
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Grocery shopping optimization tool

Jan Lindauer

Supervisor: doc. Ing. Stanislav Vítek, Ph.D.
May 2023

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

486427 Osobní číslo:Jan Jméno:Lindauer Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra měření

Otevřená informatika Studijní program:

Počítačové inženýrství Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Nástroj pro optimalizaci nákupu potravin

Název diplomové práce anglicky:

Grocery shopping optimization tool

Pokyny pro vypracování:
Navrhněte webovou aplikaci, která na základě uživatelem zadaného nákupního seznamu s potravinami zvolí takový obchod
či kombinaci obchodů, aby celková cena nákupu byla nejnižší.
Dílčí problémy, které je potřeba řešit:
1. návrh a formulace úlohy nalezení nejnižší ceny jako ILP problému
2. sběr dat - vysledování komunikace online služeb obchodů a využití této znalosti pro získání dat o cenách a detailech
zboží
3. sloučení stejných produktů z různých obchodů pod stejné položky v databázi aplikace
4. návrh a implementace systému - databáze, server, webová aplikace

Seznam doporučené literatury:
[1] CARNELL, John; SÁNCHEZ, Illary Huaylupo. Spring microservices in action. Simon and Schuster, 2021.
[2] CASCIARO, Mario; MAMMINO, Luciano. Node. js Design Patterns: Design and implement production-grade Node. js
applications using proven patterns and techniques. Packt Publishing Ltd, 2020.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Stanislav Vítek, Ph.D. katedra radioelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 26.05.2023 Datum zadání diplomové práce: 02.02.2023

Platnost zadání diplomové práce:
do konce letního semestru 2023/2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Stanislav Vítek, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

iv

Acknowledgements
Chtěl bych poděkovat své rodině a
přátelům za podporu během celého studia.
Také bych chtěl poděkovat vedoucímu
práce za pomoc při tvorbě této práce.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 25. 05. 2023

...

v

Abstract
In the face of rapid inflation, individu-
als are increasingly interested in finding
ways to save money on essential groceries
without investing significant effort. How-
ever, there is currently no comprehensive
database of grocery offers available on the
market, nor a tool to compare price of
entire shopping list across different stores.
The goal of this work was to create a
comprehensive database of groceries and
their prices, along with a web application
that would allow the user to optimize a
shopping list based on user-defined pa-
rameters and compare the total price of
a purchase across stores. The problem of
finding the lowest price was converted to
an integer linear programming (ILP) prob-
lem. By leveraging the APIs of several
online shopping services and extracting
offers from discount flyers using optical
character recognition (OCR) technology,
a database containing more than 40,000
offers on 25,000 products from seven ma-
jor supermarket chains operating in the
Czech Republic was created.

Keywords: Integer linear programming,
Minimum cost flows, Matching problem,
Data scraping, Man in the middle attack,
Flyer extraction, Optical character
recognition

Supervisor: doc. Ing. Stanislav Vítek,
Ph.D.
Praha, Technická 1902/2, místnost:
B2-719

Abstrakt
Vzhledem k rychlé inflaci lidé stále více
řeší, jak ušetřit na základních potravinách.
V současné době ale neexistuje žádná uce-
lená databáze s cenami potravin dostup-
ných na trhu ani nástroj pro porovnání
cen celého nákupu v jednotlivých obcho-
dech. Cílem této práce bylo vytvořit kom-
plexní databázi potravin a nabídek, spolu
s webovou aplikací, která by uživateli
umožnila zoptimalizovat nákupní seznam
na základě uživatelem definovaných para-
metrů a porovnat celkovou cenu nákupu
napříč obchody. Problém nalezení nejnižší
ceny byl převeden na problém celočísel-
ného lineárního programování (ILP). Vy-
užitím API několika online nákupních slu-
žeb a extrakcí nabídek ze slevových letáků
pomocí technologie optického rozpozná-
vání znaků (OCR) byla vytvořena data-
báze obsahující více než 40 000 nabídek
na 25 000 produktů ze sedmi největších
obchodních řetězců působících v České
republice.

Klíčová slova: Celočíselné lineární
programování, Úloha toků s minimalizací
ceny, Problém párování, Vytěžování dat,
Útok Man in the middle, Extrakce dat z
letáků, Optické rozpoznávání znaků

Překlad názvu: Nástroj pro
optimalizaci nákupu potravin

vi

Contents
1 Introduction 1
2 Application Implementation 3
2.1 Server and interface it provides . . 3

2.1.1 Server structure 3
2.1.2 Database model 4
2.1.3 Optimized Shopping Options . 7
2.1.4 User Management 8
2.1.5 Product Search 8
2.1.6 Sale Recommendations 9
2.1.7 REST API 9
2.1.8 Deployment, Runtime

environment 9
2.2 Frontend . 10

2.2.1 Server Request Management
Layer . 10

2.2.2 Main Pages 11
2.3 Product Groups 14

2.3.1 Defining Product Groups . . . 14
2.3.2 Assigning Products to Groups 14
2.3.3 Utilizing Product Groups in

Optimization 14
2.3.4 Challenges and Improvements 15

2.4 Optimization of Shopping Costs 15
2.4.1 Finding the best offer for a

specific product 15
2.4.2 Computing required number of

packages . 16
2.4.3 Optional shopping list items . 16
2.4.4 Formulation of the ILP

Problem . 16
2.4.5 Implementation 18

3 Data acquisition 19
3.1 Data Scraping 19

3.1.1 Mobile Apps APIs reverse
engineering 20

3.1.2 Albert products scraping 20
3.1.3 Tesco Products Scraping 21
3.1.4 Billa Products Scraping 21
3.1.5 Penny Products Scraping . . . 21
3.1.6 Kaufland products scraping . 22
3.1.7 Kaufland Sales Scraping 24
3.1.8 Globus Products Scraping . . . 24
3.1.9 Scraper scheduling 25

3.2 Data extraction from flyers 26
3.2.1 Preprocessing 26
3.2.2 OCR . 26

3.2.3 Searching for ROIs (Regions of
Interest) . 27

3.2.4 Pairing product name with a
price . 30

3.2.5 Pairing amount to a product 35
3.2.6 Structured PDFs 35
3.2.7 Start and end date extraction 35
3.2.8 Results 35

3.3 Product Matching and Merging . 37
3.3.1 Unified Categorization 38
3.3.2 Computing Match Rate 38
3.3.3 Merge Process 40
3.3.4 Challenges and Improvements 40

4 Conclusion 41
4.1 Future work 41
Glossary 43
Bibliography 44
5 Attachments 46
5.1 REST API Documentation 46

5.1.1 Endpoints 46
5.1.2 Data Transfer Objects (DTOs) 49

5.2 Albert API 56
5.2.1 Common for all requests 56
5.2.2 Acquisition of list of all

categories . 56
5.2.3 Retrieve a product page in a

category by category code 57
5.2.4 Getting a specific product based

on ID . 58
5.3 Globus shopping list API 59

5.3.1 Common elements of requests 59
5.3.2 Login request 59
5.3.3 Renew token request 60
5.3.4 Get suggestions (search) 60
5.3.5 Get details 61

5.4 Globus scanner API 62
5.4.1 Common elements of requests 62
5.4.2 Initiation of shopping 62
5.4.3 Finalization of shopping 63
5.4.4 Getting information about an

item . 64
5.5 Billa API . 65

5.5.1 Getting page of products
belongingto category 65

5.6 Kaufland application API 66

vii

5.6.1 Access token renewal 66
5.6.2 Common elements of requests 66
5.6.3 Initiation of shopping 67
5.6.4 Remove item from cart 67
5.6.5 Adding item to cart 68

viii

Figures
2.1 Schematic structure of the backend

application, the black highlighted
arrows indicate communication
outside of the main Java Spring
application . 5

2.2 UML diagram of the database
model. 6

2.3 Shopping list page. From left to
right: a. autocompletion when
searching for a product to add, b.
shopping list items, c. details of a
shopping list item (additional
constraints and associated
subproducts) 11

