
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

CheckIt: publication tool for gestors of
Semantic vocabulary of terms - backend

Bc. Michal Švagr

Supervisor: Ing. Michal Med, Ph.D.
Supervisor–specialist: Ing. Martin Ledvinka, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2023

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483856 Osobní číslo:​Michal Jméno:​Švagr Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:​

Softwarové inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

CheckIt: publikační nástroj pro správce Sémantického slovníku pojmů - backend

Název diplomové práce anglicky:​

CheckIt: publication tool for gestors of Semantic vocabulary of terms - backend

Pokyny pro vypracování:​
1) Become familiar with the tools TermIt, Ontographer, Mission Control and SGov Server for the creation, editing and​
publication of Semantic vocabulary of Terms (SSP). Tools are parts of the Assembly line designed and created in the​
project Quality Open Data and Infrastructure (KODI) on the Ministry of Interior of the Czech Republic.​
2) Analyze processes related to the creation, editing and publication of semantic vocabularies within the Assembly line.​
3) Design a tool for publication of the new versions of the semantic vocabularies created or edited by the tools of Assembly​
line. Focus on the backend part of the tool.​
4) Implement design created in the previous point. Take into account involvement of the tool into the Assembly line​
environment and usage of GitHub as a storage of published vocabularies.​
5) Evaluate functionality of a tool by the automated tests for the given scenarios - conflict resolution, publication, concurrent​
requirements etc.​

Seznam doporučené literatury:​
Křemen, P.; Nečaský, M., Improving discoverability of Open Government Data with rich metadata descriptions using​
Semantic Government Vocabulary, Journal of Web Semantics. 2019, 55 1-20. ISSN 1570-8268.​
Křemen P., Pojmové znalostní grafy ve veřejné správě, available from:​
https://data.gov.cz/%C4%8Dl%C3%A1nky/pojmov%C3%A9-znalostn%C3%AD-grafy-ve-ve%C5%99ejn%C3%A9-spr%C3%A1v%C4%9B​
Křemen P.; Med M.;Nečaský M.;Domanská R., Metodika tvorby a údržby sémantického slovníku pojmů veřejné správy,​
2022​
Křemen P.; Med M.;Nečaský M.;Domanská R., Koncepce sémantického slovníku pojmů pro potřeby konceptuálního​
datového modelování agend, 2022​
Fowler, M: Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002.​

Jméno a pracoviště vedoucí(ho) diplomové práce:​

Ing. Michal Med, Ph.D. katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: 26.05.2023 Datum zadání diplomové práce: 26.01.2023

Platnost zadání diplomové práce: 22.09.2024

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Ing. Michal Med, Ph.D.​

podpis vedoucí(ho) práce​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank Ing. Michal Med,
Ph.D. and Ing. Martin Ledvinka, Ph.D.
for guidance, professional help, factual
comments, and for providing the opportu-
nity to work on this topic. I would also
like to thank Bc. Filip Kopecký for the
great cooperation and swift communica-
tion throughout the whole development.
Finally, I would like to express my grati-
tude to my family for their support and
encouragement.

Declaration

I declare that I prepared the submitted
work independently and that I have listed
all the literature used.

In prague, 25. May 2023

v

Abstract

This master thesis deals with the issue
of revising created or modified vocabular-
ies and their models in the Assembly line
toolset. The work contains an introduc-
tion to RDF, analyses of processes of the
Assembly line, designing of new processes,
research on existing tools for comparing
RDF datasets and designing and imple-
menting of a solution in the form of an
application. The result of the thesis is
a back-end application implementing the
new processes and a proposal of steps for
future work.

Keywords: RDF, RDF Schema, RDF
diff, SPARQL, SSP, Assembly line

Supervisor: Ing. Michal Med, Ph.D.

Abstrakt

Tato diplomová práce se zabývá problema-
tikou revidování vytvořených nebo upra-
vených slovníků a jejich modelů v sadě
nástrojů zvané Výrobní linka. Práce ob-
sahuje úvod do RDF, analýzu procesů
Výrobní linky, návrh nových procesů, re-
šerši existujících nástrojů pro porovnávání
RDF datových sad a návrh a implemen-
taci řešení ve formě aplikace. Výsledkem
práce je backendová aplikace realizující
vzniklé procesy a návrh kroků pro budoucí
práci.

Klíčová slova: RDF, RDF Schema,
RDF diff, SPARQL, SSP, Výrobní linka

Překlad názvu: CheckIt: publikační
nástroj pro správce Sémantického
slovníku pojmů - backend

vi

Contents

1 Introduction 1

2 Introduction to RDF(S) 3

2.1 RDF(S) . 3

2.2 Triple . 4

2.2.1 Literal . 5

2.2.2 Blank node 6

2.2.3 Named graph 6

2.3 Concrete syntaxes for RDF 7

2.4 Example of RDF dataset 8

3 Assembly line processes 11

3.1 Vocabulary modelling process . . 11

3.2 Current Publication process 13

3.3 New Publication process 15

3.4 Requesting to Gestor a
vocabulary . 17

4 Existing tools research 19

4.1 Main requirements for the tool . 19

4.2 Researched tools 20

4.2.1 Python RDFLib 20

4.2.2 Protégé 21

4.2.3 OWLDiff 22

4.2.4 RDF Graph Normalization . . 23

4.2.5 Apache Jena 23

4.3 Conclusion 24

5 Ontology 27

5.1 Main entities 27

5.2 Relationship diagram 29

5.2.1 Change entity 29

5.2.2 Publication context entity . . . 30

5.2.3 Comment entity 31

5.2.4 Notification entity 32

5.2.5 Gestoring request entity 32

6 Implementation 35

6.1 Used technologies 35

vii

6.2 Change resolving algorithm 36

6.2.1 Change resolving without blank
nodes . 37

6.2.2 Change resolving in blank
nodes . 38

6.3 Composing relationships 42

6.4 Updating Publication context . . 43

6.5 Maintenance improvements 43

7 Deployment 45

7.1 Existing deployment 45

7.2 New deployment 47

7.3 Deployment for development . . . 48

7.4 Deployment for user testing 49

8 Impediments and future work 51

8.1 Impediments along the way 51

8.2 Future work on CheckIt 52

8.2.1 Further integration with the
Assembly line 52

8.2.2 Correcting typos while
reviewing . 53

8.2.3 Improving notifications 53

8.2.4 Gestoring requests 54

8.2.5 Testing 54

9 Conclusion 55

Bibliography 57

A Content of the electronic
attachment 61

viii

Figures

2.1 RDF triple example diagram 5

2.2 RDF literal example diagram 5

2.3 RDF blank node example diagram 6

2.4 RDF Named graph example
diagram . 7

2.5 RDF dataset example diagram . 10

3.1 Publication process (AS IS) 14

3.2 Publication process (TO BE) . . . 16

3.3 Gestoring request diagram 17

4.1 Python RDFLib output 20

4.2 Error classes in Protégé 21

4.3 Error entities in OWLDiff 22

4.4 Jena RDFDiff output 23

5.1 Ontology relationship diagram . . 28

5.2 Ontology relationship diagram -
Publication context closeup 31

5.3 Ontology relationship diagram -
Comment closeup 31

5.4 Ontology relationship diagram -
Notification closeup 32

5.5 Ontology relationship diagram -
Gestoring request closeup 33

6.1 Relationship has manufacturer
(simple view) 38

6.2 Relationship has manufacturer
(full view) . 39

7.1 Deployment diagram (current) . . 46

7.2 Deployment diagram (new) 48

ix

Tables

2.1 Building stones of RDF(S) 4

4.1 Tools capabilites 24

6.1 Used technologies 36

x

Chapter 1

Introduction

In the current day and age, we live in a world surrounded by data. The volume
of data has grown exponentially since the second half of the last decade. In
2017, it was estimated that 2.5 exabytes of data are generated each day [1].
Brought to perspective, that is the capacity of 2.5 million one-terabyte disks
ordinarily found in modern notebooks. One of the new contributors to the
growth is the digitalization trend, which was recently accelerated with the
pandemic and associated remote work from home.

Among the main pushes to digitize government documents in the public
sector is the Open Data directive of European Union1, which aims to make as
much non-personal information available for re-use as possible. This directive
gave rise to the KODI project2 at the Czech Republic’s Ministry of the Interior,
which follows on from the previous two projects Open Data [2] and Open
Data II [3]. This project aspires to increase transparency and availability of
government data for other government entities and public use [4]. To achieve
one of the goals of the KODI project, a set of tools called the Assembly line
is being created, enabling the digitization of agendas, laws and decrees by
creating and maintaining conceptual models.

Modelling of these legal documents in the Assembly line is done in several
steps: defining new or selecting any existing conceptual model in the Mis-
sion control tool, creating or modifying key terms of the document in the

1You can see the directive on eur-lex.europa.eu
2The full name of the project is "Rozvoj datových politik v oblasti zlepšování kvality a

interoperability dat veřejné správy" or translated to English "Developing data policies to
improve the quality and interoperability of public administration data".

1

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L1024

1. Introduction
TermIt tool, modelling relationships between terms in the OntoGrapher tool,
requesting publication in the Mission control tool, and subsequent reviewing
and publication. The last step is the only one without a specialized tool for
conceptual models, reducing the uniformity of the user experience. Reviews
are done by manually comparing text differences of RDF files in GitHub Pull
Requests, which requires extensive knowledge of RDF(S) and data architec-
ture of the Assembly line. Also, discussion about discrepancies in the models
is realized using email communication, therefore requiring a lot of additional
information describing the location of the discrepancies. All this dramatically
degrades the usability of the Assembly line as a whole.

This master thesis aims to solve these shortcomings by designing a tool that
would allow reviewing in a human-readable way with built-in communication.
So not only the expert members of the KODI team but also individuals from
government entities responsible for the correctness of these conceptual models
can review them and use the Assembly line to its full potential.

2

Chapter 2

Introduction to RDF(S)

First of all, let us familiarise ourselves with the technologies used in the
Assembly line [5]. The central database of the toolset is GraphDB, which is a
semantic graph database storing RDF data [6]. RDF is not a very well-known
data model, so let us get familiar with it, as it will be essential throughout
this thesis.

2.1 RDF(S)

Resource Description Framework (RDF) [7], specified by the World Wide Web
Consortium (W3C), is a general language and vocabulary for representing
data in the form of statements creating directed edges of a graph. The
resource document is described in a way that both humans and machines can
understand. Thanks to the graph format of RDF data, it is easy to visualize
complicated datasets in the form of diagrams for better understanding by
humans. RDF can be used to describe any resource that can be identified by
an International Resource Identifier (IRI) [8]. The most well-known sub-type
of IRI is Uniform Resource Locator (URL) [9], which is used for addressing
web pages. As we will see later, these web pages can contain information in
RDF format describing the identifier.

RDF Schema [10] (RDFS or RDF-S) is a vocabulary for describing RDF. It
provides a set of terms that can be used to describe the structure and meaning
of RDF data. When we talk about RDF data, the extension RDF Schema is

3

2. Introduction to RDF(S)
usually included as well, which is why in some literature, the abbreviation
RDF(S) is used as both RDF and RDF Schema. In the table below, we can
see some of the terms used as building stones, defined in RDF(S)1:

Construct Syntax form Description
Class (class) C rdf:type rdfs:Class C (source) is a RDFS class

Property (class) P rdf:type rdf:Property P (source) is a RDF property

type (property) I rdf:type C I (source) is an instance of C
(class)

subClassOf
(property) C1 rdfs:subClassOf C2 C1 (class) is a subclass of C2

(class)
subPropertyOf

(property) P1 rdfs:subPropertyOf P2 P1 (property) is a subproperty of
P2 (property)

domain
(property) P rdfs:domain C The domain of (property) P is

(class) C

range (property) P rdfs:range C The range of (property) P is
(class) C

Table 2.1: Building stones of RDF(S)

2.2 Triple

As mentioned, RDF data is described using statements in the form of triples
subject-predicate-object. Subject and object are two resources most commonly
identified by IRI. The predicate in the middle of the triplet describes the
relationship between subject and object in the direction of subject → object
using IRI. Here we can see an example of a triple stating that Adam knows
Lucy or, more precisely, that entity <http://example.com/Adam> has a re-
lation <http://example.com/knows> to entity <http://example.com/Lucy>
as we don’t know how are entities or the relation defined.

