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Abstract
This thesis explores the enhancement of
the Monster Mash digital drawing tool,
focusing on incorporating a sketch sim-
plification algorithm and the As-Rigid-
As-Possible (ARAP) deformation algo-
rithm. Based on image segmentation, the
simplification algorithm streamlines the
drawing process, allowing users to sketch
and rapidly simplify their artwork. The
ARAP deformation algorithm provides a
powerful tool for modifying sketches with-
out extensive redrawing, accelerating the
creative process. These additions aim to
make digital sketching more enjoyable, ef-
ficient, and accessible to a wider range of
users.
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Abstrakt
Tato práce se zabývá vylepšením digitál-
ního kreslícího nástroje Monster Mash,
s důrazem na začlenění algoritmu pro
zjednodušení skic a algoritmu pro defor-
maci As-Rigid-As-Possible (ARAP). Al-
goritmus pro zjednodušení skic, založený
na segmentaci obrazu, zefektivňuje kres-
lící proces, čímž umožňuje uživatelům
volně skicovat a rychle zjednodušovat svá
umělecká díla. ARAP deformace posky-
tuje mocný nástroj pro úpravy skic bez
nutnosti rozsáhlého překreslování, čímž
urychluje tvůrčí proces. Tyto přídavky
mají za cíl učinit digitální skicování zábav-
nější, efektivnější a přístupnější širšímu
spektru uživatelů.

Klíčová slova: Digitální Skicování,
Zjednodušení Skic, As-Rigid-As-Possible
(ARAP), Deformační Algoritmus,
Monster Mash, Segmentace Obrazu,
Kreslící Nástroje
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Chapter 1

Introduction

1.1 Motivation

Motivation for this thesis comes from my passion for drawing of all kinds
and desire to make the process more accessible and enjoyable for users. As
avid artist, I understand the frustrations that can arise when using digital
drawing tools that are clunky, unintuitive, or lack essential features. I believe
that by improving an existing digital drawing tool, we can contribute to the
advancement of the digital art industry and help users create their art more
efficiently and effectively.

1.2 Thesis Objectives

Sketching is a fundamental tool for artists and designers, enabling them
to quickly visualize their ideas and explore different possibilities for their
artwork. This research aims to develop an environment for sketching that can
be integrated into the framework for sketch-based modeling and animation of
3D shapes, such as the Monster Mash. The objective is to create a sketching
tool that is easy and fast to use, but also includes basic drawing tools.

While digital drawing has gained popularity, redrawing sketches can still
be a time-consuming task. Despite the benefits of digital drawing, the lack of
tools for sketch simplification can make the process more challenging. Hence,
there is much room for improvement in this area. By finding an algorithm
for simplifying sketches, this research can potentially enhance the time spent
drawing.

The second objective is to design and create a graphic tool that can deform
2D sketches. This functionality significantly reduces the time required to make
edits, whether big or small, without the need to redraw, thereby increasing
productivity. Creating a deformation tool that is user-friendly and easy to

1



1. Introduction .....................................
learn will make it accessible to a wider range of users, from novice designers
to seasoned professionals.

1.3 Structure of the Thesis

The structure of this thesis is arranged in such a way to progressively explore
the issues at hand, the approach we adopted, and the resulting outcomes. It
is organized into three primary sections, each focusing on a key aspect of the
study.

The initial section of the thesis lays down the foundation by introducing
the motivation, objective, and need for this research. Following this, the
concept of Monster Mash as a digital sketching tool is explored, discussing
its model creation process and defining objectives for its enhancement to
improve the user experience.

In the second section, encapsulated by chapter 3 and chapter 4, we com-
prehensively review the existing techniques used for image simplification and
deformation. This part is dedicated to designing enhancements for Monster
Mash, guided by the insights obtained from the research papers we review.

The third and final section of the thesis, presented in chapter 5 and
chapter 6, is dedicated to the implementation and evaluation of the proposed
enhancements. chapter 5 takes us through the journey from the beginning of
the first version of the drawing part of Monster Mash to its final enhanced
form integrated into Monster Mash. It provides an in-depth examination
of the coding structure, data structures used, program pipeline, and the
challenges that were encountered and subsequently overcome. chapter 6
puts forth a series of experiments to validate the implemented enhancements’
effectiveness. This section tests the theoretical and designed concepts in a
practical setting, demonstrating their applicability and impact on the user
experience in a real-world context.

2



Chapter 2

Monster Mash

The primary focus of this research is Monster Mash [1], a framework designed
for creating and animating 3D shapes through sketching, which offers a more
intuitive experience via its 2D interface. In contrast to other sketch-based
tools, Monster Mash eliminates the need for a time-consuming 3D modeling
workflow that requires explicit rig specifications. The framework combines
3D inflation with a rigidity-preserving approach to generate a smooth 3D mesh
that can be animated from a single viewpoint. This method provides a
straightforward modeling and animation experience for inexperienced users
while also delivering a quick and efficient workspace for professionals.

Monster Mash is divided into three main components: Draw, Inflate, and
Animate.

The Draw section of Monster Mash enables users to create their art from
scratch by drawing lines. Each stroke represents one shape as well as one
layer. Closed region represents characters main body. Users can adjust layer
depth, with the last layer being the closest to the user. To adjust layer depth
user selects the layer and then press PageUp or PageDown key to put layer
above/below neighboring layer. The ordering of layers represents the depth
order of the shapes. Unclosed shapes are automatically closed by a closing
line. If the closing line intersects the boundary of another shape, it merges
the two shapes at the location of the closing line. If there is no layer above
or below the closing line, it is treated as a free open boundary, resulting in
a hole in the object at that location. In this mode, there is a feature that
allows the user to redraw a selected layer. Once the layer is selected, the user
can create new strokes, and the selected layer will be replaced with the newly
drawn strokes.

In the Inflate section, users can add depth and dimension to their character
by inflating the 2D shape into a 3D form. Users can rotate or pan the
3D object as needed.

The Animate section allows users to bring their characters to life by adding
movements and expressions. Animation is created by placing control pins on

3



2. Monster Mash ....................................
parts of the 3D mesh and moving them around. Users can also move objects
without control pins by dragging them. Animation recording and exporting
are possible as well.

Figure 2.1 presents an illustration of the drawing part within the Monster
Mash program.

Figure 2.1: Illustration of UI of Monster Mash

Below, in Figure 2.2, a screenshot of all parts of MM is presented. The
red regions in Figure Figure 2.2a represent duplicated regions. The curves
in Figures Figure 2.2c and Figure 2.2d are animation curves dictating the
character’s movement. These illustrations demonstrate the complete process,
from character creation to the animation of a drawn character.

2.1 Model Creation

The construction of the 3D mesh begins in the inflation mode after the sketch
is drawn. It starts with creating a "flat" mesh, followed by inflation. Each
body part of the model is treated as a separate region (layer). Vertices are
added to each region, and Delaunay triangulation [2] is performed to create
triangles from the vertices. If one region has an open boundary and another
lies above or below it, they are stitched together. A hole is created in the
closed boundary region and connected to the second region with an open
boundary.

Once the 3D mesh is created, the next step is to inflate it. This process
entails generating a height field for each vertex in the mesh, determining the
extrusion amount in the z-axis to form the desired 3D shape. The height
value of zero is assigned to all vertices along the user-drawn boundaries, as
they will serve as the base of the 3D model. For vertices not located along
the boundaries, a Poisson equation calculates the height values based on the
surrounding vertices.

4



....................... 2.2. Enhancement Objectives for Monster Mash

(a) : Character drawn in drawing part of
MM.

(b) : Converted sketch into a 3D model
in the inflation part of MM.

(c) : Animated character in animation
part of MM.

(d) : Animated character in animation
part of MM.

Figure 2.2: Examples of character creation in Monster Mash.

For the final stage of the inflation process and for animation, As-Rigid-
As-Possible layer preserving deformation (ARAP-L) is employed. It is used
to satisfy the depth ordering and positional constraints of the vertices. In
contrast to the ARAP method described in section 4.2, ARAP-L takes into
account the depth ordering of vertices. It prevents vertices from deeper layers
from having higher z coordinates than layers above them and vice versa.

2.2 Enhancement Objectives for Monster Mash

The central aspiration of this thesis revolves around enhancing the user
interaction experience with the drawing part of the software application,
Monster Mash. The present user interface, albeit functional, offers a rather
restrictive environment for users, particularly in terms of the creative freedom
typically offered by conventional drawing software.

The current drawing version presented possesses certain limits for the user.
As was described above, presently, the Monster Mash allows the user to draw
a whole shape by just one stroke. This can be very hard to accomplish because
of various reasons. It requires a lot of precision and control to draw the entire
shape in a single stroke accurately. Any minor deviation can alter the final
shape significantly. The user needs to maintain a steady hand throughout

5



2. Monster Mash ....................................
the entire stroke. Shaking, trembling, or involuntary movements can distort
the intended design. Drawing a shape in one stroke can be physically tiring.
Holding a pencil or brush and maintaining a specific posture for extended
periods can result in hand cramping or fatigue. If the shape is complex,
capturing all of the details in one stroke can be incredibly difficult. Simpler
shapes might be feasible, but more intricate shapes are likely to require
multiple strokes to depict them accurately. In order to execute a single-stroke
drawing, the user needs to carefully plan their path so that they can complete
the drawing without lifting the pen. This requires foresight and the ability
to visualize the completed drawing in mind before even starting to draw.
If a mistake is made, it is difficult, if not impossible, to correct it without
breaking the single-stroke rule. This adds a level of stress that can negatively
affect the quality of the drawing.

The program appears to be relatively complex to use. The features provided
are not commonly seen in other programs, so learning to use all these features
effectively might pose a challenge. The ability to redraw layers by replacing
old strokes with new ones could be limiting, particularly if the user wants
to retain the old stroke and make minor changes. The current version does
not permit mistakes during sketching. This implementation also does not
allow users to create objects with holes. Lastly, the Monster Mash drawing
interface lacks a comprehensive set of tools that are standard in most drawing
software.

The primary objective is thus the augmentation of the application with
tools that can address the current limitations of Monster Mash. In this work,
we aim to add features that will make the process of sketch creation less
stressful. To achieve this, we need to allow users to draw freely, using more
strokes as typical drawing software does. We also plan to allow users to erase
strokes, a necessary feature that enables them to rectify their mistakes easily.
However, this freedom could complicate the subsequent inflation phase of
Monster Mash. Therefore, we must introduce a feature that prepares the
drawn sketch for the next phase to allow users to draw freely. This entails
simplifying the sketch before passing it on to the inflation phase.

To make the user experience even more flexible, we will add a feature
that could deform drawn shapes. We believe that this feature can solve
problems in already drawn sketches without the need to redraw the shape.
This new functionality is expected to provide users with a higher degree of
control over their artistic creations. By enabling effortless modifications and
manipulations of sketches, the user experience with the application can be
significantly enriched.

In summary, this work seeks to tackle the limitations of Monster Mash’s
current drawing interface by proposing new UI functions. The overarching goal
is to provide a more intuitive and flexible interface, thus fostering creativity
and enhancing overall user satisfaction.

6



Chapter 3

Sketch Simplification

Our primary goal in this section is to develop or find an algorithm capable of
simplifying sketches, a process that effectively prepares them for the inflation
part of MM. Simultaneously, we strive to eliminate any necessity for user
intervention during this simplification procedure. The defining metrics for
the preferred algorithm are as follows: speed, precision, and regional closure.

Speed is essential, as users cannot be expected to endure protracted waiting
periods for the simplification of their sketches. Precision is equally crucial; we
aim to avoid any oversimplification resulting from our algorithm’s execution.
Lastly, regional closure is necessary; the inflation process demands a region
devoid of discontinuities.

