
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Sports equipment tracker

Karel Zanáška

Ing. Filip Glazar

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Cílem práce je vytvořit webovou aplikaci, která bude sloužit ke správě sportovního 

vybavení. V aplikaci si uživatel bude moci vytvořit různé typy sportovního vybavení jako 

bicykl, běžeckou obuv, tenisovou raketu a další. K vybavení bude možné přiřadit sportovní 

aktivity a sledovat tak využití a možné opotřebení daného vybavení. Tyto aktivity mohou 

být zadány jak manuálně, tak pomocí integrace s platformou Strava. Uživatel bude 

například schopen zjistit, že už by si měl vyměnit řetěz na jízdním kole, protože je 

opotřebený, jen na základě jeho sportovních aktivit. Hlavním zdrojem těchto dat by měla 

být právě platforma Strava.

Ideálně postupujte dle následujících kroků:

1) Analyzujte možnosti integrace s platformou Strava.

2) Specifikujte funkční požadavky aplikace.

3) Proveďte volbu vhodných technologií pro daný typ softwaru např. programovací jazyk 

TypeScript a framework React.

4) Navrhněte a implementujte alespoň prototyp aplikace.

5) Otestujte vhodnými testy důležité komponenty aplikace.

6) Zhodnoťte výsledky testování a navrhněte potřebné úpravy aplikace.

7) Připravte aplikaci pro nasazení v produkčním prostředí.

Electronically approved by Ing. Michal Valenta, Ph.D. on 23 February 2023 in Prague.





Bachelor’s thesis

SPORTS EQUIPMENT
TRACKER

Karel Zanáška

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Glazar Filip
May 11, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2023 Karel Zanáška. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Zanáška Karel. Sports equipment tracker. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2023.



Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Analysis and design 5
1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Strava service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Strava API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Strava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 strava-gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 ProBikeGarage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Architecture and technology analysis 9
2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 CRUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.8 Webhooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.9 Web applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Client side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Server side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Data layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



iv Contents

3 Implementation 19
3.1 Server side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Serializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.5 Strava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Client side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Component-based architecture . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 State management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Strava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Testing 35
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Server-side unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 REST API testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 User testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Security testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Deployment 39
5.1 Docker image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Docker Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 NGINX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 43
6.1 Possible future extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Strava API 45

B REST API 49

C Server side implementation 53

D Client side implementation 57

E Deployment 61

F Application showcase 65

Contents of the attached medium 73



List of Figures

1.1 Screenshot of the FIT CTU club on the Strava platform [3] . . . . . . . . . . . . 6
1.2 Screenshot of the strava-gear console app . . . . . . . . . . . . . . . . . . . . . . 7

2.1 DOM diagram of the HTML document 2.1 . . . . . . . . . . . . . . . . . . . . . 11
2.2 SPA diagram [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Real DOM and React Virtual DOM [31] . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 React class-based component’s lifecycle diagram [50] . . . . . . . . . . . . . . . . 27

4.1 Happy path test of REST API in Postman . . . . . . . . . . . . . . . . . . . . . 37
4.2 SSL test result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.1 Screenshot of Strava authentication page . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Screenshot of Strava management console . . . . . . . . . . . . . . . . . . . . . . 46
A.3 Activity diagram Strava authenticaton [4] . . . . . . . . . . . . . . . . . . . . . . 47

B.1 REST API Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C.1 Main section of the database schema . . . . . . . . . . . . . . . . . . . . . . . . . 55

E.1 Screenshot of the Certbot tool that generates the certificate . . . . . . . . . . . . 63
E.2 Screenshot of the GitHub platform showing GitHub actions . . . . . . . . . . . . 63

F.1 Login page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
F.2 Home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
F.3 Equipment components page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
F.4 Activities page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

List of Tables

2.1 CRUD operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

v



vi List of code listings

List of code listings

2.1 Sample of HTML document with CSS . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 PostgreSQL configuration for Django . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Equipment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Serializer of Equipment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 View for retrieving user equipment . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 UserManager and User model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Sets custom user model for authentication . . . . . . . . . . . . . . . . . . . . . . 23
3.7 View for managing users’ Strava account . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 cURL command to register a Strava webhook subscription . . . . . . . . . . . . . 25
3.9 Functional component that represents a table . . . . . . . . . . . . . . . . . . . . 26
3.10 Retrieves user data if the user is logged-in . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Definition of routing nested in sidedrawer . . . . . . . . . . . . . . . . . . . . . . 28
3.12 Creation of context objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.13 Creation of action and reducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14 UserProvider and SportsProvider usage . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 Activities page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16 User login function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.17 Type defining the user id and its access token . . . . . . . . . . . . . . . . . . . . 32
3.18 Hook to get user id and token from local storage . . . . . . . . . . . . . . . . . . 32
3.19 Redirects to Strava authentication page . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Activity view test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 Dockerfie for Django app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Configuration of NGINX as a reverse proxy . . . . . . . . . . . . . . . . . . . . . 41
C.1 Implementation of webhooks for receiving activities from Strava . . . . . . . . . . 53
C.2 Functions for working with the cache . . . . . . . . . . . . . . . . . . . . . . . . . 56
C.3 Function to get activity details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
D.1 Provider creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
D.2 Function that performs HTTP request . . . . . . . . . . . . . . . . . . . . . . . . 58
D.3 Functions for working with local storage . . . . . . . . . . . . . . . . . . . . . . . 59
D.4 Component which prevents access for unauthenticated users . . . . . . . . . . . . 59
D.5 The component to which the Strava auth page redirects after the user logs in . . 60
E.1 Dockerfile for React app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
E.2 Docker compose file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
E.3 The docker-build.yml file defining GitHub actions . . . . . . . . . . . . . . . . . . 64



I would like to take this opportunity to express my gratitude to my
supervisor, Ing. Filip Glazar, for his guidance and support through-
out this work. His invaluable feedback and advice have been instru-
mental in shaping this thesis.
I would also like to express my heartfelt thanks to my family, espe-
cially my mother, for her constant encouragement, love, and sup-
port. Their belief in me has been a source of strength and inspiration
throughout my educational journey.
Finally, I would like to sincerely thank my friends for their encour-
agement and support during my studies.

vii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 11, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viii



Abstract

This bachelor thesis aims to design and develop a web application that allows users to track the
wear and tear of their sports equipment. The application allows users to manually create activities
or sync new activities from the Strava platform. It also allows the creation of sports equipment
and its components. Wear and tear of the equipment or its components is monitored based
on distance and time used in activities. The thesis includes a theoretical section that analyses
the application requirements, integration with Strava, and architecture and technologies for web
application development. It also includes a practical section that describes the development
process, testing, and deployment of the application. The thesis concludes with a summary of the
work and possible extensions to the application.

Keywords Sports equipment tracking, Single-page application, Strava API, React, Django
REST framework, Docker, GitHub Actions

Abstrakt

Tato bakalářská práce si klade za ćıl navrhnout a vyvinout webovou aplikaci, která umožńı
uživatel̊um sledovat opotřebeńı jejich sportovńıho vybaveńı. Aplikace poskytuje uživatel̊um
možnost ručně vytvářet aktivity nebo synchronizovat nové aktivity z platformy Strava. Umožňuje
také vytvářeńı sportovńıho vybaveńı a jeho komponent. Opotřebeńı vybaveńı nebo jeho kom-
ponent se monitoruje na základě vzdálenosti a času stráveného při aktivitách. Práce obsahuje
teoretickou část, která analyzuje požadavky na aplikaci, integraci se Stravou, architekturu a
technologie pro vývoj webové aplikace. Dále obsahuje praktickou část, která popisuje proces
vývoje, testováńı a nasazeńı aplikace. V závěru práce je uvedeno shrnut́ı práce a možná rozš́ı̌reńı
aplikace.

Kĺıčová slova sledováńı sportovńıho vybaveńı, jednostránková webová aplikace, Strava API,
React, Django REST framework, Docker, GitHub akce

ix



List of abbreviations

API Application Programming Interface
CSS Cascading Style Sheets

DOM Document Object Model
DRF Django REST framework

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation
ORM Object-relational mapping
REST REpresentational State Transfer

SPA Single-page-application
URL Uniform Resource Locator
URI Uniform Resource Identifier

x



Introduction

Sport is an essential part of the lives of many people. There are numerous positive effects of
sport on our health and overall fitness. For various sports, we need specific equipment. For
running, we need running shoes; for playing tennis, we need a tennis racket; for cycling, we need
a bike, helmet, cycling shoes, etc. To prevent injuries during sports, it is essential to maintain
and monitor the wear and tear of the equipment. As an illustration, it is recommended to
replace running shoes after covering a distance of 500 kilometers. For a bike, it is also necessary
to monitor the wear and tear of its individual components, such as the chain, which should be
generally replaced after 3,000 to 6,000 km.

Thanks to current technology, it is possible to use smart devices, such as a smartwatch, a
smartphone, or a speedometer with GPS, to record the activity and then upload it to a preferred
platform. One of these most popular platforms is Strava, which offers a lot of additional func-
tionality beyond activity recording but does not offer advanced sports equipment management.

We decided to create a web application that helps the user to monitor the condition of
sports equipment. Equipment wear and tear will be measured based on activities that can be
automatically imported from the Strava platform or created manually.

In the first chapter, we deal with the requirements and capabilities of the application. Then
we analyze the Strava platform and possible integration with it. We also describe alternative
solutions and their limitations.

In the second chapter, we introduce the general principles of how web applications work and
describe different approaches to building web applications. We explain which architecture we
have chosen. Then, we discuss the appropriate technologies for developing the web application.

In the third chapter, we describe the implementation of a web application using selected
technologies based on the given requirements. We present in detail how to integrate the Strava
platform with our application.

In the fourth chapter, we deal with testing the application. We introduce ways of testing web
applications, and we implement appropriate ones.

In the fifth chapter, we describe how the application is securely deployed. Application de-
ployment is automated as much as possible, so it is easy to deploy a new release.

In the last chapter, we summarize the work and describe possible future application exten-
sions.

1



2 Introduction



Aim of the thesis

The aim of this work is to design a web application that allows people to track the wear and tear
of their sports equipment based on activities from the Strava platform.

Within the application, the user will be able to optionally link their account to the Strava
platform. If they choose to do so, the activities uploaded to Strava will be automatically syn-
chronized with their account. Additionally, they will be able to manually create activities within
the app. The user will have the option to create different types of sports equipment, such as
running shoes, a tennis racket, or a bike. They will also be able to track individual components
of the equipment, such as the chain on a bike. The equipment or its components will be able to
be associated with activities, as wear and tear on the equipment are tracked based on distance
or time used in activities.

The first part of the thesis is theoretical. It deals with the analysis of the application require-
ments and possible integration with the Strava platform. The selection of suitable technologies
for the creation of web applications is also presented.

The second part of the work is practical. This part deals with the process of developing an
application using the selected technologies, testing, and deployment.

3



4 Introduction



Chapter 1

Analysis and design

1.1 Requirements
Software requirements describe the features, functions, and capabilities of the software to meet
the needs of its users. Requirements can be divided into two categories. [1]

1.1.1 Functional requirements
Functional requirements describe the interactions between the system and its environment.
FR1: The user should be able to register and log in to the application.

FR2: The user should be able to link the Strava account to the app to be able to receive new
activities from Strava. They should also be able to remove the Strava account.

FR3: The user should be able to manually create and delete activities.

FR4: The user should be able to create and delete sports equipment.

FR5: The user should be able to assign and remove components to each sports equipment.

FR6: The component should be able to be present on multiple sports equipment at the same
time.

FR7: The user should be able to assign sports equipment to activities.

FR8: The user should be able to track the wear and tear of sports equipment and its components
based on distance or time used in activities.

1.1.2 Non-functional requirements
Non-functional requirements describe general software characteristics such as usability, reliability,
performance, and error handling.
NFR1: The application uses a token-based secure authentication method. All communication

between the application and the client is encrypted.

NFR2: The application’s graphical user interface is in English.

NFR3: The application is publicly available on the Internet and is accessible through a domain
name.

NFR4: The application is usable on various devices, such as a computer or smartphone.

