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Abstract
In recent years, with the significant in-
crease in fake news published daily, there
is a need for a reaction. This thesis focuses
on the support of current fact-checking or-
ganizations, which nowadays mostly rely
on manual fact-checking in the form of
the detection of previously fact-checked
claims, a process that could potentially
offload a significant portion of their work-
load.

In the first part, there is a description
of the theoretical background of such a
task (information retrieval task) and the
various models available to perform it – in-
cluding both traditional and neural mod-
els (in the form of recently very popu-
lar transformer models) such as BERT,
RoBERTa, ELECTRA and various dis-
tilled models. The theoretical part is
accompanied by a brief introduction of
approaches to the usage of such models.

In the second part, experiments are in-
troduced and conducted on publicly avail-
able datasets described in corresponding
sections. These experiments, run on cross-
attention, and two-tower neural models,
allow us to compare the performance of
various chosen models in terms of com-
putational cost and, most importantly,
quality, measured by various metrics in-
troduced in the theoretical part. These
same experiments are also performed on
the same models after finetuning them
using the introduced datasets, where we
also experiment with a sampling of nega-
tive samples by comparing hard and ran-
dom negative samples. The comparison
was run not only between various neural
models but also against a strong baseline
which was a traditional (BM-25) model.

Keywords: fact-checking, BM25,
transformers, NLP, document retrieval,
information retrieval

Supervisor: Ing. Jan Drchal, Ph.D.

Abstrakt
V posledních letech došlo k razantnímu
nárůstu počtu publikovaných fake-news.
V reakci na tuto skutečnost je cílem této
práce podpora stávajicích organizací za-
bývajích se fact-checkingem, které se v
současnosti většinou spoléhají na manu-
ální ověřování faktů, a to ve fromě detekce
již dříve ověřených tvrzení, což by poten-
ciálně mohlo pomoci výrazně snížit jejich
pracovní zátěž.

První část práce se zabývá představe-
ním teoretické části takové úlohy (úloha
získávání informací) a různými modely,
které ji mohou řešit. Prozkoumal jsem jak
klasické modely, tak v současnosti popu-
lární Transformers sítě jako jsou BERT,
RoBERTa, ELECTRA a dále různé desti-
lované modely. Teoretická část je dopl-
něná krátkým představením přístupů k
používání takových modelů.

V druhé části práce byli představeny a
provedeny experimenty na veřejně dostup-
ných datasetech. Tyto experimenty, prove-
dené na cross-attention a two-tower mode-
lech Transformers modelech, nám umožní
porovnat výpočetní náročnost a přede-
vším výkonost, měřenou několika met-
rikami představenými v teoretické části
práce, jednotlivých vybraných modelů. To-
tožné experimenty jsou pak zopakovány
na vybraných modelech po jejich dotréno-
vání za využití představených datasetů. V
této části také experimentujeme s různými
přístupy k trénování, týkajicích se výběru
negativních vzorků a to porovnáním hard
negative samples a random negative sam-
ples. Výše uvedené výsledky jsou pak také
porovnány s tradičním (BM-25) modelem.

Klíčová slova: fact-checking, BM-25,
transformers, NLP, vyhledávání
dokumentů, získávání informací

Překlad názvu: Detekce dříve
ověřených tvrzení
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Chapter 1
Introduction and Motivation

Today, with an increasing number of fake news published every hour, there
is a need for a reaction to them. Traditionally, the fight against fake news
was led by a number of organizations that rely on a manual approach – every
single claim must be evaluated by an (ideally trained) human.

Now I will provide two examples of fake news evaluated by the organization
Politifact. The first one is a Facebook post stating that "A confidential source
claims that the Moon is a habitable place and that it is inhabited by more
than 250 million humanoid aliens," 1 – when evaluating this statement, their
employee first provides a definition of a habitable planet (according to NASA),
then it checks various of the necessary condition against current knowledge
about the moon (cited from trustworthy sources such as NASA or ESA). This
leads them to refuting the statement (as they prove that it cannot "sustain
life for a significant period of time") and proclaim it "Pants on fire" (the worst
rating on their "truth-o-meter" – the scale of how true they find the evaluated
statement).

While the first example required various reliable sources and was generally
quite complex, lots of potentially fake news is much easier to evaluate, as
depicted by the evaluation I chose as the second example. The second example
is straightforward – the claim is “Saudi team gets $460K Rolls-Royces for
upset win.” 2. It is connected to surprising win of Saudi national team against
favoured Argentina national team during the group stage of the 2022 FIFA
World Cup in Qatar. It was easily refuted by citing a question from one of
the press conferences that took place during the tournament that tackles
this exact topic (allowing to rate it "false"). The interesting thing about this
evaluation is that it includes multiple examples of the same claim, which is
an important fact for this thesis.

One of the advantages of having already functioning organizations as
described is that we have already created quite a large dataset of evaluated
potential fake news. The existence of the dataset could potentially prove to
be very useful, as a lot of fake news tend to repeat itself many times (as an
example, take a politician during the preelection campaign that will make

1Avialable at: https://www.politifact.com/factchecks/2023/mar/06/facebook-posts/is-
the-moon-habitable-for-people-not-with-its-lack/

2Aviable at: https://www.politifact.com/factchecks/2022/nov/29/viral-image/saudi-
coach-striker-say-no-rolls-royces-beating-ar/
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1. Introduction and Motivation ..............................
various claims at many different events. However, many of these claims will be
essentially the same, although differently expressed). Also, this could be very
useful when dealing with fake news not related to politics but to other topics,
such as scientific or historical facts. Another fact that is needed to take into
consideration is that manual fact-checking is, in fact, quite time-consuming.

The rise of social networks allowed for the number of potentially fake news
to rise significantly; therefore, it is of essence to provide assistance to the
system currently discovering false claims. Many possible approaches exist,
such as fully automatic fact-checking (where the claim is evaluated based on a
knowledge base without human interaction). However, humans tend to trust
these solutions less than they trust human evaluation. (Shaar et al. 2020)

Therefore I decided to aim my work at tools that can possibly aid human
evaluators. The idea is that by detecting previously fact-checked claims, we
could possibly offload much of their work; also, even when the found verified
claim is not exactly the same, it could prove helpful for the process. To
achieve this, I will evaluate various models for information retrieval tasks.

First, in the theoretical part, I will introduce such models (both traditional
and neural network models). Also, I will introduce various metrics by which
these can be evaluated and a few datasets we could run their comparison on.

Secondly, in the practical part of my thesis, I will describe particular
models that will be used (because in the theoretical part, I will describe
only their base idea, here, I will focus on specific used models). Then, I
will evaluate these models and compare their results. I will not only rely on
already pre-trained models, but I will also finetune (a process which I will
also thoroughly describe) them and compare the results of finetuned models
with the original ones. While previously mentioned matters mostly to neural
network models, I will also have to choose a good enough baseline traditional
model as a weak baseline is the problem of many such comparisons (Yang
et al. 2019).

Finally, this evaluation will provide much helpful information (not only by
comparing the results of various systems but also the speed of their finetuning
and their speed during inference, as time is also of the essence) that could
potentially be used when implementing a real, deployable, semi-automatic fact-
checking system employing document retrieval methods (document retrieval
being a branch of information retrieval where the information is stored
primarily in textual form).
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Chapter 2
Related work

This chapter focuses on introducing the task of information (document)
retrieval and later parts also on introducing various models (mostly neural
but also traditional ones) used for performing such a task.

2.1 Information retrieval task

As defined before, we need to retrieve information in order to support fact-
checking organizations. This leads us to the information retrieval task (IR),
which is defined in (Christopher D. Manning, Prabhakar Raghavan 2008)
as "finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually
stored on computers)".

However, information retrieval is a broad topic, and we need to only focus
on one of its branches (although arguably one of the most popular and often
interchanged with general information retrieval – a trend that I will mostly
follow in this work). This mentioned branch is called (ranked) document
retrieval (DR) and is one of the classic IR problems (also performed by
well-known web search engines such as Google, Bing, etc.). Its main goal is
to retrieve a ranked collection of documents corresponding to a given query –
the collection is ranked by the relevance of individual documents to the query,
from best to worst retrieved. (Mitra & Craswell 2018)

As mentioned before, this task can be solved by many traditional and
neural models, some of which I will describe in the following sections of this
chapter (focusing on models that will be used during the experimental part
of my work).

The connection to the detection of previously fact-checked is clear: the
new claim is the query in the IR (DR) task, while the collection of already
verified claims is the collection of documents; our goal is to retrieve the
best corresponding documents (as they are the most probable to be already
fact-checking the given claim or at least similar one).
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2.2 Tradional IR models

The section describes the theory and history of traditional IR models used
during the experimental part. Although neural models become very popular
nowadays, there is still an important place in the IR task for traditional
models, whether as one of the stages in multi-stage retrieval or as separately
used models in many situations. They still have some advantages, such as
(usually) lower inference times, and the best implementations of them are
also solid in terms of results (as I will show in the experimental part), which
is no surprise, given they were dominant in this task up until the early 2010s.

2.2.1 TF-IDF

One of the most famous traditional models of IR and the basis of many
applications. It is based on the logical assumption that the document (or
zone) that mentions the query term more often is more relevant and, thus,
should receive a higher score than other documents. Moreover, it also takes
into account that some words generally appear more often without offering
much relevance (in English, typically words such as "the", "a", "an", etc.).

The base of the model is a scheme called term frequency (TF), denoted
tft,d (with t denoting term and d document) where tft,d. It is based on
the bag of words model, which means that exact ordering is ignored. The
elementary approach is to set tft,d equal to the number of occurrences of
term t in document d, but any other mapping of this tuple to a real positive
value is possible. Term frequency alone is a score that is usable in IR tasks.

However, TF suffers from one crucial problem: all terms are equal in their
contribution, even though some words really do not have any relevance when
trying to retrieve documents relevant to the query (with examples mentioned
above). This is where inverse document frequency (IDF) comes in handy.
Basically, it is a mechanism for distinguishing and appropriately weighting
terms that occurs too often in the collection of documents to be of relevance.

First, we have to introduce document frequency dft, which is equal to the
number of documents in the collection where the term t is present. Then
we could continue and define IDF, where IDF of term t with a collection of
documents of size N is

idft = log( N

dft
) (2.1)

The intuition behind IDF is easy; the more documents the term is in, the
lower the score.

Now let us continue to complete TF-IDF:

tf-idft,d = tft,di̇dft (2.2)

At this point, we have a weighted score created by term t in document d.
For the complete scoring system, we need to evaluate the whole document d
based on complete query q:
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Score(q, d) =
∑
tinq

tf-idft,d (2.3)

Still, this score has a problem with differences in the lengths of documents
in a collection. As long as all the documents are not of the same length,
there is a possibility that the score will be higher for longer, less relevant
documents, than for shorter more relevant ones because the longer document
might just somehow accumulate enough occurrences of query terms.

Therefore there is a need for further expansion of the previous concept.
(Christopher D. Manning, Prabhakar Raghavan 2008) does this by utilizing
the vector space model combined with TF-IDF (and thus a bag of words
representation). Define a vector derived from document d V(d), in which
every component is a dictionary term, and it is computed using TF-IDF. Then
all the representations of documents (and even queries) will be vectors of the
same length. The similarity between two documents can then be computed
by dot-product. This is a convenient concept, but it does not really solve the
problem with different sizes of documents. Therefore we need it also to be
length-normalized – for this, a simple Euclidean norm (denoted as |.|) can be
utilized. Leading us to the equation:

Score(q, d) = V (q)V̇ (d)
|V (q)||̇V (d)|

(2.4)

Then we can simply compute such a score for every document in the
collection and by sorting the results from highest to lowest obtain results
(usually we retrieve top-k scoring documents with k being an arbitrary natural
number). (Christopher D. Manning, Prabhakar Raghavan 2008)

2.2.2 BM-25

Originally introduced in (Robertson & Zaragoza 2009), one of the most
popular traditional IR models. It also employs TF and IDF concepts that I
have introduced in 2.2.1. It is defined as follows:

BM25(q, d) =
∑

tqinq

idf(tq) · tf(tq, d)(̇k1 + 1)
tf(tq, d) + k1 · (1 − b + b · |d|

avgdl )
(2.5)

where avgdl is the average length of documents in the collection D, k1 and
b are tunable parameters (usually tuned on a validation dataset). (Mitra &
Craswell 2018) claims that oftentimes k1 ∈ [1.2, 2.0] and b is set equal to 0.75.
Term idf is here defined as follows:

idf(tq) = log( |D| − −df(t) + 0.5
df(t) + 0.5 ) (2.6)

Base BM25 only aggregates contributions from individual terms. (Mitra
& Craswell 2018) BM-25 is suitable for a variety of use cases as shown for
example in (Shaar et al. 2021).
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2.3 Neural models

In this section, I will describe various approaches and paradigms tackling the
usage of neural models (in document retrieval pipeline, during pre-training
and finetuning) in the first subsections, while the later subsections will be
about various neural models of which most of them will be later used during
the experiments.

2.3.1 Tokenization

A token can be a word, subword or character; our goal is to have a finite
vocabulary that we can use to express our input text – i.e., we transform the
input text into a sequence of tokens so that the subsequences of textual input
match the tokens. Examples of tokenization methods will be introduced in
the following sections, for now, let us limit ourselves to an example (Table 2.1)
of tokenization using one of the models that will be discussed in this chapter
– MiniLM, which utilizes one of the most famous tokenizer – WordPiece
(introduced in (Wu et al. 2016)) (Wang et al. 2020).

Text
One of the advantages of having already functioning
organizations as described is that we have already created
quite a large dataset of evaluated potential fake news.

Tokenization

[’one’, ’of’ ,’the’, ’advantages’, ’of’, ’having’, ’already’,
’functioning’, ’organizations’, ’as’, ’described’, ’is’, ’that’, ’we’,
’have’, ’already’, ’created’, ’quite’, ’a’, ’large’, ’data’, ’##set’,
’of’, ’evaluated’, ’potential’, ’fake’, ’news’, ’.’]

Table 2.1: Tokenization example

2.3.2 Usage in the document retrieval pipeline

Generally speaking, using neural models is more computationally expensive
than using traditional models (especially so when using the cross-attention
paradigm – introduced in 2.3.5). Thus we have basically two main options
for how to use them.
The first one is to use only them – i.e. evaluate every document in the
collection against the claim, even at the higher computational cost (single-
stage retrieval).
The second one is to use them only for reranking – i.e. when checking against
a large collection, select use them only to rerank top k documents chosen by
traditional models. Even for an extensive collection, we will obtain reasonable
results at high enough k (can be as high as 500) for traditional models and
then use the neural models to rerank the retrieved documents (so that we
can use only top l documents, l « k). This potentially leads to results worse
than the first variant, but it is significantly faster when used for a large
collection. This approach is called multi-stage document retrieval, and as
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shown in (Nogueira et al. 2019), it is possible to have more than two stages
that I have described. They also used a traditional BM-25-based model as
the first stage, but then they used two different BERT models for reranking
(as the second and third stages).

2.3.3 Usage during evaluation of individual document

In this part, I will describe the usage of a neural model when focusing on the
processing outside of the model, while the direct usage of the model will be
described in the subsections 2.3.4 and 2.3.5. One thing that we need to focus
on is how to input the data into the model. As most of the documents and a
significant portion of queries are longer than the input accepted by ordinary
neural models (for example, the base variant of BERT accepts 512 tokens
(Devlin et al. 2019) while one token is on average cca 0.75 of English word).

Two base approaches were introduced in (Sun et al. 2019). The first is to
truncate the input (i.e. take only the beginning, the end, or beginning and
end combination), and the second one is to divide the text into fractions of
acceptable length and feed them to the network one by one.

Another approach could be to employ text summarization on the document
and then check only on this shortened version.

2.3.4 Two-Tower paradigm

Query-document interaction paradigm that gained popularity mostly due to
its lower computational cost (for example, when compared to 2.3.5, sometimes
referred to as representation-based. Its main idea is to compute the encod-
ings in independent "towers" (models, possibly same, possibly different, but
preferably BERT based) for query and document (without any interaction)
and then use these encodings to compute similarity score using, for example
by employing cosine similarity or simple dot product. (Chang et al. 2020).
The following advantage is that with the separated encoding of queries and
document collection, we can pre-encode the entire document collection, which
will significantly quicken the pipeline.

Siamese paradigm

For a Siamese paradigm, the only difference from the Two-Tower paradigm
is that the models used for creating document and query embeddings are
the same (same type, same weights, etc.). Thus it is a narrower concept.
Still, it is a very popular concept. It will be also one of the concepts used
within this thesis, as in the experimental part, we will heavily rely on the
SentenceTransformers framework introduced in (Reimers & Gurevych 2019).
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Figure 2.1: Difference between two-tower and cross-attention models(Chang
et al. 2020)

2.3.5 Cross-Attention paradigm

Another query-document interaction paradigm (sometimes called all-to-all
interaction). It is more computationally expensive than the Two-Tower
paradigm (2.3.4), but it also usually achieves better results – there is a
tradeoff between speed and quality of results. The idea is that we use only
one model, with both query and document concatenated to one input (both
parts separated by a special separating token). (Chang et al. 2020).

2.3.6 Other query-document interaction paradigms

Although the two previously mentioned paradigms are arguably the most
famous, there are also a few other possibilities – for example, query-document
interaction or late interaction. Late interaction is employed in ColBERT
(Khattab & Zaharia 2020).

Figure 2.2: Schematic diagrams illustrating query-document matching paradigms
in neural IR (Khattab & Zaharia 2020)

Also, please note that the models introduced in the following parts are
mostly not inherently dependent on the query-document interaction paradigms.
Most of them have various versions with varying interaction paradigms em-
ployed. This will be fully visible during the experimental stage, where some
used models will have their representatives in both cross-attention and the
siamese paradigm model groups tested.
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2.3.7 BERT

Language model pre-training has been shown to be effective in improving
many NLP tasks, such as natural language inference or paraphrasing. For
applying pre-trained language representations to downstream tasks, two
strategies exist– feature-based and finetuning. The feature-based approach
uses task-specific architectures that include pre-trained representations as
additional features – an example of this approach is ELMo. The finetuning
approach tends to introduce a minimal number of task-specific parameters
and is trained on downstream tasks by finetuning the pre-trained parameters
– the most famous example of this approach is OpenAI GPT (Generative
Pre-trained Transformer).