Initially, we shall explore various image simplification techniques with
potential applicability to our project. Subsequently, we will delve into a
detailed description of our selected method.

3.1 Related Work

This section delves into algorithms designed for sketch simplification. The goal
is to identify a method that can rapidly simplify an image. The outcome of the
simplification process should ideally be a closed shape or a collection of closed
shape objects. Alternatively, the result should be able to be transformed
with relative ease into a closed shape. This requirement is essential for the
subsequent phase of Monster Mash, which involves the transformation of a
2D sketch into a 3D object.

3.1.1 Closure-aware Sketch Simplification

Liu et al. [3] propose a stroke similarity metric that incorporates both per-
ceptual and geometric characteristics of strokes. The objective is to cluster

7



3. Sketch Simplification .................................
perceptually connected strokes together, forming a perceptual region that can
be simplified as a single entity. Perceptual strokes are defined as those that
are likely part of a closed region or that form the boundary of one. Figure 3.1
demonstrates an instance in which two identical strokes can belong to distinct
perceptual regions. Strokes are grouped based on proximity, continuity, and
parallelism with respect to nearby regions. Proximity measures how close
strokes are to each other, continuity determines whether two strokes have sim-
ilar directions, and parallelism evaluates how well two strokes align. Regions
are constructed based on stroke grouping. Constructing a region requires
a set of strokes that is complete (recognized as a perceptual region relative
to surrounding strokes) and independent (not dependent on neighboring
regions).

Figure 3.1: An illustration of how identical pairs of strokes can be associated
with distinct perceptual regions.

Stroke interpretation is used to determine which strokes belong to the same
perceptual stroke and hence belong to the same stroke group An iterative
refinement process is applied to refine the initial perceptual regions and
strokes. At the start, all strokes are grouped together. In each iteration, the
refinement process first identifies the regions based on stroke interpretation
and then groups the strokes into new clusters according to this region’s
interpretation. This refinement process is performed iteratively until no
further changes can be made.

The primary benefit of this approach is its ability to distinguish the semantic
differences between strokes. Nonetheless, it has certain limitations, such as
its inability to handle closed curves and decorative strokes. The iterative
refinement process is also computationally expensive. Although the authors
do not provide precise time measurements, they do mention a 2.0 minute
execution time for a sketch containing 167 strokes, which is considered a high
execution time for this amount of strokes. The results of this method can be
seen in Figure 3.2.

8
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Figure 3.2: The results of simplification using this method. (taken from [3])

3.1.2 StrokeAggregator

Liu et al. proposed StrokeAggregator [4] where the primary approach involves
clustering strokes into groups that subsequently define simplified curves. This
process leverages principles derived from observations of artistic practices
and human perception research.

In this technique, two strokes are compared based on their angular compat-
ibility and relative proximity. Angularly compatible strokes are assigned a
score reflecting the degree of compatibility. To compute this score, a common
aggregate curve is first created from the pair of strokes, after which tangent
angles between the newly created curve and the initial curves are calculated.
Strokes are clustered according to their angular scores and then evaluated
based on relative proximity. The strokes are considered approximately par-
allel, so proximity is roughly the distance between two parallel strokes. In
the subsequent step, a local cluster refinement is performed, the primary
objective of which is to separate clusters that resemble branches. This process
involves iteratively subdividing branches into segments while considering
factors such as narrowness, denoted by the minimal width-to-length ratio,
and uniformity, characterized by strokes exhibiting significantly increased
inter-cluster spacing along a substantial segment of their length compared to
the intra-cluster spacing within each branch.

The final phase assesses the internal coherence of the computed clusters
to address uncertainties and unite clusters exhibiting compatibility in both
angular and spatial aspects. This phase reflects the branch segregation
process, employing similar criteria and principles. Ultimately, curves are
fitted to the resulting clusters.

A limitation of this methodology is its reliance solely on the nearby stroke
context. As a result, it might not work well when stroke clues are unreliable.
Specifically, it’s not directly suitable for stylized line drawings. Furthermore,
the average time required for curve simplification is approximately 2.5 minutes.

9
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The results of this method can be seen in Figure 3.3.

Figure 3.3: The results of simplification using StrokeAggregator method. (taken
from [4])

3.1.3 StrokeStrip

An alternative strategy is described in [5]. In the article, the authors solve
the sketch simplification problem by introducing a method called StrokeStrip,
which focuses on fitting intended curves to vector stroke clusters in a manner
consistent with human perception. They achieve this by observing that human
viewers perceive stroke clusters as continuous, variably-wide strips whose
paths represent the intended curves (see Figure 3.4b). The authors then
formulate the curve fitting problem as the joint parameterization of cluster
strokes, with a 1D parameterization that is the restriction of the natural arc
length parameterization of the perceived strip to the strokes in the cluster
(see Figure 3.4c).

Figure 3.4: Different representations of strokes.

To generate fitting outputs that align with viewer expectations, authors
compute a joint cluster parameterization that satisfies several requirements,
such as being continuous, arc length preserving, and having isolines that
are orthogonal to the strokes. The challenge lies in the fact that the strip
geometry is not known a priori, making it difficult to identify points on different
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strokes that are within the strip (WTS) adjacent. The authors address this
challenge by formulating the problem as a constrained variational problem
and solving it using a combined discrete-continuous optimization framework.
This approach allows them to handle complex cluster configurations robustly,
including self-adjacent and self-intersecting clusters. However, there may be
limitations to their method, such as its ability to handle extremely intricate
or overlapping stroke clusters or potential challenges in processing raster
inputs. Additionally, this method exhibits limited efficiency, as it does not
permit real-time parameterization. The results of this method can be seen in
Figure 3.5.

Figure 3.5: The results of simplification using StrokeStrip method. (taken
from [5])

3.1.4 Simplifying Sketches with Convolutional Networks

A distinctly different approach, currently gaining popularity, involves the
use of neural networks, particularly convolutional neural networks (CNNs)
for image processing tasks. CNN is a type of deep learning model primarily
used for image processing and recognition tasks. Commonly, CNNs consist
of an input and output layer, along with multiple hidden layers including
convolutional, pooling, and fully connected layers. Convolutional layers use
filters to scan the input data, detecting local features such as edges or textures.
Pooling layers reduce data dimensionality and computational complexity, often
by retaining the maximum value of a particular feature over a region. Fully
connected layers use high-level features from the previous layers to perform
classification tasks. CNNs are trained using backpropagation and gradient
descent algorithms to minimize the difference between the predicted and
actual output.

Simo-Serra et al. [6] developed a method enabling users to handle more
general and challenging inputs, such as rough raster sketches obtained from
scanned pencil drawings. This technique offers superior performance times,
processing most input images in under a second. Their method employs
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only convolutional layers, excluding the typically utilized fully connected
layers. The model they created (see Figure 3.6) consists of three varieties
of convolutional layers: down-convolution, which reduces the image size by
half; flat-convolution, which retains the image size; and up-convolution, which
doubles the image size. The procedure commences with down-convolutions to
shrink the image size, subsequently lowering data bandwidth and enhancing
spatial support for the following layers. Ultimately, up-convolutions are
implemented to reestablish the image’s initial dimensions.

Figure 3.6: Visulization of CNN (taken from [6])

The dataset is generated using inverse dataset construction, which involves
creating rough sketches from clean ones. This method is employed since
artists often take creative liberties while developing a clean image, altering
various aspects of the original sketch. Such modifications may hinder the
model’s ability to learn new mappings. The results of this approach are highly
satisfactory. Unlike other methods, this technique can even simplify photos
of hand-drawn sketches. The authors have developed a website that allows
users to test their neural network. Figure 3.7 demonstrates the simplification
of a tested sketch using their method.

Figure 3.7: The results of simplification using CNN method. (taken
from [NNSimplyfierImg])

12



.................................... 3.1. Related Work

3.1.5 Lazy-Brush

Sýkora et al. proposed Lazy-Brush [7], which is an approach that centers
on the application of a technique known as image segmentation for sketch
coloring. Image segmentation is a procedure that entails dividing a digital
image into numerous sections, also known as sets of pixels or super-pixels.
The purpose of segmentation is to simplify or modify the representation
of an image into a more meaningful and analyzable format. In practice,
segmentation is used primarily to detect objects and boundaries, such as lines
and curves, within images.

The proposed algorithm colors areas by applying minor strokes within
these segments (see Figure 3.8 and Figure 3.9). The algorithm effectively
addresses challenges such as color leakage Figure 3.9b, which can occur when
a user attempts to color an unbounded area, as well as the task of manually
bridging gaps to prevent this leakage. The algorithm, dubbed Lazy-Brush [7],
seeks to colorize as vast an area as possible within an optimal boundary and
coloring sections labeled the most by the user, which is a technique referred
to as soft scribbles (see Figure 3.9c). The algorithm functions by resolving
an optimization problem that assigns a specific color to each pixel.

Figure 3.8: The illustration of how Lazy-Brush technique colors hand draw
sketches. (taken from [7]

The issue is addressed within the framework of energy minimization, which
has been proposed to meet these requirements. The goal is to find labeling
for each pixel that minimizes a predefined energy function (see Equation 3.1).
This energy function consists of two components: a smoothness term and a
data term.

E(c) =
∑

p,q∈N
Vp,q(cp, cq) +

∑
p∈P

Dp (cp) (3.1)

In the context of image colorization, the color variance between neighboring
pixels is encapsulated by the term Vp,q(cp, cq), known as the smoothness
term. It assists in the effective placement of color transitions, ideally within
areas with a lower pixel intensity, as illustrated in Fig. 3.9d. Moreover, it
automatically adjusts to prevent the creation of unintended shortcuts across
regions of white pixels. The mathematical expression for the smoothness
term is given by:
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Figure 3.9: The image illustrates an example of how the software functions when
users employ labels, represented by colored dots, to specify areas for coloring.
(taken from [8]

Vp,q(cp, cq) ∝
{

Ip if cp ̸= cq,

0 otherwise,
(3.2)

where Ip is the pixel intensity at the location p. The data term, denoted by
Dp(cp), quantifies the energy associated with attributing a particular color cp

to a pixel p. This term is unique in that it is entirely influenced by the user’s
input, thereby allowing users to flexibly specify the penalty for pixel labeling.
Unlike traditional methods that consider all user-annotated constraints as
strict rules, this approach offers the flexibility to define softer constraints.
The data term is mathematically defined as:

Dp(cp) = λ · K, (3.3)

In this equation, λ signifies both the existence and strength of a brush
stroke, enabling users to set varying degrees of constraints on the pixel
labeling. The variable K is a constant that represents the discontinuity energy
at white pixels, serving as a penalty for color transitions at high-intensity
pixel locations.

To address the energy minimization issue, the authors converted it into
a multiway cut problem on an undirected graph, which is resolved using a
greedy multiway cut algorithm, which capitalizes on a unique graph topology
that ensures connected labeling.

One potential application of this algorithm is depicted in the article Smart
Scribbles [8], which enables region filling without requiring the user to draw
seeds to specify the coloring area manually. In this approach, the sketch
itself is appointed as a soft scribble (see Figure 3.10a), eliminating the need
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for the user to specify one. Following this, borders are incorporated into
the image, and these are also marked as a soft scribble but of a distinct
color (see Figure 3.10b). This technique enables automatic image filling
(see Figure 3.10c).

Figure 3.10: The illustration of how Smart Scribble can be used for image
coloring. (taken from [8]

3.1.6 Discussion

Firstly, we compare the results in Figure 3.11 of all these methods (except
for Lazy-Brush) using the same reference image. In the image below, using
the example of a duck, we can see how differently these methods simplify the
image.

