
Faculty of Electrical Engineering
Department of Measurement

Master’s thesis

Multi-failure Risk-aware Trajectory
Planning for Urban Air Mobility
Bc. Jáchym Herynek

Supervisor: Ing. Jakub Sláma

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483733 Personal ID number: Herynek Jáchym Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Computer Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Multi-failure Risk-aware Trajectory Planning for Urban Air Mobility

Master’s thesis title in Czech:

Rizikové plánování trajektorií pro městskou leteckou mobilitu s uvažováním více poruch

Guidelines:

1. Study the dynamic model of a gliding aircraft [1].
2. Get familiar with the algorithm for determining the minimum safe altitude for a gliding aircraft [2] and risk-aware trajectory
planning [3].
3. Based on safety reports [4, 5], determine the suitable failures to be addressed and propose an appropriate multi-failure
aircraft model.
4. Propose and implement a solution for s risk assessment of in-flight failure.
5. Employ the developed assessment and proposed multi-failure aircraft model in risk-aware trajectory planning.
6. Computationally evaluate the proposed solution and assess its performance.

Bibliography / sources:

[1] Beard, R. W., & McLain, T. W. (2012). Small unmanned aircraft: Theory and practice. Princeton university press.
[2] Váňa, P., Sláma, J., Faigl, J., & Pačes, P. (2018). Any-time trajectory planning for safe emergency landing. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 5691-5696.
[3] Sláma, J., Váňa, P., and Faigl, J. (2021). Risk-aware Trajectory Planning in Urban Environments with Safe Emergency
Landing Guarantee, IEEE International Conference on Automation Science and Engineering (CASE), pp. 1606-1612.
[4] Air Safety Institute. (2015). 27th Joseph T. Nall Report.
[5] Australian Transport Safety Bureau (2016). Engine failures and malfunctions in light aeroplanes 2009 - 2014, Investigation
number AR-2013-107, pp. 1–38.

Name and workplace of master’s thesis supervisor:

Ing. Jakub Sláma Department of Computer Science FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 17.02.2023

Assignment valid until:
by the end of summer semester 2023/2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jakub Sláma
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently ant that I have listed all sources
of the information used within it in accordance with the methodical instructions for observing
the ethiclal principles in the preparation of university theses.

Prague, May 26, 2023

. .
Bc. Jáchym Herynek

i

Acknowledgement

I would like to thank my supervisor Ing. Jakub Sláma, for all his invaluable feedback, expertise,
and assistance throughout this work. His patience has been remarkable. I would also like to thank
my friends, their help and support has been more important than I realized at the time. Lastly, I
have to acknowledge the support my family provided throughout my studies.

ii

Abstrakt

Mechanická porucha v průběhu letu představuje zásadnı́ rizko nejen pro posádku letadla, ale
také pro lidi na zemi. Je proto žádoucı́, aby při plánovánı́ trajektoriı́ pro letadla v městkém
prostřenı́ bylo toto riziko zohledněno. V této práci je navržen plánovač, který minimalizuje rizika
daná mechanickými poruchami letadla. Minimalizováno je riziko fatálnı́ poruchy, která vede ke
ztrátě kontroly nad letadlem, a riziko částečné poruchy, která má za důsledek závažné omezenı́
manévrovacı́ch možnostı́ letadla. Takovou částečnou poruchou může být napřı́klad ztráta tahu
v důsledku porchu motoru. Navrhovaná metoda buduje strom nouzových přistánı́, který může
poté být opakovaně použit pro naplánovánı́ nejlepšı́ho dostupného nouzového přistánı́ a pro
odhad rizika, které je s takovým nouzovým přistánı́m spojené. Výpočet tohoto stromu stojı́
na diskretizaci stavového prostoru, dı́ky které je možné předpočı́tat všechny manévry, které jsou
ve výpočtu použity, čı́mž se zásadnı́m způsobem snižuje výpočetnı́ náročnost celého algoritmu.
Tento strom je poté použit ve výše zmı́něném rizikovém plánovači, kde je důležitou součástı́
výpočtu rizika. Obě tyto metody, strom nouzového přistánı́ a rizikový plánovač, byly otestovány
na realistických datech. Navržený strom nouzovývh přistánı́ dokáže vyhodnotit rizika různých
nouzových přistávacı́ch ploch a výpočet odhadu je dostatečně efektivnı́, aby mohl být použit v
rizikovém plánovači. Dı́ky tomu dokáže navržený rizikový plánovač vyhodnocovat rizika spo-
jená s různými částečnými poruchami a výsledné trajektorie v porovnánı́ s nejkratšı́mi výrazně
snižujı́ riziko.

Klı́čová slova: Plánovánı́ nouzových přistánı́; Rizikové plánovánı́; Trajektoriálnı́ plánovánı́

iii

Abstract

An in-flight failure poses a risk to both the people on board the aircraft and the people on the
ground. It is therefore desirable that the path planning takes into account the potential risk a
failure poses. This work proposes a risk-aware trajectory planner, which is able to minimize the
risk induced by a fatal failure, which leads to an uncontrollable crash, as well as the risk induced
by partial failure, which leaves the aircraft controllable but severely inhibits its maneuvering ca-
pabilities. The method builds an emergency landing tree structure, which can then be repeatedly
used to determine the best available emergency landing location and to evaluate the risk such an
emergency landing poses. The emergency landing tree computation relies on a discretization of
the configuration space, which allows for the use of precomputed maneuvers and overall signifi-
cantly reduces the computational complexity. The emergency landing tree has been employed in
the risk-aware path planner as an integral part of the risk function. Both the emergency landing
planner and the risk-aware planner have been empirically evaluated in a realistic urban scenario.
The proposed emergency landing tree is able to consider multiple emergency landing locations
with different risks, and the risk estimate query has been shown to be efficient enough to be
used in the risk-aware planner. Thanks to this, the risk-aware planner is able to evaluate the risk
induced by several different partial failures, and the paths it produces have been shown to be
significantly less risky than the shortest paths they have been compared with.

Keywords: Emergency landing planning; Risk-aware planning; Trajectory planning

iv

Contents

1 Introduction 1

1.1 Aviation Accidents . 2

1.2 Structure of the Work . 2

2 Related Work 3

2.1 Fixed-Wing Aircraft Trajectory Planning . 3

2.2 Planning Algorithms . 5

2.3 Risk Aware Path Planning . 8

2.4 Emergency Landing Planning . 9

2.5 Set Cover Problem . 11

3 Problem Statement 13

3.1 Satisfying the Vehicle Constraints . 13

3.2 Emergency Landing . 14

3.3 Risk-Aware Path Planning with Emergency Landing Trajectory Guarantee . . . 15

4 Failure Model 17

4.1 Airplane Model . 17

4.2 Considered Partial Failures . 19

5 Proposed Method 21

5.1 Risk-Minimizing Emergency Landing Trajectory Planner 21

5.1.1 Tree Computation . 22

5.1.2 Pattern Pool generation . 26

5.1.3 Emergency Landing Site Selection . 27

5.1.4 Collision Check . 28

5.1.5 Emergency Landing Query . 29

5.2 Risk-Aware Planner . 29

5.2.1 Risk Estimate . 31

5.2.2 Using the Emergency Landing Planner 31

v

6 Results 35

6.1 Emergency Landing Tree . 36

6.1.1 Quality of the Solution . 36

6.1.2 Multiple Considered Landing Locations 38

6.1.3 Computational Requirements . 41

6.1.3.1 Time Complexity . 41

6.1.3.2 Memory Requirements . 43

6.1.4 Risk Estimate . 44

6.2 Risk-Aware Planning . 45

6.2.1 Resulting Trajectories . 45

6.2.2 Computational Requirements . 48

7 Conclusion 51

vi

List of Figures

2.1 Dubins Curves . 4

2.2 Comparison of RRT and RRT* . 6

2.3 Informed RRT* . 8

4.1 Forces acting on the Aircraft . 17

4.2 Control surfaces of the aircraft . 18

5.1 Discretization and maneuver pool . 23

5.2 Maneuver translation . 25

5.3 Maneuver Pool . 26

5.4 Selection Procedure . 28

5.5 RRT* Visualization . 30

6.1 Maps . 35

6.2 Safe Altitude Comparison . 37

6.3 Optimality with respect to maneuver length . 37

6.4 Result Examples . 39

6.5 Selected Landing Locatoins . 40

6.6 Vertical Cut of the Tree . 42

6.7 Time measurments . 43

6.8 Path-planning instances . 46

6.9 Risk-planner results . 46

6.10 Example of the result . 47

6.11 Node Insertion Steps . 48

vii

List of Tables

6.1 Percentage of connected samples . 40

6.2 Parameter Influence . 41

6.3 Collision Check . 44

6.4 Query variants comparison . 45

6.5 Shortest path risk comparison . 47

6.6 Risk function calls . 49

List of Algorithms

1 RRT* [1] . 7

2 Risk Map Creation . 24

3 Emergency Landing Site Selection . 27

4 Get Emergency Landing Trajectory . 29

5 Get Emergency Landing Risk . 33

viii

Chapter 1

Introduction

This work presents a risk-aware trajectory planner for unmanned aerial vehicles in urban environ-
ments, which would provide the safest emergency landing trajectory available in case of a partial
failure. This problem is motivated by the overall rise of air mobility and the potential that unmanned
aerial vehicles offer for general transportation.

As with any means of transport, air traffic has inherent risks that cannot be eliminated. In contrast
to other options, the risk associated with air travel is relatively low; the number of fatalities (with
respect to passengers and distance traveled) is a hundred times lower than that of car transport, and
the only comparable transit option is public transport (bus, rail) [2]. Modern aircraft are safer, among
other reasons, because they are technically reliable and comparatively safe, thanks to the high level of
safety regulations and standards for pilot training, manufacturing, and maintenance. However, even
though flying is relatively safe, with increasing of flights, the total number of accidents would increase
as well if the safety of flying did not increase as well.

In addition to the increase in numbers of conventional flights, the concept of Urban Air Mobility
(UAM) has gained much public attention in recent years. Multiple studies and analyses were con-
ducted, focusing on different aspects of the topic, such as [3], which discusses the legal and societal
barriers and the potential usages, and [4], which focused on market assessment and public acceptance
in Europe. Urban air mobility has a wide range of potential usages, from air taxis, public services
(such as air ambulance), and goods delivery, to security, agriculture and entertainment, and much
more. However, several challenges must be addressed before the wide population can see the rise of
personalized aircraft and drone-based delivery. Technological advances in recent years have brought
the physical shell to the point that the first commercial short-range aircraft might become publicly
available and potentially even common in the near future, however, even the most advanced vehicles
are still in the testing phase of development, and a lot of work still needs to be done before the future
can become the present. In addition to the technical obstacles, some legal issues need to be resolved,
issues with the acceptance by the general public, and, importantly, safety concerns, as shown by the
public response discussed in [3] and [4].

According to questionnaire data [3], people seem open to the idea of UAM. However, most respon-
dents expressed some concerns, among others, about safety, and most would be reluctant to use un-
manned vehicles. Most companies building such aircraft are aware of this and regard the safety con-
cerns as a critical issue to address. Outside of the theoretical studies and air-traffic-related problem
analyses, several different companies are racing to provide the first air taxi or private flying car. De-
signs range from rotary aircraft to fixed-wing vehicles, including an airborne equivalent of a dirt bike,
and are quite often wholly outside conventional aircraft designs, and already there is a commercially-
available FAA1-approved unmanned aircraft.

And with increasing numbers, the risk increases as well. Furthermore, with the expected rise of
urban mobility, aircraft will come much closer to heavily populated areas, where any accidents have

1Federal Aviation Administration, the agency responsible for air traffic regulation, pilot licensing, airport security and
similar issues in the United States

1

1. INTRODUCTION

potentially much worse consequences. Therefore, safety is a high priority and an important research
topic in this area.

1.1 Aviation Accidents

Even though flying is relatively safe, there were a lot of accidents, and a lot of the accident data
is very well documented and publicly available. In the United States, the National Transportation
Safety Board (NTSB) and the Aircraft Owners & Pilots Association (AOPA) collect and publish data
about general aviation (non-military and non-commercial flights) aircraft accidents [5] [6]. Similar
databases are available in other countries as well, for example by the Australian Transport Safety
Bureau (ATSB) [7], and in Canada as well, by the Transportation Safety Board of Canada.

According to these databases, most of the accidents are caused by the pilot (around 60 % in 2019,
according to [6]), and of the rest, about half is classified as other/unknown, and the other as mechanical
issues. However, even though mechanical issues are responsible for a relatively small portion of the
overall accident rates, that still leaves hundreds of accidents every year caused by some mechanical
issue. Out of the mechanical issue-related accidents, the vast majority were caused by powerplant
failure. Powerplant failure leads to loss of thrust and may even lead to the loss of other control surfaces
further, inhibiting the maneuverability of the vehicle. More detailed information is available in the
NTSB databases [5], which include detailed descriptions of each accident. According to this database,
other relatively common mechanical/technical accident causes are fuel-related and non-power-related
component failure, which includes, for example, control surface failure and landing gear failure.

Following a partial failure, such as loss of thrust, reduced lift, or control surface failure, a skilled and
lucky pilot may be able to guide the aircraft safely to the ground and execute an emergency landing
on a nearby field or even return to the airport. However, such a failure often leads to a crash landing.
Additionally, the flying aircraft gives little time to plan and evaluate options. Even an extra second of
hesitation could lead to a stall and subsequent crash, which could have been avoided. If such a failure
occurs during a flight of an unmanned aircraft, the autopilot must react in order to minimize the risk.
In the case of an unmanned flight over an unpopulated area, even in case of complete system failure,
it is very unlikely that anyone or anything but the aircraft itself is endangered. However, if unmanned
aerial vehicles are to be used in urban areas, some safety mechanisms must be in place, which would
minimize the risk to people on the ground and guide the aircraft to the safest possible emergency
landing location. This work focuses on minimizing the risk through planning and on providing the
safest possible emergency landing trajectories in case of a partial failure.

1.2 Structure of the Work

Chapter 2 describes the related work. It focuses on the works on constraint satisfaction and path plan-
ning, on emergency landing approaches, and concludes with a description of the set cover problem,
which is closely related to the selection of landing locations post-failure. The studied problem is
formally described in Chapter 3. The failures that the proposed approach can simulate are discussed
in Chapter 4. The proposed method itself is described in Chapter 5, where the emergency landing
planner and the risk-aware planner are described in detail. The properties of the proposed method are
discussed in Chapter 6. The work concludes with Chapter 7, which summarises the proposed method
and its results.

2

Chapter 2

Related Work

The herein studied problem stands for finding the least-risky path for a fixed-wing aircraft. The risk is
determined as the risk associated with fatal failure resulting in a ballistic fall and by a partial failure,
such as loss of thrust, which results in inhibited maneuverability of the aircraft. In the case of a partial
failure, the aircraft is still controllable and an emergency landing is possible.

The problem poses several challenges, and this section provides an overview of both the contemporary
and the older methods found in the literature that have been used to address similar tasks. Firstly, the
challenge of satisfying the vehicle constraints is addressed in Section 2.1. Next, in Section 2.2, the
path-planning algorithms are handled. Those algorithms form the basis for both the emergency trajec-
tory landing computation and the Risk-Aware path planner. The Section 2.4 discusses the works on
emergency landing site selection and trajectory planning. At the end, in Section 2.5, a short summary
of works on set cover problems is presented, as it is closely related to the selection of potential landing
sites.

2.1 Fixed-Wing Aircraft Trajectory Planning

In order to plan a feasible trajectory for a fixed-wing aircraft, its motion constraints have to be satisfied.
Since this work handles the task of risk-aware trajectory planning for small fixed-wing vehicles, for
the rest of this section, it is assumed that only this type of aircraft is considered. This section describes
the works handling the motion constraints and discussing the trajectory primitives used for planning
for this kind of aircraft.

The fixed-wing aircraft motion has been thoroughly studied since the first airplanes were built, both
from the point of view of construction and design of such an aircraft, as well as from the pilot’s seat.
The physics and aerodynamics of airplanes are addressed, for example, in [8]. The book covers kine-
matic and dynamic equations, aerodynamic forces and moments, and more, with a focus on autopilots
and simulation. A more practically oriented point of view is presented by the U.S. Federal Aviation
Administration in [9], which aims to provide a basic understanding of aerodynamics for pilots.

However, these works handle the aerodynamic forces and physics of the flight itself. This leads to a
high level of accuracy, which, however, comes at the cost of complexity. For the purposes of trajectory
planning, this level of precision is unnecessary, and because of its complexity, the computational
burden is very high. Therefore, simpler geometrical models are used.