Authors of BERT (Devlin et al. 2019) argued that both techniques “restrict
the power of the pre-trained representations, especially for the finetuning
approaches”. They stated that one of the main limitations is that standard lan-
guage models are unidirectional and thus limited when choosing architectures
used during pre-training. As an example, they stated OpenAI GPT, where
left-to-right architecture was employed, which meant that in the self-attention
layers, every token could only attend to previous tokens. They claimed these
restrictions to be sub-optimal for sentence-level tasks and that it could be
harmful to tasks such as question answering, where it is important to work
with context from both directions. Aiming to improve the finetuning of BERT
(Bidirectional Encoder Representations From Transformers) was proposed.

The BERT framework consists of two steps: pre-training and finetuning.
In the pre-training phase, the model is trained over different tasks on

unlabeled data over two different tasks I will now describe:
To alleviate the unidirectionality constraint, BERT makes use of MLM

(masked language model). MLM was inspired by the Cloze task. The MLM
mask some of the input tokens (chosen randomly), and the objective is to
predict the original vocabulary id of the masked word only based on its context.
They masked 15 % of all WordPiece tokens in each sequence randomly. The
inconvenience of this approach is that the mask tokens are only to be seen
during pre-training, thus creating a mismatch with finetuning. To mitigate
this, when a token is chosen for replacement, there is only an 80 % chance
of the replacement being a mask token; 10 % of the time, it is unchanged
and the remaining 10 % is for it being replaced with a random token. An
important fact is that the MLM objective enables the fuse of both left and
right context, which allows to pre-train deep bidirectional Transformer.

In addition to MLM, they used a “next sentence prediction” task to jointly
pre-train text-pair representations, as many downstream tasks focus on
understanding the relationship between two sentences. Therefore they pre-
trained for a binarized next sentence prediction (conveniently, this task can
be easily generated from any monolingual corpus). Each pretraining example
consists of sentences A and B. While A precedes B, B is with a probability 0.5
sentence that actually follows A in the original document (labelled IsNext)
and with probability 0.5, it is a random sequence from the total pre-training
corpus (labelled NotNext). They claim this task to be beneficial to question

9



2. Related work.....................................
answering and natural language inference tasks, although, as I will mention
later in 2.3.12, it might not always be for the best.

The dataset used for pre-training consisted of BooksCorpus and English
Wikipedia (extracted only text passages), totalling 3.3M words.

As for the finetuning phase: it is quite straightforward, as for many other
Transformers. The attention mechanism in the transformer allows finetuning
on various downstream tasks involving both single text or text pairs. For each
such task, one has to simply plug appropriate specific inputs and outputs
into BERT and finetune all the parameters end-to-end. Also, compared
to pre-training, it is relatively computationally inexpensive. Important to
note that due to the nature of BERT, every finetuned model for a specific
downstream task is technically the same one, it comes from the same pre-
trained parameters that then only differ because of finetuning, but technically
(in the number of parameters, and layers) they are all the same.

Figure 2.3: Overal pre-training and finetuning procedurs for BERT (Devlin et al.
2019)

The architecture of the BERT is a multi-layer bidirectional Transformer
encoder. They claim that their implementation is almost identical to the
original implementation described in (Vaswani et al. 2017). They have
implemented two models – BASE with 110M parameters and LARGE with
340M. As for input/output representations, they focus on being able to
unambiguously represent both single sentences and their pairs in one sequence
(this is important, for example, for the question-answering task). They utilized
WordPiece embeddings first introduced in (Wu et al. 2016) with a vocabulary
of 30 000 tokens.

When introduced, BERT achieved state-of-the-art level results for a wide
range of tasks and thus soon became one of the most famous models. Nowa-
days, it is still widely used; various models are based on it (either finetuned
using BERT or its improvements, such as RoBERTa), and many of them are
included in this work.
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Figure 2.4: The Transformer – model architecture (Vaswani et al. 2017)

2.3.8 DistilBERT

With large-scale pre-trained models becoming basic NLP tools leading to
significant improvement, the trend toward bigger and bigger models raises
several concerns, such as the environmental costs of running these compu-
tationally demanding models and also their inability to run in real-time
on-device, which slows down wider adoption – the problem is also lack of
memory on these devices. DistilBERT (Sanh et al. 2019) is one of the first
models that shows that it is possible to achieve good results on numerous
downstream tasks with much smaller models pre-trained with knowledge
distillation. Resulting in models being smaller, less demanding and thus can
run on many more devices (such as mobile devices). They claim that 40 %
smaller Transformer pre-trained via distillation can achieve similar results to
the original one while simultaneously being 60 % faster.

Knowledge distillation is, for DistilBERT and many other models, the base
building block of their success. It is "a compression technique in which a
compact model – the student – is trained to reproduce the behaviour of a
larger model – the teacher – or an ensemble of models". This is achieved
via the minimization of training loss over soft target probabilities of teacher
and student (ti being probability estimated by the teacher and si probability
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estimated by the student).

Lce =
∑

i

ti
˙log(si) (2.7)

They also utilized softmax-temperature:

pi =
exp zi

T∑
j exp zj

T

(2.8)

where zi is the model score for class i and T is used to control the smoothness
of output distribution. During training same T is applied to both student
and teacher, while at inference, the temperature is set to 1 to use standard
softmax. The final objective of the training is a linear combination of Lce

combined with supervised training loss and also cosine embedding loss. By
adding cosine embedding loss, they aimed to align directions of hidden states
vectors of student and teacher.

The architecture of DistilBERT is generally the same as BERT’s, although
"highly optimized by modern linear algebra frameworks". They mostly focused
on reducing the number of layers of the model.

Finally, they claim that while achieving the previously mentioned reduc-
tion in size and increase in speed, DistilBERT still retains 97% of original
understanding capabilities.

2.3.9 TinyBERT

With pre-training and then finetuning on downstream tasks have become
a new paradigm for NLP and achieved notable success in many tasks (i.e.
models such as BERT, XLNet, RoBERTa or ELECTRA). However, these
models usually have quite a long inference time and therefore are difficult to
be deployed on devices such as mobile phones. However, it was also proven
that while they are quite huge in a number of parameters, they possibly
contain many redundancies.

Therefore it is feasible to reduce the computational overhead of the pre-
trained language models (PLMs) while retaining most of their performance.
There are various techniques available such as quantization or weight pruning.
In this chapter, I will focus on one of the techniques called knowledge dis-
tillation (KD). Its main aim is to transfer knowledge from the large teacher
model to a much smaller student network. It was shown by (Jiao et al. 2019)
that when using suitable methods, it is possible to distil knowledge from one
of the most famous PLM BERT in such a way that we retain over 96 % of
performance with both the number of parameters and inference times being
less than 15 % of the original values. This was proven with the model Tiny-
BERT (Jiao et al. 2019). Thus confirming the importance of the knowledge
distillation method.

Now I will briefly introduce the KD method. As mentioned before, we aim to
transfer knowledge from teacher network T to possibly a much smaller student
network S. Student network is therefore trained to mimic the behaviour of
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the teacher network. Formally KD can be modelled as the minimization of
objective function:

LKD =
∑
x∈X

L(fS(x), fT (x)) (2.9)

where L(.) is the loss function evaluating the difference between teacher and
student network on text input x from training dataset X.

TinyBERT utilizes a novel distillation method for Transformer-based models
proposed in the corresponding article (basically it performs KD not only in
the task-specific training stage but also during the pre-training). They used
both student and teacher networks built with the Transformer layer. They
introduced the problem as having a student model with M Transformer layers
and a teacher model with N such layer. As a first thing, we choose M out
of N teacher model layers for the Transformer-layer distillation – mapping n
= g(m) (m-th student layer learns from g(m)-th teacher layer. Formally we
minimize the difference between corresponding behaviour functions of layers
multiplied by a hyperparameter denoting the importance of the individual
m-th layer.

Practically the distillation is divided into three parts:
Transformer-layer distillation that includes attention-based distillation and

hidden states based distillation. Attention-based part is motivated by recent
findings that claim that attention weights that BERT learned can possibly
capture rich linguistic knowledge such as syntax and coreference information
which are essential for natural language understanding. The student learns
to fit matrices of multi-head attention in the teacher network. They also
distil knowledge from the output of the transformer layer, basically trying
to minimize the mean square error between the teacher’s hidden layer and
the student’s hidden layer multiplied by the learnable transformation of the
student network’s hidden states into the same space as the teacher states.

Embedding-layer distillation is quite similar to transformer-layer distillation
– it also minimizes the mean square error between the teacher embedding layer
and the student embedding layer, which is also multiplied by the learnable
transformation of the student network embedding layer to teachers one.

Prediction-layer distillation – not only do they want to imitate behaviours of
the intermediate level, but they also distil the knowledge to fit the predictions
of the teacher model. This was achieved by penalizing soft cross-entropy loss
between teacher network’s and student network’s logits.

As mentioned before, the distillation consists of two stages – they distil
knowledge during both pre-training and finetuning. In both parts, the original
BERT is utilized as a teacher.

The goal of general distillation is to learn the rich knowledge embedded in
pre-trained BERT; then we obtain general TinyBERT ready to be finetuned
for downstream tasks. During this phase, the reduction of the model is quite
visible, and TinyBERT performs notably worse than BERT.

However, as mentioned before, for domain-specific tasks, modern models
such as BERT suffer from over-parametrization; therefore, it is possible to
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achieve similar results with much smaller models. This allows them to produce
competitive (when compared to BERT), finetuned TinyBERTs through task-
specific distillation.

2.3.10 MiniLM

With knowledge distillation proven to be a promising way to compress large
models to smaller and less computationally demanding ones, MiniLM ((Wang
et al. 2020)) is another distillation framework for task-agnostic Transformer
based LM distillation (with others being previously mentioned DistilBERT,
TinyBERT, etc.). Their approach is called deep self-attention distillation (2.5)
and is a combination of various novel improvements to the distillation process
of transformers. Their idea was novel in the way they mimic the self-attention
modules; instead of performing layer-to-layer distillation as TinyBERT does,
they focus on the last Transformer layer of the teacher model. This approach
mitigates the difficulties of layer mapping and thus could be the layer number
of the student model much more flexible. In addition to attention distributions
(scaled dot-product of queries and keys) used in previously existing work, they
introduced scaled dot-product between values in the self-attention module
as the new deep self-attention knowledge. This allows the conversion of
representations of different dimensions into relation matrices with the same
dimensions, therefore allowing arbitrary hidden dimensions for the student
model. They also introduced teacher assistant to the distillation process.

With the base idea of knowledge distillation (minimization of the difference
between teacher and student layers) already introduced in previous sections,
here I will focus mostly on the novel parts of the MiniLM approach. As
mentioned before, their idea is three-fold – train the student by deeply
mimicking the self-attention module of the teacher’s last layer, introduce
transferring the relations between values in addition to performing attention
distributions transfer in self-attention modules and they introduce teacher
assistant, which helps the distillation when the size gap between teacher and
student is large.

With the attention mechanism being a highly successful component cru-
cial for pre-trained LMs, the transferring of self-attention distributions has
been used in many transformer distillation approaches. MiniLM specifically
minimizes the KL-divergence between the self-attention distributions of the
teacher and student. As mentioned before, the novel thing in this part is that
they use only attention maps of the teacher’s last Transformer layer. This
allows more flexibility when choosing the number of layers of the student
model (and also removes the necessity to find optimal student-teacher layer
mapping). Self-attention value-relation transfer is another novel approach
introduced by MiniLM. The value relations are computed using a multi-head
scaled dot-product and the training objective is again KL-divergence with
training loss being the sum of the attention distribution transfer loss and
value-relation transfer loss. This allows the student to deeply mimic the
teacher’s self-attention behaviour; moreover, it also allows the student to
use more flexible hidden dimensions. The last novel thing introduced for
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Figure 2.5: Overview of Deep Self-Attention Distillation (Wang et al. 2020)

MiniLM is teacher asssistant. Shortly it is the intermediate-size student
model, they first distil the teacher into the teacher assistant and then they
use the assistant for training the final student model, with the aim being
bridging the size gap between the teacher and the final student model.

These three improvements allowed them to achieve results quite close
to the original BERT model. (They stated their results as quite close to
BERT, mostly slightly better than TinyBERT and significantly better than
DistilBERT – DistilBERT being the weakest of compared distilled models).
(Wang et al. 2020)

2.3.11 ELECTRA

While the three previously mentioned models – DistilBERT, TinyBERT
and MiniLM – focus mostly on reducing inference time, respectively its
computational complexity, ELECTRA (Clark et al. 2020) is focused in yet
another direction, namely increasing the effectiveness of the learning phase
(from there its name "Efficiently Learning an ENcoder that Classifies Token
Replacements Accurately" – ELECTRA). As pre-training nowadays requires
quite a large amount of computational power, they argue that pre-training
computational efficiency should also be considered. As mentioned in previous
sections, models such as BERT (or XLNet, etc.) learn by utilizing masked
language modelling (MLM), a method that was described more thoroughly
in the section tackling BERT. ELECTRA, on the other hand, propose a
novel approach to learning called "replaced token detection". The input is
corrupted by replacing some tokens with samples from a proposal distribution
– they utilized a small MLM that generates words in place of masked ones.
Therefore the task is not only to replace the mask token validly but to identify
which words were replaced. They call the learning network a discriminator,
whereas the traditional MLM is a generator. This applies to the pre-training
phase (similarly to other models, ELECTRA is first pre-trained and then
later finetuned on specific downstream tasks).
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Figure 2.6: GLUE Score – Pre-train FLOPs performance evaluation of NLP
models (Clark et al. 2020)

As mentioned before, they utilize two neural networks – generator G and
discriminator D. Both primarily consists of encoder mapping sequence of input
tokens into contextualized vector representations. Generator G generates the
probability of a particular token in place of a mask token using a softmax
layer. The discriminator for a given position predicts whether the token is
real or comes from the generator distributions utilizing a sigmoid output layer.
So the process is as follows MLM selects positions that will be replaced with
mask tokens (randomly), and then we replace them with samples that the
generator generated thus creating corrupted input. This corrupted input is
then used for training the discriminator, which decides which token is original
and which is replaced.

They mention its similarity to the training objective of GAN (generative
adversarial networks), but state that there are some differences – for example
when the generator generates a correct original token, that token is considered
real later on. Also, they do not supply the generator with a noise vector.

They created various variants of ELECTRA (that differ by the size of
training data and thus its computational complexity). For the same training
computational complexity (measured by Train FLOPs) ELECTRA slightly
outperformed their trained BERT model. One of their larger models then
could go on par with XLNet while still being less demanding to train. While
their base variant significantly outperforms XLNet and even the BERT variant
of the same training computational complexity.

2.3.12 RoBERTa

Self-training NLP methods such as nowadays famous GPT or BERT brought
a significant rise in performance in last years. Therefore it can be sometimes
difficult to determine which of their aspects make significant contributions
and which do not so much. Also due to varying training settings (size of data,
length, etc.) our ability to compare various modelling approaches is limited.
The goal of RoBERTa (Liu et al. 2019) is to try to optimize hyperparameters
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of tuning, the training set size etc. to achieve as much improvement over
standard BERT as possible. With this goal set, they make various simple
modifications such as longer training, increasing the batch size, utilising a
large amount of training data (and obtaining now large dataset), removing
the next sentence prediction objective (thus leaving only the MLM objective
alone) and also dynamically changing the masking pattern applied to training
data.

As it is derived from the BERT model that was already described in
previous sections. Therefore I will only describe their modifications over
this "base" model and its training process. One important thing to note is
that BERT is generally undertrained, thus allowing expansion of the training
process without the threat of overfitting. Another note of importance is that
they evaluated each individual change against the "base" variant of BERT
that they reimplemented and trained.

The first change was to obtain a larger dataset – in total they acquired
5 datasets containing English-language text of various sizes and domains,
totalling over 160 GB. (In comparison, the original training set is only one-
tenth of the complete corpora they obtained).

BERT pre-training relies heavily on MLM. Original BERT performed mask-
ing only before the pre-training. To avoid using the same mask every epoch,
the authors of RoBERTa duplicated each sentence 10 times with different
masking (still being a static masking variant). Against this improvement,
they compared another variant when masking is regenerated every time the
sequence is fed to the model. With dynamic masking being on par or even
slightly better and also more efficient, they choose to utilize static masking.

The next change was to remove Next Sentence Prediction from the pre-
training procedure (and leaving only MLM) which again produced slight
improvement. Also, they modified the input format instead of combining
two segments (with probability 0.5 from the same document), they use one
document up to the size of 512 tokens and only if the document is shorter
than the rest is sampled from the next document (with an extra separating
token).

Arguably easiest change was to increase the size of training batches (from
a batch size of 256 sequences of original BERT paper to 8K sequences).

Also, they changed text encoding, while still utilizing Byte-Pair Encoding
(BPE) – original BERT used character-level BPE vocabulary with the size of
30K (learned after preprocessing), RoBERTa employed larger BPE vocabulary
with 50K subword units (without preprocessing). This led to cca 15M
additional parameters when used for base BERT.

Combining mentioned modifications leads to a Robustly optimized BERT
approach (RoBERTa). They claim that this model, when trained over all
160GB of data and for 500K steps, overperforms other compared models
(large variants of both BERT and XLNet) measured with SQuAD, GLUE
and RACE benchmarks.

As a conclusion of the section about RoBERTa, it is yet again important
to note that the most important thing it shows us is that there is still a great
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amount of unused potential in already existing models.