Nearly all methods discussed previously share a common drawback - slow
performance time. Although the articles did not provide specific performance
measurements, there were occasional references to the time cost in certain
examples. This is sufficient to infer that these solutions are too slow for real-
time evaluation. The neural network method mentioned in subsection 3.1.4,
while fast and yielding favorable results, poses complications for integrating
into Monster Mash. Moreover, almost all these methods produce simplified
sketches that consist of strokes that do not create closed shapes, they don’t
take into account the closure of the shape, which is required for our purposes.
So to implement these methods into monster mash, there will be a need for
an algorithm that will create closed shapes out of the simplified image.

Fortunately, the procedure discussed in subsection 3.1.5, based on the Lazy-
Brush algorithm, has the advantage of segmenting images into complete, closed
regions. This approach does not suffer from the significant computational
time drawback. Given these notable benefits, this method has been selected
for implementation.
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(a) : Original picture of duck.

(b) : Duck simplified by Closure-
aware method.

(c) : Duck simplified by StrokeStrip
method.

(d) : Duck simplified by StrokeAg-
gregator method.

(e) : Duck simplified by Convolu-
tional Networks.

Figure 3.11: The comparison of all methods described above.

3.2 Our Approach

In light of the specified criteria, an appropriate strategy for the aim of this
thesis involves the creation of an algorithm that employs image segmentation.
The intended outcome of this algorithm is to produce a closed contour outlining
the filled shape within a given portion of the sketch. By repeating this process,
the final sketch will consist of multiple closed contours. This approach not
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only ensures computational efficiency but also facilitates seamless integration
into Monster Mash while remaining consistent with its underlying principles.

To solve this problem, we implement the same technique as in Smart
Scribbles from subsection 3.1.5. Specifically, we use the user-drawn sketch as
the primary segmentation marker and the added borders as the secondary
segmentation marker, mimicking the dual-marker approach illustrated in
Figure 3.10.

The problem at hand can be solved by first addressing a different problem
- finding an optimal labeling of a set of pixels to help resolve the initial
task. The energy function will be defined to separate the drawing from
the background while filling the gaps in the sketch. The outcome of this
labeling will be a filled version of the initial sketch Figure 3.12a, as shown in
Figure 3.12b. The contour of this shape will then be determined, as depicted
in Figure 3.12c.

Figure 3.12: Illustration of steps of the image segmentation process.

The optimization problem (see Equation 3.4) seeks the best method to
divide an image into two segments by assigning a label of 0 or 1 to each pixel.
The objective is to minimize the sum of the weights wij between neighboring
pixels. Neighboring pixels with the same label are not included in the total
sum. Sets of pixels that must be labeled 0 and 1 are denoted as S and T ,
respectively. M represents the set of all pairs of neighboring pixel indices in
the image, and N refers to the number of pixels in the image. The weight wij

is set as follows: if at least one pixel is black, the weight is set to a small
constant value a; otherwise, it is set to a large value b.

x∗ = arg min
x

∑
(i,j)∈M

wij |xi − xj |

subject to xi = 0, ∀i ∈ S

xi = 1, ∀i ∈ T

variables: xi∈0...N ∈ {0, 1}

(3.4)

Values a and b must be chosen carefully. b cannot be too large. Otherwise, it
will always be more cost-effective to circumvent the entire stroke, as illustrated
in Figure 3.13b, rather than closing it, as depicted in Figure 3.13a.

The input image contains rasterized strokes, resulting in a black-and-white
binary image. Firstly, pixels on the image borders are labeled with the value
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Figure 3.13: Strokes with different weight values.

0, this step is taken to distinguish the foreground (sketch) and background of
the image. Following this, pixels that are a part of the strokes are assigned
a label 1. The unknown values x1 − xn represent the pixels that require
labeling, as demonstrated in Figure 3.14.

Figure 3.14: Magnified left upper part of an image.

One approach to solve this problem is to transform it into a graph cut
problem, which enables the use of efficient algorithms (see Figure 3.15). A
graph G = {V, E} is created, where each vertex v ∈ V represents a pixel
from the initial image. An edge e ∈ E connects two vertices if the pixels they
represent are neighbors in the image. Additionally, sink and source vertices
are added named T and S. Each vertex connects to the source and the sink
vertex. Pixels labeled as foreground are connected to the source node with a
large maximum terminal value L. Pixels marked as background have their
respective nodes connected to the sink node with a high constant maximum
terminal value Q. Other vertices have their maximum terminal values for
source and sink nodes equal to zero. The minimum cut of the newly created
graph forms the desired contour, as demonstrated in Figure 3.16.

Upon creating the graph, the next step is to compute its minimum cut.
Several algorithms, such as Ford-Fulkerson [10], Goldberg-Tarjan [11], and
Dinic [12], can be used for computing the minimum cut. In this particular case,
the GridCut library is employed, which uses an improved Boykov-Kolmogorov
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Figure 3.15: A visualization of how the image is transformed into a graph.

Figure 3.16: A visualization of a cut in the grid-like graph (taken from [9]).

algorithm [13], specifically developed for grid-structured graphs. The basic
algorithm is described in detail in subsection 3.2.2.

Computing the minimum cut of the constructed graph results in two disjoint
subsets of nodes in the graph. The edges that are part of the minimum cut
define the contour of the image. One subset of vertices is colored black,
and the other one is colored white, producing a filled sketch. However, the
contour of the image still needs to be identified. To find the contour, the
STA algorithm described in subsection 3.2.1 is employed. The utilization of
the STA algorithm enables us to specify the approximate length of the lines
constituting the sketch. Following the successful creation of the contour, we
can subsequently generate a simplified version of the sketch.
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3.2.1 Square Tracing Algorithm

The Square Tracing Algorithm (STA) [14] is a versatile contour-tracing
technique that extracts the boundary of a binary image containing connected
regions, such as shapes or objects.

The Square Tracing Algorithm functions by scanning a binary image pixel-
by-pixel in search of the first foreground pixel that it encounters. Once
identified, the algorithm traces the contour by navigating through the neigh-
boring pixels. In each step, the algorithm executes the following instructions:
if it detects a black pixel, it turns left, and if it detects a white pixel, it turns
right. This process continues until the algorithm returns to the starting pixel,
thereby completing the contour trace. The output is a list of coordinates
representing the region’s boundary.

3.2.2 Graph Cut Computation

Image segmentation, a fundamental task in the field of computer vision, often
relies on efficient graph-based algorithms for solving various problems, such as
finding the min-cut/max-flow in a grid-like graph. Numerous approaches have
been developed to tackle this challenge; however, conventional algorithms
frequently underperform when applied to grid-structured graphs in image
segmentation tasks.

Fortunately, there exists a clever min-cut/max-flow Boykov-Kolmogorov [13]
algorithm specifically designed to overcome the constraints of conventional
augmenting path methods when utilized for image segmentation in grid-like
graphs. The proposed algorithm is based on the principle of augmenting
paths and employs a distinctive approach of constructing and reusing two
search trees, with one originating from the source node s and the other from
the sink node t. This method enables a more efficient search and circumvents
the costly procedure of reconstructing search trees from the beginning.

The algorithm iteratively performs the following three stages:

1. Growth stage: During the growth stage, two search trees, S and T ,
rooted at the source node s and the sink node t, respectively, are expanded.
Each tree comprises active and passive nodes. Active nodes symbolize the
outer border of each tree and can grow by acquiring new children along
non-saturated edges from the set of free nodes. In contrast, passive nodes
cannot grow, as they are entirely blocked by other nodes from the same tree.
The growth stage persists until an active node encounters a neighboring node
that belongs to the opposite tree, indicating the discovery of an s − t path.
Augmentation stage: Upon identifying the s − t path, the augmentation
stage begins. During this stage, the discovered path is expanded, which may
cause some edges in the path to become saturated. If a node is saturated,
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its connection to its children becomes invalid. Consequently, some nodes in
trees S and T transform into "orphans," causing the search trees S and T to
fragment into multiple forests.

Adoption stage: The final stage aims to reconstruct the single-tree structure
of sets S and T , anchored at the source and sink nodes. Orphans attempt
to find new valid parents within their respective sets (S or T ) connected via
a non-saturated edge. If a suitable parent cannot be located, the orphan
is removed from its set and becomes a free node, while its former children
are designated as orphans. This stage concludes when all orphans have been
addressed, and the single-tree structure of S and T is restored.

The algorithm terminates when the search trees S and T cannot grow,
implying that a maximum flow is achieved.

Even though it has potentially worse theoretical complexity than established
methods, experimental comparisons presented in the article demonstrate that
the algorithm significantly outperforms traditional approaches on typical
problem instances in N-D grids with locally connected nodes where many
nodes are connected to the terminals.
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Chapter 4

Stroke Deformation

Our fundamental objective is to create or find an algorithm for sketch deforma-
tion that results in an intuitive outcome for the user. Essential attributes for
this sought-after algorithm include swift computational speed and versatility,
enabling the user to manipulate global and local deformations.

To begin with, we plan to investigate an array of image deformation
techniques that hold promise for our project’s requirements. Following this
exploration, we will comprehensively discuss the technique we eventually
choose to implement, underscoring its features, benefits, and operational
mechanics.

4.1 Related Work

This section delves into a thorough examination of algorithms relevant to
the field of image deformation. This investigation aims to identify a suitable
algorithm, or a blend of them, which can be effectively incorporated into
Monster Mash to boost its capabilities. This chapter offers an exhaustive
discussion of various methods, meticulously exploring each one, thereby
creating a basis for their potential application within Monster Mash.

4.1.1 Affine and Projective Transformations

Affine transformations [15] are a type of linear transformation that preserve
collinearity and ratios of distances. This means that straight lines in the
original image will still be straight in the transformed image, and parallel
lines will remain parallel. Affine transformations include operations such as
scaling, rotation, translation, and shear.

Mathematically, an affine transformation can be represented as a matrix
multiplication and a vector addition:
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v′ = Av + t

Here, v is a vector representing a point in the original image, A is a
2x2 matrix representing the linear transformation (which can include scaling,
rotation, and shear), t is a 2D vector representing the translation, and v′ is
the transformed point.

Projective transformations (also known as homographies) are a more general
form of transformation that can represent changes in perspective. This means
they can transform parallel lines into lines that intersect at a vanishing point,
which is impossible with affine transformations.

In the 2D case, a projective transformation can be represented as a 3x3 ma-
trix multiplication in homogeneous coordinates:

v′ = Hv

Here, v is a 3D vector representing a point in the original image in homoge-
neous coordinates (i.e., [x, y, 1]), H is a 3x3 matrix representing the projective
transformation, and v′ is the transformed point, also in homogeneous coor-
dinates. To convert v′ back to regular 2D coordinates, we divide it by the
third component.

Both of these transformations can be applied to a sketch, stroke, or image
by manipulating each point within the image (see Figure 4.1). However, as
these transformations do not usually map pixels to pixels precisely, a method
of interpolation, such as bilinear or bicubic, is generally employed to ascertain
the pixel values in the transformed image. It’s crucial to note that this
method does not preserve the lengths and angles of the original image.

Figure 4.1: Example of affine and projective deformations of a square.

A significant drawback is that these transformations are global, implying
that they impact every point identically. To address this issue, these trans-
formations can be paired with other techniques. For instance, one prevalent
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method for achieving local control involves subdividing the image into smaller
segments and conducting the transformation solely on these smaller segments.

4.1.2 B-Splines

B-Splines or Basis Splines [16] provide a flexible method for image and sketch
deformation. They are particularly well-suited to image deformation tasks
because of their local control and variation-diminishing properties, meaning
that changes to the position of one control point affect only a limited region
around that point, providing a high level of control over the deformation.

The idea behind B-Splines is to define a smooth curve (or surface in 2D)
that is determined by a set of control points. A B-Spline is defined as a
piecewise-defined polynomial function, and it is controlled by adjusting the
positions of the control points.