<http://example.com/Adam> <http://example.com/knows> <http://example.com/Lucy> .

1Used prefix rdf: is of IRI <http://www.w3.org/1999/02/22-rdf-syntax-ns#> and
prefix rdfs: is of IRI <http://www.w3.org/2000/01/rdf-schema#>. These and more
constructs can be found on https://www.w3.org/TR/rdf-schema/.

4

https://www.w3.org/TR/rdf-schema/

..2.2. Triple

Figure 2.1: RDF triple example diagram

2.2.1 Literal

In addition to the use of IRI, literals can be used in the object position of
the triple, representing a value. A literal is bound to a data type for proper
interpretation, such as a string, a number, a decimal number, or a date.
Literals with data type string can be enriched furthermore with a language
tag (e.g. "Building"@en). The example below shows three triples stating that
Lucy’s first name is "Lucy" in English and "Lucka" in Czech. The last triple
tells us Lucy’s birth date.

<http://example.com/Lucy> <http://xmlns.com/foaf/0.1/firstName> "Lucy"@en .
<http://example.com/Lucy> <http://xmlns.com/foaf/0.1/firstName> "Lucka"@cs .
<http://example.com/Lucy> <http://schema.org/birthDate>

"1991-09-04"^^<http://www.w3.org/2001/XMLSchema#date> .

Figure 2.2: RDF literal example diagram

5

2. Introduction to RDF(S)
2.2.2 Blank node

There is one more defined concept, except IRI and Literal, in RDF called a
blank node. It can only appear at the subject or object part of the triple.
Blank nodes are placeholders for resources that do not have an IRI but still
are part of the dataset. They represent intermediate nodes of a resource in a
graph where the resource itself is not of direct interest. Blank nodes do not
have identifiers, only temporary identifiers to show which blank node is which
when printing out the data. In the example below, we can see statements
telling us that Adam knows someone named Bob. The someone is represented
by the blank node _:bn1.

<http://example.org/Adam> <http://xmlns.com/foaf/0.1/knows> _:bn1 .
_:bn1 <http://xmlns.com/foaf/0.1/firstName> "Bob" .

Figure 2.3: RDF blank node example diagram

2.2.3 Named graph

Every RDF triple of a dataset is located in the Default graph unless it is
enclosed in a Named graph. Which serves as a mechanism for organizing and
categorizing data in large RDF datasets by grouping statements of common
context into a structure. Named graphs are identified (named) with an IRI,
which must be unique inside a dataset, but other datasets can expand this
graph by specifying triples in equally identified graphs. An example can be a
dataset describing a library with members and books. All information about
members can be stored in one Named graph, information about books in a

6

.............................. 2.3. Concrete syntaxes for RDF

second one, and information about borrowing of books by members in the
Default graph.

Figure 2.4: RDF Named graph example diagram

2.3 Concrete syntaxes for RDF

There is a number of serialization syntaxes for RDF [11]. These serialization
algorithms are non-deterministic2, or in other words, the output can change
even though the data for serialization have not changed. In addition to
serializing data, most of the syntaxes try to shorten the notation.

For example, Turtle [12] allows representation of the initial parts of IRI
with short strings ending with ":" (colon) called Prefixes. The full form the
Prefix is representing is specified once at the start of the serialized output.
Turtle also shortens the RDF document by allowing it to write a semicolon-
separated list of pairs of predicates and objects related to the same subject.
Or a comma-separated list of objects instead of repeating the subject and
predicate. Among the most used serialization syntaxes are the following:

. Family of RDF Turtle languages (N-Triples [13], N-Quads [14], Turtle [12],
and TriG [15]). RDF/XML [16] (XML-based syntax for RDF). JSON-LD [17] (JSON-based syntax for RDF)

2With the exception of specialized algorithms creating a normalized output, but they
come with enormous performance hits. We will talk about one in chapter 4 - Existing tools
research.

7

2. Introduction to RDF(S)
. RDF/JSON [18] (alternative JSON-based syntax for RDF). RDFa [19] (for expressing RDF in HTML documents). N3 [20] (non-standard serialization, similar to Turtle with the ability to

define inference rules)

2.4 Example of RDF dataset

Here is an example of a very small RDF dataset containing everything
discussed in this chapter except the use of the Named graph. Until this
example, everything was in basic N-Triples syntax. Let us make it easier to
read this example by showing it in Turtle syntax, which aims to be easily
readable by humans.

1 @prefix e: <http://example.com/> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 @prefix wd: <http://www.wikidata.org/entity/> .
4 @prefix schema: <http://schema.org/> .
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
6 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
7 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
8 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
9

10 e:Adam
11 a foaf:Person ;
12 e:knows e:Lucy ;
13 foaf:knows [foaf:firstName "Bob"] ;
14 foaf:interest wd:Q54872 .
15

16 e:Lucy
17 a foaf:Person ;
18 foaf:firstName "Lucy"@en , "Lucka"@cs ;
19 schema:birthDate "1991-09-04"^^xsd:date .
20

21 e:knows
22 a rdf:Property ;
23 skos:definition "A person at least saw this person."@en ;
24 rdfs:domain foaf:Person ;
25 rdfs:range foaf:Person .

On lines 1 to 8, we can see the definition of Prefixes starting with one
for our example namespace. On lines 10 to 14, is a definition of resource
e:Adam or <http://example.com/Adam> in full IRI representation. Line

8

............................... 2.4. Example of RDF dataset

11 tells us that e:Adam is an instance of type foaf:Person, where ’a’ in
the data is a special abbreviation of rdf:type. Because the last triple
ended with a semicolon, we know that on the next line, we still talk about
e:Adam, and we learn that e:Adam knows e:Lucy, where relation (predicate)
knows is defined in our example (on lines 21 to 25). On line 13, there is
also a relation knows, but this one is from FOAF3 Vocabulary Specification
[21], which defines knows differently4 than we do in this example. We can
also notice a blank node defined in between ’[]’ (square brackets) on this
line. All in all, line 13 tells us that e:Adam knows someone with first name
Bob. Line 14 says that e:Adam have interest in wd:Q54872, a resource from
WikiData [22], which is a free and open knowledge base project (sister to
Wikipedia [23]). When we substitute its Prefix for its IRI, we get an URL
http://www.wikidata.org/entity/Q54872 linking to the definition of the
resource, from which we can see that e:Adam is interested in RDF.

Because line 14 ended with a ’.’ (dot), we no longer read by pairs of
predicate and object. We read a full triple split on lines 16 and 17, telling us
that e:Lucy is also of type foaf:Person. Line 18 tells us first name of e:Lucy
in two different languages using the comma-separated list of objects. From
line 19, we learn that e:Lucy was born on the 4th of September 1991, by using
the predicate schema:birthDate defined on http://schema.org/birthDate
and xsd:date as the literal type.

The last entity in our example is on lines 21 to 25. From the first statement,
we can see that e:knows is of type rdf:Property making it suitable to use at
the predicate part of a triple. Next, we have a definition of property e:knows
in the English language. The second to last line defines the rdfs:domain
of this property, meaning that it can be used only in a triple where the
subject is an instance of class foaf:Person. Similarly, the last line tells
us the rdfs:range restricting the object part of a triple when using this
property to be an instance of class foaf:Person.

3FOAF stands for "Friend of a friend".
4The definition of foaf:knows can be found on http://xmlns.com/foaf/0.1/#term_

knows.

9

http://www.wikidata.org/entity/Q54872
http://schema.org/birthDate
http://xmlns.com/foaf/0.1/#term_knows
http://xmlns.com/foaf/0.1/#term_knows

2. Introduction to RDF(S)

Figure 2.5: RDF dataset example diagram

The strength of RDF is in reusing resources someone else already created,
as seen in this example, with resources mostly from http://xmlns.com/
foaf/0.1/ namespace. Making it perfect for use in the Assembly line, where
models of decrees and laws are created with the use of terms from other
decrees and laws.

10

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

Chapter 3

Assembly line processes

When we familiarized ourselves with the RDF technology used to store data
in the Assembly line. We can proceed to analyze the existing processes in
the Assembly line and design new ones to improve user experience with the
new tool in mind.

3.1 Vocabulary modelling process

To better understand processes in the later part of the methodology of
modelling physical law documents in the Assembly line, we first need to
apprehend what is actually created before submitting it for review.

Consider that we, Editor users of the Assembly line, want to model the
EU COUNCIL DIRECTIVE 1999/37/EC1 on the registration documents for
vehicles. As mentioned in Chapter 1 - Introduction, first, we create a new
vocabulary (Assembly line terminology for a conceptual model) in the Mission
control tool by specifying its name. This will create a project with a main
entity called Vocabulary ("slovník" in Czech2), describing the vocabulary as
a whole and linking to the other two created main entities that make the
vocabulary dataset: Glossary and Model.

1More can be found about the directive on www.eumonitor.eu.
2Czech translations will help us understand example data because many ontologies that

describe conceptual models in the Assembly line have IRIs based on the Czech language.

11

https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vitgbgi5bky6

3. Assembly line processes
Next, we need to create and define terms ("pojem" in Czech) from the

directive with the use of the TermIt tool. Entities of terms are collected under
the Glossary entity ("glosář" in Czech). When we have our terms created, we
need to add relationships between them in the OntoGrapher tool to give them
the same hierarchy and structure as in the law document. These relationships
are created under the third main entity called Model ("model" in Czech).
When modelling relationships with OntoGrapher, we do so by creating a
diagram, which is also saved as an attachment to the modelled vocabulary.

