectively learn and represent these chemical structures.

Integrating domain-specific knowledge has been proven to be an effective
approach for improving model performance in various fields. In the domain of
chemistry, background knowledge offers valuable insights into the structural
and functional aspects of molecules. By leveraging this knowledge, GNNs
can effectively capture relevant chemical features and relationships, leading
to more precise predictions. For example, understanding the significance of
different atom types, bond types, and hybridization states allows for the design
of informative graph representations that reflect the underlying molecular
structure. This, in turn, facilitates the accurate modeling of complex atomic
and intermolecular interactions.

In this thesis, the primary objective is to explore the capabilities of GNNs
in more depth and investigate their potential for improving the accuracy
in predicting the properties of molecules. To achieve this, the thesis will
explore the current state of the art GNNs, and propose new architectures and
implementations using relational learning. The models will also be enriched
with chemical background knowledge to enhance their effectiveness. This
will be done by leveraging a relational learning [24] framework to encode
the explicit chemical structures into differentiable rules, which will guide the
learning process. Finally, the proposed models will be evaluated on various
benchmark datasets for computational chemistry.

2

3

1. Introduction

Part I

Theoretical background

4

Chapter 2

Graph Neural Networks

Graph neural networks (GNNs) are a class of deep learning models that process
data in the form of graphs [25]. Graphs are defined as a pair G = (V, E),
where V is a set of vertices vi ∈ V and E is a set of pairs of vertices
(v1, v2) ∈ E, v1 ̸= v2, called edges [23]. These edges can be directed or
undirected. The neighborhood of a node is a function nbh(n) mapping the
given node n to a set of nodes S, such that there exists an edge (n, u) ∈ E
for each u ∈ S. Only undirected edges will be considered here, which means
that the edge representations (n, u) and (u, n) are equivalent. Then the GNN
model is defined as a parametrized mapping from a graph and an associated
set of node and edge features X to an output structure.

GNNθ : (G,X)→ Y (2.1)

Representing molecules as graphs will be a straightforward mapping from
atoms in molecules to nodes in graphs, as well as from bonds between atoms
to edges in the graph [28]. The rest of the information such as the atom type,
bond type and spatial information can be encoded as node or edge features.

The input for GNNs is always a graph. The information within these
structures are passed along to computation layers or modules, which in turn
produce the output. Depending on the task at hand, the output can take
on different forms. For a regression task, the value might be extracted from
the embedding of the desired node [12], for example in age prediction task in
social networks. Otherwise, the value might be extracted from the desired

5

2. Graph Neural Networks
edge, or even from some combination of different kinds of node and edge
embeddings to create a unified graph embedding [38]. In classification tasks,
the label is extracted analogously and used for classification on node, edge or
graph level. The format of the output structure based on task type is given
in the Table 2.1.

Regression Classification
Node Y ∈ R|V |×K Y ∈ L|V |×K

Edge Y ∈ R|E|×K Y ∈ L|E|×K

Graph Y ∈ R Y ∈ L

Table 2.1: Output structure based on the type of task, where L is the set of
labels for classification tasks and K is the number of prediction features.

In computational chemistry, the most common tasks are molecular property
prediction, molecular scoring and docking, molecular dynamics simulation,
molecular optimization and generation, as well as others [36]. Molecular
property prediction is a graph-level regression or classification task, where
the properties of the whole molecule are induced based on the aggregated
node and edge embeddings.

These tasks follow the empirical risk minimization approach in supervised
learning, and are defined as an optimization over a dataset of N samples
containing triplets of molecular graphs and their respective features and
targets {(G1,X1,Y1), ..., (GN ,XN ,YN)} as in Equation 2.2.[36]

min
θ

N∑
i

l(GNNθ(Gi,Xi,),Yi) (2.2)

where l is the loss function. The loss function depends entirely on the task
at hand, and it can be mean-squared loss for regression tasks, cross entropy
for classification, etc.

6

.................................2.1. Architecture of GNNs

Figure 2.1: General model architecture, as well as the design pipeline in steps
(image taken from [42]).

2.1 Architecture of GNNs

A GNN model is comprised out of GNN layers. These layers, in turn, can
contain a combination of three types of computational modules (Figure 2.1):

. Propagation module - defines how features are propagated between layers. Sampling module - extracts parts of graphs to propagate features from. Pooling module - condenses information from node embeddings

Sampling modules are typically used for large graphs where there is re-
dundant or insignificant information. Since the thesis is focused on imple-
mentations for use in working with molecules, which are typically relatively
small and contain useful information in most nodes, sampling modules will
be skipped. There are various pooling modules available to aggregate the
information. Most used ones are the simple ones such as node-wise max,
average, sum, etc.

2.1.1 Propagation Modules

Propagation modules are a fundamental component of GNNs that define
rules for message passing through a graph. They are distinguished based on

7

2. Graph Neural Networks
the operation used for message propagation, which can be a convolutional
operator, a recurrent operator, or a skip connection.

Convolutional operators in GNNs are inspired by Convolutional Neural
Networks (CNNs) used for image processing, where a set of kernels or filters
is used to propagate features [6]. With convolutional operators, weights are
assigned to each node’s embedding and updated based on the embeddings of
neighboring nodes. These GNNs are then abstractions of CNNs, where an
image is a graph represented in a rectangular grid of nodes, connected only
to its immediate neighbors.

Convolutional operations can be understood and performed using two
approaches: spatial and spectral [41]. In the spectral approach, graphs are
considered as signals, and operations are done on the eigenvectors of the
graph Laplacian matrix. These signals are transformed into the spectral
domain using Fourier transform, and convoluted to learn the features. In
the spatial approach, on the other hand, operations are done directly on
the graph structure, and convolutions are defined based on topology. The
challenge with spectral convolutions is defining the convolution on different-
sized neighborhoods and maintaining local invariance of CNNs. However, this
is easier to achieve using the spatial approach, which is why it will be the
focus of this thesis.

Recurrent operators are another type of propagation module used in
GNNs to capture long-range dependencies in the graph. In a recurrent
operator, the hidden state of a node is updated based on its previous hidden
state and the hidden states of its neighboring nodes. This allows the GNN to
model the temporal evolution of a graph and capture complex interactions
between nodes over time. The depth of message passing can be considered as
propagation through time for some models.

Skip connections are used to improve the performance of deep GNNs
by allowing the model to retain and propagate the original node features,
instead of relying solely on the aggregated output. Using a skip connection,
the output of a layer is enriched with its own input, and then it is forwarded
to the next layer, allowing important information to be passed more easily
to deeper layers and reinforced before it gets diffused into noise. This helps
prevent information loss and enables the GNN to capture more complex
features of the graph.

8

.............................. 2.2. Weisfeiler-Lehman algorithm

2.2 Weisfeiler-Lehman algorithm

The Weisfeiler-Lehman (WL) algorithm is a graph isomorphism test that
is used to compare and distinguish graphs [9]. It utilizes color refinement
by assigning a state or color to each node, which is then refined in each
iteration by incorporating information from the neighboring nodes’ states.
The refinement process stabilizes after a few iterations and produces a graph
representation. If two graphs have different representations, they are not
isomorphic. While the test can accurately distinguish between a large set of
graphs, there are certain cases where it fails [17] (Figure 2.2).

The Weisfeiler-Lehman algorithm is a crucial component in various Graph
Neural Network (GNN) architectures and has proven to be a powerful tool for
analyzing the expressive capabilities of GNNs. An extension of this algorithm
involves maintaining the state not only of individual nodes but also of k-tuples
of nodes. These algorithms are called k-dimensional Weisfeiler-Lehman or
k-WL test. The k-WL test can then serve as a benchmark for characterizing
the expressive power of algorithms including GNNs.

Figure 2.2: A simple example of non-isomorphic graphs that cannot be distin-
guished by WL algorithm. [20] [27]

GNNs are shown to be as expressive as 1-WL [39], meaning they are
unable to distinguish between the mentioned graphs. This presents an
issue in computational chemistry, as there are many molecules which are
indistinguishable by 1-WL algorithm. An example can be seen in Figure 2.3.

Figure 2.3: An example of two distinct molecules, decalin and bicyclopentyl,
which cannot be distinguished by 1-WL [27].

9

10

Chapter 3

Relational learning

Relational learning is a machine learning paradigm that focuses on modeling
and reasoning about relationships between entities [22]. This approach
has some significant advantages, such as the ability to naturally represent
complex data in a form which is easily understandable [10]. There has already
been some successful attempts to combine machine learning on graphs with
relational data [8], including the framework used in this thesis.

The learning framework that will be used is based on the Lifted Relational
Neural Networks (LRNNs)[32]. The idea is to use differentiable logic programs
for encoding relationships among the data, lifting them into a higher level of
abstraction. LRNNs use a set of relational reasoning layers to process the
graph data. Each relational reasoning layer is composed of a set of relational
modules, which are used to update the node representations based on the
relations between the nodes. Each relational module is a neural network layer
that is applied to a set of nodes and edges, and it is designed to learn the
relations between the nodes and edges in the graph.

3.1 First-order Logic

First-order logic is used as the representation formalism for LRNNs. The
description of first-order logic considered in this thesis will be identical to the
one in [31]. This means that the function-free first-order logic is used, with
formulas defined on a set of constants, a set of variables and a set of n-ary

11

3. Relational learning
predicates, as well as propositional connectives ∨, ∧ and ¬ [30]. All formulas
and variables will be implicitly universally quantified, without the quantifiers
being written. Constants are written lowercase, while variables are written
capitalized.

Terms are constants or variables, atoms are n-ary predicates applied to
terms, and ground atoms have only constants as arguments. A literal is either
an atom or the negation of an atom, while a clause is a disjunction of literals.
A definite clause is a clause with exactly one positive literal, also called a
rule. A clause consisting of a single atom is also called a fact, and a set of
definite clauses is called a logic program.

The positive literal in a rule is called the head of the rule, while the rest are
called the body. It is written as h∨¬b1∨ ...∨¬bn, but can also be represented
by an implication instead:

h← b1 ∧ ... ∧ bn

The set of first-order formulas P has a Herbrand base, which consists of
all ground atoms that can be formed using the constants and predicates in
P, while respecting predicate arities. A Herbrand interpretation, assigns a
truth value to each ground atom in P’s Herbrand base [34]. It is said that a
Herbrand interpretation I satisfies a ground atom F , written as I |= F , if
F ∈ I. A set of ground formulas is satisfiable if there exists a Herbrand model
in which all formulas from the set are true. The unique Herbrand model that
is minimal with respect to the subset relation is the least Herbrand model of
the set of definite clauses.

3.2 Logic Programming

Logic programming is a programming paradigm that uses logic programs to
perform computation in a declarative manner. In this paradigm, definite
clauses express facts and rules related to a specific domain, and logical
inference is used to perform computation. The rules in the program are
expressed as h :- b1, ..., bk, where each "," represents a conjunction,
and ":-" is used in place of the implication operator. Facts are simply rules
without a body.

Logic programs are a type of computer programs that are written using
formal logic, first-order logic in this case. In a logic program, a set of facts and

12

.................................... 3.3. Rule structure

rules that represent the problem are specified, and these facts and rules are
used to automatically deduce a solution. The facts and rules are represented
in a declarative manner. The main advantage of logic programming is that
it allows for natural and expressive representation of knowledge, making it
easier for humans to understand and reason about the problem.