5



6 Analysis and design

1.2 Strava service

1.2.1 Overview
Strava is a fitness app that has become popular among sports hobbyists and athletes. The app
allows users to track and analyze sports activities such as cycling, running, swimming, hiking,
etc. It is available on the Android and iOS platforms, as well as on the Web. The user can
record activity directly via the Strava app on their mobile phone or using a sports watch or bike
speedometer. The application also has social functions that allow users to share their activities
with friends. The user may also join various clubs, such as the FIT CTU club1, as shown in
the figure 1.1. One of Strava’s unique features is its leaderboard, where users can compete with
other athletes who have successfully completed similar activities. In addition to its basic features,
Strava also offers premium subscriptions that provide advanced analysis tools and personalized
training. [2]

Figure 1.1 Screenshot of the FIT CTU club on the Strava platform [3]

1.2.2 Strava API
Strava offers an API for public use. Unlike a web or mobile app, where data for public profiles
are publicly available, the API only provides data about the logged-in user. Therefore, the
application requires the necessary user permissions, which are obtained using the OAuth 2.02

protocol.

1https://www.strava.com/clubs/fit-cvut
2OAuth 2.0 is the industry-standard protocol for authorization.



Existing solutions 7

The utilization of Strava API is restricted for each application with a cap on the number
of requests that can be made in a 15-minute interval and on a daily basis. The default rate
restriction allows up to 100 requests every 15 minutes and a maximum of 1,000 requests per day.
To avoid these limits and to meet the login and logout requirements, it is necessary to implement
webhooks. It is possible to see graphs of request rates there. [4]

1.3 Existing solutions
There are no applications that meet the specified requirements. There exist alternative applica-
tions that integrate the Strava platform, but they are only related to bike management.

1.3.1 Strava
The Strava platform itself provides simple sports equipment management. The user can assign
a bicycle or shoes to their account, which they can then add to their activities. Other kind of
equipment are not supported. [5] The Strava API 1.2.2 offers an endpoint from which information
about the user’s equipment can be retrieved.

1.3.2 strava-gear
strava-gear is a command line application that allows users to manage their bikes and their
components based on activities from the Strava platform. The main advantages of the application
are that it is open source under the MIT license3 and does not require a third-party server to be
running, as the data are stored locally by the user. The main drawbacks are that the application
offers only a text-based user interface and also that it is limited to bike management only. [6]

Figure 1.2 Screenshot of the strava-gear console app

3Software license allowing broad reuse, modification, and distribution.



8 Analysis and design

1.3.3 ProBikeGarage
ProBikeGarage is a mobile application for Android and iOS platforms. Its main advantages
include an extensive database of available bike components and a user-friendly interface. Draw-
backs include being tied to a mobile device and being limited to bike management. [7]

1.3.4 Conclusion
Based on the analysis of existing solutions, there is a space for a web application that allows the
management of sports equipment beyond bikes. There are applications for bike management,
but they are limited to use on a mobile phone or in the command line. They also do not allow
managing all kinds of sports equipment. A web application would allow the user to track their
sports equipment and its components on different platforms.



Chapter 2

Architecture and technology
analysis

2.1 Architecture
This section first looks at the general concepts used in all web applications. These include the
Hypertext Transfer Protocol, Hypertext Markup Language, Document Object Model, JavaScript
Object Notation, and Web API types. Then possible approaches to creating web applications
are described and compared. Finally, the selection of a preferred approach that would best suit
the requirements of the application is justified.

2.1.1 HTTP
HTTP (Hypertext Transfer Protocol) is a client-server protocol. HTTP is widely used in web
applications. In these applications, requests are sent by a user agent that acts on the user’s
requests. The role of the user-agent is usually performed by the web browser. HTTP is a
stateless protocol, which means that each client request contains all the information needed for
the server to process the request without any state being stored on the server. When processing
requests, the server does not cache any data, and each request is processed independently. [8]

The HTTP protocol defines several methods that describe the operation to be performed on
a resource. Each method serves a different purpose. [9]

GET: Retrieves a representation of the specified resource.

HEAD: Is identical to GET but without response points.

POST: Submits an entity to the specified resource.

PUT: Updates a current representation of the specified resource.

DELETE: Deletes the specified resource.

CONNECT: Establishes a connection with the server by the target resource.

OPTIONS: Retrieves communication options for the target resource.

TRACE: Conducts a diagnostic test for the target resource.

PATCH: Performs a partial modification for the target resource.

9



10 Architecture and technology analysis

There are four versions of HTTP: HTTP/0.9, HTTP/1.0, HTTP/1.1, and HTTP/2.0. HTTP
messages defined in HTTP/1.1 and earlier versions are human-readable, unlike HTTP/2 where
HTTP messages are embedded in a binary structure. [10]

2.1.2 HTML
HTTP is a protocol that can be used to transfer various formats such as text or binary files. The
most widely used format is HTML.

HTML (Hypertext Markup Language) is a language used to describe a document and its
formatting. Documents are composed of elements that are defined by tags.

Tags are used to define the beginning and end of elements, and they can be nested within
each other. For example, they can define headings, paragraphs, lists, tables, or images. Tags can
contain attributes that define additional information about the element, such as the element id
or size.

HTML allows the user to create links between the documents using the tag <a> and its
attribute href. For example, <a href="http://fit.cvut.cz/en">FIT CTU</a> is a link that
redirects the user to the FIT CTU website1. See the listing 2.1 for an illustration of use within
the whole HTML document. [11]

2.1.3 CSS
CSS (Cascading Style Sheets) is a style sheet language used to describe the appearance of ele-
ments in an HTML document, although it can also be used for other languages such as XML2.
CSS can be used to specify the layout of elements, fonts, colors, and other graphical details. CSS
can be either inside the file itself or it can be embedded in the HTML document, as shown in
listing 2.1. [11]

2.1 Sample of HTML document with CSS

<!DOCTYPE HTML>
<html>

<head>
<title>Sample document</title>
<style type="text/css" >

body {
background-color: gray

}
h1, h2, h3, h4, h5, h6 {

text-align: center;
}

</style>
</head>

<body>
<h1>Sample document</h1>
<p>This is a sample document.</p>
<a href="http://fit.cvut.cz/en" >FIT CTU</a>

</body>

1https://fit.cvut.cz/en
2Markup language for data exchange.



Architecture 11

2.1.4 DOM
DOM (Document Object Model) is a standard developed by W3C3 that specifies a Document
interface for accessing and modifying individual elements of an HTML or XML document. [12]
The Document interface treats the document as a tree structure, where each node represents a
part of the document. The DOM allows dynamic manipulation of the content on a page using
methods. Methods can be called on a specific DOM node or a collection of nodes. For example,
the getElementById() method is used to retrieve a document element with a specific ID. The
DOM also provides properties, which are values of the node that can be read or written. For
example, the innerHTML property is used to retrieve or set the content of an element. [13] Web
browsers use engines such as Gecko, Webkit, and Blink to parse HTML into the DOM. [14]

Figure 2.1 DOM diagram of the HTML document 2.1

2.1.5 JSON
JSON (JavaScript Object Notation) is a lightweight text data format that is easy to read and
write for humans and computers. JSON data consist of key-value pairs, where the key is always
a string and the values are strings, numbers, booleans, arrays, or other JSON objects. Arrays are
enclosed in square brackets, and JSON objects are enclosed in compound brackets. The objects
are separated by commas. Most modern programming languages support JSON. [15]

2.1.6 API
API (Application Programming Interface) is a software interface that allows the communication
of various applications over the network. It provides a set of rules on how data can be exchanged.
The API can be used for various needs, such as the integration of third-party applications, client-
server applications, or communication with IoT devices 4. [16]

3World Wide Web Consortium – https://www.w3.org/
4Internet-connected devices that collect and transmit data.



12 Architecture and technology analysis

2.1.6.1 REST
REST (REpresentational State Transfer) is an architectural style devised by Roy Fielding in
his 2000 Ph.D. thesis. REST must meet the following principles: client-server architecture,
stateless communication, uniform interface, layered system, and optionally code on demand. In
RESTful systems, clients send HTTP requests to the server that responds with a representation
of the requested resource usually in JSON or XML format. The resource is identified by a
unique URI. REST decouples the client and server as much as possible and allows a high level of
abstraction. REST is also flexible enough to allow easy system extensibility. The disadvantage is
that there is no uniform pattern to how resources are modeled, it always depends on the specific
use case. [17], [18], [19]

2.1.6.2 SOAP
SOAP (Simple Object Access Protocol) is a protocol for exchanging information using XML. The
specification was publicly released by the W3C in 1999. SOAP can be used with various transport
protocols such as HTTP, FTP5, or SMTP6. SOAP uses WSDL to describe the functionality of
a service, where WSDL is a language built on top of XML. This built-in functionality makes
the SOAP platform and language independent. One of its main advantages is that very high
security can be ensured thanks to the WS-Security extension7. The disadvantage is that SOAP
fundamentally only works with XML files, which can be large in size, and therefore SOAP requires
a lot of network bandwidth. [19], [20]

2.1.6.3 GraphQL
GraphQL is a query language that was released by Facebook in 2015 as open-source. GraphQL
uses the Schema Definition Language to create schemas. GraphQL allows the client to get
only specific data, which makes it very efficient. Moreover, the client can verify that his query
matches the data schema. The disadvantages of GraphQL are that it is relatively computationally
intensive and not as easy to learn as REST API. [19], [20]

2.1.6.4 gRPC
gRPC is an open-source framework developed by Google. gRPC uses the Protobuf (protocol
buffers) messaging format, which provides high efficiency of structured data transfer. Protobuf
describes the service interface, and gRPC then generates code for the specific programming
language. It supports many languages such as Python, Java, C++, Go, or C#. gRPC requires
HTTP/2 for communication between the server and the client. in addition, gRPC offers other
functionalities such as streaming and bidirectional communication. gRPC is well-suitable for
microservice-based applications. [19], [20], [21]

2.1.7 CRUD
CRUD (Create, Read, Update, Delete) are operations that are used for communication with a
database application. It is a popular acronym as it provides an overview of possible manipulative
operations. Each language or framework provides its own operations that correspond to CRUD.
The table 2.1 shows the equivalent CRUD operations for the REST standard and the SQL
language8. [22]

5File transfer protocol for exchanging files.
6Email protocol for message transmission.
7https://www.ibm.com/docs/en/app-connect/11.0.0?topic=security-ws
8Language for managing relational databases.



Architecture 13

Table 2.1 CRUD operations

CRUD Description SQL command HTTP method

Create Add one or more new entries Insert POST / PUT
Read Retrieves entries that match certain criteria Select GET
Update Change specific fields in existing entries Update PUT / POST / PATCH
Delete Entirely removes one or more existing entries Delete DELETE

2.1.8 Webhooks
Webhook refers to a callback function that uses HTTP communication between two applications.
To set up the webhook, it is necessary to send the API URI to the server and specify which data
should be received. The client then does not have to ask the server for new updates, as the
server automatically sends the data to the client when the requested change occurs. Webhooks
are known as push APIs or reverse APIs because the server is responsible for the communication,
rather than the client, as with standard API. [23]

2.1.9 Web applications
Web applications are applications that can be controlled using a Web browser. They provide a
convenient way for users to interact with data and services without the need to install software
on the device. The majority of applications use JavaScript, HTML, and CSS technologies on
the client side, and on the server side use languages such as Python, C#, and Java to run the
program on the server. [24], [25]

For this work, we chose a client-side dynamic web application because it provides a smooth
user experience, lower server utilization, and offers high flexibility. For completeness, the possible
approaches to creating web applications are described in the order in which they have evolved.

2.1.9.1 Static web apps
Static web apps are simple applications that work on the basis of fixed and immutable content.
They do not have any interactive elements. Source files are stored on the server and they are
commonly written in HTML with the same content displayed to all users. Each link in the
application corresponds to exactly one type of HTTP request to which the server responds with
a new page. The primary role of the web browser is to act as a simple terminal for the remote
display of content, while the server acts as an index and data storage system. [25]

2.1.9.2 Server-side dynamic web apps
Server-side dynamic web applications are dynamic web pages that generate dynamic content on
the server side based on a request from the client. The template engine on the server is used to
achieve dynamic behavior. A template is stored in the source code, into which a dynamic value
is placed using a script, and then a page with this value is returned by the server. Therefore,
the web page is constructed using a server-side script. For the development of server-side web
applications, technologies such as Django, ASP.NET, or Spring Boot, which provide templating,
are used in addition to standard HTML. [25], [26]



14 Architecture and technology analysis

2.1.9.3 Client-side dynamic web apps and Single-page apps
Client-side dynamic web applications are applications that are dynamically generated on the
client side in the web browser. Compared to server-side dynamic applications, the changes to
the page do not strictly rely on the server. They work on the principle that the web browser
fetches the initial HTML page from the server and then uses a programming language to dynam-
ically modify the DOM based on user interaction. The programing language used for client-side
scripting is mostly JavaScript. This approach allows a more interactive and seamless user expe-
rience, as no server is required for each user interaction.