The following example shows parts3 of the dataset of the COUNCIL
DIRECTIVE 1999/37/EC modelled in the Assembly line:

1 # Vocabulary definition
2 <https://slovník.gov.cz/generický/eu-directive-1999-37-ec> a
3 a-popis-dat-pojem:slovník, owl:Ontology;
4 a-popis-dat-pojem:má-glosář g-sgov-eu-directive-1999-37-ec:glosář;
5 a-popis-dat-pojem:má-model g-sgov-eu-directive-1999-37-ec:model;
6 dcterms:created "2021-08-12T10:31:45.913Z"^^xsd:dateTime;
7 dcterms:rights <https://creativecommons.org/licenses/by-sa/4.0>;
8 dcterms:title "COUNCIL DIRECTIVE 1999/37/EC on the registration documents

for vehicles"@en;↪→
9 bibo:status "Specification"@en;

10 vann:preferredNamespacePrefix "g-sgov-eu-directive-1999-37-ec-pojem";
11 vann:preferredNamespaceUri
12 "https://slovník.gov.cz/generický/eu-directive-1999-37-ec/pojem/";
13 owl:imports g-sgov-eu-directive-1999-37-ec:glosář,

g-sgov-eu-directive-1999-37-ec:model;↪→
14 owl:versionIRI
15 "https://slovník.gov.cz/generický/eu-directive-1999-37-ec/verze/1.0.0" .
16
17 # Term definition
18 g-sgov-eu-directive-1999-37-ec-pojem:osvědčení-o-registraci a skos:Concept;
19 skos:definition "Doklad osvědčující, že vozidlo je registrováno v členském

státě."@cs, "The document which certifies that the vehicle is
registered in a Member State."@en;

↪→
↪→

20 skos:inScheme g-sgov-eu-directive-1999-37-ec:glosář;
21 skos:prefLabel "Osvědčení o registraci"@cs, "Registration certificate"@en.
22
23 # Definiton of relationship term
24 g-sgov-eu-directive-1999-37-ec-pojem:má-motor a skos:Concept,

z-sgov-pojem:typ-vztahu;↪→
25 skos:prefLabel "has engine"@en, "má motor"@cs;
26 rdfs:subClassOf [a owl:Restriction;
27 owl:onProperty z-sgov-pojem:má-vztažený-prvek-1;
28 owl:someValuesFrom g-sgov-eu-directive-1999-37-ec-pojem:vozidlo
29], [a owl:Restriction;
30 owl:allValuesFrom g-sgov-eu-directive-1999-37-ec-pojem:vozidlo;
31 owl:onProperty z-sgov-pojem:má-vztažený-prvek-1
32], [a owl:Restriction;
33 owl:allValuesFrom g-sgov-eu-directive-1999-37-ec-pojem:motor;
34 owl:onProperty z-sgov-pojem:má-vztažený-prvek-2
35], [a owl:Restriction;
36 owl:onProperty z-sgov-pojem:má-vztažený-prvek-2;
37 owl:someValuesFrom g-sgov-eu-directive-1999-37-ec-pojem:motor
38] .

3Full published dataset is available on GitHub in opendata-mvcr/ssp repository.

12

https://github.com/opendata-mvcr/ssp/tree/master/content/vocabularies/g-sgov-eu-directive-1999-37-ec

.............................. 3.2. Current Publication process

The first part of the example depicts the saved data structure of the Vocab-
ulary, where we can notice the link to Glossary and Model via owl:imports
predicate on line 13. A term is defined on lines 18 to 21 with skos:definition
and skos:prefLabel in both the Czech and English languages. The last
section on lines 24 to 39 represents the term "has engine" ("má motor" in
Czech) created as a relationship. We can see the definition of the term
followed by the data structure describing the relationship between the terms
"vehicle" ("vozidlo" in Czech) and "engine" ("motor" in Czech).

3.2 Current Publication process

When we have our data created, we can click on Publish in the Mission
control tool, which will begin the Publication process. After that, the back-
end application SGoV will generate three files (in TriG4 syntax) from the
RDF dataset, each named by the vocabulary and suffixed with one of the
main entities (Vocabulary, Glossary and Model). SGoV also generates a file
with a list of attachments and the attachment files themselves, if there are
any. These files are then committed to the GitHub5 repository of Semantic
government vocabulary (SSP6) [25], and a GitHub Pull Request7 is created.

Experts on RDF data and modelling in the KODI team are notified about
the creation of a new Pull Request by email. When they open the Pull
Request, they are shown the textual differences between files currently present
in SSP and newly committed changed files. The reviewer goes through these
differences and evaluates them. If there is no problems with the data, the
reviewer approves the Pull Request and merges it into the SSP repository.
If there is any problem, the reviewer contacts the author (mainly via email,
as this step is not standardized) about the issue. After the Editors resolve
these problems, the Publication process starts over by clicking Publish in the
Mission control tool.

4TriG is an extension of Turtle syntax, allowing to define Named graphs.
5GitHub is a web-based platform that enables collaboration, version control, and hosting

of code repositories [24].
6Semantic government vocabulary is "Sémantický slovník pojmů" in Czech hence the

abbreviation SSP.
7GitHub Pull Request is a mechanism allowing proposals of changes to data saved in a

repository. It provides a way to merge changes to the repository [26].

13

3. Assembly line processes

Figure 3.1: Publication process (AS IS)

The Publication process, as is, has a lot of issues. Mostly that reviewers
are required to have an account in the external tool GitHub, hardly traceable
communication, long descriptions of problem location (thanks to the fact
that reviewers see RDF representation and Editors see the UI of Assembly
line tools), and the fact that changes are shown based on text differences of
the serialized dataset. Meaning that the reviewer needs to have extensive
knowledge of RDF(S) and the data model of the Assembly line to understand
what the data describes.

Also, as we learned in chapter 2 - Introduction to RDF(S), the serialized
output of RDF is not deterministic, so even a change of one attribute in the
data can and often does result in many differences shown by text comparison.
Because even unchanged entities randomly change their order in the output
file, it is sometimes next to impossible for a human to distinguish reordering
changes from actual changes in hundreds of changed lines.

The communication between Editors and Reviewers is difficult and con-
fusing because the user accounts of Editors are not propagated to GitHub.
So no notifications about rejected or approved Pull Requests are sent to
them. The fact that Pull Request was rejected Editors discover by receiving

14

................................3.3. New Publication process

an email from a Reviewer regarding problems in the changes, but if it was
approved, no email is expected to be sent by Reviewers. Editors need to
check the web page of the Pull Request periodically to find out if it was
approved. This is aggravated by the reality that the link to this website is
not persisted anywhere, so Editors need to save it on their own when it is
shown in a notification after pressing Publish in Mission control, visible only
for a few seconds.

3.3 New Publication process

So in collaboration with Bc. Filip Kopecký (assigned to create the front-end
part of the new tool), we reworked this process to resolve these issues with
the new tool we called CheckIt. As We can see in the diagram on the next
page, a new role called Gestor is used. Each Gestor is responsible for a set of
vocabularies that they can review, essentially replacing Reviewers.

An Editor starts the new process similarly by clicking on Submit button in
Mission control. Which generates a list of actual changes (excluding reordering
changes) in a Publication context, and the Gestors of modified vocabularies
are notified. Gestors review each change and decide if it is correct. If the
intention behind some change is unclear, Gestor can create a comment with a
question or a simple task (e.g. correct a typo) for Editors. They are notified
about a comment within their submitted project, to which they can reply
and decide if more modifications are needed. If so, Editors modify the project
and submit it again. This will notify Gestors about updated changes, and if
they are currently making reviews, CheckIt will show them a message that
new changes are available. If Gestor does not agree with any change, they
can provide a reason after rejecting it.

When all changes are reviewed, all are approved, and Gestors are satisfied
with the changes, one of them can approve the publication context with or
without a final message (e.g. tips for work in the future). This will submit
changes to SSP and send notifications to Editors about the changes’ approval.
After that, Editors can decide to delete the project or continue to work on it.

If some changes are rejected, or more changes are required to be made,
Gestor rejects the publication context and provides a rejection message with
a reason. This will notify Editors about the rejection, and they can decide
if the reason is fundamental, so they need to delete the project a start from
scratch or edit the project and submit it again.

15

3. Assembly line processes

Figure 3.2: Publication process (TO BE)

16

........................... 3.4. Requesting to Gestor a vocabulary

3.4 Requesting to Gestor a vocabulary

To manage Gestors, an additional role of Admin is required. The system will
need to be initiated with a single user that has an Admin role. This role gives
the user privileges to assign Admin roles to other users and assign Gestors to
vocabularies.

Figure 3.3: Gestoring request diagram

To further improve communication in the application, a new process for
users was created to request a Gestor role on a vocabulary. In this process, an

17

3. Assembly line processes
Editor can view a list of vocabularies and select on which of them to request
a Gestor role. Admins are notified about the request and can decide if the
applicant should Gestor this vocabulary. If so, the system will assign a Gestor
role to the applicant and send a notification that they can now review the
vocabulary. Otherwise, the applicant is notified that the request was rejected
by Admin.

18

Chapter 4

Existing tools research

From the new Publication process, a primary problem arose to solve, machine
comparison of two RDF datasets and get their differences in a usable form.
Unfortunately, that is an NP-hard problem, thanks to the existence of blank
nodes [27]. Which, as we learned, are not identified uniquely across datasets,
so even printing the same dataset twice generates different identifiers. With
the size of RDF datasets planned to be compared, choosing the appropriate
tool is critical for finding the changes in a reasonable amount of time.

4.1 Main requirements for the tool

Therefore we need to specify some requirements for the tools.. Listing changes – output of the tool must contain the list of changed
triples with distinguishment between removed and added ones,.Actual changes – the tool needs to be able to distinguish between changed
triples and triples that were only reordered,. Identical blank nodes – if blank nodes differ only in generated blank
node identifier, the tool needs to mark them as unchanged,.Time constraint – finding these changes should be done within minutes
so as not to interrupt the current workflow of the Assembly line.

19

4. Existing tools research.................................
Three RDF datasets were created in Turtle syntax to test these requirements
with various copies with changed statements. The test datasets can be
seen in doc/Test-datasets in the GitHub repository of the CheckIt server on
https://github.com/mighantos/checkit-server.. Simple dataset – containing eight triples without any blank node,. Simple blank node dataset – containing six triples with one pointing at

a blank node with a single triple in it,. Real-world dataset – an average dataset from SSP containing almost five
and a half thousand triples with blank nodes.

4.2 Researched tools

Let us look at some already existing tools that deal with comparing RDF
datasets and find how they stack against each other.

4.2.1 Python RDFLib

Package RDFLib [28] for Python to work with RDF data contains a script
able to compare two RDF datasets. The script’s output has three text blocks:
statements present in both, statements present only in the first file, and
statements present only in the second file. That is precisely what we are
looking for. And thanks to the open source 3-Clause BSD licence, the output
can be modified to the needs of integration with the final application.

Figure 4.1: Python RDFLib output

20

https://github.com/mighantos/checkit-server/tree/main/doc/Test-datasets
https://github.com/mighantos/checkit-server

................................... 4.2. Researched tools

Testing showed the script’s ability to recognize identical blank nodes
correctly. Unfortunately, it also revealed that the script ran on the Real-world
dataset from SSP compared to its copy with one changed triple outside blank
nodes for tens of minutes. And that is not compliant with the real-time
workflow of the Assembly line.

4.2.2 Protégé

Protégé [29] is a free, open-source software platform for creating and man-
aging ontologies, offering Protégé Desktop ontology editor with a plugin for
comparing OWL [30] ontologies, both written in Java [31].

Testing with the Simple dataset with various changes worked well. The
first problem arose when comparing datasets with blank nodes where the
Protégé plugin failed to identify blank nodes differing only in the identifiers
as identical. More problems occurred when trying to import the Real-world
dataset to the Protégé Desktop. Where the application required to import
all conceptual models of terms used in the Real-world dataset.

The class list displayed in the application then showed an alarming amount
of classes (entities) called Error[number] (e.g. Error946), and these error
classes were cyclicly connected to themselves. Furthermore, the result of
comparing this dataset with its copy with one changed statement outside of
blank nodes showed the actual change made, 50 changes on Error classes, 250
created statements and 249 removed statements.

Figure 4.2: Error classes in Protégé

21

4. Existing tools research.................................
4.2.3 OWLDiff

OWLDiff [32] is an open-source tool to perform a two-way difference of OWL
ontologies written in Java 14 under the GNU General Public License. It can
be compiled as a stand-alone application as well as a plugin for Protégé or
NeON [33]. A stand-alone version of the application was used for testing
purposes to determine the capabilities.

The application prompts you to select the first and second files to compare.
All test datasets were compared in a matter of seconds. Identical blank
nodes were recognized correctly. The application also allows to select which
statements, present only in the first file, to add, and which statements that
are only present in the second file, to remove. The resulting dataset then can
be saved by the application. But very similar Error classes were shown as in
Protégé tools when testing Real-world SSP datasets.