2.4 Parameters page. Choosing shops,
memberships and maximum number
of shops . 12

2.5 Shopping options page. One option
combining more shops and one per
each shop, options are expandable
(right figure) 13

2.6 Current shopping page. User can
(un)mark items as bought, shopping
suggestions are shown below the
shopping list 13

2.7 Decision tree for calculating the
product amount the user should
purchase . 17

3.1 OCR Preprocessing - on the left is
the original image, on the right is the
image after masking just red color
(flyer source: www.lidl.cz) 27

3.2 Effect of OCR Preprocessing - it is
clearer for the OCR that the number
7 is a text after preprocessing (right
figure), green bounding boxes show
detected text areas (flyer source:
www.lidl.cz) 27

3.3 Comparison of text areas detected
by Tesseract OCR [15] (left) the ones
detected with Google Cloud Vision
API OCR [12] (right) (flyer source:
www.lidl.cz) 28

3.4 Problem with closest neighbor
pairing in dense flyers – closest
neighbouring price to a product name
might belong to another product
name, e.g. the product "Jar
Prostředek na nádobí" has similar
distance to the price 299 and 139.90
and the closest neighbour pairing
might be incorrect (flyer source:
www.albert.cz) 30

3.5 Formulation of pairing as a
minimum cost flow problem, the
dashed flow is optional (one of the
solutions for case when P ̸= N) . . . 32

3.6 Result of pairing algorithm, green
bounding boxes show detected prices,
red bounding boxes show detected
names and blue lines show pairing
proposed by the pairing algorithm
(flyer source: www.albert.cz) 33

3.7 Product image detection, from the
left to right - a) original image, b)
detected product images, c) both
images combined (flyer source:
www.lidl.cz) 34

ix

www.lidl.cz
www.lidl.cz
www.lidl.cz
www.albert.cz
www.albert.cz
www.lidl.cz

Tables
3.1 Flyer extraction results 36

x

Chapter 1
Introduction

During the current rapid inflation, many individuals are faced with the
increasing prices of essential groceries. They are keen on saving money during
shopping without investing a significant amount of effort.

While tools for summarizing and searching currently discounted products
exist, there is no comprehensive database that includes products that are not
on sale and their prices. Moreover, manually searching for the best offers
is time-consuming, making it nearly impossible to find the shop where the
total cost of a shopping list would be the lowest. Some people even combine
shops to obtain the cheapest combination of offers, which is an even more
overwhelming task.

Aiming to change this situation, the purpose of this study is to create
a comprehensive database of all products and offers on the market and develop
a user-friendly interface to optimize shopping lists. The interface would allow
users to compare the total price of their shopping list across different shops
and even find the cheapest combination of multiple shops.

A web application has been developed to enable users to manage their shop-
ping lists, which can include specific products from particular manufacturers
or generic products without specifying a brand (referred to as product groups
in this study). Users select the quantity they wish to purchase for each item,
and the application automatically selects a combination of stores to visit and
specific products to buy to minimize costs. Users can also specify additional
optimization parameters, such as the maximum number of stores they are
willing to visit or which supermarket chains to include in the optimization. If
users have a membership with a specific chain’s bonus club, the application
will use membership prices for optimization.

It was necessary to create a database model, populate the database with
data, and implement the server and client side of the application. The
database model and the client and server side of the application are described
in Chapter 2. The problem of finding the lowest purchase price was converted
into an Integer Linear Programming problem (ILP). Details regarding the
methodology for calculating the lowest price can be found in Section 2.4.4.

Collecting data on product prices and details from each chain and popu-
lating the database is a crucial step. The techniques employed for this data
collection are thoroughly discussed in Chapter 3. The main data source used

1

1. Introduction
for this purpose is the APIs employed by supermarket chains for their online
shopping applications. To understand how these APIs work, the communica-
tion of the applications was traced, and this knowledge was applied to obtain
product data. The functionality of each API is described in Section 3.1. To
keep track of seasonal and discount offers, a product information extractor
was designed for marketing discount flyers (Section 3.2). Optical character
recognition (OCR) was used to detect text areas and extract product features,
while the matching of corresponding product features was formulated as a
minimum cost flow problem.

2

Chapter 2
Application Implementation

This chapter offers a comprehensive overview of the designed system, which
consists of frontend and backend.

The backend is detailed in Section 2.1. The Section covers the designed
database model, implemented features and interface, and information on
deployment. The frontend implementation, which presents a user-friendly
interface for utilizing the application’s functionalities, is described in Section
2.2.

Section 2.4 describes the optimization process responsible for finding the
best combination of shops and offers. Motivation for creation of product
groups and their application is discussed in Section 2.3.

2.1 Server and interface it provides

The server provides an interface for managing the user’s shopping list, search-
ing for products, and optimizing and managing the user’s shoppings. This
Section outlines its key features and functionalities.

2.1.1 Server structure

The server is implemented using the Java Spring framework 1. Its structure
is shown in Figure 2.1. It follows the recommended Java design patterns [3]
and Spring design patterns [18]. It consists of the following layers:.Model: Represents the domain entities and defines the structure of the

application’s data.. Data Access Objects (DAO): Responsible for handling database interac-
tions, including querying and data persistence.. Services: Contains the business logic and handles the processing of data
between the DAO and REST API controllers.

1https://spring.io/projects/spring-boot

3

https://spring.io/projects/spring-boot

2. Application Implementation
. REST API Controllers: Manage the communication between the client-

side application and the server, providing a well-defined interface for
accessing and manipulating the application’s data.

The server is connected to a PostgreSQL database 2, where the data are
persisted.

Security is maintained using Spring Security, a framework that provides
authentication, authorization, and protection against common security vul-
nerabilities.

To optimize the data transfer between the server and the client, Data
Transfer Objects (DTOs) are used. DTOs offer several benefits, such as
reducing data transfer, enhancing security by excluding sensitive information,
and organizing data for the client.

2.1.2 Database model

The database model of the application is described using an UML diagram
shown in Figure 2.2. Key properties of the model are described in the following
subsections. All primary keys in the database are automatically generated
artificial integer (or long) keys.

Product records

The Product SQL table contains information about two distinct types of
products: concrete products and product groups. Products can be recursively
grouped under product groups. Product groups are discussed in greater detail
in Section 2.3. Concrete product records include package size, name, and
optional attributes like brand and barcode. Each product belongs to a specific
category, and these categories are organized into a tree structure.

Each product group is associated with a blacklist used when assigning
products to groups. The purpose and functionality of group blacklists are
also discussed in Section 2.3.

Offer records

The Offer SQL table contains information about offers associated with concrete
products. Offer records include the offer’s validity, as well as start and end
dates, determining the time frame during which the offer is active. Each offer
record contains the cost for one package of the associated product and an ID
that enables localization of the offer within its source. Two primary types
of offers are stored in the table: discount offers and normal offers. Discount
offers can additionally include the percentage of the discount applied to the
product’s original price.

2https://www.postgresql.org/

4

https://www.postgresql.org/

.............................2.1. Server and interface it provides

Controllers

Services

Client Service

Shop Service

Product search
 Service

Product Service

Email ServiceOptimization
 Service

Shopping list
Service

Shopping Service

Client Controller

User details
 Service

Shopping list
 Controller

Shopping
 Controller

Shop ControllerProduct
 Controller

Optimization
 Controller

Client

DAO ModelREST
API

Database

Admin
 Controller

Java Spring application

lp_solve SMTP server

Last update interceptor
Spring security

Figure 2.1: Schematic structure of the backend application, the black highlighted
arrows indicate communication outside of the main Java Spring application

Shopping List

Each user has a shopping list with any number of shopping list items. A shop-
ping list item can correspond to a concrete product or product group in the
database or be a user’s plain text note. Each shopping list item can have
four states:.Active: The user needs to buy the item.. Sale: The user only wants to buy the item if it is on sale.. Inactive: The user does not currently need the item.. Hidden: The user had the item in their shopping list but deleted it.