In the context of image deformation, a grid of control points is defined
over the image, and each control point is associated with a B-Spline. The
deformation of a point in the image is calculated as a weighted sum of the
displacements of the control points, where the weights are given by the values
of the B-Splines.

To apply the B-Spline deformation to the image(see Figure 4.2), the formula
is evaluated for each pixel in the image, and the pixel is moved according to
the resulting displacement. As with other deformation methods, since the
deformation does not generally map pixels to pixels, some form of interpolation
is used to determine the pixel values in the deformed image.

Figure 4.2: Example of B-Spline deformation. (taken from [17]).

The disadvantage of this method is that B-spline deformation does not in-
herently maintain rigidity. This implies that it can cause significant changes in
local shapes or structures during deformation, potentially leading to unrealis-
tic results. Furthermore, B-splines can be complex to comprehend, implement,
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and manipulate. They require more parameters and computations, which
could result in increased computational costs.

4.1.3 As-Rigid-As-Possible

The As-Rigid-As-Possible (ARAP) [18] [19] deformation method is a widely
used technique in computer graphics and computer vision for generating
smooth and realistic deformations of 2D or 3D objects. The ARAP approach
aims to preserve an object’s natural shape and geometry while enabling
flexible and intuitive deformation. Unlike other deformation techniques,
ARAP emphasizes maintaining an object’s rigidity by minimizing the strain
energy between its vertices. This property makes ARAP particularly suitable
for tasks such as shape manipulation, animation, and shape matching. Users
can specify a set of constraints that the deformation must satisfy, allowing
for precise control over the final deformation result

In the context of image deformation, this method begins by dividing the
image into a mesh of triangles or other simple polygons. For each polygon, it
then computes a deformation that moves its vertices to their new positions
while keeping the polygon as rigid as possible. This is done by minimizing a
cost function that measures the deviation of each deformed polygon from a
rotation of the original polygon.

The goal is to find the deformed positions p′
i and the rotation matrix R

that minimize this cost function. This is typically done using an iterative
method, where in each iteration the positions p′

i are updated to minimize the
energy function given the current R, and then R is updated to minimize the
energy function given the new positions p′

i.

Applying the ARAP deformation to an image involves calculating the
deformed positions for each pixel in the image based on the deformations of
the polygons in its neighborhood.

ARAP transformations offer advantages such as preserving local rigidity
and providing a degree of independent local control for different parts of
an object during deformation. However, they come with disadvantages,
including the potential for high computational intensity when dealing with
large datasets, and a tendency to potentially distort the global shape despite
excellent preservation of local structures.

4.1.4 Moving Least Squares Method

Moving Least Squares (MLS) is a technique commonly used in image de-
formation, particularly when a smooth and flexible deformation is required.
Schaefer et al. [20] introduced the technique in a graphics context.
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The fundamental idea of MLS is that instead of directly deforming an
image, we deform the space in which the image exists. Specifically, we define
a set of control points in the original space, and for each control point, we
specify a target location to which it should be moved. The deformation of any
given point in the image is then determined by the movements of the control
points around it. The example of MLS deformation can be seen in Figure 4.3.

Figure 4.3: Example of MLS deformation. (taken from [20]).

The MLS process consists of two steps: the creation of a local coordi-
nate system relative to the control points and the computation of an affine
transformation in this local coordinate system.

Step 1: Define a local coordinate system

Given a set of control points pi and their corresponding target locations p′
i,

the weights wi for each control point are calculated for any given point v in
the image. Typically, this computation employs the following formula:

wi = 1
||v − pi||2d

where ||v − pi|| is the distance from v to pi and d is a parameter that
controls the influence of the control points.

Next, the we centroid p and p′is calculated for the original and target
locations of the control points, respectively:

p =
∑

wipi∑
wi

p′ =
∑

wip
′
i∑

wi

Finally, we define a local coordinate system by subtracting the centroid
from each control point:

qi = pi − p
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q′

i = p′
i − p′

Step 2: Compute the affine transformation

In the local coordinate system, we compute a 2x2 matrix A that maps each
qi to q′

i. This is done by solving the following least squares problem:

min
A

∑
wi||Aqi − q′

i||2

The solution to this problem can be found by singular value decomposition
(SVD).

Finally, point v is maped to its deformed location v′ using the affine
transformation:

v′ = p′ + A(v − p)
This process is repeated for every point in the image to produce the deformed
image.

This method provides flexible and smooth deformations, allowing for some
degree of local control. However, it might not preserve rigidity as effectively
as other methods like ARAP, and can be computationally expensive when
applied to large datasets

4.1.5 Deep Learning-Based Deformation

Deep learning-based deformation represents a class of methods where a neural
network is trained to learn the deformation mapping function. These methods
have shown significant promise due to the flexibility and learning capacity of
neural networks.

One common approach is to use a type of network known as a Convolutional
Neural Network (CNN) [21] [22]. The input to the network is an image or
a patch of an image, and the output is the deformation field for that image
or patch. The network is trained on a set of images for which the desired
deformation fields are known. The results can be seen in ??

Suppose I is the original image and I ′ is the deformed image. The network
is designed to learn a mapping function f such that:

I ′ = f(I; θ)
Here, f represents the network, and θ are the parameters of the network, which
are learned during training. The goal of training is to find the parameters θ
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Figure 4.4: Example of CNN deformation. (taken from [21]).

that minimize the difference between the network’s output and the desired
output for a set of training images. This difference is measured by a loss
function L, which in this case might be the mean squared error between the
predicted and actual deformed images:

L = ||I ′ − f(I; θ)||2

The parameters θ are typically learned using a method such as stochastic
gradient descent, which iteratively adjusts the parameters to minimize the
loss function.

Once the network is trained, it can deform new images by passing them
through the network and applying the resulting deformation fields.

Deep Learning-Based Deformations can learn complex deformation patterns
from large amounts of data, providing advantages in tasks requiring high-level,
nonlinear transformations. However, they require substantial amounts of
training data and computational resources. Moreover, despite their powerful
capabilities, they may produce less interpretable results compared to more
traditional geometric methods.

4.1.6 Discussion

After reviewing all approaches mentioned above, we have chosen an approach
that uses the As-Rigid-As-Possible deformation technique. This technique
possesses various distinct advantages, rendering it a particularly effective
selection for image deformation tasks. Unlike global methodologies such as
Affine and Projective Transformations, ARAP enables local manipulation
of the deformation, indicating that modifications at a single point do not
indiscriminately influence the entirety of the image. Nonetheless, it upholds
global coherence, assuring that the overall image maintains its consistency and
unity. This feat can be more demanding for local methods such as B-Splines
to sustain.
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ARAP’s primary emphasis lies in preserving the rigidity of local regions

within the image during the deformation process. This approach effectively
mitigates the risk of unnatural distortions and aids in preserving the original
attributes of the image, an accomplishment not always feasible with alternative
methods like Moving Least Squares.

Also unlike deep learning-based methods, ARAP does not demand pro-
longed training periods or large datasets. It is an algorithmic approach that
can be directly applied to an image, enhancing its efficiency and immediate
applicability. Moreover, the aforementioned technique is employed to deform
3D objects within Monster Mash in the animation part.

4.2 Our Approach

In this research, we utilize the ARAP deformation algorithm, which was
discussed in section subsection 4.1.3. The LibIGL library, known for pro-
viding mesh deformation functionality for 2D and 3D objects, is used for
the implementation phase. The ARAP algorithm within LibIGL library
builds upon the approach developed by Sorkine and Alexa [18]. This section
elucidates the workings of this approach and how we adapted it for sketch
deformation.

Figure 4.5 presents examples of the ARAP technique applied to a 3D cactus
model. The red dots denote constrained vertices that remain stationary, while
the green dots symbolize constrained vertices that have been moved. By
repositioning even a single vertex, the entire mesh adjusts to the most optimal
position. These images demonstrate the remarkable capabilities of the ARAP
technique.

Figure 4.5: Example of ARAP deformation. (taken from [18]).

While the ARAP method is suited for 2D and 3D meshes, our sketches
are presented as line sets, which can’t be directly employed for deformations.
Therefore, a crucial preparatory step involves transforming these outlines into
a workable 2D object.

There exist numerous strategies for generating a 2D object from the initial
lines. One such approach involves regarding the points forming the shape
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as the boundary of the 2D object, introducing auxiliary vertices within
this boundary, and carrying out a triangulation process, Figure 4.6. This
technique develops the object as a filled entity, which imposes certain usage
limitations. The filled object approach tends to limit flexibility and user
control, particularly since it does not allow for individual line deformations,
which are essential for creating intricate designs or making precise adjustments.

Figure 4.6: The example of an alternative way to create 2D object out of contour.

An alternative solution is to construct a 2D strip from the lines. In this
process, every line generates four triangles - two positioned above the line and
two below it. Consequently, for each vertex vi present on the sketch’s borders,
two additional vertices are required to be computed. The first additional
vertex is regarded as "above" and denoted as v′

i, while the second is considered
"below" and labeled v′′

i .

To calculate the coordinates of vertex v′
i, we consider two lines, li−1 and li,

that intersect at this point. We then compute their respective normals
ni−1 and ni and normalize these values. Following this, we generate a vector

di = (ni−1 + ni)
|ni−1 + ni|

∗ l,

where l = |d|. Given the method employed to create vector di, every vector di

will possess a length of l. The positions of the two new vertices can then be
calculated as v′

i = vi + di, and v′′
i = vi − d (see Figure 4.7).

Figure Figure 4.8) provides a visual representation of a portion of the
resultant strip.

Having successfully calculated vertices of the 2D object, we can proceed to
generate the object itself. 2D object can be represented by a mesh S with
m triangles and n vertices. The mesh S is composed of a vertex matrix V
and a face matrix F . Each row of the matrix V encapsulates the coordinates
of a single vertex, resulting in a structure with two columns and n rows.
During the creation of this matrix, vertices that form part of the initial mesh
are positioned first, followed by vertices v′, and finally, vertices v′′. The
symbol s represents the number of vertices in the initial sketch, hence n = 3s.
Therefore, the vertex matrix can be expressed as follows:
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4. Stroke Deformation ..................................

Figure 4.7: Example of created vertices v′
i and v′′

i for lines li−1 and li.

V = [v0, ..., vs, v′
0, ..., v′

s, v′′
0 , ..., v′′

s ]T (4.1)

Each row of the matrix F contains three indices of vertices from the
array V that construct a single triangle and m rows, where m = 4s. It is
necessary to generate four triangles for every line of the initial sketch shape.
F (i) corresponds to one row of the matrix. This is achieved by iterating
through i ∈ 0...s, and creating triangles for each index i (see Figure 4.8).

F (i) = [i, i + s, i + 1]
F (i + s) = [i + s,i + 1, i + s + 1]

F (i + 2s) = [i, i + 2s,i + 2s + 1]
F (i + 3s) = [i, i + 1, i + 2s + 1]

Figure 4.8: A part of the strip.

The deformed mesh, denoted as S′, maintains the same connections but
has different vertex positions. To analyze and process the deformation, the
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mesh is divided into cells Ci based on vertices. Every individual cell composes
of a vertex along with the triangles that are interconnected to the said vertex.
N (i) represents the set of vertices connected to vertex i.

E
(
S ′) =

n∑
i=1

wiE
(
Ci, C′

i

)
=

n∑
i=1

wi

∑
j∈N (i)

wij

∥∥∥(
p′

i − p′
j

)
− Ri (pi − pj)

∥∥∥2

(4.2)

Value wi is set to 1 and cotangent weight formulas define values wij .
αij and βij represent the angle opposite to the mesh edge (i, j).

wij = 1
2 (cot αij + cot βij) (4.3)

The ARAP method employs an iterative solver that alternates between
optimizing positions p′ and rotation matrices Ri. During each iteration, the
method updates the surface vertices and computes all Ri that aligns the
surface with the input points. This procedure is repeated until a local energy
minimum is achieved.