The advantage of this framework is that the relations and rules are weighted,
and therefore the impact of such constructs can be learned with gradient
descent, as the functions represented by these rules become differentiable.
This, in turn, allows the expression of chemical structures, as well as different
kinds of GNN architectures, under a simple and unified representation.

3.3 Rule structure

The syntax is inspired by Datalog, with the addition of numerical parameters.
Datalog is a restricted, function-free subset of Prolog [3] that is a domain-
specific language used in advanced deductive database engines. Unlike Prolog,
Datalog [33] is a truly declarative language, where the order of clauses does
not impact execution, and it is guaranteed to terminate. Datalog allows for
the creation of general and reusable programming patterns, which can be
bound to different ground data structures via variable substitution, which is
then key to extending it towards differentiable programming [32].

For that purpose, instead of being pure binary identities, the logical literals
have an associated tensor of weights. The learning examples are sets of
weighted ground facts in the following form:

V :: p(c1, ..., c2)

where V is a real-valued tensor, p is a predicate and ci’s are constants. The
rules are then defined as follows:

W :: h(...) : −W1 : b1(...), ..., Wk : bk(...).

where W ’s are tensors of associated weights, h and b’s are predicates. These
rules are composed into a logic program, called templates in this framework.

13

3. Relational learning
3.4 Architecture representation

The inputs to the models defined by the rules are examples, which are logic
representations of graphs. They are composed of rules which define the given
graph, for example a water molecule might be encoded as follows, where
the predicate a represents the atom embedding and predicate b represents a
bond:
a(o1), a(h1), a(h2), b(o1, h1), b(o1, h2),
b(h1, o1), b(h2, o1).

The sets of rules defining a weighted logic program are referred to as
templates, and they correspond to a mode of computation related to a model
architecture. From these templates, computational graphs are constructed for
each example, as explained in Section 7.2. An example of a simple template,
as well as the constructed computational graph on two examples are given in
Figure 3.1.

The framework requires a goal query to be defined, which means that
all predicates necessary for computing the answer have to imply the goal
predicate. Similar to queries in databases, queries in logical programming are
atoms which drive the computation to a specific target, finding which model
of the logic program satisfies the query. This is used as a final computation
of the classification labels or regression targets associated with an example
for supervised learning for all examples in the dataset.

14

.............................. 3.4. Architecture representation

Fi
gu

re
3.

1:
Si

m
pl

e
te

m
pl

at
e

gr
ou

nd
in

g
on

tw
o

ex
am

pl
es

.
T

hi
s

fig
ur

e
is

ta
ke

n
fr

om
[3

2]
.

15

16

Chapter 4

Organic Chemistry

Organic chemistry is the study of carbon-containing compounds, which are
structures that form the backbone of most biological molecules [4]. Carbon
has the unique ability to form stable covalent bonds with other atoms,
including other carbon atoms, giving rise to a nearly infinite number of
possible molecules with different shapes and chemical properties. This ability
of carbon is due to its electron configuration. Carbon has four valence
electrons, which means it can form up to four covalent bonds with the
neighboring atoms.

Molecules are three-dimensional structures with diverse geometries, which
have to be simplified for two-dimensional representation. In illustrations, the
atoms are represented by their abbreviation, and the bonds are depicted as
different kinds of lines between them. One important thing to notice is that
hydrogen atoms are mostly left out of the illustration completely, and carbon
chains are reduced to a pattern of connected edges, where each connection
point infers a carbon atom, connected to as much hydrogen atoms as needed
to ensure a stable valence shell. Both forms of illustration will be used,
depending on the example. The remainder of the organic molecule is denoted
as R, which is usually a carbon atom connected to any other combination of
atoms and groups, but also can be a hydrogen atom in some cases.

17

4. Organic Chemistry
4.1 Functional groups

In organic chemistry, molecules have a distinct classification, based on the
molecular substructures called functional groups, which are strictly defined
by the specific arrangement and types of atoms, as well as the bonds be-
tween them. These groups determine the molecule’s chemical reactivity and
properties [35].

The presence of a specific functional group defines which reactions a
molecule can participate in, as well as other physical and chemical prop-
erties, such as solubility, boiling point, acidity, etc. For example, an alcohol
functional group (-OH) can form hydrogen bonds with water molecules, mak-
ing alcohols soluble in water. In contrast, molecules with non-polar functional
groups, such as hydrocarbons, are typically insoluble in water and more
soluble in organic solvents.

This is due to a property of molecules called polarity, and it happens
because the functional groups consist of atoms which are mostly different
from the base part of the molecule, and different atoms infer differences in
the overall distribution of electric charge in the molecule. The ability of an
atom to attract electrons in a chemical bond is called electronegativity. In
a polar covalent bond, the electrons are shared unequally between the two
atoms, with the more electronegative atom attracting the electrons closer
to itself. This creates a partial negative charge on the more electronegative
atom and a partial positive charge on the other atom.

4.1.1 Hydrocarbons

Hydrocarbons are a class of organic molecules comprised solely of carbon and
hydrogen atoms. They are the most essential forms of organic compounds,
serving as scaffolding for formation of other classes of organic compounds.
Hydrocarbons are mostly stable, but are susceptible to substitution and
addition reactions [5]. Aliphatic hydrocarbons typically consist of straight or
branched chains of carbon atoms and can be further divided into three groups:
alkanes, alkenes, and alkynes. Alkanes have single covalent bonds between
their carbon atoms, while alkenes and alkynes have at least one double or
triple bond, respectively. Their structure is shown in Figure 4.1. All of the
mentioned types can also be cyclic.

18

.................................. 4.1. Functional groups

C

R1

R2

C

R3

R4

CR1 C R2

Figure 4.1: Alkene and alkyne bonds respectively.

Cyclic hydrocarbons are another important type of hydrocarbons which can
be aliphatic or aromatic. Aliphatic cyclic hydrocarbons, are hydrocarbons that
contain a ring of carbon atoms with aliphatic bonds between them. Aromatic
hydrocarbons, on the other hand, are a unique class of cyclic hydrocarbons
that contain at least one aromatic ring in their structure. Aromaticity is a
fairly complicated property, which makes these compounds much more stable
than similar structures [19]. It is defined as having all bonds in resonance,
which means that the electrons forming bonds are delocalized between the
atoms. An example would be the benzene ring, which is a molecule by itself,
but is also a common substructure in more complicated molecules. The
delocalization of electrons in the benzene ring gives it exceptional stability
and unique chemical properties.

Aliphatic substructures present as functional groups are denoted as alkyl
groups, and aromatic ones as aryl.

R

N
Figure 4.2: Benzene (phenyl) group, and pyridine, an example of heterocycles.

It is worth noting that some heterocycles, which are rings that, alongside
carbon atoms, contain atoms other than carbon, can also be aromatic if
they meet certain criteria for aromaticity. Examples of heterocyclic aromatic
compounds include pyridine (Figure 4.2), pyrimidine, and purine, which are
important building blocks for many biological molecules, such as DNA and
RNA.

4.1.2 Oxygen-containing compounds

Oxygen-containing functional groups play an essential role in organic chem-
istry, influencing the reactivity and physical properties of organic compounds.
The most significant functional groups that will be covered here include alco-

19

4. Organic Chemistry
hols, aldehydes, ketones, acyl halides, carboxylic acids and their anhydrides,
ethers, esters and carbonate esters.

Alcohols consist of an oxygen atom bonded to a carbon atom and a
hydrogen atom, as shown in Figure 4.3. One important feature of the carbon
atom in alcohols is that it has to be saturated - meaning it is bonded only by
single bonds.

R
O

H
Figure 4.3: Alcohol (hydroxyl) group.

Carbonyls consist of a carbon atom double-bonded to an oxygen atom.
Carbonyl groups are found, among others, in aldehydes and ketones, which
are commonly used in organic synthesis. Aldehydes have a carbonyl group at
the end of a carbon chain, while ketones have a carbonyl group in the middle
of a carbon chain. Acyl halides are carbonyls with a halogen as one of the
substituents, denoted as X in the Figure 4.4.

R

O

H R1

O

R2 R

O

X
Figure 4.4: Aldehydes, ketones and acyl halides.

Carboxylic acids are also important oxygen-containing functional groups,
consisting of a carbonyl group and a hydroxyl group on adjacent carbon atoms.
Carboxylic acid anhydrides, which consist of two carbonyl groups bonded
to the same oxygen atom, are formed from the reaction of two carboxylic
acid molecules. This is seen in Figure 4.5.

R

O

OH R1

O

O R2

O

Figure 4.5: Carboxylic acids and their anhydrides.

Ethers, seen in Figure 4.6, are carbon chains connected by a single oxygen
atom. They are relatively inert and unreactive, and they are commonly used
as solvents for organic reactions.

Esters, which consist of a carbonyl group and an ether group on adjacent
carbon atoms, are commonly used in perfumes, flavors, and solvents. And
carbonate esters consist of a carbonyl group surrounded by two ether
groups.

20

.................................. 4.1. Functional groups

O
R1 R2 R1

O

O
R2

O
R1

O

O
R2

Figure 4.6: Ethers, esters and carbonate esters.

4.1.3 Nitrogen-containing compounds

Nitrogen is another important element in organic chemistry, as it can form
a variety of substructures that play key roles in organic processes. The
most important functional groups containing nitrogen include amines, amides,
imines, imides, azides, azo-compounds, cyanates, nitro compounds, nitrates,
carbamates and azidrines.

Amines are compounds with a nitrogen atom bonded to one or more alkyl
or aryl groups. Amines can be classified as primary, secondary or tertiary,
depending on the number of alkyl or aryl groups attached to the nitrogen
atom. An important derivative is also the quaternary ammonium cation,
which has 4 groups attached to it (Figure 4.7).

NR

H

H

NR

R1

H

NR

R1

R2

N+R1

R2

R4

R3

Figure 4.7: Primary, secondary, tertiary amines and quaternary ammonium ions.

Amides are derivatives of carboxylic acids. Amides contain a nitrogen
atom bonded to a carbonyl group and an alkyl or aryl group. Carbamates
are essentially an amide group, where the substituent on the carbonyl group
is an oxygen.

Imines have a nitrogen double bonded to a carbon atom, while imides
are comprised of two carbonyl groups connected by a nitrogen atom. They
are somewhat analogous to carbonyls and acid anhydrides respectively. The
structure of these compounds is shown in Figure 4.8.

21

4. Organic Chemistry

R

O

N
R1

R2

O
R

O

N
R1

R2

R1

N
R

R2

R1

O

N

R

R2

O

Figure 4.8: Amides, carbamates, imines and imides.

Azides contain a carbon atom attached to three nitrogens in a linear
arrangement. Azo compounds contain two nitrogen atoms linked by a
double bond. These structures, as shown in Figure 4.9, are also known as
nitrogen bridges. Cyanates are composed of a nitrogen atom, carbon atom
and an oxygen atom in a linear fashion, and depending on the arrangement
of these, they can be cyanates (-OCN) or isocyanates (-NCO).

R
N

N+

N−

R1
N

N
R2

R
O

C
N

R
N

C
O

Figure 4.9: Azides, azo compounds (nitrogen bridge), cyanates and isocyanates.

Nitro compounds contain a nitro group (-NO2) bonded to a carbon atom.
The nitro group is highly polar, making nitro compounds relatively reactive.
Nitrates contain the nitrate ion (NO−

3) bonded to a carbon atom, as seen in
Figure 4.10.

N+

R

O

O−
N+

O
R

O

O−

Figure 4.10: Nitro and nitrate group.