A commonly used path-planning technique is to utilize Dubins curves. A Dubins curve is the short-
est path with constrained curvature connecting two configurations in the 2D plane. It can be used
to describe the trajectory of a simplified car-like vehicle, that is, a vehicle with a constant forward
speed and a limited turning radius. The problem of finding the shortest curvature constraint path was
originally proposed by Andrey Markov in the nineteenth century but was first solved in 1957 in [10].
For any two configurations, the shortest connecting curve consists of three segments, each of which
is either a circular arc or a straight line. In addition, any such path has one of two forms: two curved
ones and one straight segment between them, or three curved segments if the two configurations are
too close to each other. Theses two types are commonly referred to as a CSC and CCC type curves,

3

2. RELATED WORK

respectively. Examples of each of the Dubins maneuvers are depicted in Figure 2.1.

qi

qf

(a) CSC-type

qi

qf

(b) CCC-type

Figure 2.1: Depictions of the two basic types of Dubins curves. If the distance between the two
configurations is sufficiently large relative to the minimal turning radius, the CSC-type curve is the
shortest possible path. If the two configurations are too close, the CCC-type curve is shorter.

In [11], another formalization of the shortest paths was presented. The initial and final configurations
are transformed so that the initial configuration is at the origin, and the input is scaled so that the
turning radius limit is equal to one. This means that the input is then fully described by the two
heading angles and the distance. This highlights the symmetries of the problem regarding the types of
the curves, CCC or CSC, with respect to the heading angles. Additionally, a mathematical formulation
is presented, which allows for the same equations to be used to describe both the straight segments
and the circular arc segments.

The most straightforward extension of the problem to 3D only extends the configuration space by
introducing two additional dimensions, the altitude and the pitch angle. The configuration space is
R3 × S2, and no further restrictions are introduced. A solution for this problem is presented in [12].
However, this approach is not applicable to the type of aircraft studied in this work since the model
does not restrict the pitch angle in any way, which can lead to way too steep trajectories.

Another extension of this problem was presented in [13]. In addition to the curvature constraint, this
work also restricts the pitch angle. The presented model, called the Dubins Airplane model, is a four-
dimensional system, with configurations q ∈ R3×S, the roll angle, and the pitch angle being relaxed.
The proposed solution handles the task in three separate cases, divided by the altitude difference
between the initial and final configurations. For the low altitude difference case, the 2D Dubins path
is extended to 3D by scaling the path along the z-axis. If the altitude difference is sufficiently low,
this extension does not violate the pitch angle constraint and thus can be used as is. The high altitude
difference case is the situation where the shortest possible helical segment cannot gain (or lose) enough
altitude. In this case, one or more helical turns are inserted, with the radius set to exactly compensate
for the altitude difference. The last case is the situation where the altitude difference is not enough to
warrant a helix curve but too high for the 2D Dubins path extension to be feasible. In this case, the
curve is elongated, for example, by replacing a straight segment with a wave-like curve.

In later works on this topic, the model was further restricted by considering the pitch angle change
limitation of the vehicle. In [14], the problem is addressed by inserting two short segments at the
beginning and the end of the trajectory, which handle the changes of the pitch angle, while the rest
of the path is computed as a 2D Dubins path, with added altitude component. The minimum and
maximum pitch angle is not considered, just its change rate is limited.

4

2.2 PLANNING ALGORITHMS

Similar to the Dubins airplane approach [13], a common maneuver used to handle big altitude differ-
ences is a helix curve. Such approaches were proposed, for example, in [15] and [16]. Another method
is presented in [17]. This method handles the vertical profile and the horizontal path as separate Du-
bins curves. If the horizontal trajectory with the vertical profile applied violates some constraints, the
parameters of the curves are iteratively tuned until a feasible solution is found.

Alternative ways of finding curvature-constrained paths have also been proposed in the literature. For
example, in [18] 7th order bezier curves have been used for generating curvature-constrained paths
in 3D that also comply with the pitch angle limitations. This work was one of the earliest works
that addressed the pitch angle change rate, as well as the pitch angle limitation, and the proposed
bezier-curve-based method achieves a continuous pitch angle. However, in terms of the length of the
generated paths, this method is considerably worse, even though the resulting paths are smoother.

Another variant in terms of path-planning for aerial vehicles is to use trochoids, as proposed in [19].
Trochoid curves are similar to the Dubins curves but allow the planner to take into account wind
conditions. In no-wind scenarios, they are exactly the same, and in the case of wind, the trochoidal
curves alter the turning radius. When the heading of the aircraft is the same as the direction of the
wind, the turning radius is increased, and when the heading is in opposition to the wind, the turning
radius is decreased.

2.2 Planning Algorithms

Another aspect of the studied risk-aware trajectory planning problem is the planning itself. This sec-
tion presents the algorithms that are used to form path plans from the individual maneuvers presented
so far.

There are two main categories of path-planning algorithms. First of those are the graph-based algo-
rithms. Those algorithms search a discretized state space, which can be represented by a graph. This
graph can then be searched using graphs-search algorithms and heuristics to guide the search. Those
algorithms always find the optimal path if a feasible path exists, but representing the whole state space
as a graph might be computationally infeasible. The second big group is the randomized sampling
based-algorithms. Those algorithms use random sampling of the state space, which allows them to
build a graph-from a continuous state space. They are effective even in high dimensions, but they do
not guarantee optimality and may be sensitive to the selected sampling method.

The simplest graph based algorithm is the BFS, which is the basis of more advanced algorithms. A
well-known derivative of the BFS algorithm is Dijkstra’s Algorithm [20]. In a graph with weighted
edges, Dijkstra’s algorithm finds the minimal path between any two nodes in the graph. The algorithm
starts by expanding the start node, with cost zero. Whenever a node is expanded, all of its unexpanded
nodes are checked and added to a priority queue, with priority equal to the cost of the current node
plus the cost of the connection between them. After the expansion of a node is done, the node at the
top of the priority queue is expanded, and this is repeated until the target is reached or until the queue
is empty. If the algorithm finds a path to the target node, the path is guaranteed to be the shortest
possible, and if it does not find any path at all, it means that no possible path exists.

However, Dijkstra’s algorithm searches through the whole state space, which might be very computa-
tionally demanding. Therefore, a further improvement was proposed in the A* algorithm [21], which
utilizes a heuristic function to guide the search toward the goal. It works similarly to Dijkstra’s algo-
rithm, but in addition to the cost of the node determined based on the cost of the graph edge, it adds
the heuristic value of the node to the priority. The optimality of A* depends on the properties of the

5

2. RELATED WORK

heuristic function in that if the heuristic is admissible, the resulting path is optimal. An admissible
heuristic is non-negative and never overestimates the cost of getting to the goal. D*-lite [22] is a vari-
ant of the A*, which works on a grid graph and can handle a dynamically changing environment by
storing additional information about the nodes. When the environment changes, the affected nodes are
recomputed, and the change propagates to their neighbors. In this manner, only the parts of the graph
affected by the change are actually recomputed.

A second big category of planning algorithms is the randomized sampling-based algorithms. They can
be further divided into two classes, roadmap-based (PRM) and tree-based (RRT). The probabilistic
roadmap algorithm (PRM) [23] builds a graph from randomly sampled configurations from the search
space and connects the sampled configurations to other nearby samples if the connections are feasible.
It works in two phases: the first phase, the learning phase, builds the road map, and the second, the
query phase, finds a path through the roadmap. During the learning phase, a predetermined number of
samples is randomly generated, and each of those then represents a sampled configuration. For each
of those configurations, a path to other near nodes is constructed and added to the graph as an edge.
Each edge between two vertices then represents a feasible connection between two configurations,
such as a path from one to the other. Once the graph is constructed, a graph planning algorithm,
such as Dijkstra’s algorithm or A* discussed above, can be used to plan a path, and this is the query
phase. A useful property of the algorithm is that the same road map can be used to resolve any
number of queries. This algorithm is probabilistically complete but is not asymptotically optimal.
There are multiple variants of this algorithm, such as simplified PRM (sPRM) [24], which simplifies
the connection of the nodes used in the original algorithm. Other variants are lazy PRM [25] (or a
very similar fuzzy PRM [26]), which checks the feasibility of the path at the last possible moment.
These variants assume all connections to be feasible, and only when the graph search algorithm finds
a solution is it checked for collision. The colliding edges are then removed, and the search starts anew.
This means that the computationally intensive collision check is performed only for connections that
are actually considered to be used in the resulting path.

(a) Tree generated by the RRT algorithm. (b) Tree generated by the RRT* algorithm.

Figure 2.2: Comparison of the RRT and the RRT* trees. The rewiring step of RRT* enables the
algorithm to find much more straight paths. In contrast, the RRT uses the shortest path to the new
node at the time of insertion, and the connections are never updated.

Similarly to the PRM-style algorithms, the Rapidly-exploring Random Tree algorithm (RRT) [27] gen-
erates random samples from the configuration space, which it connects to the already sampled graph.
However, instead of generating all the samples at once and then searching for possible connections
to all near nodes, each sample is connected immediately when it is generated. Furthermore, any new
node is connected to the tree by a single edge, which creates a tree. Additionally, the RRT algorithm

6

2.2 PLANNING ALGORITHMS

uses a so-called steer function. The steer function expands the tree towards the randomly generated
configuration by applying a control input from the selected parent node in the general direction of the
randomly selected sample. Thanks to this step, the RRT algorithm does not need a point-to-point plan-
ning primitive to generate a feasible plan but can use control-based sampling. This property greatly
increases the applicability of this algorithm. A major disadvantage of the RRT algorithm is, that it is
only a single query. That means that the whole algorithm has to run again if the start and goal config-
uration changes, as opposed to PRM, which can reuse the learned map to process additional queries.
However, if only the goal (or the start, if the search is reversed) configuration changes, the RRT tree
generated so far can be reused.

Algorithm 1: RRT* [1]
Input: g – Goal Configuration.
Input: s – Starting Configuration.
Parameter: n – Number of nodes.
Parameter: k – Near node count.
Parameter: ∆t – Time step.
Output: Constructed Graph G

1 G← {E← ∅,V← {s}}
2 for i = 1...n do
3 q ← RandomSample()
4 qnearest ← Nearest (V, q)
5 q0 ← Steer (qnearest, q,∆t)
6 V← V ∪ {q0}
7 Qnear ← Near (V, q0, k)
8 qbest ← qnearest
9 foreach qnear ∈ Qnear do

10 if Cost (qbest) > Cost (qnear) + Cost (qnear, q0) then
11 qbest ← qnear

12 E← E ∪ {(q0, qbest)}
13 foreach qnear ∈ Qnear do
14 if Cost (q0) + Cost (qnear, q0) < Cost (qnear) then
15 E← E \ {(qnear,Parent (qnear))}
16 E← E ∪ {(qnear, q0)}

17 return G

RRT is probabilistically complete but not optimal. Once a node has been added to the tree, its parent
is set and cannot change. Thus, once a path to a configuration has been found, there is no way to
improve it. The parent node is selected based on the distance (or any other metric) to the new node, so
the length of the path from the parent to the root does not play any role in the selection. The optimality
is addressed in other variants of the algorithm, Stable Sparse RRT (SST) [28], which is asymptotically
near-optimal, or RRT*, which is asymptotically optimal.

The RRT* algorithm is described by Algorithm 1. In each iteration, a random sample is generated,
and a parent node is selected. The parent node is expanded using the steering function (same as the
RRT), and the resulting node is added to the tree. Once the node is added to the tree, the rewiring step
searches for possible improvements by considering the connections to other near nodes and not only
the single nearest one. If a node offers a better path from the root to the newly added node than the
current parent node, it replaces that parent. This step is shown in the Algorithm 1 on Lines 9 to 11.

7

2. RELATED WORK

Figure 2.3: Example of the informed RRT* algorithm run. After an initial solution is found, all
possible shorter solutions are restricted to an elliptical area around the start and goal configurations.
Any path through a node outside of this ellipse is necessarily longer. Thus, no samples outside of this
area are generated. As the solution improves, the maximal length of any improving path decreases,
and the ellipse shrinks. Image is courtesy of [29]

Once the best parent is established, the new node is evaluated as the parent for the other near nodes.
If the newly added configuration is better a parent for another node already in the tree, the previous
parent is replaced, and the cost improvement is propagated to its children, as shown on Lines 13 to 16,
Algorithm 1.

As opposed to the RRT and SST, RRT* requires not only forward propagation but also needs to be able
to compute a connection between two configurations. However, unlike the base RRT algorithms, it is
capable of finding the optimal solution. Being able to connect any two configurations allows RRT*
to select a better parent node and to execute a rewiring step, in which the neighborhood of the newly
added configuration is checked for nodes that can improve the tree. Figure 2.2 shows an example of
the RRT tree and of the RRT* tree.

There are multiple other variants of the RRT/RRT* algorithm. Bi-directional RRT [30] executes the
search from both the goal node and the start node, which greatly reduces the configuration space that
has to be searched. Some other variants are based on informing the sampling of the points based on
some heuristic. One such algorithm is the Informed RRT* [29], an example of which is shown in
Figure 2.3. The general idea is that once a feasible solution has been found, a large part of the config-
uration space becomes irrelevant because any path leading through it must necessarily be longer than
the already known solution. Therefore, the sampling can be restricted to the area, which can achieve
some improvement. This idea is further developed in [31] in an algorithm called Batch Informed
Trees (BIT*). The search is initialized by uniformly sampling the search space, and then the algo-
rithm employs a heuristic search until a solution is found. When the samples can no longer improve
the solution, the sampling is refined by adding a new batch of samples, and the search continues.

2.3 Risk Aware Path Planning

Traditionally, the goal of path-planning problems is to minimize the length of the resulting trajectory.
However, quite often, there are other important metrics. With respect to small aircraft in urban sce-
narios, the risk induced by an in-flight failure is a more important metric because an uncontrollable
aircraft poses a much more serious problem than a short delay a safer route might require.

In [32], a risk-minimizing A*-based algorithm is proposed. The risk is evaluated based on a static risk
map, which is built based on the risk based on the probabilities of hitting a person and the probability
of a failure happening, and the probable crash landing locations. The work proposes an off-line path

8

2.4 EMERGENCY LANDING PLANNING

planner based on the A* algorithm, which plans a risk-minimizing trajectory based on this map, and
proposes a post-optimization procedure, which searches for improvements to the path based on line of
sight.

Additionally, a dynamic risk evaluation is also presented. If the in-flight estimated risk differs from
the risk map the path was based on, an on-line planner is used to compensate for this change. The off-
line planner cannot be used because of its high computational demands. Therefore, a simpler on-line
planner is also proposed, called the borderland algorithm. The on-line planner attempts to reduce the
risk of the path by circumnavigating the higher risk areas.

An approach utilizing the RRT* algorithm is presented in [33]. The algorithm uses a risk-based cost
function, which evaluates the risk to people on the ground based on a number of different factors.
The area endangered by the crashing aircraft, called causality area, is determined from the size and
approach angle of the aircraft and from the average size of a person. The fatality rate is then estimated
from the impact energy and sheltering factor of the surroundings. Those values are then combined
to determine the expected number of casualties, which is then used as the cost function of the RRT*
algorithm. This algorithm is further iterated on in [34], which replaces the map-based risk estimate by
assessing the risk of each node directly during the planning process.

A similar algorithm is proposed in [35]. In addition to the minimization of the risk induced by an in-
flight loss of control, the proposed method is able to completely eliminate the risk induced by loss of
thrust by maintaining altitude such that the aircraft would be able to glide to a safe emergency landing
site. The emergency landing trajectory guarantee is achieved by only adding nodes that are above the
safe altitude level. The risk-aware planner itself is based on the RRT* algorithm as well, using the risk
of the path from the root of the tree to the given node as the cost of the node.

2.4 Emergency Landing Planning

The planner proposed in this work minimizes the risk associated with an in-flight failure. However, if
an emergency landing is possible, the risk depends on the emergency landing trajectory, and in order to
evaluate the risk, it is necessary to study the emergency landing planning techniques. This then allows
the planner to include the risk associated with the emergency landing as a part of the risk function
used for the planning.

The topic of emergency landing trajectory planners has been thoroughly discussed in the literature,
especially with the advent of smaller unmanned aerial vehicles and their increasing potential for civil-
ian employment during the last few years. The most commonly discussed emergency is an engine
failure leading to loss of thrust. This is the most common technical failure, and if handled well, a
safe emergency landing is possible. The emergency landing is a complex topic with many different
aspects, including but not limited to path-planning from the location of the failure to the landing site,
post-failure vehicle constraints satisfaction, landing site selection, risk minimization, landing maneu-
ver safety, or environmental hazards. The works concerning this topic cover the full spectrum of the
aspects, and this section provides an overview of those works.