Rotation Matrix Ri

To determine the optimal rotation matrix Ri that represents the deformation
between the original cell Ci and its transformed counterpart C ′

i, a weighted
least squares method is utilized. This method minimizes an energy function E
that measures the difference between the cells in Equation 4.4.

E
(
Ci, C′

i

)
=

∑
j∈N (i)

wij

∥∥∥(
p′

i − p′
j

)
− Ri (pi − pj)

∥∥∥2
(4.4)

After denoting eij := pi − pj , algebraic adjustments yield:

E
(
Ci, C′

i

)
=

∑
j∈N (i)

wij

(
e′T

ij e′
ij − 2e′T

ij Rieij + eT
ijeij

)
. (4.5)

Since we want to minimize this energy function, the part that does not
contain a rotation matrix Ri can be omitted. This will create Equation 4.6:

E
(
Ci, C′

i

)
= argmax

Ri

Tr

Ri

∑
j

wijeije′T
ij

 . (4.6)
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Next, Si is denoted as a weighted sum of the edge products, and Singular

Value Decomposition is performed in Equation 4.7.

Si =
∑

j∈N (i)
wijeije′T

ij = UiΣiVT
i (4.7)

Ri can then be calculated from the SVD of Si, given that the maximum
of Tr(RiSi) over all orthogonal rotation matrices Ri is achieved when:

Ri = ViUT
i (4.8)

Positions p′
i

To compute the optimal vertex positions from the given rotations, the gradient
of E(S′) with respect to the positions p′ is calculated. Partial derivatives are
computed with respect to p′

i, and by setting these partial derivatives to zero,
a sparse linear system of equations is obtained. After performing algebraic
adjustments, the following is obtained:

∑
j∈N (i)

wij

(
p′

i − p′
j

)
=

∑
j∈N (i)

wij

2 (Ri + Rj) (pi − pj) (4.9)

The left side of this equation represents the discrete Laplace-Beltrami
operator, which is defined as the divergence of the surface gradient of a
function, acting on p′. Therefore, the system of equations can be expressed
in a straightforward form:

Lp′ = b (4.10)

Incorporating user-defined modeling constraints ck into this system can be
accomplished by removing respective rows and columns from L and updating
the right-hand side with the values ck.

Update

Upon the mesh S achieving a state of local energy, an update is conducted,
updating the current mesh S with the values from the new mesh S′. This
involves using vertices that were originally a part of the contour. Given the
specific structure of the vertex array in Equation 4.1, it is sufficient to create
a new contour from the first third of the array for implementing updates to
the original contour.
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Chapter 5

Implementation

This chapter elaborates on the key aspects of image segmentation and ARAP
deformation implementations within the MM project. Initially, it delves into
the implementation details of image segmentation. Subsequently, the chapter
describes the ARAP deformation implementation, with the help of the LibIGL
library, explaining the creation of 2D objects from contours. The final part of
the chapter talks about the challenges faced and the solutions found during
the process.

5.1 First Trial Version

Before the introduction of new features into the MM program, test programs
were developed. The primary aim was to experiment with and validate the
functionality and applicability of various methods and libraries intended for
integration into the main program. This preparatory testing proved crucial in
preventing potential issues and perfecting the techniques for the best possible
result.

The initial program in Figure 5.1 was specifically designed for the ex-
amination of image segmentation. It offered capabilities such as drawing,
erasing, and the addition of helplines, thus facilitating a comprehensive testing
environment. Crafted in C++, the program employed the Allegro library.
Allegro provided an assortment of functions, including graphics, keyboard
input, and timers, thereby creating a robust framework for the program. The
segmentation class, developed during this phase, was later adapted for use
in the MM program with minor modifications. The software lacked a user
interface; instead, various functions were activated through designated keys.
Essential information and certain program states were displayed directly on
the drawing canvas to provide users with basic assistance.

Despite its modest size, the second program was instrumental in evaluating
the LibIGL ARAP functionality. This examination was pivotal in gaining
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5. Implementation....................................

Figure 5.1: Screenshot of the trial image segmentation program.

an understanding of the behavior and limitations of this specific library. By
embedding it into a more manageable test program, its performance could
be monitored in isolation. This insight was invaluable when integrating this
functionality into the broader framework of the MM program. The program
rendered a simple 2D strip. The user could move specific vertices using
keyboard keys and observe the resulting deformations, Figure 5.2.

Figure 5.2: Screenshot of the trial deformation program.

In conclusion, these test programs were not merely a preliminary step
in the development process but also a significant contributor to the MM.
They served as a tool for identifying potential pitfalls, comprehending the
performance of third-party libraries, and refining the code, thereby resulting
in a more robust and efficient final product.

5.2 Monster Mash in Code

In this section, we will delve deeper into the implementation of Monster
Mash. Its code is written in C++ combined with JavaScript, HTML, and
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CSS for the user interface. To compile the code, emscripten is used, which is
a toolchain that enables developers to compile C/C++ code into JavaScript
so that it can be run in a web browser. The toolchain works by converting
LLVM bitcode, which is an intermediate representation of compiled C/C++
code, into WebAssembly (wasm). WebAssembly is binary format code that is
not intended to be written by hand but instead is intended to be generated by
compilers from higher-level languages. Once the bitcode is compiled to wasm,
Emscripten can generate a wasm module, which is a binary file containing
the compiled code. The wasm module can then be loaded into a web page
and executed in a web browser using a JavaScript. This allows developers to
write C/C++ code that can run in a web browser without needing to rewrite
it in JavaScript. Additionally, because wasm is a binary format, it can be
smaller and faster than equivalent JavaScript code.

The code is designed to be versatile, allowing for direct compilation into a
desktop version using C++ code. This desktop version, primarily intended for
testing, lacks a graphical user interface; the required operations are triggered
via specific keys. This configuration is ideal for testing, as the compiled wasm
code does not support C++ debugging. However, despite these differences,
both the desktop and WebAssembly versions function identically in all other
aspects, save for the user interface. Thus, users could expect the exact features
across both platforms.

For the purposes of this project, I was provided with a partial segment of
Monster Mash that exclusively includes the first component of the program
- the drawing part. Although the program appears identical to the original
version, it lacks the requisite code for the inflation, deformation, and animation
functionalities. Consequently, when launched, the aforementioned components
of the program do not yield any output.

The implementation uses OpenGL for rendering and relies on various data
structures and libraries to manage pictures and 3D models. Some key compo-
nents include: Image handling using the Imguc class, a custom image class
that stores image data and provides functions for manipulation. The Eigen
library for linear algebra operations is useful for handling transformations
and camera operations, and the Libigl library for geometry processing.

5.2.1 Project Structure

The project comprises several C++ classes, as well as main.html, main.css,
and main.js files. The main.html file structures the web page, while the
main.css file defines styles for various elements such as buttons, images, and
containers. The JavaScript file, main.js, provides frontend functionality to
the web page. For instance, it adds event listeners to the buttons and invokes
functions defined in the C++ classes.

To facilitate the communication between the JavaScript and C++, we
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5. Implementation....................................
define functions in main.cpp. These functions correspond to operations like
saving/loading a project or switching modes, and will be invoked from the
main.js file. To ensure these functions are not omitted during the optimiza-
tion stage of compilation, we prefix them with the EMSCRIPTEN_KEEPALIVE
keyword.

The main.cpp file is then compiled into a main.wasm file using Emscripten.
This process also generates a main.js file responsible for loading the We-
bAssembly module.

Here’s an example of a function definition in main.cpp:

EMSCRIPTEN_KEEPALIVE
void saveProject() {

drawWindow.saveProject("/tmp/mm_project.zip");
}

Listing 5.1: Example of function definiton from main.cpp

The generated main.js file should be included in the main.html file. This in-
clusion ensures the JavaScript file handles loading the corresponding main.wasm
file.

Next, in texttt.js, we invoke the C++ function via the Module object:

$(’#buttonSaveProject’).click(function() {
Module._saveProject();

});

Listing 5.2: Example of call function defined in C++

This way, we can call C++ functions from web pages through JavaScript.

The C++ part consists of several classes worth mentioning:

. drawWindow: This class extends MyWindow and represents the main
window of a drawing part of Monster Mash.. loadSave: This class provides functions for saving and loading data.. main: A main class that defines functions for JS code.. myPainter: A utility for drawing graphical primitives. It serves as an
abstraction layer for painting operations, offering functionality to draw
various shapes such as lines, rectangles, ellipses, and arrows, as well as
handling color and thickness settings.. myWindow: This class is designed to manage window rendering, specifi-
cally using the Simple DirectMedia Layer (SDL) library and OpenGL
for rendering.
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. commonStructs: Important structures and macros are defined here.

Going forward, unless specified otherwise, any references to algorithms,
structures, and other elements will implicitly pertain to those from the
drawWindow class.

5.2.2 Data Structures

During the model creation process, various images are stored. As the user
draws a stroke, it is rasterized onto the currently active layer (currOutlineImg).
Each drawn stroke in Figure 5.3a results in the creation of a new layer. To
store a single layer, the software generates two images within the Imguc
structure. The first image consists of the outline (see Figure 5.3b), while
the second contains the region image (see Figure 5.3c), in which the drawn
region appears in white and the background in black. If the drawn stroke
does not form a closed region, the program connects the first and last points
of the stroke, using a different color for the connected portion in the out-
line image. Although gray is the default color used for the closing region
line, it has been intentionally colored green in the example for improved
clarity. Outline and region images are stored in their corresponding deques
(outlineImgs and regionImgs), which now represent a single layer of the
artwork. An auxiliary deque is employed (called layers) to facilitate layer
addressing, as user-deleted layers can complicate addressing layers. Before
rendering, all outline and region layers are merged into mergedOutlinesImg
and mergedRegionsImg. All aforementioned objects, along with many others,
are contained within the ImgData structure, which maintains images and the
current drawing state (e.g., the selected layer).

struct ImgData = {
deque<Imguc> outlineImgs, regionImgs;
deque<int> layers;
Imguc mergedOutlinesImg;
Imguc mergedRegionsImg;
Imguc currOutlineImg;
int selectedLayer;
...

};

5.2.3 Program Pipeline

The pipeline of the drawing part of the current MM program proceeds as
follows:
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Figure 5.3: Image (a) shows drawn art in the MM, (b) and (c) are stored outline
and region layers...1. The user launches the application, and the drawWindow is created with

UI components initialized...2. The user begins drawing a stroke on the canvas...3. mousePressEvent() is triggered, drawing a line (a segment of the stroke)
from the previous coordinates to the current mouse coordinates...4. As the user moves the mouse, mouseMoveEvent() is invoked, similarly
drawing a line on the current canvas...5. When the user releases the mouse button, drawing of the current stroke
ceases, triggering mouseReleaseEvent(). This method’s functionality
varies depending on other keys pressed and the duration of the pressed
button. If the button is pressed briefly, it is considered a short click,
leading to the selection or deselection of a layer. If a double click is
detected, the method duplicates the selected region, provided it has not
already been duplicated. If neither of the above occurs, the method
stores the newly created region from the stroke within ImgData. To
create a filled region, MM uses flood fill algorithm [23]...6. Each time mouseReleaseEvent() ends, recreateMergedImgs() method
is invoked as the final step. This method performs the task of merging
all the outline and region layers into two separate layers. One layer
contains all the regions, while the other layer comprises the merged
outlines. Subsequently, these layers are pushed into OpenGL, enabling
their display on the screen...7. Once all the desired layers have been created, the sketch reaches its
final form. Subsequently, the program proceeds to the next phase of the
drawing pipeline, specifically the inflation and animation stage, which
represents the culmination of the drawing pipeline.
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5.3 Proposed User Design

User design is important when adding new features to a program, as it helps
make the software easy to use and understand. A good user design helps users
navigate the program and enjoy their experience with it. When updating an
existing program, it is critical to ensure that new functions will align with
older functionality and users’ needs.