Azidrines (Figure 4.11) are three-membered heterocyclic compounds
containing a nitrogen atom and two carbon atoms in a cyclic ring structure.

22

.................................. 4.1. Functional groups

They are highly reactive and can undergo a variety of reactions, making them
useful in organic synthesis.

N

Figure 4.11: Azidrine.

4.1.4 Sulfur-containing compounds

Sulfur is another element which plays an important role in organic chemistry.
Some of the most significant functional groups containing sulfur include
thiocyanate, sulfide, disulfide, and thiol groups.

Thiocyanates are composed of a sulfur atom bonded to a carbon atom,
which is then attached to a nitrogen atom. Isothiocyanates have the nitrogen
connected to the rest of the molecule instead of the sulfur atom. This is
shown in Figure 4.12.

R
S

C
N

R
N

C
S

Figure 4.12: Thiocyanates and isothiocyanates.

Thiols are organic compounds that contain a sulfur atom bonded to a
hydrogen atom (-SH). Sulfides contain a sulfur atom that is covalently
bonded to two carbon atoms. Similarly, disulfides consist of two sulfur
atoms covalently bonded together. Disulfides are often found in proteins and
are essential for the folding and stability of many proteins. These structures
are also called sulfur bridges (Figure 4.13).

R
S

H R1
S

R2 R1
S

S
R2

Figure 4.13: Thiols, sulfides and disulfides.

23

24

Part II

Literature Review

25

26

Chapter 5

Datasets

The datasets that the templates will be tested on are common benchmarks
for cheminformatics models. They will be briefly described in this chapter.

All the datasets share the same structure, where each entry is a single
graph composed of nodes and edges. In addition to that, each node and edge
has its label. For edges the labels represent if it is a single, double, triple
or aromatic bond in some datasets. Node labels represent the atom type
(carbon, oxygen, nitrogen, etc.). Hydrogen atoms are left out completely in
some of the datasets.

The MUTAG dataset [7] is a commonly used benchmark dataset, containing
188 molecules. The molecules are classified as mutagenic or non-mutagenic.

The PTC [16] dataset consists of chemical compounds which have been
classified as either positive or negative for carcinogenicity in rodents, which is
a standard assay used to predict the potential mutagenic effects of chemicals.
There are four variants of the PTC dataset, namely PTC MR, PTC FR, PTC
MM and PTC FM.

The PTC MR dataset consists of 344, and similarly the PRC FR dataset
consists of 351 compounds chemical compounds that have been classified
as either positive or negative for carcinogenicity in male and female rats,
respectively. On the other hand, PTC FM and PTC MM datasets contain
349 and 336 compounds tested for carcinogenicity on female and male mice.

27

28

Chapter 6

State-of-the-art models

In this chapter, some of the most successful state-of-the-art models will be
introduced formally, while in the Appendix B, it will be shown how they were
implemented.

6.1 Standard Graph Neural Networks

The Graph Neural Network model gives an intuitive message passing frame-
work, and they operate by propagating information through the graph’s nodes
and edges to capture the structural dependencies and relationships present in
the data. The hidden state of a node in a GNN is calculated using a recursive
update mechanism that combines information from the node’s neighbors [37].

The node state is given by hn, and it is used as the layer output for the given
node. The node and edge features are given by xi ∈ Xnode and x(i,j) ∈ Xedge,
while f is a function aggregating the features and previous layer output, and
σ is an element-wise non-linear function.

hl+1
n = σ(

∑
u∈nbh(n)

W lf(hl
u, xu, xn, x(n,u)) + W l

0hl
n) (6.1)

29

6. State-of-the-art models
In this equation, the sum iterates over the neighboring nodes of node n.

Within the summation, the function f combines the hidden state of the
neighboring node hl

u, the node features xu and xn, and the edge features
x(n,u). The weights W l and W l

0 are learnable parameters specific to layer l.
The resulting sum is then combined with the previous layer’s hidden state hl

n

through the weight W l
0.

By applying this update equation iteratively for multiple layers, the GNN
can capture and propagate information across the graph structure, enabling
the nodes to incorporate both local and global information from their neigh-
bors. The non-linear activation function σ introduces non-linearity into the
node updates, allowing the GNN to learn complex patterns and relationships
in the graph data.

6.2 Relational Graph Convolutional Networks

Relational Graph Convolutional Networks were introduced in [29] for the task
of link prediction in knowledge bases. The model is defined as an autoencoder
with R-GCNs as encoders which produce latent feature representations and a
decoder which is a tensor factorisation model.

They extend the concept of GNNs by explicitly considering the types of
relations between nodes in a graph. R-GCNs incorporate relation-specific
weights to capture the varying influence of different types of relations on the
node representations.

The model requires a function which determines the edge type, called
relation in the model. For this purpose, we will introduce a function mapping
an edge to a relation from the set of relations or edge types: rel(n, m) :
(n, m) ∈ E → R.

Then the relational neighborhood of a node will be defined as a function
nbhr(n) mapping the given node n and the relation r to a set of nodes S,
such that there exists an edge (n, u) ∈ E, and the type of the edge given by
rel(n, u) = r, ∀u ∈ S.

30

........................ 6.2. Relational Graph Convolutional Networks

Figure 6.1: Message passing in standard GNNs. The colors are representing
node features, and how they propagate throughout the graph. Each color in the
next layer is composed of a combination (in this case the average) of the colors
in the previous layer. Which colors are used for the computation is denoted by
the colored arrows.

hl+1
n = σ(

∑
r∈R

∑
u∈nbhr(n)

W l
rf(hl

u, xu, xn, x(n,u)) + W l
0hl

n) (6.2)

In this equation, the outer summation iterates over the relations, capturing
the different types of relations in the graph. Within each relation, the inner
summation iterates over the neighboring nodes connected to node n through
relation r. The hidden state hl

u represents the node state of node u at layer l.

The inner summation term calculates the contribution of the neighboring
node u to the updated state of node n through relation r. The weight matrix

31

6. State-of-the-art models

Figure 6.2: Message passing in an RGCNs layer. The different edge types, drawn
by full and dashed lines, represent different types of relations. The messages are
first passed between nodes based on relations, and then aggregated together.

W l
r captures the relation-specific influence and is applied to the hidden state

hl
u. The resulting sums across all relations are combined through element-wise

summation.

Finally, the combined sum is passed through the activation function σ to
introduce non-linearity and produce the updated node state h

(l+1)
n at layer

l + 1.

6.3 Higher-order Graph Neural Networks

Higher-order GNNs, introduced in [21], are based on the higher-order or
k-WL algorithm, where the nodes are grouped in sets of k nodes, and their
output is calculated in relation to other such sets. We will define a set of valid
k-tuples Sk, such that ∀s = (s1, ...sk) ∈ Sk, si ̸= sj ,∀i, j = {1, ..., k}, i ≠ j.
For a k-tuple n ∈ Sk, the k-neighborhood is defined to be a function nbhk

G(n)
which maps n to a set of k-tuples s ∈ Sk, such that |n ∩ s| = k − 1.

32

.......................... 6.3. Higher-order Graph Neural Networks

hk,l+1
n = σ(

∑
u∈nbhk

G(n)

W lf(hk,l
u , xu, xn, x(n,u)) + W l

0hk,l
n) (6.3)

This equation defines a global k-GNN. There exists a local variant, which
allows these to be scaled to large graphs, where a notion of local neighborhoods
is defined, which is a function nbhk

L(n) which maps n to a set of k-tuples
s ∈ nbhk

G(n), such that i ∈ n \ s, j ∈ s \ n : (i, j) ∈ E. This variant will be
defined by the following equation.

hk,l+1
n = σ(

∑
u∈nbhk

L(n)

W lf(hk,l
u , xu, xn, x(n,u)) + W l

0hk,l
n) (6.4)

Figure 6.3: Message passing in a k-GNN layer and the difference between local
and global variants.

33

6. State-of-the-art models

Figure 6.4: The difference between the connectivity in a local and global 2-GNN,
constructed from the same original graph.

The output of a k-GNN can then be used as input for a k+1 -GNN.

6.4 Ego-Graph Neural Networks

Ego-GNNs were motivated by the 1-WL boundary on the expressiveness
of standard GNNs, an example being the inability of standard GNNs to
recognize the presence of closed triangles. This is generalized to conclude the
standard GNNs are unable to distinguish the ego-graphs around each node
[26], for which purpose Ego-GNNs are introduced, and they aim to capture
the local neighborhood information and the ego-centric view of each node
within a larger graph. Ego-graphs are subgraphs defined by a node and its
immediate neighbors.

The model works by creating an ego-graph for each node, and passing
messages between the nodes in this graph. Afterwards, the messages are
passed between all the ego graphs, based of the connectivity of the main
nodes in the ego graphs. If two nodes are connected in the original graph,
their ego-graphs will transfer messages.

34

........................ 6.5. Diffusion Convolutional Neural Networks

Figure 6.5: Message passing in an ego-GNN layer. The messages are passed
inside of the ego-graph and then passed between them.

6.5 Diffusion Convolutional Neural Networks

Diffusion Convolutional Neural Networks [1] (DCNNs) are based on the idea
of extending convolutional neural networks to apppropriate graph data using
a diffusion-convolution operator. This operator builds a latent representation
by calculating the diffusion of information across nodes in the graph, using a
diffusion kernel, which is a measure of the level of connectivity between any
two nodes in the graph when considering all paths between them.

We define D to be the maximal path length between two nodes, as calcu-
lating all possible paths would be computationally intensive, and a function
path(x, y, d), which returns all paths between x and y of length d. The
function f(p) aggregates all messages along the given path.

hl+1
n = σ(

D∑
d=1

∑
u∈V

∑
p∈path(n,u,d)

W l
df(p) + W l

0hl
n) (6.5)

35

6. State-of-the-art models

(a) Message passing with unbounded
path length.

(b) Message passing with bounded
path length of one hop.

Figure 6.6: Message passing in a DCNN layer. This is a representation of
how messages from one node (center node in this example) gets transmitted to
others.

6.6 Cellular Weisfeiler-Lehman Networks

Cellular Weisfeiler-Lehman Networks [2] are based on algebraic topology, with
message passing done across so-called regular cell complexes. In essence, cells
represent topological objects, such that each n-cell is composed of a closed
space defined by the n− 1-cells.

Vertices are represented as 0-cells, from which edges or 1-cells are derived
by enclosing the space between two vertices. From edges, 2-cells are derived
as cycles of any size, which enclose a space between some number of edges.
Cells of dimension higher than 2 are not covered, as they are generally not
useful for our purpose.

The models utilizing the aforementioned structure are called CW networks,
where the C stands for “closure-finite”, and the W for “weak” topology. There
are two types of messages defined, where the first one passes information
from lower to higher dimensional cells. The second one passes information
between the cells which are a part of the same higher-dimensional cell. In this
message, the information from the higher-dimensional cell is also aggregated.

36

..................................6.7. Subgraph Networks

Figure 6.7: Message passing in an CW-net layer. There are two types of
messages, the "top-down" messages are passed between the cells which are a part
of the same higher-dimensional cell, while "bottom-up" messages pass information
from lower to higher dimensional cells. In the original paper these messages were
called "upper" and "boundary" messages respectively.

6.7 Subgraph Networks

Understanding the subghraph structure of networks can be an efficient way to
bring important insight for determining the properties of such networks. In
order to capture the subgraph patterns and enforce the interactions between
these patterns, subgraph networks [40] (SGNs) were developed.