2.3.13 DistilRoBERTa

DistilRoBERTa is a model distilled from RoBERTa in the same way Distil-
BERT is distilled from BERT (process described in 2.3.8). Therefore as it
need not be described again, please refer to the corresponding sections (about
DistilBERT (2.3.8) for the distillation part and about RoBERTa (2.3.12) for
differences between RoBERTa and BERT).
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Chapter 3
Metrics

In the following chapter, I will briefly introduce the metrics that will be later
used to evaluate the quality of the results of the document retrieval tasks
which will be performed during the experimental part of this thesis.

3.1 Precision

Precision (P) equals the fraction of relevant documents in the retrieved
documents from the query.

|relevant retrieved documents|
|retrieved documents| (3.1)

3.1.1 Precision@k

Precision@k is calculated nearly the same way as base precision, with the
only difference being that we limit ourselves to top k retrieved documents.
Thus resulting in an equation

|relevant retrieved documents|
|retrieved documents| (3.2)

where
|retrieved documents| = k (3.3)

Precision@k is oftentimes called R-precision. Although this score is more
relevant for situations, where we have multiple relevant documents (which
is not exactly our case, as we have mostly one, only for a few cases, there
are more than one, but still it is a small number), I will still include it, as at
least for lower k it could still prove useful.

3.2 Recall

Recall (R) is the friction of successfully retrieved relevant documents from all
the relevant documents.

|relevant retrieved documents|
|relevant documents| (3.4)
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It is one of the easiest scores to use (alongside precision) and interpret, but
still quite useful.

3.2.1 Recall@k

Recall@k is computed nearly the same way as base recall, the only difference
is, that we limit the returned list of documents to top k results.

3.3 Mean Reciprocal Rank

For a single query, MRR is equal to RR = rank−1
i , where ranki is the rank of

the highest-ranked relevant document retrieved for the query i. For a sample
of queries Q, it holds that

MRR = 1
|Q|

·
|Q|∑

n=1

1
ranki

(3.5)

3.3.1 MRR@k

It is calculated similarly to MRR, but when it holds that ranki > k then
RR@k is equal to zero.

MRR@k = 1
|Q|

·
|Q|∑

n=1

1
rank@ki

(3.6)

rank@k =
{

ranki if ranki ≤ k
0 otherwise.

(3.7)

This score is particularly useful for our case, as we ideally need to find at
least one relevant document (already completed an evaluation of a potential
fake claim), and we can suppose, that the researchers from fake news fighting
organizations will go through potentially relevant documents in top-down
manner sorted by rank, therefore we want him to arrive at earliest possible
to first relevant claim.

3.4 Average Precision @ k

Again @k means we are taking into account only k top-ranked documents.

AP@k = 1
|relevant documents|

k∑
l=1

(precision@l · relevant@l) (3.8)

where relevant @ l is equal to 1 if the l-th retrieved document is relevant and
0 otherwise.
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3.5 Mean Average Precision @ k

With AP defined, we could define mean AP @ k:

MAP@k = 1
|Q|

|Q|∑
n=1

APj (3.9)

where again Q is a sample of queries and APj is AP corresponding to j-th
query. MAP is based on the following metrics: recall, precision, confusion
matrix (matrix consisting of four attributes – true positives, true negatives,
false positives, false negatives) and intersection over the union.

3.6 Normalized Discounted Cumulative Gain

NDCG is a measure of ranking quality determined by comparing the relevance
of the returned items against the hypothetical ideal return. The actual return
is evaluated by DCG (discounted cumulative gain)

DCG =
|return|∑

i=1

reli
log2(i + 1) (3.10)

where reli is the graded relevance of the result at position i. The ideal return
is evaluated by IDCG, which is a DCG but calculated for the ideal return.
With these definitions, we can continue to the calculation of NDCG being:

NDCG = DCG
NDCG (3.11)

3.6.1 NDCG@k

It is a NDCG with the return truncated to the first k documents.
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Chapter 4
Datasets

Here, used datasets will be introduced. In the first section, datasets used for
training the used models (i.e. datasets that I am not using but are important
to the work) are introduced, I will focus on datasets that are used alone for
some of the chosen models or are significantly famous. In the second part, I
will introduce datasets that I used for local finetuning and evaluation.

4.1 General use datasets

Here I will introduce datasets that I personally did not use for experiments
in this work but are of importance because they are used for training the
models I used.

4.1.1 SQuAD dataset

The Stanford Question Answering Dataset (SQuAD) is a reading compre-
hension dataset of over 100 000 questions created by paid crowd workers.
Their first obtained the top 10 000 articles from English Wikipedia, then
sampled 536 articles randomly from this set. From each of these articles,
they extracted individual paragraphs (with a length of at least 500 characters
and without any tables, images etc.), resulting in a total of 23 215 extracted
paragraphs (80 % of them are part of the training set, 10 % of development
set and the same amount is part of test set). Then for each paragraph, an
assigned crowd worker was asked to create up to 5 questions about the content
(with highlighted answers in the paragraph). Also, they have obtained at
least 2 additional answers for every answer from the development and test set.
The dataset tests various knowledge (such as synonyms, world knowledge,
syntactic variations and multiple-sentence reasoning). (Rajpurkar et al. 2016)

4.1.2 MS MARCO dataset

The dataset introduced in (Nguyen et al. 2016) (MAchine Reading COmpre-
hension dataset). It contains 1 010 916 anonymized questions from Bing’s
search query logs with human-generated answers and 182 669 completely
human rewritten generated answers. It also contains 8 841 823 passages from
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4. Datasets.......................................
3 563 535 web documents Bing retrieved, providing necessary information
for natural language answers. It is more than ten times larger than SQuAD.
(Nguyen et al. 2016) As it contains queries and possibly relevant passages of
them, it is, in fact, quite suitable for this thesis.

4.1.3 Quora Duplicate Questions dataset

This dataset uses data from the popular question-answering website Quora. It
contains possibly duplicate questions pair and information whether they are
duplicates or not (although this labelling contains some noise). It contains
over 400 000 lines of such question pairs. 1

4.1.4 NQ dataset

Natural Question corpus is another question-answering dataset created from
real anonymized, aggregated queries submitted to the Google search engine.
It consists of 307 373 examples with single annotation and 7830 with 5-way
annotation for the training set and 7 842 5-way annotated as test data. The
answers (short and long variants) are created by human annotators and based
on Wikipedia pages from the top 5 search results. (Kwiatkowski et al. 2019)

4.1.5 STS Benchmark

A collection of English datasets for STS task (semantic text similarity). It
contains 8628 sentence pairs split into various genres – news, caption, forum
and for each of these genres, there is a prepared train-dev-test split (in total,
5749 pairs for training, 1500 in dev split and 1379 for testing).

4.2 Datasets used for finetuning

In this section, I will focus on datasets that were used for finetuning during
the experimental part of this thesis. Both of these datasets are English only.

4.2.1 CLEF

The dataset attached to CLEF2020-CheckThat! lab task 2: claim retrieval 2.
Formatting is inspired by TREC (Text REtrieval Conference) information
retrieval campaign. It comes in the format of short verified claims (title
and verified claim – vclaim) and queries (tweets), already split into test and
training datasets. Note that vclaim is a shortcut for verified claim.

As an example, there is a query and verified claim example in table 4.1
(Barrón-Cedeño et al. 2020). For information about the size of the dataset
refer to table 4.2.

1Avialable at: https://quoradata.quora.com/First-Quora-Dataset-Release-Question-
Pairs

2Avialable at: https://github.com/sshaar/clef2020-factchecking-task2
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query

im screaming. google featured a hoax article
that claims Minecraft is being shut down in
2020 pic.twitter.com/ECRqyfc8mI
— Makena Kelly (@kellymakena) January 2, 2020

verified
claim

title Is Minecraft Shutting Down?

vclaim The popular video game Minecraft is shutting
down in 2020.

Table 4.1: CLEF query – verified claim pair example

verified claims 10375
test set queries 197
train set queries 800

Table 4.2: CLEF dataset size

4.2.2 Where Are the Facts? Searching for Fact-checked
Information to Alleviate the Spread of Fake News, EMNLP
2020

The dataset attached to paper (Vo & Lee 2020), which was part of the
conference on Empirical Methods in Natural Language Processing in the year
2020 (EMNLP2020). In other parts of this thesis, I will abbreviate the name
of the dataset as EMNLP or EMNLP2020. It was introduced with its own
Multimodal Attention Network, but I will omit it due to it also focusing on
visual features (I will, for some experiments, also use the text in the images –
if there is any – but not the image as a whole).

This dataset is technically consisting of two datasets, as I will explain
later, but I will mostly treat them as one in terms of my approach to them
(with one notable exception I will explain later), however, the results will be
separated to correspond with the intention of the original paper.

Both of the datasets are based on major fact-checking organisations (Politi-
fact and Snopes). After preprocessing 19 341 original tweets (18 961 of them
unique) and 2845 original FC-articles were used. Then they hired native U.S.
English speakers to label each document-tweet pair 1 if the article fact-checks
the tweet and 0 otherwise – the final label is based on a majority vote. As
the Kappa value was 0.56 the agreement between labellers was moderate –
it was caused by many article-tweet pairs where the article and tweet are
topically similar, but the article does not, in fact, really fact check the tweet.
Also, there were many false negative pairs (Snopes pair is positive and same
Politifact – as there is an intersection between datasets – is negative and vice
versa) – to avoid confusion of the model, the original complete dataset was
split into the two mentioned parts.(Vo & Lee 2020)

It resulted in 11 202 positive pairs in the Snopes dataset and 2 037 positive
pairs for Politifact – for more information see table 4.3. On average, each
poster created 1,35 tweets in the database. The topic covered is politics for
Politifacts. For Snopes, politics is the biggest part (more than 40 %), but
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not the only one, as it also covers other topics such as fauxtography, junk
news, etc.

An example of a query in this dataset is introduced in table 4.3 with an
attached image 4.1. Interestingly, this example shows that the recognition of
the image text in this dataset was not perfect, as it leave out part of the text.

OriginalTweetContent_Raw

@ReedDFarman @JAD204 @bobatl
What i do know is we never went
to the moon..Van Allen radiation belt
thousands of reals of moon footage
missing and we cant go back in 2017
https://t.co/Mes5klOAfQ

OriginalTweetContent_Processed

@user @user @user What i do know is
we never went to the moon ..
Van Allen radiation belt thousands of
reals of moon footage missing and we
cant go back in 2017 url

text_for_the_image Neil Armstrongs Space Boots

Table 4.3: EMNLP query example
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variant Preprocessed Final version
processed part/subdataset Snopes Politifact
positive pairs 11 202 2 037
tweets 19 341 (18 961 unique) 11 167 2 026
articles 2 845 1 703 467

Table 4.4: EMNLP dataset size

Figure 4.1: Attached image
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Chapter 5
Methodology

In this chapter, first, I will briefly explain the experiments and then describe
the complete pipeline of the experimental part of my work and the implemen-
tation will be briefly introduced. In the last part, I will introduce the models
used for conducting the experiments.

5.1 Introduction of experiments

One of the goals of this thesis is to evaluate selected NLP models’ performance
on obtained datasets to compare their suitability to the task.

To achieve this goal, first I need to obtain the results from the selected
traditional baseline (Pyserni) from every variant of the dataset. Then I have
to rerun the same experiments with the base variant of the neural models;
there, I have to add more division of the EMNLP dataset, as also "split" and
"nosplit" approaches become important.

With the results from the baseline and the base variants evaluated, I have
to finetune the neural models using the obtained dataset. This means I
will create a finetuned variant of the model for every possible variant of the
dataset used, totalling to 2 CLEF finetuned variants and 16 EMNLP variants
which every model is finetuned on.

At last, these finetuned variants are evaluated similarly to the way the
baseline models were. Except I have to reduce the cross-validation of every
finetuned model on every dataset, as it will lead to an excessive number
of results. Thus I have decided to evaluate every finetuned model on the
CLEF dataset, as it is due to its unanimity ideal choice for such a comparison.
Another reason to choose the CLEF dataset is that it is significantly smaller
than some parts of the EMNLP dataset and therefore is faster to evaluate.

Also, every CLEF finetuned model is evaluated on every EMNLP dataset
variant, however, the EMNLP finetuned models are only evaluated on the test
set belonging to the exact same version of the dataset they were finetuned on.
However, as our approach to negative samples does not affect the datasets for
the evaluation, this still means that two versions of every model are evaluated
on one variant of the EMNLP dataset – this allows for another comparison
directly within the EMNLP dataset (even more when comparing also CLEF
finetuned and baseline models).
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Moreover, I have decided for the smaller dataset (CLEF) to run every

finetuning multiple times (10) and evaluate every of the created models, this
will allow us to compare how stable the finetuning process is, and also to
measure the times better (as we will evaluate basically the same model – only
differing in weight – multiple times, thus allowing us to discover potential
outliers), generally it will provide more statistically significant results.

5.2 Evaluation experiments – traditional models

The various base settings we could evaluate our experiments on are described
in the following list:..1. CLEF dataset..2. EMNLP dataset..a. Politifact subdataset

(i) base text
(ii) image text..b. Snopes subdataset
(i) base text
(ii) image text

For the EMNLP dataset, the base and image text variants correspond to
the ways of obtaining the query as introduced in 4.2.2 – i.e. the base text is
when we use only the textual part of the social media post that is our query,
while image text means, that also the eventual text in the attached image
was used.

For the CLEF dataset, also another traditional model than Pyserini was
tested – namely Elasticsearch, as it was the baseline the original paper
used.(Barrón-Cedeño et al. 2020)

These 5 variants are the base settings that we evaluate traditional models
on.

The most important experiment here, besides obtaining baseline results for
our later comparison, is to show the importance of using the eventual text
from images possibly attached to our evaluated claims.

5.3 Evaluation and finetuning experiments – neural
models

This section focuses on the settings we will evaluate the neural models on
that are listed in the following list:..1. CLEF dataset..2. EMNLP dataset
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................................ 5.4. Finetuning experiments..a. Politifact subdataset
(i) base text

(A) split
(B) nosplit

(ii) image text
(A) split
(B) nosplit..b. Snopes subdataset

(i) base text
(A) split
(B) nosplit

(ii) image text
(A) split
(B) nosplit

Clearly, we could see, that while for the CLEF dataset, the situation is still
the same, there was introduced a new division of evaluation for the EMNLP
dataset, namely split and nosplit.

The reason is that the neural models are heavily limited by the length
of the input text and the EMNLP dataset unlike the CLEF one uses full
articles from fact-checking organizations in the document collection. There
are various approaches how to handle longer input text (Sun et al. 2019),
however, we will limit ourselves to two main approaches.

The nosplit approach means that we simply input the text as is – i.e.
the framework we use truncates it to an acceptable length and passes it to
the neural network, meaning we reduce ourselves to the beginning of such
documents.

The split approach ((Sun et al. 2019) calls this variant hierarchical) is
based on the splitting of the documents – and even queries when needed –
to sequences short enough to be mostly fully processable by the model – i.e.
shorter than their maximum input length.

These additional evaluation settings will allow us to determine which of
the two approaches is better suited for our task when performing the quality
of the results and also the computational complexity.

It will also allow us to determine whether the rise in the number of samples
used for finetuning when implementing the split approach is beneficial or not.

5.4 Finetuning experiments

While the previously explained experiments were bounded to both the evalua-
tion and the finetuning part, in this section, we will introduce the experiment
conducted during the finetuning (although naturally evaluated during the
evaluation part).
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As I have to obtain negative samples for the finetuning process, I have

decided to use two different strategies – random sampling and static hard
negatives sampling (Tabassum et al. 2022), which I will further on call the
best negative samples. I have decided to sample 3 negative samples for each
query. The random negative sampling is clear; for each query in the train and
validation set, we randomly choose the negative samples from the collection of
documents in such a way that the chosen samples will not cause any leakage (i.
e. are not positive samples in any other set) and are not the positive sample
for the query itself. The best negative samples strategy employs the result
from our traditional model baseline. We choose the best-ranked available (i.e.
under the same condition as for the random strategy).

Our goal is to evaluate, which approach is more beneficial to the neural
models used within this thesis.

5.5 Pipeline

Here I will briefly describe the pipeline of my experiments (i.e. the steps and
their order to obtain the presented results) and the experiments themselves.

5.5.1 CLEF dataset preprocessing

The test part contains 197 queries, and the training part originally consisted
of 800 queries. To prevent any leakage between datasets, I disqualified any
training query with the same gold label vclaim. Then I split 100 queries as a
validation set (I have to use such a specific number and abandon the idea of
a validation set of equal size to the test set because of an insufficient number
of queries left to also support functional finetuning). This led to 197 queries
big test set, 100 queries for the validation set and 506 training set queries.

As for the verified claims, I have also obtained negative samples for the
training and validation datasets. To minimize leakage, no verified claim that
is a gold label vclaim for query from one dataset was utilized as a negative
sample for another dataset. The final formatting tackling verified claims is
that I have concatenated the title and claim part together.

5.5.2 EMNLP dataset preprocessing

As each of the two EMNLP "subdatasets" was monolithic, I have to split it
to create train, validation and test parts of the datasets. I have decided to
use 70:15:15 split for train:validation:test. As there were much more queries
than verified claims, I had to split it by splitting these verified claims first
and then connecting them to queries which used them as a positive sample.
This allowed me to prevent leakage between these parts of the datasets; on
the other hand, it prevented it from following the ratio of split exactly (as
there were great differences in the number of connected queries for each
verified claim), which was more visible for the "smaller half" of the dataset
(the Politifact one).
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Also, it was necessary to handle queries with multiple positive samples
(although their number was low – 10 for the Politifact part and 52 for the
Snopes one) – to prevent leakage, all their positive sample articles must be in
the same part of the split. I have decided to assign them all to the training
set, as due to the article:query ratio, their assignment at random could affect
the split greatly. This leads to the test set containing only queries with one
positive sample.

For the Politifact part, it resulted in having 1500:276:261 split of train-
ing:test:validation queries, while the Snopes part was split 8470:1405:1327.

As for the CLEF dataset, also here I have to sample negative samples, a
process which will be later explained in 6; even though there were negative
samples provided – their number was too large (as I decided to go with
3 negative samples per test query and 1 per validation query, while they
oftentimes provided close to 100 of them).