In the current MM version, the user can only draw strokes, where each
stroke represents one shape. There is also the possibility of redrawing selected
shapes from scratch. This design does not allow users to create complicated
shapes, and moreover, it does not allow for errors. If the user makes a mistake,
they have to redraw the shape from scratch.

With future features in mind, we came up with a design similar to the
current MM but with more of the necessary features used in sketching
software. The proposed UI will have features typical for this type of software,
like drawing strokes, erasing strokes, deforming strokes, and an undo button.
There will also be a function that typical drawing programs rarely have:
sketch simplification. This design needs to overcome the issue in the previous
version of each region allowing only one stroke, but it also needs to produce
output in the same format as the current version of MM so that the next
part of the program, the inflation, will work correctly.

The proposed design can be seen in Figure 5.4. Unlike the current MM, the
new design includes a toolbar (marked with a green box) with the following
functions:

(1) Normal drawing: Users can draw lines on the canvas.

(2) Helpline mode: Users can draw lines that will not be visible in the final
result, but that can be used to close open shapes.

(3) Normal eraser: Upon clicking, erases both help and normal lines.

(4) Simplification: The function automatically simplifies the currently drawn
sketch.

(5) Undo button: Reverts the last sketch simplification step.

5.3.1 Expected Use

The process of creating artwork goes like this: First, the user draws a shape
they like and can erase any mistakes while drawing. If the shape isn’t fully
enclosed, the user will close it using help lines. Next, they use the “Simplify
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Figure 5.4: New design for Monster Mash.

Image” function to simplify the shape. If the simplified result isn’t satisfactory,
they can undo this process and adjust the sketch.

After the sketch is simplified, the user can change the shapes. This can be
done by either dragging the shape’s borders or by using control points, which
are added by a quick click on the desired edge of the shape.

Engaging solely with the drawing component of the software posed specific
difficulties. Inflation and animation testing was not feasible within the new
version because only the drawing part was provided. To solve this problem,
test projects were exported to the original version of MM. First, the project
was saved. Following this, the stored project was loaded into the original MM.
Additional features of MM, such as inflation and animation functionalities,
then become accessible. This procedure enabled comprehensive testing of the
entire MM pipeline.

5.4 Integration into Monster Mash

In the realm of software development, the task of adding new features to an
existing, well-functioning program is more than meets the eye. It’s not simply
a matter of developing a fresh component and seamlessly integrating it into
the system.

The complexity of this task arises from the fact that a program isn’t a
loose collection of features, but an intricately interconnected network. Each
element within the program is interdependent, working in harmony with
others to ensure overall functionality. When we introduce a new feature,
it’s like inserting a fresh piece into an already completed puzzle. This task
requires meticulous precision and often necessitates altering the existing pieces
to accommodate the new ones.
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This process may require significant changes or even complete rewrites
some parts of the original code, making it a challenging task. While it’s true
that software should ideally be designed for extensibility from the start, the
realities of shifting deadlines, evolving project requirements, and an increasing
understanding of the problem space often complicate this objective.

Before introducing a new feature to MM, it was necessary to determine
what output was anticipated in the next phase of MM: inflation. Over time, it
became apparent that the only crucial elements for the subsequent part were
the outline and region layers, which remained unchanged. As the gradual
implementation of new features into MM progressed, a majority of the code
underwent modifications.

5.4.1 Modifications to Monster Mash

This section elucidates the modifications made to the MM program to in-
corporate new features. Specifically, two new classes have been introduced
for managing image simplification and deformation, which are detailed in
subsection 5.4.2 and subsection 5.4.3.

Storing Lines

The initial modification in the drawWindow function involved storing lines in
a structure. Previously, lines were not stored. Each line is now represented
by the following class:
class Line {
int x1;
int x2;
int y1;
int y2;
bool isHelpLine;
}

Distinct structures were used for lines belonging to the current sketch and
for those from rasterized layers. This was because the current sketch lines,
being deletable by the user, needed unique, easily removable indices, leading
to their storage in a map.
std::map<int, Line> current_strokes;

Contrarily, segmented strokes didn’t require a unique index, so they were
stored in an array for each layer. For every layer containing a simplified
sketch, a DeformCurve object was created. This object stores the structures
required for ARAP deformation, such as the 2D strip. These structures
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were also placed in a deque for unified access, similar to MM’s image-storing
approach.
deque<vector<Line>> segmented_strokes;
deque<DeformCurve> deform_curves;

Program States

In the original drawWindow function, there were only two states: DRAWING
and REDRAWING. To accommodate the new features, additional states
were introduced, enabling the user to switch between them efficiently. The
DRAW _MODE allows users to sketch new lines freely on the current layer
and is active at the program start. ERASING_MODE facilitates the dele-
tion of lines from the current layer. DEFORM _CURV E_MODE, activated
post-image simplification, lets users deform the simplified lines, but not the
current sketch lines. HELP _LINE_MODE enables users to add lines to
the current sketch.

Line Erasure

A key feature is the ability to erase unwanted lines. An erase map structure
was created to facilitate this. Initially, the concept was to develop a 2D
array where each pixel represented the line index, but multiple strokes can
overlap in the same location. Consequently, the final erase map consists of
three nested arrays, with the first two representing the image and the last
containing drawn line indices.
vector<vector<vector<int>>> erase_map;

To erase pixel at coordinates [x, y], the function finds all IDs in these
coordinates (erase_map[x][y]) and removes lines with these IDs from the
current_stroke structure. The eraser is supposed to delete lines in a broader
range. To accomplish that, we do the same routine through intervals (x −
s, x + s) and (y − s, y + s) for x and y coordinates, where s/2 represents the
eraser size.

Undo Function

The incorporation of an undo function significantly enhances user experi-
ence and flexibility within Monster Mash. During the process of image
segmentation, results may occasionally deviate from the user’s expectations
or intentions, as detailed in subsection 5.4.2. To tackle this issue, an undo
function was implemented, allowing users to revert to the last segmentation
step immediately after its execution.
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The undo function stores the current sketch’s associated state before the
simplification operation. This state includes all the critical details of the
sketch, such array of strokes, erase_map, etc. In the event of an undo
operation, this state is retrieved, and the current sketch state is replaced with
the stored state, effectively reverting the sketch to its pre-segmentation state.

Area Fill

In order to enhance the performance of the MM, a change was made to the
area filling process. Previously, the fill algorithm was applied to the exterior
area, which is typically significantly larger than the area of a drawn layer,
resulting in longer execution times. However, to color the interior region of a
given layer, it is first necessary to locate a seed pixel that is undeniably within
the confines of this area. While the positions of lines change as users deform
them, the orientation of each line’s left and right sides remains constant. This
means that if the left area was initially the interior area, it will remain so
even after deformation.

To determine the orientation, the exterior area is initially filled in black
using the flood fill algorithm [23]. A line from the sketch’s contour is then
selected, and its midpoint pixel is located. Given the midpoint is inside
the line, there will surely be a black pixel in these coordinates. From this
pixel, the algorithm proceeds in both directions along the line’s normals, as
illustrated in an Figure 5.5. During this process, the pixel color is checked
in both directions. The first side to encounter a white pixel is deemed the
interior side because the exterior area is filled with black. This side is then
labeled as the interior side.

Figure 5.5: Illustration of determining the correct side of the line.

Once the correct side has been identified, it becomes easier to rapidly
locate an interior pixel. When updating layers, a white image with a black
contour is provided, and the previous procedure is repeated. The line’s center
is calculated, and the algorithm proceeds in the direction of the normal in
previously identified side. The first white pixel encountered is the desired
seed. It’s crucial to emphasize that the sequence of all lines, as well as the
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sequence of the points that constitute a line, remain unchanged. These rules
ensure that the search will always be conducted on the correct side of the
line.

UI Adaptations

Adapting the new features to fit within the user interface of both web and
desktop versions of Monster Mash presented unique challenges and consid-
erations. Given the differences in UI paradigms between web and desktop
environments, the integration of new features required distinct approaches
for each platform.

For the desktop version, the integration primarily involved the addition
of new key listeners. These listeners were designed to respond to specific
user key inputs, triggering the appropriate functions in response. The design
process of these listeners had to take into account potential conflicts with
pre-existing key assignments. This was necessary as many keys, like "E"
(potentially for erasure) and "S" (potentially for segmentation), were already
associated with other functions.

The web version, however, required a more complex adaptation process.
New UI elements, including buttons, had to be created first using HTML.
These elements were then made functional by attaching JavaScript listeners
to them. Additionally, these new UI elements required styling to ensure
consistency with the existing web UI design. The integration of these new fea-
tures into the web version also involved providing communication between the
JavaScript code and the underlying C++ functions through the main.cpp file.

Auxiliary Libraries

The implementation of the new features in Monster Mash involved the use of
auxiliary libraries to enhance development efficiency and facilitate specific
functionalities. One such library was EasyBMP, which was utilized during
the development process.

EasyBMP is a simple, cross-platform, open-source C++ library designed
for easy reading, writing, and manipulation of bitmap (BMP) image files. In
the context of this project, it was employed to facilitate easy image saving,
which proved to be invaluable, particularly during the testing and debugging
phases. By leveraging EasyBMP, it was possible to quickly and conveniently
save images representing intermediate steps of sketch segmentation. It also
served as a way to visually document the procedure, which could be useful
for presentations, reports, or future reference.
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5.4.2 Image Segmentation Implementation

The class in focus is named segmentation. This class emerged during the
implementation of a trial program for segmentation testing. The class leans
more towards a procedural base rather than object-orientation, largely because
its primary function is to transform one type of data into another. The main
public function is illustrated as follows:
vector<Line> segment_drawing(Imguc &image,

vector<Line> &help_lines);

The function accepts as input parameters the current layer which contains
the drawn sketch and an array of help lines. The function returns an array
of the segmented sketch. Instead of a list of strokes, which would require
rasterization for image segmentation, it directly takes an image. Since the
MM already performs rasterization, this approach eliminates unnecessary
rasterization within the segmentation process.

To execute image segmentation, the algorithm outlined in section 3.2 is
utilized. The GridCut library was employed to solve the min-cut problem.
This library provides a min-cut solver for grid-structured graphs. Following
the initialization of the grid and setting weight to the edges, all that remains is
a call the compute_maxflow(). Subsequently, the library separates all nodes
into two sets. Pixels belonging to the first set are colored white, while those
in the other set are colored black, thus creating a new image.

Due to the requirement of the deformation function to create a 2D strip
out of the lines, exceedingly sharp or thin parts of the sketch can produce
errors. The mesh vertices could overlap at these parts, potentially causing the
ARAP function to fail. To mitigate this, the segmentation result undergoes
two morphological operations, specifically erosion followed by dilation. A 3x3
matrix, filled exclusively with ones, was employed for both morphological
operations.

Dilation and erosion are morphological operations widely used in image
processing and computer vision. Dilation is used to expand the boundaries
or regions of objects in a binary image. This operation places the given mask
over each pixel in the image and compares it with the corresponding pixels.
If any "on" pixels (designated by "1") in the mask overlap with an "on" pixel
in the image (stroke pixels), the resulting pixel in the dilated image is set to
"on". For the erosion, the rule is: if even a single "off" pixel (designated by
"0") in the mask aligns with an "on" pixel in the image (stroke pixels), the
corresponding pixel in the eroded image is converted to "off". This action
effectively shrinks the image objects by trimming their edges.