The simplest subgraph pattern is an edge, and the first-order SGN extracts
these patterns from original graph as sets of two connected nodes. A new
graph is constructed, where the extracted sets are new nodes, and edges
between them are constructed if they share a common node in the original
graph. The message passing is then done between these structures in the new
graph.

This process can be iterated to the nth-order, where each next order
processes the graph from the previous order. Second-order SGNs will induce
open and closed triangles from the first-order SGNs, and so forth.

37

6. State-of-the-art models

Figure 6.8: Message passing in an SGN layer. The process of constructing an
first- and second-order SGN is shown. The first-order SGN is constructed by
creating new nodes from edges in the original graph, and merging their node
representations. Then a second-order SGN is constructed analogously from the
first-order SGN.

38

39

6. State-of-the-art models

Part III

Implementation

40

Chapter 7

NeuraLogic framework

The framework NeuraLogic [14] is used, which is written in Java, but has
an API in Python [18]. Due to Python’s ease of use, it is preferred for this
purpose.

7.1 Syntax

The rule structure that was explained in Section 3.3 is the basis upon which
the programs are built, and will be used throughout the examples in this
thesis. However, the framework has its own syntax, which is based on this
rule structure, adapted to use in Python.

Predicates are defined using the Relation module, and variables using Var
module, which are abbreviated to R and V respectively. An example would
be the following:

R.predicate_name(V.Var_name)

The naming conventions apply, meaning that variables should be capitalized,
and predicate names and constants should be lowercase. The implication,
instead of the Datalog symbol :-, is written as <=. The body of the rule
is surrounded by parentheses, and weights are defined with braces after
the predicate name. The dimension of the weights is given by a tuple

41

7. NeuraLogic framework.................................
(d1, d2, ..., dn), where n is the number of dimensions and each di represents
the size of ith dimension.

R.h(V.X)[1,] <= (R.b_1(V.X)[1,], R.b_2(V.X)[1,])

7.2 Computational graphs

The first step in the interpretation of the logical programs using this frame-
work is to ground them and determine the Herbrand model, from which a
computational graph is constructed in the following manner:

Logical construct Node type
Ground fact Fact node

Ground atom Atom node
Ground rule’s head Aggregation node

Ground rule Rule node

Table 7.1: Node types in the computational graph and their logical counterparts.

Example 1. An example of a one-layer GNN will be presented as defined
in Section 6.1. The example graph has node features, and edges given by
predicates feature(X) and edge(X, Y). Then the propagation rules are
defined as:
R.layer_1(V.X)[1,] <= (R.edge(V.Y, V.X), R.feature(V.Y)[1,])
R.layer_1(V.X)[1,] <= R.feature(V.X)[1,]

To connect the GNN layer with the output, another rule is defined:
R.predict <= R.layer_1(V.X)[1,]

The model template is presented in Figure 7.1 and the computational graph
for a given example in Figure 7.2.

The ground template shows the relationships between the defined predicates.
On the bottom layer, the two predicates are the ones defined in the examples.

42

.................................7.2. Computational graphs

Figure 7.1: Template for the given model.

Then they are used by two rules defining the GNN propagation, which are
further aggregated into the prediction. The numerical values that are seen
between nodes are the weights, which are all scalars in this case.

The computational graph in Figure 7.2 is analogous to the ground template.
It is, however, the representation of how the template is grounded on a specific
example. Additionally, gradients, activation functions and other information
can be seen in this graph.

43

7. NeuraLogic framework.................................

Figure
7.2:

C
om

putationalgraph
for

the
given

exam
ple.

T
he

node
types

as
show

n
in

Table
7.1

are
visible.

44

Chapter 8

Dataset preprocessing

The datasets are assumed to be comprised of three main predicates, node_embed/1
and edge_embed/1, which denote the feature embedding for nodes and edges,
as well as connection/3, which is true when two nodes are connected via the
edge given in the arguments. For example, if nodes a1 and a2 are connected
by an edge b, the predicate connection(a1, a2, b) will be present.

For example, in the MUTAG dataset (Chapter 5), a typical entry is defined
with predicates referring to the atom type by its chemical symbol (c(a1) for
carbon, h(a2) for hydrogen, etc), and the predicate bond(a1, a2, b1) for
connection. The predicates b_1(b1) define the bond type as single bond, and
analogously b_2 for double bond, etc. An ethylene molecule (Figure 8.1) in
the MUTAG dataset will be encoded as follows:

c(c1), c(c2), h(h1), h(h2), h(h3), h(h4),
bond(c1, c2, b1), bond(c1, h1, b2), bond(c1, h2, b3),
bond(c2, h3, b4), bond(c2, h4, b5),
b_2(b2), b_1(b2), b_1(b3), b_1(b4), b_1(b5).

C
H

H
C

H

H
Figure 8.1: Ethylene molecule.

These requirements are assured in the preprocessing stage for each dataset,
as well as extracting the node and edge types to their own predicates. Each

45

8. Dataset preprocessing
dataset has their own encoding for types of atoms and bonds, but they have to
be unified. We can see an example below, where the left side are the predicates
from a dataset, and on the right side the final unified representation:

atom_0(A1) ⇒ carbon(A1)
atom_5(A4) ⇒ oxygen(A4)

bond_0(A1, A4) ⇒ bond(A1, A4, B1), single_bond(B1)
...

The weighted predicates will be denoted with W before them, but each of
these weights is different and unique for the predicate they belong to.

Model implementations can be found in Appendix B and chemical rules
can be found in Appendix C. The entirety of the code used for these imple-
mentations will be available in the GitHub repository DifferentiableChemistry
[11].

46

Chapter 9

Subgraph patterns

Aside from the models and chemical patterns that were implemented (please
refer to Appendices B and C for the implementation details), there are some
structural patterns or motifs, that can be deduced from molecules.

9.1 Basic patterns

Basic patterns are general for any graphs, and they include cycles, representing
rings in molecules (Figure 9.1), and paths, representing chains of arbitrary
length. Both patterns are defined with respect to a trainable parameter, which
determines the maximum path length and maximum ring size. Respective
indicator predicates are also defined, to determine if two nodes are in the
same cycle or if there exists a path between two nodes, with given length
constraints.

cycle(A, B) :- cycle(A, B, C).
cycle(A, B, C) :- connection(A, B, X1), connection(B, C, X2),

connection(C, A, X3),
W::node_embed(A), W::node_embed(B), W::node_embed(C),
W::edge_embed(X1, W::edge_embed(X2), W::edge_embed(X3).

cycle(A, B, C) :- cycle(A, B, C, D).
...

path(A, B) :- path(A, B, max_depth).
path(A, B, 0) :- connection(A, B, X), edge_embed(X).

47

9. Subgraph patterns

...

O

N
H

N

N
H

O

Figure 9.1: The most common ring sizes in organic chemistry are 3, 5, 6
atoms, but often up to 14 or more atoms. The examples in the bottom row are:
ethylene oxide, cyclobutene, imidazole and morpholine. All of them, aside from
cyclobutene, are heterocycles.

path(A, B, T) :- connection(A, C, X), edge_embed(X),
path(C, B, T-1).

9.2 Y-shaped patterns

In molecules, there seems to be a significant recurring pattern of an atom
connected to three neighbors in some kind of a Y shape (Figure 9.2). This is
apparent in carbonyls, where the carbon atom is the center of this pattern,
as well as imines, nitro compounds and others.

R1

O

R2 R1

N
R

R2

Figure 9.2: The proposed Y shape, as well as an example of carbonyls and
imines.

The shape can further be abstracted to contain any type of bonds, not
necessarily a double bond, which will then also include amines and other

48

................................ 9.3. Neighborhood patterns

similar structures.
y_subgraph(X1, X2, X3, X4) :-

connection(X1, X2, B1), connection(X1, X3, B2),
connection(X1, X4, B3),
edge_embed(B1), edge_embed(B2),
edge_embed(B3),
node_embed(X1), node_embed(X2),
node_embed(X3), node_embed(X4).

y_bond(X1, X2, X3, X4) :- y_subgraph(X1, X2, X3, X4),
connection(X1, X2, B1), double_bond(B1).

y_group(X1, X2, X3) :- y_bond(Y1, Y2, X1, X2),
y_bond(Z1, Z2, X2, X3).

9.3 Neighborhood patterns

The notion of neighborhoods is essential in GNNs, so a step further is taken
in defining predicates which explicitly aggregate the messages. Carbon, as
the main building block of organic compounds, usually has four neighbors,
and to address this, we define a predicate. Another case is for atoms which
usually have three neighbors, such as nitrogen.
four_nbhood(X) :-

connection(X, X1, B1), connection(X, X2, B2),
connection(X, X3, B3), connection(X, X4, B4),
edge_embed(B1), edge_embed(B2),
edge_embed(B3), edge_embed(B4),
node_embed(X1), node_embed(X2),
node_embed(X3), node_embed(X4),
node_embed(X).

three_nbhood(X) :-
connection(X, X1, B1), connection(X, X2, B2),
connection(X, X3, B3),
edge_embed(B1), edge_embed(B2), edge_embed(B3),
node_embed(X1), node_embed(X2), node_embed(X3),
node_embed(X).

Chirality is a concept in chemistry that refers to the property of a molecule

49

9. Subgraph patterns
or a part of a molecule that cannot be superimposed on its mirror image.
This means that it has a specific three-dimensional shape or orientation. In
other words, it is not symmetric or identical to its mirror image. This is most
commonly caused by the presence of one or more asymmetric carbon atoms
(carbon atoms that are attached to four different groups), and these carbons
are called chiral centers.
chiral_center(C) :- carbon(C),

W::atom_type(X1), W::atom_type(X2),
W::atom_type(X3), W::atom_type(X4),
connection(C, X1, B1), connection(C, X2, B2),
connection(C, X3, B3), connection(C, X4, B4),
W::edge_embed(B1), W::edge_embed(B2),
W::edge_embed(B3), W::edge_embed(B4),
W::node_embed(X1), W::node_embed(X2),
W::node_embed(X3), W::node_embed(X4).

An example would be a molecule called glyceraldehyde, where the hydroxyl
group can either "pertrude" from the plane of the molecule, or "sink" into it,
creating these non-superiposable mirror images, or enantiomers. This can be
seen in Figure 9.3.

HO O
OHH

HOO
OH H

HO O
OHH

HOO
OH H

Figure 9.3: Glyceraldehyde molecule enantiomers on the left and their mirror
images on the right.

9.4 Cyclic patterns

One interesting cyclic substructure is a four-member ring of alternating single
and double bonds. The inspiration is taken from the molecule cyclobutadi-
ene, see Figure 9.4, which is antiaromatic, despite sharing a similar bond
arrangement as benzene.
brick(X) :- W::node_embed(Y1), W::edge_embed(B1),

connection(X, Y1, B1), single_bond(B1),
W::node_embed(Y2), W::edge_embed(B2),
connection(Y1, Y2, B2), double_bond(B1),

50

.................................. 9.5. Collective patterns

W::node_embed(Y3), W::edge_embed(B3),
connection(Y2, Y3, B3), single_bond(B1),
W::node_embed(X), W::edge_embed(B4),
connection(Y3, X, B4), double_bond(B1).

Heterocycles, as cyclic patterns, are simply represented as a cycle where
there exists a non-carbon atom.

heterocycle(X) :- W::cycle(X, C),
carbon(C), ~carbon(X).