Figure 4.3: Error entities in OWLDiff

After contacting the author, it turned out that datasets in SSP are not fully
following the rules of OWL, as was thought. This causes to show Error classes
in OWLDiff and Protégé tool, meaning that any tool created to compare
OWL ontologies would require correcting the data in SSP.

22

................................... 4.2. Researched tools

4.2.4 RDF Graph Normalization

One technique for comparing two RDF files is to normalize them using the
RDF Graph Normalization Algorithm [34] and compare them with general
text-based tools. JSONLD-JAVA [35] is a Java implementation of the JSON-
LD 1.0 specification [17] and the JSON-LD-API 1.0 specification [36], allowing
to convert JSON-LD file to normalized N-Quads file. Although RDF Graph
Normalization Algorithm faces similar challenges with blank nodes, as men-
tioned at the beginning of this chapter, testing showed times below half of a
minute, even on Real-world datasets from SSP.

But doing a simple text comparison comes with its shortcomings. The plain
text output of this method needs to be backtracked in the file to corresponding
lines. These lines then need to be mapped to other lines that refer to the
same RDF entity. By doing so, we can extract the needed information about
the entity and its surroundings to describe the change to the end user.

4.2.5 Apache Jena

Apache Jena [37] is a free and open-source Java framework, released under
the Apache License 2.0, designed for writing Semantic Web and Linked Data
applications. It provides an API to extract and write RDF data to graphs.
Part of the Jena project is a program called RDFDiff, which is capable of
comparing two RDF graphs. The output of this program is list of statements
present only in the first graph followed by statements present only in the
second graph.

Figure 4.4: Jena RDFDiff output

While testing the program, it became clear that speed was a priority, as
all comparisons were completed in fractions of a second. Blank nodes only
differing in identifiers were correctly identified as identical. But when there
was a change even in one blank node, all blank nodes were marked as removed

23

4. Existing tools research.................................
and created. Upon inspecting the code, it was clear that it is done by design
to not deal with comparing matching blank nodes and be as fast as possible.
But because the program is open-source, it can be modified to our needs.

4.3 Conclusion

Listing
changes

Actual
changes

Identical
blank nodes

Time
constraint

Python RDFLib ✓ ✓ ✓ ✗

Protégé ✓ ✓ ✗ ✓
OWLDiff ✓ ✓ ✗ ✓

RDF Graph
Normalization ✓ ✓ ✓ ✓

Apache Jena ✓ ✓ ✓ ✓
Table 4.1: Tools capabilites

In conclusion, the Python script to compare RDF datasets from RDFLib was
ruled out because of insufficient speed. Protégé tools problems found with
recognizing identical blank nodes also ruled these tools out. The option to
change SSP data and all tools of the Assembly line to create data compliant
with OWL was deemed too costly, and consultation with the KODI team
confirmed it. This ruled out OWLDiff or any other potential OWL comparing
tools. So we are left with JSONLD-JAVA and Jena API, where neither of
them is a complete tool for our needs, but both can recognize every required
change in a reasonable time.

After more analyses of the Jena API RDFDiff program, it was found that
it works by comparing lists of statements of both datasets. Meaning it is
very similar to the RDF Graph Normalization method in the way of finding
changes. But the internal representation of data in Jena API RDFDiff allows
for easier access to information about changed entities and their surrounding.

For this reason, the Jena API RDFDiff was selected as the main inspiration
for incorporating a similar algorithm with the use of Jena API in the back-end
part of CheckIt for finding changes. It was furthermore supported by the

24

..................................... 4.3. Conclusion

use of other features of Jena API in some Assembly line tools and prior
experiences with it.

25

26

Chapter 5

Ontology

Before the implementation of the CheckIt back-end can start, we need to
define the database structure. In traditional relational databases, this would
be done by defining a schema with tables named by entities and columns
representing properties of those entities. But in RDF(S), the schema is
replaced by ontology, which is an RDF dataset defining entities and possible
relationships between them. For this purpose, a new ontology called Change
description ("popis-změn" in Czech) was created.

5.1 Main entities

The ontology is based on a few main entities allowing it to describe and save
everything needed in the application, namely:. Change – describing modifications in RDF triples of the reference dataset,. Publication context – grouping Changes under one entity linking to the

corresponding project they were created in,. Comment – to save discussion comments on Changes and final messages
on Publication contexts,. Notifications – an entity containing in-application notification text and
a link to the location in the application the notification is about,. Gestoring request – representing the request of an Editor user asking to
be assigned the Gestor role on a vocabulary.

27

5. Ontology

Figure 5.1: Ontology relationship diagram

28

................................. 5.2. Relationship diagram

5.2 Relationship diagram

Modelling of the ontology started with the use of the Assembly line, where
new entities and relationships between them were created. But because the
Assembly line can only use newly created terms or terms from vocabularies
present in SSP, the rest of the relationships needed to be added manually
afterwards by modifying the RDF output. A diagram, which we can see on
the left, was also created to help grasp the relationships between the entities.
The ontology1 uses IRIs based on Czech words to maintain consistency with
other ontologies created for the Assembly line, but English labels of the
created entities will be used in the following text to simplify its description.

5.2.1 Change entity

As we can see from the diagram on the previous page, the Change2 entity inher-
its from rdf:Statement3 which points with rdf:subject, rdf:predicate
and rdf:object to the RDF triple that was changed. To differentiate what
happened with this triple a relationship is of change type pointing to
abstract entity Change type, which can state if the triple was Created,
Modified, Removed or Rollbacked. The Modifed type is a special case of
Created and Removed on a statement that was only changed in object value.
For this Change type, an additional relationship has new object is required
to be able to store both the old and the new values of the object of the changed
statement. The relationship has new object is inherited from rdf:object
as it represents almost the identical bond. The Rollbacked type is used
when a Change was already reviewed by a Gestor, but Editor submitted a
new version of Changes that does not include the same Change.

The Change entity also points to a few rdfs:Literals4 with relationships
rdfs:label saving the preferred name of the Change entity (e.g. name of
a term), has type description of subject describing the entity type of
the subject in the changed statement (e.g. Term, Vocabulary or Blank node)
and is countable to statistics saving if a Change should be counted to
statistics on how many changes need reviewing in Publication context. This
is incorporated because some changes will be grouped to show as a larger
whole to help Gestors with reviewing.

1You can find the whole Ontology in GitHub repository kbss-cvut/popis-zmen-ontology.
2If an entity in the diagram does not have a Prefix, it is created and defined in the

Change description ontology.
3List of used prefixes can be seen in the right bottom corner of the diagram.
4Bubbles represent relationships pointing to rdfs:Literal, to simplify the diagram.

29

https://github.com/kbss-cvut/popis-zmen-ontology

5. Ontology
Relationships approved by and rejected by pointing to entity pd:uživatel

("user" in English) are there to allow Gestors to review Changes. To en-
sure that only Gestors of a specific vocabulary can review it, a relation-
ship in context points to abstract entity pd:kontext, that can be either
pp:slovníkový-kontext ("vocabulary context" in English) which is a copy
of the canonical vocabulary5 with made changes or pp:přílohový-kontext
("attachment context" in English) a copy of the canonical attachment with
made changes. These contexts point to the canonical version of vocabu-
lary/attachment with pp:vychází-z-verze ("based on version" in English).
A new relationship gestored by then completes the circle to pd:uživatel,
allowing to check if a user can review the change. An inferred relationship
gestor of in the opposite direction is specified to simplify queries to the DB,
as it is going to be common to list the gestored vocabularies of a user.

In the later part of the implementation, a problem was encountered with
saving object value to the database as it can represent literal, IRI or a blank
node. So the generic rdfs:Resource was changed to Change object. This
entity points to two optional rdfs:Literals with has value representing
the value (e.g. IRI or string) and has value type describing the type of the
value (e.g. xsd:integer6). The relationships are optional to allow representing
Blank node, which does not have either, and also IRI, which has value but
does not have a value type.

As we can also notice, the Change entity has an arrow to rdfs:Resource of
the subject depicting that Change inherits from it. This relationship is there
to highlight a possible use case where a Change in a blank node is using an
identifier of another Change that has the blank node as an Change object.
This is done to simplify the reconstruction of the changed RDF structure.

5.2.2 Publication context entity

As previously mentioned, Publication context groups changes made in a
project. It does so by pointing at individual Change entities with relation-
ship has change and the reference project entity pp:metadatový-kontext7

pointed at by the relationship from project. Two rdfs:Literal enti-
ties saving the time and date of creation and last modification, are linked

5Canonical is used in the Assembly line to describe the original version or in other words
the version currently saved in SSP.

6Prefix xsd: is representing <http://www.w3.org/2001/XMLSchema#> namespace.
7The pp:metadatový-kontext is "metadata context" in English, but it was renamed to

"workspace" and then "project" as its purposed changed during the development of the data
architecture of the Assembly line.

30

https://www.w3.org/2001/sw/BestPractices/XSCH/xsch-sw/

................................. 5.2. Relationship diagram

with pd:má-datum-a-čas-vytvoření and pd:má-datum-a-čas-poslední-
modifikace relationships respectively. These rdfs:Literals are used to
order loaded Publication context entities and check if a user is reviewing
the latest version of changes. The third relationship corresponding Pull
Request in GitHub also pointing at rdfs:Literal is an identification of
GitHub Pull Request created by the SGoV server for the reference project.

Figure 5.2: Ontology relationship diagram - Publication context closeup

5.2.3 Comment entity

The previous two entities we talked about can have some form of message at-
tached to them. For that purpose, a sioct:Comment is reused from the http:
//rdfs.org/sioc/types# namespace with relationships sioc:has_creator
to point at a user who created the comment and sioc:topic pointing
at abstract Commentable entity, which both Change and Publication
context inherit from. For very similar reasons as Publication context,
sioct:Comment also has the time and date of creation and last modification
attached to them.

Figure 5.3: Ontology relationship diagram - Comment closeup

31

http://rdfs.org/sioc/types#
http://rdfs.org/sioc/types#

5. Ontology
To save the text of the message, a sioc:content pointing at string

rdfs:Literal is used. On Change entities, there can be two types of
comments, a rejection or a discussion. To differentiate between them, a
rdfs:Literal is attached with relationship has tag. The reason why com-
ment tags are not done in the same way as Change type is that TermIt is
using sioct:Comment in the same way, just without the tag, and it was seen
as a solution, better compatible with future reuse in TermIt and other tools
of Assembly line.

5.2.4 Notification entity

To inform users about new events in the application, a Notification entity
is needed. It has the same relationships to save content and time and date
of creation as sioc:Comment. Furthermore, it points to rdfs:Literals with
relationships dc:title saving short title of the notification, sioc:about
saving a path to a page where the user can find more about what the
notification is talking about, and optional sioc:read_at marking the date
and time when was the notification read. Each Notification is assigned to
a single user with relationship sioc:addressed_to to allow personalization
of notifications.

Figure 5.4: Ontology relationship diagram - Notification closeup

5.2.5 Gestoring request entity

As mentioned in Chapter 3 - Assembly line processes, Editors can request to be
added as a Gestor to a vocabulary. To save these requests, a Gestoring request
entity is created in the ontology. This entity is pointing at a canonical vocab-
ulary (pd:slovník entity) with relationship requests gestoring of and
to the user (pd:uživatel entity) who is requesting it with has applicant

32

................................. 5.2. Relationship diagram

relationship. A relationship has gestoring request going from canoni-
cal vocabulary to Gestoring request inferred as an opposite to requests
gestoring of is there to once again simplify queries to database. To warn
Admins about long pending requests, a creation time and date are again
saved with pd:má-datum-a-čas-vytvoření relationship.