5

2. Application Implementation

C
lie

nt

em
ai

l

fir
st

_n
am

e

la
st

_n
am

e

pa
ss

w
or

d

m
ax

_s
ho

p_
co

un
t

ro
le

 (A
D

M
IN

, U
SE

R
,

TO
 B

E
VE

R
IF

IE
D

)
ge

nd
er

bi
rth

_d
at

e

to
w

n

la
st

_u
pd

at
e_

se
ss

io
n_

id

Sh
op

pi
ng

 li
st

 it
em

am
ou

nt

am
ou

nt
_u

ni
t

m
ax

_c
os

t

pr
io

rit
y

st
at

e

la
st

_b
uy

_d
at

e

pr
ev

io
us

_p
ur

ch
as

e_
co

un
t

ty
pe

 (N
O

TE
, R

EF
ER

R
IN

G
TO

 P
R

O
D

U
C

T)
te

xt
 (t

yp
e:

 N
O

TE
)

1

0.
.N

Pr
od

uc
t

na
m

e

ba
se

_a
m

ou
nt

ba
se

_a
m

ou
nt

_u
ni

t

ty
pe

 (S
PE

C
IF

IC
,G

R
O

U
P)

pa
ck

ag
e_

si
ze

pa
ck

ag
e_

si
ze

_u
ni

t

ot
he

r_
un

it

ot
he

r_
un

it_
co

nv
er

si
on

br
an

d

ba
rc

od
e

po
pu

la
rit

y

0.
.N

0.
.N

Sy
no

ny
m

na
m

e

0.
.N

1

O
ffe

r

co
st

id
_i

n_
sh

op

va
lid

ty
pe

 (N
O

R
M

AL
,D

IS
C

O
U

N
T)

of
fe

r_
st

ar
t

of
fe

r_
en

d

pe
rc

en
ta

ge
_s

al
e

Sh
op

pi
ng

 It
em

co
nf

irm
ed

am
ou

nt

ty
pe

 (N
O

TE
,W

IT
H

 O
FF

ER
,

W
IT

H
 P

R
O

D
U

C
T)

na
m

e
(ty

pe
: N

O
TE

)

am
ou

nt
_u

ni
t (

ty
pe

: N
O

TE
)

Sh
op

pi
ng

tim
es

ta
m

p

st
at

e

to
ta

l_
co

st
0.

.N
1

0.
.N

1

0.
.N

0.
.1

0.
.N

1

C
at

eg
or

y

na
m

e

0.
.N

0.
.N

10.
.N

0.
.1

0.
.N

M
em

be
rs

hi
p

na
m

e

Sh
op

na
m

e

ur
l

0.
.N

0.
.N

1
0.

.N

0.
.N

0.
.N

0.
.N

0.
.1

0.
.N

1

ca
te

go
riz

at
io

n

ca
te

go
riz

at
io

n

0.
.N

Bl
ac

kl
is

te
d

pr
od

uc
ts

Ve
rif

ic
at

io
n

co
de

ex
pi

ra
tio

n

ty
pe

 (P
AS

SW
O

R
D

 R
ES

ET
,

EM
AI

L
VE

R
IF

IC
AT

IO
N

)

ve
rif

ic
at

io
n_

co
de

0.
.N

1

0.
.N

0.
.1

G
ro

up
 b

la
ck

lis
t

na
m

e

0.
.N

1

0.
.N

Figure 2.2: UML diagram of the database model.

Users can add items to their shopping list by searching for products by name
(2.1.5), writing a text note, or choosing from a list of sale recommendations

6

.............................2.1. Server and interface it provides

(2.1.6). They can change the quantities of items in their list and set maximum
costs for products to be included in the optimization process. Additionally,
users can allow items to be considered for optimization only if they are on
sale, a useful feature for items that the user doesn’t need urgently but waits
for them to be on sale.

User’s shops and memberships

Users can select a list of their preferred shops and benefit membership
programs they want to see offers from. These shops and memberships will be
used for optimization, allowing users to customize the optimization process
to suit their preferences.

Product Blacklist

Users can blacklist specific products, preventing these items from being
included in the optimization. This feature accommodates personal preferences
and also allows the user to blacklist products that were incorrectly added to
a group by the system (Section 2.3).

2.1.3 Optimized Shopping Options

A key feature of the application is the ability to optimize the user’s shopping
list for the best price. Once the user completes his shopping list, he can
trigger the optimization process and receive optimized shopping options. The
optimization results include:.One shopping option optimized for each shop separately..One optimal combination of shops that respects the user’s restrictions

and preferences (if feasible).

For a detailed description of the optimization process, see Section 2.4.
Users can then start shopping by selecting one of the provided shopping

options. After that, a new "shopping" record is created in the database with
shopping items. There are the following types of shopping items:. Note - active notes from the shopping are added as text notes without

reference to the product nor offer.. Optimized item - created for each optimized shopping list item, refers to
the concrete offer found by the optimization..Missing item - items for which the optimization didn’t find an appropriate
offer satisfying the optimization constraints, they refer to the product
instead.

7

2. Application Implementation
As users shop, they can mark ongoing shopping items as bought or unmark

them if needed. Once the shopping is completed, they can finalize the
shopping.

Users can view their previous shoppings, providing a historical record of
their purchases.

2.1.4 User Management

The web application supports user registration, including email verification,
login, password update or reset, and logout. This ensures that users can
securely manage their accounts and personal information.

When the user registers, a unique code is generated and combined with
the user’s email into a verification URL, which is sent to his email using the
public SMTP server. This link is valid for a limited time period. After this
period, the user has to request the link to be resent. Until the user is verified,
his role is set to "Not verified", and he cannot use the full functionality of the
application. After verification, his role changes to "User", and he can start
using the application.

Similarly, when the user requests to reset his password, a password reset
link is sent to his email.

The "Verification code" SQL table is used to store the unique email verifi-
cation codes and password reset codes, as shown in the UML diagram.

2.1.5 Product Search

Users can search for products by name. The search query is split into a word
set, and the search results include products with names that contain all words
(or words starting with search words) present in the search query word set.

The search results are sorted to provide the most relevant products. The
factors used for sorting are (listed by importance):..1. Product group vs. specific product: Product groups (except for empty

groups) are considered more relevant than specific products, as users
usually don’t need a specific brand and packaging...2. Shop count: Products available in a larger number of shops are considered
more relevant...3. Alphabetical sorting.

The five most relevant search results are presented to the user.
To ensure fast search results, the server caches a search result for each

product in the database on server startup. At startup, it also sorts all the
search results, so it doesn’t have to be done on each search request. This
process might take some time during initialization, but caching is crucial to
ensure acceptable search time. Additionally, the system can save search items
in a file to speed up the startup process. Whenever the product database is
updated, the cache needs to be evicted and recreated.

8

.............................2.1. Server and interface it provides

2.1.6 Sale Recommendations

Users often find it useful to see what is currently on sale when creating their
shopping list, deciding between shops, or during shopping. Therefore, the
app maintains sale recommendations, and the frontend displays them when
convenient (see Section 2.2.2).

Due to a large number of sales, sale recommendations only contain dis-
counted product groups (more on groups in Section 2.3). Moreover, the
discounted offer has to be the cheapest among the group in order to be
displayed within the recommendations.

To emphasize the most interesting sales, the recommendations are sorted.
A rank is computed for each recommendation based on the following factors,
and the recommendations are then ordered accordingly:..1. Category importance: Products belonging to more popular categories

are ranked higher in the search results, as they are generally of higher
interest to users...2. Percentage sale: Products with a higher sale percentage are considered
more relevant, as they offer better deals for users...3. Shop count: Products available in a larger number of shops are considered
more relevant...4. Subproducts count: A greater number of subproducts of a product group
increases its relevance.

Similar to the product search results, the sale recommendations are cached
to ensure a fast response.

2.1.7 REST API

The server exposes REST API to the Internet which is used for communication
between frontend and backend. It is documented in detail in Attachment 5.1.
Most of the API endpoints are available only to signed-in users.