SPA (Single-page applications) are web applications that dynamically update the content on
a single page instead of loading several pages from the server. This allows changing the content
of a page without reloading it. As single-page applications depend on client-side technologies,
and they are strongly linked to client-side dynamic web applications. [24], [25], [26]

Figure 2.2 SPA diagram [27]

2.1.10 Conclusion
We have described the concepts used in web application development in the order they evolved.
For this work, we have chosen the Single page application architecture, which is a type of dy-
namic client-side web application, due to the fact that these applications provide a seamless user
experience. Another reason why we chose to use a client-side dynamic web application is that
the client and server components can be developed independently. These components communi-
cate with each other over the network using the standardized HTTP protocol. By splitting the
workload between server and client, client-server applications provide efficient resource sharing.
In this approach, the client initiates the connection to the server, while the server remains in a
state of listening to the requests of each client.

We chose REST API as the web API for communication between server and client components
because of its high flexibility and simplicity. The Strava platform also offers a REST API.
Webhooks are used to receive new activities from Strava so the server is not burdened with
unnecessary requests for activity updates. Data between the server and client as well as between
Strava and the server are exchanged using JSON data format.



Technologies 15

2.2 Technologies
This section describes the technologies chosen for application development. As we use SPA
architecture, we divide the technologies into client side, server side, data layer, and deployment
sections.

2.2.1 Client side
The client side of a web application is part of the application that runs on the user’s device,
typically in a web browser. This part is supposed to process user interactions, send requests to
the server via API and render the user interface.

2.2.1.1 JavaScript and TypeScript
JavaScript is an open-source programming language, which is mainly used to execute complex
tasks in a web browser. It allows users to create dynamic content on a web page, 3D animated
graphics, and control multimedia content. JavaScript has changed the web application devel-
opment industry. Nowadays, JavaScript is not only popular on the client side for creating web
applications, but is also suitable for server-side use. [28]

TypeScript is an open-source programming language developed by Microsoft. It is based on
JavaScript. TypeScript provides static type checking, which is a useful feature in application
development. It also provides functionality for better code management, such as classes or
interfaces. [29]

2.2.1.2 React
React is an open-source JavaScript library used for creating user interfaces. It was developed by
Facebook. React allows the development of complex user interfaces using declarative program-
ming. React’s performance is optimized by using a virtual DOM instead of directly manipulating
the real DOM. The virtual DOM acts as an intermediary between the application and the actual
browser DOM. React is a suitable tool for developing single-page applications. It uses JSX,
which allows writing HTML-like code inside JavaScript. JSX is not standard HTML, it is code
that has a similar structure to HTML, but it is translated into JavaScript in the background.
This is useful since error checking is done at the compiler level instead of in the runtime. React
fully supports TypeScript, so the developers can use static type checking. [30]

Figure 2.3 Real DOM and React Virtual DOM [31]

2.2.1.3 Material UI
Material UI is an open-source React UI library that provides premade components based on
Google’s Material Design. Material UI offers a lot of components like buttons, formulas, and
tables. Material UI gives the developer a lot of flexibility to customize the appearance and layout
of the page. [32]



16 Architecture and technology analysis

2.2.2 Server side
The server side of a web application is part of the application that runs on the server. This part
is primarily responsible for processing incoming requests from the client.

2.2.2.1 Python
Python is an open-source interpreted programming language, which is very easy to understand
and very powerful. Its big advantage is that it is easily portable on most platforms. Python sup-
ports both procedural and object-oriented programming approaches. The ecosystem of Python
is wide, and it is suitable for many domains, such as web development, data analysis, or network
programming. [33]

2.2.2.2 Django and Django REST framework
Django is a framework written in Python designed for creating web applications. It is primarily
targeted for server-side development. Django follows the MVT architectural style. MVT (Model
View Template) stands for the application which is divided into these separable parts:

Model: Represents data and business logic of the application.

View: Handles user input, retrieves data from the Model, and renders the response using the
Template.

Template: Represents user interface and presentation layer.

Django includes a built-in logging system that gives users the ability to monitor the state of
the application. The logger has severities of DEBUG, INFO, WARNING, ERROR, and CRITI-
CAL. [34], [35]

DRF (Django REST framework) is a library that is built on top of the Django library. The
library is used for creating the REST APIs. It handles things like serialization, object relation
mapping, and authentication. It supports various data formats like JSON, XML, and HTML. [36]
The Django REST framework uses the MVS (Model View Serializer) architecture, which differs
from MVT in that it uses Serializers instead of Templates to convert data from the database to
JSON or XML format. [37]

DRF offers ORM. ORM (Object-Relational Mapping) is a technique for mapping database
tables and their relationships to a model in Django. It allows the developers to manipulate the
database using Python code instead of writing SQL queries.

2.2.3 Data layer
The data layer of a web application is part of the application responsible for retrieving and
storing application data. This part should provide the needed data to the server side. The data
layer can be integrated within the server-side layer or separated.

2.2.3.1 DBMS
DBS (Database management system) is a computer system for organizing and managing data.
Users of this system can perform various operations when working with data in the database.
A database is a collection of data divided into logical units. [38] There are various types of
databases, such as:

Hierarchical database: Hierarchical database is useful for managing hierarchical data, such
as for managing the hierarchical structure of a company. It works on the principle of creating
a tree, where a parent can have several children, and a child has just one parent.



Technologies 17

Relational database: A relational database is a type of database that is useful for managing
structured data. It works on the principle that data is stored in tables, where each table con-
sists of rows and columns. Columns represent data attributes and rows represent individual
records. The relationship between multiple tables is defined by common attributes or keys.
[39]

Non-relational database: : A non-relational database is a type of database that is useful for
managing unstructured data. It works on various principles such as key and value pairs,
graph databases, and document-oriented databases.

In this work, we use a relational database because we work with well-structured data, and
the relational database satisfies these features [39]:

Data consistency and integrity: Relational database ensures consistency and structural and
logical integrity of data. Consistency means that the data is valid and meets the constraints
for each change. Structural integrity ensures that the data conforms to a given schema, that
each table has a primary key, that foreign keys are used to establish relationships between
tables, and that there are no invalid references in the database. Logical integrity ensures
that the data in the database satisfy certain constraints, such as that records have a unique
identifier.

Flexibility: Flexibility indicates that the database is not implemented in a rigid way, which
means it should be easy to modify or extend the database schema without disrupting the
existing data.

Query performance: The query performance is high for relational queries. The SQL language
is used for working with the relational database because it is very well designed for working
with data.

2.2.3.2 PostgreSQL

PostgreSQL is a relational database system that is open source and offers many of the bene-
fits of proprietary database systems. It provides high data integrity and excellent scalability.
PostgreSQL fully complies with the ANSI SQL standard, which defines the syntax and se-
mantics of SQL and specifies rules for creating, filtering, or modifying data in a relational
database. [40], [41]

2.2.4 Deployment
Deployment is an essential part of the software development cycle. It includes the steps and
processes necessary to make the software available to the users.

2.2.4.1 Docker
Docker is a platform for creating and managing containers. Containers are isolated environments
for software applications. They simplify the development and delivery of applications. A Dock-
erFile is a text file that contains instructions for building an image. A Docker image is created
based on a DockerFile and contains all the files needed to run the application in the container.
A Docker container is an instance of a Docker image. [42]

Docker Compose is a tool that allows developers to manage multi-container applications via
a configuration file. Moreover, it allows us to define features like persistent volumes or service
dependencies. [42]



18 Architecture and technology analysis

2.2.4.2 GitHub
GitHub9 is a web platform for developers to store and manage their Git repositories. Git is a
versioning system that helps developers track changes in a project. Using Git, developers can
modify code in a central repository, streamlining collaboration. GitHub offers a web interface
for developers to manage Git repositories easily.

Moreover, GitHub offers GitHub Actions. GitHub Actions automates the process of build-
ing, testing, and deploying software. They provide official Docker actions that can be used for
building, tagging images, or managing containers. [43]

2.2.4.3 NGINX
NGINX10 is open-source software that operates as a web server, reverse proxy, cache, load
balancer, and media streaming platform. It was designed for maximum performance and stability
and can function as a reverse proxy for HTTP, TCP11, and UDP12 servers.

A reverse proxy is a type of server used within a private network. It sends requests from the
client to a proper backend server. It provides another layer of abstraction between the server
and the client. [44]

2.2.5 Conclusion
As a client-side technology, we chose TypeScript for its dynamic functionality and static type
checking. We selected React as the main library because of its declarative approach, efficiency
due to the virtual DOM, and TypeScript compatibility. Material UI was chosen as the UI library
because it provides prebuilt components based on Google’s Material Design.

On the server side, we chose Python for its ease of use and cross-platform portability. For
creating a RESTful API, we selected the Django REST framework because it supports features
such as data serialization and ORM. PostgreSQL was chosen as the database system because of
its robustness and performance.

We chose Docker, GitHub, and NGINX technologies for application deployment because they
provide several benefits and facilitate application development. Docker was chosen because it
simplifies application development and deployment by containerization. GitHub was selected be-
cause it allows tracking changes during the development process, and GitHub Actions automates
the process of building and deploying the application. NGINX was chosen as a reverse proxy
server because it is relatively simple to configure and it performs well.

9https://github.com/
10https://www.nginx.com/
11Transport protocol for reliable communication on the internet.
12Connectionless transport protocol for communication on the internet.



Chapter 3

Implementation

This section demonstrates the details of the application implementation. As we described above,
the architecture of the application is a single-page web application. 2.1.10 It uses React 2.2.1.2
with TypeScript 2.2.1.1 on the client side and Django REST framework2.2.2.2 on the server
side. The application development was done according to the functional and non-functional
requirements described in section 1.1.

3.1 Server side
A Django project can consist of several applications. Each application can contain views, serial-
izers, models, and other components. In our project we have created the following applications:

sports equipment tracker: The main DRF application, the other applications are defined here.

SportsEquipmentTracker: The app provides management of activities, equipment, and its com-
ponents.

SportsEquipmentTrackerAuth: The app provides user account management and security.

SportsEquipmentTrackerStrava: The app implements webhooks and listens for incoming events
from the Strava.

As described above 2.2.3.2, we use PostgreSQL as our database system. One of the factors
we chose PostgreSQL is that Django has excellent support for it. In the global settings of the
project in the settings.py file, the configuration for PostgreSQL should be set as shown in the
listing 3.1. The parameters are stored in environment variables.

The Django REST framework follows the Model-View-Controller pattern which is intended for
creating REST APIs. The REST API was designed to meet the functional requirements 1.1.1. It
supports CRUD operations 2.1.7 for equipment, components, activities, alerts, users, and strava
accounts. Responses are in JSON format. For full API documentation, see figure B.1 in the
appendix.

19



20 Implementation

3.1 PostgreSQL configuration for Django

DATABASES = {
"default": {

"ENGINE": "django.db.backends.postgresql",
"NAME": os.environ.get("SQL_DATABASE" "SportsEquipmentTracker"),
"USER": os.environ.get("SQL_USER"),
"PASSWORD": os.environ.get("SQL_PASSWORD"),
"HOST": os.environ.get("SQL_HOST", "172.22.0.2"),
"PORT": os.environ.get("SQL_PORT", "5432")

}
}

3.1.1 Models
The model represents the data and defines how it is stored in the database. It provides a view of
the data in an object-oriented way. In DRF, model classes inherit from the models.Model class
provided by Django. Each attribute in the module corresponds to the field in the database table.
Relationships between models are defined using foreign keys or many-to-many relationships. We
have created the user, activity, equipment, and component models. The database schema can
be seen in figure C.1.

3.2 Equipment model

class Equipment(models.Model):
user = models.ForeignKey(User, on_delete=models.CASCADE)
kind = models.CharField(max_length=100)
name = models.CharField(max_length=100)
reg_date = models.DateTimeField(auto_now_add=True)
weight = models.FloatField(null=True)
brand = models.CharField(max_length=100, null=True)
model = models.CharField(max_length=100, null=True)
year = models.IntegerField(null=True)
notes = models.TextField(null=True)
retired = models.BooleanField(default=False)

source = models.CharField(max_length=100, null=True)
strava_equipment_id = models.CharField(

null=True,
unique=True,
max_length=50

)
components = models.ManyToManyField(Component,

related_name='equipmentcomponent_set')
alerts = models.ManyToManyField(Alert,

related_name='equipmentalert_set')



Server side 21

3.1.2 Serializers
Serializers are used to convert objects into JSON format so it is possible to send objects via
HTTP request. They are also used to deserialize data into objects so data can be handled by the
application. In DRF, Serializer classes inherit from the serializers.ModelSerializer class
provided by Django.