Now, after a general introduction, I will specify how the dataset is used in
this thesis. As mentioned before, the dataset is divided between Politifact and
Snopes part. Then I introduced the difference between taking only the text
of the tweet as a query and including also the text contained in the image,
which is our second division. Then there is a third division based on dealing
with long texts, as mentioned before, according to (Sun et al. 2019) we could
either use truncation methods (I called this variant "nosplit") or hierarchical
method (split the text into sequences of suitable size and feed them to the
model one by one against the query – "split"). The last division (although
this applies merely when used for finetuning) is based on the approach to
generating negative samples – one variant is random (take k negative samples
– any document that is not a positive sample – from the entire collection – so
that there won’t be leakage as defined before) or best samples (take top k
samples ordered by selected model – in our case Pyserini’s BM-25 – that are
not a positive sample).

As for the individual queries and verified claims. For queries, I have used the
processed variant of tweet content for the base variant, potentially combined
with the text from the attached images for the image text variant. The
verified claims consist of the concatenation of the title and text of the article
and also the summarised claim provided in the dataset. These queries and
verified claims are then split for the split variant of evaluation as described
in the corresponding section.

5.5.3 Baseline

For baseline (5.7.1), the pipeline is quite straightforward. First, I had to
convert the datasets to a format that Pyserini accepts (see its documentation).
Then for every variant of data – note that here I do not distinguish between
"split" and "nosplit" EMNLP variants, I have to create indexes first. With
created indexes, I could run the queries against these indexes. Both of these
parts mean I have to run a series of terminal commands (for examples of them,
see attachments or visit Pyserini’s documentation). After the previous parts
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were completed, it means I now have ready collections of ranked retrieved
documents for every query. Now, I have to simply evaluate it using the
evaluation script described before in section 5.6.1.

The evaluation of the baseline is crucial for this thesis, as it will allow us to
evaluate the performance of other models used – therefore, I have to evaluate
the baseline on both the datasets and all their variants.

5.5.4 Finetuning neural models

For both datasets, the finetuning is quite easy. With the split of the datasets,
I described in the relevant chapter (4) and also both negative and positive
samples prepared, I have to simply call a Python script (depending on the
dataset differing in the dataset used) with the right parameters. The used
hyperparameters will be described in 6.2. For the CLEF dataset and "nosplit"
variant of the EMNLP dataset (thus the truncation using parts), this is very
straightforward because inputted data simply consists of pairs with the sample
(positive or negative) and the query attached to a corresponding query.

The situation is worse for the "split" variant of the EMNLP dataset, as
there I have to run every sequence from a query against every sequence of
the sample, leading to significantly higher computational cost.

Also, there represented both best negative samples and random negative
samples approach for all these variants used for finetuning.

5.5.5 Evaluating neural models

Here the situation is different from the baseline, as I have to rely on my own
scripts to evaluate the neural models, whereas for the baseline, I simply run
the commands, that Pyserini has built-in.

Truncated data

Again, for the truncation using experiments, simple one-stage retrieval was
used (thus the entire collection is evaluated by the model). I have to evaluate
every query from the test set against every document of the collection. Then
created output consisting of concatenated ranked results of such evaluation.
Then I again simply run the evaluation script to obtain the scores.

Split data

For the variant that (Sun et al. 2019) calls hierarchical (I refer to it as
"split"), the situation is different. Due to the extremely high demand for
the computation power used, I have to use multistage retrieval. Similarly
to (Nogueira et al. 2019), the first stage consists of BM-25 (Pyserini is used
in my case) retrieval, and then I take the top 250 results (note that for real
usage due to still high time consumption, it might be better to use even lower
number), that are against evaluated using every chosen model. The difference
here is that I retrieve the results of every sequence of the query against every
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sequence of the document. Similarly to (Sun et al. 2019) I used max-pooling
to retrieve the results, in my case, followed by a simple sum. I choose the
maximal results of every query sequence – article sequence combination for
every query sequence and then sum these maxima together to retrieve the
resulting evaluation of the document. For my experimental setup, I have
used statical pre-retrieved results of BM-25 (obtained during the evaluation
of baseline) to make the evaluation less demanding when it is not necessary.
After I retrieve and order the results, I have again to run the evaluation script
to obtain the scores.

The creation of split data is simple. I have split it into individual sentences
(or groups of them if they are short) in such a way they do not preferably
exceed the set limit of length. However, if an individual sentence is longer, it
will after all be truncated. The soft limit for one sequence is 150 characters,
due to the cross-encoders’ need to input both query and document together
– therefore accepting two concatenated sequences – and also to have some
overdraft reserves. The models I used accepts 128 tokens – cca 96 words, with
English word being on average cca 5 characters long, it means we could accept
about 480 characters – and again for the cross-encoders without any overlap,
we need to accept 300 character, which makes the reserve of approximately
180 characters reasonable to handle the most of the overlapping sequences.

5.6 Implementation

In this section, I will describe the implementations that I used to conduct the
experiments that I will introduce later on in chapter 6. It consists of many
evaluation scripts tackling various evaluation settings (for clarity, I tend not
to use one length script with many if else clauses to specify various input and
processing settings, but rather to split it into smaller scripts). Also, I needed
to create a few scripts for converting datasets into reasonably formatted input
files; Jupyter Notebook was used for choosing the best variant of finetuned
models when finetuning the same model with the same dataset and the same
settings multiple times. Another important part was reworking the evaluation
module and also creating scripts that process the results of the evaluation
module (i.e. creating graphs, converting results to more suitable formatting
etc.)

5.6.1 Introducing used tools

This section will introduce all the necessary tools for running all the provided
scripts (although I will here name individually every crucial part, the total
list of used libraries could be found in the attachments (A.1) – containing a
list of cluster modules used and the requirements of the virtual environment
used there and also the requirements for conda environment for the parts run
locally)
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SentenceTransformers

The experimental part of my work relies heavily on SentenceTransformers1

Python framework (and thus also on the Huggingface2 framework and Py-
Torch3 library). An important note is that while some model accepts longer
input sequence, the standard maximal input length is 128 tokens (cca 96
words on average, longer sequences are truncated) which is a limit I choose
to preserve to have equal settings for all the models.

Evaluator

For evaluation, I have used a Python script4 delivered within (Barrón-Cedeño
et al. 2020). Their script relies on an open-source Python library TREC
TOOLS (specifically designed for evaluating TREC-like campaigns, which
exactly suits their use of it and the formatting of their dataset). I only have to
make small changes, such as the expansion of the scoring provided by TREC
TOOLS and also adding the recall metric, which was not supported. Another
change was to allow for calling the evaluation from directly within other
scripts – i.e. change it into a Python module rather than being a Python
script.

Convertors

I have created numerous Jupyter notebooks converting both datasets to a
more convenient format. For the CLEF dataset, it contained mostly only
concatenating parts of the input (or splitting for the variant with evaluating
sequences of the documents and queries one by one); also, switch them to be
saved as a JSON for more convenient future use.

The conversion of the EMNLP dataset was much more expressive although,
with the same goals and means as mentioned above, this was due to the
dataset being much more complex (also, multiple variants have to be created
due to dealing with text from the attached images (to every information
about the attached image, there was also a transcription of the text, if it
contains any).

Final used scripts

For both finetuning and evaluation, I have created various scripts. Although
I aimed at making the scripts as multi-use as possible, still I have to create
various versions based on whether we used a two-tower model or a cross-
attention one, which dataset was used (CLEF x EMNLP) both for evaluation
and the finetuning and also for the EMNLP dataset there are different variants
for different approaches to the data (truncation or splitting into sequences).

1www.sbert.net
2huggingface.co
3pytorch.org
4available at: github.com/sshaar/clef2020-factchecking-task2
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For all the scripts, SentenceTransformers was their base building block. (All
variations were either introduced in 4.2 or will be introduced in 5.5.)

In every script, there is a time-measuring part that across different variants
always covered the same part (meaning that it measured equivalent parts of
evaluation or finetuning, although differently approached).

5.7 Models used

In this section, I will introduce specific models that were used during the
Experimental part of this work. While the ideological and theoretical back-
ground of each model was introduced in a corresponding subsection of 2,
here I will introduce each specific model (as there may be many variants
of the "same" model differing in pretraining data used, potential finetuning
and sometimes even in the number of layers and thus the total number of
parameters). Note that sbert.net (website for (Reimers & Gurevych 2019))
calls two-tower (siamese) models bi-encoder, whereas cross-attention models
cross-encoder, which is a notation I will often follow.

5.7.1 Pyserini

With the rise of pre-trained transformer-based models, there is a need for
stable, replicable baseline and first-stage retrieval. Pyserini – a toolkit built
as python-based inference to Anserini (developed by the same group) aims to
fulfil all these roles and support "the complete research life cycle". It has the
following features that are key to our needs:. It can be used as a standalone module to generate batch retrieval runs

but also can be integrated as a library for applications with interactive
retrieval. It supports sparse (BM25 using bag-of-words representation), dense
(nearest-neighbour on encoded representations) and also hybrid retrieval.

(Lin et al. 2021)
I have decided to use its sparse retrieval part (BM25 – based on theoretical
background introduced in 2.2.2) for many various purposes during this work.
I have used Pyserini-generated results to select "best negative samples" when
needed. I have also decided to use Pyserini’s results (and its evaluation)
as a baseline for comparison. As stated in (Yang et al. 2019) for serious
comparison, there is a need for a strong baseline – a thing that various papers
in the years before did not fulfil. However in recent years with the increasing
popularity of Pyserini, when it becomes basically a universal baseline) and its
relatively strong results (when for example compared to 5.7.2) I have decided
for using it as a baseline because it solves exactly this issue better than most
other traditional models I know – the performance was also confirmed by
(Ullrich et al. 2023)
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5.7.2 Elasticsearch

Although Pyserini is a good representation of a traditional IR model, I have
also decided to include Elasticsearch in the list. This is due to it being
stated as a go-to baseline model in the documentation coming with the CLEF
dataset5. Elastisearch6 is a free and open search and analytics engine for
all types of data, including textual, numerical, geospatial, structured, and
unstructured. It is based on Apache Lucene and written in Java, however,
clients are available in many languages (such as Python, Ruby, etc.).

During experimentations, I will only use Elasticsearch as a baseline for the
CLEF dataset alongside Pyserini, while the EMNLP dataset will be evaluated
only by Pyserini (due to Pyserini being more standard for NLP research
usage).

5.7.3 all-MiniLM-L6-v2

This bi-encoder model7 is a 6-layer version of MiniLM model (2.3.10). Fine-
tuned during 100 000 steps using a batch size of 1024 with sequence length
limited to 128 tokens. The learning rate is set to 2e-5 and the used optimizer
is AdamW. Totaly finetuned on more than 1 billion sentences from various
datasets such as Reddit comments, S2ORC – citation pairs, WikiAnswers –
duplicate question pairs, already presented MS MARCO (4.1.2), SQuAD2.0
(4.1.1), Quora Duplicate Question (4.1.3) and NQ dataset (4.1.4). It has 384
dimensions.

5.7.4 multi-qa-DistilBERT-cos-v1

Bi-encoder version8 of DistilBERT model (2.3.8) with 768 dimensions. Fine-
tuned with about 215M question-answer pairs. Examples of the datasets are
similar to above – WikiAnsfers, MS MARCO, NQ dataset, SQuAD2.0, NQ
dataset and many more.

5.7.5 all-DistilRoBERTa-v1

Bi-encoder model9 with 768 dimensions finetuned from base DistilRoBERTa
(2.3.13) during 920 000 steps using a batch size of 512 with sequence length
128, AdamW optimizer and learning rate 2e-5. They used over 1 billion
sentences, and the list of datasets is similar to 5.7.3.

5https://github.com/sshaar/clef2020-factchecking-task2
6https://www.elastic.co/what-is/Elasticsearch
7Avialable at: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
8Avialable at: https://huggingface.co/sentence-transformers/multi-qa-DistilBERT-cos-

v1
9Avialable at: https://huggingface.co/sentence-transformers/all-DistilRoBERTa-v1
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5.7.6 distiluse-base-multilingual-cased-v2

Is a multilingual variant of DistilBERT meant to be used as a siamese
network trained by SBERT. This bi-encoder model10 has 512 dimensions.
It is one of the original models coming from (Reimers & Gurevych 2020)
being a trained variant of DistilBERT (2.3.8). It has 512 dimensions and is
trained using many various datasets such as GlobalVoices (a parallel corpus
of news stories), TED2020 (translated subtitles for about 4000 TED talks
in over 100 languages), OpenSubtitles2018 (translated movie subtitles from
opensubtitles.org) and many more.

5.7.7 nq-DistilBERT-base-v1

Bi-encoder DistilBERT model11 (2.3.8) trained on NQ dataset (4.1.4)

5.7.8 stsb-TinyBERT-L-4

Pretrained cross-encoder model12 based on TinyBERT (2.3.9) with 4 layers.
For training STSB dataset was used (4.1.5). This means that it is not
directly pre-trained for our task, I have included this model to represent the
TinyBERT model with 4 layers, therefore relevant scores should be expected
mostly when evaluating finetuned variants.

5.7.9 quora-RoBERTa-base

Cross-encoder RoBERTa8(2.3.12) trained using Quora dupliate questions
datset (4.1.3),

5.7.10 qnli-DistilRoBERTa-base

DistilRoBERTa cross-encoder model8 trained using SQuAD dataset (4.1.1).

5.7.11 ms-marco-TinyBERT-L-2-v2

Another cross-encoder model13 representing TinyBERT models family (2.3.9),
this time with lower number of layers (2) but pretrained on datasets matching
our task – MS MARCO dataset (4.1.2).

5.7.12 ms-marco-MiniLM-L-6-v2

Cross-encoder MiniLM (2.3.10) model9 with 6 layers trained using MS
MARCO dataset (4.1.2).

10Avialable at: https://huggingface.co/sentence-transformers/distiluse-base-multilingual-
cased-v2

11Avialable at: https://www.sbert.net/docs/pretrained-models/nq-v1.html
12Avialable at: https://www.sbert.net/docs/pretrained_cross-encoders.html
13Avialable at: https://www.sbert.net/docs/pretrained-models/ce-msmarco.html
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5.7.13 ms-marco-ELECTRA-base

Cross-encoder base ELECTRA model9 trained using MS MS MARCO dataset
(4.1.2).

5.7.14 XLM-RoBERTa-large-squad2

Multilingual RoBERTa (2.3.12) model14, I have decided to use it as a cross-
encoder when using it through SentenceTransformers framework. Finetuned
using SQuAD2.0 (4.1.1) with a batch size of 32 and training rate 1e-5 during
3 epochs. This model was added as the only multilingual cross-encoder
(and the only multilingual model that is not a distilled model). Also even
though we finetune using English datasets, it still could prove useful in
multilingual settings, as shown in the zero-shot category description in BERT
documentation15 (as RoBERTa is technically a variant of BERT). Note, that
this model is not in the base state quite ready to be used (although it is
possible) through the SentenceTransformers framework (the warning states,
that some weights were not initialized, thus leading to weak results), however,
this is not the case, once I finetune it.

5.8 Choosing models from multiple runs

For some of the experiments, I have decided to finetune the same model mul-
tiple times to create n different variants. However, due to high computational
costs, it is not possible for every part. Thus I have decided to evaluate only
the best of the n variants there. For evaluating the variants, I have created a
simple scoring system. The main idea was, that we want to save the time of
fact-checking organizations, therefore we need to select the model that when
selecting top-k documents (for lower k) returns "good" results (it is really
not important, that a model is better with large k, as the fact-checker will
read only first few documents). This idea is appropriately represented by
recall@k score for a lower k (I have decided to use k k ∈ {1, 3, 5}). Also, I
want to prioritize results for lower k (as every researcher will check the first
best result, but fewer of them will check the third or fifth. The result is the
following score:

model_variant_usefulness = 3 · recall@1 + 2 · recall@3 + recall@5
6 (5.1)

which is basically a weighted normalized recall score @k ∈ {1, 3, 5}.

14Avialable at: https://huggingface.co/deepset/XLM-RoBERTa-large-squad2
15Source: https://github.com/google-research/bert/blob/master/multilingual.md
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Chapter 6
Experiments

In this chapter, I will describe the settings of the experiments and the hardware
used. Later I will describe the results and point out various interesting
comparisons so that I will fulfil the goal of helping to select suitable models
for usage within the pipeline of detecting previously fact-checked claims.

6.1 Experimental setting

For the conduction of the experiments, I have used the RCI1 cluster. The
used hardware was as follows: 32 GB RAM, 4 cores of either AMD EPYC
7543 or AMD EPYC 7763 CPU (depending on the assignment of the task in
the cluster internally, which was for this particular setting out of my control –
however, most of the heavy lifting is done by the GPU – which applies almost
completely to the time measured section) and one Tesla A100 40GB GPU.

6.2 Finetuning setting

I have decided to use every model with the same finetuning hyperparameters
(with one exception), as it is a fair way to finetune them because tuning
hyperparameters for every used model would consume too much computing
power and also, it is not the goal of this thesis. I used a learning rate of 1e-05
during 4 epochs and AdamW optimizer (which is somewhat classic, as could
be seen in previous sections). The only differing hyperparameter was the
batch size, where I usually used a batch size of 32; however, for finetuning
XLM-RoBERTa on EMNLP split variants, I have to scale down to a batch
size of 16 – alternative might be to use gradient accumulation, that is however
left for potential future work, as it was not tested during experimental part
of this thesis. These settings are one of the used during distillation of (Jiao
et al. 2019); it was also used for some of the tasks in the original BERT
paper (Devlin et al. 2019). The reason why I have to use smaller batches
during some of the variants of XLM-RoBERTa finetuning is simple: for the
Snopes part of the "split" EMNLP dataset, the GPU memory available was
insufficient (and to have consistency within experiments, I decided to have

1rci.cvut.cz
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decided to use it for entire experiment with EMNLP "split" dataset variant
for this model).