There are also a few endpoints that are only available to an administrator
user. This is the case for the endpoint that can be used to refresh all caches
of the Java Spring Application after changes were made in the database from
outside of the application. This endpoint is called after any product database
updater described in Section 3 finishes.

2.1.8 Deployment, Runtime environment

The application is divided into three Docker containers 3. All three containers
are based on Debian 4 images. The first container runs Tomcat web server

3https://www.docker.com/
4https://www.debian.org/

9

https://www.docker.com/
https://www.debian.org/

2. Application Implementation
5 hosting the main Java Spring application. The second container is the
application PostgreSQL database.

In the third container are all scripts responsible for data mining. There is
one scraper for each supported shop written in Node.js 6 and one separate
scraper for data extraction from flyers in Python. These data acquisition
scripts are described in Chapter 3 in detail.

The containers are orchestrated using docker compose7. The entire applica-
tion is hosted in the cloud. The application supports HTTPS and only port
443 (and port 80 in order to redirect to 443) is exposed to the Internet.

2.2 Frontend

A web application was developed to allow users to interact with the interface
provided by the server. It was developed using React 8 and designed with a
responsive layout using Tailwind CSS 9 to provide an optimal user experience
across a wide range of devices, from desktops to mobile phones.

2.2.1 Server Request Management Layer

One of the essential components of the frontend is a layer for handling server
requests. This layer ensures that all requests to the server are queued and
executed in the order they were initiated, preventing potential conflicts or
inconsistencies in the application state.

The server request management layer provides the following functionalities:.Automatic retries after network failures: If a request fails due to network
issues, the layer automatically retries the request after a specified delay,
improving the application’s resilience to connectivity problems.. Ensuring consistency: When the user tries to make any state-modifying
request and the current device is not the one that made the last edit,
the network layer handles a message from the server informing that this
situation happened. It fetches all user data from the server and then
repeats the original request. This functionality ensures that users have
access to the most up-to-date information and helps to prevent conflicts
and data inconsistencies that may arise when multiple devices are used
to access and edit the same data.. Logout on authorization failure: If a request fails due to an authentication
or authorization issue, the layer automatically logs the user out and
redirects him to the login page.

5https://tomcat.apache.org/
6https://nodejs.org/en/
7https://docs.docker.com/compose/
8https://react.dev/
9https://tailwindcss.com/

10

https://tomcat.apache.org/
https://nodejs.org/en/
https://docs.docker.com/compose/
https://react.dev/
https://tailwindcss.com/

...................................... 2.2. Frontend

.Visualizing loading: If the request queue is not empty, it is indicated to
the user with a loading animation.

2.2.2 Main Pages

The application consists of several main pages, each serving a specific purpose
and providing different functionalities to the user.

Shopping List Page

The shopping list page allows users to manage their shopping list, including
adding, removing, or inactivating items, changing quantities, setting the
maximum cost of the product to be included in the optimization, or allowing
the item in the optimization only if it’s on sale. There are three subpages:.Active shopping list items. Inactive shopping list items – items previously present in the shopping

list, but not marked as needed at the time. Sale recommendations – more on that was discussed in Section 2.1.6

The offer with the best value per amount is displayed alongside each
shopping list item to assist the user in deciding whether he wants the item.
Screenshots of the shopping list page are shown in Figure 2.3.

Figure 2.3: Shopping list page. From left to right:
a. autocompletion when searching for a product to add,
b. shopping list items,
c. details of a shopping list item (additional constraints and associated subprod-
ucts)

11

2. Application Implementation
Optimization Parameters Page

On this page (shown in Figure 2.4), users can configure the optimization
settings, such as selecting the shops to be used for optimization, setting the
maximum number of shops to visit, and choosing the loyalty programs to
consider for offers. After setting the parameters, the user can trigger the
optimization.

Figure 2.4: Parameters page. Choosing shops, memberships and maximum
number of shops

Optimized Shopping Options Page

On this page (shown in Figure 2.5), optimized shop combinations including
concrete products to buy are shown. There is one shopping option per shop
and one shopping option that combines up to N shops, where N is the
maximum number of shops to visit set by the user in the previous step. Under
each shopping option are displayed recommendations for products that are
on sale in the corresponding shops (Sale recommendations – Section 2.1.6).
Users can additionally add any of these products to their shopping. After
selecting one of the shopping options, this shopping becomes an ongoing
shopping and the user is redirected to the "Current shopping page".

Current Shopping Page

On this page (shown in Figure 2.6), users can view and interact with their
ongoing shopping, marking items as bought and finalizing the shopping once
completed. Again, a list of sale recommendations is displayed below shopping
items.

12

...................................... 2.2. Frontend

Figure 2.5: Shopping options page. One option combining more shops and one
per each shop, options are expandable (right figure)

Figure 2.6: Current shopping page. User can (un)mark items as bought, shopping
suggestions are shown below the shopping list

Shopping History Page

This page displays a history of the user’s previous shoppings, including the
items purchased, the total cost, and the date of each shopping.

13

2. Application Implementation
2.3 Product Groups

In many cases, users want to purchase groceries without specifying an exact
product or brand. To accommodate this, product groups are introduced,
allowing users to choose a group of similar products instead of specifying
a specific item. This section discusses the creation and utilization of product
groups in the application.

2.3.1 Defining Product Groups

A product group is a collection of similar products. For example, the "Moz-
zarella" group would contain all the mozzarella products available on the
market.

A list of product group names is created manually, representing items that
users might want to purchase. Along with the group name, information about
the group categorization, group name synonyms, and a blacklist of words
that cannot be present in the product name are also provided. The blacklist
ensures that only relevant products are included in the group.

2.3.2 Assigning Products to Groups

When a product is added to the database, it is automatically assigned to
relevant product groups. The following logic is used to determine which
product groups the product should be added to:..1. A product cannot be added to a group with a different categorization...2. If the product name contains any blacklisted words from a group, it does

not belong to that group. For example, let’s consider the product group
"müsli", which has a blacklist containing the word "stick". When users
include "müsli" in their shopping list, they aren’t interested in buying
"müsli stick", so the product won’t be added to the "müsli" group...3. Otherwise, if the product name contains all the words of a group name
(or any synonym of the group name), it is added to the group.

2.3.3 Utilizing Product Groups in Optimization

When a user adds a product group to their shopping list and requests op-
timization, the system will search for the best-priced product within the
selected group.

The optimizer then incorporates the selected product into the optimized
shopping, ensuring that the user gets the best value while still meeting their
grocery needs. The product group functionality allows for greater flexibility
and personalization of the shopping experience, as users can choose from
a variety of products without being limited to specific brands or items.

14

............................ 2.4. Optimization of Shopping Costs

2.3.4 Challenges and Improvements

The implementation of product groups and matching presents several chal-
lenges. Manually creating the list of product group names and managing
their categorization, synonyms, and blacklist is time-consuming and may not
cover all possible products. Additionally, the product matching logic may
not always accurately assign products to their respective groups, leading to
potential discrepancies in the optimization results.

To address these challenges, machine learning techniques and natural lan-
guage processing could be employed to automatically identify and categorize
similar products and create product groups. These techniques could help
to improve the accuracy of product matching and simplify the process of
creating and maintaining product groups.

2.4 Optimization of Shopping Costs

This section discusses an optimization approach to minimize shopping costs
by selecting the best offer for each item on a shopping list across different
shops while considering user-defined parameters.

The user-defined parameters are the following:. List of shops considered in the optimization. List of user’s memberships (offers requiring other memberships are omit-
ted from optimization).Maximum number of shops visited (N).Maximum price for an item.Option to only allow discount offers for an item

The first step in the optimization process involves finding the best offer for
each item on the shopping list in each selected shop separately. The process
of finding the best offer is described in Section 2.4.1.

Additionally, if a shopping list item refers to a group of products, it is
necessary to recursively search for all specific products belonging to this group
and choose the cheapest one (which might not be the same one across all
user-selected shops).

Section 2.4.3 explains how shopping list items with user constraints for
maximum price or discount-only offers are handled.

After these initial steps, optimization for selecting the cheapest shop
combination can be triggered. This optimization is described in Section 2.4.4.