Each model has its own serializer in the application. As an illustration of its use, see the
listing 3.3 showing EquipmentSerializer, which serializes the Equipment model. Besides the
model’s own attributes, it also adds information about the total distance and elapsed time
according to the use of the specified equipment in activities.

3.3 Serializer of Equipment model

class EquipmentSerializer(serializers.ModelSerializer):
activities = ActivitySerializer(many=True, read_only=True)
reminders = ReminderSerializer(many=True, read_only=True)

# Calculate total distance for all activities using aggregate function
distance = serializers.SerializerMethodField()
def get_distance(self, obj):

return obj.activityequipment_set.aggregate(
distance=models.Sum('distance')

)['distance']

# Calculate total elapsed time for all activities using aggregate function
elapsed_time = serializers.SerializerMethodField()
def get_elapsed_time(self, obj):

return obj.activityequipment_set.aggregate(
elapsed_time=models.Sum('elapsed_time')

)['elapsed_time']

class Meta:
model = Equipment
fields = ('id','kind','name','reg_date','weight','brand','model',

'year','notes','retired','source','strava_equipment_id',
'distance','elapsed_time','activities','components','alerts')

depth = 2

3.1.3 Views
In DRF, views are used to define the logic of individual endpoints. They are responsible for
processing HTTP requests and returning HTTP responses. DRF provides several classes that
can be used as base classes for defining views. In this work, we use the APIView class, from
which views are inherited. As an implementation illustration, see the listing 3.4 where the view
for retrieving the user equipment is implemented.



22 Implementation

3.4 View for retrieving user equipment

class EquipmentView(APIView):
# set authentication and permission classes
authentication_classes = [TokenAuthentication]
permission_classes = [IsAuthenticated]

def get(self, request, user_id=None):
# Check if the user ID in the URL matches the authenticated user's ID
if request.user.id != user_id:

return Response("User mismatch", status=HTTP_400_BAD_REQUEST)

# Get all equipments associated with the authenticated user
equipments = Equipment.objects.filter(user=request.user)

# Serialize the equipments data and return as a response
equipments_serializer = EquipmentSerializer(equipments, many=True)
return Response(equipments_serializer.data, status=HTTP_200_OK)

3.1.4 Authentication
Token-based authentication is appropriate for SPA because it provides secure and efficient com-
munication between the client and server. Once user identity is verified, the client receives a
token from the server that can be stored in local storage1 or a cookie2. Then, each time the
client requests the server, the client attaches this token to the request header. The client can use
the token as long as it is valid. [45] This principle preserves the statelessness of the application
because the server does not have to maintain any session.

In this application, we use access tokens with infinite expiration for communication between
the client and server. We decided to do so because of the simplicity of use and user-friendliness.
The disadvantage is a slightly reduced security of the application compared to the approach
where access tokens have limited validity. If the user logs out from the application, the token is
destroyed, and a new token is generated when the user logs in again.

DRF offers the possibility of token authentication. The listing 3.5 shows a fragment of
UserManager class for the User model, which inherits from Django built-in UserManager class.
The create user method is used to create a new user based on username, password, and other
additional parameters. The password is encrypted using the set password method, and the
created user is saved to the database using user.save(). We can also see User class, which is
the model for the user itself. By setting objects to UserManager, we ensure that all operations
with the user will be performed using UserManager.

1Client-side storage of key-value data.
2The small text file stored in a browser



Server side 23

3.5 UserManager and User model

class UserManager(models.Manager):
def create_user(self, username, password=None, **extra_fields):

if not username:
raise ValueError('Users must have an username')

user = self.model(username=username, **extra_fields)
user.set_password(password)
user.save(using=self._db)
return user

...
class User(AbstractUser):

objects = UserManager()

To let DRF know to use our User model, we need to set the AUTH USER MODEL variable to our
User model in the global application settings, as shown in the listing 3.6.

3.6 Sets custom user model for authentication

...
AUTH_USER_MODEL = 'SportsEquipmentTrackerAuth.User'
...



24 Implementation

3.1.5 Strava
The integration of Strava into our application can be divided into two parts. The first part is
about managing the Strava account. The second part is about managing activities.

3.1.5.1 Strava account
Our REST API provides endpoints with the prefix /api/user/<userId>/strava/account/ for
working with the Strava account, as shown in the appendix in the figure B.1.

When a user logs in to Strava, the client sends a post request containing a refresh token,
access token, access token expiration, and Strava account identifier to the server using our REST
API. Implementation of View for creating a new Strava account can be seen in the listing. 3.7

3.7 View for managing users’ Strava account

class StravaAccountView(APIView):
authentication_classes = [TokenAuthentication]
permission_classes = [IsAuthenticated]
...
def post(self, request, user_id=None):

user = request.user
if user.id != user_id:

return Response("User id does not match", status=HTTP_403_FORBIDDEN)

access_token = request.data.get('accessToken')
refresh_token = request.data.get('refreshToken')
expires_at = request.data.get('expiresAt')
athlete_id = request.data.get('athleteId')
# check if the user already has Strava account
try:

strava_account = StravaAccount.objects.get(user=user)
if strava_account:

return Response("Strava account already exists",
status=HTTP_403_FORBIDDEN)

except StravaAccount.DoesNotExist:
pass

strava_account = StravaAccount.objects.create(user=user,
refresh_token=refresh_token, athlete_id=athlete_id)

# save access token in cache
set_access_token(strava_account, access_token, expires_at)
return Response({"message": "strava account created"}, status=HTTP_200_OK)

...

After creating the Strava account, the access token and its expiration are cached using the
set access token method. As a cache, we use LocMemCache provided by Django. The data are
stored in local memory, so it does not require external dependencies like a database server. [46]
When communicating with Strava, such as when getting activity details, a valid access token is
obtained using the get access token method, which checks the validity of the access token. If
expired, it establishes a connection to Strava and using the refresh token requests a new access



Server side 25

token, which is then cached and returned. The implementation of the get access token and
set access token methods can be seen in the appendix in the listing C.2.

If the user decides to remove their Strava account, the client sends a DELETE request to the
server using the REST API B.1. The server then processes the request and sends a request to
deauthorize the account to the Strava URL: https://www.strava.com/oauth/deauthorize.

3.1.5.2 Activities
We use webhooks to receive new activities from Strava. Our REST API provides the endpoint
/api/user/<userId>/strava/webhook/. To register a webhook subscription, we need to send a
POST request to Strava with the address of our endpoint, to which Strava will send a registration
GET request. [47] This request can be made using cURL3, as shown in the listing 3.8. Only one
subscription is allowed per application. To sign up for a new subscription, we must first delete
the previous subscription. You can accomplish this by using a similar command, but instead of
using the POST method, use the DELETE method and include the ID of the subscription that
we want to delete.

3.8 cURL command to register a Strava webhook subscription

curl --location 'https://www.strava.com/api/v3/push_subscriptions' \
--form 'client_id="<CLIENT_ID>"' \
--form 'client_secret="<SECRET>"' \
--form 'callback_url="<APP_URL>/api/strava/webhook/"' \
--form 'verify_token="<TOKEN>"'

For working with webhooks we implemented the StravaWebhookView class, which inherits
from APIView, and implements the get and post methods. The entire implementation of the
class can be seen in the appendix in the listing C.1.

The get method is used to register for event subscriptions from Strava. It checks if the mode
is set to subscribe and if the token matches the token we sent with the POST request to Strava.
If the authentication is successful, it sends a response with the challenge parameter included in
the GET request.

The post method is used to handle the events sent by Strava. In our application, we work
with activity-type objects. Activities are created, updated, and deleted in synchronization with
Strava. This means that if, for example, a user changes the name of their activity on the Strava
platform, the change is also propagated to our application.

In the listing C.3 in the appendix, we can see the get activity details function, which
retrieves detailed information about the activity from Strava based on the activity id received
from the webhook.

3Command-line tool for transferring data.



26 Implementation

3.2 Client side
As mentioned in the previous chapter 2.2.1.2, React is a JavaScript library with TypeScript
support. It is designed for creating client-side web applications. This section describes the
features used in implementing the client-side part of the application.

3.2.1 Component-based architecture
React uses component-based architecture. That means that the developer can split the com-
ponents into smaller reusable components. Components can be class-based or function-based.
Our application uses function-based components because they are simpler and more elegant. A
functional component is a function that returns a value of React element or JSX. The container
is a component that is responsible for manipulating states and making API requests. [48], [49]

The listing 3.9 shows the functional component GenericTable, which we use on several
application pages. The component takes an object of properties named title, headers, and
data. It returns a formatted table. The GenericTable component consists of other components
like Root, Grid, and Table, which are Material UI library 2.2.1.3 components with custom styles
added.

3.9 Functional component that represents a table

const GenericTable = ({title, headers, data}: GenericTableProps) => (
<Root>

<Title variant="h4">{title}</Title>
<Grid container spacing={2}>

<Grid item xs={12}>
<StyledTableContainer>

<Table aria-label={`${title} table`}>
<TableHead>

<TableRow>
{headers.map((header, index) => (

<StyledTableCell>{header}</StyledTableCell>))}
</TableRow>

</TableHead>
<TableBody>

{data.map((row, index) => (
<TableRow>

<>
{row.map((detail, index) => (
<StyledTableCell>{detail}</StyledTableCell>
))}

</>
</TableRow>))}

</TableBody>
</Table>

</StyledTableContainer>
</Grid>

</Grid>
</Root>

);



Client side 27

3.2.1.1 Lifecycle of React component

The lifecycle of a React component consists of three parts: mounting, updating, and unmounting.
The mounting occurs only once when the component is created and inserted into the DOM.
The updating occurs when the props or state is changed, and the component is re-rendered.
The unmounting occurs when the component is no longer needed and is removed from the
DOM. [50], [51]

Figure 3.1 React class-based component’s lifecycle diagram [50]

Class-based components have different methods for each stage of the component’s lifecycle.
We use functional components that use React hooks instead of these methods. Listing 3.10
shows the useEffect hook we use in the App container to get information about the user’s
Strava account, activities, equipment, and components after the user logs in. The useEffect
hook takes two arguments: a function and an array of dependencies, where the dependency is
the loggedIn state. When loggedIn changes, the function from the first parameter is called.
This hook is equivalent to the combination of the componentDidMount and componentDidUpdate
methods in class-based components. [50], [51]

3.10 Retrieves user data if the user is logged-in

React.useEffect(() => {
if (user && loggedIn) {

const { token, id: userId } = user;

retrieveStravaAccount(token, userId);
retrieveActivities(token, userId);
retrieveEquipment(token, userId);
retrieveComponents(token, userId);

}
}, [loggedIn]);



28 Implementation

3.2.2 Routing
Routing is one of the fundamental principles used in web applications. Our application is SPA
type, which means we have one HTML page on which logical pages and content are dynamically
rendered without the need to refresh the page. Routing helps us to navigate between these logical
pages. It also offers the ability to capture the application’s state, save it to a bookmark, or share
it with others. [52], [53] In our application the routing is connected to a side drawer, as seen in
the listing 3.11.

To enable routing, we use the React Router library. This library provides all the functionality
needed to implement routing. For navigation between pages we use useNavigate hook [54], and
for implementation of routing we use the following components:

BrowserRouter: The BrowserRouter component is used to activate routing in our application.
It wraps up the entire application. [55]

Routes: The Routes takes Route components as children. Route elements can be nested. [56]

Route: The Route component is used to define a specific route. It takes path and element as
props. The path is a URL that should match this route. The element takes a JSX element
that should be rendered. [57]

3.11 Definition of routing nested in sidedrawer

<SideDrawer body={drawerBody} items={drawerItems} >
<Routes>

<Route path="/" element={
<RequireAuth usedLocalStorage={usedLocalStorage}>

<Home usedLocalStorage={usedLocalStorage} />
</RequireAuth>

} />
<Route path="/auth" element={<Auth />} />
<Route path="/strava-redirect/:code" element={

<RequireAuth usedLocalStorage={usedLocalStorage}>
<StravaRedirect />

</RequireAuth>
} />
<Route path={"/equipment"} element={

<RequireAuth usedLocalStorage={usedLocalStorage}>
<Equipment />

</RequireAuth>
} />
<Route path={"/activities"} element={

<RequireAuth usedLocalStorage={usedLocalStorage}>
<Activities />

</RequireAuth>
} />
...