6.3 Measured performance..1. Result quality scoring and their comparison for various models..2. Inference times comparison..3. Finetuning times comparison..4. Influence of approaches to the selection of negative samples..5. Influence of approach to queries and articles longer than accepted input
of the model..6. Influence of adding recognized text from images attached to the queries
on the quality of the results

6.4 Results

In this section, the results of the experiments will be described, and I will then
conduct a brief comparison of a few interesting cases (brief in the comparison
against the aggregated data).

model name shortcut name

Bi-Encoders

all-MiniLM-L6-v2 b-MiniLM
’multi-qa-DistilBERT-cos-v1 b-qa-distilbert
all-DistilRoBERTa-v1 b-distilroberta
distiluse-base-multilingual-cased-v2 b-distiluse
nq-DistilBERT-base-v1 b-nq-distilbert

Cross-Encoders

stsb-TinyBERT-L-4 c-stsb-TinyBERT
quora-RoBERTa-base c-roberta
qnli-DistilRoBERTa-base c-distilroberta
ms-marco-TinyBERT-L-2-v2 c-msm-TinyBERT
ms-marco-MiniLM-L-6-v2 c-MiniLM
ms-marco-ELECTRA-base c-electra
XLM-RoBERTa-large-squad2 c-xlm-roberta

Traditional Pyserini Pyserini

Table 6.1: Shortcuts of model names used within graphs

6.4.1 Baseline and base neural models

This section will be used for the introduction of the results of baseline and
base variants of models evaluated on both datasets.
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Baseline – CLEF dataset results

In this section, we will evaluate the results of the traditional (baseline) models
and the base variants of neural models (with no finetuning on our side).

First, I shall evaluate the results (Table A.1) of the traditional models
achieved when running on the CLEF dataset test set. We could clearly see
that Pyserini outperforms Elasticsearch in every measured score (except
for recall@all, but this is due to Pyserini truncating the output, whereas
Elasticsearch returns a list of every document in the collection ranked). This
confirms that my decision to use only Pyserini as a traditional model baseline
was reasonable – as I would again refer to (Yang et al. 2019), there is a need
for a strong baseline. From our possibilities, Pyserini is clearly the better
one. However, It is necessary to remark that both the models achieved solid
results in most of the metrics, as will be later confirmed.

Baseline – EMNLP dataset results

With the baseline model justified, we could move to its results on the EMNLP
dataset (Table A.2). We could see that for both parts of the dataset (Politifact
and Snopes), the score for queries containing only tweet text is rather low. In
contrast, the score rises when incorporating the text from attached images (if
there is any). The scores seem justified compared to baseline scores from (Vo
& Lee 2020). Also, in agreement with their results, the scores from Politifact
are generally higher than the Snopes one for the first variant, whereas the
Snopes results are better for the second variant.

Now, since I have already made an argument that the scores for lower @k
are more important to us, for most of the following tables, I will limit the
results only to them – as I have already presented the results I have available,
I can focus on the important ones. Moreover, It will have minimal influence
(at least for k equal to all returned documents, as, for example, the recall@all
is only really influenced by the approach to the collection returned and not
the ranking quality, while the precision is a nonsensical score in this setting,
as It must always return 0.000).

Also, I have decided to leave out information on the MAP score from the
tables regarding the evaluation using the EMNLP dataset to make the results
more clear. I was able to do that, due to the MAP and MRR scores achieving
equal results for every model and depth presented for the following tables.
This was due to the scores being equivalent for datasets with only one gold
label article per query as for such a case there holds that

k∑
l=1

precision@k · relevant@l = 1
ranki

(6.1)

Clearly, for such a case, there is only one relevant document and the precision
for this document is equal to the reciprocal. Therefore for the MAP results,
we can simply refer to the MRR scores and leave out this doubled information.
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Figure 6.1: MRR@1 for base neural models and baseline evaluated on the CLEF
dataset

Base models – CLEF data

Now, It is necessary to present the results of the base models. It will allow
us to evaluate both the suitability of the individual models for the task, and
also it will be a baseline for evaluation of the influence of the finetuning in
the following sections.

The graphs 6.1 and, 6.2 presents the results of the MRR@ metrics for
k ∈ 1, 3. First, let us compare the bi-encoders and the cross-encoders
separately

For the bi-encoders, there are two models that outperform the baseline –
all-MiniLM and all-DistilRoBERTa, while the rest of them are worse, with
the nq-DistilBERT being clearly the weakest in both settings. The same
conclusion is also supported by the table A.3.

For the cross-encoders, only the ms-marco-MiniLM outperforms the base-
line in both settings, while the ms-marco-ELECTRA fails to do so for the
MRR@3. Both TinyBERTs were at least able to outperform the worst-
performing bi-encoder. The remaining models achieved poor results. The
XLM-RoBERTa results were omitted from the graphs due to it being unusable
without finetuning – as SentenceTransformers framework has generated some
of its weight at random as per the 5.7.14 – this is supported by the results
in table A.4, where you can also explore more detailed results of the other
models.

44



....................................... 6.4. Results

Figure 6.2: MRR@3 for base neural models and baseline evaluated on the CLEF
dataset

Overall, we could see that the cross-encoders were clearly less suited for
this task in their default. However also, great potential in them is visible, as
ms-marco-MiniLM outperforms every other model mentioned for the lower
@k metrics.

Base models – EMNLP dataset

Generally, for the evaluation using the EMNLP datasets, I will describe only
parts of the results, as the total number of produced results, tables, and
comparisons is too high to describe every part of it thoroughly in the scope
of this thesis – therefore I will focus myself on the results of the MRR@3
score for the four different variants of this dataset. For more detailed results,
please refer to the tables in the appendix – however, even there to maintain
readability, I focus only on lower @k matrics and omitted the precision, as its
@1 value is always equal to MRR@1, therefore it will add less information
than the rest of the metrics, also I have again left out the MAP score for
reasons stated in previous sections.

I will focus mostly on the influence of the split and nosplit approach,
however, let us begin with a reaffirmation of a conclusion from the baseline
evaluation of this dataset. The graph 6.3 confirms that the image text
inclusion in the query is beneficial for the overall results. Also, it presents,
that every model overperforming baseline for the image text model was able
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Figure 6.3: MRR@3 for base neural models and baseline evaluated on the
EMNLP Politifact nosplit dataset in both base and image text variant

to also outperform it in the base text setting, however, vice verse it does not
hold. It might be due to the image text providing more or better keywords
overall than the base text, which will greatly benefit the traditional model.

Now, let us move to the comparisons of the influence of the split and nosplit
variants of the dataset.

The graph 6.4 presents the MRR@3 scores for individual models when
evaluated using the Politifact base text scenario. We can notice that the bi-
encoders generally perform much better for the nosplit scenario – they overall
achieved great results, and except for one model, were able to overperform
the baseline. As for the cross-encoders, it clearly indicates which models are
suited for the task in their base version – supporting the conclusion from
the previous section. Interestingly, while for these suited models, we also
achieved better results using the nosplit approach, for the rest, it was quite
the opposite. The reason might be, that this approach is closer to the task
the models were trained for.

For the Politifact image text scenario – graph 6.5, the situation is a little
bit different as all the cross-encoders perform better for the split approach.
This might be due to the query becoming longer, which allows for less of the
document processed – this is not the case for bi-encoders, as they encode
the query and document separately and thus allow them for the same length
– this issue is generally solved by the split approach, where we arrange for
the query sequence and document sequence pair to be of acceptable length
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Figure 6.4: MRR@3 for base neural models and baseline evaluated on the
EMNLP Politifact base text dataset in both split and nosplit variant

when together. This shows that the split approach could potentially be very
useful. We could also see, that it holds for other scores than MRR@3 if we
refer to corresponding tables A.6 and A.7 for bi-encoders and A.8 with A.9
for cross-encoders.

The graphs 6.6 and 6.7 present us same scenarios for the Snopes part of
the dataset. There are a few notable differences. The less important one
is that for the Snopes dataset, the split approach was superior for some
cross-encoders even in the base text settings. The second one is more notable
– most of the models were not able to equalize the results of the baseline for
the Snopes image text variant. We have already concluded, that the Snopes
dataset is tougher for the models than the Politifact ones and these results
indicate, that it holds even more so for the neural models. As it is illustrated
by tables A.10 A.11, this holds not only for the MRR@3 but also for other
metrics with different depths.
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Figure 6.5: MRR@3 for base neural models and baseline evaluated on the
EMNLP Politifact image text dataset in both split and nosplit variant

Figure 6.6: MRR@3 for base neural models and baseline evaluated on the
EMNLP Snopes base text dataset in both split and nosplit variant
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Figure 6.7: MRR@3 for base neural models and baseline evaluated on the
EMNLP Snopes image text dataset in both split and nosplit variant
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6.4.2 Finetuned models – CLEF dataset evaluation

This section will generally describe the results of finetuned models on the
CLEF dataset. As mentioned before, we have two variants for each model
based on the approach to negative samples – random and best.

CLEF finetuned

In this section, the results of CLEF finetune models on the CLEF dataset
will be discussed. The results attached to it are, similarly to the base models
evaluation, quite compact. Therefore, I will provide more detailed evaluation
results for this section. Another fact that stands out is that due to the size of
the CLEF dataset, I was able to rerun the experiments multiple times (10);
thus, in this section, the results will be the mean accompanied by standard
deviation, allowing us better insight into the results.

Table 6.8 exhibits that all the bi-encoders improved when evaluated on the
CLEF dataset after finetuning on the CLEF dataset with either approach
to negative samples. However, we could clearly observe, that the random
negative samples are more beneficial to the performance of bi-encoder models.
This is supported also by the other metrics results in tables A.12 and A.13,
which also indicates, they lead to significantly lower standard deviation
for some models. Also, they were able to surpass the baseline score, and
all of them were able, to overperform their base variant, at least for the
random negative sample variant. The best bi-encoders in this scenario were
all-MiniLM and all-DistilRoBERTa-v1, while nq-DistilBERT-base-v1 was
arguably the weakest.

The situation is somewhat different for cross-encoders (measured by MRR@3).
As shown by graph 6.9, cross-encoders benefit more from using the best nega-
tive samples in this scenario as every one of them achieved better results for
the best negative samples approach than for the random negative samples
approach. This is illustrated also by the fact that all the best negative samples
variants overperformed the baseline; only 3 of the random negative samples
variants were able to do so. All of the models, when finetuned with the best
negative samples, achieved better results than their base variants.

The best-performing cross-encoders in this scenario are ms-marco-MiniLM-
L-6-v2, ms-marco-ELECTRA-base and XLM-RoBERTa-large-squad2 – which
is hardly a surprise, as ms-marco-MiniLM achieved good results even for the
base variant, and the XLM-RoBERTa is the largest model in the comparison.
Still, I want to emphasize the XLM-RoBERTa results, as it was tuned
from practically non-existent performance to the second-best model in this
comparison, which is impressive.

For a more detailed comparison, values from tables A.14 and A.15 could
be utilized – they allow us to extend the statements made above to most of
the metrics and most of the depths available there.

These tables also indicate that mostly the standard deviation is higher for
lower @k than for higher, which is also supported by the graphs 6.10 and
6.11 where the used metrics is MRR@1 when compared to the graphs with
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Figure 6.8: MRR@3 for bi-encoders finetuned using the CLEF dataset with
both negative samples evaluated on the CLEF dataset

MRR@3 results.
Finally, the last conclusion these tables allow us to draw is that while the

best negative samples exhibit slight improvement over their base version,
however only for lower @k, for the higher @k the results are slightly worse
while in the random negative sample scenario, models generally perform
better, even at higher @k, when compared to their base variants. For the
cross-encoders, the corresponding tables indicate, that they generally improve
over their base variant, no matter the negative samples approach.
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Figure 6.9: MRR@3 for cross-encoders finetuned using the CLEF dataset with
both negative samples evaluated on the CLEF dataset

Figure 6.10: MRR@1 for bi-encoders finetuned using the CLEF dataset with
both negative samples evaluated on the CLEF dataset
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Figure 6.11: MRR@1 for cross-encoders finetuned using the CLEF dataset with
both negative samples evaluated on the CLEF dataset
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EMNLP finetuned

In this section, I will introduce EMNLP finetuned models on the CLEF dataset.
I want to state right away that for most of them; their weak performance did
not meet my expectation (I will discuss possible reasons later). However, this
section will still be beneficial due to it reintroducing the EMNLP dataset for
the following section.

First, I will focus on the evaluation of base and image text influence on the
finetuning process and also the influence of the negative samples approach.
Then, we will briefly compare results depending on the @k settings of the
MRR. The last part will be on-model comparisons of various approaches, for
some of the interesting models we identify in the previous part – for this part,
I will use solely tables. Note that the structure of each table is easy. All
scores are evaluated on the CLEF dataset; every other description specifies
its finetuning settings – i.e. whether the Politifact or Snopes subdataset is
used, the approach to negative samples, long sequences and also to image
text.

Figure 6.12: MRR@3 for neural models finetuned using EMNLP Politifact
nosplit dataset with best negative samples approaches comparing the influence
of image and base text on the CLEF dataset

The graphs 6.12 (best negative samples) and 6.13 (random negative samples)
present us a comparison of MRR@3 scores when evaluated on the CLEF
dataset after finetuning on the EMNLP with either base or image text. They
exhibit, that models are stable in performing better on one of the settings no
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Figure 6.13: MRR@3 for neural models finetuned using EMNLP Politifact nosplit
dataset with random negative samples approaches comparing the influence of
image and base text on the CLEF dataset

matter the negative samples approach. Also, they present clear dominance of
the cross-encoders in this setting as all of the 3 best performing models are
cross-encoders – ms-marco-TinyBERT, ms-marco-MiniLM and ms-marco-
ELECTRA. On the other hand, I have again left out the results of the
XLM-RoBERTa, as it performed so poor there was no sense in keeping it in
the comparison – we will confirm these results later using another comparison.

Now, let us evaluate the influence of the negative samples approach when
combined with base text 6.14 and 6.15. For the base text variant, although
there are a few models where the best negative samples are the better choice,
it is not always the case; however, it is the approach which performed better
for the best-performing models. A similar conclusion can be made using the
image text variant, except that there is the random approach clearly beneficial
to ms-marco-ELECTRA, which is the third-best performing model. However,
generally, the finetuning using the EMNLP dataset was not as successful as
the CLEF one, we should not overestimate the value of such results when
comparing these approaches.

All the previously mentioned graphs present the results of the EMNLP
finetuned models to be significantly worse than the baseline results.

As for the comparison for different @k values, the graphs 6.16 and 6.17
indicate, that they are quite stable – meaning that there is no model that
is notably better for a specific @k than expected, they even preservers their
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Figure 6.14: MRR@3 for neural models finetuned using EMNLP Politifact
nosplit base text dataset with both negative samples approaches on the CLEF
dataset

ranking when order by performance for every @k. Also the graph 6.17 supports
my decision to leave out the XLM-RoBERTa from previous comparisons.

Now let us move to the on-model comparison part. Here, I will also evaluate
the influence of the split and nosplit approach and compare the results to the
baseline.

The first evaluated model is the so-far good performing bi-encoder all-
MiniLM (Table A.16). It indicates that finetuning using the EMNLP dataset
– at least with our finetuning setting – is not a success story equivalent to the
finetuning using the CLEF dataset. The second evaluated bi-encoder is all-
DistilRoBERTa which was also, in the previous settings, quite a strong model.
The table A.17 indicates that it also did not succeed in any finetuning settings.
The only interesting fact about these two bi-encoders is that both resulted
in their respective smallest degradation in different finetuning settings. This
was probably caused due to the differences in the models. An important
conclusion is that the split variant results were significantly weaker for the
Politifact subdataset finetuning, and that both Snopes variants (split and
nosplit) were also significantly weaker than Politifact nosplit version. This
leads us to the conclusion, that one of the problems here was overfitting, as
all the mentioned contains a significantly larger number of training samples
than the Politifact nosplit subdataset.

Now let us individually asses the results of two chosen best-performing
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Figure 6.15: MRR@3 for neural models finetuned using EMNLP Politifact
nosplit image text dataset with both negative samples approaches on the CLEF
dataset

cross-encoders:
Table A.18 presents us with the results of various finetuned variants of

the ms-marco-TinyBERT model. In comparison to bi-encoder, this model
is retaining some of its performance even after finetuning, even though it
is weaker than the base variant. Although, this is not mostly the case for
the split variant of finetuning. Another interesting fact is that it achieved
far better results for the Snopes nosplit subdataset than the previously
mentioned bi-encoders. This support my conclusion about overfitting, as the
split versions contain by an order of magnitude greater number of samples –
even the Politifact split is significantly larger than Snopes nosplit although
when the same variant is used, Snopes subdataset is generally larger.

The last introduced model – cross-encoder ms-marco-MiniLM (A.19) is, in
general, similar in behaviour to the ms-marco-TinyBERT model introduced
previously for this scenario. An interesting and novel fact is that the best-
finetuned variant slightly overperforms the base variant, proving the potential
of the EMNLP dataset for finetuning, when choosing the right finetuning
setting.
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Figure 6.16: MRR for bi-encoders finetuned using the EMNLP Politifact nosplit
dataset with best negative samples and only base text query evaluated on the
CLEF dataset

Figure 6.17: MRR for bi-encoders finetuned using the EMNLP Politifact nosplit
dataset with best negative samples and image text query evaluated on the CLEF
dataset
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Conclusion

The CLEF dataset evaluation allows us to draw several conclusions.
First, the finetuning process can greatly aid the performance of our task

in certain scenarios, however, it is not automatically guaranteed as per the
results of the EMNLP finetuned models.

Another fact is that the best-performing cross-encoders outperform every
introduced bi-encoder. It is an expectable result due to their nature. In-
terestingly, the cross-encoders performed better when finetuning in the best
negative samples scenario, whereas the bi-encoders were the opposite way.

The CLEF finetuned part also allowed us to identify the best-performing
model. For the bi-encoders they were clearly all-MiniLM and all-DistilRoBERTa.
For the cross-encoders family, many neural models achieved great results
compared to the bi-encoders and the baseline, however, the best performing
one was certainly ms-marco-MiniLM.