Figure 5.5: Ontology relationship diagram - Gestoring request closeup

33

34

Chapter 6

Implementation

With ontology created, the implementation of the solution could start. After
a discussion with Bc. Filip Kopecký, we agreed on a simple client-server
architecture with REST1 endpoints on the server side and him creating a
thin client. So in this chapter, we will learn about the technologies used and
the main ideas and algorithms employed while implementing the back-end
part of the CheckIt application2.

6.1 Used technologies

The CheckIt application will be handed over to the working group responsible
for the Assembly line tools consisting of just five people. To simplify this
transfer and help with maintaining the toolset as a whole, technologies similar
to those already used in the Assembly line were preferred.

Java was chosen as the programming language because all server applica-
tions in the Assembly line are written in Java, and the Jena API is written
for it as well.

When deciding what to use for building the application, a choice had to
1REST, or Representational State Transfer, is a set of principles for designing networked

applications [38].
2You can find the implemented code in the GitHub repository mighantos/checkit-server.

35

https://github.com/mighantos/checkit-server

6. Implementation....................................
be made between the two most popular ones, Maven and Gradle [39]. Both
are widely used automated building tools, and both are used in the Assembly
line. However, Gradle was chosen for its superior performance [40], simple
and readable configuration, and compatibility with a wider range of IDEs.

The Spring Boot framework used in the Assembly line was also selected, as
it helps simplify the code, configuration, database transactions, security and
overall experience of writing Java applications [41]. Spring Boot framework
is designed for creating RESTful API applications, which is ideal for use in
the client-server architecture.

To communicate with the RDF database, a Java OWL Persistence API
(JOPA) framework aimed at efficient programmatic access to OWL2 ontologies
and RDF graphs in Java has been chosen [42]. JOPA is also used in all back-
end applications of the Assembly line toolset. The API aims to resemble Java
Persistence API (JPA), an object-relational mapping (ORM) specification in
Jakarta EE [43], commonly used in Java applications. To integrate JOPA
transactions into Spring, the JOPA-Spring-transaction3 dependency was
added to take advantage of the transaction notation.

Technology Version Description

Java 17 Programing language
Spring boot 3.0.6 Main Framework

JOPA 0.22.0 Database persistence framework
JOPA OntoDriver 0.22.0 Database connector driver
Apache Jena API 4.8.0 Library for manipulating with RDF data

Keycloak API 21.1.1 Library for communication with Keycloak
Admin API

Kohsuke GitHub
API 1.314 Library for communication with GitHub

Table 6.1: Used technologies

6.2 Change resolving algorithm

One of the most essential algorithms of the CheckIt server is the resolving of
changes made in a project. To do so, a list of vocabulary contexts present
in the specified project is found. On each of these vocabulary contexts, a
query to the database is called that loads the entire content of the vocabulary

3Link to repository: https://github.com/ledsoft/jopa-spring-transaction

36

https://github.com/ledsoft/jopa-spring-transaction

.............................. 6.2. Change resolving algorithm

graph in vocabulary context to a Model object of the Jena API. The same
thing is done for the canonical vocabulary graph. These two Models are
then compared using the method isIsomorphicWith of the Jena API. This
method returns if the two graphs are identical while correctly recognizing
identical blank nodes. If the two Models are isomorphic, the algorithm will
return an empty list of changes.

6.2.1 Change resolving without blank nodes

If there is at least one change in the two Models, the algorithm4 continues by
iterating over all statements of vocabulary context that do not include a blank
node identifier and checks on each, if the canonical vocabulary statements
include it. If the statement is not in the canonical vocabulary, it is added
to a Java Map with subjects of changed statements as keys mapping to a
list of changed statements of this subject. When all statements have been
iterated over, the Map will contain all statements that are new, separated into
lists with a common subject. If we do the same thing, but with vocabulary
context and canonical vocabulary interchanged, we will get a Map of removed
statements.

With these two Maps, a list of Changes can be created by iterating over all
subjects (keys) of removed statements Map and checking if they are present in
the keyset of new statements Map. If not, the list of statements corresponding
to the subject in the removed statements Map is converted to Change objects
with Removed change type. But if the subject is in new statements Map keyset,
each removed statement needs to be compared to the list of new statements
of the subject (key). In this comparison, if there is a new statement that has
the same subject and predicate and the object is of the same type5 as the
removed statement, the new statement is removed from its list and converted
to Change, which is given the Modified change type. An object part of the
new statement is set in the Change as newObject property. If the statement
is only present in removed statements, it is created as a Change with Removed
change type. The rest of the new statements can then be converted into
Changes with Created change type. Using Maps instead of lists significantly
narrows the comparison part to speed up the algorithm.

All Changes also set a label property, which, thanks to the Jena Model
representation of the graphs, can be easily found without calling the database.

4This algorithm can be found in the ChangeResolver class in GitHub repository
mighantos/checkit-server of CheckIt server.

5Meaning that they are both IRIs or both literals of the same type and if they are of
type string, the languages must also match.

37

https://github.com/mighantos/checkit-server/blob/main/src/main/java/com/github/checkit/service/auxiliary/ChangeResolver.java

6. Implementation....................................
Labels are saved in all available languages by finding statements with the
wanted subject and predicates skos:prefLabel6 or alternatively dc:title7.
Maps also help here because the labels can be searched only once for all
changes on the same subject.

6.2.2 Change resolving in blank nodes

The next step is to resolve changes in blank nodes. As mentioned in Chapter
4 - Existing tools research, finding changes in generic blank nodes is an
NP-hard problem. But in the case of the Assembly line, created blank nodes
have structure and occurrence rules that reduce the complexity of matching
them. They are created almost exclusively for modelled relationships by the
OntoGrapher tool. To better understand the implemented algorithm, let us
first look at an example of a relationship and its representation in data.

Relationships in the Assembly line

A vocabulary REGULATION (EU) 2018/858 OF THE EUROPEAN PAR-
LIAMENT AND OF THE COUNCIL on the approval and market surveillance
of motor vehicles and their trailers, and of systems, components and separate
technical units intended for such vehicles modelled in the Assembly line af-
ter identically named EU regulation8 has a relationship has manufacturer
between terms Vehicle and Manufacturer.

Figure 6.1: Relationship has manufacturer (simple view)

The diagram above, created in the OntoGrapher tool, shows the relationship
in a simplified view. Because the relationship has manufacturer itself is

6Prefix skos: is <http://www.w3.org/2004/02/skos/core#> namespace.
7Prefix dc: is <http://purl.org/dc/terms/> namespace.
8You can find its wording on EUR-Lex.

38

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0858#:~:text=Regulation%20(EU)%202018%2F858,No%20595%2F2009%20and%20repealing

.............................. 6.2. Change resolving algorithm

also a term, just of a relator9 type. A better representation would actually
be two relationships going from relator term to the two terms Vehicle and
Manufacturer. The relationship going from relator to Vehicle is mediates
110 denoting that the relationship has manufacturer is starting on term
Vehicle. To define where the relationship has manufacturer is pointing to,
a relationship mediates 211 going from it to Manufacturer is used.

Figure 6.2: Relationship has manufacturer (full view)

This is described in RDF with the use of restriction from the Web On-
tology Language (OWL)12. Restrictions are created in blank nodes on the
relationship and on both terms at the ends of the relationship by the predi-
cate rdfs:subClassOf13. These blank nodes are of type owl:Restriction
and include the direction of the restriction with predicate owl:onProperty.
Then there are essentially two types: one defining cardinality and the other
restricting presence of a relationship. The data representation can be seen in
the two following examples. With the description of the used terms in the
first one and the description of the modelled relationship in the second one.

1 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
2 @prefix z-sgov: <https://slovník.gov.cz/základní/pojem/> .
3 @prefix g-sgov-eu-regulation-2018-858:
4 <https://slovník.gov.cz/generický/eu-regulation-2018-858/> .
5 @prefix eu-reg-858:
6 <https://slovník.gov.cz/generický/eu-regulation-2018-858/pojem/> .
7
8 eu-reg-858:has-manufacturer a skos:Concept, z-sgov:typ-vztahu;
9 skos:inScheme g-sgov-eu-regulation-2018-858:glosář;

10 skos:prefLabel "has manufacturer"@en, "má výrobce"@cs;
11 skos:scopeNote ""@cs .
12
13 eu-reg-858:vehicle a skos:Concept;
14 skos:inScheme g-sgov-eu-regulation-2018-858:glosář;
15 skos:prefLabel "Vehicle"@en, "Vozidlo"@cs;
16 skos:scopeNote ""@cs .
17
18 eu-reg-858:manufacturer a skos:Concept;
19 skos:inScheme g-sgov-eu-regulation-2018-858:glosář;
20 skos:prefLabel "Manufacturer"@en, "Výrobce"@cs;
21 skos:scopeNote ""@cs .

9relator is a label of entity <https://slovník.gov.cz/základní/pojem/typ-vztahu>..
10IRI: <https://slovník.gov.cz/základní/pojem/má-vztažený-prvek-1>
11IRI: <https://slovník.gov.cz/základní/pojem/má-vztažený-prvek-2>
12You can find more on W3C OWL.
13You can find the prefixes in the example on the next page.

39

https://www.w3.org/TR/owl2-rdf-based-semantics/#Semantic_Conditions

6. Implementation....................................
1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4 @prefix z-sgov: <https://slovník.gov.cz/základní/pojem/> .
5 @prefix eu-reg-858:
6 <https://slovník.gov.cz/generický/eu-regulation-2018-858/pojem/> .
7
8 eu-reg-858:has-manufacturer rdfs:subClassOf [
9 a owl:Restriction ;

10 owl:onProperty z-sgov:má-vztažený-prvek-1 ;
11 owl:someValuesFrom eu-reg-858:vehicle
12], [
13 a owl:Restriction ;
14 owl:onProperty z-sgov:má-vztažený-prvek-1 ;
15 owl:allValuesFrom eu-reg-858:vehicle
16], [
17 a owl:Restriction ;
18 owl:onProperty z-sgov:má-vztažený-prvek-1 ;
19 owl:onClass eu-reg-858:vehicle ;
20 owl:minQualifiedCardinality "0"^^xsd:nonNegativeInteger
21], [
22 a owl:Restriction ;
23 owl:onProperty z-sgov:má-vztažený-prvek-2 ;
24 owl:someValuesFrom eu-reg-858:manufacturer
25], [
26 a owl:Restriction ;
27 owl:onProperty z-sgov:má-vztažený-prvek-2 ;
28 owl:allValuesFrom eu-reg-858:manufacturer
29], [
30 a owl:Restriction ;
31 owl:onProperty z-sgov:má-vztažený-prvek-2 ;
32 owl:onClass eu-reg-858:manufacturer ;
33 owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger
34], [
35 a owl:Restriction ;
36 owl:onProperty z-sgov:má-vztažený-prvek-2 ;
37 owl:onClass eu-reg-858:manufacturer ;
38 owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger
39] .
40
41 eu-reg-858:vehicle rdfs:subClassOf [
42 a owl:Restriction ;
43 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-1] ;
44 owl:someValuesFrom eu-reg-858:has-manufacturer
45], [
46 a owl:Restriction ;
47 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-1] ;
48 owl:allValuesFrom eu-reg-858:has-manufacturer
49], [
50 a owl:Restriction ;
51 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-1] ;
52 owl:onClass eu-reg-858:has-manufacturer ;
53 owl:minQualifiedCardinality "0"^^xsd:nonNegativeInteger
54] .
55
56 eu-reg-858:manufacturer rdfs:subClassOf [
57 a owl:Restriction ;
58 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-2] ;
59 owl:someValuesFrom eu-reg-858:has-manufacturer
60], [
61 a owl:Restriction ;
62 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-2] ;
63 owl:allValuesFrom eu-reg-858:has-manufacturer
64], [
65 a owl:Restriction ;
66 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-2] ;
67 owl:onClass eu-reg-858:has-manufacturer ;
68 owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger
69], [
70 a owl:Restriction ;
71 owl:onProperty [owl:inverseOf z-sgov:má-vztažený-prvek-2] ;
72 owl:onClass eu-reg-858:has-manufacturer ;
73 owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger
74] .