2.4.1 Finding the best offer for a specific product

Each specific product is stored in the database with information about its
package size. Note that not every product is packaged; some products are
offered by pieces or by weight. However, to simplify terminology, let’s also

15

2. Application Implementation
use the term package size for piece size and for 1 kilogram of a weighted
product. All offers linked to a specific product state the cost for one package.

The user can input the desired amount in various units, such as liters,
milliliters, kilograms, grams, pieces, or a number of packages. To find the
cheapest offer, it is crucial to convert the user-input amount to the units in
which the package size is stored. Then, the number of packages needed to
satisfy the user’s request can be calculated (for weighted products, this value
doesn’t have to be an integer). The computation is described in Section 2.4.2.
By multiplying the number of packages by the price per package, the total
cost of the item is obtained.

2.4.2 Computing required number of packages

The decision tree for computing the number of packages needed is depicted in
Figure 2.7. It might be necessary to convert between units that are unrelated,
like pieces and weight. To allow this conversion, another unit O can be stored
in the database along with conversion coefficient tO, where tO is the number
by which if we multiply the amount in unit O, we get the amount in the
package size unit.

For example, let’s assume that the user wants to buy 10 apples and that
the apples have a package size of 1 kilogram. Then the database would store
that there is another unit, pieces, with tO equal to the weight of one apple in
kilograms. By multiplying 10 apples by the apple weight, we would get how
many kilograms are needed to satisfy the user’s request.

The tO can be stored together with each specific product, but if not
provided, the tO of a product group the product belongs to is used instead.

2.4.3 Optional shopping list items

We need to address shopping list items that the user marked to be included
only if they are on sale or cheaper than a user-set maximum cost. If all shops
used in the optimization provide offers satisfying these constraints, the item
is included in the ILP optimization. Otherwise, it is omitted from it and
added additionally after the ILP optimization is completed. Of course, the
item is only added to shopping options that offer the item on sale or at a low
enough price, as the user requested.

2.4.4 Formulation of the ILP Problem

The problem of finding the lowest price for the total purchase in at most N
stores can be formulated as an Integer Linear Programming (ILP) problem
[20]. Let’s arrange the selected specific products with the best offers and their
prices from the previous optimization steps into a matrix A, with P (number
of products in the shopping list) rows and S (number of shops included in
the optimization) columns. ap,s represents the price of the p-th product in

16

............................ 2.4. Optimization of Shopping Costs

Requested amount
M is

Requested unit is Package size P is

null -> any amountspecified

Package size P is 1

package other specified null->weighted

Package size P is

M * C * tO / P,
rounded up

M * C * tO

specified null->weighted

M p * M

specified null->weighted

Requested unit is
convertible using

kg<->g or l<->ml to

other unit O by
multiplication by C

package size unit by
multiplication by C

Package size P is

M * C / P,
rounded up

M * C

null->weightedspecified

tO conversion coefficient for conversion to other unit O
M user requested amount provided in requested unit
P package size
p piece size (if other unit O pieces is available, piece size is tO otherwise it is guessed)

not convertible

none of that

piece size p

Figure 2.7: Decision tree for calculating the product amount the user should
purchase

the s-th store. Then the optimization problem can be formulated as follows:

min
∑

p∈1...P

∑
s∈1...S

xp,sap,s

∀p
∑

s∈1...S

xp,s = 1

∀s
∑

p∈1...P

xp,s ≤ zsP

∑
s∈1...S

zs ≤ N

variables: xp∈1...P,s∈1...S ∈ {0, 1}, zs∈1...S ∈ {0, 1}
parameters: ap∈1...P,s∈1...S ∈ R+,

(2.1)

where xp,s determines whether item p in store s is selected for purchase,
and zs determines whether the user should visit the s-th store. The first
constraint ensures that each product is purchased in exactly one store. The
second constraint indicates that if at least one product is purchased in the
s-th store, the user must visit that store. The last constraint specifies that
the number of stores the user visits is at most N .

17

2. Application Implementation
By solving this optimization task, we will obtain an optimal solution

indicating which shops to visit (the ones with zs = 1) and where to buy each
of the products (the product p should be bought in shop s if xp,s = 1).

If the optimization fails to find a solution, only shopping options optimized
for each shop individually by the previous optimization steps are presented
to the user.

2.4.5 Implementation

To solve the ILP optimization task, the lp_solve [13] library is used. The
Java ILP wrapper 10 is employed to trigger the optimization from the main
Java application.

10https://javailp.sourceforge.net/

18

https://javailp.sourceforge.net/

Chapter 3
Data acquisition

To effectively optimize shopping and deliver maximum value to users, a com-
prehensive database of products is essential.

This chapter outlines the data sources and extraction methods used to
gather product information. Data is acquired from online services provided
by shops and from discount flyers.

Section 3.1 details the process of obtaining data from online services,
including reverse engineering the underlying APIs and utilizing it for data
scraping. The design and orchestration of data scrapers is also explained.

Section 3.2 describes how data is extracted from discount flyers, covering
text area extraction, product feature detection (such as name, price, and
quantity), and the methods used for matching corresponding features.

As the same products may be offered in different shops under various names,
matching offers for identical products is crucial. Section 3.3 elaborates on
the methods used for this purpose.

3.1 Data Scraping

Various stores offer different online services, such as online delivery e-shops,
shopping list tools, or self-service shopping tools. These services provide
users with information about available products, along with related details,
including prices. The underlying APIs employed by these services were
successfully utilized to access this information.

In particular, data are acquired from the following services:.Albert domů zdarma 1 (online shopping tool).Tesco online 2 (online shopping tool).Můj Globus 3 (self-service shopping application, shopping list tool). Billa online 4 (online shopping tool)
1https://www.albertdomuzdarma.cz/
2https://nakup.itesco.cz/groceries/
3https://www.globus.cz/muj-globus.html
4https://shop.billa.cz/

19

https://www.albertdomuzdarma.cz/
https://nakup.itesco.cz/groceries/
https://www.globus.cz/muj-globus.html
https://shop.billa.cz/

3. Data acquisition
.Kaufland application 5 (self-service shopping application). Penny domů 6 (online shopping tool).website listing discounts in Kaufland 7

The first step involved reverse engineering the underlying APIs. To trace
all web application communication in HTTPS unencrypted form, browser
developer tools were used. The method utilized for reverse engineering mobile
applications is described in Section 3.1.1.

After analyzing these APIs, a specialized scraper for each of them was
developed. These scrapers were implemented using Node.js. The functionality
of each scraper is explained in subsections 3.1.2 - 3.1.8.

3.1.1 Mobile Apps APIs reverse engineering

To trace the communication of a mobile app, a Man in the Middle MITM
attack can be used. In this work, Mitmproxy tool [17] (3.1.1) running on a
PC was used to intercept mobile phone traffic.

Mitmproxy [17]

Mitmproxy [17] is a tool used to intercept and manipulate network traffic
in a MITM attack scenario. It acts as a proxy and a Certificate Authority
(CA) by generating SSL/TLS [19] certificates on the fly to sign traffic that it
intercepts. Mitmproxy generates new SSL/TLS certificates for the destination
server, signs them with its own CA certificate, and intercepts and decrypts
the traffic passing between the monitored device and the server. To use
mitmproxy, its CA certificate must be installed on the user’s device as a
trusted CA.

3.1.2 Albert products scraping

To acquire the available products and their prices from the Albert chain store,
the API used by their web shopping application, "Albert domů zdarma",
serves as the data source. The common elements of this API can be found in
Attachment 5.2.1.

The offered products are organized into categories. Using the browser’s
developer tools, it was traced that the web application uses a request 5.2.2 to
obtain all available product categories. These categories are further divided
into several levels. By navigating through all the categories at a certain level,
it is possible to access all the products in the system.