In [36], the problem of emergency landing following a total loss of thrust is addressed in two parts. The
first step is to select a reachable runway on which to perform the emergency landing. The second step
is the path-planning itself. The selection of the landing site is limited to a database of airport runways,
and the reachability of the runway is estimated based on the current altitude and wind conditions, but
the terrain is not taken into account in any way. If no reachable runways are available, some of the
constraints are relaxed, and the search is attempted again. If multiple are available, the authors propose

9

2. RELATED WORK

a ranking based on the runway utility. The utility is computed as a weighted sum of several factors
based on the properties of the runway and other relevant conditions: the runway width and length,
the distance from the aircraft, headwind velocity, the surface of the runway, facility score, and more.
Afterward, a Dubins path to the selected runway is computed. If the altitude of the aircraft is too high,
a sequence of waypoints is constructed, which guides the aircraft using easy-to-follow maneuvers.

In [37], a simulation of forced landing to evaluate emergency path planners was proposed, together
with a comparatively straightforward planner. The reachability of a potential landing site was deter-
mined based on the altitude and position of the aircraft in relation to the landing site. The reachable
area was modeled as a cone shape below the aircraft, which was then deformed based on the wind.

In [38], the problem of finding the least risky emergency landing trajectory for a damaged aircraft
is presented. The authors identified several characteristics of the problem: the initial state, the con-
trol envelope of the damaged aircraft, the potential landing sites with their characteristics, and the
obstacles. The problem is addressed from the perspective of longer-range path-planning, in that the
majority of the planned trajectory is expected to be sufficiently high, that terrain and urban areas are
not a concern, but severe weather conditions might play a role. Additionally, the dynamics of the
vehicle are not taken into account, and things like a limited turning radius would be negligible in this
scope. The resulting path is then a sequence of points that the aircraft is expected to be able to nav-
igate, and any potential restrictions on maneuverability are addressed by manipulating the obstacles.
The risk is quantified as expected loss of life and is assessed as the sum of risks during different stages
of the forced landing trajectory. The En Route risk assumes risk induced by the pilot losing control
over the plane and considers only the crew and passengers as being in danger. The second part of
the risk assessment is associated with approaching the landing site over a populated area and takes
into account the level of damage to the aircraft, visibility, altitude, etc. The last part of the risk is
determined based on the properties of the airport, such as the characteristics of the runway and the
available facilities. The planner itself is based on the A* algorithm executed on a modified visibility
graph-based roadmap.

In [39], the authors propose to use trochoidal curves instead of the commonly used Dubins curves,
which allow the planner to take potential environmental effects into account. Thus, the planner can
compensate for the wind conditions if the wind has constant direction and force. However, trochoidal
curves do not have any straightforward extension into 3D. Therefore, the descent rate has to be ad-
dressed separately by estimating the glide ratio and time necessary to cover each segment of the path.
The planner considers only a single predefined landing site, but computationally it is feasible to run
several instances at the same time. The proposed planner has been tested and performed well in the
Robot Operating System environment, as well as on two different real-world aircraft.

The any-time emergency landing planner proposed in [40] offers in-flight computation of a safe emer-
gency landing trajectory in case of complete loss of thrust. The planner is able to take into account
terrain and obstacles, which the more straightforward planners are unable to do. Following the loss
of thrust, the aircraft can only glide, and as a consequence, it is constantly losing altitude. Therefore,
the authors propose to optimize the safe altitude of the configuration using an RRT*-based tree. Opti-
mizing the altitude reduces the dimensionality and, thus, the overall computational complexity of the
algorithm. The safe altitude of a node is determined based on the altitude loss of the maneuver from
the parent to the node, increased by any obstacles that must be flown over. This means that the safe
altitude of the node depends not only on the maneuver itself but also on the safe altitude of the parent.
Additionally, it is assumed that the aircraft can lose altitude at will. Thus, any path leading to a safe
landing site is considered safe, regardless of the altitude of arrival, as long as the altitude is higher than
the landing site itself. The algorithm runs during the whole flight and builds an RRT*-based tree from
the potential landing sites to the aircraft, which makes it possible to plan the trajectory for a moving

10

2.5 SET COVER PROBLEM

airplane. New nodes are continuously added to the tree using informed sampling, and unreachable
ones are pruned in order to decrease the memory requirements of the algorithm so that it is viable for
it to run during the whole flight. The authors also provide an aerodynamic point of view on the loss of
thrust, from which the damaged aircraft model is derived.

The emergency landing planner proposed in [40] is further developed in [41]. The emergency landing
trajectories are computed in advance. This produces a dense roadmap, which can be queried to obtain
the safe altitude for any given configuration. The planner is used in an offline surveillance planner
with a safe emergency landing guarantee in case of total loss of thrust. The surveillance trajectory
has to visit a set of given locations and return to the original configuration, and it uses a similar safe
emergency landing planner as proposed in [40]. A safe altitude is the altitude level from which there
is a possible emergency landing trajectory which leads to a safe landing site, such as a runway. This
is then used to compute trajectories connecting the individual locations that are safe with respect to
total loss of thrust, in that in the event of loss of thrust, the aircraft can always follow a path to a safe
landing site.

The work [42] handles the task from the point of view of the safety of the landing itself. The main
focus is that the proposed waypoint-based method creates a trajectory that leads the aircraft to the
runway with a safe approach speed and pitch angle. The authors propose an analytical velocity pre-
diction method that estimates the speed of the aircraft in a given path segment. This velocity predictor,
together with the restrictions on the approach speed, altitude, and direction, is then used to create a
non-linear system of equations. The solution of this system is then a forced landing trajectory that
maximizes the safety of the landing maneuver itself.

2.5 Set Cover Problem

A sub-problem in this work is the selection of considered emergency landing locations, such that the
coverage of the configuration space is maximized, the risk is minimized, and the number of selected
landing locations is low. If an airport is available, it is obviously the best choice because there are
dedicated runways and potentially even the possibility of repairing or refueling the aircraft. However,
in many cases, the airport might be unreachable, and thus another landing location has to be selected.

The problem of selecting the best emergency landing locations to consider can be seen as a variant
of the maximum coverage problem, as each considered emergency landing covers a part of the con-
figuration space, and we want to cover as much of the space as possible. This section describes the
properties of the problem, its approximation algorithms, and its relation to other covering problems.
The maximum coverage problem is a variant of the set cover problem, and therefore the set cover
problem needs to be addressed first. The analogy of the studied landing site selection to the maximum
coverage problem is discussed once the maximum coverage problem is presented.

The set cover problem [43] is the problem of finding a set of subsets that covers the whole universum.
Formally, given a universum U , and a collection S = {S1, ...,Sm} of m subsets of U , the goal is to
find a minimal set coverA ⊂ S, for which it holds, that

⋃
Ai = U . This problem has several variants,

such as the weighted set cover problem, where each of the subsets has a weight associated, and the
goal is to find the set cover with the minimum weight. The set cover problem has also been shown to
be NP-complete [43].

In [44], it has been shown that the greedy heuristic for the set cover problem is an approximating
algorithm. In every iteration, the greedy algorithm selects the set that has the most elements that have
not been covered yet. In the case of the weighted variant of the problem, the weight is distributed

11

2. RELATED WORK

across the newly added elements. The upper bound on the performance ratio has been shown to
be H (m) =

∑m
j=1

1
j , where m is the cardinality of the universum U , i.e. the result of the greedy

algorithm is at most H (m) times the value of the optimal solution. The proof has been later refined
in [45], by showing the exact performance ratio to be lnm− ln lnm+ Θ (1).

The maximum coverage problem [46] is closely related to the set cover problem. In this problem,
instead of trying to find the minimum set cover, the goal is to select at most k ≤ m of the subsets from
S , such that the cardinality of their union is maximized.

The problem of selecting the optimal potential landing sites is very similar. The terrain corresponds
to the universum, and each potential landing site corresponds to one of the subsets. Each potential
landing location is reachable from any configuration in an area above it. In higher altitudes, the area
is bigger, as the aircraft can glide further. Thus, the area can be estimated as a cone based on the
gliding properties of the aircraft. Thus, the area covered by the landing location is estimated as a
radius around it, as it corresponds to a projection of the cone to the terrain from a certain height. The
cost of each of those landing locations is proportional to the risk associated with an emergency landing
at that location. Thus, the problem is to select at most k landing locations (subsets), such that they
cover as much of the terrain (universum) as possible, and their risks (costs) are minimized.

The maximum coverage problem is motivated by the real-world implications of optimizing the loca-
tions of facilities providing some kind of service to customers, such as shops or ambulance depots.
The customers are then the elements of U , and a facility that covers all customers within a certain
radius corresponds to a set Si. Selecting k sets from S then corresponds to selecting k locations to
build the facility on. From the point of view of the set cover problem, the max cover problem is almost
the same problem, but instead of minimizing the number of subsets used, it aims to maximize the
covering with a given number of subsets. Similarly to the set cover problem, the maximum coverage
problem has been shown to be NP-complete. In [47], a greedy heuristic was compared to a linear
programming approach and to an improved greedy heuristic. Similarly to the set cover problem, the
greedy algorithm has been shown to be an approximating algorithm [46] that yields satisfactory results
when applied in practice [48].

12

Chapter 3

Problem Statement

This work discusses Risk-aware Trajectory Planning, which, for any two configurations, would
find a trajectory minimizing the risk associated with in-flight failures. Two types of failures are
considered: fatal failure leading to uncontrollable fall and a partial failure leading to a partial loss
of thrust, potentially combined with inhibited maneuverability. The latter failure can still lead to a
potentially risk-free emergency landing because the aircraft might still be capable of a gliding flight
to a safe emergency landing location. Minimizing the risk associated with this kind of failure is the
main contribution of this work.

This task can be decomposed into several subtasks: path planning to satisfy the vehicle constraints,
emergency landing trajectory planning, and risk-aware trajectory planning. These individual subtasks
are discussed in further detail in this chapter, in this order.

3.1 Satisfying the Vehicle Constraints

The nature of the fixed-wing aircraft imposes some constraints on the model, which have to be adhered
to. The aircraft in this work is modeled as a Dubins airplane [13], which specifies and formalizes
the motion constraints. Let q = [x, y, z, ψ, θ] be a configuration of the model. It consists of the
position [x, y, z] ∈ R3, the heading angle ψ, and the pitch angle θ. The configuration space is then
C = R3 × S2. The trajectory of such an airplane must satisfy a minimum turning radius constraint,
and the pitch angle must be within limits imposed by the properties of the aircraft. The state of the
airplane modeled like this is then described by the following equations:

q̇ =


ẋ
ẏ
ż

ψ̇

 = v


cos (ψ) cos (θ)
sin (ψ) cos (θ)

sin (θ)
uρ−1

 , (3.1)

where ρ represents the minimal turning radius, u is a steering control input, and v is a constant forward
speed. The steering is limited by the maneuvering capabilities of the airplane and corresponds to the
turning radius constraints of the airplane:

u ∈ [−1, 1] . (3.2)

Similarly, as mentioned above, the pitch angle θ must be within a specified range,

θ ∈ [θmin, θmax] . (3.3)

The pitch angle is assumed to change abruptly within the given limits. Compared to the heading angle,
the maneuvers required to change the pitch angle are relatively fast. Therefore the flying airplane can
change its pitch angle much more abruptly, and this simplification does not compromise the model.

One more constraint is imposed on the model, in that the airplane cannot pass through terrain and
obstacles. This constraint is expressed as q ∈ Cfree, where Cfree is the collision-free part of the config-
uration space C.

13

3. PROBLEM STATEMENT

3.2 Emergency Landing

A failure that leaves the aircraft capable of flight, albeit with limited maneuverability, is considered
a partial failure. An emergency landing trajectory is then a trajectory that the aircraft can execute
following a partial failure. Following a failure F , the emergency landing trajectory ΓF : [0, 1]→ Cfree
is any controlled flight trajectory from an initial configuration qi ∈ Cfree to a final configuration qf ∈ T ,
where T ∈ C is the terrain (including obstacles).

In case of a partial failure, the airplane is still capable of flight, but its maneuverability is limited. For
example, in case of total loss of thrust, the airplane can glide as long as its speed is maintained, which
is achieved by carefully controlling the pitch angle of the airplane. Thus a failure F is represented
as an additional restriction on the control variables of the model, the control input u in (3.2) and the
pitch angle limits in (3.3). Each failure is considered such that the restriction on pitch angle is at least
θmax < 0 because such a failure prevents the aircraft from climbing high up in the air and performing
an emergency landing somewhere outside the populated area. Multiple failures may be considered
simultaneously, and the pool of all considered failures is denoted as F.

During the flight, the aircraft must be above ground level and has to avoid potential obstacles. The
terrain and obstacles, denoted as T , are considered as a subset of the configuration space, defined by
a function of the x and y coordinates, T = {(x, y, z) |Alt (x, y) = z}, where Alt : R2 → R is the
terrain height on coordinates x, y. This terrain definition assumes that no collision-free configuration
is below the terrain level, i.e., that the aircraft cannot fly under obstacles, such as under a bridge. The
collision part of the configuration space CO is then the subset of C, which is at or below the terrain
level or within an obstacle, CO = {q = (x, y, z, ψ, θ) |q ∈ C, Alt (x, y) ≤ z}, and the collision-free
part is the complement, Cfree = C \ CO.

Then, RF : T × S → R is the emergency landing risk function, defined such that the value RF (p)
is the risk associated with an emergency landing on configuration p following a partial failure F .
Similarly to the Dubins airplane model, the pitch angle θ of the incoming aircraft is neglected, and
only the heading angle ψ is considered. This value is defined for any configuration on the terrain level
and for any considered failure, but the problem does not depend on its values.

The problem is to find a collision-free emergency landing path ΓF : [0, 1] → Cfree from a given
admissible configuration qi, which satisfies the gliding constraints of the aircraft model restricted by
failure F , and leads to an emergency landing location qf, that minimizes the associated risk:

Problem 1. Multi-failure Risk-aware Trajectory Planning for Urban Air MobilityEmergency Landing
Path Planning Problem

min
ΓF ,qf∈T

RF (qf)

Subject to:

Motion constraints (3.1) are satisfied

ΓF (0) = qi,

ΓF (1) = qf.

(3.4)

The ground landing risk function RF (.) is n naturally extended to the emergency landing risk RF :
Cfree → R, which covers the whole Cfree. Its values are defined as the ground landing riskRF value of
the landing configuration of the least risky emergency landing trajectory.

14

3.3 RISK-AWARE PATH PLANNING WITH EMERGENCY LANDING TRAJECTORY GUARANTEE

3.3 Risk-Aware Path Planning with Emergency Landing Tra-
jectory Guarantee

The overall goal is to find a least-risky path from an arbitrary, feasible initial configuration qi, to an
arbitrary feasible final configuration qf. The risk of a configuration q ∈ Cfree considered here has
two components. The first is the risk induced by potential partial failures, F, defined as a sum of the
risks associated with the individual failures,

∑
F∈F (pFRF (q)). The second component is the risk

associated with fatal failure, Rq (q). This function may be any arbitrary risk function associated with
the configuration. The complete risk function is a combination of those two values,

R (q) =
∑
F∈F

(pFRF (q)) + pfatalRq (q) , (3.5)

where pfatal denotes the probability of a fatal failure resulting in an uncontrollable ballistic fall.

For a path Γ : [0, 1] → Cfree, the risk is computed as the integral of risks along its path. The optimal
path Γ∗ is then a path minimizing this risk:

Problem 2. Multi-failure Risk-aware Trajectory Planning for Urban Air MobilityRisk-minimizing
path planning

Γ∗ = arg min
Γ

∫ 1

0
R (Γ (t)) dt

Subject to:

Γ (0) = qi,

Γ (1) = qf.

(3.6)

For a configuration q ∈ Γ, in order to compute the riskRF (q), there is emergency landing trajectory
ΓF , for which ΓF (1) = qf, for some qf, for which RF (qf) = RF (q) Consequently, if such a path
is found, that means, that at any configuration the emergency landing trajectory in case of any of the
considered failures is known.