Figure 9.4: Cyclobenzadiene and the "brick" structure.

9.5 Collective patterns

The reason behind the naming of this group is that the patterns in this
division are thought of as patterns which connect other patterns. The first
example is the aliphatic chain, which serves as the scaffolding for any other
pattern.

aliphatic_chain(X, Y) :- aliphatic_chain(X, Y, max_depth).

aliphatic_chain(X, Y, 0) :-connection(X, Z, B),
carbon(X), carbon(Y),
aliphatic_bond(B),
W::edge_embed(B).

aliphatic_chain(X, Y, T) :- connection(X, Z, B),
carbon(X),
W::edge_embed(B),
aliphatic_chain(Z, Y, T-1),
W::aliphatic_bond(B).

The bridge pattern (Figure 9.5) is based on an atom which connects two
different rings, neither of which it is a part of. A common example of these
kinds of molecules is benzophenone, which serves as a building block for many
other pharmaceutical compounds.

51

9. Subgraph patterns
bridge(X) :-

connection(X, Y, B1), connection(X, Z, B2),
~cycle(X, X1), ~cycle(Y, Z),
W::cycle(Y, Y1),
W::cycle(Z, Z1),
W::edge_embed(B1), W::edge_embed(B2),
W::node_embed(X).

Finally, there are compounds which have two rings which share one or
more atoms.
shared_atom(X) :-

connection(X, Y, B1), connection(X, Z, B2),
W::cycle(X, Y), W::cycle(X, Z),
~cycle(Y, Z),
W::edge_embed(B1), W::edge_embed(B2),
W::node_embed(X).

O

Figure 9.5: Benzophenone molecule with the bridging carbon atom and biphenyl,
which has a shared atom between rings.

52

53

9. Subgraph patterns

Part IV

Testing and results

54

Chapter 10

Testing pipeline

The testing was done separately for each dataset, such that the first run is a
baseline for all models, without any chemical or subgraph rules added. This is
to determine the best general hyperparameters, as well as the model-specific
hyperparameters such as the number of layers, parameter size and depth of
some models (meaning recurrence depth for diffusion GCNs, max ring size
for CW networks and max order for SGNs). After the best values are found,
the best combination of chemical and subgraph rules are found using these
values.

55

56

Chapter 11

Results

The performance of each model on the MUTAG dataset was improved with
the addition of some combination of chemical and subgraph rules, as opposed
to the the models with optimized parameter, but no added rules. We can see
this in Figure 11.1.

Figure 11.1: Benchmark performance across models with and without added
chemical and subgraph rules on MUTAG dataset.

57

11. Results.......................................
In the best performing models with added rules, the most common one

seems to be global k-GNNs, followed by local k-GNNs, RGCNs and GNNs,
which seems to be surprising, as these are the simplest of the implemented
models. Probably because of the simplicity of the models, they were able to
utilize the added rules the fullest. However, the distribution changes a bit
when looking closer at the top circa 2% of the models, as seen in Figure 11.6.
Here we can see that the best performing ones are actually local k-GNNs and
SGNs, followed by GNNs and others.

The best performing rules are analogously extracted, and we can see
that, on average, the chemical rules are more common than the subgraph
rules (Figure 11.7). However there are two peaks at path and neighborhood
subgraph rules. In the closer look we see that the most common rule set is
the relaxations. Another point to make here is that the nitrogen rules are
performing well because of the structure of the dataset, as it is comprised
of primarily nitrogen-containing molecules. On the other hand, the sulfuric
rules are not performing that well because sulfur is not common or present in
most molecules of the dataset.

1 Hydrocarbons, nitrogen groups, relaxations, cycles,
neighborhoods, circular patterns

2 Oxygen groups, nitrogen groups, sulfur groups, relaxations,
cycles, collective patterns

3 Hydrocarbons, sulfur groups, relaxations, paths, neighborhoods,
circular patterns, collective patterns

4 Hydrocarbons, oxygen groups, relaxations,
paths, neighborhoods, circular patterns

5 Nitrogen groups, cycles
6 Hydrocarbons, oxygen groups, relaxations, paths, neighborhoods
7 Hydrocarbons, nitrogen groups, relaxations, cycles, paths, y-shapes,

neighborhoods, circular patterns, collective patterns
8 Hydrocarbons, oxygen groups, relaxations, cycles, collective patterns
9 Hydrocarbons, oxygen groups, nitrogen groups, sulfur groups,

relaxations, paths, neighborhoods, circular patterns, collective patterns
10 Oxygen groups, nitrogen groups, sulfur groups,

relaxations, cycles, collective patterns

Table 11.1: Best performing rule combinations on MUTAG dataset.

Performance on the PTC MR dataset, however, doesn’t seem to be enhanced
by the addition of chemical and subgraph rules. The results are shown in
Figure 11.2.

58

....................................... 11. Results

Figure 11.2: Benchmark performance across models with and without added
chemical and subgraph rules on PTC MR dataset.

In the same manner, the best performing models and rules are extracted,
and the distribution can be seen in Figures D.4 and D.5. The CW networks
seem to perform quite well on this dataset, and this is probably due to
the large presence of rings, since these models inherently take advantage of
these structures. Standard GNNs and Diffusion GCNs are also very common
in the best performing models, and this probably due to the fact that the
neighborhoods of each node, both immediate and extended, hold enough
important information for the models to extract meaning.

Meanwhile, we can see a different rule distribution in the best performing
models, as opposed to the MUTAG dataset, where, for example, the Y-shaped
subgraphs were not important in regards to performance, on this dataset they
are one of the best performing. We can also see that the subgraph patterns,
in general, seem to be much more present than chemical rules.

The PTC FR dataset shows similar results as PTC MR, where the rules
do not improve the performance, as can be seen in Figure 11.3. Interestingly,
the most successful models in this dataset are the global k-GNNs, appearing
at least twice as often as other models. The superiority of this model deserves
more attention in future work, to determine how can it be utilized, and
maybe extrapolated to other datasets or models. As for the chemical and

59

11. Results.......................................
subgraph rules, probably due to the structure of the dataset, the nitrogen
and circular rules are the most often chosen ones, meaning that the presence
of rings that contain functional groups based on nitrogen are very important
in determining the target labels.

Figure 11.3: Benchmark performance across models with and without added
chemical and subgraph rules on PTC FR dataset.

Again, for the PTC FM dataset, the performance is not being improved
by the rules (Figure 11.4). There is an interesting superiority of the CWN
model on this dataset, where it occupies almost half of the most successful
models (Figure D.8). This suggests that the inherent ability of the model to
recognize and pass messages in cycles is greatly beneficial to the performance.
This should be investigated in future work. However, one would assume that
cycles and circular patterns will be more present in the chosen rules, which
is not the case for the latter, as seen in Figure D.9. Collective patterns also
seem to play a great role in the accuracy of the models. This should probably
indicate the presence of connected rings in the dataset, which affect the target
label.

60

....................................... 11. Results

Figure 11.4: Benchmark performance across models with and without added
chemical and subgraph rules on PTC FM dataset.

Finally, the performance on the PTC MM dataset is similar to the other
PTC datasets, as seen in Figure 11.5. The most successful datasets seem to
be RGCNs and GNNs (Figure D.10), which probably means that they can
utilize the added rules better than other models, due to the simplicity. Also,
according to the performance of these models, it may be assumed that the
dataset holds more important information in the edges, rather than nodes,
and RGCNs are able to make more use of that information, due to their ways
of computation. The global higher-order GNNs are also successful in this
dataset, and it may be the case that, as in PTC FM dataset, there are longer
chains in this dateset, for which the shape plays a big role in its properties.
This hypothesis seems to be backed by the fact that the most commonly
chosen rules are hydrocarbon rules, as shown in Figure D.11. This set of
rules are designed to recognize double and triple bonds in aliphatic chains,
which occupy a larger region of space compared to a single bond, resulting in
increased electron density between the bonded atoms. This increased electron
density affects the repulsion between electron pairs, causing them to spread
out more and influence the molecular shape.

61

11. Results.......................................

Figure 11.5: Benchmark performance across models with and without added
chemical and subgraph rules on PTC MM dataset.

In the Table 11.2, we can see a breakdown of the test losses for each model
and dataset.

62

....................................... 11. Results

Figure 11.6: Highest performing models on MUTAG dataset.

63

11. Results.......................................

Figure 11.7: Highest performing rules on MUTAG dataset.

64

....................................... 11. Results

R
ul

es
M

U
TA

G
PT

C
M

R
PT

C
FR

PT
C

FM
PT

C
M

M

G
N

N
N

o
14

.6
3
±

4.
80

%
42

.8
8
±

4.
61

%
37

.7
5
±

4.
50

%
41

.7
1
±

4.
56

%
37

.9
8
±

4.
83

%
Ye

s
14

.1
9
±

5.
24

%
44

.1
1
±

4.
66

%
41

.2
1
±

4.
72

%
43

.5
7
±

4.
66

%
41

.7
0
±

5.
26

%
R

G
C

N
N

o
15

.0
2
±

5.
42

%
42

.9
6
±

4.
67

%
36

.9
8
±

4.
51

%
41

.9
4
±

4.
56

%
38

.5
4
±

5.
06

%
Ye

s
13

.9
2
±

4.
74

%
44

.2
6
±

4.
69

%
41

.5
8
±

5.
51

%
43

.0
3
±

4.
84

%
41

.0
9
±

5.
32

%
k-

G
N

N
N

o
20

.9
2
±

5.
23

%
43

.6
9
±

4.
45

%
35

.3
4
±

5.
23

%
39

.9
6
±

4.
96

%
36

.3
0
±

4.
15

%
Ye

s
14

.7
2
±

6.
43

%
44

.2
3
±

4.
52

%
40

.3
8
±

6.
67

%
44

.9
5
±

4.
92

%
42

.1
3
±

5.
66

%
k-

G
N

N
lo

ca
l

N
o

14
.9

8
±

5.
07

%
43

.9
1
±

5.
59

%
36

.0
2
±

4.
43

%
41

.7
2
±

4.
43

%
37

.8
8
±

3.
96

%
Ye

s
14

.3
0
±

5.
78

%
45

.5
5
±

5.
00

%
40

.6
3
±

5.
30

%
45

.5
9
±

4.
89

%
41

.3
6
±

5.
09

%
eg

o-
G

N
N

N
o

17
.9

4
±

5.
31

%
46

.3
2
±

5.
16

%
37

.3
1
±

4.
38

%
42

.2
2
±

5.
08

%
38

.7
5
±

5.
16

%
Ye

s
14

.8
9
±

5.
08

%
44

.7
4
±

5.
11

%
39

.9
0
±

4.
72

%
43

.2
4
±

4.
78

%
40

.8
3
±

5.
35

%
D

C
C

N
N

o
21

.4
8
±

6.
44

%
46

.3
9
±

5.
27

%
37

.2
6
±

4.
75

%
40

.9
1
±

5.
35

%
40

.2
2
±

5.
09

%
Ye

s
15

.6
5
±

5.
27

%
44

.7
3
±

5.
14

%
41

.2
7
±

7.
12

%
44

.4
6
±

5.
68

%
42

.0
9
±

5.
12

%
C

W
N

N
o

17
.6

9
±

5.
64

%
40

.7
0
±

4.
70

%
35

.9
4
±

3.
96

%
38

.5
1
±

4.
64

%
36

.3
7
±

4.
07

%
Ye

s
14

.1
8
±

5.
37

%
43

.4
6%
±

5.
06

%
40

.4
7
±

3.
65

%
40

.9
5
±

5.
67

%
42

.8
7
±

5.
34

%
SG

N
N

o
12

.9
7
±

5.
37

%
43

.6
8
±

5.
36

%
38

.8
1
±

4.
83

%
44

.7
3
±

4.
76

%
40

.2
9
±

4.
39

%
Ye

s
13

.6
7%
±

5.
44

%
44

.4
3
±

4.
41

%
42

.0
2
±

4.
48

%
45

.2
7
±

4.
74

%
42

.8
3
±

5.
34

%

Ta
bl

e
11

.2
:

Ta
bl

e
of

te
st

lo
ss

di
st

rib
ut

io
n

de
ta

ils
fo

r
ev

er
y

m
od

el
on

th
e

da
ta

se
ts

.