40

.............................. 6.2. Change resolving algorithm

Change resolving in relationships

As we can see from the example, created blank nodes are predictable with
very similar structures. For this reason, an algorithm14 was implemented that
starts by creating a Map containing blank node identifiers of all statements,
that contain blank node identifier in the subject position, as keys mapping
to a Model containing all statements of this blank node. This makes it
a map for finding blank node subgraphs by identifiers. A second Map is
created containing all non-blank node subjects, that point at blank node
identifiers, as keys mapping to lists of these statements with common subject.
In our example, this would be a Map with eu-reg-858:has-manufacturer,
eu-reg-858:vehicle and eu-reg-858:manufacturer as keyset and lists
containing the statements with predict rdfs:subClassOf and objects being
the generated identifiers of the blank nodes.

These two Maps are created for both the content of vocabulary context and
the content of canonical vocabulary. The Maps can be then used together to
find subgraphs a subject is pointing to.

The data architecture of the Assembly line does not allow blank nodes
that can not be found without traversing all statements, where the subject is
not a blank node identifier. This means comparing subgraphs of a subject
from canonical vocabulary with subgraphs of the same subject in vocabulary
context, by utilizing the same method isIsomorphicWith of Jena API, will
find isomorphic subgraphs that can be removed, leaving only the changed
subgraphs. The only case where there is a blank node inside a blank node15

is in restriction on one of the terms at the ends of a relationship. And there
can be only one nested statement, so they can just be compared with each
other. As OWL restrictions are the only blank nodes and their content can
be modified16 only in cardinality number or removed/added as a whole, a
decision was made to store all statements of the changed subgraph as Changes
with change type Created or Removed depending on if they are in vocabulary
context or canonical vocabulary.

For blank node Changes, a label is also set, but it is inherited from the
subject pointing at the blank node. To maintain re-buildability of stored
Changes back to subgraphs, the identifier of the "parent" Change is saved as
a subject of the blank node Change17.

14This algorithm can be found in the ChangeResolver class in GitHub repository
mighantos/checkit-server of CheckIt server.

15Shown in the example on lines 43, 47, 51 and more.
16By the Assembly line tools.
17The "parent" Change is the one that stored statement pointing to the blank node.

41

https://github.com/mighantos/checkit-server/blob/main/src/main/java/com/github/checkit/service/auxiliary/ChangeResolver.java

6. Implementation....................................
6.3 Composing relationships

With the blank node changes stored in the database, the main goal of CheckIt
to simplify reviewing for Gestors is still not achieved. Because showing
them a list of changed triples in blank nodes is not making their work that
much simpler. For that, the Changes are composed back18 into an entity
RelationshipDto before the list of Changes is sent to the client. This entity
contains names, IRIs, and cardinalities of the terms at the start and end of
the relationship, the name and IRI of the relationship, and a "compose" list
of stored Changes from which the relationship is composed of.

This list is created by fetching all Changes that have a blank node as an
object property and creating a Map of subjects mapping to lists of Changes
(very similarly as in relationships resolving). Then a subject in the Map that
maps to blank nodes with owl:onProperty not pointing at a blank node
(meaning the subject is a relationship) is found. By extracting the list of
changes corresponding to the subject from the Map and finding the changes in
blank nodes (they are pointing at), we get a list of all changes in blank nodes
of the relationship term. This list can be transferred to the "compose" list
of changes in the newly created RelationshipDto with the name and IRI of
the relationship set from information within these changes.

As can be seen in the example, each restriction on relationship points to a
term IRI on one of the ends with owl:someValuesFrom, owl:allValuesFrom,
or owl:onClass19. Which end is described by the owl:onProperty20. These
term IRIs can then be found in the Map mapping to their restriction Changes.
The restrictions pointing back at the relationship21 are transferred to the
"compose" list in the RelationshipDto and the names, IRIs and cardinalities
of ends filled. When all relationships were found, the algorithm returns the
list of RelationshipDto.

This encapsulation of change into a larger whole also affected the calculation
of statistics sent to the front end about the amount of Changes that need to
be reviewed. To send correct values, this algorithm is run before Changes
are saved to the database and from each RelationshipDto, one Change is
selected from the "compose" list, which is marked as countable. This Change
is also used for attaching comments to the relationship change.

18This algorithm can be found in the ChangeDtoComposer class in the GitHub repository
of CheckIt server.

19For example on lines 11 and 24.
20As can be seen for example on lines 10 and 23
21For example on lines 44 and 59.

42

https://github.com/mighantos/checkit-server/blob/main/src/main/java/com/github/checkit/service/auxiliary/ChangeDtoComposer.java

............................. 6.4. Updating Publication context

6.4 Updating Publication context

As shown in the figure 3.2 Publication process (TO BE), Editors can edit the
project with existing Publication context a submit it for review again. This
will result in stopping all reviews of Gestors and providing them with the
updated list of changes. This list is created by comparing existing Changes
in the Publication context with Changes resolved from the current form of
the vocabulary context. If an exact match of an existing Change (meaning
the subject, predicate and object of these Changes are identical), the existing
Change is placed into the list of newly formed changes for the updated
Publication context. The label of the existing Change must be replaced with
the label of the current Change, as newly created terms could have been
renamed. If no existing Change matches the current Change, it is placed in
the list of newly formed changes, with all its reviews still present.

After matching all current Changes to existing ones, the rest of the un-
matched existing Changes are checked if they were reviewed by any Gestor.
If not, they are simply removed from the database, but if they were reviewed,
their change type is set to Rollbacked, and they are added to the list of
newly formed changes. This type of Change is then sent only to the Gestors
who approved or rejected it before to inform them that this Change was
scraped by Editors. It can not be reviewed but only acknowledged because
the review state of the Change is used for resolving the affected Gestors that
this Change should be sent to.

6.5 Maintenance improvements

Because the back-end implementation contains over a hundred Java classes
with more than six and a half thousand lines of code, JavaDoc was written
for every public method22 to help understand the code better. CheckStyle
plugin [44], widely used in the Assembly line tools, is also present in the
application. This tool statically analysis the code and checks its formatting,
naming conventions, correct use of JavaDoc and code complexity. Unit
tests covering the service layer were also implemented to ensure the main
functionality of the application. Both the static analysis and tests are run
with GitHub actions on Pull Requests merging to the main branch and before
creating a Docker image to prevent publishing an implementation with critical

22The generated JavaDoc can be found in doc/JavaDoc the GitHub repository of ChekcIt
server.

43

https://github.com/mighantos/checkit-server/tree/main/doc/JavaDoc

6. Implementation....................................
bugs.

44

Chapter 7

Deployment

Because the development of the back end is intertwined with the development
of the front end, and the back end is dependent on tools in the Assembly
line, the need for deployment of this toolset, with the whole CheckIt applica-
tion integrated into it, quickly arose. To satisfy this need, the deployment
configuration of the Assembly line needed to be modified to include CheckIt.

7.1 Existing deployment

The current deployment is done with the use of Docker, where every tool runs
as a service container. The working group behind the Assembly line created
a GitHub repository with instructions for deployment and a Docker compose
YAML file with a few simple helper scripts1. The compose file consists of the
ten following services:

. GraphDB database – Java server with the central database for all tools,
containing a copy of canonical vocabularies from SSP and their modified
version in vocabulary contexts,. SGoV server – Java back-end application managing projects and adding
vocabularies into them,

1The instructions (only in the Czech language) and deployment files can be found on
GitHub in datagov-cz/sgov-assembly-line repository .

45

https://github.com/datagov-cz/sgov-assembly-line

7. Deployment
.Mission control – front end for SGoV server, served by Nginx,.TermIt server – Java back end creating, modifying and removing terms

from vocabulary contexts,.TermIt UI – front end for TermIt server, served by Nginx,. OntoGrapher – thick front-end client for modelling relationship between
terms, served by Nginx,. Keycloak – a modified Java bundle of Keycloak, with a Java broker that
copies user info into the central database,. Postgress database – for Keycloak configuration and user data,.Annotator – for analysing texts provided by TermIt and finding occur-
rence of existing terms in them,. Nginx – the main reverse proxy to hide all services behind a path in
URL requests.

In the deployment diagram below, we can see how the services communicate
with each other. Connections of the Keycloak server are not included to
make the diagram more transparent because it connects to every service
with HTTPS communication, as it is the OAuth2 authorization server of
the system. Another simplification is the absence of the main Nginx reverse
proxy that is used to resolve URL requests coming from client browsers to
servers.

Figure 7.1: Deployment diagram (current)

46

................................... 7.2. New deployment

7.2 New deployment

Integration of CheckIt into this ecosystem needs two services to be added, one
for the CheckIt server and one for CheckIt UI. To create the server service, a
Docker image of the server application is required.

First, the Gradle build configuration of the CheckIt server was enriched
with a packaging task. This task bundles all compiled Java classes into a single
JAR file. Java Runtime Environment (JRE) can execute this file, so a simple
Dockerfile was created that builds an environment from OpenJDK 17 and
copies the JAR file into it. This Dockerfile was then used to create the Docker
image for the server. To add the Docker image to the Docker compose file of
the Assembly line, a new GitHub branch called "checkit-deploy" was created.
And the server service was added with the necessary environment variables
into this branch. A ReadMe file was created in the GitHub repository of the
CheckIt server with a startup guide and a description of possible environmental
variables for the Assembly line maintainers to modify the deployment for
their needs.

The second service was straightforward as Bc. Filip Kopecký created a
Docker image of his front-end part and published it in GitHub Packages. So
only a few environmental variables needed to be set after specifying the image
location in the second service.

To allow access to the two new services by URL paths, they were added
to the configuration of the main Nginx with respect to the existing path
naming conventions. The ReadMe file, with instructions on deploying the
Assembly line, also needed to be modified to reflect the addition of CheckIt by
mentioning it in the list of tools present in the Assembly line and expanding
the list of necessary variables to set. Some changes were also suggested to the
deployment instructions in parts that were found unclear in an attempt to
deploy it beforehand. The Keycloak’s main configuration file for initialization
also required editing to allow the new clients (services) to be able to authorize
users and use their needed roles.

The CheckIt server requires a Keycloak user that will represent it and have
permission to modify the roles of other users via Keycloak Admin API. This
user must be created in the Keycloak after its initialization. This could not
have been done by modifying the already existing main configuration file. So
a launch script for the Keycloak Docker image was written that executes a
CLI script for adding users (bundled with the used JBOSS Keycloak Docker

47

7. Deployment
image). With this, the startup script2 creates a user configuration with
credentials from the environment variables of Docker compose, replaces its
default roles with roles that allow API access and user role management,
and then starts up Keycloak itself, which consumes both the user and main
configuration files.

By doing all these modifications, the maintainers of the Assembly line
can redeploy it following the slightly modified, yet to them well-known,
deployment instructions. The redeployment will create the same stack with
two new services added, as depicted by the diagram below.