15

3. PROBLEM STATEMENT

16

Chapter 4

Failure Model

The risk-aware planner proposed in this work considers two kinds of failures: fatal failure, which
results in an uncontrollable crash, and a partial failure, which severely inhibits the maneuverability
of the aircraft, but the aircraft is still capable of controllable flight. In order to minimize the risk
induced by partial failures, it is necessary to determine an emergency landing trajectory. Therefore, it
is necessary to study the different effects that partial failure may have on the aircraft. Intuitively, loss of
thrust leads to the aircraft being able to accelerate during level flight and consequently losing altitude,
and broken control surfaces inhibit the ability to turn. This chapter introduces the considered failure
models and attempts to shed light on how the specific mechanical failures reflect on the mathematical
model.

4.1 Airplane Model

T

W

L

D

Figure 4.1: Forces acting on the aircraft. Thrust T pulls the aircraft forward, Lift L acts perpendicular
to the wings, Weight W pulls the aircraft downwards, and Drag D acts in opposition to the velocity.

The model of an aircraft is based on [8].There are four main forces acting on the aircraft: Thrust T,
Drag D, Lift L, and Weight W, as shown in the figure Figure 4.1. Thrust acts in the direction the
aircraft is heading, while drag counteracts it, weight pulls the aircraft down, and the lift pulls the
aircraft in the direction perpendicular to its wings. When the aircraft is in steady flight, which means,
that the aircraft keeps a stable altitude, speed, and heading angle, these four forces are in balance.

The magnitude of the lift and drag is dependent on the properties of the airplane and is given by

L = ‖L‖ =
1

2
ρCLSV

2, D = ‖D‖ =
1

2
ρCDSV

2 (4.1)

for lift and drag, respectively, where ρ is the air density, S is the reference wing area, V is the ve-
locity, CL and CD are the lift and drag coefficients, respectively. Both of the coefficients depend on

17

4. FAILURE MODEL

the geometrical properties of the airplane. Importantly, the drag coefficient also depends on the lift
coefficient, due to lift-induced drag.

(a) The conventional control surfaces of the aircraft: rudder (red),
ailerons (blue), and elevators (yellow)

(b) Control surfaces on a flying wing: The
ailerons and elevators are replaced by the
elevons (green). Rudder is missing alto-
gether.

(c) Control surfaces on a V-tail: the rudder
and the elevators are replaced by a V-shaped
tail control surfaces, called ruddervators (or-
ange).

Figure 4.2: The control surfaces of the aircraft, based on [8]. Images are courtesy of [8]

Conventionally, the aircraft has three types of control surfaces: vertical rudder, ailerons on the wings,
and elevators on the tail, as depicted in Figure 4.2a. Two other configurations of the aircraft control
surfaces are considered in [8]: the flying wing Figure 4.2b and the V-tail Figure 4.2c. In the case of
the V-tail, the tail control surfaces, called ruddervators, can move in opposition, which has the same
effect as the rudder, or in unison, which has the same effect as elevators. Similarly, the control surfaces
of the flying wing, called elevons, can move together and function like elevators, or they can move
differentially and function like ailerons. Therefore, any flight pattern achievable with the standard
control surface configuration can be achieved by either of the other control surface configurations as
well, and vice versa.

Generally, the rudder causes yaw, the ailerons cause roll, and the elevators cause pitch. However, each
control surface has additional side effects on the other angles. The rudder and ailerons influence both
the roll and yaw moments. That is, both have an effect on the turning capabilities of the airplane, and
in order to perform a coordinated turn, both must be employed.

18

4.2 CONSIDERED PARTIAL FAILURES

4.2 Considered Partial Failures

The Emergency landing planner creates a trajectory that a damaged aircraft can follow to a selected
landing location. Therefore, it is necessary to define how potential partial failures affect the perfor-
mance of the aircraft. Two different cases are considered, loss of thrust and loss of thrust combined
with limited maneuverability. According to [6], the most common mechanical issue is powerplant
failure, which leads to loss of thrust. Additionally, failures inhibiting the ability of the aircraft to gain
height are deemed more critical to address because they pose a severe restriction on the flight range of
the aircraft and thus restrict the potential emergency landing locations to the close vicinity. In terms
of the Dubins airplane model, lift reduction will have the same effect as a partial loss of thrust. If the
aircraft can gain altitude, a relatively safe solution (with respect to people) that is always available is
to fly outside the urban area and crash-land somewhere where there is no risk to people on the ground.
Additionally, this selection of considered failures allows for some simplifications and optimizations in
the planner.

The loss of thrust model considered in this work has been adopted from [40], which models the
equations and the failure models based on [8]. Following loss of thrust, the aircraft has to keep losing
altitude in order to maintain the same velocity, which means, that it has to maintain a negative pitch
angle. The necessary descent rate is dependent on the parameters of the flight, in that turning requires
steeper descent to maintain the same speed.

In order to simplify the complicated aerodynamic model presented in [8], some assumptions about
the motion of the aircraft are made. Firstly, the angle of attack is assumed to be zero. Secondly, all
of the maneuvers are considered to be smooth and coordinated, with zero sideslip angle. Thus, when
the sideslip angle is zero, the angle of attack is zero, and the bank angle is equal to the roll angle, the
aircraft travels in the direction it is heading. A steady descending flight is assumed to be optimal for
maximizing the glide distance.

The model is then defined as follows [40]:

ẋ = V cos (ψ) cos (θ) ,

ẏ = V sin (ψ) cos (θ) ,

ż = V sin (θ) ,

V̇ =
1

m
(T −D −W sin (θ)) ,

ψ̇ =
L sin (φ)

mV
,

(4.2)

where W = ‖W‖ = mg is the magnitude of the weight and φ is the roll angle.

The speed is assumed to be constant, and thus V̇ = 0. In case of a total loss of thrust, the thrust is
zero, T = 0. Therefore, according to (4.2), it is derived that

D = −W sin (θ) . (4.3)

Computing the coefficients from (4.1) allows for the pitch angle to be determined such that within
the given segment, the aircraft is able to glide with constant speed. The pitch angle is computed by
θ = sin−1

(−D
W

)
. Note that with a slight adjustment, it is also possible to simulate partial loss of thrust

by adding the thrust component to (4.3): D = T −W sin (θ). Note that the lift force is assumed to
counteract both the drag and the weight force. Consequently, because during a turn a component of
the lift force is directed to the side, the component of the lift force counteracting the drag is lower.
Thus, while the aircraft is turning, the pitch angle necessary for a gliding flight is lower.

19

4. FAILURE MODEL

The second type of failure considered in this work is the loss of thrust combined with limited maneu-
verability. All of the characteristics of the (partial) loss of thrust remain, but a turning radius limitation
is considered as well. The considered turning radius limitation may be symmetrical or asymmetrical.
In terms of the Dubins airplane model described in Chapter 3, in (3.1), this corresponds to restric-
tion on the control input u, in (3.2), in that the limits are closer to zero, so the resulting limits are
u ∈ [umin, umax], where −1 ≤ umin ≤ umax ≤ 1.

Unlike the loss of thrust, the limited maneuverability failure is considered purely from the point of
view of the planner, based on the simplified Dubins airplane model, rather than based on the dynamics
model. In literature, such failures have been discussed, for example, in [38], but they were evaluated
only numerically. That is, a full simulation of the aircraft was performed rather than an analysis
of the damaged aircraft model. In [49], several potential mechanical failures have been discussed,
and the effect on the simplified model has been numerically evaluated with respect to the specific
airplane, Airbus A320 in this case. The method was used to determine the effects of individual failures
on turning radius (left/right, if the failure caused asymmetry), turning rate (similarly, with potential
asymmetry), descent rate, pitch angle, pitch rate, and glide ratio.

In case of a control surface failure, the aircraft might be forced to fly with an induced bank angle. It
has been shown that in the case of an induced bank angle, the turning radius becomes asymmetrically
restricted. The restriction may be so severe that the aircraft is unable to perform a turn in one direction
at all or even that the aircraft has to turn constantly and can only influence the turning rate. A similar
issue may also be a consequence of an asymmetrical thrust, but this is only possible when considering
aircraft with several engines on the wings.

Both loss of thrust and loss of thrust combined with inhibited maneuverability can be cleanly translated
into the Dubins airplane model. The post-failure Dubins airplane model is then formulated by the
equations

q̇ =


ẋ
ẏ
ż

ψ̇

 = v


cos (ψ) cos (θ)
sin (ψ) cos (θ)

sin (θ)
uρ−1

 , (4.4)

where u ∈ [−1, 1] and θ ∈ [θmin, θmax]. The (partial) loss of thrust translates to additional restriction
on the pitch angle θ, θ ∈ [θmin, θ

f
max], for which it holds that θmin ≤ θfmax ≤ θmax. Similarly, the

inhibited turning radius leads to additional restriction on the control input u, u ∈ [ufmin, u
f
max] where

−1 ≤ ufmin ≤ u
f
max ≤ 1.

The post-failure limit values are determined based on the physical properties following the given
failure. Loss of thrust has been discussed above, and the turning radius limitations can be determined
based on simulations, as has been shown in [49].

20

Chapter 5

Proposed Method

This work handles the problem of risk-aware trajectory planning for unmanned aerial vehicles.
The goal is to find a path for an aircraft for any pair of initial and final configurations, such that
the risk induced by potential failures would be minimized. This task is motivated by the increasing
potential of small unmanned aerial vehicles and by the hazards that are inherently tied to increasing
numbers of flying vehicles above urban areas. Even though air traffic is very safe (compared with
,for example, cars), with increasing numbers, accidents are bound to happen, and it is necessary to be
prepared for them. The planner proposed in this work offers not only risk minimization but also a fast
emergency-landing path selection in case of partial failure.

The proposed planner has two compact, distinct, and somewhat independent steps. First of those is the
creation of an emergency landing map, which is discussed in Section 5.1. The second is the risk-aware
path planner, which utilizes the emergency landing map to evaluate risks induced by non-fatal in-flight
failures. The risk-aware path planner is discussed in Section 5.2.

5.1 Risk-Minimizing Emergency Landing Trajectory Planner

The approach to the emergency trajectory selection presented here is based on the works [40,41]. The
planner is targeted for small unmanned aircraft and is easily deployable for urban planning scenarios,
where the terrain and small-scale obstacles (such as buildings) play a significant role, and thus it is
deemed most appropriate for the problem discussed in this work. The authors used an RRT*-based
algorithm to plan emergency-landing trajectories from any location to one of a number of given previ-
ously determined safe landing sites. A crucial part of the approach is the assumption that the aircraft
can quickly lose altitude if necessary. Therefore, the minimal possible altitude loss may be considered
for any maneuver. If the resulting altitude is higher than the landing site is, the altitude may be lost at
will. Thus, maximizing the altitude maximizes the flight range and the ability to avoid obstacles, and
the excess altitude does not inhibit the flight in any way. As a result, the altitude component of any
maneuver may be considered given and used as the cost of the RRT* nodes. This reduces the dimen-
sionality and thus significantly reduces the computational demands. The safe emergency landing sites
are then at the root of the tree. However, as a consequence, the planner cannot differentiate landing
locations with different risks.

Each edge in the tree represents a path between two configurations, and from any location in the tree,
a trajectory to a safe landing site is given by traversal of the edges to the root. A query to this tree
then attempts to connect the provided configuration to the tree. If the configuration is successfully
inserted, the safe emergency landing trajectory is extracted from the tree. If the connection fails, no
known emergency landing trajectory exists, and the configuration is considered unsafe.

In this work, the original RRT*-based algorithm is altered using discretization of the configuration
space C, which allows for the use of precomputed trajectories, and for the caching of collision check
results, significantly lowering the overall computational demands. With the method proposed here, it
is computationally feasible to find emergency trajectories from any point on the grid defined by the
discretization, and it is possible to consider any configuration on the grid as a potential emergency
landing site. This means that this approach allows for the use of this method not only to determine the

21

5. PROPOSED METHOD

safe altitude but also to determine the best possible emergency landing trajectory, even in case a safe
landing area is unreachable.

The overall emergency landing trajectory algorithm is summarized in Algorithm 2, described in detail
here (Sections 5.1.1 to 5.1.5). The result of this algorithm is an emergency landing tree, which can
be queried to obtain an emergency landing trajectory from any configuration within the collision-free
configuration space. The query is described in Section 5.1.5 and Algorithm 4.

The overall aim of the emergency landing tree is to present an efficient way of solving the Emergency
landing trajectory Problem 1. This computation needs to be computationally inexpensive because. In
case of loss of thrust, every second spent on the computation is a second a damaged aircraft continues
flying aimlessly and losing altitude. In addition, if the emergency planner is supposed to be used in the
risk-aware trajectory planner, the risk computation will have to be executed thousands of times. Thus
any complicated procedures would be computationally infeasible. Therefore, the desired outcome is a
structure that would allow for fast queries on any point in the configuration space C.

As mentioned above, a similar problem was addressed in [41]. However, the problem studied therein
is slightly different. The method proposed in [41] is only able to plan an emergency landing trajectory
that leads to an airport, that is, a safe emergency landing site. The planner proposed in this work
extends their work by considering unsafe landing locations, thus enabling the risk-aware planner to
use the risk induced by partial failures to evaluate the configurations.

A straightforward implementation of the RRT* algorithm for a problem similar to the one studied in
this work would use the risk of the landing site as the cost of the node, and whenever a new node is
inserted, set its cost equal to the cost of its parent. However, using the risk as the cost means that the
height of the node cannot be used as its cost, unlike in the approach from [41]. At every location,
there are potentially multiple altitude levels that each have a different risk associated with them and
thus cannot be represented by a single node. The state space would then have to be R3 × S, which in
conjunction with the vehicle constraints represented by (3.1), (3.2) and (3.3) becomes computationally
very demanding.

The approach presented in this work tackles this problem by introducing a regular discretization of the
whole configuration space C, an example of which is visualized in Figure 5.1. This allows for the use
of precomputed maneuvers instead of computing every maneuver anew. Furthermore, this discretiza-
tion also allows for the caching of the collision check results, further decreasing the computational
complexity. With this approach, it is computationally feasible to not only use the fully dimensional
configuration space C but also to evaluate all of the discretized nodes in the tree.

5.1.1 Tree Computation

The algorithm takes the collision-free part of the configurations space, Cfree, together with the terrain
T , and produces a graph G, where every vertex corresponds to a configuration q ∈ Cfree, and an edge
between two nodes represents a collision-free path between the two configurations.

The first step of the search tree computation is the discretization of the state space (Algorithm 2,
Line 1). The state space is uniformly sampled along the x, y, and z-axis and along the dimension of
the heading angle ψ, producing a set of samples Q, forming a grid. For any configuration q ∈ Q,
the risk is initially set to infinity. The sampling rate is further denoted by ∆d,∆z, and k, which
corresponds to the horizontal spacing, vertical spacing, and heading angle sample count, respectively.

Once the sampling is established, the maneuver pool Λ needs to be computed. Thanks to the dis-
cretization, each maneuver may be translated to another configuration and reused. Thus, it is not

22

5.1 TREE COMPUTATION

Figure 5.1: The proposed discretization of the configuration, together with an example of the ma-
neuver pool. The visualized discretization has ∆d = 200, ∆z = 20 and k = 4. Each arm of a cross
represents one of the configurations. Each of the yellow maneuvers represents one of the precomputed
maneuvers in the pattern pool. For the purposes of this visualization, the height component is scaled
up.

23

5. PROPOSED METHOD

Algorithm 2: Risk Map Creation
Input: Cfree – Collision-free configuration space.
Input: T – Terrain.
Parameter: m – Number of maneuvers.
Parameter: n – Number of nearest nodes.
Parameter: s – Number of emergency landing sites.
Parameter: ∆d,∆z, k – Sampling parameters.
Parameter: A – Aircraft model.
Output: Connection Graph G.

1 Q ← UniformSampling(Cfree, k,∆d,∆z)
2 for q ∈ Q do
3 RF (q)←∞
4 Λ← ManeuverPool (A,m, k,∆d,∆z)
5 QEL ← SelectLandingSites(s, T)
6 G← {V ← Q∪QEL,E ← ∅}
7 for ξ ∈ QEL do
8 Qn ← Near(ξ,Q)
9 for q ∈ Qn do

10 ifRF (q) > RF (ξ) then
11 if notAdmissible ((q, ξ) , T) then
12 continue

13 Parent(q)← ξ
14 RF (q)← RF (ξ)

15 for Qi ∈ Layers(Q) do
16 for q ∈ Qi do
17 for Γ ∈ Λ do
18 Γ← SetTarget(Γ, q)
19 qi ← Γ (0)
20 ifRF (qi) < RF (q) then
21 continue

22 if notAdmissible(Γ, T) then
23 continue

24 Parent(qi)← q
25 RF (qi)← RF (q)
26 E ← E ∪ (q, qi)

27 return G

necessary to compute new maneuvers and their samples in order to connect a new configuration to the
tree. Instead, a pool of potential flight patterns is precomputed at the beginning of the algorithm, and
those are all the maneuvers used during the computation. This is done on Line 4, and the procedure is
described in further detail in Section 5.1.2.