Also, for both bi-encoders and cross-encoders, the multilingual models
were able to achieve strong results. The XLM-RoBERTa was actually the
second-best performing cross-encoder. As mentioned in the 5.7.14 section,
even though we finetuned and evaluated in the English language setting, it
will still prove useful even for other languages, thus creating great potential
for future use of XLM-RoBERTa.

Generally, it also showed that for a specific task, the distilled models could
perform on par with the standard ones.

6.4.3 Finetuned models – EMNLP dataset evaluation

In this section, I will evaluate the results of finetuned models on the EMNLP
variants.

EMNLP finetuned

As mentioned before, the EMNLP finetuned models achieved weak results
and in this section, I will briefly support this statement by introducing the
results of the evaluation on the test set corresponding to the dataset they
were finetuned on – i.e. model variant finetuned on the Politifact – image
text – best negative samples scenario is evaluated again on the Politifact –
image text scenario. Therefore the only directly comparable results are these
evaluated for the same variant of the dataset (regardless of negative samples
approach). Due to the weak performances, I will compare the performances
in this section only using the recall metrics, as it is sufficient in this case –
with recall mostly close to zero, no other metrics could report considerably
different results.

As the example of the performance of bi-encoder model in this situation,
I choose to introduce the results of all-MiniLM (A.20) due to its good
performance in other scenarios. The conclusion here is simple; the models
perform very poorly – even the variant that stood out for the CLEF dataset
evaluation does not stand out of line. It might be surprising, as generally, we
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could expect better results for the dataset the model was finetuned on than
for some other. As even though we used separated train and set parts of the
dataset with no leakage, they still are similar in format. At least the EMNLP
dataset consists of full articles, while the CLEF dataset is somewhat reduced.

The second and last model evaluated in this section is ms-marco-MiniLM.
The table (A.21) shows us that it is quite similar to the introduced bi-encoder
results; therefore it only confirms my conclusions for this section and extends
their validity also for the cross-encoders model family.

CLEF finetuned

In this section, I will evaluate the results of CLEF finetuned on the EMNLP
dataset. It will allow us to affirm some facts about the approach to the
evaluation, which were already visible from the "base" variants evaluation;
however, I want to minimize such a part to reduce the size and focus on the
eventual novel information provided by this evaluation. In the beginning,
it is important to note that the variants that performed best on the CLEF
dataset were chosen to be used here (as I ran the finetuning and evaluation
in clef finetuned – clef evaluated scenario 10 times, I chose the best from the
set of the 10 variants).

Figure 6.18: MRR@3 CLEF finetuned using best negative samples evaluated on
the EMNLP Politifact split image text dataset

First, the graph 6.18 presents MRR@3 results of the CLEF finetuned with
best negative samples models on the EMNLP split image text dataset. It indi-
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cates that the bi-encoders are really not suited for the split scenario even after
finetuning (as for their base variants, we obtained similar results). However,
even for the cross-encoders, the CLEF finetuning was not beneficial. Although
some of the models (qnli-DistilRoBERTa and XLM-RoBERTa) improved,
other models achieved weaker results (ms-marco-TinyBERT, for example),
while the best-performing ms-marco-MiniLM was really not influenced at all
for MRR@3.

Now, let us focus on the MRR@3 results for different Politifact nosplit
settings, whether finetuning ones – i.e. approach to negative samples, or
evaluation – image or base text.

Figure 6.19: MRR@3 for models finetuned with best negative samples using
CLEF dataset evaluated on the EMNLP Politifact nosplit base text dataset

First, graph 6.19 presents the results for the best negative samples tuned
models when evaluating using the base text. Although few models there
overperformed the baseline, we could observe they are weaker than the base
variants. Also, this graph affirms that this setting overall is better suited for
the bi-encoder models.

The graph 6.20 indicates, that the same conclusion also applies to the
random negative variant. Surprisingly, there is not really a visible difference
between the approaches to the negative samples.

As for the image text variants – graphs 6.21 and 6.22, they exhibit significant
improvement for multi-qa-DistilBERT model as well as for distiluse-base-
multilingual, nq-DistilBERT-base, and XLM-RoBERTa (naturally, as it was
the weakest base model in the experiments due to reasons described in 5.7.14)
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Figure 6.20: MRR@3 for models finetuned with random negative samples using
CLEF dataset evaluated on the EMNLP Politifact nosplit base text dataset

when compared to their baseline, otherwise, they are really similar to the
base model variants results.

The previously mentioned graphs helped us to identify the generally best-
performing models in this setting – all-MiniLM and multi-qa as representa-
tives of bi-encoders, ms-marco-MiniLM and ms-marco-ELECTRA for cross-
encoders, and obviously the baseline traditional model Pyserini.

Their further comparison for every potential setting (in terms of subdataset,
approach to split data and base or image text and also whether they were
finetuned using random or best negatives samples) are presented by the graph
6.23. It confirms our previous conclusion about bi-encoders not being suited
for the split approach. Other than that, it showed the models are very similar
in results. It also supports the fact that the Pyserini BM-25 model is not
really suited for the base text scenario.

Now I will perform some on-model evaluation of the results to revisit some
of the best-performing models using corresponding tables.

First, let me introduce the structure of the tables used in this section.
We have denoted the subdataset, and then whether we use image text and
also the approach to the long sequences, these settings are connected to the
evaluation dataset used. The last parameter is negative samples – it connects
to the finetuning setting of the models, namely whether, when finetuning on
the CLEF dataset, the best negative samples were used or the random ones.

The first model is no other than the bi-encoder all-MiniLM (Table A.22).
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Figure 6.21: MRR@3 for models finetuned with best negative samples using
CLEF dataset evaluated on the EMNLP Politifact nosplit image text dataset

For the Politifact nosplit base variant, both negative and positive sample
variants performed slightly better than its base variant, while for the image
text variant, only the model trained using random samples slightly improved.
For the Snopes subdataset, we also achieved improvements for both random
and best negative samples. The split variant evaluation for all settings stayed
weak.

The next model discussed, the first cross-encoder in this section – stsb-
TinyBERT (A.23) – was chosen not due to its overall performance but due
to its peculiar results. Interestingly, it performs significantly better on the
split variants than on the nosplit ones, behaviour not exhibited by any other
introduced model in this section. The same way also behaved the base model
(however, for this finetuned variant, it shows that the results are worse) – still,
it is interesting that it was preserved even after the process of finetuning,
which was arguably successful when measured by the evaluation using the
CLEF dataset.

Arguably the best-performing cross-encoder in this section is ms-marco-
MiniLM – table A.24. While it performed somewhat worse than its base
variant for the split parts, it improved for the nosplit parts (results in tables
A.10 and A.11).
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Figure 6.22: MRR@3 for models finetuned with random negative samples using
CLEF dataset evaluated on the EMNLP Politifact nosplit image text dataset
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Figure 6.23: MRR@3 best CLEF finetuned models evaluated on EMNLP
comparison
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Conclusion

This section clearly affirmed a few conclusions made already in previous
sections – such as the usage of image text in addition to the base text of the
query (social media post) is quite crucial. Also, it outlined the potential of
the split approach, although it clearly showed the nosplit one to be superior
in our current settings.

In addition, it also demonstrated that models finetuned for a specific format
of a document – query pairs might not transfer their performance to other
formats well.

Also, this section clearly reaffirmed the weak results of most of the EMNLP
finetuned models.

6.4.4 Inference and finetuning times

With the results already introduced, the last part we want to examine is the
computational complexity of using the models.

First, lets us examine the results of the sum of inference times of individual
query-document pairs for the CLEF dataset and the Politifact subdataset of
the EMNLP dataset. Note that due to the models preserving all the factors
influencing inference times even after finetuning, these results will also apply
to the finetuned variants of corresponding models.

The table A.25 exhibits several notable things. First, the bi-encoders are
notably faster for the same scenario than the cross-encoders, even though I
did not use their biggest advantage, which is the possibility of preprocessing
the document collection. Clearly, when inference time is of importance, the
bi-encoders are a logical choice – supported by the great performance of
models such as all-MiniLM.

As for the cross-encoders, clearly, the most demanding one is XLM-
RoBERTa-xl, which is expectable due to it being the largest model in the
comparison. Note that while the bi-encoders were all distilled models, for the
cross-encoders family, there is a mixture of distilled and standard variants of
models. It allows us to compare directly DistilRoBERTa model with the base
RoBERTa model and RoBERTa-xl model, where the RoBERTa is roughly 1.6
times slower, while the RoBERTa-xl is 3 times slower than the base RoBERTa.
It showed the TinyBERT, regardless of the number of layers, to be the fastest
in our comparison for cross-encoders.

For the finetuning times, table A.26 shows that it does not matter whether
the model is a bi-encoder or a cross-encoder, the crucial distinction is the
size of the model. Again, for the CLEF dataset results, we benefited from
running each experiment multiple times in the finetuning part, allowing us
also to calculate the standard deviation, which was relatively low, meaning
that the runtimes of the finetuning process are for our experimental settings
quite consistent.
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6.5 Conclusion

In this section, I will briefly discuss the main results of the performed experi-
ments.

We have confirmed the importance of a strong baseline model, as it was
often able to compete with the more advanced neural models – again, this
was not a surprising result, as we could see in (Ullrich et al. 2023) where
the Pyserini’s performance was also quite strong for some settings. With the
combination of the relatively low computational cost of such a model, it most
definitely has many suitable use cases even nowadays, with the rise of the
neural models’ performance in this task.

Also, models that performed well on the information retrieval task in their
base variants were identified – both MiniLM models presented being an
example accompanied by other models.

We have also demonstrated the importance of finetuning; however, it also
showed not to be a guaranteed way to success.

Again, I want to discuss the multilingual models – we have introduced
3 possible choices (two neural models and the baseline). As Pyserini is
naturally language-independent, it is always a wise choice. Another strong
possibility is XLM-RoBERTa, where as mentioned in 5.7.14, even though we
finetuned on English datasets, it will transfer its performance quite well also
to another language setting. However, it is quite a demanding model both
computationally and in terms of successful finetuning.

For the experiments with the negative samples approaches – we have found
out that the static hard negative samples approach (we called it the best
negative samples approach) could overperform the soft negative samples
approach (the random negative samples approach), at least for some of the
models – specifically for the cross-encoders. However, for the bi-encoders, the
soft negative samples approach was better.

The EMNLP dataset evaluation affirms, that we should use any possible
additive information to the base fake news claim (in our case, exhibited by
extracting text from the images) as it will greatly aid the performance of all
the models. Additionally, It showed the potential of the split (hierarchical)
approach to longer texts, however, it also has been shown to be somewhat more
dependent on the model used and dataset evaluated than for the truncation
variant.

We have also evaluated the computational cost, where we could clearly see
that the bi-encoders are significantly faster when inference times are measured
(however finetuning process sees no evidence – it only depends on the size
of the model). This difference is so significant that for many use cases, it
might be wise to employ a bi-encoder even where there is a better-performing
cross-encoder available.
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Chapter 7
Conclusion

This thesis researches the detection of previously fact-checked claims em-
ploying a document retrieval task. First, in the theoretical part, we have
introduced the task itself, then the traditional models used for such a task
and later also various neural models and their usage. After a brief description
of metrics used to evaluate the performances of the models introduced in
the theoretical part, I have introduced the datasets used for evaluation and
finetuning. One of them consisted only of query – title and claim tuple pairs,
while the other one comes with a large collection of full documents created
by notable fact-checking organizations, which allowed us to measure the
performance of the chosen models in depth under various different scenarios.

For the experiments, I have briefly described the concrete variants of
the models used, and then the results were evaluated. We have clearly
demonstrated the importance of choosing a suitable and strong baseline,
as one of the traditional models representative – Pyserini’s BM25 clearly
outperformed the Elasticsearch model – and choosing the latter model as a
baseline would have greatly corrupted the evaluation of other models. We
were also able to identify neural models that perform strongly even without
further finetuning; some of them even outperformed the baseline. And most
importantly, we showed the usefulness of finetuning when various models were
able to outperform their base variants and, thus also, the baseline traditional
model.

During the evaluation of finetuned models, we have briefly described the
difference between using the best negative samples (hard negative samples –
(Tabassum et al. 2022)) and random negative samples. The conclusion was
that while in the siamese model scenarios, the random ones achieved better
results, for cross-attention models, it is the opposite.

Also, We have demonstrated that when available additional information,
such as text in the attached image, is available, it is important to use it in
the query.

In future work, we could focus ourselves on testing models omitted from the
experimental part of this thesis, such as ColBERT. Also, there is a possibility
to experiment even more with multi-stage retrieval and dealing with the long
input sequences – i.e. try different variants of manual truncation (for example,
the start and end of the document combinations as (Sun et al. 2019) did)
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or use such models that accept longer input sequences. Another option is
to focus on the finetuning process more so that we try to utilize better the
parts of the acquired datasets where the finetuning achieved weak results for
certain otherwise decently performing models. And even for the parts where
finetuned models performed well, we could still try to optimize it even more
by tuning the hyperparameters. Generally, the training process of the models
is critical to focus on because, as shown by (Liu et al. 2019), some models
are significantly undertrained.

I have fulfilled the goals of this thesis as I first researched the methods
used for detecting previously fact-checked claims while connecting this task
to the document retrieval task. I have obtained datasets usable for this task
and selected appropriate models. Then I evaluated individual models under
different scenarios, allowing us to distinguish models that perform well for
such a task.
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Appendix A
Appendix

This part contains the basic information needed about the attachment of this
thesis and other important facts about the project. – With this term paper
comes no attachments.

A.1 Software requirements

Requirements files allowing to recreate used Python environments are part of
the attachments.

A.2 Attachments structure

Here I will briefly introduce the structure of attachments and where are
the most important files. For a complete overview, please refer to struc-
ture_overview.pdf. Note that due to the nature of the scripts, it is necessary
to provide the exact same directory structure as is described there. Also,
please note that in order to reduce the size of the attachments, I removed a
few files necessary for the functioning of various scripts – these files needed
to be regenerated (typically Pyserini output files that are necessary for multi-
stage retrieval etc.), and an exhaustive summary of them is again part of
structure_overview.
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Senfeld_thesis_attachment

data_preprocessing
clef
emnlp

structure_overview.pdf – a complete overview of attachment
structure
requirements_Pyserini.txt
requirements_sbert.txt
bash_scripts – bash scripts used for finetuning and evaluation
graphs – generated graphs used within this thesis and the Jupyter
notebooks used for their creation
latex_tables – generated .txt files with latex files used within
this thesis and the Jupyter notebooks used for their creation
clef2020_Pyserini

score – where the results are
in
queries
how_to_run_it_clef_Pyserini.txt

emnlp2020_Pyserini
scores – where the results are
in
queries
how_to_run_it_Pyserini.txt

sentenceBert_testing
evalbase – scripts (7) used for evaluation of the base neural
models
scores – results of the base models
inputs
training – folder for experiments with finetuning

evalfinetuned – scripts (15) used for evaluation of the
finetuned neural models
finetune – scripts (6) used for finetuning the neural
models
input – finetuning specific input files
models – where the models will be stored
scores_bidirectional
scores_crossencoders
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A.3 Tables

metric MAP
model/@k 1 3 5 10 20 all
Elasticsearch 0.485 0.610 0.617 0.623 0.625 0.627
Pyserini 0.647 0.728 0.732 0.739 0.740 0.741

metric P
model/@k 1 3 5 10 20 all
Elasticsearch 0.487 0.250 0.156 0.082 0.043 0.000
Pyserini 0.650 0.274 0.169 0.089 0.045 0.000

metric MRR
model/@k 1 3 5 10 20 all
Elasticsearch 0.487 0.613 0.619 0.624 0.627 0.629
Pyserini 0.650 0.728 0.733 0.739 0.741 0.742
metric NDCG
model/@k 1 3 5 10 20 all
Elasticsearch 0.640 0.709 0.718 0.730 0.739 0.760
Pyserini 0.695 0.768 0.776 0.791 0.797 0.809

metric R
model/@k 1 3 5 10 20 all
Elasticsearch 0.637 0.759 0.782 0.817 0.853 1.000
Pyserini 0.693 0.817 0.838 0.883 0.904 0.980

Table A.1: Traditional models comparison – CLEF dataset
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Dataset part Politifact Snopes
metric/variant text only image text text only image text

MAP

1 0.283 0.576 0.260 0.700
3 0.330 0.676 0.292 0.735
5 0.343 0.687 0.299 0.741
10 0.351 0.693 0.304 0.745
20 0.355 0.696 0.306 0.747
all 0.361 0.697 0.309 0.748

P

1 0.283 0.576 0.260 0.700
3 0.130 0.264 0.111 0.259
5 0.090 0.168 0.072 0.161
10 0.051 0.089 0.040 0.083
20 0.025 0.046 0.021 0.043
all 0.000 0.000 0.000 0.000

MRR

1 0.283 0.576 0.260 0.700
3 0.330 0.676 0.292 0.735
5 0.343 0.687 0.299 0.741
10 0.351 0.693 0.304 0.745
20 0.355 0.696 0.306 0.747
all 0.361 0.697 0.309 0.748

NDCG

1 0.283 0.576 0.263 0.706
3 0.345 0.707 0.304 0.752
5 0.369 0.726 0.315 0.763
10 0.389 0.741 0.328 0.769
20 0.404 0.749 0.335 0.775
all 0.465 0.763 0.395 0.794

R

1 0.283 0.576 0.263 0.706
3 0.391 0.793 0.333 0.786
5 0.449 0.841 0.361 0.811
10 0.511 0.888 0.399 0.832
20 0.569 0.920 0.428 0.854
all 0.946 0.996 0.872 0.981