65

66

Chapter 12

Discussion

As already mentioned in Chapter 11, some models show severe superiority
in some of the datasets. This is probably due to the inherent properties of
the models, for example the ability of CW networks to recognize and pass
messages between the nodes in cycles. This should also indicate a great
presence of rings which affect the overall label of the molecule in the datasets
where these models are most successful. In the PTC FR dataset, where the
global k-GNNs were the most successful, there is probably some long-range
dependencies which cannot be inferred by the other models, since they lack
these "global" connections. This makes sense if the molecules are particularly
large chains, such as in proteins, where the interactions of substructures which
are far apart determine the shape of the molecule, which in turn determine
its properties. Perhaps, testing this model on some datasets which deal with
proteins (such as PPI [15]) can prove the hypothesis.

By the design of the testing pipeline, there was also no control over which
rules were chosen, as this was given to a hyperparameter optimization frame-
work to find the best combinations. Trying out all possible combinations
would take too much time and computing power, as there is 11 different
rules that can be chosen, resulting in 211 combinations, and having in mind
that one experiment could last up to 2 hours, it was infeasible to test all of
them out. In the future, some time should definitely be dedicated to test
these out on specific combinations of rules which are hand-chosen for each
dataset, instead of blindly handing it out to a hyperparameter optimization
framework.

Since MUTAG dataset is the simplest dataset out of the used ones, and also

67

12. Discussion
it was the first one to explore, all the rules and models were based primarily
on its structure. This probably posed an issue that the models, as well as
rules, were overengineered to the design of this particular dataset, resulting
in an inherent bias to the MUTAG dataset, explaining why the performance
is so good, and also explaining at least a part of the decreased performance
on the PTC MR dataset. There also might be a lack of understanding of the
dataset, since there was no time to go into too much detail, while preparing
the dataset to fit the required form. The differences between MUTAG and
other datasets was apparent in how the connections are defined. While in
MUTAG dataset, the connection predicate was a ternary bond predicate, the
other datasets had a binary predicate which already included the type of
bond (bond_1 to denote a single bond, for example). These datasets then
had to be preprocessed, as mentioned in Chapter 8, so that might have been
an opportunity for some errors to arise.

Another reason for this might be that the optimized parameters for mod-
els without the added chemical or subgraph rules might be too strict and
interfere negatively with the rules, when they are added. But the main issue
seems to actually be overfitting, as we can see in Figure 12.1, which shows
the severe difference between train loss and test loss on this dataset. The
generalization error on the PTC FR, PTC FM and PTC MM datasets show
similar characteristics (Figures D.1, D.2, D.3).

Figure 12.1: Train and test loss on the PTC MR dataset.

The templates overfits the MUTAG dataset as well, as seen in Figure 12.2,

68

...................................... 12. Discussion

but due to the simplicity of the dataset, it was actually beneficial to the
overall accuracy of the models.

Figure 12.2: Train and test loss on the MUTAG dataset.

Due to the lack of time, the issues presented in this chapter have not been
addressed, but it allows for an opportunity to investigate these points, and
improve the generalization of the rules. Additionally, some other, more varied
and bigger datasets can be used in future work to test the accuracy of this
approach.

69

70

Chapter 13

Conclusion

The field of computational chemistry is undergoing a transformative phase
with the emergence of specialized machine learning models designed to handle
graph data. These new models hold great promise for advancing the accuracy
and efficiency of machine learning models used for drug development, among
other applications. As demonstrated in this thesis, the incorporation of
a chemistry knowledge base has proven to be an effective approach for
enhancing the performance of these models on some benchmark datasets.
The results indicate that the inclusion of domain-specific rules has led to
notable improvements across some presented models. These findings highlight
the untapped potential for further advancements and innovations in this
relatively unexplored area of research. Moving forward, continued exploration
and refinement of such knowledge-based approaches have the potential to
unlock new insights and propel the field of computational chemistry into even
greater heights. While the initial results are not consistently excellent, there
is significant optimism about the potential for improvement in this area.

In addition to the successful integration of a chemistry knowledge base
into the presented machine learning models, further avenues for improving
their accuracy and performance can be explored. One such direction involves
the refinement and expansion of the existing rule set within the knowledge
base. By incorporating additional chemical rules and constraints derived from
expert knowledge and experimental data, the models can be fine-tuned to
better capture the intricacies of chemical systems.

Furthermore, the utilization of larger and more diverse datasets can signifi-
cantly enhance the generalizability and robustness of the models. By training

71

13. Conclusion
on a wider range of chemical structures, functional groups, and reaction types,
the models can learn to recognize and predict a broader spectrum of chemical
phenomena.

While the results of this thesis show some promise, it is important to
acknowledge the limitations of the study. Due to time and computational
constraints, the exploration of larger and more diverse datasets was restricted.
Future research should aim to overcome these limitations by leveraging in-
creased computational power and access to comprehensive chemical databases.
Scaling up the models with extensive and diverse datasets will enable a more
robust understanding of chemical systems and enhance the models’ ability to
generalize to new scenarios.

The collaboration between computational chemists, machine learning ex-
perts, and domain-specific chemists is crucial for advancing the field. The
interdisciplinary nature of this research area necessitates the exchange of
ideas, expertise, and resources between different communities. By fostering
collaborations and knowledge-sharing, we can accelerate the progress and
collectively push the boundaries of computational chemistry. The future holds
great promise for the continued development and application of these models,
enabling transformative advancements in drug discovery, materials design,
and other areas of chemical research.

72

73

13. Conclusion

Appendices

74

Appendix A

Bibliography

[1] James Atwood and Don Towsley. Diffusion-convolutional neural networks,
2016.

[2] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro
Liò, Guido Montúfar, and Michael Bronstein. Weisfeiler and lehman go
cellular: Cw networks, 2022.

[3] I. Bratko. Prolog Programming for Artificial Intelligence. International
computer science series. Addison Wesley, 2001.

[4] Vollhardt K. Peter C. Organic Chemistry: Structure and function. W.
H. Freeman, 2018.

[5] J. Clayden, N. Greeves, and S. Warren. Organic Chemistry. OUP Oxford,
2012.

[6] Ameya Daigavane, Balaraman Ravindran, and Gaurav Aggarwal. Un-
derstanding convolutions on graphs, Feb 2022.

[7] Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath,
Alan J. Shusterman, and Corwin Hansch. Structure-activity relationship
of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. Journal of Medicinal
Chemistry, 34(2):786–797, 1991.

[8] Devendra Singh Dhami, Siwen Yan, and Sriraam Natarajan. A statistical
relational approach to learning distance-based gcns, 2021.

[9] B. L. Douglas. The weisfeiler-lehman method and graph isomorphism
testing, 2011.

75

A. Bibliography.....................................
[10] Varun Embar, Sriram Srinivasan, and Lise Getoor. A comparison of

statistical relational learning and graph neural networks for aggregate
graph queries. Machine Learning, 110(7):1847–1866, 2021.

[11] erhc. Differentiable chemistry. https://github.com/erhc/
DifferentiableChemistry, 2023. Implementations of models and back-
ground chemical knowledge using the PyNeuraLogic framework.

[12] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1263–1272. PMLR, 06–11 Aug
2017.

[13] Garrett B. Goh, Nathan O. Hodas, and Abhinav Vishnu. Deep learning
for computational chemistry, 2017.

[14] GustikS. Neuralogic: Deep relational learning through differentiable logic
programming. https://github.com/GustikS/NeuraLogic, 2023. This
is the official implementation of the Lifted Relational Neural Networks
concept.

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs, 2018.

[16] C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The Predictive
Toxicology Challenge 2000–2001 . Bioinformatics, 17(1):107–108, 01
2001.

[17] Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the
weisfeiler-lehman test and its variants. In ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, jun 2021.

[18] LukasZahradnik. Pyneuralogic. https://github.com/
LukasZahradnik/PyNeuraLogic, 2023. PyNeuraLogic is a Python
frontend for writing Differentiable Logic Programs.

[19] J.E. McMurry. Organic Chemistry. Cengage Learning, 2015.

[20] Christopher Morris, Matthias Fey, and Nils M. Kriege. The power of
the weisfeiler-leman algorithm for machine learning with graphs, 2021.

[21] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and
leman go neural: Higher-order graph neural networks, 2021.

[22] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy
Gabrilovich. A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, 104(1):11–33, jan 2016.

76

https://github.com/erhc/DifferentiableChemistry
https://github.com/erhc/DifferentiableChemistry
https://github.com/GustikS/NeuraLogic
https://github.com/LukasZahradnik/PyNeuraLogic
https://github.com/LukasZahradnik/PyNeuraLogic

..................................... A. Bibliography

[23] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen
Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans,
Timo Sommer, and et al. Graph neural networks for materials science
and chemistry. Communications Materials, 3(1), 2022.

[24] Claude Sammut and Geoffrey I. Webb. Encyclopedia of Machine Learning.
Springer, 2010.

[25] Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B.
Wiltschko. A gentle introduction to graph neural networks, Sep 2021.

[26] Dylan Sandfelder, Priyesh Vijayan, and William L. Hamilton. Ego-GNNs:
Exploiting ego structures in graph neural networks. In ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, jun 2021.

[27] Ryoma Sato. A survey on the expressive power of graph neural networks,
2020.

[28] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

[29] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. Modeling relational data with graph
convolutional networks, 2017.

[30] R.M. Smullyan. First-order Logic. Dover books on advanced mathematics.
Dover, 1995.

[31] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert,
and Ondrej Kuzelka. Lifted relational neural networks: Efficient learning
of latent relational structures. Journal of Artificial Intelligence Research,
62:69–100, 2018.

[32] Gustav Šourek, Filip Železný, and Ondřej Kuželka. Beyond graph neural
networks with lifted relational neural networks. Machine Learning,
110(7):1695–1738, jun 2021.

[33] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
Vol. I. Computer Science Press, Inc., USA, 1988.

[34] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23(4):733–742, oct 1976.

[35] L.G. Wade. Organic Chemistry. New in Organic Chemistry Series.
Prentice Hall PTR, 2011.

[36] Yuyang Wang, Zijie Li, and Amir Barati Farimani. Graph neural net-
works for molecules, 2023.

77

A. Bibliography.....................................
[37] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks:

Foundations, Frontiers, and applications. Springer, 2022.

[38] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems,
32(1):4–24, jan 2021.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks?, 2019.

[40] Qi Xuan, Jinhuan Wang, Minghao Zhao, Junkun Yuan, Chenbo Fu,
Zhongyuan Ruan, and Guanrong Chen. Subgraph networks with ap-
plication to structural feature space expansion. IEEE Transactions on
Knowledge and Data Engineering, 33(6):2776–2789, jun 2021.