The next step of the initialization is the selection and connection of the potential emergency landing
sites to the tree. The considered landing locations QEL ⊂ T are selected on Line 5 based on the
risk of an emergency landing in that configuration. In addition, a number of airport runways may
be considered, which are added to the selected landing locations, and are considered safe in that

24

5.1 TREE COMPUTATION

Figure 5.2: A simplified 2D example of the maneuver translation. Grey points represent the sampled
configurations, blue arrow is the original maneuver, dashed lines represent the translation of the ma-
neuver. Darker green represents area, where the terrain is in collision with the sampled configurations.
As long as the original maneuver, and the translation are aligned with the sampling, so is the translated
maneuver.

their risk is lowest among the potential landing locations. The selection process is discussed more in
Section 5.1.3.

After the emergency landing locations are selected, it is necessary to connect them to the tree because
they are not part of the sampled space. Therefore, they have to be explicitly connected, and the
precomputed maneuvers cannot be used here. The connection itself is described on Lines 7 to 14. For
any potential landing site configuration q ∈ QEL, we try to connect it to all nearby samples in the
tree. For each of those samples, a gliding trajectory is computed from the sampled configuration to the
emergency landing configuration. If it is a feasible gliding trajectory between those two configurations,
the risk associated with the landing site is propagated to the sample. Otherwise, the connection is
impossible, and the trajectory is discarded.

After these steps are completed, the tree is initialized, and the nodes can be expanded using the
precomputed maneuvers. Every maneuver Γ ∈ Λ has the final configuration at the origin, that is,
qf = [0, 0, 0, ψi], and the initial configuration aligned with the sampling: qi ∈ Q. If a node being
expanded is q = [x, y, z, ψ] ∈ Q, each of the precomputed maneuvers may be translated by T(x,y,z),
and the resulting maneuver T(x,y,z) (Γ) connects some configuration q0 to q, and thanks to how the
maneuvers are computed, it holds that q0 ∈ Q. If the path T(x,y,z) (Γ) is collision-free, then the node
q0 is added to the tree, and the whole computation requires only simple integer arithmetic and the
collision check, which can be further simplified, as discussed later in Section 5.1.4. A simplified 2D
example of the maneuver translation is visualized in Figure 5.2.

The expansion is done in layers of the same height, from the lowest to the highest, as shown in
Lines 15 to 26. Since none of the maneuvers can gain height (a restriction imposed by the failure), it
is impossible for any maneuver to improve any of the samples in the same or lower height layer. Thus,
if the algorithm proceeds from the ground level upward, all possible nodes are expanded, and the risk
is (with respect to the maneuver pool) minimized.

For every node with finite risk in the layer being expanded, all the precomputed maneuvers are con-

25

5. PROPOSED METHOD

sidered. Each maneuver is translated so that the qf is located at the location of the node, and then the
initial configuration of the maneuver qi is checked. If the risk of the node at the initial configuration
is greater or equal to the risk already found for the target sample, the maneuver offers no improve-
ment. Otherwise, a collision check for that maneuver is performed. If there is no collision along the
maneuver, the risk is propagated to the higher node (qi of the maneuver).

5.1.2 Pattern Pool generation

3∆z

2∆z

1∆z

Figure 5.3: An example of the computed maneuver pool. This maneuver pool contains 108 maneu-
vers, generated with 8 heading samples, maximum distance of 3∆d. Each altitude difference layer
is distinguished by different color, lighter colors represent greater altitude level, and every line corre-
sponds to one maneuver. Final configuration of each of the maneuvers is in the center.

The precomputed maneuvers are an essential part of the algorithm, as they determine the optimality
of the result, and also because the computational complexity scales linearly with the number of con-
sidered maneuvers. Each of those maneuvers represents a flight pattern, which the damaged aircraft
can execute. Together, those flight patterns form a pattern pool, from which the maneuvers during the
expansion are taken, and no other maneuvers are considered. An example of a pattern pool is shown
in Figure 5.3.

Each of the generated flight patterns has to be aligned with the grid. The final configuration qf is at the
origin, while the initial qi configuration is at a multiple of the sampling size: x = k1∆d, y = k2∆d,
where k1, k2 ∈ Z. The heading angle ψ of each of those configurations is also set according to the
sampling, ψ = k3

k 2π, for some k3 ∈ Z, 0 ≤ k3 < k. The maneuver connecting the two configurations
is computed, and the optimal height of the initial configuration qi is determined based on the height
of the maneuver. However, since the qi has to be aligned with the sampling, the height also has to be
rounded up to a multiple of the sampling rate ∆z so that the initial configuration is aligned with the
uniform sampling.

26

5.1 EMERGENCY LANDING SITE SELECTION

In addition to the maneuver with the minimal possible height, all of the maneuvers obtained by scaling
the altitude component up to the limit of the airplane are also considered. This allows the paths
with a higher-than-minimal descent rate to be constructed, which connect the configurations in higher
altitudes.

5.1.3 Emergency Landing Site Selection

Algorithm 3: Emergency Landing Site Selection
Input: T – Terrain.
Input: n – Number of emergency landing sites.
Output: Selected landing sites QEL.

1 Function SelectLandingSites(T , n):
2 QEL ← ∅
3 Qcandidates ← T
4 for i = 1...n do
5 q∗ = argminq∈T R (q)

6 QEL ← QEL ∪ q∗
7 Qnear ← Near (q∗)
8 Qcandidates ← Qcandidates \ Qnear

9 return QEL

The last big subtask of the emergency landing trajectory tree computation left to address is the landing
site selection. For the initialization of the tree, it is necessary to select appropriate landing sites so
that as much of the configuration space C is covered and the risk is as low as possible. The emergency
landing sites QEL form a subset of the terrain: QEL ⊂ T . This is similar to the Maximal Covering
Location problem [46], in which the goal is to select a limited number of facilities, such that the
number of covered customers is maximized. Each potential emergency landing site can be seen as a
facility with cost as a function of its risk, and the samples are analogous to the customers.

However, there are two issues. The first issue is that determining which part of the state space is
covered would have to solve the full emergency landing tree for that landing site. The second issue is
that the set Maximal Covering Location problem is NP-hard.

Since the space covered by the potential landing location is unknown, an estimate is used instead.
Any emergency landing will be outclassed at a certain altitude level in that a path exists to an airport
runway or to a better emergency landing site. Because of that, the most important configurations to
cover are the closest ones to the terrain level. Therefore, instead of trying to approximate the covered
space, the whole problem is approximated by its projection to the xy plane.

The greedy algorithm for this variant of the Maximal Cover Location problem is described in Algo-
rithm 3. Firstly, the risk value of each of the terrain configurations is computed. Then, the least risky
location is selected, and all locations within a certain radius around it are removed from the selection
pool. This step is repeated until enough landing sites have been selected or until the pool is empty. The
radius and the target landing site count are hand-assigned parameters of this algorithm. An example of
the result of this algorithm is depicted in Figure 5.4, while Figure 5.4b depicts the radii around selected
locations that have been removed. As has been shown in [46], a greedy algorithm is an approximation
algorithm for Set Cover, Maximal Covering Location, and similar problems, and the algorithm for this
specific task does not exhibit any severely sub-optimal results.

27

5. PROPOSED METHOD

(a) 10 selected landing sites (b) Visualization of the areas blocked to fur-
ther selection by already selected landing lo-
cations

Figure 5.4: Visualization of the selection of potential landing locations, based on the risk map and
proximity to already selected landing locations. First image shows 10 selected landing locations, and
the risk map, while the second image shows the radii around the already selected landing locations.
Red dots represent the selected landing locations. Lighter areas represent areas, where an emergency
landing would pose high risk to people, and darker areas represent lower risk.

5.1.4 Collision Check

In order to determine whether a maneuver is feasible, it is necessary to check whether the maneuver
is collision-free. The common approach to a collision check of a maneuver is to sample points along
the maneuver. Then each of those samples is compared with the altitude level and obstacles at that
location to determine whether they are in collision. However, the total number of collision evaluations
may end up being quite high. For example, if there are 200 maneuvers in the pool, 50 × 50 samples
in the xy plane, 8 heading angle samples, and 30 height samples, the number of maneuver collision
checks performed would be around 1.5 million.

As previously stated in Chapter 3, in this work, the terrain T is considered to have no overhangs: for
any configuration q ∈ Cfree, any configuration qa directly above it, it holds that qa ∈ Cfree. Conse-
quently, since we have only a limited pool of maneuvers we have to perform the collision check on,
it is possible to cache the results of this operation. For a given maneuver and given location, once a
collision-free altitude level is found, any collision checks for that maneuver at a higher altitude must
necessarily also be collision-free.

A collision check lookup table is used, which holds the minimum known collision-free height of every
maneuver for every xy location and heading angle sample. Since the risk propagation proceeds from
the ground level upwards, once a maneuver translated to a location is found to be collision-free, no
further collision checks in this location will be necessary.

This is a trade-off between memory and time complexity. The lookup table saves a lot of computation,
but its size may be even greater than that of the tree itself, depending on the size of the maneuver pool.

28

5.1 EMERGENCY LANDING QUERY

Algorithm 4: Get Emergency Landing Trajectory
Input: q′ – Query configuration.
Input: G – Risk map.
Input: T – Terrain.
Parameter: n – Number of nearest nodes.
Output: RiskRq (q′).
Output: Emergency landing trajectory Γ.

1 Function GetEmergencyLanding(q′, G, T):
2 Qn ← Near(q′, G)
3 q∗ ← nothing
4 for q ∈ Qn do
5 if isAdmissible((q′, q), T) andRq (q) < Rq (q∗) then
6 q∗ ← q

7 Γ← ∅, q ← q∗

8 while q /∈ QEL do
9 Γ← Γ ∪ (q,Parent(q))

10 q ← Parent(q)

11 returnRq (q∗), Γ

5.1.5 Emergency Landing Query

Once the tree computation is done, the structure can be used to determine the risk induced by a non-
fatal failure and to plan an emergency landing trajectory in case of such a failure. The procedure is
very similar to the query in [41]. The query is described in Algorithm 4.

In order to determine the emergency landing trajectory, it is necessary to connect the configuration to
the tree. This is done by attempting a connection to every near node already connected to the tree. The
best connection (in terms of the risk) is kept. This part is described on Lines 4 to 6, Algorithm 4. Once
such a connection exists, the trajectory is obtained by recursively following the connections to the
parent nodes up to the root, as described on Lines 8 to 11, Algorithm 4. The risk of the configuration
is then equal to the risk of the node to which it is connected. The risk of that node is, in turn, equal to
the risk of the landing location to which the emergency trajectory leads.

5.2 Risk-Aware Planner

The overarching motivation behind the emergency landing path planner is to use it in a Risk-Aware
path planner in the risk assessment for partial failures. The proposed planner is an altered variant of
the planner from [35], that includes the emergency landing planner in place of the original safe emer-
gency landing planner. This section explains how the planner works and how the proposed emergency
planner is included in the planner.

The first step of the risk-aware planning algorithm is to create the emergency landing map introduced
earlier in this chapter in Section 5.1. The emergency landing tree is then used to find feasible emer-
gency landing maneuver for any given configuration and to determine the risk associated with the
emergency landing. After the emergency landing tree is constructed, the RRT* planner itself is ex-
ecuted. The resulting trajectory then minimizes the risk induced by any in-flight failure, both fatal
failure, which results in a ballistic fall, and a partial failure, which leaves the airplane capable of con-
trolled flight with limited maneuverability. The risk associated with a fatal failure may be any risk

29

5. PROPOSED METHOD

(a) Insertion step of RRT* and
the steering procedure. The ran-
domly generated node in red.

(b) The first part of the rewiring
step

(c) The second part of the
rewiring step

Figure 5.5: The sequence of steps executed during insertion of a new node to the RRT* tree. Green
node represents the newly added node, dashed arrows represent considered connections, wavy arrows
represent the original state of the tree.

function that estimates the risk for a given configuration. The full risk function used in this work is
described in Section 5.2.1.

The risk-aware planner incrementally builds an RRT* planning tree in the same way as described
in Algorithm 1. A new node is randomly generated, and if it is admissible, it is inserted into the
tree by connection to the nearest node already in the tree. A node is considered admissible if it
is not in collision. If the randomly generated configuration is too far from the nearest node, the
steering procedure generates a new one instead, as described on Line 5 in Algorithm 1. The originally
generated node is replaced by a configuration sampled on the connecting path closer to the selected
parent node. This configuration and the path connecting it to the parent node are inserted instead of
the original randomly sampled configuration. This step is visualized in Figure 5.5a.

Once a node is successfully inserted, the algorithm checks for any potential improvements to the tree
it might enable. Two types of improvements might be possible. Firstly, among the near nodes, there
might be a better parent node for the newly inserted node available, as shown in Figure 5.5b. This
is checked by creating the connection from each of the near nodes and evaluating the risk of this
connection. If the risk of the connection plus the risk of the potential parent node is lower than the
current risk of the new node, the better parent is assigned. The second potential improvement is that
the newly added node offers a better path to a node already in the tree. The rewiring procedure checks
whether the newly added node can yield lower risk if assigned as a parent to any of the near nodes.
If any such nodes exist, the new node replaces the original parent, and the risk for those nodes is
recalculated and propagated to any potential children nodes. A comparison of the connections to the
near nodes is depicted in Figure 5.5c.

30

5.2 RISK ESTIMATE

5.2.1 Risk Estimate

The risk-aware trajectory planner needs some risk metric to evaluate its trajectories. The metric used
in this work is similar to the one used in [35], which is the number of people killed. Given a trajectory
Γ : [0, 1] → Cfree, the risk induced by total loss of control resulting in an uncoordinated crash is
formulated as follows:

R (Γ) =

∫ 1

0
R0 (Γ (t)) dt, (5.1)

whereR0 (.) is some risk functionR0 : C → R, which quantifies the risk at a given configuration.

The risk is calculated as the number of people killed in case of a failure. It needs to be calculated for
every considered failure separately to reflect the probability of such failure occurring. Two types of
failures are considered, the risk induced by a fatal failure, resulting in an uncontrollable ballistic fall,
and a partial failure, which prevents the aircraft from gaining altitude and inhibits its maneuverability
options. The set of considered partial failures is denoted F, and F denotes a failure (both fatal and par-
tial). Both types of failures are described in further detail in Chapter 4, and the following paragraphs
describe how the risk is computed.

For any given configuration q, the risk induced by a failure is determined based on the location the
aircraft crashes on, the impact energy E, and the impact angle γ. When a failure F occurs, the risk it
causes is then given by

RF (q) =

∫
T
pimp (x|F , q) Causalities (x, E, γ) , (5.2)

where Causalities is a function determining the number of casualties based on the location, impact
energy, and impact angle. The ground risk function Causalities is determined based on [50]. The
probability of hitting a person is estimated as Density (x, y)Aexp, where Density denotes the popula-
tion density, and Aexp denotes the area exposed to the crash. This is then multiplied by the probability
of the impact being fatal, which leads to Casualties (x, E, γ) = Density (x)Aexp · pfatal, where is the
fatality rate pfatal computed from the sheltering factor, and the impact energy E = 1

2m · v
2
imp.The

exposed area is computed from the size of the aircraft, from the average person’s height, and from the
angle of descent during the crash.

For any F ∈ F, the location of the impact is the target location of the selected emergency landing
trajectory. Therefore there is no uncertainty, and (5.2) simplifies to Casualties (x, E, γ), where x
is the selected landing location, E = 1

2m · v
2
imp is computed from the speed of the aircraft (which is

considered constant within the maneuver), and γ is estimated as the optimal gliding angle.

Following a critical failure, the airplane continues on a ballistic trajectory until it hits the ground. The
uncontrolled fall is described by the equation mv̇ = mg− 1

2cρS‖v‖v, where mg denotes the gravity
vector and 1

2cρS‖v‖v denotes the Newton’s drag force. However, the exact location of the impact
is impossible to determine because there are too many factors at play, and the equation cannot be
exactly evaluated. Therefore, an impact probability map based on the ballistic fall is used instead. The
uncontrolled fall formulation has been adopted from [35].