Table A.2: Pyserini – EMNLP dataset results
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metric/model all-MiniLM
-L6-v2

multi-qa
-distilbert

-cos-v1

all
-distilroberta

-v1

MAP

1 0.678 0.637 0.683
3 0.782 0.714 0.761
5 0.787 0.722 0.767
10 0.791 0.729 0.772

P

1 0.680 0.640 0.685
3 0.298 0.267 0.284
5 0.184 0.168 0.177
10 0.095 0.088 0.091

MRR

1 0.680 0.640 0.685
3 0.782 0.715 0.761
5 0.787 0.723 0.767
10 0.791 0.730 0.772

NDCG

1 0.690 0.640 0.685
3 0.813 0.736 0.783
5 0.823 0.750 0.796
10 0.833 0.766 0.804

R

1 0.688 0.637 0.683
3 0.888 0.797 0.848
5 0.914 0.832 0.878
10 0.944 0.878 0.904

metric/model
distiluse-base
-multilingual

-cased-v2

nq
-distilbert
-base-v1

MAP

1 0.581 0.419
3 0.686 0.486
5 0.690 0.494
10 0.697 0.496

P

1 0.584 0.421
3 0.271 0.190
5 0.165 0.120
10 0.089 0.062

MRR

1 0.584 0.421
3 0.689 0.489
5 0.691 0.496
10 0.699 0.499

NDCG

1 0.584 0.426
3 0.719 0.510
5 0.725 0.523
10 0.744 0.529

R

1 0.581 0.424
3 0.810 0.566
5 0.822 0.596
10 0.883 0.617

Table A.3: Base variants of bidirectional models – CLEF dataset results
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metric/model

stsb
-TinyBERT

-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MAP

1 0.492 0.203 0.160 0.576
3 0.624 0.249 0.207 0.701
5 0.637 0.255 0.217 0.702
10 0.642 0.261 0.224 0.705

P

1 0.492 0.203 0.162 0.579
3 0.261 0.103 0.088 0.283
5 0.169 0.068 0.061 0.171
10 0.088 0.038 0.036 0.088

MRR

1 0.492 0.203 0.162 0.579
3 0.624 0.249 0.210 0.701
5 0.638 0.256 0.220 0.702
10 0.643 0.261 0.226 0.706

NDCG

1 0.503 0.213 0.162 0.579
3 0.669 0.268 0.222 0.739
5 0.693 0.280 0.239 0.741
10 0.706 0.292 0.255 0.750

R

1 0.503 0.213 0.160 0.576
3 0.782 0.310 0.261 0.843
5 0.840 0.338 0.302 0.848
10 0.881 0.373 0.353 0.878

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MAP

1 0.739 0.678 0.000
3 0.798 0.717 0.000
5 0.804 0.721 0.000
10 0.806 0.723 0.000

P

1 0.741 0.680 0.000
3 0.289 0.255 0.000
5 0.179 0.156 0.000
10 0.091 0.080 0.000

MRR

1 0.741 0.680 0.000
3 0.800 0.720 0.000
5 0.806 0.724 0.000
10 0.808 0.726 0.000

NDCG

1 0.746 0.685 0.000
3 0.818 0.733 0.000
5 0.829 0.739 0.000
10 0.835 0.745 0.000

R

1 0.744 0.683 0.000
3 0.865 0.764 0.000
5 0.891 0.779 0.000
10 0.909 0.799 0.000

Table A.4: Base variants of cross-encoder models – CLEF dataset results
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metric/model all-MiniLM
-L6-v2

multi-qa
-distilbert

-cos-v1

all
-distilroberta

-v1

MRR 1 0.645 0.554 0.656
5 0.737 0.687 0.741

NDCG 1 0.645 0.554 0.656
5 0.772 0.733 0.772

R 1 0.645 0.554 0.656
5 0.877 0.870 0.862

metric/model
distiluse-base
-multilingual

-cased-v2

nq
-distilbert
-base-v1

MRR 1 0.471 0.380
5 0.573 0.480

NDCG 1 0.471 0.380
5 0.617 0.519

R 1 0.471 0.380
5 0.746 0.634

Table A.5: Base bidirectional models – EMNLP Politifact nosplit image text
dataset

metric/model all-MiniLM
-L6-v2

multi-qa
-distilbert

-cos-v1

all
-distilroberta

-v1

MRR 1 0.018 0.022 0.029
5 0.033 0.033 0.040

NDCG 1 0.018 0.022 0.029
5 0.038 0.038 0.044

R 1 0.018 0.022 0.029
5 0.054 0.051 0.058

metric/model
distiluse-base
-multilingual

-cased-v2

nq
-distilbert
-base-v1

MRR 1 0.033 0.022
5 0.041 0.036

NDCG 1 0.033 0.022
5 0.044 0.042

R 1 0.033 0.022
5 0.054 0.058

Table A.6: Base bidirectional models – EMNLP Politifact split image text
dataset
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metric/model all-MiniLM
-L6-v2

multi-qa
-distilbert

-cos-v1

all
-distilroberta

-v1

MRR 1 0.594 0.641 0.567
5 0.676 0.701 0.641

NDCG 1 0.602 0.661 0.572
5 0.713 0.732 0.672

R 1 0.602 0.661 0.572
5 0.804 0.793 0.752

metric/model
distiluse-base
-multilingual

-cased-v2

nq
-distilbert
-base-v1

MRR 1 0.532 0.371
5 0.624 0.424

NDCG 1 0.544 0.383
5 0.661 0.452

R 1 0.544 0.383
5 0.747 0.512

Table A.7: Base bidirectional models – EMNLP Snopes split image text dataset

metric/model
stsb

-TinyBERT
-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MRR 1 0.029 0.033 0.014 0.569
5 0.042 0.048 0.025 0.658

NDCG 1 0.029 0.033 0.014 0.569
5 0.048 0.056 0.031 0.693

R 1 0.029 0.033 0.014 0.569
5 0.069 0.080 0.047 0.797

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MRR 1 0.634 0.446 0.000
5 0.710 0.503 0.001

NDCG 1 0.634 0.446 0.000
5 0.742 0.528 0.002

R 1 0.634 0.446 0.000
5 0.837 0.605 0.004

Table A.8: Base cross-encoder models – EMNLP Politifact nosplit image text
dataset
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metric/model
stsb

-TinyBERT
-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MRR 1 0.388 0.326 0.051 0.594
5 0.485 0.381 0.074 0.673

NDCG 1 0.388 0.326 0.051 0.598
5 0.523 0.405 0.086 0.705

R 1 0.388 0.326 0.051 0.598
5 0.638 0.478 0.120 0.797

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MRR 1 0.649 0.601 0.007
5 0.730 0.686 0.024

NDCG 1 0.649 0.605 0.007
5 0.758 0.719 0.031

R 1 0.649 0.605 0.007
5 0.841 0.812 0.054

Table A.9: Base cross-encoder modelss – EMNLP Politifact split image text
dataset

metric/model
stsb

-TinyBERT
-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MRR 1 0.013 0.010 0.011 0.577
5 0.020 0.014 0.023 0.642

NDCG 1 0.013 0.010 0.011 0.591
5 0.024 0.017 0.028 0.674

R 1 0.013 0.010 0.011 0.591
5 0.036 0.024 0.045 0.743

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MRR 1 0.564 0.336 0.001
5 0.623 0.374 0.003

NDCG 1 0.575 0.342 0.001
5 0.652 0.393 0.003

R 1 0.575 0.342 0.001
5 0.718 0.439 0.005

Table A.10: Base cross-encoder models – EMNLP Snopes nosplit image text
dataset
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metric/model
stsb

-TinyBERT
-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MRR 1 0.394 0.342 0.019 0.660
5 0.494 0.390 0.033 0.720

NDCG 1 0.396 0.342 0.021 0.683
5 0.540 0.410 0.040 0.751

R 1 0.396 0.342 0.021 0.683
5 0.670 0.469 0.058 0.809

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MRR 1 0.690 0.642 0.006
5 0.745 0.693 0.023

NDCG 1 0.712 0.654 0.006
5 0.772 0.718 0.031

R 1 0.712 0.654 0.006
5 0.821 0.771 0.057

Table A.11: Base cross-encoder models – EMNLP Snopes split image text dataset
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metric/model all-MiniLM
-L6-v2

multi-qa
-distilbert

-cos-v1

all
-distilroberta

-v1

MAP

1 0.691 ± 0.004 0.685 ± 0.005 0.708 ± 0.026
3 0.768 ± 0.003 0.751 ± 0.003 0.786 ± 0.017
5 0.776 ± 0.003 0.755 ± 0.004 0.793 ± 0.018
10 0.779 ± 0.003 0.760 ± 0.003 0.798 ± 0.017

P

1 0.693 ± 0.004 0.688 ± 0.005 0.711 ± 0.026
3 0.288 ± 0.003 0.277 ± 0.002 0.291 ± 0.002
5 0.180 ± 0.001 0.170 ± 0.001 0.181 ± 0.002
10 0.092 ± 0.001 0.088 ± 0.000 0.094 ± 0.001

MRR

1 0.693 ± 0.004 0.688 ± 0.005 0.711 ± 0.026
3 0.769 ± 0.003 0.751 ± 0.003 0.786 ± 0.017
5 0.777 ± 0.003 0.755 ± 0.004 0.793 ± 0.018
10 0.780 ± 0.003 0.760 ± 0.003 0.798 ± 0.017

NDCG

1 0.699 ± 0.004 0.688 ± 0.005 0.710 ± 0.027
3 0.794 ± 0.005 0.770 ± 0.003 0.808 ± 0.015
5 0.808 ± 0.004 0.778 ± 0.004 0.820 ± 0.016
10 0.814 ± 0.004 0.789 ± 0.003 0.832 ± 0.014

R

1 0.696 ± 0.004 0.685 ± 0.005 0.708 ± 0.027
3 0.860 ± 0.010 0.826 ± 0.006 0.871 ± 0.008
5 0.893 ± 0.007 0.845 ± 0.005 0.900 ± 0.012
10 0.912 ± 0.006 0.877 ± 0.004 0.935 ± 0.004

metric/model
distiluse-base
-multilingual

-cased-v2

nq
-distilbert
-base-v1

MAP

1 0.656 ± 0.018 0.646 ± 0.009
3 0.738 ± 0.019 0.703 ± 0.005
5 0.747 ± 0.018 0.708 ± 0.005
10 0.751 ± 0.017 0.714 ± 0.005

P

1 0.659 ± 0.018 0.649 ± 0.009
3 0.279 ± 0.007 0.257 ± 0.002
5 0.176 ± 0.003 0.159 ± 0.001
10 0.091 ± 0.001 0.083 ± 0.001

MRR

1 0.659 ± 0.018 0.649 ± 0.009
3 0.740 ± 0.019 0.705 ± 0.005
5 0.748 ± 0.018 0.711 ± 0.005
10 0.752 ± 0.017 0.716 ± 0.005

NDCG

1 0.660 ± 0.017 0.649 ± 0.009
3 0.766 ± 0.020 0.720 ± 0.005
5 0.781 ± 0.016 0.730 ± 0.004
10 0.790 ± 0.014 0.744 ± 0.004

R

1 0.658 ± 0.017 0.646 ± 0.009
3 0.837 ± 0.024 0.768 ± 0.005
5 0.873 ± 0.015 0.792 ± 0.005
10 0.901 ± 0.009 0.833 ± 0.006

Table A.12: CLEF with best negative samples finetuned bidirectional models –
CLEF results 85
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metric/model all-MiniLM

-L6-v2

multi-qa
-distilbert

-cos-v1

all
-distilroberta

-v1

MAP

1 0.705 ± 0.005 0.654 ± 0.013 0.705 ± 0.010
3 0.794 ± 0.005 0.738 ± 0.006 0.789 ± 0.006
5 0.801 ± 0.004 0.749 ± 0.006 0.797 ± 0.007
10 0.803 ± 0.004 0.752 ± 0.006 0.801 ± 0.007

P

1 0.707 ± 0.005 0.657 ± 0.013 0.707 ± 0.010
3 0.300 ± 0.001 0.279 ± 0.003 0.296 ± 0.001
5 0.186 ± 0.000 0.177 ± 0.001 0.184 ± 0.001
10 0.094 ± 0.000 0.091 ± 0.001 0.095 ± 0.001

MRR

1 0.707 ± 0.005 0.657 ± 0.013 0.707 ± 0.010
3 0.794 ± 0.005 0.738 ± 0.006 0.790 ± 0.006
5 0.801 ± 0.004 0.749 ± 0.006 0.797 ± 0.007
10 0.803 ± 0.004 0.753 ± 0.006 0.802 ± 0.007

NDCG

1 0.708 ± 0.005 0.659 ± 0.013 0.708 ± 0.009
3 0.820 ± 0.004 0.763 ± 0.005 0.815 ± 0.004
5 0.834 ± 0.003 0.782 ± 0.005 0.828 ± 0.006
10 0.839 ± 0.003 0.791 ± 0.005 0.838 ± 0.006

R

1 0.705 ± 0.005 0.656 ± 0.013 0.705 ± 0.009
3 0.894 ± 0.004 0.833 ± 0.008 0.886 ± 0.004
5 0.926 ± 0.002 0.878 ± 0.005 0.916 ± 0.006
10 0.940 ± 0.003 0.905 ± 0.006 0.948 ± 0.006

metric/model
distiluse-base
-multilingual

-cased-v2

nq
-distilbert
-base-v1

MAP

1 0.603 ± 0.017 0.620 ± 0.006
3 0.706 ± 0.016 0.685 ± 0.004
5 0.715 ± 0.013 0.691 ± 0.004
10 0.718 ± 0.013 0.698 ± 0.004

P

1 0.605 ± 0.017 0.622 ± 0.006
3 0.276 ± 0.006 0.255 ± 0.003
5 0.174 ± 0.002 0.158 ± 0.001
10 0.089 ± 0.001 0.084 ± 0.001

MRR

1 0.605 ± 0.017 0.622 ± 0.006
3 0.707 ± 0.016 0.688 ± 0.004
5 0.715 ± 0.013 0.693 ± 0.004
10 0.719 ± 0.013 0.699 ± 0.004

NDCG

1 0.608 ± 0.017 0.622 ± 0.006
3 0.738 ± 0.015 0.706 ± 0.004
5 0.754 ± 0.011 0.716 ± 0.004
10 0.761 ± 0.012 0.733 ± 0.005

R

1 0.606 ± 0.017 0.620 ± 0.006
3 0.824 ± 0.017 0.763 ± 0.007
5 0.862 ± 0.011 0.789 ± 0.006
10 0.886 ± 0.012 0.842 ± 0.009

Table A.13: CLEF with random negative samples finetuned bidirectional models
– CLEF results 86
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metric/model
stsb

-TinyBERT
-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MAP

1 0.713 ± 0.009 0.708 ± 0.025 0.693 ± 0.013 0.635 ± 0.005
3 0.791 ± 0.006 0.779 ± 0.021 0.751 ± 0.013 0.728 ± 0.003
5 0.797 ± 0.006 0.785 ± 0.022 0.757 ± 0.011 0.732 ± 0.002
10 0.801 ± 0.006 0.789 ± 0.021 0.762 ± 0.011 0.736 ± 0.002

P

1 0.713 ± 0.009 0.710 ± 0.025 0.696 ± 0.014 0.638 ± 0.005
3 0.295 ± 0.001 0.288 ± 0.007 0.273 ± 0.005 0.279 ± 0.001
5 0.182 ± 0.001 0.178 ± 0.004 0.170 ± 0.003 0.172 ± 0.000
10 0.094 ± 0.000 0.092 ± 0.001 0.088 ± 0.001 0.089 ± 0.001

MRR

1 0.713 ± 0.009 0.710 ± 0.025 0.696 ± 0.014 0.638 ± 0.005
3 0.792 ± 0.006 0.779 ± 0.021 0.753 ± 0.013 0.730 ± 0.003
5 0.797 ± 0.006 0.785 ± 0.022 0.760 ± 0.011 0.734 ± 0.003
10 0.801 ± 0.006 0.789 ± 0.021 0.765 ± 0.011 0.738 ± 0.003

NDCG

1 0.723 ± 0.009 0.725 ± 0.025 0.701 ± 0.014 0.643 ± 0.004
3 0.821 ± 0.006 0.805 ± 0.021 0.771 ± 0.013 0.759 ± 0.002
5 0.831 ± 0.005 0.816 ± 0.021 0.783 ± 0.011 0.767 ± 0.001
10 0.839 ± 0.004 0.826 ± 0.019 0.795 ± 0.010 0.776 ± 0.002

R

1 0.723 ± 0.009 0.723 ± 0.026 0.698 ± 0.014 0.641 ± 0.004
3 0.887 ± 0.005 0.859 ± 0.021 0.818 ± 0.015 0.835 ± 0.002
5 0.912 ± 0.004 0.884 ± 0.022 0.847 ± 0.013 0.855 ± 0.002
10 0.938 ± 0.003 0.916 ± 0.016 0.882 ± 0.010 0.884 ± 0.005

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MAP

1 0.852 ± 0.006 0.809 ± 0.015 0.824 ± 0.011
3 0.890 ± 0.004 0.853 ± 0.011 0.859 ± 0.011
5 0.893 ± 0.004 0.859 ± 0.011 0.863 ± 0.011
10 0.896 ± 0.004 0.862 ± 0.010 0.866 ± 0.010

P

1 0.855 ± 0.006 0.811 ± 0.015 0.827 ± 0.011
3 0.310 ± 0.000 0.302 ± 0.003 0.301 ± 0.006
5 0.189 ± 0.000 0.186 ± 0.001 0.184 ± 0.004
10 0.096 ± 0.000 0.095 ± 0.000 0.094 ± 0.001

MRR

1 0.855 ± 0.006 0.811 ± 0.015 0.827 ± 0.011
3 0.890 ± 0.004 0.856 ± 0.011 0.859 ± 0.011
5 0.894 ± 0.004 0.862 ± 0.011 0.863 ± 0.011
10 0.896 ± 0.003 0.864 ± 0.010 0.866 ± 0.010

NDCG

1 0.865 ± 0.006 0.821 ± 0.015 0.836 ± 0.012
3 0.903 ± 0.003 0.870 ± 0.010 0.874 ± 0.013
5 0.910 ± 0.003 0.881 ± 0.009 0.880 ± 0.013
10 0.916 ± 0.003 0.888 ± 0.008 0.887 ± 0.012