</Routes>
</SideDrawer>`



Client side 29

3.2.3 State management
As mentioned above 2.2.1.2, in React, the user interface is defined in a declarative way. This
means we describe how a component should look depending on its state. React handles the
re-rendering of the component when the state changes. As the complexity of the application
grows, it becomes more challenging to manage the state of the application by manually passing
the state between individual components.

In our application, we have four separate contexts. The first two are for managing the user
account and the user’s Strava account. The second two are for managing activities, equipment,
and components. This section demonstrates how to manage the activities. [58]

3.2.3.1 Context creation

First, we have to create a new context object. The context maintains the data. Since we have
a separate context for reading and writing state, we have to create two context objects. In the
listing 3.12, we can see the type definitions and the creation of two context objects sportsContext
and sportsDispatchContext.

Also, we can see the functions useSports and useSportsDispatch, which are hooks that
allow components to consume sportsContext and sportsDispatchContext. These hooks hide
the implementation details of managing the context, and they provide a clean interface for
consuming or updating the activities.

type SportsContextType = {
activities: Activity[];
selectedActivity: Activity | null;
...

};
type SportsDispatchContextType = {

dispatchActivities: React.Dispatch<ActivityAction>;
setSelectedActivity: React.Dispatch<React.SetStateAction<Activity | null>>;
...

};

const sportsContext = createContext<SportsContextType>({
activities: [],
selectedActivity: null,
...

});
const sportsDispatchContext= createContext<SportsDispatchContextType | null>({

dispatchActivities: () => {},
setSelectedActivity: () => {},
...

});

export const useSports = () => useContext(sportsContext);
export const useSportsDispatch = () => useContext(sportsDispatchContext);

3.12 Creation of context objects



30 Implementation

3.2.3.2 Action and reducer creation
Then we have to create an action and reducer, as seen in the listing 3.13. An action is an object
describing a specific change in the application state. In this case, ActivityAction is a type
defining three actions: ADD, DELETE, and CLEAR. The ADD action is used to add a new
activity. DELETE action is used to delete a specific activity. CLEAR action is used to delete
all activities. As a reducer the activityReducer function is used, which handles these actions.

3.13 Creation of action and reducer

export type ActivityAction =
| { type: 'ADD', id: number, kind: ActivityKinds, distance: number | null,

moving_time: number, elapsed_time: number, name: string | null,
source: ActivitySources, date: string | null }

| { type: 'DELETE', id: number }
| { type: 'CLEAR' }

const activityReducer: Reducer<Activity[], ActivityAction> =
switch (action.type) { (state, action): Activity[] => {

case 'ADD': return [...state, { ...action }]
case 'DELETE': return state.filter((activity) => activity.id !== action.id)
case 'CLEAR': return []
default: return state

}}

3.2.3.3 Provider creation
The provider is a React component that allows other components to access the context and its
changes. The provider accepts value and children as props. Value is data that are available to
other components. Children is a tree structure of components that have access to the context.

The listing D.1 in the appendix shows the SportsProvider component that creates and man-
ages the application’s global state using the Context API. Specifically, it shows the state for all
activities and the selected activity. The component uses the useReducer hook to create reducer
functions and the useState hook to create state variables. Then the component wraps the child
components with providers. The first provider sportsContext.Provider passes the application
state as an object to the other components. The provider sportsDispatchContext.Provider
passes dispatch methods.

The listing 3.14 shows a section of the index.tsx file, which renders the main component
App of the application. It wraps it in UserProvider, SportsProvider, and BrowserProvider.
This implies that all components used in the application have access to the app state.

3.14 UserProvider and SportsProvider usage

root.render(
<UserProvider>

<SportsProvider>
<BrowserRouter><App /></BrowserRouter>

</SportsProvider>
</UserProvider>);



Client side 31

3.2.3.4 Context consumption
In the listing 3.15 we can see the section on the implementation of the Activities container,
which is a logical page for displaying and manipulating activities. This component uses the
useSports and useSportsDispatch hooks to retrieve activities. The dispatchActivities func-
tion is used to update the application state with activities.

When the user chooses to add an activity, the onAddActivity function is called, which uses
the postActivity function to communicate with the server side of the application using the
REST API B.1. If the activity was saved successfully, this function dispatches the ADD action
with the data received from the server. This will change the global state of the application, and
all components dependent on the activities will be re-rendered.

3.15 Activities page

export const Activities = () => {
const activities = useSports()?.activities
const dispatchActivities = useSportsDispatch()?.dispatchActivities
const selectedActivity = useSports()?.selectedActivity
const setSelectedActivity = useSportsDispatch()?.setSelectedActivity
...
const onAddActivity = () => {

postActivity(activityFormData, token, userId)
.then((createdActivity: ActivityRequestData) => {

...
dispatchActivities({

type: 'ADD',
...createdActivity,
date: formatDate(new Date(createdActivity.date || ""))

} as ActivityAction);})
.catch((error) => {...})}

...
return (<>...</>);

};



32 Implementation

3.2.4 Authentication
As we described in the server-side implementation section 3.1.4, the application’s authentication
is token-based. Our REST API B.1 provides endpoints for user signup, login, and logout. The
listing 3.16 shows the loginUser function, which is used for user login. This function takes
the user id and password and calls the makeHTTPRequest function, which encapsulates commu-
nication with the API. The makeHTTPRequest function can be seen in the listing D.2 in the
appendix.

3.16 User login function

export const loginUser = async (username: string, password: string):
Promise<AuthResponseData> => {

return makeHTTPRequest<AuthResponseData>(
'',
'POST',
`api/auth/login/`,
JSON.stringify({username: username, password: password})

)
}

The loginUser and signupUser functions return a promise of type AuthResponseData, which
contains the id and access token, as seen in the listing 3.17. The id and token are then stored in
web storage. Web storage API allows storing the data in key-value format in the browser. Web
storage offers two types of storage: sessionStorage and localStorage. We use localStorage
as it persists data after the browser is closed and reopened. [59] We can see the implementation
of the functions for working with local storage in the listing in the appendix D.3.

3.17 Type defining the user id and its access token

export type AuthResponseData = {
id: number;
token: string;

}

When the page is refreshed, the application tries to find the user id and token in the lo-
cal storage so the user does not have to log in again. This process is implemented using the
useEffect hook, as seen in the listing 3.18.

3.18 Hook to get user id and token from local storage

useEffect(() => {
const authValue: AuthData | null = getLocalStorage<AuthData>('auth');
if (authValue) {updateAuth(authValue)}
setUsedLocalStorage(true)

}, [])



Client side 33

The application automatically redirects to the login page if the user id and token are not stored
in the application context or local storage. This is achieved by our RequireAuth component,
which ensures that the user can only access the components when logged in.

The implementation of the RequireAuth component is shown in the appendix in the list-
ing D.4. Its use can be seen in the listing defining the application router 3.11.

3.2.5 Strava
This section describes how to link a Strava account to the user account. As described in the
server-side section of the Strava implementation 3.1.5.1, the client gets a refresh token, access
token, and access token expiration and sends them to the REST API B.1.

Firstly, the client must obtain an authorization code, which is then used to request access
and refresh tokens from Strava. The obtained tokens, along with the access token expiration,
are sent via the REST API to the server.

When the user decides to connect their account to a Strava account, the application redirects
them to the Strava OAuth2 page. For the redirection, we use the onHandleStravaLogin method,
which sets the window.location to a URL containing configuration parameters. The parameters
include:

CLIENT ID: CLIENT ID is the application id generated within the Strava management con-
sole A.2.

REDIRECT URL: REDIRECT URL is the URL to which Strava redirects the user with the
authorization token after they log in. In the listing 3.11, we can see /strava-redirect/:code
route, which corresponds to the REDIRECT URL. This route redirects to the StravaRedirect
component.

SCOPE: SCOPE is the type of authorization the client requests from the user. In our case, the
client requests permission to read the profile and activities.

3.19 Redirects to Strava authentication page

const onHandleStravaLogin = () => {
window.location = `http://www.strava.com/oauth/authorize?

client_id=${CLIENT_ID}&
response_type=code&
redirect_uri=${REDIRECT_URL}/exchange_token&
approval_prompt=force&
scope=${SCOPE}`;

};

After the user approves the login on the OAuth2 page, they are redirected with the autho-
rization code to the StravaRedirect component. StravaRedirect component loads the user id
and token from local storage, it parses the authorization code, and sends a POST request to
Strava to get the Strava id, access, and refresh token.

Once it receives these data, it sends them to the server via the REST API and updates the
Strava id in the application’s user context. The partial implementation of the StravaRedirect
component can be seen in the listing D.5 in the appendix. A user can remove their user account
if they do no longer want to receive data from Strava.



34 Implementation



Chapter 4

Testing

Testing is an essential part of software development. It ensures that the application meets
functional and non-functional requirements and is reliable and secure.

4.1 Requirements

To verify that the functional and non-functional requirements defined in the analysis and design
chapter 1.1 are met, we can summarize the requirements as follows.

4.1.1 Functional requirements
Functional requirements include the ability for users to register and log in, link their Strava
account, manually create and delete activities, create and delete sports equipment, assign com-
ponents to equipment, track wear and tear of equipment, and assign equipment to activities.

For each functional requirement, a specific page was created on the client-side along with
proper endpoints on the REST API on the server-side B.1. These pages include authentication,
activity management, equipment management, component management, alerts management,
equipment-component association, and activity-equipment association, equipment-alert associa-
tion, component-alert association. The sample pages can be seen in appendix F.

4.1.2 Non-functional requirements
Non-functional requirements include the use of a token-based secure authentication method to
protect user data, the encryption of all communication between the client and server to ensure
confidentiality, the availability of the application in the English language to cater to a broader
audience, the accessibility of the application via a public domain name, and ensuring the usability
of the application on different devices.

The application uses a token-based authentication method as described in the server-side
implementation chapter 3.1.4. Both the server-side and client-side use HTTPS for secure com-
munication 5.3, and the application is publicly available on the internet. The client interface is
in English. The application is designed to be responsive, so it can be used on desktops, tablets,
and smartphones with ease, as shown in appendix F.

35



36 Testing

4.2 Server-side unit testing

To test a View of the Django application, the tool pytest-django1 was used. The pytest-django
is a plugin for pytest2, a tool suitable for testing Python applications.

As an illustration of testing using pytest, we can see the test of ActivityView in the
listing 4.1. The test verifies the integration of the User, Equipment, Component, and Activity
models.

@pytest.fixture
def user():

return User.objects.create_user(username='testuser', password='testpass')

@pytest.fixture
def equipment(user):

return Equipment.objects.create(user=user, kind='bike', name='My Bike')

@pytest.fixture
def component(user):

return Component.objects.create(user=user, kind='frame', name='My Frame')

@pytest.fixture
def activity(user, equipment, component):

activity = Activity.objects.create(user=user, name='My Ride', kind='ride',
distance=5000, moving_time=30, elapsed_time=40)

activity.equipment.add(equipment)
activity.components.add(component)
return activity

@pytest.mark.django_db
def test_activity_equipment(activity, equipment):

assert activity.equipment.count() == 1
assert activity.equipment.first() == equipment

@pytest.mark.django_db
def test_activity_components(activity, component):

assert activity.components.count() == 1
assert activity.components.first() == component

...

4.1 Activity view test

1https://pytest-django.readthedocs.io/en/latest/
2https://docs.pytest.org/



REST API testing 37

4.3 REST API testing

In this section, the functionality of the REST API is tested using tool Postman3, which is a tool
useful for testing REST APIs. This testing aims to verify the correct functionality of the REST
API. Postman makes it easy to create and execute automated tests that can reveal potential
bugs in the API. During testing, we simulated different user scenarios and analyzed the APIs’
responses to these scenarios.

The figure 4.1 shows a collection of happy path4 tests performed by the Postman tool. First,
the log-in is tested using the user created for testing purposes. The return code is verified, and
the token and user ID are stored in a global variable. Then a bike, a jacket, and two activities are
created, and their IDS are stored in global variables. Each activity has a different distance and
elapsed time. Then the bike and jacket from the previous step are assigned to the first activity.
Then the correct distance and time of using the jacket and bike are verified. The bike and jacket
are assigned to the second activity, and it is verified that the time and distance of the bike and
jacket usage have increased correctly.

Figure 4.1 Happy path test of REST API in Postman

3https://www.postman.com/
4A test scenario that checks if a system works correctly under ideal conditions.