5.2.2 Using the Emergency Landing Planner

The risk-aware planner with safe emergency landing guarantee, as presented in [35], computes tra-
jectories that cannot enter areas that do not have a safe emergency landing site sufficiently close.
However, this might be too restrictive. If there are not enough safe emergency landing sites, or if sev-
eral non-fatal failures are to be considered, the planning space above the safe altitude might become

31

5. PROPOSED METHOD

too constrained. Therefore, it is desirable that the risk-aware planner might consider even trajectories
that are not completely safe with respect to partial failure. However, the overall risk of the trajectory
must be minimized, even including risk induced by partial failure.

The emergency landing trajectory planner proposed in this work offers a way to evaluate the risk
induced by partial failures. For any given configuration, it provides an emergency landing trajectory
that is safest within the limits of the computed emergency trajectory tree. If the examined configuration
is above the safe altitude, the query will return a safe landing trajectory. If, however, the configuration
is below the safe altitude, the query will still return an emergency landing trajectory that minimizes the
induced risk. If this emergency landing planner is employed, the safe altitude restriction is removed
from the admissibility check, and the risk induced by partial failure is computed together with the risk
induced by fatal failure.

The new risk function retains the risk caused by the total failure and adds the risk induced by the
partial failure on top of that, as described in (3.5) (repeated here for the sake of completeness),

R (q) =
∑
F∈F

(pFRF (q)) + pfatalRq (q) , (5.3)

where Rq (.) is the risk of a fatal failure, RF is the risk induced by partial failures both defined
by (5.2), and pF is the probability of failure F , estimated based on the publicly available aviation
accident data [6].

The risk associated with partial failure RF (.) is computed using the emergency landing tree pre-
sented in this work. However, the query presented in Algorithm 4 is still quite computationally
demanding, and the number of times it needs to be computed is so high that the total computa-
tional requirements of the risk planner become too excessive, especially for denser trees. When
one node is added to the risk-planning tree, the number of trajectories that need to be evaluated is
given by the number of nodes returned as near during the initial parent selection plus the number
of nodes considered during the rewiring procedure. For each of those trajectories, the risk assess-
ment has to be called at least ∆d intervals, where ∆d is the sampling rate. This leads to hundreds
of risk evaluations to add a single node. Even though it is feasible, the computational times would
be hours instead of minutes. Therefore, a simplified variant of Algorithm 4 is used, which esti-
mates the risk associated with the given configuration by considering the risks of the closest con-
figurations in the emergency landing tree. The simplified query is presented in Algorithm 5, and
its accuracy is further discussed in Chapter 6. The query searches all directly neighboring config-
urations in the tree. The neighboring nodes are considered in all dimensions and up and down, re-
sulting in (up to) 16 different samples. Since all of those nodes are in the tree, their risk is known.
The maximum among their risks is considered as the estimated risk value of the node. The Neigh-
bors procedure returns all the direct neighbors in every dimension to each side, which is defined as{
qn = [xn, yn, zn, ψn] | qn ∈ G, |x− xn| < ∆d, |y − yn| < ∆d, |z − zn| < ∆z, |ψ − ψn| < 2π

k

}
, that

is, every configuration in the tree, which has each of its components closer than the sampling to the
queried configuration.

This allows for a computationally very efficient emergency landing risk estimate that can be used
during the planning, and in case of an actual in-flight failure or in advance once the risk-planning
is completed, the full query described in Algorithm 4 can be executed only on the configurations,
that the aircraft actually visits. The number of queries necessary to cover a planned path of length 5
kilometers, considering sampling of 50 meters (a similar value to the one considered for the insertion
computation), is then 100, which is still much less than the insertion of even a single node to the RRT*
tree would need.

32

5.2 USING THE EMERGENCY LANDING PLANNER

Algorithm 5: Get Emergency Landing Risk
Input: q = [x, y, z, ψ] , – Query configuration.
Input: G – Risk map.
Input: T – Terrain.
Output: RiskRF (q).

1 Function GetEmergencyLandingRisk(q, G, T):
2 Qn ← Neighbours (q)
3 R = maxq∈Qn RF (q)
4 returnR

33

5. PROPOSED METHOD

34

0 1 2 3 4
x [km]

0

1

2

3

4

y
[k

m
]

(a) Altitude map

0 1 2 3 4
x [km]

0

1

2

3

4

y
[k

m
]

(b) Risk map

Figure 6.1: Visualization of the used testing data. Darker colors represent lower values. The altitude
map includes obstacles and buildings. Yellow dots represent the considered safe emergency landing
locations. The risk data is based on sheltering factor and population density.

Chapter 6

Results

This work presents a risk-aware trajectory planner, which minimizes the risk induced by in-flight
failures. Two types of failures are considered: a fatal failure, which results in an uncontrollable
crash, and a partial failure, which inhibits the maneuverability of the aircraft, but the aircraft is still
controllable, and an emergency landing is possible. The planner utilizes an emergency landing tree,
which is used to determine an emergency landing trajectory following a partial failure. Such a tree
is constructed for every different considered partial failure. During the planning step, the tree is used
to estimate the risk associated with each failure, and after the path is constructed, it can be used to
determine the optimal emergency landing trajectory at any given point.

The presented method was evaluated on a number of different configurations of the planner. This
chapter presents a summary of the achieved results, an analysis of the computational complexity, and
visualizations and examples of the computed trajectories. It is separated into two parts. Section 6.1
describes the properties of the emergency landing planner, while Section 6.2 handles the evaluation of
the risk-aware planner.

The data used for the computation and risk assessment are taken from publicly available databases.
The map is taken from OpenStreetMap [51], terrain data from [52], the population density from [53],
and the sheltering factor data is computed using the method proposed in [50]. The map encompasses
a 5 km× 5 km square above the Prague city center. In this area, three safe landing locations are
considered, each approachable from two different directions. Areas considered as completely safe
during the planning phase (shown as yellow dots in Figure 6.1a) do not correspond to actual airports,

35

6. RESULTS

but they are selected in areas with low population density and low risk overall, based on an estimate of
locations, which could in the future hold facilities for UAV landing. This selection is arbitrary, and the
computational complexity of the planner should not be affected. The altitude map and the computed
risk map are shown in Figure 6.1a and Figure 6.1b, respectively. The parameters of the aircraft model
are based on the Cessna 172, a common small aircraft (adopted from [40]). The proposed method has
been implemented in the Julia programming language [54], and the experiments were performed on a
single core of the Intel Xeon Scalable Gold 6146 CPU.

6.1 Emergency Landing Tree

The emergency landing tree proposed in this work utilizes a discretization of the configuration space,
which allows it to greatly simplify the individual steps of the RRT* planning algorithm. This part
of the chapter discusses the properties of this approach. An analysis of the quality of the resulting
emergency landing trajectory tree is provided by means of comparison with the safe altitude computed
by the method proposed in [41], further denoted as reference solution. However, the reference solution
offers only safe altitude assessment, as opposed to the proposed method, which can plan and evaluate
emergency paths in situations where a safe emergency landing is not possible. To the best of the
authors’ knowledge, there is no more appropriate method that could be used as a reference point.

The evaluation of the emergency landing tree computation has been performed for a failure of total
loss of thrust. This leads to pitch angle limitation θmax ≈ −4.9◦ for a straight path segment, and
θmax ≈ −−13.1◦ for the minimal turning radius turn.

Thanks to the discretization, the whole algorithm is fully deterministic. The influence of the user-
selected parameters of the discretization and the algorithm as a whole is presented as well. Lastly, the
computational complexity of the algorithm is discussed. Both time complexity and memory require-
ments are considered, as the emergency landing tree can become quite large.

6.1.1 Quality of the Solution

The quality of the solution is evaluated by comparison with the reference solution [41]. The safe
altitude level used for the visualizations is determined by taking the minimum of the safe altitude over
all the considered heading angles, both for the reference solution and for the proposed method. For
the proposed method, exclusively samples on the discretized grid were considered.

The reference solution provides asymptotically optimal solutions, as it uses the RRT* algorithm, and,
in terms of the safe altitude, any maneuver added into the tree is optimal. In comparison, even though
the proposed method is also based on the RRT* algorithm, it uses maneuvers that have sub-optimal
altitude profile, that is, maneuvers, which could be executed with lower altitude loss. This is a conces-
sion necessary for the discretization to work. Consequently, in comparison to the reference solution,
the proposed method yields slightly worse results, as is shown in Figure 6.2. However, the proposed
method is able to minimize the risk of emergency landing trajectories that are below the safe altitude
level, which the reference solution is unable to do.

Figure 6.2 shows the difference between the proposed method and the reference solution. Every value
represents the difference between the two altitude levels in meters. Note that any values above 30 are
not differentiated. At some values, the proposed method was unreasonably high, which corresponds to
edge case locations caused by the safe airport being very close. This is likely because the assumption
that the aircraft can lose altitude at will allows the reference solution to find trivial paths. In contrast,
the proposed method searches for maneuvers satisfying the altitude component constraints, which may

36

6.1 QUALITY OF THE SOLUTION

0 1 2 3 4
x [km]

0

1

2

3

4

y
[k

m
]

(a) Heading samples k = 8

0 1 2 3 4
x [km]

0

5

10

15

20

25

30

A
lt

it
ud

e
D

iff
er

en
ce

zpr
op

os
ed

sa
fe

−
zre

fe
re

nc
e

sa
fe

(b) Heading samples k = 16

Figure 6.2: Comparison of the safe altitude levels by the proposed algorithm and by the reference
solution. Because the discretization of the proposed method forces sub-optimal maneuvers, in terms of
the safe altitude the proposed method is universally slightly worse. The figures depict the results com-
puted with parameters ∆d = 50 m, ∆z = 5 m, and the pattern pool area of 300 m× 300 m× 30 m.
Lower detail is the result with k = 8, and higher detail with k = 16

0 1 2 3 4
x [km]

0

1

2

3

4

y
[k

m
]

1 2 3 4 5 6 7 8 9 10 11 12
Maneuvers per path

(a) Length of the paths

0 1 2 3 4
x [km]

0 1 2 3 4

(
zproposed

safe − zreference
safe

)
/lman

(b) The relative optimality gap

Figure 6.3: Optimality with respect to the maneuver length. Each maneuver adds some unnecessary
altitude loss, because the altitude component has to be aligned with the sampling. The total unnec-
essarily lost altitude can be estimated based on ∆z and the number of utilized maneuvers, which is
shown in Figure 6.3b. Notice, that a vast majority of the values is below ∆z. The number of used
maneuvers per emergency landing path is displayed in Figure 6.3a, while the relative optimality is
displayed in the right figure. Notice, that the relative values are overall very low and radially almost
uniform. Computed for the tree shown in Figure 6.2b.

37

6. RESULTS

lead to helical paths or similar maneuvers.

The suboptimality is, to some extent, predictable because it is almost linear with respect to the number
of used maneuvers and the height of the tiles ∆z, as is shown in Figure 6.3difference. Each maneuver
introduces a little bit of unnecessary altitude loss. The optimality gap of the resulting path is at
least the same as the combined optimality gap of the individual maneuvers. The exception is when
there are obstacles that the aircraft must fly over, which thus increase the minimal safe altitude. The
unnecessarily lost altitude during a single maneuver is not greater than ∆z, because if it was higher,
a lower altitude maneuver would also be feasible. However, in the context of the full path, the sub-
optimality might be worse because the discretization forces the path to follow a sequence of waypoints,
which are unlikely to be the optimal path. This is illustrated in Figure 6.3, which displays the length
of the emergency landing paths measured in number of used maneuvers and compares the optimality
of the path with this metric. Notice that the values in Figure 6.3b are radially almost uniform and that
the majority of the relative values are only around three.

The comparison of the safe altitude levels depicted in Figure 6.2 exhibits some other interesting pat-
terns. The whole image is visually divided into three areas, which correspond to the three safe emer-
gency landing sites that are considered in this specific scenario. Each of the emergency landing paths
leads to one of those safe landing sites, which creates the gradient pattern.

More interesting patterns emerge within those sectors as well. The suboptimality of the proposed
method is caused by the precomputed maneuvers being suboptimal in terms of the altitude lost, which
is a concession necessary to employ the discretization. Similarly, the maneuvers connecting the poten-
tial landing sites to the discretized grid are (likely) suboptimal. However, some of the maneuvers are
better than others, and thus the paths utilizing the better maneuvers are in terms of the altitude closer
to the reference solution. This is obviously greatly dependent on the selected attributes, however, not
necessarily in a straightforward manner. It is not even safe to say that decreasing the vertical sampling
rate ∆z will improve the solution because if a maneuver was near-optimal at a certain sampling rate,
further decreasing the sampling rate would make it worse (unless the lower sampling rate is a multiple
of the higher one).

In the case shown in Figure 6.2b, the most optimal straight maneuvers are the longest possible ma-
neuvers and the diagonal ones and the ones in the direction 1+2n

8 π, for some n ∈ N (the diagonal
maneuvers have slightly worse optimality gap, but are also slightly longer). Any locations reachable
by paths that lead in this direction will have a safe altitude closer to the reference solution than others.
The bigger the deviation from this direction, the greater the difference to the reference solution. This
creates the diagonal patterns visible in Figure 6.2. Additionally, even shorter maneuvers in this direc-
tion are worse. This creates the repetitive patterns along the diagonal lines and the cross-hatching-like
quality of some of the sectors. Compare this with Figure 6.2a, which shows the same comparison,
but for emergency landing tree computed with lower heading angle sample count. Areas, which are
near-optimal in the higher-resolution tree, are among the worst in the lower-resolution tree because
the maneuvers in their direction are not considered. Note that this is a consequence of the maneuver
selection, and different parameters would yield very different patterns.

6.1.2 Multiple Considered Landing Locations

The improvement the proposed method offers in comparison to the reference solution is that it is
computationally feasible to consider multiple landing locations with different associated risks. This
is important because in most urban areas, dedicated safe landing locations, such as airports, are not
usually very common and tend to be further out from the center of the city. If it is required that the

38

6.1 MULTIPLE CONSIDERED LANDING LOCATIONS

Figure 6.4: Examples of resulting trajectories, returned by the emergency landing query on a se-
quence of configurations, that differ only in their height. Red line represents a safe landing site,
squares represent the considered unsafe landing locations, and the color indicates the associated risk,
where darkest is the riskiest.

aircraft is able to reach one of those landing locations, the viable planning space might be in some
areas much too restricted.

The consideration of unsafe landing locations allows the configurations below the safe altitude to be
connected into the tree. Consequently, the emergency landing trajectory can be computed even for
those points. This is visualized in Figure 6.4, where a number of points directly above each other are
considered. As the altitude increases, better landing locations become available, up to the point where
the highest configuration is connected to a safe landing location. Each of the unsafe landing locations
has a risk associated with it, which can then be used to estimate the risk of an emergency landing on
that location. The risk is not precise because the impact energy and the impact angle are not known at
the time of selection of the landing sites.

In the experiments, the safe landing locations are considered to be runways, which are only approach-
able from certain directions, while the unsafe ones are considered from all k directions within the
discretization. In the evaluated scenarios, there were three runways considered safe landing locations,
each approachable from two opposite directions, as visualized by the yellow dots in Figure 6.5. The
minimal distance between two selected unsafe landing locations was fixed at 500 meters for each of
the scenarios (the distance to the closest safe landing location was disregarded because of the restric-
tion on the direction it is approached from). Examples of the selection based on the number of selected
landing locations are shown in Figure 6.5.

If only the three safe landing locations are considered, about 1
2 of the configurations are above the safe

altitude level, as shown in Table 6.1. However, if unsafe landing locations are considered, the part of
the configuration space that is connected to the emergency landing tree covers most of the samples
above the terrain level. Each configuration connected to the tree has an available emergency landing
trajectory, and the risk estimate for this trajectory is known. Increasing the number of selected samples
pushes the threshold further down towards the terrain level, as shown in Table 6.1, up to about 80% of

39

6. RESULTS

(a) 10 selected landing locations (b) 50 selected landing locations (c) 75 selected landing locations

Figure 6.5: Selected landing locations. The red dots represent the unsafe landing locations, and are
considered in all of the directions dictated by the discretization. The yellow dots represent the safe
landing locations, and have an associated direction. The landing locations are selected so that the total
covered area is maximized. In this setup, the minimal distance between them was fixed for each of the
selections, which makes it so that the selection of landing locations is a superset of any selection with
less landing locations. The underlying map shows the risk estimate.

Table 6.1: Percentage of connected samples with respect to the number of considered landing lo-
cations, computed on trees with ∆d = 50 m, ∆z = 5 m, k = 8, and 3 bi-directional runways. The
pattern pool area was selected at 300 m× 300 m× 30 m. The column Dominated denotes how many
of the selected landing sites are dominated, and as such do not contribute anything to the solution.
Note, that the percentage of safe locations greatly depends on the selected maximum altitude.