Request 5.2.3 is used to retrieve a product page associated with a specific
category. The response to this request contains basic product information,

5https://prodejny.kaufland.cz/nabidka/aktualni-tyden.html
6https://www.pennydomu.cz/
7https://www.kaufland.cz/aktualne/servis/mobilni-aplikace.html

20

https://prodejny.kaufland.cz/nabidka/aktualni-tyden.html
https://www.pennydomu.cz/
https://www.kaufland.cz/aktualne/servis/mobilni-aplikace.html

.................................... 3.1. Data Scraping

including price and identifier. Additional product details can be obtained by
requesting a specific product using its identifier through request 5.2.4.

The scraper developed in this study locates all categories at the lowest level
of the categorization hierarchy and identifies all products within each category
by traversing the product pages of each category. Given that scraping by page
is significantly faster than by product details, the product information are
retrieved by page (request 5.2.3). The supplementary information available
in the product details is not required for adding the product to the database.

3.1.3 Tesco Products Scraping

The Tesco online service primarily generates web pages statically on the
server side, with product lists and product details sent to the client in HTML
format. After acquiring the first static HTML page, it switches to API calls
which allows the web application to acquire category tree, product lists by
categories or product details in JSON format.

Although it is possible to scrape data through this API, the API security
is challenging to understand. Consequently, a more straightforward approach
of scraping the statically generated pages and consequent HTML parsing is
used to extract the data. The category tree, however, was obtained in JSON
format by intercepting the web application communication.

The designed scraper shares a similar approach to the Albert scraper,
navigating through all pages of all categories at the lowest category level
to collect the necessary information. The primary difference between the
two scrapers lies in the data format used for each platform. Despite this
distinction, both scrapers are similar.

3.1.4 Billa Products Scraping

The Billa Online web application stores information about available categories
as constants in JavaScript. They were manually extracted from the code. To
retrieve products in any category, request 5.5.1 is used. The scraper again
sequentially traverses through all the most specific categories to obtain all
available products, along with their respective prices.

3.1.5 Penny Products Scraping

The Penny domů service only provides product information in HTML format.
The HTML pages include a navigation bar, containing URLs that lead to all
the available product categories. When a specific category URL is accessed,
a paginated list of all products belonging to that category is displayed. These
product lists are generated on server-side and delivered in HTML format.

The implemented scraper initially parses list of available categories and
their corresponding URLs. Subsequently it navigates through each category,
page by page, extracting product details directly from the HTML.

21

3. Data acquisition
3.1.6 Kaufland products scraping

Kaufland offers an app for self-service shopping, which allows users to scan
barcodes during their shopping journey and pay at the end. This app provides
product details and prices upon scanning each barcode. The goal was to
make use of the underlying API utilized by the app to collect the relevant
product information and prices.

Bypassing Certificate Pinning

The Kaufland application is secured against MITM attacks. This was discov-
ered by first attempting to intercept the HTTPS traffic just by installing the
mitmproxy CA certificate on the device. This resulted in network failures of
all the requests the application made.

By further analysis, it was discovered that the application contains a list
of pinned trusted certificate authorities directly in the application package
(for Android, this is in APK format 8). To bypass the pinning, the Android
version of the package (APK) was modified by using the following steps:..1. First, the APK was acquired using the Android remote debugging tool

ADB 9...2. The APK was unpacked using Apktool 10...3. The content of the APK file was examined and pinned certificate files
were localized...4. The CA certificate of the mitmproxy [17] running on the PC was acquired...5. The mitmproxy’s CA certificate file was converted to the same (BKS 11)
format as the pinned certificates 12...6. The certificate files in the unpacked application were replaced with the
ones from the previous step...7. The modified application was packed to APK using Apktool...8. The resulting APK was signed using Uber APK Signer 13 to allow its
installation on Android devices.

After performing these steps, the modified application’s traffic could be
intercepted. Moreover, the modified application only trusts the mitmproxy’s
CA certificate with its HTTPS communication.

8https://developer.android.com/guide/components/fundamentals
9https://developer.android.com/tools/adb

10https://ibotpeaches.github.io/Apktool/
11https://www.bouncycastle.org/
12https://gist.github.com/wbroek/cd87d161b52d0ddba08d
13https://github.com/patrickfav/uber-apk-signer

22

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/tools/adb
https://ibotpeaches.github.io/Apktool/
https://www.bouncycastle.org/
https://gist.github.com/wbroek/cd87d161b52d0ddba08d
https://github.com/patrickfav/uber-apk-signer

.................................... 3.1. Data Scraping

Reverse Engineering the API

To gain access to API functionalities, it was first necessary to log in through
the app. The app uses OAuth [5] for authentication. By monitoring the com-
munication between the app and server using a man-in-the-middle (MITM)
approach, several key values necessary for taking over the session were ob-
tained: customer ID, store ID, cidaas ID (an implementation-specific ID
referring to the Single Sign-On session), client ID, and refresh token. These
values are required for making requests to the API.

Using the refresh token and client ID, an access token can be obtained
using request 5.6.1. With the access token, customer ID, and cidaas ID,
a request 5.6.3 can be made to initiate a new shopping session, acquiring the
basket ID and BusinessServerSession ID (implementation-specific).

Once the basket ID and BusinessServerSession ID are available, requests
can be made to add an item with a specific barcode to the basket (request
5.6.5). The server responds with one of the following:..1. Product details, including the price of a product with the corresponding

barcode, if it exists...2. Packaging options if multiple options are available. After selecting one
of the packagings and repeating the original request, product details are
returned...3. A "not found" code if the product with the barcode is not found.

Items can be removed from the cart in a similar manner as they were added
using request 5.6.4.

Scraping Strategy

To simplify the scraping process and avoid replicating the entire OAuth login
process consisting of multiple requests, the latest refresh token observed
during the communication was used to take over the session for the scraper.

The scraping script behaves like a client using the app to check prices. It
performs the following steps:..1. It uses the last observed refresh token to obtain an access token and

a new refresh token and saves both tokens...2. Initiates a shopping session...3. Sends an "add to shopping cart" request 5.6.5 with a barcode to obtain
product details...4. Waits for a few seconds, simulating a user interaction delay...5. Removes the item from the basket using request 5.6.4...6. Waits for a few seconds, simulating a user moving to another item.

23

3. Data acquisition7. Repeats steps 3-6 for different barcodes, up to 50 times.

This scraping process is executed three times every non-holiday day to
gather product information. This strategy allows efficient product data
scraping while minimizing the risk of detection or suspicion.

Barcodes obtained from the Globus scraper (Section 3.1.8) were used as the
scanned barcodes (the barcodes referring to products with the Globus brand
and their other sub-brands being omitted). Consequently, only products that
are also available in Globus were obtained this way. Kaufland-specific brands,
as well as products with store-specific barcodes such as bread, fruits, and
vegetables, are not present in the database.

It is possible to manually collect a list of barcodes for the missing Kaufland-
branded products. However, store-specific barcodes often change due to the
seasonal nature of fruits and vegetables and the varying availability of such
products. Moreover, the barcode scanning API is not suitable to keep track
of weekly discounts as it might raise flags if too many products are scanned
at a time or too many shoppings are made daily.

The most effective way to keep track of seasonal offers is by monitoring
discount flyers. Kaufland provides their flyers in HTML format. The scraping
of these flyers is described in Section 3.1.7.

3.1.7 Kaufland Sales Scraping

Kaufland provides information about their ongoing sales and special offers
on their website. To extract sales data, a simple scraper was designed to
download the discount pages in HTML format. The product names, prices,
categorization, and offer start and end dates are extracted by parsing the
HTML content.

This scraper is useful as it keeps track of the discounts and seasonal offers,
which cannot be maintained by the barcode scanning API (Section 3.1.6).

3.1.8 Globus Products Scraping

Similar to Kaufland (Section 3.1.6), Globus offers an application called Můj
Globus that enables users to utilize their phones as self-service barcode
scanners. This app also features a shopping list function, which allows
users to add specific products using a search API. As with the Kaufland
application, mitmproxy was employed to investigate the application’s API.
In this case, the application did not have pinned certificates, enabling direct
MITM interception of the original application.