38 Testing

4.4 User testing
In the first part of the user testing, the work was tested by the author of this work. The author
wanted to test the functionality of the application and see if it meets the functional requirements.
He focused mainly on the connections with the Strava platform and the correct synchronization
of activities from the Strava platform.

The author found that the application works correctly, and the activities are synchronized im-
mediately after uploading to the Strava platform. He came up with a new functional requirement
that it would be useful to be able to synchronize activities that have already been completed and
to be able to assign equipment to them.

After the initial testing by the author, the application was tested by two other users. Both
users had a Strava account. They were asked to use the application and then provide feedback
based on their experience.

One of the users found a bug where the wear of a bike component was not evaluated correctly.
This bug was fixed afterward. Both users would also like it if the application supported the
display of a graph showing the use of sports equipment and components over time.

4.5 Security testing

The SSL Labs tool5 was used to verify the security of the application. SSL Labs allows testing
of the security of SSL/TLS6 implementation. The tool performs an advanced check of SSL/TLS
configuration, protocols, ciphers, and algorithms for key exchange. It provides a detailed report
with a grade from A+ to F. Our application received a grade of A, as seen in the figure 4.2, which
is a very good result. Security testing is an important step in order to ensure that sensitive data,
such as login credentials, are sufficiently secured.

Figure 4.2 SSL test result

5https://www.ssllabs.com/ssltest/
6The protocols used for secure communication over the internet.



Chapter 5

Deployment

This section describes how the application is deployed. The application is composed of Django
REST framework, PostgreSQL, and React applications. Containerization is used, which means
each application is containerized. These containers are managed on the server using an orches-
tration tool.

The deployment workflow can be described in the following steps:

1. The developer commits the code changes and pushes them to the application’s GitHub repos-
itory 2.2.4.2. Afterward, they merge the commits into the main branch.

2. The GitHub Action 2.2.4.2 is configured to be triggered when the code is delivered to the
main branch. The action builds Docker images 2.2.4.1 for the client and server parts of the
application. It then pushes these images to the server.

3. Docker Compose 2.2.4.1 is used on the server to orchestrate containers created from the
images.

4. NGINX 2.2.4.3 is used on the server as a reverse proxy to route requests to the proper
container based on the URL. This allows accessing both the client and server sides on the
same domain and IP address.

5. Communication between the user’s browser and the server is secured using a certificate ob-
tained from Let’s Encrypt1, enabling the HTTPS protocol.

For deployment of the application on the server, we use a virtual private server provided by
vpsFree.cz2. As an operating system, we use Ubuntu 22.043, an open-source operating system
based on the Linux kernel with high stability and long-term support.

The client part of the app is available at https://sports-equipment-tracker.zanaska.cz.
The API is available at https://sports-equipment-tracker.zanaska.cz/api/.

5.1 Docker image
As we mentioned above 2.2.4.1, DockerFile is a file describing instructions for building a Docker
image. In the listing 5.1, we can see the DockerFile for our Django application. At the beginning
of the file, we define a base Docker image for the Python application. Afterward, we copy

1https://letsencrypt.org/
2https://vpsfree.cz/
3https://releases.ubuntu.com/jammy/

39

https://sports-equipment-tracker.zanaska.cz
https://sports-equipment-tracker.zanaska.cz/api/


40 Deployment

the requirements.txt file from our system to the image containing all the requirements needed
to run the application, and then install them. We expose port 8000, on which the application
listens. Finally, we run the application using Gunicorn. Gunicorn4 is an HTTP server designed
for Python WSGI applications. WSGI5 is a standard that specifies communication mechanisms
between web servers and web applications.

The DockerFile for the React application can be seen in the appendix in the listing E.1.
For the PostgreSQL image, we use the official image as seen in the Docker Compose file in the
listing E.2.

5.1 Dockerfie for Django app

FROM python:3.9-alpine

COPY backend/sports_equipment_tracker/requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY backend/sports_equipment_tracker/ ./
EXPOSE 8000

CMD ["gunicorn", "sports_equipment_tracker.wsgi", "--bind", "0.0.0.0:8000",
"--workers", "4"]

5.2 Docker Compose

As mentioned above 2.2.4.1, Docker Compose is a tool that allows developers to manage multi-
container applications via a configuration file. Moreover, it allows to define features like persistent
volumes or service dependencies.

In the appendix in the listing E.2, we can see the Docker Compose file for our application. It
defines three services:

db: The db service uses the official Postgres Docker image from the Docker Hub6. We configure
the volume7 for persistent data so that the data stored in the database remains after the
container is restarted. Afterward, we set the environment variables for the database and the
network to backend network.

django server: The django server is a service that uses a custom image tracker django
created within a GitHub Action 5.1. The service exposes the application on port 200 and it
depends on the db service with which it is connected in the same backend network network.
It sets the environment variables for the hostname and database port required by the Django
application. 3.1.

react client: The react client service uses a custom image tracker react E.1. The ser-
vice exposes the application on port 201. It does not use the shared network with db and
django server services. The communication between react client and django server is
via a reverse proxy.

4https://docs.gunicorn.org/
5Web Server Gateway – https://wsgi.readthedocs.io/
6https://hub.docker.com/
7Persistent data storage for Docker containers.



NGINX 41

The registration of a Strava subscription is not automated. After the django server service
is started, sending a POST request for the provision of a subscription is necessary, as described
in the server-side implementation section 3.1.5.2.

5.3 NGINX
As mentioned above 2.2.4.3, NGINX is software that operates as a web server. We use NGINX
on the server to receive client requests and proxies them. In the listing 5.2, we can see the server’s
configuration, which shows how to use NGINX as a reverse proxy.

The first section of the file defines two upstreams, backend and frontend, which corre-
spond to our services from the docker-compose file E.2. The backend block proxies requests
to the django server service running on port 200. The fronted block proxies requests to the
react client service running on port 201. The second section of the file defines a block that
listens on port 443, the default port for HTTPS. In this section, we specify the SSL certificate
created using the Certbot utility8, as seen in the figure E.1 in the appendix. We specify two
locations. The /api/ location proxies requests to the backend upstream. The /location proxies
requests to the frontend upstream.

5.2 Configuration of NGINX as a reverse proxy

upstream backend {
server localhost:200;

}
upstream frontend {

server localhost:201;
}
server {

server_name sports-equipment-tracker.zanaska.cz;
location /api/ {

proxy_pass http://backend/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}
location / {

proxy_pass http://frontend/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}
listen [::]:443 ssl ipv6only=on; # managed by Certbot
listen 443 ssl; # managed by Certbot
ssl_certificate /etc/letsencrypt/sports-equipment-tracker.zanaska.cz/

fullchain.pem; # managed by Certbot
ssl_certificate_key /etc/letsencrypt/sports-equipment-tracker.zanaska.cz/

privkey.pem; # managed by Certbot
include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

}
...

8https://certbot.eff.org/



42 Deployment

5.4 GitHub Actions
The listing in the appendix2.2.4.2 shows a GitHub Actions workflow file that describes the
automation of building a Docker image for a Django application, saving the image as a tar file,
copying it to the VPS, and loading the image on the VPS. This workflow is triggered when changes
are pushed to the main repository branch. The workflow contains a build and push django job
that runs on the Ubuntu operating system. The job for building a React application is very
similar, it differs in the DockerFile that is used. In the figure E.2 in the appendix we can see a
screenshot from GitHub showing the individual steps of the build and push django job.



Chapter 6

Conclusion

This thesis aimed to design and implement an application that allows users to monitor the wear
and tear of sports equipment and its components. It was necessary to analyze existing solutions,
the possibility of integration with the Strava platform, and choose appropriate technologies for
developing the web application. Subsequently, it was crucial to use these technologies in practice
to create a functional prototype, which had to be tested and deployed.

While implementing the application, we encountered a few challenges that required care-
ful consideration. One of these challenges was correctly integrating the Strava platform using
webhooks.

In conclusion, we have successfully analyzed, designed, developed, tested, and deployed a
web application allowing users to monitor their sports equipment’s wear and tear. We believe
that this application will be useful for many people who are involved in sports and want to take
proper care of their equipment.

6.1 Possible future extensions
It is important to note that the web application presented in this work is a working prototype
that serves as a proof of concept for tracking wear and tear on sports equipment. Although
the application is fully functional and provides valuable features to users, there is still room for
improvement. The app was designed and developed on a limited scale as a prototype, focusing
on integrating the Strava platform and basic equipment tracking features.

In addition to the basic features of the app, a few features came out of the testing of the app,
that were good to have and could improve the user experience and overall functionality. These
features include:

Allow synchronization of activities that have already happened in history.

Enhance the client side of the application and add graphs showing wear and tear over time.

Add support for sending alert notifications via push notifications or email.

Adding support for testing in GitHub actions would be helpful to ensure that all changes
are tested before deploying to production. Also, automation of Strava webhook subscription
registration when launching the app would be useful.

Add support for other sports tracking services such as Garmin1.

1https://connect.garmin.com/

43



44 Conclusion



Appendix A

Strava API

Figure A.1 Screenshot of Strava authentication page

45



46 Strava API

Figure A.2 Screenshot of Strava management console



47

Figure A.3 Activity diagram Strava authenticaton [4]



48 Strava API



Appendix B

REST API

49



50 REST API

Figure B.1 REST API Documentation



GETGET /api/user/{user_id}/equipment/

POSTPOST /api/user/{user_id}/equipment/

DELETEDELETE /api/user/{user_id}/equipment/

GETGET /api/user/{user_id}/component/{component_id}/

POSTPOST /api/user/{user_id}/component/{component_id}/

DELETEDELETE /api/user/{user_id}/component/{component_id}/

GETGET /api/user/{user_id}/component/{component_id}/alert

/{alert_ids}/

PUTPUT /api/user/{user_id}/component/{component_id}/alert

/{alert_ids}/

GETGET /api/user/{user_id}/component/{component_id}/alert/

PUTPUT /api/user/{user_id}/component/{component_id}/alert/

GETGET /api/user/{user_id}/component/

POSTPOST /api/user/{user_id}/component/

DELETEDELETE /api/user/{user_id}/component/

GETGET /api/user/{user_id}/activity/{activity_id}/equipment

/{equipment_ids}/

PUTPUT /api/user/{user_id}/activity/{activity_id}/equipment

/{equipment_ids}/

GETGET /api/user/{user_id}/activity/{activity_id}/equipment

/{equipment_id}/

PUTPUT /api/user/{user_id}/activity/{activity_id}/equipment

/{equipment_id}/

GETGET /api/user/{user_id}/activity/{activity_id}/equipment/

PUTPUT /api/user/{user_id}/activity/{activity_id}/equipment/

GETGET /api/user/{user_id}/activity/{activity_id}/



POSTPOST /api/user/{user_id}/activity/{activity_id}/

DELETEDELETE /api/user/{user_id}/activity/{activity_id}/

GETGET /api/user/{user_id}/activity/

POSTPOST /api/user/{user_id}/activity/

DELETEDELETE /api/user/{user_id}/activity/

GETGET /api/user/{user_id}/alert/{alert_id}/

POSTPOST /api/user/{user_id}/alert/{alert_id}/

DELETEDELETE /api/user/{user_id}/alert/{alert_id}/

GETGET /api/user/{user_id}/alert/

POSTPOST /api/user/{user_id}/alert/

DELETEDELETE /api/user/{user_id}/alert/

POSTPOST /api/auth/login/

POSTPOST /api/auth/signup/

POSTPOST /api/auth/logout/

Schemas

AuthToken



Appendix C

Server side implementation

C.1 Implementation of webhooks for receiving activities from Strava

class StravaWebhookHandlerView(APIView):
authentication_classes = [TokenAuthentication]
permission_classes = [AllowAny]

def post(self, request):
data = request.body
data = json.loads(data)
aspect_type = data.get('aspect_type')
object_id = data.get('object_id')
object_type = data.get('object_type')
owner_id = data.get('owner_id')

if not object_type == "activity":
return JsonResponse({"message": "EVENT_RECEIVED"}, status=200)

if owner_id:
try:

strava_account = StravaAccount.objects.get(athlete_id=owner_id)
user = strava_account.user
access_token = get_access_token(strava_account)
if not access_token:

return JsonResponse({"message": "EVENT_RECEIVED"}, status=200)

try:
activity = Activity.objects.get(

user=user,
strava_activity_id=object_id

)
except (Activity.DoesNotExist, ObjectDoesNotExist, AttributeError):

activity = None

serializer = ActivitySerializer()