[41] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph
convolutional networks: A comprehensive review. Computational Social
Networks, 6(1), 2019.

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open,
1:57–81, 2020.

78

Appendix B

Model implementation

All models are defined such that the layer zero is simply the node embedding
for each node, and all the layers take the output of the previous layer as node
input. The output of the final layer is fed to the predict predicate.

B.1 Standard Graph Neural Networks

The GNN layer that was defined in Section 6.1 is implemented as follows:

gnn(X) :- W::node_embed(X), W::node_embed(Y),
connection(X, Y, B), edge_embed(B).

Similarly to Example 1 in Section 7.2, this template will be grounded on
a molecule from a dataset. Let’s take a water molecule. The GNN layer
computation for any of the hydrogens will be taking the node embeddings
from itself and the oxygen atom, combining it with the edge embedding of
the single bond by which it is bonded to the oxygen. For the oxygen atom,
however, this will happen twice, once for each hydrogen atom. The results
from the two computations will be combined to produce the final output for
this node.

79

B. Model implementation
B.2 Relational Graph Convolutional Networks

This implementation is based RGCNs, defined in Section 6.2, with the ex-
ception that we have another weighed predicate defined, called edge_types,
which aggregates the types of edges.
rgcn(X) :- W::node_embed(X), W::node_embed(Y),

connection(X, Y, B), edge_embed(B),
W::edge_types(B).

B.3 Higher-order Graph Neural Networks

Higher-order GNNs are defined with the distinction between the node embed-
ding (or the output of the previous layer), and the output of the previous
order. Global k-GNNs only aggregate the node embedding with the output
of the (k − 1)-GNN for each pair of nodes.
k_gnn(X) :- W::node_embed(X), W::previous_order(Y).

Local k-GNNs, on the other hand, aggregate the information only if the
nodes are connected by an edge.
k_gnn(X) :- W::node_embed(X), W::previous_order(Y),

connection(X, Y, B), W::edge_embed(B).

B.4 Ego Graph Neural Networks

For ego-GNNs (Section 6.4), we define a predicate which constructs an ego-
graph of the node, and then we aggregate it to a layer based on the connectivity
in the original graph.
ego_graph(X) :- connection(X, Y, B),

W::edge_embed(B), W::node_embed(Y).

ego_gnn(X) :- connection(X, Y, B), W::ego_graph(Y).

80

........................ B.5. Diffusion Convolutional Neural Networks

B.5 Diffusion Convolutional Neural Networks

Diffusion operator (Section 6.5) is based on finding a path between two nodes.
In this implementation, we are trying to find a path up to some maximum
depth, aggregating information from all edges on the way.
path(X, Y, 0) :- W::edge_embed(B), connection(X, Y, B).
path(X, Y, T) :- W::edge_embed(B), W::path(Z, Y, T-1),

connection(X, Z, B).

path(X, Y) :- path(X, Y, max_depth)

The path is then used as a condition for message passing between nodes,
while the node’s own embedding is reinforced.
diffusion(X) :- path(X, Y), W::node_embed(Y).
diffusion(X) :- W::node_embed(X).

B.6 Cellular Weisfeiler-Lehman Networks

In the definition of CW netorks from Section 6.6, the message passing is done
in two phases, bottom-up and top-down.
cw(X) :- W::bottom_up_feaures(X).
cw(X) :- W::top_down_feaures(X).

In every layer, the induced node and edge features are saved and are used
in the calculation of the output for the next layer.
node_features(X) :- W::node_embed(X).
node_features(X) :- W::cw(X).
node_features(X) :- W::previous_node_features(X).

edge_features(X) :- W::edge_embed(X).
edge_features(X) :- W::cw(X).
edge_features(X) :- W::previous_edge_features(X).

Bottom-up messages aggregate node to edge embeddings, and edge to cycle

81

B. Model implementation
embeddings. Cycle features are aggregated into a common predicate for each
cycle with length up to a given maximum cycle size.

bond_features(B) :- connection(X, Y, B),
W::previous_node_features(X),
W::previous_node_features(Y).

cycle_features :- connection(X1, X2, B1),
connection(X2, X3, B2), ...
W::previous_edge_features(B1),
W::previous_edge_features(B2), ...

bottom_up_feaures(B) :- W::bond_features(B).
bottom_up_feaures(X) :- W::cycle_features.

Top-down features are aggregated from cycles to edges and edges to nodes.
The cycle messages are similarly constructed for all cycles up to the given
maximum size, and they are aggregated for each edge. Edges which are a
part of the same cycle will share messages, as well as the nodes which are a
part of the same edge.

cycle_message(B1) :- connection(X1, X2, B1),
connection(X2, X3, B2), ...
W::previous_edge_features(B1),
W::previous_edge_features(B2), ...

atom_nbhood(X) :- connection(X, Y, B),
W::previous_node_features(Y), bond_nbhood(B).

bond_nbhood(B) :- W::cycle_message(B).

top_down_feaures(B) :- W::bond_nbhood(B).
top_down_feaures(A) :- W::atom_nbhood(A).

B.7 Subgraph Networks

Subgraph networks are defined in Section 6.7. The first-order SGN aggregates
messages from three nodes and two edges connecting them. The higher-order
SGNs simply aggregate the messages from the previous order.

82

..................................B.7. Subgraph Networks

sgn_1(B1, B2) :- connection(X, Y, B1),
connection(Y, Z, B2),
W::edge_embed(B1),
W::edge_embed(B2),
W::node_embed(X),
W::node_embed(Y),
W::node_embed(Z).

sgn_2(X, Z) :- W::sgn_1(X, Y), W::sgn_1(Y, Z).
sgn_3(X, Z) :- W::sgn_2(X, Y), W::sgn_2(Y, Z).
...

83

84

Appendix C

Chemical patterns

The chemical patterns were divided into several groups which include, aside
from the ones already discussed, some general patterns as well as relaxations.
All of the classes of patterns are grouped into functional_group, aside from
relaxations, which have their own predicate relaxed_functional_group.
The two are then aggregated into a predicate chem_rules, which is used to
calculate the prediction.

C.1 General patterns

Certain chemical patterns or structures may not fit neatly into the predefined
categories, or they are used to define more complex patterns.

To facilitate message passing, a predicate bond_message is defined, which
aggregates atom and bond embeddings.
bond_message(X, Y, B) :- W::node_embed(X), W::node_embed(Y),

W::edge_embed(B).

Furthermore, based on the types of bonds, four predicates are defined to
include both the connection and the connection type. This will be useful to
shorten the more complicated predicates.
single_bonded(X, Y, B) :- connection(X, Y, B), single_bond(B).

85

C. Chemical patterns
double_bonded(X, Y, B) :- connection(X, Y, B), double_bond(B).
triple_bonded(X, Y, B) :- connection(Y, X, B), triple_bond(B).
aromatic_bonded(X, Y, B) :- connection(X, Y, B),

aromatic_bond(B).

An important feature of carbon atoms is saturation, which refers to the
number of bonds that the carbon atom has. A saturated carbon atom is one
that is connected to four other atoms, only by single bonds.

saturated(X) :- carbon(X),
single_bonded(X, Y1), single_bonded(X, Y2),
single_bonded(X, Y3), single_bonded(X, Y4).

Similarly, the halogen group is defined as any atom that is connected to a
halogen atom, such as F, Cl, Br, or I.

halogen_group(Y) :- halogen(X), single_bonded(X, Y, B),
bond_message(X, Y, B).

In the same manner, the hydroxyl (-OH) and carboxyl (carbon atom double
bonded to oxygen) groups are defined.

hydroxyl(O) :- oxygen(O), hydrogen(H),
single_bonded(O, H, B), bond_message(O, H, B).

carbonyl_group(C, O) :- carbon(C), oxygen(O),
double_bonded(O, C, B), bond_message(O, C, B).

carbonyl_group(C, O, R1, R2) :- carbonyl_group(C, O),
single_bonded(C, R1, B1), single_bonded(C, R2, B2),
bond_message(C, R1, B1), bond_message(C, R2, B2).

C.2 Hydrocarbons

Benzene rings (Figure 4.2) are an important substructure in organic chemistry,
consisting of six carbon atoms bonded aromatically. The rule is composed such
that the messages between all atoms are passed. Additionally, an indicator
rule is created to check if two atoms are in the same benzene ring.

86

.............................C.3. Oxygen-containing compounds

benzene_ring(A, B) :- benzene_ring(A, B, C, D, E, F).

benzene_ring(A, B, C, D, E, F) :-
aromatic_bonded(A, B, B1), aromatic_bonded(B, C, B2),
aromatic_bonded(C, D, B3), aromatic_bonded(D, E, B4),
aromatic_bonded(E, F, B5), aromatic_bonded(F, A, B6),
carbon(A), carbon(B), carbon(C),
carbon(D), carbon(E), carbon(F),
bond_message(A, B, B1), bond_message(B, C, B2),
bond_message(C, D, B3), bond_message(D, E, B4),
bond_message(E, F, B5), bond_message(F, A, B6).

Another valuable substructure in organic chemistry is the presence of
double and triple bonds between carbon atoms (Figure 4.1). These bonds
play a crucial role in the reactivity and properties of organic compounds, as
well as the shape in bigger molecules, such as proteins.
alkene_bond(C1, C2) :- carbon(C1), carbon(C2),

double_bonded(C1, C2, B), bond_message(C1, C2, B).
alkyne_bond(C1, C2) :- carbon(C1), carbon(C2),

triple_bonded(C1, C2, B), bond_message(C1, C2, B).

C.3 Oxygen-containing compounds

Alcohols are implemented on the carbon atom connected to the hydroxyl
group (Figure 4.3). One important note is that this carbon atom has to be
saturated, lest it be confused with carboxylic acids.
alcoholic(C) :- saturated(C), hydroxyl(O),

single_bonded(C, O, B1), bond_message(C, O, B1).

Ketones, aldehydes and acyl halides are defined on the central carbon of
the carbonyl group, and they are distinguished depending on the substituents.
See Figure 4.4.
ketone(C) :- carbonyl_group(C, O, R1, R2),

carbon(R1), carbon(R2).

aldehyde(C) :- carbonyl_group(C, O, R, H),
carbon(R), hydrogen(H).

87

C. Chemical patterns
acyl_halide(C) :- carbonyl_group(C, O, R, X),

carbon(R), halogen(X).

Carboxylic acids are also defined on the central carbon of the carbonyl
group, and has the hydroxyl group attached to itself. The central carbon
atom in this case is not saturated, due to the double bond in the carbonyl
group, and therefore cannot be confused with alcohols. Acid anhydrides are
defined on the two central carbonyl carbon atoms. These structures can be
seen in Figure 4.5
carboxylic_acid(C) :- carbonyl_group(C, O, R, O1),

carbon(R), hydroxyl(O1).

carboxylic_acid_anhydride(C1, C2) :-
carbonyl_group(C1, X1, O12, Y1),
oxygen(O12), carbonyl_group(C2, X2, O12, Y1).