Landing Sites Terrain Samples Connected Unconnected Percentage Dominated
[-] [%] [×106] [×106] [%] [-]

0 3.8 4.1 47 0
10 5.4 2.5 68 1
25 7.77 6.0 1.9 76 5
50 6.3 1.6 78 8
75 6.2 1.6 79 13

40

6.1 COMPUTATIONAL REQUIREMENTS

Table 6.2: The properties of the resulting trees, based on the selected parameters.

Parameters Time Measurement Tree properties Memory Requirements

k ∆d ∆z Total Connect Expand Samples Pool Nodes Total
[m] [m] [h:min] [h:min] [h:min] [×106] [-] [MB] [MB]

8
100

10 0:05 0:02 0:03 1 112 8 27
5 0:14 0:07 0:06 2 160 16 25

50
10 0:45 0:13 0:32 4 444 32 107
5 1:39 0:25 1:14 8 628 64 169

16
100

10 0:11 0:07 0:04 2 440 16 54
5 0:28 0:15 0:13 4 656 32 88

50
10 1:42 0:28 1:14 8 1828 64 655
5 4:28 0:50 3:37 16 2724 128 1008

the configuration space covered.

Figure 6.6 shows a cut of the tree through the xz plane. The colors show, what is the value of the
configuration: safe, unsafe, unconnected, or terrain. Figure 6.6b and Figure 6.6c display cuts of two
different trees, showing how the number of selected landing sites affects how much of the configuration
space is connected to a landing location and thus has known risk associated with it. The safe altitude
is the same for all of the computed trees because the considered safe emergency landings remain the
same and because the only parameter that changes is the number of unsafe landing locations. Any
path to a safe emergency landing exists regardless of any considered unsafe landing locations.

Numerically, this is shown in Table 6.1. Since the landing locations are selected in advance, and their
coverage has to be estimated, it may happen that some have very little contribution or no contribution
at all. The column Dominated shows how many of the selected landing locations were completely
dominated, that is, no configuration was connected to them. This may happen because the terrain and
obstacles around them make it hard to reach or because there is a landing location with lower risk
close enough (most likely a combination of those factors).

6.1.3 Computational Requirements

The proposed method was evaluated with a number of different parameter configurations. This sec-
tion discusses the influence of the parameter selection on the time and memory requirements of the
algorithm. The results of some of the experiments with respect to the complexity are summarized in
Table 6.2.

6.1.3.1 Time Complexity

The algorithm is evaluated based on its time requirements and analyzed as to which parts are the most
computationally intensive and why. The influence of the individual parameters with respect to the time
requirements is discussed in depth based on the measurement data.

Table 6.2 offers an overview of the time and memory requirements based on the selected parameters,
as well as the size of the pattern pool and the number of samples. It shows that there are two parts of
the computation that make up most of the run time. First of those is the connection of the considered
landing locations into the tree. This includes both the safe landing locations and the unsafe ones. The

41

6. RESULTS

0 1 2 3 4
x [km]

0

1

2

3

4

y
[k

m
]

Cut

(a) Cut location

0 1 2 3 4
x [km]

175.0

275.0

375.0

475.0

575.0

z
[m

]

Safe
Unsafe
Unknown
Terrain

(b) 5 unsafe landing locations

0 1 2 3 4
x [km]

175.0

275.0

375.0

475.0

575.0

z
[m

]

Safe
Unsafe
Unknown
Terrain

(c) 75 unsafe landing locations

Figure 6.6: The visualization of the vertical cut of the tree. The y axis position was fixed, and the
image shows the xz plane, colored according to the connected emergency landing locations. The safe
altitude is colored with the lightest color. Darkest color represents terrain. Unsafe refers to locations,
that are connected to an unsafe one, whereas Unknown refers to locations, that are not connected to
any emergency landing at all.

42

6.1 MEMORY REQUIREMENTS

0 20 40 60 80 100 120
Time [min]

0

10

25

50

75
La

nd
in

g
Si

te
C

ou
nt

Rest of the Computation
Connect Roots
Expansion

Figure 6.7: Time requirements with respect to the number of selected landing locations, as measured
on a tree with ∆d = 50 m, ∆z = 5 m and k = 8.

second computationally intensive part of the computation is the expansion itself. The other parts of the
computation include pattern pool generation, landing site selection, and risk computation, however, in
the context of the overall time complexity, all of these are irrelevant.

The time requirements of the connection of landing locations depend on several factors. Most impor-
tantly, it depends on the number of selected landing locations. The connection time is mostly linear
with respect to the number of selected landing locations, as is shown in Figure 6.7. However, if the
number of landing locations is high, it may happen that a some samples could be covered by multiple
landing locations. In that case, the connections to the worse of the two landing locations will have
been outclassed, even before they are computed. Such a connection would not improve the tree and is
skipped entirely, which may slightly improve the time requirements of the connection step.

Another very important factor influencing the complexity of the connections is the Near function
(Algorithm 2, Line 8). The Near function searches the same area the pattern pool covers because this
is the area that all of the other expansion steps cover. For every near sample, a connection must be
computed and checked for collisions. Thus, smaller area and hoarser sampling greatly reduces the
time necessary to connect the landing locations.

The second computationally intensive step is the expansion of the tree itself. The most important
factors here are the number of expanded nodes and the number of maneuvers that are considered
during the expansion. The size of the pool, as stated in Table 6.2 represents the number of nodes
needed to expand a location, not a node. Thus, the expansion is mostly dependent of the number of
maneuvers in the pool and the number of locations. Importantly, the expansion is almost independent
on the number of selected landing locations, as shown in Figure 6.7. The difference shown is partially
due to the fact that a higher number of landing locations leads to more established connections in the
lower parts of the tree, but the role of variance is hard to estimate.

Surprisingly, the collision check caching has very little effect because the vast majority of the evaluated
maneuvers are pruned before the collision check itself even occurs. The collision checking amounts to
only about 4 % of the computational time (with the caching). Even though the caching improves the
complexity of the collision check quite significantly, as shown in Table 6.3, the collision check itself
is not significant in the scope of the whole computation.

6.1.3.2 Memory Requirements

Since the whole emergency landing tree has to be stored in memory, the proposed method has also
quite significant memory requirements. However, several optimizations have been used that signifi-
cantly reduce the necessary memory. This section shortly discusses this aspect of the proposed method.

43

6. RESULTS

Table 6.3: The number and timings of the collision checks, based on a tree constructed with ∆d =
50 m, ∆z = 5 m, and k = 8, and pattern pool area 300 m× 300 m× 30 m

Type Evaluations Single Query Time Total Time
[×106] [ns] [s]

Full Check 5.1 20 000 103
Cached Check 5.9 360 2

There are two parts of the emergency landing tree that make up the majority of the memory require-
ments of the whole structure. The first one is the tree structure itself, that is, the nodes and the
connections. The second is the collision check lookup table.

In order to store the emergency landing tree in memory, the nodes in the tree have to somehow be
stored. Each of those nodes holds two important pieces of information: its position and the connection
to the parent. However, the discretization of the configuration space enables significant simplification.
Firstly, since the discretization is regular, the nodes can be stored in a four-dimensional array, which
captures the location and orientation of the node in the configuration space. Secondly, since only a
relatively small number of maneuvers is used, instead of storing the connection to the parent node,
it is possible to store only the index of the maneuver in the precomputed maneuver pool. Thus, the
node is well-defined by a single integer and its location in the array. However, since multiple risks are
considered, also the rank of its risk is stored. This is not strictly necessary because the risk can be found
by traversing the tree up to the root, however, this means that the risk estimate can be directly read
from the node itself. In total, for every node, two integers have to be stored. For example, the finest
sampling experiment had the sampling rates ∆d = 50 m, ∆z = 5 m, k = 16 on a 5000× 5000 m
map, reaching up to 500 m into the air. This amounts to 100× 100× 100× 16 = 16 × 106 nodes,
and the memory necessary is then 128 MB, assuming 32-bit integers.

A similar estimate can be made for the collision check lookup table, but it depends on the number
of maneuvers in the pattern pool Λ, which has no straightforward estimate. Assuming the same dis-
cretization parameters as above, the number of stored values is then 100× 100× 16 × |Λ|. For the
number of patterns |Λ| = 1200 and 16-bit integers, this is 384 MB. However, the number of precom-
puted patterns might be as low as 100, and as high as 10 000 or more, which makes the size much
harder to estimate. Note that the collision check lookup table could be stored more efficiently at the
cost of access complexity. Importantly, the collision check lookup table is only useful for the expan-
sion of the tree. Once the tree is fully expanded, it is unnecessary and may be discarded. The tree can
then be saved with very little memory overhead.

6.1.4 Risk Estimate

The emergency landing tree is used to compute emergency landing trajectory in case of a partial failure
and to determine the risk induced by such a failure. The connection is established by attempting to
connect the point to all the near nodes until a feasible connection is found. However, for the purposes
of the risk-aware trajectory planner, the full query is too complex, and therefore the simplified version
is used.

Instead of computing the optimal emergency landing trajectory, the simplified query considers all the
surrounding nodes. The estimated value is then the worst case across those points. This estimate is
computationally very simple.

In Table 6.4, the simplified query is evaluated based on the comparison to the true risk value obtained
by the full query. The comparison is performed on a tree with a high number of considered unsafe

44

6.2 RISK-AWARE PLANNING

Table 6.4: Comparison of the two queries, based on randomly sampled configurations. Computed
on a tree with 75 unsafe landing locations considered and ∆d = 50 m. Column Connected shows,
how much of the random queries had been successfully connected to the tree by the full query, and the
columns Safe shows, how much of the configurations were above the safe altitude level. Columns Un-
derestimated and Overestimated show, how often the simplified query underestimates or overestimates
the risk value. Each measurement is done on sample size 1000.

Above Terrain Underestimated Correct Overestimated Connected Safe
[m] [%] [%] [%] [%] [%]

50 m 0.6 74.2 25.2 57.3 0.3
75 m 0.2 64.3 35.5 84.1 1.8
100 m 0 64.6 35.4 96.5 6.6
150 m 0 81.3 18.7 99.0 16.7
200 m 0 85.5 14.5 98.3 33.9

landing locations on different altitude levels. According to the measurements, the simplified query
returns, in the majority of the cases, the same result, and there is only a very small number of samples,
for which the simplified query underestimated the risk. Furthermore, the accuracy of the simplified
query increases as the altitude increases. This is caused by the fact that higher above ground, the num-
ber of relevant landing location decreases because the ones with greater risk become outclassed. This
also causes the slightly higher accuracy very low to the ground, as much more of the configurations
there were impossible to connect altogether.

6.2 Risk-Aware Planning

The risk-aware planner is implemented using the RRT* algorithm with the risk of the trajectory as the
cost function. The risk is estimated as the sum of risks induced by the fatal failure and the considered
partial failures (5.3). The RRT* algorithm is executed in a four-dimensional configuration space
C = R3 × S, where each configuration consists of the three-dimensional position, [x, y, z] ∈ R3,
and the heading angle ψ The number of near nodes considered during the parent selection and the
rewiring step was set to 10, and the risk estimate was determined based on d = 10 m sampling of the
path.

The planner was tested on three different pairs of starting and goal configurations. One path was
shorter, the configurations about 1 km apart, and the other two were about 3 km apart. The config-
uration pairs are visualized in Figure 6.8. Each experiment was run three times. In addition to the
loss of thrust failure, two other failures are considered, in which the loss of power leads to a control
surface failure, which in turn inhibits the maneuverability by increasing the left or right turning radius
five-fold. The multi-failure scenario is meant to demonstrate the capabilities of the emergency landing
planner and is not based on actual technical issues of the Cessna aircraft.

6.2.1 Resulting Trajectories

The inclusion of the emergency landing planner allows the risk-aware planner to propose trajectories
that are below the safe altitude level while not disregarding the potential risk this induces. This also
means that the planner can find and optimize trajectories to and from locations that are below the safe
altitude level.

The utilized RRT* algorithm does not have a hard terminating condition. It can run indefinitely and

45

6. RESULTS

0 1 2 3 4
x[km]

0

1

2

3

4

y[
km

]

Dataset A
Dataset B
Dataset C

Figure 6.8: Locations of the initial and goal configurations. Each color represents one pair.

0 250 500 750 1000 1250 1500 1750
Node Count

0.975

1.000

1.025

1.050

1.075

1.100

1.125

R
el

at
iv

e
R

is
k

Dataset A
Dataset B
Dataset C

Figure 6.9: The risks of the trajectories found by the risk planner, relative to the best found trajectory
for that dataset. Each color represents one dataset, and each line represent a separate run of the risk
planner. The results, where only the first found result was considered, are not shown.

keep improving the known solution. This means that the quality of the solution is dependent on how
much time the planner is granted. Therefore, for each of the configuration pairs, three experiments
were run (each repeated three times). One, in which the first found solution was returned as the result,
and two, where the planner ran for a predetermined time, 30 min and 1 h. The summary of results of
those experiments is presented in Figure 6.9.

Interestingly, for most of the runs, once a solution was found, it was never improved, and the first
found results were generally very close to the best ones (the worst of the results were about 1.1 of
the best found result, as seen in Figure 6.9). This is likely caused by the fact that the number of
established nodes is relatively low with respect to the dimensionality and size of the configuration
space. The risk for the individual runs of the planner was relatively consistent in that no single run
resulted in a significantly riskier path than any of the other ones, and only one experiment did not
finish in the provided time frame. On the other hand, the time necessary to find that solution varied,
in that in some runs, the first solution was found within a few hundred iterations, and in some cases,

46

6.2 RESULTING TRAJECTORIES

Figure 6.10: An example of a trajectory computed by the risk-aware planner. The start and target
configurations (Dataset B) are depicted in blue. Other points are drawn in yellow if they are above the
safe altitude or red if they are below the safe altitude. The lines are colored according to the risk to
goal, where darkest are least risky. The dashed white path represents the found solution.

Table 6.5: Comparison of the risks of paths found by the proposed risk-aware trajectory planner and
the risk of the shortest path, as found by an RRT* algorithm run with length of the path as the cost
function. The risk value of the proposed method is taken as an average of the first found results based
on nine independent runs of the algorithm.

Data First Result Average Risk Shortest Path Risk
×10−5 ×10−5

Dataset A 2.7 2.9
Dataset B* 6.3 9.3
Dataset C 6.2 12.2

*one of the nine runs did not finish, therefore the average is taken only over the 8 runs that did finish

it took over a thousand. The time necessary to find a solution depends on the positions of the points,
if the goal configuration is far or in a high-risk area (such as low to the ground), the planner will take
much longer.

Since, in most cases, the first result was never improved, most of the results of the differently timed
experiments are comparable. The resulting risks were also compared to the risk of the shortest path,
as found by the RRT* algorithm, with the length of the path as the cost function. The comparison is
shown in Table 6.5, where the risk of the proposed method is represented as an average of nine inde-
pendent runs. In comparison to the shortest path, the proposed method decreases the risk significantly.
With the exception of the short scenario, all of the experiments presented paths with much lower esti-
mated risk, and even in the short scenario, the average result of the proposed method achieved a small
improvement, even though since the traveled distance is small, any detours increase the total length
much more significantly and the shortest path is naturally relatively safe.

An example of a resulting RRT* tree is shown in Figure 6.10. Thanks to the parent selection and
steering function, the tree is grown in a way that leads to much denser growth in areas with lower
overall risk (darker areas on the underlying map). The example of the grown tree also shows that the
consideration of the unsafe configurations significantly broadens the planning space, as a significant
portion of the nodes is below the safe altitude level. This is especially true for leaf nodes because if

47

6. RESULTS

Parent Selection
Rewirering
Risk Estimate
Steering

Risk-Computation
Risk-Independent

Figure 6.11: Time requirements of the individual steps of inserting a node. Each color corresponds
to the individual steps of the process. The bottleneck of each of those steps is the risk-estimate,
shown in solid color. The hashed portions represent the rest computation. The risk-estimate is the
most demanding part of the computation, and needs to be executed many times during the process of
inserting a single node.

the node is below the safe altitude level, its risk is bound to be higher, and thus it is less likely to be
selected as a parent node.

The planner could, in theory, be used without considering the fatal failure. However, if only partial
failures are considered, any maneuver above the safe altitude has no associated risk. Thus, the planner
lacks anything that would guide the exploration, and the result is a chaotic tangle of maneuvers that
twist and turn in all directions. The bulk of the tree would be wholly above the safe altitude with zero
risk, and lower would be almost exclusively the leaves. Any trajectory that does not descend below
the safe altitude is safe, and thus the rewiring procedure cannot improve anything. Consequently,
the resulting trajectory would be nonsensical. The optimality would not be lost, but the optimality
condition makes little sense.