53



54 Server side implementation

if aspect_type == "create":
if not activity:

activity_details = get_activity_details(object_id, access_token)
if activity_details:

activity = serializer.create({
"user": user,
"name": activity_details.get("name"),
"distance": activity_details.get("distance"),
"moving_time": activity_details.get("moving_time"),
"elapsed_time": activity_details.get("elapsed_time"),
"source": "strava",
"kind": activity_details.get("type"),
"strava_activity_id": activity_details.get("id")

})
activity.save()

elif aspect_type == "update":
activity_details = get_activity_details(object_id, access_token)
if activity and activity_details:

serialized_activity = serializer.update(activity, {
"name": activity_details.get("name"),
"distance": activity_details.get("distance"),
"moving_time": activity_details.get("moving_time"),
"elapsed_time": activity_details.get("elapsed_time"),
"kind": activity_details.get("type")

})
serialized_activity.save()

elif aspect_type == "delete":
if activity:

activity.delete()

except StravaAccount.DoesNotExist:
pass

return JsonResponse(data={}, status=HTTP_200_OK)

def get(self, request):
print("webhook verification received!", request.GET, request.body)
mode = request.GET.get('hub.mode')
token = request.GET.get('hub.verify_token')
challenge = request.GET.get('hub.challenge')
if mode and token:

if mode == 'subscribe' and token == VERIFY_TOKEN:
return JsonResponse({"hub.challenge": challenge}, status=HTTP_200_OK)

return JsonResponse(status=HTTP_403_FORBIDDEN)

return JsonResponse(status=HTTP_400_BAD_REQUEST)



55

Figure C.1 Main section of the database schema



56 Server side implementation

C.2 Functions for working with the cache

def get_access_token(strava_account):
access_token = cache.get(f"strava_account_token_{strava_account.user.id}")
expires_at = cache.get(f"strava_account_expires_at_{strava_account.user.id}")
if access_token and expires_at:

if expires_at > time.time():
return access_token

# refresh the token
refresh_token = strava_account.refresh_token
response = requests.post(

url="https://www.strava.com/oauth/token",
headers={"Accept": "application/json"},
data={

"client_id": CLIENT_ID,
"client_secret": CLIENT_SECRET,
"grant_type": "refresh_token",
"refresh_token": refresh_token

}
)
if response.ok:

data = json.loads(response.text)
access_token = data.get("access_token")
expires_at = data.get("expires_at")
if access_token and expires_at:

set_access_token(strava_account, access_token, expires_at)
return access_token

return None

def set_access_token(strava_account, access_token, expires_at):
cache.set(f"strava_account_token_{strava_account.user.id}", access_token,

timeout=None)
cache.set(f"strava_account_expires_at_{strava_account.user.id}", expires_at,

timeout=None)

C.3 Function to get activity details

def get_activity_details(activity_id, access_token):
response = requests.get(

f"https://www.strava.com/api/v3/activities/{activity_id}",
headers={

"Authorization": f"Bearer {access_token}",
}

)
if response.ok:

return json.loads(response.content)
return None



Appendix D

Client side implementation

D.1 Provider creation

export const SportsProvider: React.FC<SportsProviderProps> = ({children}) => {
const [activities, dispatchActivities] = useReducer<Reducer<Activity[],

ActivityAction>>
(activityReducer, []);

...
const [selectedActivity, setSelectedActivity] = useState<Activity |

null>(null);
...
return (

<sportsContext.Provider
value={{

activities: activities,
selectedActivity: selectedActivity
}}

>
<sportsDispatchContext.Provider

value={{
dispatchActivities: dispatchActivities,
setSelectedActivity: setSelectedActivity

}} >
{children}

</sportsDispatchContext.Provider>
</sportsContext.Provider>

);
};

57



58 Client side implementation

D.2 Function that performs HTTP request

export const makeHTTPRequest = async <T>(
token: string,
method: 'GET' | 'POST' | 'PUT' | 'PATCH' | 'DELETE',
uri: string, body: string=''

): Promise<T> => {
const fetchOptions: RequestInit = {

method: method,
headers: {

'Content-Type': 'application/json',
'Authorization': `Token ${token}`

},
};

if (method === 'POST') {
fetchOptions.body = body;

}

const response = await fetch(concatUrl(baseAPIUrl, uri), fetchOptions)
if (response.ok) {

const data: T = await response.json()
return data

}
else {

const error = await response.text()
throw new Error("makeHTTPRequest error: " + error)

}
}



59

D.3 Functions for working with local storage

export const setLocalStorage = <T>(key: string, value: T): void => {
try {

const storedValue = localStorage.getItem(key);
if (storedValue !== null) {

const existingValue = JSON.parse(storedValue);
const newValue = { ...existingValue, ...value };
localStorage.setItem(key, JSON.stringify(newValue));

}
else {

localStorage.setItem(key, JSON.stringify(value));
}

}
catch (error) {}

};

export const getLocalStorage = <T>(key: string): (T | null) => {
const storedValue = localStorage.getItem(key);
return storedValue ? JSON.parse(storedValue) : null;

}

export const removeLocalStorage = (key: string): void => {
localStorage.removeItem(key);

}

D.4 Component which prevents access for unauthenticated users

export const RequireAuth = (props: { children: any;
usedLocalStorage: boolean; }) => {

const usedLocalStorage = props.usedLocalStorage
const user = useUser()?.user
const navigate = useNavigate()
const loggedIn: Boolean = !!user && (user.id !== 0)
const [shouldRedirect, setShouldRedirect] = React.useState(false)

React.useEffect(() => {
if (usedLocalStorage && !loggedIn) {

navigate("/auth")
setShouldRedirect(true)

}
}, [usedLocalStorage])

return shouldRedirect ? navigate("/auth") : props.children
}



60 Client side implementation

D.5 The component to which the Strava auth page redirects after the user logs in

const StravaRedirect = () => {
const location = useLocation();
const query = new URLSearchParams(location.search);
const code = query.get('code');
const navigate = useNavigate();
...
const addStravaAccount = (data: StravaAuthData) => {

...
postUserStravaAccount(data, token, userId)

.then((response: StravaAuthResponseData) => {
...
userDispatch({

type: 'ADD_STRAVA_ACCOUNT',
stravaId: response.athlete_id,

})
})
.catch((error) => {...})

navigate("/")
}
...
useEffect(() => {

if (!usedLocalStorage) return;
fetch(

`https://www.strava.com/oauth/token?
client_id=${CLIENT_ID}&
client_secret=${REACT_APP_CLIENT_SECRET}&
code=${code}&
grant_type=authorization_code`,
{ method: 'POST' }

)
.then(response => response.json())
.then((data: StravaAuthData) => {

addStravaAccount(data)
})
.catch((error) => {...})

}, [usedLocalStorage])
...
return (<>...</>)

}

export default StravaRedirect;



Appendix E

Deployment

E.1 Dockerfile for React app

FROM node:20-alpine3.16 as node_build
WORKDIR /usr/app
COPY frontend/sports_equipment_tracker/ /usr/app

RUN npm ci --legacy-peer-deps
RUN npm run build

FROM nginx:1.23.1-alpine
EXPOSE 80
COPY ./react_nginx_config.conf /etc/nginx/conf.d/default.conf
COPY --from=node_build /usr/app/build /usr/share/nginx/html

61



62 Deployment

E.2 Docker compose file

version: '3.7'

services:
db:

image: postgres:15.1-alpine
volumes:

- postgres_data:/var/lib/postgresql/data/
ports:

- "5432:5432"
environment:

- POSTGRES_DB=SportsEquipmentTracker
- POSTGRES_USER=root
- POSTGRES_PASSWORD=whateverpassword

networks:
- backend_network

backend:
image: tracker_django
volumes:

- .:/app
ports:

- "200:8000"
depends_on:

- db
environment:

SQL_HOST: db
SQL_PORT: 5432

networks:
- backend_network

frontend:
image: tracker_react
ports:

- "201:80"

volumes:
postgres_data:

networks:
backend_network:



63

Figure E.1 Screenshot of the Certbot tool that generates the certificate

Figure E.2 Screenshot of the GitHub platform showing GitHub actions



64 Deployment

E.3 The docker-build.yml file defining GitHub actions

name: Docker Build and Push to VPS

on:
push:

branches:
- main

jobs:
build_and_push_django:

runs-on: ubuntu-latest

steps:
- name: Checkout code

uses: actions/checkout@v2

- name: Add SSH key to ˜/.ssh
run: |

mkdir -p ˜/.ssh
echo "${{ secrets.VPS_SSH_KEY}} " > ˜/.ssh/id_rsa
chmod 600 ˜/.ssh/id_rsa

- name: Build the django Docker image
uses: docker/build-push-action@v2
with:

context: .
file: ./Dockerfile-django
push: false
tags: tracker_django:latest

- name: Save django Docker image as tar
run: |

docker save tracker_django:latest -o tracker-django-image.tar

- name: Copy django tar file to VPS
uses: appleboy/scp-action@master
with:

host: ${{ secrets.VPS_HOST }}
username: root
port: 22
source: ./tracker-django-image.tar
target: /home/app/
key: ${{ secrets.VPS_SSH_KEY }}
overwrite: true

- name: Load django Docker image on VPS
run: |

ssh -o "StrictHostKeyChecking=no" root@${{ secrets.VPS_HOST }}
"docker load < /home/app/tracker-django-image.tar"

...



Appendix F

Application showcase

Figure F.1 Login page

65



66 Application showcase

Figure F.2 Home page Figure F.3 Equipment components page



67

Figure F.4 Activities page



68 Application showcase



Bibliography

1. TRAJANOV, Tosho. Functional and non-functional requirements. In: Adeva [online].
Adeva, 2021 [visited on 2023-04-15]. Available from: https://adevait.com/software/
functional-non-functional-requirements.

2. Running, Cycling amp; Hiking App – Train, track amp; share. In: Strava [online]. [N.d.]
[visited on 2023-04-15]. Available from: https://www.strava.com/features.

3. FIT ČVUT. In: Strava [online]. Strava, [n.d.] [visited on 2023-04-15]. Available from: https:
//www.strava.com/clubs/fit-cvut.

4. Getting Started with the Strava API. In: Strava Developers [online]. [N.d.] [visited on 2023-
04-15]. Available from: https://developers.strava.com/docs/getting-started/.

5. In: Strava [online]. 2021 [visited on 2023-05-01]. Available from: https://www.strava.
com/clubs/231407/posts/17891665?hl=en-GB.

6. strava-gear. In: GitHub [online]. [N.d.] [visited on 2023-04-15]. Available from: https://
github.com/liskin/strava-gear.

7. Bicycle maintenance tracker app. In: ProBikeGarage [online]. [N.d.] [visited on 2023-04-15].
Available from: https://www.probikegarage.com/.

8. An overview of HTTP. In: MDN [online]. 2023 [visited on 2023-04-15]. Available from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview.

9. HTTP request methods. In: MDN [online]. 2023 [visited on 2023-04-15]. Available from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

10. Evolution of HTTP. In: MDN [online]. 2023 [visited on 2023-04-15]. Available from: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_
HTTP.

11. DUCKETT, Jon. HTML amp; CSS design: Design and build websites. John Wiley amp;
sons, inc., 2011. isbn 978-1-118-00818-8.

12. Introduction to the DOM. In: MDN [online]. 2023 [visited on 2023-04-15]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/
Introduction.

13. Document. In: MDN [online]. 2023 [visited on 2023-04-15]. Available from: https : / /
developer.mozilla.org/en-US/docs/Web/API/Document.

14. BIRO, Jonathan. Browser engines... chromium, V8, Blink? gecko? webkit? In: Medium
[online]. Medium, 2019 [visited on 2023-04-15]. Available from: https://medium.com/
@jonbiro/browser-engines-chromium-v8-blink-gecko-webkit-98d6b0490968.

69

https://adevait.com/software/functional-non-functional-requirements
https://adevait.com/software/functional-non-functional-requirements
https://www.strava.com/features
https://www.strava.com/clubs/fit-cvut
https://www.strava.com/clubs/fit-cvut
https://developers.strava.com/docs/getting-started/
https://www.strava.com/clubs/231407/posts/17891665?hl=en-GB
https://www.strava.com/clubs/231407/posts/17891665?hl=en-GB
https://github.com/liskin/strava-gear
https://github.com/liskin/strava-gear
https://www.probikegarage.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://medium.com/@jonbiro/browser-engines-chromium-v8-blink-gecko-webkit-98d6b0490968
https://medium.com/@jonbiro/browser-engines-chromium-v8-blink-gecko-webkit-98d6b0490968


70 Bibliography

15. Introducing json. In: JSON [online]. [N.d.] [visited on 2023-04-15]. Available from: https:
//www.json.org/json-en.html.