Figure 7.2: Deployment diagram (new)

7.3 Deployment for development

This new deployment configuration was first deployed on a home server
only a few weeks into development. This deployment instance was updated
frequently during the entire time of implementing the application. It was
used for testing that both the developing front-end part and the developing
back-end part could communicate with each other correctly and test both

2The script can also be found in al-auth-server/startup.sh on GitHub in the created
branch in datagov-cz/sgov-assembly-line repository.

48

https://github.com/datagov-cz/sgov-assembly-line/blob/checkit-deploy/al-auth-server/startup.sh

.............................. 7.4. Deployment for user testing

parts with real-world scenarios more easily. This cooperation with Bc. Filip
Kopecký helped us both align our applications and find bugs in each other’s
work and fix them quickly during development.

7.4 Deployment for user testing

Besides deploying the new Assembly line stack to the home server, it was also
deployed to the Demo instance (https://onto.fel.cvut.cz/modelujeme)3

of the Assembly line on servers of Czech technical university. This deployment
instance was redeployed with the new application for the KODI team to
experience the new tool and for user testing. Although all testing scenarios
were created by Bc. Filip Kopecký for testing of the UI, some of the answers
provided relevant feedback even for the back end.

Bugs in the back end were also caught by the KODI team on this deployment.
Thanks to that, they could have been fixed before letting users of the Assembly
line access the new tool as well.

This deployment also tested the modified instructions and configuration
files for deploying the Assembly line in a real environment. Although the
instructions were understandable, the modified Docker compose file included
a line with a boolean not surrounded by quotation marks. This was not an
issue while deploying to the home server, but the older version of Docker
compose used on the server of the Demo instance threw an error. But it was
swiftly corrected and deployed successfully after that.

3Back-end API on https://onto.fel.cvut.cz/modelujeme/sluzby/checkit-server/
and front-end part on https://onto.fel.cvut.cz/modelujeme/v-nástroji/checkit.

49

https://onto.fel.cvut.cz/modelujeme
https://onto.fel.cvut.cz/modelujeme/sluzby/checkit-server/
https://onto.fel.cvut.cz/modelujeme/v-nástroji/checkit

50

Chapter 8

Impediments and future work

Although the main features of the CheckIt application were implemented,
some features planned in the design phase of the tool were not implemented
because of unexpected delays with unforeseen obstacles.

8.1 Impediments along the way

The biggest impediments during the development of CheckIt were caused by
the rapid evolution of the Assembly line combined with two recent consecutive
personal changes in the leadership of the working group responsible for the
Assembly line. This created gaps in the knowledge of the exact details of the
data architecture. The provided incomplete or outdated information led to
implementing some code in CheckIt back end and consequently debugging it
to find why the code was not behaving as intended. Only to discover that the
issue was caused by mistakes in supplied testing data. These mistakes were
created by some data architecture changes that were not correctly updated
in existing data or even data being created differently from the specification
at the time of implementing CheckIt.

An example can be an inconsistent creation of restrictions on the terms
at the ends of a relationship. Originally found and reported by Bc. Filip
Kopecký as a bug in server implementation of updates of changes in an
existing Publication context. Discovering this issue’s true cause has cost over
ten hours of debugging. Because all information received from the KODI

51

8. Impediments and future work..............................
team (until then) was accurate, the issue was searched for in the algorithms
of the implemented back end. And debugging changes in blank nodes of
two versions of a vocabulary is no easy task, as mentioned in Chapter 3 -
Assembly line processes.

It turned out that creating a relationship between two terms replaces any
existing restrictions placed on these terms by other relationships beforehand.
The issue was reported to the Assembly line team, and they managed to fix
it in time to verify the algorithm in the back end.

8.2 Future work on CheckIt

These slowdowns meant that there was no time to implement change resolution
in diagrams. To visualise these changes, an old and new diagram was planned
to be shown to the user with highlighted changes and a list of concrete
data changes like coordinates of elements and newly shown or hidden terms.
Gestors then could approve or reject these changes as a whole. For this, the
back end would need to compare the two diagrams (which are saved in RDF)
and create the list of concrete data changes. This would then be sent to the
front end for highlighting.

This also means that the current changes created by CheckIt back end can
not be published to the SSP repository as they do not contain changes in
diagrams. This is now mitigated by creating a Pull Request in parallel to
the Publication context in CheckIt back end. When the Publication context
is approved, CheckIt back end automatically approves and merges the Pull
Request or closes it upon rejection. But everything is prepared for creating the
new RDF dataset with the use of the canonical vocabularies and attachments
and saved Change objects of a Publication context.

Besides this, a lot of improvements planned in development or found during
user testing can be still implemented in future work. So let us look at them.

8.2.1 Further integration with the Assembly line

Currently, there is a new button in Mission control that creates a Publication
context on a project. But more robust integration will be needed to prevent

52

................................ 8.2. Future work on CheckIt

the deletion of a project without deleting its corresponding Publication
context, as CheckIt relies on the reference project’s existence. Although
deleting projects before successful publication is not a common practice, it is
not an edge-case scenario either.

Integration with the rest of the tools in the Assembly line would also improve
the user experience. For example, links from changes to the OntoGrapher or
TermIt tool would allow Gestors to effortlessly explore other relationships in
the vicinity of the changed one or examine existing properties of a changed
term.

Or to update all Publication contexts automatically when a new version of
SSP is propagated to the Assembly line’s database. Instead of now, Editors
needing to submit their projects again would also enhance user experience.

8.2.2 Correcting typos while reviewing

To speed up the workflow, CheckIt could allow Gestors to make some small
changes to the data, such as correcting typos, during a review. This would
eliminate the waiting time for Editors to make the slight changes, submit the
project again, and then wait for the Gestor to approve these changes.

8.2.3 Improving notifications

While the CheckIt application was still in the design phase, the Assembly
line team was planning to make a change that would record all users that
contributed to a vocabulary in a project. This would allow notifications in
CheckIt to be addressed to more relevant users, but sadly these changes were
not realized as they were not a priority.

Notifications are currently present only in the application requiring users to
log in to see them. Connection to Keycloak allows CheckIt to access the email
addresses of users, which could be used to send emails about new unread
notifications in the application.

53

8. Impediments and future work..............................
8.2.4 Gestoring requests

Gestoring requests can be approved or rejected, but no message can be added
to explain this decision. This was an oversight in the design phase discovered
when evaluating the deployed application by users. By implementing such
a feature, Notifications about these requests could have more meaningful
content, and the communication between Admins and Editors would be easier
and clearer.

A way for Editors to cancel a Gestoring request would also be nice, as they
currently can not do so or even contact Admins in the application that it was
not their intention to send that request.

8.2.5 Testing

More thorough testing is also needed, as the current automated tests cover
only the main functionality of the back-end application. And as described at
the start of this chapter, not all information about the data architecture is
known, which can lead to unforeseen exceptions.

54

Chapter 9

Conclusion

The goal of this thesis was to familiarize ourselves with the Assembly line
toolset, redesign the way how modified vocabularies are reviewed and pub-
lished, and realize this new process.

We acquainted ourselves with RDF and RDF Schema, which are used for
storing data in the Assembly line. The Vocabulary modelling process with
an example of created data was presented, followed by the process of current
Publication. In this process, a very difficult comparison of changes and
complicated communication between Editors and Reviewers were identified
as the main issues hampering the user-friendliness of the Assembly line.

A new Publication process was invented to make the Assembly line more
comprehensive and usable for a wider range of institutions. For the new
process to be realized, research on existing tools capable of comparing RDF
datasets was conducted. Resulting in the usage of a modified Apache Jena
API RDFDiff comparator as a helper library to implement in a new custom
application. To define the data structure for information about changes
needing to be saved, a Change description ontology was created. A back-end
Spring boot Java application was implemented, utilizing this ontology to save
changes found with the help of Jena API, to realize the new Publication
process.

The created back-end application called CheckIt was deployed with the
front-end part created by Bc. Filip Kopecký on a server provided by Czech
technical university, where the Assembly line was already available as a Demo
instance. This was done by modifying the existing deployment configurations

55

9. Conclusion......................................
of the Assembly line to incorporate both the front-end part and the back-end
part of CheckIt.

Capabilities of the created back-end of CheckIt include: finding changes in
modified vocabularies, serving these changes to the front end, allowing users
to communicate with in-application messages, requesting Gestoring roles on
vocabularies by Editors, serving notifications about actions of other users,
allowing Gestors to review the changes, and propagating approved projects
to SSP.

This makes this master’s thesis successful in reaching its goals, but a lot of
features could still be added in future work to improve the final software.

56

Bibliography

[1] Domo, Inc. Data Never Sleeps 5.0. Visited on 17.05.2023 https://www.
domo.com/learn/infographic/data-never-sleeps-5.

[2] Ministerstvo vnitra České republiky. Implementace strate-
gií v oblasti otevřených dat veřejné správy ČR. Visited on
02.11.2022 https://esf2014.esfcr.cz/PublicPortal/Views/
Projekty/Public/ProjektDetailPublicPage.aspx?action=get&
datovySkladId=2D15BC0F-D539-4225-A7BC-DADF1860AA30.

[3] Ministerstvo vnitra České republiky. Implementace strategií v oblasti
otevřených dat II. Visited on 02.11.2022 https://www.mvcr.cz/clanek/
otevrena-data-ii.aspx.

[4] Ministerstvo vnitra České republiky. KODI - Rozvoj datových politik v
oblasti zlepšování kvality a interoperability dat veřejné správy. Visited
on 02.11.2022 https://www.mvcr.cz/clanek/kodi.aspx.

[5] Project KODI. Návrh a prototypování výrobní linky pro tvorbu a
údržbu konceptuálních modelů agend, 2022. Visited on 15.01.2023
https://data.gov.cz/kodi/v%C3%BDstupy/C5V3.pdf.

[6] Ontotext. Graphdb - introduction. https://graphdb.ontotext.com/.
Visited on 15.01.2023 https://graphdb.ontotext.com/.

[7] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF
1.1 concepts and abstract syntax. Technical report, W3C, Febru-
ary 2014. Visited on 15.01.2023 https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

57

https://www.domo.com/learn/infographic/data-never-sleeps-5
https://www.domo.com/learn/infographic/data-never-sleeps-5
https://esf2014.esfcr.cz/PublicPortal/Views/Projekty/Public/ProjektDetailPublicPage.aspx?action=get&datovySkladId=2D15BC0F-D539-4225-A7BC-DADF1860AA30
https://esf2014.esfcr.cz/PublicPortal/Views/Projekty/Public/ProjektDetailPublicPage.aspx?action=get&datovySkladId=2D15BC0F-D539-4225-A7BC-DADF1860AA30
https://esf2014.esfcr.cz/PublicPortal/Views/Projekty/Public/ProjektDetailPublicPage.aspx?action=get&datovySkladId=2D15BC0F-D539-4225-A7BC-DADF1860AA30
https://www.mvcr.cz/clanek/otevrena-data-ii.aspx
https://www.mvcr.cz/clanek/otevrena-data-ii.aspx
https://www.mvcr.cz/clanek/kodi.aspx
https://data.gov.cz/kodi/v%C3%BDstupy/C5V3.pdf
https://graphdb.ontotext.com/
https://graphdb.ontotext.com/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

9. Conclusion......................................
[8] M. Suignard and M. Duerst. IRI. Technical report, W3C, January

2005. Visited on 15.01.2023 https://datatracker.ietf.org/doc/
html/rfc3987.

[9] Anne van Kesteren and Sam Ruby. URL. Technical report, W3C,
December 2016. Visited on 15.01.2023 https://www.w3.org/TR/2016/
NOTE-url-1-20161206/.