Erosion, when applied to the image, causes all thin parts of the edge to
disappear, but this also reduces the overall size of the object. For restoration,
dilation is utilized, which returns the shape of the area to its previous state.
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5. Implementation....................................
Figure 5.6d illustrates two layers, Figure 5.6a and Figure 5.6c, with the blend
mode "difference" applied. This demonstrates that only the thin parts of the
image are eliminated, while the rest remains unchanged.

(a) : Picture after image segmentation. (b) : Picture after erosion is applied.

(c) : Picture after dilation is applied.
(d) : Picture (a) and (b) processed with
the difference blend mode.

Figure 5.6: Example of how an image is processed using the application of
erosion and diffusion techniques.

STA Algorithm

The STA algorithm, as described in subsection 3.2.1, is employed to identify
the contour. This algorithm, sourced from the MM project, has been slightly
adapted. The variation in this implementation lies in the need to separate
the traced contour into two categories: normal lines and help lines, and to
split the contour into a set of lines.

As lines are added, the algorithm traces along the edges of the filled image.
The current length of the traced line is calculated during this process. If
the line exceeds a predefined constant MIN _LINE_LEN , it is added to the
array of lines. However, before this addition occurs, it must be determined
whether the line qualifies as a help line. If any help lines added by the user
form part of the traced contour, they will be positioned identically to the
traced contour. Therefore, while tracing a line, it is possible to ascertain if a
part of the line intersects a help line. Encountering a single pixel containing
a help line is sufficient to label the line as a help line.
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To verify if an intersection with a previously drawn help line has occurred,
an auxiliary image is generated, where only help lines are placed. The lines
are rasterized using the Bresenham algorithm [24], whose implementation was
sourced from [25]. The choice of this algorithm is driven by the class’s design
intent of minimal dependence on multiple libraries within the MM. This intent
was further strengthened by the fact that the class was developed during the
implementation of a trial program for segmentation testing. Following to
rasterization, dilation is performed with the mask

0 1 0
1 1 1
0 1 0



Figure 5.7: Example of a line that has undergone the process of dilation

The impact of this function on the image can be observed in Figure 5.7.
The dilation operation has enlarged the boundaries of the original image’s
line by one pixel in all directions, resulting in broader and larger regions.
This assists in labeling help lines more accurately, as even a 1-pixel shift in
the contour could otherwise result in a line being labeled as a normal line.

Setting Values

Determining the optimal constants for edge weights proved to be a challenge.
Ultimately, the weights for nodes connected to the terminals were set to 10000.
The weights between nodes in the grid (representing pixels) were determined
by the following function:

short weight_func(int p1, int p2) {
short cap;
// case 1: one of the pixels is black
if (p1 == 0 || p2 == 0 ) {

cap = 3;
// case 2: both pixels are white
} else {

cap = 17;
}
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return cap;

}

Identifying the correct values was a tough task. For instance, increasing
the weights for case 1 enabled the image to close larger holes, a potentially
beneficial feature, yet it simultaneously made the image more tolerant to
closing unwanted holes, as illustrated in Figure 5.8.

Figure 5.8: Example of how increased variable cap can change segmentation
computation.

5.4.3 As-Rigid-As-Possible Deformation Implementation

In this project, the implementation of ARAP was enabled by the LibIGL
library. LibIGL provides a robust and efficient ARAP implementation for the
deformation of 2D objects. The advantage of the LibIGL implementation of
ARAP is that it’s optimized for performance, allowing for real-time interac-
tions. The choice to use LibIGL over Monster Mash (MM) also arose due to
MM’s inherent constraint of 3D object implementation.

The primary function for deformation, facilitated by LibIGL’s ARAP
implementation, is invoked from the drawWindow class. The necessity for this
approach is due to the structural design of LibIGL’s ARAP, which allows
only a single instance creation.

To transform given contour into a 2D object and to generate the neces-
sary structures, the DeformCurve class was designed. Each instance of the
DeformCurve class represents a single closed contour, which corresponds to
one layer of the sketch. The main data structures associated with this class
are:

Eigen::MatrixXd bc;
Eigen::MatrixXd strokeStripV;
Eigen::MatrixXi strokeStripF;
Eigen::VectorXi strokeConstraints;
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The strokeStripV matrix represents the vertices of the 2D object, where
each row corresponds to a unique vertex. The strokeStripF matrix con-
tains the faces of the 2D object, with each row representing a distinct
face. The strokeConstraints vector is a list of constraints added by the
user, containing the IDs of constrained vertices. The bc matrix is akin to
strokeConstraints, but instead of holding vertex IDs, it stores the coordi-
nates of the corresponding vertices.

Upon initialization, the DeformCurve class populates strokeStripV and
strokeStripF with the appropriate values. The bc matrix is updated just
before executing the ARAP deformation. The technique for creating vertex
coordinates is elaborated in section 4.2.

The strokeConstraints vector is updated when the user adds new con-
straints. When a user attempts to create a constraint, the program identifies
the closest vertex to the queried click coordinates. If the computed distance
exceeds a predefined threshold, the constraint creation is aborted. This
design choice is intended to maintain the integrity of the deformation by
preventing the imposition of constraints that could potentially distort the
contour. Constraints can be categorized into two types - temporary and
permanent. Permanent constraints are established with a short click, whereas
temporary constraints are generated when a user drags the contour without
any prior constraint creation at the specific location. A temporary constraint
is created at the mousePress() event and is subsequently deleted at the
mouseRelease() event.

After the strokeConstraints vector has been updated, it is essential
to notify the ARAP instance. This can be accomplished by executing the
following:

arap_precomputation(strokeStripV, strokeStripF,
strokeStripV.cols(), strokeConstraints,
arap_data);

The arap_data object is an instance of the ARAP Data struct, which
is used to store information required for ARAP deformation. When user
interaction involves moving the line, the moved vertex is updated in the
strokeConstraints structure, and the bc array is refreshed. Subsequently,
the function to compute the new position is invoked.

igl::arap_solve(bc, arap_data, strokeStripV);

This function updates the data in strokeStripV, which will be rendered
in the drawWindow. Notably, only the first third of the stroke strip array is
rendered because it contains required vertices that are a part of the contour.
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5.4.4 Challenges and Solutions

The challenge of delving into the MM code proved formidable, requiring a
significant amount of time to understand the diverse naming conventions, the
inherent logic within the code, and the structural organization. The task
of compiling a C++ project laden with numerous dependencies presented
additional hurdles.

Initial attempts at building the project in Windows resulted in impossible
obstacles, necessitating a shift to Linux. Following the successful build in this
alternative environment, a new task emerged: the integration of the project
into a development environment. This step was crucial to facilitate debugging
and simplify the start-up process. Fortunately, the situation improved as an
instruction manual for building MM was provided to me by the creator of
MM.

The introduction of the deformation feature demanded significant changes
in the program pipeline. With this feature, users can deform the layer
by dragging its contour, implying that all layers must be re-rendered after
each mouse movement due to changes in layer intersections and overlaps.
As explained in subsection 5.2.3, the recreateMergedImgs() function was
previously called after each mouseRelease() event. However, calling this
function after every mouseMove() event significantly decreased performance
due to slow memory access in the Imguc structure. In light of many MM
libraries depending on this structure, changing it would be overly complex.

Fortunately, improvements such as invoking recreateMergedImgs() only
when the user moves the selected region at least one pixel and computing
minimum and maximum coordinates for each layer to render only the es-
sential screen portions enhanced the program’s speed. The most significant
enhancement in speed was achieved by utilizing a faster version of the flood
fill algorithm, which refrains from the use of a stack structure in favor of
relying on the call stack for recursion. Furthermore, this optimized approach
focuses on filling the interior area rather than the exterior, a process detailed
in Section ’Area Fill’ (refer to subsubsection 5.4.1).

Interestingly, deformation in the web version works faster than the desktop
one, but the desktop version provides smoother drawings.
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Chapter 6

Experiments

This chapter presents a series of comprehensive experiments designed to
evaluate the real-world performance and effectiveness of the advanced features
incorporated into the Monster Mash tool. The principal purpose of these
experiments is to critically assess the enhancements brought about by the
newly integrated As-Rigid-As-Possible (ARAP) deformation algorithm and
the sketch simplification functionality, which is achieved through image
segmentation.

While the focus primarily lies on ARAP deformation and sketch simpli-
fication, an erasing function has also been added to the tool. Although
this function may not be the central subject of the study, its importance in
contributing to a complete user experience is recognized.

The initial series of experiments concentrate on the sketching part of
the workflow, particularly the interactive process involving the deformation
and simplification of sketches. This investigation aims to discern how these
additions could potentially revolutionize the creative process in a practical
setting, using the newly modified version of Monster Mash as the testing
platform.

Subsequent tests aim to evaluate the enhancements to the sketching tool
in the context of the complete workflow. This involves importing sketches
crafted with the modified version into the current Monster Mash version. The
primary objective is to test the compatibility of the new sketching features
with the pre-existing inflation and animation functionalities of Monster Mash.

These experiments aim to provide an evaluation of the implementation,
shedding light on its merits and areas that could be improved. The conclusions
derived from these findings will not only offer a robust examination of the
enhancements but also guide future improvements in this area.

To facilitate simpler testing, the compiled project was hosted on a web
server, enabling convenient access. As a result, the entire testing process
could be performed across merely two pages - the original MM and MM
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featuring new enhancements.

6.1 Sketch Simplification

This section is dedicated to the examination of the sketch simplification tool’s
implementation through various test scenarios.

In our first test case, we inspected the tool’s ability to fill holes in sketches,
as exemplified in Figure 6.1. The image segmentation process proved capable
of filling numerous gaps in the sketch. However, a key drawback became
evident: the process fills the holes using lines parallel to the x and y-axis.
This outcome can be attributed to the grid-structured graph employed by
the tool, which leans on Manhattan distances instead of Euclidean ones.

(a): (b):

Figure 6.1: Results of simplifying the goose image.

The subsequent sketch in Figure 6.2 contains a considerable hole. In this
instance, the algorithm was successful in closing the hole agilely. However,
Figure 6.3 introduces sketches featuring holes requiring closure through
parallel lines, representing the worst-case scenario for this algorithm.

(a): (b):

Figure 6.2: Results of simplifying the vase with a large hole.

Additional testing was performed on a sketch abundant with strokes inside
and some noise outside, Figure 6.4. The results were quite satisfactory: the
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................................. 6.1. Sketch Simplification

(a): (b):

Figure 6.3: Results of simplifying the random shape with a diagonal hole

presence of background noise failed to interfere with the segmentation process,
revealing the robustness of the tool. Furthermore, even with a large number of
strokes, the tool managed to maintain its performance without encountering
any issues or significant changes in execution time.

(a): (b):

Figure 6.4: Results of simplifying the vase with a lot of noise.

On the other hand, it’s worth noting that this approach tends to prioritize
the shortest paths between strokes. Consequently, there are instances where
the segmentation result may appear as depicted in Figure 6.5. (To aid in
creating this figure, a supplementary image was imported and traced taken
from [26].)

This test aimed to investigate whether the algorithm consistently recognizes
help lines. The region produced from these help lines, albeit without borders,
reflects their shape. Our testing shows that the tool can competently detect
segments of help lines, as demonstrated in Figure 6.6.

Below are other results of the more typical drawing process recorded step
by step. The result can be seen from Figure 6.7 through to to Figure 6.11.
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(a): (b):

Figure 6.5: Results of simplifying the image with a spiral.

(a): (b):

Figure 6.6: Results of simplifying the image of a butterfly using help lines.