R

1 0.862 ± 0.006 0.819 ± 0.015 0.834 ± 0.012
3 0.926 ± 0.002 0.903 ± 0.008 0.898 ± 0.018
5 0.941 ± 0.002 0.927 ± 0.007 0.913 ± 0.018
10 0.960 ± 0.002 0.949 ± 0.004 0.936 ± 0.013

Table A.14: CLEF with best negative samples finetuned cross-encoder models –
CLEF results 87
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metric/model

stsb
-TinyBERT

-L-4

quora
-roberta

-base

qnli
-distilroberta

-base

ms-marco
-TinyBERT

-L-2-v2

MAP

1 0.566 ± 0.036 0.555 ± 0.037 0.599 ± 0.014 0.601 ± 0.007
3 0.672 ± 0.031 0.666 ± 0.033 0.701 ± 0.012 0.706 ± 0.005
5 0.684 ± 0.029 0.682 ± 0.031 0.711 ± 0.011 0.711 ± 0.005
10 0.694 ± 0.029 0.688 ± 0.030 0.719 ± 0.011 0.716 ± 0.005

P

1 0.566 ± 0.036 0.556 ± 0.037 0.601 ± 0.014 0.604 ± 0.007
3 0.267 ± 0.008 0.268 ± 0.009 0.275 ± 0.004 0.276 ± 0.001
5 0.173 ± 0.003 0.174 ± 0.004 0.174 ± 0.002 0.171 ± 0.001
10 0.092 ± 0.001 0.092 ± 0.002 0.093 ± 0.001 0.088 ± 0.000

MRR

1 0.566 ± 0.036 0.556 ± 0.037 0.601 ± 0.014 0.604 ± 0.007
3 0.673 ± 0.031 0.667 ± 0.033 0.704 ± 0.012 0.707 ± 0.005
5 0.686 ± 0.029 0.682 ± 0.030 0.713 ± 0.011 0.712 ± 0.005
10 0.694 ± 0.029 0.688 ± 0.030 0.721 ± 0.010 0.716 ± 0.005

NDCG

1 0.576 ± 0.036 0.606 ± 0.040 0.661 ± 0.015 0.609 ± 0.007
3 0.709 ± 0.029 0.726 ± 0.033 0.758 ± 0.012 0.739 ± 0.004
5 0.733 ± 0.026 0.749 ± 0.029 0.775 ± 0.012 0.749 ± 0.004
10 0.754 ± 0.025 0.764 ± 0.027 0.795 ± 0.011 0.759 ± 0.003

R

1 0.576 ± 0.036 0.604 ± 0.040 0.658 ± 0.015 0.606 ± 0.007
3 0.800 ± 0.024 0.809 ± 0.030 0.826 ± 0.012 0.822 ± 0.004
5 0.859 ± 0.018 0.865 ± 0.019 0.867 ± 0.011 0.847 ± 0.004
10 0.921 ± 0.014 0.910 ± 0.016 0.926 ± 0.010 0.877 ± 0.002

metric/model
ms-marco
-MiniLM
-L-6-v2

ms-marco
-electra
-base

xlm-roberta
-large

-squad2

MAP

1 0.824 ± 0.008 0.613 ± 0.052 0.666 ± 0.063
3 0.871 ± 0.004 0.730 ± 0.038 0.777 ± 0.052
5 0.878 ± 0.005 0.739 ± 0.034 0.784 ± 0.050
10 0.880 ± 0.005 0.744 ± 0.033 0.789 ± 0.047

P

1 0.826 ± 0.008 0.616 ± 0.052 0.667 ± 0.064
3 0.309 ± 0.001 0.288 ± 0.010 0.301 ± 0.013
5 0.191 ± 0.001 0.182 ± 0.004 0.187 ± 0.006
10 0.097 ± 0.000 0.094 ± 0.001 0.097 ± 0.001

MRR

1 0.826 ± 0.008 0.616 ± 0.052 0.667 ± 0.064
3 0.872 ± 0.004 0.732 ± 0.037 0.778 ± 0.052
5 0.879 ± 0.005 0.742 ± 0.034 0.785 ± 0.050
10 0.881 ± 0.005 0.746 ± 0.033 0.789 ± 0.047

NDCG

1 0.837 ± 0.008 0.688 ± 0.050 0.767 ± 0.078
3 0.888 ± 0.004 0.793 ± 0.035 0.850 ± 0.055
5 0.900 ± 0.005 0.810 ± 0.030 0.862 ± 0.049
10 0.906 ± 0.003 0.820 ± 0.026 0.873 ± 0.043

R

1 0.834 ± 0.008 0.685 ± 0.050 0.765 ± 0.077
3 0.922 ± 0.004 0.863 ± 0.028 0.905 ± 0.039
5 0.948 ± 0.005 0.905 ± 0.018 0.934 ± 0.027
10 0.970 ± 0.000 0.934 ± 0.006 0.967 ± 0.009

Table A.15: CLEF with random negative samples finetuned cross-encoder models
– CLEF results 88
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Politifact
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.061 0.132 0.652 0.142 0.015 0.000 0.015 0.000
5 0.088 0.176 0.751 0.187 0.023 0.008 0.023 0.000

MRR 1 0.061 0.132 0.655 0.142 0.015 0.000 0.015 0.000
5 0.088 0.176 0.751 0.187 0.023 0.008 0.023 0.000

NDCG 1 0.061 0.137 0.660 0.147 0.015 0.010 0.015 0.000
5 0.099 0.196 0.786 0.206 0.027 0.020 0.027 0.007

R 1 0.061 0.137 0.657 0.147 0.015 0.010 0.015 0.000
5 0.132 0.249 0.878 0.254 0.041 0.025 0.041 0.015

Snopes
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.015 0.010 0.030 0.010 0.010 0.000 0.005 0.005
5 0.028 0.026 0.053 0.026 0.015 0.004 0.014 0.007

MRR 1 0.015 0.010 0.030 0.010 0.010 0.000 0.005 0.005
5 0.028 0.026 0.053 0.026 0.015 0.004 0.014 0.007

NDCG 1 0.015 0.010 0.030 0.010 0.010 0.005 0.010 0.010
5 0.033 0.032 0.061 0.033 0.020 0.010 0.023 0.013

R 1 0.015 0.010 0.030 0.010 0.010 0.005 0.010 0.010
5 0.051 0.051 0.084 0.051 0.030 0.015 0.036 0.015

Table A.16: EMNLP finetuned all-MiniLM-L6-v2 – CLEF results
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Politifact
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.459 0.051 0.036 0.041 0.030 0.015 0.025 0.015
5 0.518 0.071 0.046 0.056 0.052 0.025 0.048 0.032

MRR 1 0.462 0.051 0.036 0.041 0.030 0.015 0.025 0.015
5 0.518 0.071 0.046 0.056 0.052 0.025 0.048 0.032

NDCG 1 0.462 0.051 0.036 0.041 0.025 0.030 0.025 0.036
5 0.540 0.080 0.051 0.061 0.069 0.047 0.067 0.053

R 1 0.459 0.051 0.036 0.041 0.025 0.030 0.025 0.036
5 0.604 0.107 0.066 0.076 0.099 0.066 0.099 0.066

Snopes
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.025 0.020 0.020 0.020 0.000 0.015 0.000 0.010
5 0.043 0.035 0.037 0.034 0.002 0.020 0.003 0.014

MRR 1 0.025 0.020 0.020 0.020 0.000 0.015 0.000 0.010
5 0.043 0.035 0.037 0.034 0.002 0.020 0.003 0.014

NDCG 1 0.025 0.020 0.020 0.020 0.010 0.015 0.015 0.025
5 0.049 0.040 0.043 0.041 0.020 0.024 0.027 0.031

R 1 0.025 0.020 0.020 0.020 0.010 0.015 0.015 0.025
5 0.066 0.056 0.061 0.061 0.030 0.030 0.036 0.036

Table A.17: EMNLP finetuned all-DistilRoBERTa-v1 – CLEF results
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Politifact
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.449 0.421 0.470 0.442 0.378 0.000 0.368 0.000
5 0.566 0.542 0.594 0.564 0.481 0.008 0.470 0.000

MRR 1 0.452 0.421 0.472 0.442 0.381 0.000 0.371 0.000
5 0.568 0.543 0.596 0.565 0.484 0.008 0.473 0.000

NDCG 1 0.457 0.426 0.477 0.447 0.381 0.005 0.371 0.000
5 0.608 0.585 0.638 0.606 0.520 0.013 0.508 0.000

R 1 0.454 0.426 0.475 0.447 0.378 0.005 0.368 0.000
5 0.718 0.698 0.754 0.718 0.627 0.020 0.612 0.000

Snopes
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.401 0.376 0.391 0.360 0.000 0.000 0.000 0.000
5 0.507 0.474 0.490 0.459 0.000 0.000 0.000 0.000

MRR 1 0.401 0.376 0.391 0.360 0.000 0.000 0.000 0.000
5 0.508 0.474 0.491 0.459 0.000 0.000 0.000 0.000

NDCG 1 0.406 0.381 0.396 0.365 0.000 0.000 0.000 0.000
5 0.551 0.510 0.528 0.496 0.000 0.000 0.000 0.000

R 1 0.406 0.381 0.396 0.365 0.000 0.000 0.000 0.000
5 0.673 0.604 0.627 0.594 0.000 0.000 0.000 0.000

Table A.18: EMNLP finetuned ms-marco-TinyBERT-L-2-v2 – CLEF results
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Politifact
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.596 0.739 0.688 0.632 0.020 0.000 0.020 0.000
5 0.677 0.809 0.750 0.708 0.029 0.000 0.033 0.000

MRR 1 0.599 0.741 0.690 0.635 0.020 0.000 0.020 0.000
5 0.680 0.812 0.753 0.711 0.029 0.000 0.033 0.000

NDCG 1 0.604 0.746 0.695 0.640 0.020 0.000 0.020 0.000
5 0.709 0.836 0.777 0.741 0.033 0.000 0.038 0.000

R 1 0.602 0.744 0.693 0.637 0.020 0.000 0.020 0.000
5 0.794 0.901 0.845 0.825 0.046 0.000 0.051 0.000

Snopes
nosplit split

neg. samples best neg random neg best neg random neg
metric/q. text base img base img base img base img

MAP 1 0.434 0.475 0.343 0.383 0.000 0.000 0.030 0.000
5 0.529 0.564 0.454 0.492 0.003 0.001 0.051 0.000

MRR 1 0.437 0.477 0.345 0.386 0.000 0.000 0.030 0.000
5 0.532 0.566 0.457 0.495 0.003 0.001 0.051 0.000

NDCG 1 0.442 0.482 0.350 0.391 0.000 0.000 0.030 0.000
5 0.571 0.604 0.498 0.537 0.003 0.002 0.058 0.000

R 1 0.439 0.480 0.348 0.388 0.000 0.000 0.030 0.000
5 0.683 0.713 0.617 0.662 0.005 0.005 0.081 0.000

Table A.19: EMNLP finetuned ms-marco-MiniLM-L-6-v2 – CLEF results

Politifact
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

R 1 0.007 0.000 0.007 0.007 0.011 0.011 0.011 0.007
5 0.014 0.022 0.025 0.025 0.025 0.029 0.033 0.040

Snopes
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

R 1 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.004
5 0.001 0.001 0.001 0.001 0.004 0.006 0.016 0.013

Table A.20: EMNLP finetuned all-MiniLM-L6-v2 – EMNLP results
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Politifact
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

R 1 0.000 0.000 0.000 0.000 0.043 0.047 0.011 0.011
5 0.004 0.007 0.000 0.007 0.120 0.120 0.051 0.054

Snopes
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

R 1 0.000 0.000 0.000 0.000 0.008 0.014 0.009 0.012
5 0.001 0.001 0.000 0.000 0.021 0.051 0.021 0.022

Table A.21: EMNLP finetuned ms-marco-MiniLM-L-6-v2 – EMNLP results

Politifact
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

MRR 1 0.380 0.380 0.627 0.663 0.014 0.018 0.022 0.029
5 0.427 0.447 0.688 0.748 0.018 0.022 0.035 0.041

NDCG 1 0.380 0.380 0.627 0.663 0.014 0.018 0.022 0.029
5 0.447 0.469 0.714 0.780 0.021 0.026 0.041 0.046

R 1 0.380 0.380 0.627 0.663 0.014 0.018 0.022 0.029
5 0.507 0.536 0.793 0.873 0.029 0.036 0.058 0.062

Snopes
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

MRR 1 0.275 0.305 0.621 0.608 0.004 0.003 0.001 0.000
5 0.316 0.344 0.698 0.699 0.007 0.006 0.003 0.002

NDCG 1 0.282 0.311 0.641 0.621 0.004 0.003 0.001 0.000
5 0.335 0.364 0.734 0.737 0.008 0.007 0.005 0.003

R 1 0.282 0.311 0.641 0.621 0.004 0.003 0.001 0.000
5 0.381 0.411 0.806 0.822 0.012 0.011 0.009 0.006

Table A.22: CLEF finetuned all-MiniLM-L6-v2 – EMNLP results
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Politifact

nosplit split
query text base img base img

metric/neg. s. best rand best rand best rand best rand

MRR 1 0.004 0.004 0.036 0.022 0.268 0.272 0.384 0.156
5 0.007 0.007 0.054 0.046 0.329 0.337 0.515 0.257

NDCG 1 0.004 0.007 0.036 0.022 0.268 0.272 0.384 0.156
5 0.009 0.010 0.064 0.058 0.352 0.364 0.567 0.307

R 1 0.004 0.007 0.036 0.022 0.268 0.272 0.384 0.156
5 0.014 0.014 0.094 0.094 0.420 0.442 0.721 0.457

Snopes
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

MRR 1 0.001 0.001 0.021 0.024 0.178 0.205 0.270 0.131
5 0.002 0.002 0.036 0.035 0.238 0.241 0.452 0.198

NDCG 1 0.001 0.001 0.023 0.024 0.179 0.207 0.282 0.133
5 0.003 0.003 0.043 0.041 0.262 0.258 0.524 0.230

R 1 0.001 0.001 0.023 0.024 0.179 0.207 0.282 0.133
5 0.004 0.007 0.062 0.058 0.330 0.306 0.715 0.321

Table A.23: CLEF finetuned stsb-TinyBERT-L-4 – EMNLP results

Politifact
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

MRR 1 0.431 0.435 0.652 0.678 0.391 0.413 0.591 0.601
5 0.483 0.489 0.724 0.747 0.440 0.465 0.681 0.705

NDCG 1 0.431 0.435 0.652 0.678 0.395 0.417 0.591 0.601
5 0.503 0.510 0.751 0.776 0.463 0.488 0.717 0.741

R 1 0.431 0.435 0.652 0.678 0.395 0.417 0.591 0.601
5 0.562 0.572 0.830 0.862 0.525 0.554 0.826 0.848

Snopes
nosplit split

query text base img base img
metric/neg. s. best rand best rand best rand best rand

MRR 1 0.320 0.322 0.701 0.685 0.319 0.317 0.656 0.677
5 0.359 0.364 0.753 0.745 0.361 0.364 0.720 0.743

NDCG 1 0.326 0.329 0.722 0.705 0.322 0.322 0.678 0.699
5 0.377 0.384 0.780 0.774 0.378 0.385 0.752 0.775

R 1 0.326 0.329 0.722 0.705 0.322 0.322 0.678 0.699
5 0.421 0.431 0.827 0.828 0.426 0.439 0.812 0.838

Table A.24: CLEF finetuned ms-marco-MiniLM-L-6-v2 – EMNLP results
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dataset clef pol
approach – split nosplit
model/text source – base img base img
nqDistilBERTbase 7.69 35.25 49.52 1.64 1.67
distiluse-base-multilinqual 8.20 23.40 33.01 1.15 1.18
allDistilRoBERTa 7.80 35.78 53.66 1.69 1.73
multiqaDistilBERT 8.08 40.58 52.05 1.67 1.75
allMiniLM 8.53 18.94 26.87 2.70 2.88
xlmRoBERTaxl 3441.29 6310.52 23115.71 930.58 964.66
msmarcoELECTRAbase 1149.17 2321.68 8975.42 343.96 361.83
msmacoMiniLM 665.56 1125.98 5402.36 125.45 139.60
msmarcoTinyBERTL2 498.19 725.36 3834.87 106.44 102.16
qnliDistilRoBERTabase 722.12 1335.32 5711.64 184.73 201.03
quoraRoBERTabase 1170.38 2246.84 8895.23 344.34 362.35
stsbTinyBERTL4 533.82 887.20 4687.49 125.66 114.32

Table A.25: Sum of inference times comparison [s]

dataset clef pol
approach – split nosplit
model/text source – base img base img
nqDistilBERTbase 16.93 ± 0.50 564.37 2068.48 39.48 57.69
distiluse-base-multilinqual 18.68 ± 0.72 623.54 2117.30 18.97 26.44
allDistilRoBERTa 17.43 ± 0.50 575.83 2192.90 39.62 54.82
multiqaDistilBERT 17.12 ± 0.34 569.84 2113.97 40.00 56.14
allMiniLM 12.22 ± 0.36 552.85 1793.67 20.41 24.42
xlmRoBERTaxl 99.63 ± 4.21 3102.22 10714.62 188.84 180.64
msmarcoELECTRAbase 31.05 ± 0.32 808.25 2938.12 60.41 64.01
msmacoMiniLM 11.80 ± 0.16 357.88 1216.14 24.16 24.12
msmarcoTinyBERTL2 5.14 ± 0.11 182.67 558.31 8.32 10.16
qnliDistilRoBERTabase 18.70 ± 0.28 443.88 1685.98 33.93 34.30
quoraRoBERTabase 31.50 ± 0.92 787.19 3058.15 60.66 62.23
stsbTinyBERTL4 8.78 ± 0.50 273.56 914.48 19.69 20.76

Table A.26: Finetuning times [s]
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