6.2.2 Computational Requirements

The RRT* algorithm repeatedly creates randomly generated nodes and inserts them into the tree until
the goal configuration is inserted. The relative time complexity of the individual steps of this process is
displayed in Figure 6.11. As is seen, There are two major steps in the process of inserting a new node:
parent selection, which takes up about 50% of the computational time, and the rewiring step, which
takes up approximately 33%. The rest of the computational time is spent on inserted node evaluation
and steering. However, with respect to the presented risk-aware planner, the bottleneck for all of those
steps is the risk computation, which takes up the vast majority of the overall computation time.

The risk function that is used as the cost for the RRT* planner is formulated as the sum of the risk
induced by individual partial failures and the risk induced by fatal failure, as defined in (5.3). Both
of those parts are computed separately for each of the samples, therefore it is possible to evaluate the
computational burden of multiple considered partial failures.

Table 6.6 presents the time complexity of the risk estimate, as measured during multiple experiments of
the risk-aware planner with three partial failures considered. The table is separated into two sections.
The first shows the properties of the risk computation at a given configuration with respect to the two
different types of risks, partial and fatal. The second part shows the time complexity and number of
computations of the risk estimate for a maneuver.

48

6.2 COMPUTATIONAL REQUIREMENTS

Table 6.6: Risk function call parameters based on multiple risk-planner runs.

Risk Type Calls Total Time Average Time
[×103] [h : min] [µs]

Risk at Configuration
Partial 54 000 0:54 60
Fatal 26 000 2:49 400

Maneuver Risk
Parent Selection 170 2:20 47 600
Rewiring 180 1:24 27 200

The risk of a maneuver is computed as an integral of the risk function over the maneuver, which is
estimated as the sum of risks of configurations sampled along the path. For each of the sampled con-
figurations, the risk estimate for each considered failure is computed. According to the measurements,
the two different types of failures differ greatly in the time necessary for the risk estimate. The partial
failure risk estimate is much faster than the fatal failure risk estimate and increasing the number of
considered partial failures (assuming the trees are precomputed) increases the computation time of
the risk-aware planner at most by the length of the associated queries during the risk computation.
Consequently, it is computationally feasible to consider many different partial failures represented by
the proposed emergency landing tree.

In order to add a new node, a parent has to be selected, and if the node is successfully added, the
rewiring step is executed. The whole process of adding a new node with the parameters used takes
in total about 1 s, but is subject to a surprising amount of variance. During the parent selection,
the risk computation has to be executed on every considered connection to a potential parent. This
amounts, on average, to slightly less than 10 risk estimate computations (for nearest neighbor search
of 10) Similarly, during the rewiring step, a number of maneuvers have to be evaluated, up to twice
as much. On average, this led to about 11 more risk estimate computations during the rewiring step.
Interestingly, the risk estimate during the rewiring step was, on average, shorter. This is because once a
connection exists, any risk computation may be interrupted once it exceeds the risk of that connection.
If the connection is improved, the following risk computation will be interrupted sooner. Because the
rewiring step comes after parent selection, the bound on the risk is already lower than that during the
parent selection, and thus the computation is interrupted sooner and the overall time spent in this step
is lower.

49

6. RESULTS

50

Chapter 7

Conclusion

The problem of finding a risk-minimizing trajectory for a fixed-wing vehicle was studied in this work.
The promising technical development of small aircraft and the expected advent of Urban Air Mobility
bring aerial vehicles much closer to the cities, which also means that an in-flight failure poses a risk
not only to the crew and passengers but also to the people on the ground. Therefore, it is desirable that
the aircraft path planner minimizes the risk induced by such a failure and that if such a failure does
happen, the aircraft is able to recover and plan an emergency landing trajectory if possible.

Firstly, the risk induced by different partial failures has been addressed, where partial failure is any
failure that leads to reduced maneuverability but not to the total loss of control. A multi-failure model
based on the Dubins Airplane has been proposed, which can describe loss of thrust failures, failures in-
hibiting maneuverability, and any combination of those. However, only failures preventing the aircraft
from gaining or maintaining altitude are considered because those are the most common and critical.

The approach proposed in this work utilizes discretization of the configuration space, which signifi-
cantly reduces the computational complexity of the emergency landing planning. Thanks to the dis-
cretization, only a handful of maneuvers are used throughout the computation. Therefore, they may
be precomputed and reused, which greatly reduces the computational burden. Thus, it is computa-
tionally feasible to consider multiple emergency landing locations with different risks each, such that
the least risky reachable landing location is selected. The result of this algorithm is a risk-minimizing
emergency landing tree, which can be queried to estimate the risk associated with a partial failure at
any configuration and to determine the best available emergency landing trajectory.

Additionally, a risk-aware path planner has been proposed, which plans paths such that the risk posed
by an in-flight failure is minimized. The risk function consists of the risk induced by a fatal failure,
which leads to an uncontrolled crash, and the risk induced by partial failures, estimated using the
proposed emergency landing tree. The utilization of the proposed emergency landing tree allows the
planner to evaluate the risk induced by partial failures even for locations from which no safe emergency
landing location is reachable. An emergency landing tree may be constructed for any partial failure,
and the computation was tested with two different partial failures, in loss of thrust and loss of thrust
combined with inhibited turning ability. However, the partial failure selection needs to be based on
the properties of the specific aircraft. The proposed risk-aware planner has been evaluated on an urban
scenario based on the Prague city center and has been shown to propose trajectories with lower risk
compared to the shortest paths.

In our future work, we would like to iterate on the emergency landing tree computation in order to
further reduce the computational requirements, which would allow for finer discretization and, thus,
for a higher quality of the resulting emergency landing paths. By nature of the emergency landing tree,
on average, one maneuver per location is actually useful, because the number of nodes in each layer is
the same. Therefore, careful evaluation of the precomputed maneuvers seems like a promising area to
improve the algorithm, as it could reduce the number of maneuvers considered, which is an important
factor of the emergency landing tree computation.

51

7. CONCLUSION

52

REFERENCES

References

[1] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research, 30:846 – 894, 2011.

[2] Ian Savage. Comparing the fatality risks in united states transportation across modes and over
time. Research in Transportation Economics, 43(1):9–22, 2013. The Economics of Transporta-
tion Safety.

[3] Shahab Hasan. Urban air mobility (uam) market study. Technical report, National Aeronautics
and Space Administration (NASA), 2019.

[4] Study on the social acceptance of urban air mobility in europe. https://www.easa.europa.eu,
2021. Accessed on: 21 May 2023.

[5] National Transportation Safety Board. General aviation accident dashboard 2012-2021.
https://www.ntsb.gov/safety/Pages/default.aspx, 2023. Accessed on: 21 May 2023.

[6] J. David Kenny. 26th Joseph T. Nall Report. Richard G. McSpadden, JR., 2017.

[7] Engine failures and malfunctions in light aeroplanes. https://www.atsb.gov.au/publications/2013/ar-
2013-107 research, 2016. Accessed on: 21 May 2023.

[8] Randal W. Beard and Timothy W. McLain. Small Unmanned Aircraft: Theory and Practice.
Princeton University Press, 2012.

[9] Pilot’s Handbook of Aeronautical Knowledge. U.S. Department of Transportation, Federal Avi-
ation Administration, Flight Standards Service, 2022.

[10] Lester E. Dubins. On curves of minimal length with a constraint on average curvature, and
with prescribed initial and terminal positions and tangents. American Journal of mathematics,
79(3):497–516, 1957.

[11] P. Bevilacqua, M. Frego, D. Fontanelli, and L. Palopoli. A novel formalisation of the markov-
dubins problem. In European Control Conference (ECC), pages 1987–1992, 2020.

[12] S. Hota and D. Ghose. Optimal geometrical path in 3d with curvature constraint. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 113–118, 2010.

[13] H. Chitsaz and S. M. LaValle. Time-optimal paths for a dubins airplane. In 46th IEEE Conference
on Decision and Control, pages 2379–2384, 2007.

[14] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, E. De Lellis, and A. Pironti. Path generation
and tracking in 3-d for uavs. IEEE Transactions on Control Systems Technology, 17(4):980–988,
2009.

[15] Y. Wang, S. Wang, M. Tan, C. Zhou, and Q. Wei. Real-time dynamic dubins-helix method for
3-d trajectory smoothing. IEEE Transactions on Control Systems Technology, 23(2):730–736,
2015.

[16] Mark Owen, Randal W. Beard, and Timothy W. McLain. Implementing Dubins Airplane Paths
on Fixed-Wing UAVs*, pages 1677–1701. Springer Netherlands, Dordrecht, 2015.

[17] P. Váňa, A. Alves Neto, J. Faigl, and D. G. Macharet. Minimal 3d dubins path with bounded cur-
vature and pitch angle. In IEEE International Conference on Robotics and Automation (ICRA),
pages 8497–8503, 2020.

53

7. CONCLUSION

[18] A. A. Neto, D. G. Macharet, and M. F. M. Campos. 3d path planning with continuous bounded
curvature and pitch angle profiles using 7th order curves. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4923–4928, 2015.

[19] Simon Schopferer, Julian Sören Lorenz, Azarakhsh Keipour, and Sebastian Scherer. Path plan-
ning for unmanned fixed-wing aircraft in uncertain wind conditions using trochoids. In 2018
International Conference on Unmanned Aircraft Systems (ICUAS), pages 503–512, 2018.

[20] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[21] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–
107, 1968.

[22] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown terrain. IEEE Transac-
tions on Robotics, 21(3):354–363, 2005.

[23] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion, 12(4):566–580, 1996.

[24] L.E. Kavraki, M.N. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic roadmaps for
path planning. IEEE Transactions on Robotics and Automation, 14(1):166–171, 1998.

[25] R. Bohlin and L.E. Kavraki. Path planning using lazy prm. In IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), volume 1, pages
521–528 vol.1, 2000.

[26] C.L. Nielsen and L.E. Kavraki. A two level fuzzy prm for manipulation planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Cat. No.00CH37113), vol-
ume 3, pages 1716–1721 vol.3, 2000.

[27] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning. The annual
research report, 1998.

[28] Yanbo Li, Zakary Littlefield, and Kostas Bekris. Sparse Methods for Efficient Asymptotically
Optimal Kinodynamic Planning, pages 263–282. Springer International Publishing, 2015.

[29] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Informed RRT*: Op-
timal sampling-based path planning focused via direct sampling of an admissible ellipsoidal
heuristic. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2997–
3004, 2014.

[30] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-query path planning.
In IEEE International Conference on Robotics and Automation (ICRA). Symposia Proceedings
(Cat. No.00CH37065), volume 2, pages 995–1001, 2000.

[31] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Batch informed trees
(bit*): Sampling-based optimal planning via the heuristically guided search of implicit random
geometric graphs. In IEEE International Conference on Robotics and Automation (ICRA), pages
3067–3074, 2015.

[32] Stefano Primatesta, Giorgio Guglieri, and Alessandro Rizzo. A risk-aware path planning strategy
for uavs in urban environments. Journal of Intelligent & Robotic Systems, 95, 2019.

54

REFERENCES

[33] Stefano Primatesta, Luca Spanò Cuomo, Giorgio Guglieri, and Alessandro Rizzo. An innovative
algorithm to estimate risk optimum path for unmanned aerial vehicles in urban environments.
Transportation Research Procedia, 35:44–53, 2018.

[34] Stefano Primatesta, Matteo Scanavino, Giorgio Guglieri, and Alessandro Rizzo. A risk-based
path planning strategy to compute optimum risk path for unmanned aircraft systems over pop-
ulated areas. In International Conference on Unmanned Aircraft Systems (ICUAS), pages 641–
650, 2020.

[35] Jakub Sláma, Petr Váňa, and Jan Faigl. Risk-aware trajectory planning in urban environments
with safe emergency landing guarantee. In IEEE 17th International Conference on Automation
Science and Engineering (CASE), pages 1606–1612, 2021.

[36] Ella Atkins, Igor Portillo, and Matthew Strube. Emergency flight planning applied to total loss
of thrust. Journal of Aircraft, 43:1205–1216, 2006.

[37] Pillar Eng, Luis Mejias, Rodney Walker, and Daniel Fitzgerald. Simulation of a fixed-wing uav
forced landing with dynamic path planning. 2012.

[38] Nicolas Meuleau, Christian Plaunt, and David Smith. Emergency Landing Planning for Damaged
Aircraft. International Conference on Automated Planning and Scheduling, 2008.

[39] Michael Warren, Luis Mejias, Jonathan Kok, Xilin Yang, Felipe Gonzalez, and Ben Upcroft. An
automated emergency landing system for fixed-wing aircraft: Planning and control. Journal of
Field Robotics, 32(8):1114–1140, 2015.

[40] Petr Váňa, Jakub Sláma, Jan Faigl, and Pavel Pačes. Any-time trajectory planning for safe emer-
gency landing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5691–5696, 2018.

[41] Petr Váňa, Jakub Sláma, and Jan Faigl. Surveillance planning with safe emergency landing
guarantee for fixed-wing aircraft. Robotics and Autonomous Systems, 133:103644, 2020.

[42] Young-Won Kim, Dong-Yeon Lee, Min-Jea Tahk, and Chang-Hun Lee. A new path planning
algorithm for forced landing of uavs in emergency using velocity prediction method. In 2020
28th Mediterranean Conference on Control and Automation (MED), pages 62–66, 2020.

[43] Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer Program-
ming, 1972.

[44] Vašek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4:233–235, 1979.

[45] Petr Slavı́k. A tight analysis of the greedy algorithm for set cover. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page 435–441, New York,
NY, USA, 1996. Association for Computing Machinery.

[46] Chandra Chekuri. Cs 583 : Approximation algorithms : Covering problems. 2018.

[47] Richard L. Church and Charles S. Revelle. The maximal covering location problem. Papers of
the Regional Science Association, 32:101–118, 1974.

[48] Harummi Sekar Amarilies, A A N Perwira Redi, Ilma Mufidah, and Reny Nadlifatin. Greedy
heuristics for the maximum covering location problem: A case study of optimal trashcan lo-
cation in kampung cipare – tenjo – west java. IOP Conference Series: Materials Science and
Engineering, 847(1):012007, 2020.

55

7. CONCLUSION

[49] Hassan Haghighi, Daniel Delahaye, and Davood Asadi. Performance-based emergency land-
ing trajectory planning applying meta-heuristic and dubins paths. Applied Soft Computing,
117:108453, 2022.

[50] Stefano Primatesta, Alessandro Rizzo, and Anders la Cour-Harbo. Ground risk map for un-
manned aircraft in urban environments. Journal of Intelligent & Robotic Systems, 97, 2020.

[51] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org. https://
www.openstreetmap.org, 2023. Accessed on: 25 May 2023.

[52] JPL NASA. Nasa shuttle radar topography mission global 1 arc second. https://
opentopography.org/, 2013. Accessed on: 25 May 2023.

[53] Facebook Connectivity Lab and Center for International Earth Science Information Network -
CIESIN - Columbia University. High Resolution Settlement Layer (HRSL). Source imagery for
HRSL © 2016 DigitalGlobe. https://www.ciesin.columbia.edu/, 2016. Accessed on: 25 May
2023.

[54] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

56

https://www.openstreetmap.org
https://www.openstreetmap.org
https://opentopography.org/
https://opentopography.org/

	1 Introduction
	Aviation Accidents
	Structure of the Work

	2 Related Work
	Fixed-Wing Aircraft Trajectory Planning
	Planning Algorithms
	Risk Aware Path Planning
	Emergency Landing Planning
	Set Cover Problem

	3 Problem Statement
	Satisfying the Vehicle Constraints
	Emergency Landing
	Risk-Aware Path Planning with Emergency Landing Trajectory Guarantee

	4 Failure Model
	Airplane Model
	Considered Partial Failures

	5 Proposed Method
	Risk-Minimizing Emergency Landing Trajectory Planner
	Tree Computation
	Pattern Pool generation
	Emergency Landing Site Selection
	Collision Check
	Emergency Landing Query

	Risk-Aware Planner
	Risk Estimate
	Using the Emergency Landing Planner

	6 Results
	Emergency Landing Tree
	Quality of the Solution
	Multiple Considered Landing Locations
	Computational Requirements
	Time Complexity
	Memory Requirements

	Risk Estimate

	Risk-Aware Planning
	Resulting Trajectories
	Computational Requirements

	7 Conclusion