[10] Dan Brickley and Ramanathan Guha. RDF schema 1.1. Technical report,
W3C, February 2014. Visited on 15.01.2023 https://www.w3.org/TR/
2014/REC-rdf-schema-20140225/.

[11] Ora Lassila. Resource description framework (RDF) model
and syntax specification. W3C recommendation, W3C, Febru-
ary 1999. Visited on 15.01.2023 https://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/.

[12] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 turtle. Technical
report, W3C, February 2014. Visited on 15.01.2023 https://www.w3.
org/TR/2014/REC-turtle-20140225/.

[13] Andy Seaborne and Gavin Carothers. RDF 1.1 n-triples. Technical
report, W3C, February 2014. Visited on 15.01.2023 https://www.w3.
org/TR/2014/REC-n-triples-20140225/.

[14] Gavin Carothers. RDF 1.1 n-quads. Technical report, W3C, Febru-
ary 2014. Visited on 15.01.2023 https://www.w3.org/TR/2014/
REC-n-quads-20140225/.

[15] Gavin Carothers and Andy Seaborne. RDF 1.1 trig. Technical report,
W3C, February 2014. Visited on 15.01.2023 https://www.w3.org/TR/
2014/REC-trig-20140225/.

[16] Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. Technical
report, W3C, February 2014. Visited on 15.01.2023 https://www.w3.
org/TR/2014/REC-rdf-syntax-grammar-20140225/.

[17] Gregg Kellogg, Markus Lanthaler, and Manu Sporny. JSON-LD 1.0.
Technical report, W3C, January 2014. Visited on 15.01.2023 https:
//www.w3.org/TR/2014/REC-json-ld-20140116/.

[18] Thomas Steiner, Arnaud Le Hors, and Ian Davis. RDF 1.1 JSON
alternate serialization (RDF/json). Technical report, W3C, Novem-
ber 2013. Visited on 15.01.2023 https://www.w3.org/TR/2013/
NOTE-rdf-json-20131107/.

[19] Mark Birbeck, Ben Adida, Ivan Herman, and Manu Sporny.
RDFa 1.1 primer - third edition. Technical report, W3C,
March 2015. Visited on 15.01.2023 https://www.w3.org/TR/2015/
NOTE-rdfa-primer-20150317/.

58

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://www.w3.org/TR/2016/NOTE-url-1-20161206/
https://www.w3.org/TR/2016/NOTE-url-1-20161206/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2014/REC-trig-20140225/
https://www.w3.org/TR/2014/REC-trig-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2013/NOTE-rdf-json-20131107/
https://www.w3.org/TR/2013/NOTE-rdf-json-20131107/
https://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/
https://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/

...................................... 9. Conclusion

[20] Tim Berners-Lee and D. Connolly. Notation3 (N3): A readable RDF
syntax. Technical report, W3C, March 2011. Visited on 15.01.2023
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/.

[21] Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Names-
pace Document 2 Sept 2004, FOAF Project, 2004. Visited on 15.01.2023
http://xmlns.com/foaf/0.1/.

[22] Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative
knowledgebase. Commun. ACM, 57(10):78–85, September 2014. Visited
on 15.01.2023 http://doi.acm.org/10.1145/2629489.

[23] Wikipedia. Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Wikipedia&oldid=1133819130, 2023. Vis-
ited on 15.01.2023 https://en.wikipedia.org/wiki/Wikipedia.

[24] GitHub, Inc. GitHub - Introduction, 2022. Visited on 15.01.2023
https://github.com/.

[25] Projekt KODI. Koncepce sémantického slovníku pojmů. Vis-
ited on 17.02.2023 https://opendata.gov.cz/_media/dokumenty:
s%C3%A9mantick%C3%BD-slovn%C3%ADk-pojm%C5%AF:c1v2d1_n%C3%
A1vrh_koncepce_s%C3%A9mantick%C3%A9ho_slovn%C3%ADku_pojm%
C5%AF.pdf.

[26] GitHub, Inc. GitHub, code review, 2022. Visited on 15.01.2023 https:
//github.com/features/code-review.

[27] Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis. Blank node
matching and rdf/s comparison functions. In Philippe Cudré-Mauroux,
Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred
Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abra-
ham Bernstein, and Eva Blomqvist, editors, The Semantic Web – ISWC
2012, pages 591–607, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[28] RDFLib Team. RDFLib 6.2.0, 2022. Visited on 15.01.2023 https:
//rdflib.readthedocs.io/en/stable/.

[29] Stanford Center for Biomedical Informatics Research. Protégé, 2020.
Visited on 15.01.2023 https://protege.stanford.edu/.

[30] Deborah McGuinness and Frank van Harmelen. OWL web on-
tology language overview. W3C recommendation, W3C, Febru-
ary 2004. Visited on 15.01.2023 https://www.w3.org/TR/2004/
REC-owl-features-20040210/.

[31] Oracle Corporation. Java. https://www.java.com/, 1995. Visited on
15.01.2023 https://www.java.com/.

59

http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://xmlns.com/foaf/0.1/
http://doi.acm.org/10.1145/2629489
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=1133819130
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=1133819130
https://en.wikipedia.org/wiki/Wikipedia
https://github.com/
https://opendata.gov.cz/_media/dokumenty:s%C3%A9mantick%C3%BD-slovn%C3%ADk-pojm%C5%AF:c1v2d1_n%C3%A1vrh_koncepce_s%C3%A9mantick%C3%A9ho_slovn%C3%ADku_pojm%C5%AF.pdf
https://opendata.gov.cz/_media/dokumenty:s%C3%A9mantick%C3%BD-slovn%C3%ADk-pojm%C5%AF:c1v2d1_n%C3%A1vrh_koncepce_s%C3%A9mantick%C3%A9ho_slovn%C3%ADku_pojm%C5%AF.pdf
https://opendata.gov.cz/_media/dokumenty:s%C3%A9mantick%C3%BD-slovn%C3%ADk-pojm%C5%AF:c1v2d1_n%C3%A1vrh_koncepce_s%C3%A9mantick%C3%A9ho_slovn%C3%ADku_pojm%C5%AF.pdf
https://opendata.gov.cz/_media/dokumenty:s%C3%A9mantick%C3%BD-slovn%C3%ADk-pojm%C5%AF:c1v2d1_n%C3%A1vrh_koncepce_s%C3%A9mantick%C3%A9ho_slovn%C3%ADku_pojm%C5%AF.pdf
https://github.com/features/code-review
https://github.com/features/code-review
https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/
https://protege.stanford.edu/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.java.com/
https://www.java.com/

9. Conclusion......................................
[32] Petr Křemen, Marek Šmid, and Zdenek Kouba. OWLDiff: A Practical

Tool for Comparison and Merge of OWL Ontologies. In 2011 22nd
International Workshop on Database and Expert Systems Applications,
pages 229–233, 2011.

[33] NeOn Technologies Foundation. Neon toolkit, 2014. Visited on 15.01.2023
http://neon-toolkit.org/.

[34] Dave Longley. Rdf dataset canonicalization. W3C rec-
ommendation, W3C, October 2022. Visited on 15.01.2023
https://www.w3.org/community/reports/credentials/
CG-FINAL-rdf-dataset-canonicalization-20221009/.

[35] Peter Ansell, Stian Soiland-Reyes, and Tristan King. JSONLD-
JAVA, 2021. Visited on 15.01.2023 https://github.com/jsonld-java/
jsonld-java.

[36] Gregg Kellogg, Markus Lanthaler, and Manu Sporny. JSON-LD 1.0
processing algorithms and API. W3C recommendation, W3C, January
2014. https://www.w3.org/TR/2014/REC-json-ld-api-20140116/.

[37] The Apache Software Foundation. Apache Jena, 2023. Visited on
15.01.2023 https://jena.apache.org/.

[38] Red Hat, Inc. What is a REST API? Visited on 13.02.2023 https:
//www.redhat.com/en/topics/api/what-is-a-rest-api.

[39] JRebel. 2021 Java Developer Productivity Report. Visited on 13.02.2023
https://www.jrebel.com/blog/java-build-tools-comparison.

[40] Gradle Inc. Gradle vs Maven: Performance Comparison. Visited on
13.02.2023 https://gradle.org/gradle-vs-maven-performance/#.

[41] Pivotal Software. Spring boot. Visited on 15.01.2023 https://spring.
io/why-spring.

[42] Ing. Martin Ledvinka, Ph.D. JOPA - Java OWL Persistence API.
Visited on 15.01.2023 https://github.com/kbss-cvut/jopa/blob/
master/README.md.

[43] Eclipse Foundation. Jakarte EE. Visited on 14.02.2023 https://
jakarta.ee/.

[44] Oliver Burn. CheckStyle. Visited on 19.05.2023 https://checkstyle.
org/.

60

http://neon-toolkit.org/
https://www.w3.org/community/reports/credentials/CG-FINAL-rdf-dataset-canonicalization-20221009/
https://www.w3.org/community/reports/credentials/CG-FINAL-rdf-dataset-canonicalization-20221009/
https://github.com/jsonld-java/jsonld-java
https://github.com/jsonld-java/jsonld-java
https://www.w3.org/TR/2014/REC-json-ld-api-20140116/
https://jena.apache.org/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.jrebel.com/blog/java-build-tools-comparison
https://gradle.org/gradle-vs-maven-performance/#
https://spring.io/why-spring
https://spring.io/why-spring
https://github.com/kbss-cvut/jopa/blob/master/README.md
https://github.com/kbss-cvut/jopa/blob/master/README.md
https://jakarta.ee/
https://jakarta.ee/
https://checkstyle.org/
https://checkstyle.org/

Appendix A

Content of the electronic attachment

application.zip
checkit-server/ Created back-end application

.github/......................Configurations of GitHub actions

.idea/
config/...............Configs for CheckStyle and IntelliJ IDEA
doc/

JavaDoc/................................Generated JavaDoc
Test-datasets/...........Testing data used in tool research
Assembly-line.postman-collection.json..Postman export

gradle/
src/ Code of the application
.gitignore
build.gradle....................................Gradle config
Dockerfile
gradle.properties
gradlew
gradlew.bat
README.md Installation guide
settings.gradle

img/ Images used in this thesis
popis-zmen-ontology/..........................Created ontology

d-sgov-popis-zmen-glosář.ttl
d-sgov-popis-zmen-model.ttl
d-sgov-popis-zmen-slovník.ttl
Ontology_Relationship_Diagram_CZ.png
Ontology_Relationship_Diagram_EN.png
README.md

61

	Introduction
	Introduction to RDF(S)
	RDF(S)
	Triple
	Literal
	Blank node
	Named graph

	Concrete syntaxes for RDF
	Example of RDF dataset

	Assembly line processes
	Vocabulary modelling process
	Current Publication process
	New Publication process
	Requesting to Gestor a vocabulary

	Existing tools research
	Main requirements for the tool
	Researched tools
	Python RDFLib
	Protégé
	OWLDiff
	RDF Graph Normalization
	Apache Jena

	Conclusion

	Ontology
	Main entities
	Relationship diagram
	Change entity
	Publication context entity
	Comment entity
	Notification entity
	Gestoring request entity

	Implementation
	Used technologies
	Change resolving algorithm
	Change resolving without blank nodes
	Change resolving in blank nodes

	Composing relationships
	Updating Publication context
	Maintenance improvements

	Deployment
	Existing deployment
	New deployment
	Deployment for development
	Deployment for user testing

	Impediments and future work
	Impediments along the way
	Future work on CheckIt
	Further integration with the Assembly line
	Correcting typos while reviewing
	Improving notifications
	Gestoring requests
	Testing

	Conclusion
	Bibliography
	Content of the electronic attachment