Similarly, ethers and esters are defined on the substituent carbons, see
Figure 4.6.
ester(R1, R2) :- carbonyl_group(C, X, R1, O),

carbon(R1), oxygen(O), carbon(R2),
single_bonded(O, R2, B), bond_message(O, R2, B).

carbonate_ester(R1, R2) :- carbonyl_group(C, X, O1, O2),
oxygen(O1), oxygen(O2),
carbon(R1), single_bonded(R1, O1, B1),
carbon(R2), single_bonded(R2, O2, B2),
bond_message(O1, R1, B1), bond_message(O2, R2, B2).

ether(R1, R2) :- carbon(R1), oxygen(O), carbon(R2),
single_bonded(R1, O, B1), single_bonded(O, R2, B2),
bond_message(R1, O, B1), bond_message(R2, O, B2).

C.4 Nitrogen-containing compounds

We begin by defining the amino group, which is a nitrogen atom with three
substituents, at least one of them is a carbon. This is used, in turn, to define
quaternary ammonium ions, amines and amides. Carbamates are essentially
a modified amide group. For reference, see Figure 4.7.

88

............................ C.4. Nitrogen-containing compounds

amino_group(N, R1, R2, R3) :- carbon(R1), nitrogen(N),
single_bonded(N, R1, B1),
single_bonded(N, R2, B2),
single_bonded(N, R3, B3),
bond_message(N, R1, B1),
bond_message(N, R2, B2),
bond_message(N, R3, B3).

quat_ammonion(N) :- nitrogen(N), carbon(C),
amino_group(N, R1, R2, R3),
single_bonded(N, C, B), bond_message(N, C, B).

amine(N) :- ~carbonyl(C, O), amino_group(N, C, R1, R2).

amide(R, R1, R2) :- carbonyl_group(C, O, R, N),
amino_group(N, C, R1, R2).

carbamate(C1, C2, C3) :- oxygen(O), amide(O, C2, C3),
single_bonded(O, C1, B), bond_message(O, C1, B).

Imines and imides are similarly defined for the substituents on the nitrogen
and carbons from carbonyl groups (Figure 4.8).

imine(R, R1, R2) :- carbon(C), nitrogen(N),
double_bonded(C, N, B), single_bonded(C, R1, B1),
single_bonded(C, R2, B2), single_bonded(N, R, B3),
bond_message(N, C, B), bond_message(C, R1, B1),
bond_message(C, R2, B2), bond_message(N, R, B3).

imide(R, R1, R2) :- carbon(C1), nitrogen(N), carbon(C2),
carbonyl_group(C1, O1, R1, N),
carbonyl_group(C2, O2, R2, N),
single_bonded(N, R, B), bond_message(N, R, B).

Azides, azo compounds and cyanates are defined on the terminal carbons.
Compare to the structure in the Figure 4.9.

azide(C) :- carbon(C1), nitrogen(N1),
nitrogen(N2), nitrogen(N3),
single_bonded(C, N1, B1),
double_bonded(N1, N2, B2), double_bonded(N2, N3, B3),
bond_message(C, N, B1),
bond_message(N1, N2, B2), bond_message(N2, N3, B3).

89

C. Chemical patterns
azo(C1, C2) :- carbon(C1), nitrogen(N1),

nitrogen(N2), carbon(C2),
single_bonded(C, N1, B1), single_bonded(N2, C2, B3),
double_bonded(N1, N2, B2),
bond_message(C, N, B1), bond_message(N2, C2, B3),
bond_message(N1, N2, B2).

cyanate(R) :- carbon(C), nitrogen(N), oxygen(O), carbon(R),
triple_bonded(C, N, B1),
single_bonded(C, O, B2), single_bonded(O, R, B3),
bond_message(C, N, B1),
bond_message(C, O, B2), bond_message(O, R, B3).

isocyanate(R) :- carbon(C), nitrogen(N), oxygen(O), carbon(R),
double_bonded(C, N, B1), double_bonded(C, O, B2),
single_bonded(N, R, B3),
bond_message(C, N, B1), bond_message(C, O, B2),
bond_message(N, R, B3).

Nitro compounds and nitrates (Figure 4.10) are based off of the nitro group,
which is a nitrogen atom connected to two oxygens, and a substituent, upon
which the distinction is made.

nitro_group(R) :- nitrogen(N), oxygen(O1), oxygen(O2),
single_bonded(R, N, B1), single_bonded(N, O2, B3),
double_bonded(N, O1, B2),
bond_message(R, N, B1), bond_message(N, O2, B3),
bond_message(N, O1, B2).

nitro(C) :- carbon(C), nitro_group(C).

nitrate(C) :- carbon(C), oxygen(O), nitro_group(O),
single_bonded(C, O, B), bond_message(C, O, B).

Azidrines are heterocyclic groups and they are defined on the carbon atoms,
which can be seen on the Figure 4.11.

aziridine(C1, C2) :- carbon(C1), carbon(C1),
nitrogen(N), hydrogen(H),
single_bonded(C1, C2, B1), single_bonded(N, H, B4),
single_bonded(N, C1, B2), single_bonded(N, C2, B3),
bond_message(C1, C2, B1), bond_message(N, H, B4),
bond_message(N, C1, B2), bond_message(N, C2, B3).

90

............................. C.5. Sulfur-containing compounds

C.5 Sulfur-containing compounds

Similar to the previous implementations, thiocyanates (Figure 4.12) and thiols
(Figure 4.13) are defined on the substituent carbon atom.
thiocyanate(R) :- carbon(C), sulfur(S), oxygen(O), carbon(R),

triple_bonded(C, S, B1),
single_bonded(C, O, B2), single_bonded(O, R, B3),
bond_message(C, S, B1),
bond_message(C, O, B2), bond_message(O, R, B3).

isothiocyanate(R) :- carbon(C), sulfur(S),
oxygen(O), carbon(R),
double_bonded(C, S, B1), double_bonded(C, O, B2),
single_bonded(S, R, B3),
bond_message(C, S, B1), bond_message(C, O, B2),
bond_message(S, R, B3).

thiol(C) :- carbon(C), sulfur(S), hydrogen(H),
single_bonded(C, S, B1), single_bonded(S, H, B2),
bond_message(C, S, B1), bond_message(S, H, B2).

Sulfides and disulfides are defined on the terminal carbon atoms, see Figure
4.13 for reference.
sulfide(C1, C2) :- carbon(C1), sulfur(S), carbon(C2),

single_bonded(C1, S, B1), single_bonded(S, C2, B2),
bond_message(C1, S, B1), bond_message(S, C2, B2).

disulfide(C1, C2) :- carbon(C1), sulfur(S1),
sulfur(S2), carbon(C2),
single_bonded(C1, S1, B1),
single_bonded(S2, S2, B12), single_bonded(S2, C2, B2),
bond_message(C1, S1, B1),
bond_message(S2, C2, B2), bond_message(S1, S2, B12).

C.6 Relaxations

So far we have been dealing with strictly defined chemical structures, however,
sometimes, the strict rules governing chemical structures can be limiting.

91

C. Chemical patterns
This is where the concept of relaxations comes in.

The relaxations of the chemical rules are first done on the basis of types
of atoms and types of bonds. New predicates are defined, such that they
encompass aliphatic types of bonds (single, double triple bonds), and aromatic
types, as well as some notion of key atoms, which should include oxygen,
nitrogen and other commonly occuring atom types.

From this, two connection predicates are defined, relaxed aliphatic and
aromatic bond, with weighed bond messages.

relaxed_aliphatic_bonded(X, Y, B) :- connection(X, Y, B),
aliphatic_bond(B), W::bond_message(X, Y, B).

relaxed_aromatic_bonded(X, Y, B) :- connection(X, Y, B),
aromatic_bond(B), W::bond_message(X, Y, B).

Carbonyl group can be relaxed, such that the rule triggers for any combi-
nation of connected key atoms, while preserving the substituents.

relaxed_carbonyl_group(X, Y) :- W::key_atom(X), W::key_atom(Y),
relaxed_aliphatic_bonded(X, Y).

relaxed_carbonyl_group(C, O, R1, R2) :-
relaxed_carbonyl_group(C, O),
relaxed_aliphatic_bonded(C, R1),
relaxed_aliphatic_bonded(C, R2).

Similarly, a relaxed benzene ring would be any six atoms bonded in an aro-
matic ring. This representation would also include some common heterocyclic
compounds, along with other hexacycles.

relaxed_benzene_ring(A) :- relaxed_benzene_ring(A, B).
relaxed_benzene_ring(A, B) :-

relaxed_benzene_ring(A, B, C, D, E, F).
relaxed_benzene_ring(A, B, C, D, E, F) :-

relaxed_aromatic_bonded(A, B),
relaxed_aromatic_bonded(B, C),
relaxed_aromatic_bonded(C, D),
relaxed_aromatic_bonded(D, E),
relaxed_aromatic_bonded(E, F),
relaxed_aromatic_bonded(F, A).

92

..................................... C.6. Relaxations

The arrangement of any carbon which connected to a non-carbon has
a potential to be a functional group, so a very broad relaxed predicate is
defined.
potential_group(C) :- W::relaxed_aliphatic_bonded(C, X),

W::noncarbon(X), carbon(C).

93

94

Appendix D

Result details

Figures and tables which are referenced in Chapter 11 and Chapter 12 will
be presented here.

95

D. Result details

Figure D.1: Train and test loss on the PTC FR dataset.

Figure D.2: Train and test loss on the PTC FM dataset.

96

..................................... D. Result details

Figure D.3: Train and test loss on the PTC MM dataset.

97

D. Result details

Figure D.4: Highest performing models on PTC MR dataset.

98

..................................... D. Result details

Figure D.5: Highest performing rules on PTC MR dataset.

99

D. Result details

Figure D.6: Highest performing models on PTC FR dataset.

100

..................................... D. Result details

Figure D.7: Highest performing rules on PTC FR dataset.

101

D. Result details

Figure D.8: Highest performing models on PTC FM dataset.

102

..................................... D. Result details

Figure D.9: Highest performing rules on PTC FM dataset.

103

D. Result details

Figure D.10: Highest performing models on PTC MM dataset.

104

..................................... D. Result details

Figure D.11: Highest performing rules on PTC MM dataset.

105

	Introduction
	Theoretical background
	Graph Neural Networks
	Architecture of GNNs
	Propagation Modules

	Weisfeiler-Lehman algorithm

	Relational learning
	First-order Logic
	Logic Programming
	Rule structure
	Architecture representation

	Organic Chemistry
	Functional groups
	Hydrocarbons
	Oxygen-containing compounds
	Nitrogen-containing compounds
	Sulfur-containing compounds

	Literature Review
	Datasets
	State-of-the-art models
	Standard Graph Neural Networks
	Relational Graph Convolutional Networks
	Higher-order Graph Neural Networks
	Ego-Graph Neural Networks
	Diffusion Convolutional Neural Networks
	Cellular Weisfeiler-Lehman Networks
	Subgraph Networks

	Implementation
	NeuraLogic framework
	Syntax
	Computational graphs

	Dataset preprocessing
	Subgraph patterns
	Basic patterns
	Y-shaped patterns
	Neighborhood patterns
	Cyclic patterns
	Collective patterns

	Testing and results
	Testing pipeline
	Results
	Discussion
	Conclusion

	Appendices
	Bibliography
	Model implementation
	Standard Graph Neural Networks
	Relational Graph Convolutional Networks
	Higher-order Graph Neural Networks
	Ego Graph Neural Networks
	Diffusion Convolutional Neural Networks
	Cellular Weisfeiler-Lehman Networks
	Subgraph Networks

	Chemical patterns
	General patterns
	Hydrocarbons
	Oxygen-containing compounds
	Nitrogen-containing compounds
	Sulfur-containing compounds
	Relaxations

	Result details