16. What is an API? In: RedHat [online]. 2022 [visited on 2023-04-15]. Available from: https:
//www.redhat.com/en/topics/api/what-are-application-programming-interfaces.

17. FIELDING, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. 2000. PhD thesis. University of California, Irvine.

18. RESTful web API design. In: Azure Architecture Center — Microsoft Learn [online]. [N.d.]
[visited on 2023-04-15]. Available from: https://learn.microsoft.com/en-us/azure/
architecture/best-practices/api-design.

19. RESELMAN, Bob. An architect’s guide to APIs: Soap, rest, GraphQL, and grpc. In: Enable
Architect [online]. Red Hat, Inc., 2020 [visited on 2023-04-15]. Available from: https://
www.redhat.com/architect/apis-soap-rest-graphql-grpc.

20. Comparing API Architectural Styles: Soap vs REST vs GraphQL vs RPC. In: AltexSoft
[online]. AltexSoft, 2020 [visited on 2023-04-15]. Available from: https://www.altexsoft.
com/blog/soap-vs-rest-vs-graphql-vs-rpc/.

21. H, Jeremy. gRPC vs. REST: How Does gRPC Compare with Traditional REST APIs? In:
FreamFactory Blog [online]. 2022 [visited on 2023-04-15]. Available from: https://blog.
dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-
apis/.

22. BUSH, Thomas. CRUD vs. REST: What’s the Difference? In: Nordic APIs [online]. 2020
[visited on 2023-04-15]. Available from: https://nordicapis.com/crud-vs-rest-whats-
the-difference/.

23. What is a webhook? In: Red Hat - We make open source technologies for the enterprise
[online]. 2022 [visited on 2023-04-15]. Available from: https://www.redhat.com/en/
topics/automation/what-is-a-webhook.

24. What Is A Web Application? In: Amazon [online]. [N.d.] [visited on 2023-04-15]. Available
from: https://aws.amazon.com/what-is/web-application/.

25. Single Page Applications (SPA). In: AppCheck [online]. 1978 [visited on 2023-04-15]. Avail-
able from: https://appcheck-ng.com/single-page-applications.

26. Server-side web frameworks. In: [online]. 2023 [visited on 2023-04-15]. Available from:
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/
Web_frameworks.

27. Architecture. In: Hands on React [online]. [N.d.] [visited on 2023-04-15]. Available from:
https://handsonreact.com/docs/architecture.

28. What is javascript? In: MDN [online]. 2023 [visited on 2023-04-15]. Available from: https:
//developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_
JavaScript.

29. TypeScript for JavaScript Programmers. In: TypeScript [online]. 2023 [visited on 2023-04-
15]. Available from: https://www.typescriptlang.org/docs/handbook/typescript-
in-5-minutes.html.

30. DESHPANDE, Chinmayee. The Best Guide to Know What Is React. In: Simplilearn [on-
line]. 2023 [visited on 2023-04-15]. Available from: https : / / www . simplilearn . com /
tutorials/reactjs-tutorial/what-is-reactjs.

31. OLIVEIRA, Domingos F.; GOMES, João; PEREIRA, Ricardo; BRITO, Miguel;
MACHADO, Ricardo-J. Development of a Self-Diagnostic System Integrated into a Cyber-
Physical System. Computers. 2022, vol. 11, p. 131. Available from doi: 10 . 3390 /
computers11090131.

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://www.redhat.com/architect/apis-soap-rest-graphql-grpc
https://www.redhat.com/architect/apis-soap-rest-graphql-grpc
https://www.altexsoft.com/blog/soap-vs-rest-vs-graphql-vs-rpc/
https://www.altexsoft.com/blog/soap-vs-rest-vs-graphql-vs-rpc/
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://nordicapis.com/crud-vs-rest-whats-the-difference/
https://nordicapis.com/crud-vs-rest-whats-the-difference/
https://www.redhat.com/en/topics/automation/what-is-a-webhook
https://www.redhat.com/en/topics/automation/what-is-a-webhook
https://aws.amazon.com/what-is/web-application/
https://appcheck-ng.com/single-page-applications
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
https://handsonreact.com/docs/architecture
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs
https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs
https://doi.org/10.3390/computers11090131
https://doi.org/10.3390/computers11090131


Bibliography 71

32. Material UI – Overview. In: Material UI [online]. [N.d.] [visited on 2023-04-15]. Available
from: https://mui.com/material-ui/getting-started/overview/.

33. H., Swaroop C. A Byte of Python. Open Textbook Library, 2013.
34. ELMAN, Julia; LAVIN, Mark. Lightweight Django. O’Reilly Media, 2015.
35. Django introduction. In: MDN [online]. 2023 [visited on 2023-04-15]. Available from: https:

//developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction.
36. SINGHAL, Gaurav. How to create a REST API with Django REST framework. In:

LogRocket Blog [online]. 2022 [visited on 2023-04-15]. Available from: https : / / blog .
logrocket.com/django-rest-framework-create-api/#what-is-django.

37. NATHANAEL, Dave. Design Pattern: Django Rest Framework. In: Medium [online].
Medium, 2020 [visited on 2023-04-15]. Available from: https://davenathanaeld.medium.
com/design-pattern-django-rest-framework-1e8c17946bce.

38. Types of Databases. In: GeeksforGeeks [online]. GeeksforGeeks, 2021 [visited on 2023-04-
15]. Available from: https://www.geeksforgeeks.org/types-of-databases/.

39. SUMATHI, S.; ESAKKIRAJAN, S. Fundamentals of Relational Database Management Sys-
tems. Springer, 2007.

40. In: PostgreSQL [online]. PostgreSQL, 2023 [visited on 2023-04-15]. Available from: https:
//postgres.cz/wiki/PostgreSQL.

41. What is PostgreSQL? In: [online]. 1999 [visited on 2023-04-15]. Available from: https:
//aws.amazon.com/rds/postgresql/what-is-postgresql/.

42. In: IBM [online]. [N.d.] [visited on 2023-05-01]. Available from: https://www.ibm.com/
topics/docker.

43. In: Docker Documentation [online]. 2023 [visited on 2023-05-01]. Available from: https:
//docs.docker.com/build/ci/github-actions/.

44. In: NGINX [online]. 2023 [visited on 2023-05-01]. Available from: https://www.nginx.
com/resources/glossary/nginx/.

45. What Is Token-Based Authentication? In: Okta [online]. 2023 [visited on 2023-04-15].
Available from: https : / / www . okta . com / identity - 101 / what - is - token - based -
authentication/.

46. Django’s cache framework. In: Django Project [online]. [N.d.] [visited on 2023-05-01]. Avail-
able from: https://docs.djangoproject.com/en/4.2/topics/cache/.

47. Webhook Events API. In: Strava Developers [online]. [N.d.] [visited on 2023-05-01]. Available
from: https://developers.strava.com/docs/webhooks/.

48. Component Architecture. In: Hands on React [online]. [N.d.] [visited on 2023-05-01]. Avail-
able from: https://handsonreact.com/docs/component- architecture#container-
and-presentation-components.

49. SHARMA, Rohit. Class Components and Functional Components in Reactjs. In: Let’s React
[online]. 2022 [visited on 2023-05-01]. Available from: https://www.letsreact.org/class-
components-and-functional-components-in-reactjs/.

50. MAJ, Wojciech. React Lifecycle Methods diagram. In: GitHub [online]. [N.d.] [visited on
2023-05-01]. Available from: https : / / github . com / wojtekmaj / react - lifecycle -
methods-diagram.

51. MARANAN, Menard. The React lifecycle: methods and hooks explained. In: [online].
2022 [visited on 2023-05-01]. Available from: https://retool.com/blog/the- react-
lifecycle-methods-and-hooks-explained/.

https://mui.com/material-ui/getting-started/overview/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://blog.logrocket.com/django-rest-framework-create-api/#what-is-django
https://blog.logrocket.com/django-rest-framework-create-api/#what-is-django
https://davenathanaeld.medium.com/design-pattern-django-rest-framework-1e8c17946bce
https://davenathanaeld.medium.com/design-pattern-django-rest-framework-1e8c17946bce
https://www.geeksforgeeks.org/types-of-databases/
https://postgres.cz/wiki/PostgreSQL
https://postgres.cz/wiki/PostgreSQL
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://www.ibm.com/topics/docker
https://www.ibm.com/topics/docker
https://docs.docker.com/build/ci/github-actions/
https://docs.docker.com/build/ci/github-actions/
https://www.nginx.com/resources/glossary/nginx/
https://www.nginx.com/resources/glossary/nginx/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://docs.djangoproject.com/en/4.2/topics/cache/
https://developers.strava.com/docs/webhooks/
https://handsonreact.com/docs/component-architecture#container-and-presentation-components
https://handsonreact.com/docs/component-architecture#container-and-presentation-components
https://www.letsreact.org/class-components-and-functional-components-in-reactjs/
https://www.letsreact.org/class-components-and-functional-components-in-reactjs/
https://github.com/wojtekmaj/react-lifecycle-methods-diagram
https://github.com/wojtekmaj/react-lifecycle-methods-diagram
https://retool.com/blog/the-react-lifecycle-methods-and-hooks-explained/
https://retool.com/blog/the-react-lifecycle-methods-and-hooks-explained/


72 Bibliography

52. MONSANTO, Marco. Routing in SPAs. In: DEV Community [online]. 2020 [visited on
2023-05-01]. Available from: https://dev.to/marcomonsanto/routing-in-spas-173i.

53. Tutorial V6.11.1. In: React Router [online]. [N.d.] [visited on 2023-05-01]. Available from:
https://reactrouter.com/en/main/start/tutorial.

54. useNavigate V6.11.1. In: React Router [online]. [N.d.] [visited on 2023-05-01]. Available
from: https://reactrouter.com/en/main/hooks/use-navigate.

55. BrowserRouter V6.11.1. In: React Router [online]. [N.d.] [visited on 2023-05-01]. Available
from: https://reactrouter.com/en/main/router-components/browser-router.

56. Routes V6.11.1. In: React Router [online]. [N.d.] [visited on 2023-05-01]. Available from:
https://reactrouter.com/en/main/components/routes.

57. Route V6.11.1. In: React Router [online]. [N.d.] [visited on 2023-05-01]. Available from:
https://reactrouter.com/en/main/components/route.

58. BOATENG, Dickson. How to Use the React Context API in Your Projects. In: freeCode-
Camp.org [online]. 2023 [visited on 2023-05-01]. Available from: https : / / www .
freecodecamp.org/news/context-api-in-react/.

59. Using the Web Storage API. In: Web APIs — MDN [online]. 2023 [visited on 2023-05-01].
Available from: https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_
API/Using_the_Web_Storage_API.

https://dev.to/marcomonsanto/routing-in-spas-173i
https://reactrouter.com/en/main/start/tutorial
https://reactrouter.com/en/main/hooks/use-navigate
https://reactrouter.com/en/main/router-components/browser-router
https://reactrouter.com/en/main/components/routes
https://reactrouter.com/en/main/components/route
https://www.freecodecamp.org/news/context-api-in-react/
https://www.freecodecamp.org/news/context-api-in-react/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API


Contents of the attached medium

readme.md....................................................description of the contents
src....................................................................................

backend......................................................server side source codes
frontend.....................................................client side source codes
deployment .................................................. deploment source codes

thesis................................................................................
text .................................................................. thesis in PDF
src...............................................................thesis source codes

73


	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Analysis and design
	Requirements
	Functional requirements
	Non-functional requirements

	Strava service
	Overview
	Strava API

	Existing solutions
	Strava
	strava-gear
	ProBikeGarage
	Conclusion


	Architecture and technology analysis
	Architecture
	HTTP
	HTML
	CSS
	DOM
	JSON
	API
	CRUD
	Webhooks
	Web applications
	Conclusion

	Technologies
	Client side
	Server side
	Data layer
	Deployment
	Conclusion


	Implementation
	Server side
	Models
	Serializers
	Views
	Authentication
	Strava

	Client side
	Component-based architecture
	Routing
	State management
	Authentication
	Strava


	Testing
	Requirements
	Functional requirements
	Non-functional requirements

	Server-side unit testing
	REST API testing
	User testing
	Security testing

	Deployment
	Docker image
	Docker Compose
	NGINX
	GitHub Actions

	Conclusion
	Possible future extensions

	Strava API
	REST API
	Server side implementation
	Client side implementation
	Deployment
	Application showcase
	Contents of the attached medium