To use the APIs, an access token must first be obtained by logging in. The
application employs request 5.3.2 to log in, which returns the access token
and a refresh token. The refresh token can later be used to renew the access
token using request 5.3.3.

24

.................................... 3.1. Data Scraping

Shopping List API

With the access token, request 5.3.4 can be performed to search for a product
by name. The matched product names are returned, including product
identifiers (referred to as VANRs). By utilizing these identifiers in request
5.3.5, the API provides detailed product descriptions for the corresponding
products, including price, name, categorization, barcode, amount, and other
details (see Attachment 5.3.5 for the detailed response format).

Scraping Strategy. The API provides access to all the necessary information.
The remaining challenge is to create a set of search phrases to find as many
products as possible. Fortunately, this is not an issue, as product names
from the online delivery services of other shops and a manually created set
of product groups are already available. By using these names as search
phrases, over 12,000 products were found through the Globus API. Since
this is a search API, sending a series of requests in a row should not raise
suspicion. Thus, the scraper makes all the search requests in a row with short
delays between them. The entire database refresh takes less than an hour.

Self-Scanner API

The Shopping List API was released later than Self-Scanner API, so the
scraper was initially implemented using this API. It operates similarly to the
Kaufland scanner API (Section 3.1.6). First, a shopping cart must be created
using request 5.4.2. This request returns the token required to obtain product
information. Then, request 5.4.4 with any barcode can be sent to the server,
which will respond with information about the corresponding product and its
price. To complete the shopping, request 5.4.3 is used.
This API can be used to obtain product information, but as it is more likely
to be monitored and requires a set of barcodes to scan, the Shopping List
API (3.1.8) was used instead when it was released.14

3.1.9 Scraper scheduling

All scrapers are orchestrated using cron scheduler 15. The Tesco, Globus,
Billa, Penny, and Albert scrapers run weekly in the night or morning hours.
The flyer scraper (will be discussed in Section 3.2) runs a few times a week,
but only if any new flyer is found. Since the Kaufland scraper is based on
the scanner application API, it has to behave like a person going through the
shop to avoid attention. So it is only scraping a small set of products in each
run and runs multiple times a day.

14Globus also released its online e-shop, but at the time of the release, the Shopping List
API scraper had already been created.

15https://linux.die.net/man/5/crontab

25

https://linux.die.net/man/5/crontab

3. Data acquisition
3.2 Data extraction from flyers

While a majority of prices can be obtained through scraping of online shop
services, some sales are exclusive to physical stores. The most convenient
method to look up all sales is by examining discount flyers. To avoid doing
this manually, extraction scripts were needed.

Up-to-date flyers from large supermarket chains are available online. How-
ever, they are often presented as unstructured PDF files, with only a few
shops (Penny, Billa) offering structured PDF versions.

Research has already been conducted with the aim of extracting data from
promotional flyers [10, 4, 8]. Most studies utilize OCR followed by post-
processing [10, 8]. This study employed OCR in combination with custom
pre-processing, post-processing, and robust product name matching with
price and quantity.

3.2.1 Preprocessing

Initially, the PDF files are split into individual images by page, as the pages
are unrelated with each other (except for offer start and end dates) and all
the information about each product is on a single page.

For Lidl shop 16 flyers, OCR initially had difficulty extracting prices. Prices
are displayed in a bold white font on a red background and OCR struggled to
recognize it as a text. To mitigate this issue the input is further preprocessed.
The red color areas used in the flyer as a price background are masked,
resulting in a black-and-white image. An example of a preprocessed image
is shown in Figure 3.1. Since OCR is better trained to recognize black text
on a white background [16], this adjustment led to improved results (Figure
3.2). Additionally, this step preserved price-related text while removing most
non-price texts. Consequently, the identification of price-related text became
more straightforward, leading to enhanced price detection.

3.2.2 OCR

Initially, the open-source Tesseract [15] was considered for Optical Character
Recognition (OCR). However, the results were unsatisfactory (Figure 3.3),
as Tesseract [15] is primarily designed for extracting text from formatted
documents with single block of text (like books). The challenge with flyers
is the presence of multiple text areas scattered throughout the page, having
various fonts and font sizes. Exhaustive training of Tesseract [15] would be
required for each flyer format to improve the detection, which would cost
hours of annotating.

Consequently, the commercial Google Cloud Vision API [12] was tested.
The produced results were significantly better (Figure 3.3). Thus, this API
was chosen for further use in this study.

16https://www.lidl.cz/

26

https://www.lidl.cz/

.............................. 3.2. Data extraction from flyers

Figure 3.1: OCR Preprocessing - on the left is the original image, on the right
is the image after masking just red color (flyer source: www.lidl.cz)

Figure 3.2: Effect of OCR Preprocessing - it is clearer for the OCR that the
number 7 is a text after preprocessing (right figure), green bounding boxes show
detected text areas (flyer source: www.lidl.cz)

3.2.3 Searching for ROIs (Regions of Interest)

Google Cloud Vision API OCR [12] outputs data in the format shown in
listing 3.1.

27

www.lidl.cz
www.lidl.cz

3. Data acquisition

Figure 3.3: Comparison of text areas detected by Tesseract OCR [15] (left) the
ones detected with Google Cloud Vision API OCR [12] (right) (flyer source:
www.lidl.cz)

Listing 3.1: Google Cloud Vision API OCR output format
{"responses": [

{"fullTextAnnotation":{
"pages": [{

"blocks": [{
"boundingBox": {

"vertices": [{"x":x, "y":y},...]
},
"paragraphs": [{

"boundingBox": {...},
"words": [{

"boundingBox": {...},
"symbols": [

"boundingBox": {...},
"text": "W",

]
}, ...],

}, ...]
}, ...]

}, ...]
},...}

]}

28

www.lidl.cz

.............................. 3.2. Data extraction from flyers

The output includes each detected character with its bounding box, orga-
nized hierarchically into words, paragraphs, and blocks, which also have their
respective bounding boxes.

The main goal is to extract the product name, discount price, and amount.
While extracting non-discount prices would be useful, their detection is less
accurate as they are crossed, which could result in numerous errors. Therefore,
the focus remains on obtaining the mentioned three pieces of information.

The exact format varies depending on the store, but most flyers share
a similar pattern. Prices are displayed in a large font (its size slightly differs,
but is in store-specific range) with specific background colors. To identify price
words (using Google API terminology), a cascade of filters was developed,
which words must pass through to be considered as price words. The following
filters are applied:. bounding box height is within a specific range (this range needed to be

specified by hand and is store dependent). locating the area specified by the bounding box in the original image
and verifying the presence of a store-specific price background color
(a minimum percentage must be filled by this color).word matches a designated price regular expression

Detection of amount words is very similar. They also have font sizes within
a specific range, and though the background color is not always consistent, the
text color is either black or white, allowing for the application of a color filter.
Amounts must also match a regular expression in the format "[number] [unit]".

The following filters are applied to recognize product names:. bounding box height is within a specific range. black or white color filter. store-specific text format filter (e.g., Lidl uses capital letters for product
names, while other shops typically use lowercase letters with an initial
capital letter). texts do not contain promotional words frequently found in flyers

The API-provided block grouping is used to group words that passed the
corresponding filter. A block not only groups words with similar font sizes
but also those that are related according to the OCR. However, as the API-
provided grouping is not entirely accurate, additional postprocessing separates
grouped words that are far apart (beyond a predetermined maximum distance)
into distinct groups and groups ROIs that are close to each other (within
a predetermined maximum distance).

29

3. Data acquisition
3.2.4 Pairing product name with a price

A simple solution to pair product names with prices is to find the closest
price to each product name. While this approach may work in many cases,
there are instances where the closest price to a product name corresponds to
a different product or instances where multiple prices are located at a similar
distance from a product name. Such a situation is depicted in Figure 3.4.
Moreover, there may be more product names than prices to pair if a text that
is not a product name passes through the product name extraction filters.