6.2 Sketch Deformation

In this section, attention is paid to the nuances of movement and manipulation
in both 2D and 3D models. The depiction of these movements presents a
challenge due to their dynamic nature. To overcome this, in some cases, the
approach taken involves the incorporation of vectors that represent mouse
movements, providing a visual representation of the transformation process.

In the Figure 6.12, the moved image is color-coded in purple for easier
distinction. This color distinction provides a clear contrast and makes possible
a more comprehensive understanding of the changes being made during the
deformation process. The process of manipulating the object is compared to
manipulating thin wire. It is observed that using only one control point for
manipulation tends to move the entire sketch, while simultaneously causing
deformation in certain areas. The most significant deformation is seen in the
part that is being dragged.

As more control points are introduced, the object begins to deform in a
manner that aligns with expectations. For instance, a larger deformation
is applied as demonstrated in Figure 6.13, while minor deformations are
specifically targeted towards the tail and hands of the monster in Figure 6.14.
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The substantial changes were more challenging to accomplish. Occasionally,
some unexpected components shifted, and a significant number of control
points were utilized to prevent this.

A comparison between the ARAP deformation in the new version to the
3D ARAP deformation in the original version of MM is concluded. When
these deformations are executed in MM (see Figure 6.15b, Figure 6.16b),
results similar to those seen in Figure 6.15a and Figure 6.16a are achieved.
It is observed that making larger changes is considerably simpler with a 3D
ARAP deformation than with a 2D one. Minor changes, however, present a
similar level of complexity in both dimensions. A noteworthy observation is
that the 3D version appears to provide a more stable version for manipulation
and deformation.

In this comparison, represented by Figure 6.17, the symbol "S" is deformed
in a similar manner in both versions. While the results appear similar, the
3D version presents more stable outcomes. Some parts are seen to crisscross
in the 2D version, preventing it from filling the area.

In this test, a deformation that widens the symbol "S" is applied. As shown
in Figure 6.18, the 3D version does not have the capability to deform the image
in the same manner as the 2D deformation. This observation underscores the
differences in deformation capabilities between the two versions

The deformation tool can prove exceptionally beneficial in instances re-
quiring the sketch to possess multiple similarly-shaped layers, such as in the
case of an octopus sketch. To illustrate this, consider an example where only
the initial two tentacles are drawn, even separately from the main sketch
(see Figure 6.19).

Upon the completion of two tentacles of the octopus, we duplicate its ap-
pendages. The remaining task is achieved by utilizing the deformation tool to
reshape the copied tentacles and reposition them appropriately. Consequently,
the entire procedure resembles an artistic approach akin to the sculpting of a
statue.

The next section will provide examples of a more typical deforming process.
The results can be seen from Figure 6.20 through to Figure 6.25.

6.3 End-to-End Pipeline Scenarios

Figure Figure 6.26 showcases an example of the full pipeline’s application,
starting from sketch creation in the new version of MM to the 3D animation
in the original version of MM.
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6.4 Exploring New Possibilities

The final test was dedicated to demonstrating the new capabilities of MM.
There are certain shapes that could not be created in the older version of
MM, but are now feasible with the new features.

The first example involves the addition of new layers containing holes.
Shapes such as a half-torus can be created near the main body. After loading
the sketch into the original MM and inflating it, shapes with holes are
produced (see Figure 6.27). This was impossible in the previous version
because this type of shape requires at least two strokes to draw.

The second example involves the creation of a main object that contains a
hole. Even though the image simplification process will always fill any holes
within it, this can be circumvented by creating two separate objects and
positioning them near each other. This test also evaluates how the inflation
algorithm reacts to such an object. The aim is to create a torus. Initially, one
half-circle is created (see Figure 6.28a), followed by the creation of the other
half (see Figure 6.28b). They are then positioned near each other using the
deformation tool and loaded into the original MM. The image demonstrates
that while some artifacts appear in the stitching part, the objects hold together
as one entity. The control points (red dots) in Figure 6.28d are stretching
the circle in an attempt to separate it, but the object continues to behave
like a single entity.
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(a) : First layer before simplification. (b) : First layer after simplification.

(c) : Second layer before simplification. (d) : Second layer after simplification.

(e) : Third layer before simplification. (f) : Third layer after simplification.

(g) : Fourth layer before simplification.. (h) : Fourth layer after simplification.

(i) : Fifth layer after simplification. (j) : Complete sketch of the mouse.

Figure 6.7: Process of creating a mouse sketch.
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(a) : First layer before simplification. (b) : First layer after simplification.

(c) : Second layer before simplification. (d) : Second layer after simplification.

(e) : Third layer before simplification. (f) : Complete sketch of the alligator.

Figure 6.8: Process of creating an alligator sketch.
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(a) : First layer before simplification. (b) : First layer after simplification.

(c) : Second layer before simplification. (d) : Complete sketch of the dove.

Figure 6.9: Process of creating a dove sketch.

(a) : First layer before simplification. (b) : First layer after simplification.

Figure 6.10: Process of creating a seahorse sketch.

(a) : First layer before simplification. (b) : First layer after simplification.

Figure 6.11: Process of creating a crab sketch.
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(a): (b):

Figure 6.12: Results of deforming the images by one control point.

(a): (b):

Figure 6.13: Results of significant deformation of the giraffe.

(a): (b):

Figure 6.14: Results of minor deformation of the monstr.
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(a): (b):

Figure 6.15: Comparison of 2D and 3D ARAP deformations of a monster.

(a): (b):

Figure 6.16: Comparison of 2D and 3D ARAP deformation of a giraffe.

Figure 6.17: Comparison of 2D and 3D ARAP deformation of a symbol "S".

Figure 6.18: Second comparison of 2D and 3D ARAP deformation of a sym-
bol "S".
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(a) : Octopus with the main body
and one unfinished tentacle.

(b) : Octopus with one simplified
tentacle.

(c) : Addition of the second tentacle. (d) : Simplification of the tentacle.

(e) : Result after copying and de-
forming 2 tentacles.

Figure 6.19: The result of the octopus created with the deformation tool.
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(a) : Simplified mouse. (b) : Inflated mouse.

(c) : Mouse deformed by 2D ARAP. (d) : Mouse deformed by 3D ARAP.

Figure 6.20: The result of the mouse modified by the deformation tool.

Figure 6.21: The result of the alligator modified by the deformation tool.

Figure 6.22: The result of the dove’s wings modified by the deformation tool.
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Figure 6.23: The result of the seahorse modified by the deformation tool.

Figure 6.24: The result of the crab modified by the deformation tool.

(a) : Simplified person sketch. (b) : Deformed fattened person sketch.

(c) : Modified sketch with added legs
using deformation tool. (d) : Modified limbs in person sketch

Figure 6.25: The results of the person sketch, modified by the deformation tool.
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(a) : First layer before simplification. (b) : First layer after simplification.

(c) : Second layer before simplification. (d) : Erased and redrawn second layer.

(e) : Third layer before simplification. (f) : Third layer after simplification.

(g) : Thr sketch with both legs added. (h) : Loaded project in the original MM.

(i) : Inflated bear.
(j) : Deformed bear in the animation
mode of MM.

Figure 6.26: Process of creating a bear sketch and loading it into MM.
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Figure 6.27: Result of segmentation featuring layers with holes.

(a) : First layer featuring a half-torus. (b) : Second layer featuring a half-torus.

(c) : Result of positioning layers.
(d) : 3D model of torus imported to orig-
inal MM.

Figure 6.28: Example of creating torus in MM.
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Chapter 7

Conclusion

This research aimed to enhance the Monster Mash drawing tool, driven by
a passion for art and a desire to augment digital drawing tools, thereby
contributing to the advancement of the digital art industry. The focus was on
incorporating sketch simplification and the As-Rigid-As-Possible deformation
algorithms into the tool. This work has resulted in significant improvements,
offering users a more enjoyable and efficient sketching experience.

The implementation of a sketch simplification algorithm has simplified the
drawing process, making possible freer sketching and fast simplification. This
feature offers potential benefits for both professional artists and hobbyists,
making the drawing process less stressful and prone to errors.

The ARAP deformation algorithm provided a robust tool for altering
sketches without requiring extensive redrawing. This function allows the
creative process, permitting users to focus more on the conceptual aspects of
their work. It allows for modifications in the sketch that would otherwise be
more challenging to accomplish via redrawing.

A series of rigorous experiments were conducted to assess these newly
integrated features. Their effectiveness within the interactive sketching process
and their compatibility with the existing animation and inflation functions
of Monster Mash were tested. The results offer a valuable evaluation of
the tool’s enhancements, highlighting their advantages and areas for further
refinement.

7.0.1 Pros and Cons

In the experiments, the previous version of the tool was compared to the new
implementation. It was found that the drawing process has become more
straightforward and less stressful due to the tool’s new functionalities. The
drawing experience has been significantly enhanced, primarily due to the
simplification tool’s ability to fill a substantial amount of holes in sketches,
despite occasionally overfilling certain parts.
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The deformation tool addition facilitated the strokes edition. It proved

most effective when correcting minor mistakes and changing positions of
the protrusions of the object, while controlling larger changes proved more
challenging. During testing, it was observed that there is a need for an
undo button for the deformation tool, allowing users to reverse unwanted
deformations, especially when users mistakenly deform the sketch.

From a user interface perspective, the mode buttons were easily under-
standable and user-friendly. With the current minimalistic button design,
users could quickly understand each button’s function and experiment freely.
Shortcuts for the new buttons were also quite useful, enhancing the efficiency
of mode switching.

7.0.2 Possible Improvements

In terms of sketch simplification, conducting more in-depth user testing could
potentially be beneficial to estimate user preferences between a tool capable
of filling larger holes or one that can close smaller holes but overfill less.

It became evident during the application testing that an undo function
for the last drawn strokes or deformation would be desirable. Therefore,
expanding the undo button’s functionality could enhance the user experience,
allowing it to cover a broader range of actions, similar to conventional drawing
software.

Considering Monster Mash uses its own ARAP implementation, incorpo-
rating this implementation into the drawing part instead of the 2D ARAP
deformation could potentially yield more stable results. It would furthermore
be an efficient reuse of existing code.

In conclusion, it is relevant to mention that the data structures currently
employed for the storage of images could be enhanced for efficiency as the
current implementation appears to display suboptimal performance speed.

While there are areas for future development, this thesis has successfully
enhanced an existing digital drawing tool. The improvements in sketch
simplification and deformation features have certainly enhanced the user
experience of the Monster Mash drawing tool.
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Appendix A

List of Attachments

MastersThesis.pdf . . . . . . . . . . . . . . . . . . . . The Master’s Thesis text in PDF
MastersThesis.zip . . . . . . . . . . . . . . . The Master’s Thesis latex source code
MonsterMash.zip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monster Mash application
|- src/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Source code
|- Build/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Folder with executables
|- |- Desktop/monstermash . . . . . . . . . . . . . . . . . . . . . . . . . . . Desktop executable
|- |- wasm/index.html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Web executable
Segmentation.zip . . . . . . . . . . . . . . . . . . . . . . . . Trial segmentation application
|- src/segmentation.sln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Project for VS
StripARAP.zip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trial deformation aplication
|- StripARAP/example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Executable

Note: The web version of MM needs to run a server to work. This can
be done by executing the command python -m http.server in the location
Build/Desktop/wasm/.
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List of Shortcuts

Shortcut Meaning

1D One-dimensional space
2D Two-dimensional space
3D Three-dimensional space
N-D N-dimensional
NP nondeterministic polynomial time
SVD Singular value decomposition
STA Square Tracing Algorithm
WTS Within The Strip
ARAP As-Rigid-As-Possible
LLVM Low-Level Virtual Machine
HTML Hypertext Markup Language
CSS Cascading Style Sheets
JS JavaScript
MM Monster Mash
UI User Interface
MLS Moving Least Squares method
wasm WebAssembly
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