Figure 3.4: Problem with closest neighbor pairing in dense flyers – closest
neighbouring price to a product name might belong to another product name,
e.g. the product "Jar Prostředek na nádobí" has similar distance to the price 299
and 139.90 and the closest neighbour pairing might be incorrect (flyer source:
www.albert.cz)

To address these challenges, a more robust solution is required. When two
or more prices are close to the same product name, there are other names in
the flyer corresponding to the rest of those price(s). Rather than minimizing
the distance between each pair separately, the matching heuristic should
also take the other pairs into account. This can be achieved by minimizing
the sum of distances between all pairs. This approach can be formulated as
an Integer linear programming (ILP) problem:

30

www.albert.cz

.............................. 3.2. Data extraction from flyers

min
∑

p∈1...P

∑
n∈1...N

xp,ncp,n

∀p
∑

n∈1...N

xp,n ≤ 1

∀n
∑

p∈1...P

xp,n ≤ 1

∑
p∈1...P

∑
n∈1...N

xp,n = min(P, N)

variables: xp∈1...P,n∈1...N ∈ {0, 1},

parameters: cp∈1...P,n∈1...N ∈ R+,

(3.1)

where xp,n is 1 if price p is paired with product name n and cp,n is a cost
for pairing price p with product name n (e.g. Euclidean distance in the flyer).
The first constraint ensures that each price is paired with only one product
name. The second constraint ensures that each product name is paired with
only one price. The last constraint ensures that as many pairs as possible are
made.

Moreover, when P = N , this issue can be treated as a bipartite weighted
matching problem, as defined in [1, Chapter 12.4]. This problem does not
need to be solved as an ILP task and can be formulated as a minimum cost
flow problem [1, Chapter 9][7, Chapter 9], which can be solved in polynomial
time using, for example, the Cycle Canceling algorithm [1, Chapter 9.6][7,
Chapter 9.3][9].

To formulate this problem as a minimum cost flow problem, a source node
with a balance equal to the maximum number of pairs that can be made
(bs = min(P, N)) is created, along with a sink node with a balance of bt = −bs,
and a node for each price and each name with a balance equal to 0. The
following edges are added:. edges from the source node to each price node with zero cost and an upper

bound of 1. edges from each price node to each name node with a cost equal to cp,n

and an upper bound of 1. edges from each name node to the sink node with zero cost and an upper
bound of 1

The resulting graph is illustrated in Figure 3.5.
Then if there is a flow equal to 1 from i-th price node to j-th name node

in the optimal solution of the minimum cost flow problem, i-th price should
be paired with j-th name, otherwise they should not be paired.

This solution works for P = N , but the OCR may miss prices or product
names or detect extra ones. The optimization will fail if P ̸= N . In addition,
it will enforce creating P = N pairs even if the prices and names are far from

31

3. Data acquisition

P1

ts

P2

P3

PP

NN

N2

N1

ub=min(P,N)
c=M

Price
nodes

Name
nodes

Source
b = min(P,N)

Sink
b = -min(P,N)

ub=1, c=0

ub=1, c=c(PX, NX)

ub=1, c=0

ub=1, c=0

ub=1, c=0

ub=1, c=0

ub=1, c=0

ub=1, c=0

Figure 3.5: Formulation of pairing as a minimum cost flow problem, the dashed
flow is optional (one of the solutions for case when P ̸= N)

each other and not related. One of the following two approaches can be used
to solve this.

The first solution is to add one extra edge (dashed flow in Figure 3.5) from
the source node to the sink node with an upper bound equal to min(P, N) and
cost equal to a manually set up maximum allowed distance M between name
and price. As a result, the problem is always feasible and the optimization
only produces pairs with a maximum distance M between name and price,
because the flow through the extra edge will be preferred over any pairing
with cost > M .

The second solution aims to create the maximum number of pairs possible
with distances less than the specified maximum distance, denoted as M .
The first step is to remove all edges with a cost greater than M . Next, the
maximum flow optimizer is executed to determine the maximum flow from
the source node to the sink node. The resulting maximum flow corresponds to
the maximum number of pairs that can be formed. After that, the minimum
cost flow algorithm can be triggered with the source node balance (bs) set
equal to the maximum flow and the sink node balance bt = −bs.

In the end, the second approach was used because it is more robust,
especially in combination with penalization discussed in Section 3.2.4.

To solve the minimum cost flow problem and the maximum flow problem,
the OR-tools library [14] is used.

An example of a pairing proposed by the resulting pairing algorithm is
shown in Figure 3.6.

32

.............................. 3.2. Data extraction from flyers

Figure 3.6: Result of pairing algorithm, green bounding boxes show detected
prices, red bounding boxes show detected names and blue lines show pairing
proposed by the pairing algorithm (flyer source: www.albert.cz)

Distance (pairing cost) computation

Rather than relying solely on the Euclidean distance as the pairing cost, slight
modifications were made to improve the pairing accuracy. Specifically, the
length of the portion of the shortest connecting line that traverses any text
areas detected by the OCR (multiplied by a constant factor k ∈ [0, 1]) is
subtracted from the Euclidean distance. The motivation for this was, that it
often happens that the product name is above its price and in between is an
extra text regarding the product (this can be seen for example in Figure 3.6
when looking at product "Albert dětské plenky" - the blue shortest connecting
line passes through text area).

Additionally, one other modification was made to the pairing cost computa-
tion to help to prevent texts present in product images from being mistaken
for product names. Using the OpenCV library 17 for edge and contour de-
tection, an attempt was made to localize product images. The detection
process based on background extraction approach (described for example in
[11]) consists of the following operations:..1. Blurring the image using Gaussian blur with a kernel size of 15 × 15

pixels to reduce noise...2. Applying Canny edge detection [2].
17https://opencv.org/

33

www.albert.cz
https://opencv.org/

3. Data acquisition3. Performing dilation and erosion on the resulting edges (using a kernel
size of 5 × 5 pixels) to merge close edges...4. Finding contours within the edges...5. Selecting only contours with area sizes within a specified range. This
range is designed to include product images while excluding contours
that cover the entire image or are as small as individual text characters...6. Combining the filtered contour areas into a bitmap. This bitmap can
be used to determine whether a product name candidate lies within
a product image area.

An example of detected product image areas can be observed in Figure 3.7.

Figure 3.7: Product image detection, from the left to right - a) original image, b)
detected product images, c) both images combined (flyer source: www.lidl.cz)

Due to inaccuracies, excluding names within detected product image areas
might eliminate valid product names. Instead, such names were only penalized
– by increasing their distance c to each price as follows:

c = M − 1 + corig

M

, where M represents the maximum allowed distance and corig is the distance
before this modification. Consequently, product names identified outside of
image areas with a distance ≤ M − 1 to a price are always prioritized in the
optimization process over names situated within image areas. At the same
time, the penalized items are still comparable by distance (information about
distance is preserved by the corig

M) and c > M ⇐⇒ corig > M .
Since the product name candidates positioned within detected product

image areas are not entirely eliminated and are only penalized, it is not crucial
for the detection to be entirely accurate. However, the higher the accuracy,
the more helpful it becomes.

34

www.lidl.cz

.............................. 3.2. Data extraction from flyers

3.2.5 Pairing amount to a product

The amount is provided either just below the product name or just above
the product price depending on the store. So there is a specific area where
the amount has to be. If it’s not found there, it is omitted, if there are more
detected amounts in that area, the closest one is paired.

3.2.6 Structured PDFs

Detection of product names, prices, and amounts in structured PDFs is easier
because exact font type and size can be extracted from the PDF and used to
decide whether the text is name, price, amount, or something else. In this
case, even the original non-sale price can be extracted from the flyer even
though it is crossed, because there is no thread of character recognition error
like when using OCR.

3.2.7 Start and end date extraction

Start and end dates are the only relation between pages that needed to be
extracted. Some flyer pages list offers that are only available for a part of the
week. This is the case with Lidl flyers. On top of the page can be provided
information that the offers on this page and the following pages are limited
to some date range. So whenever such information is provided it needs to be
applied to all following pages, until a new date is provided.

3.2.8 Results

The proposed extraction method was applied to Lidl, Albert, and Billa flyers.
To test the extraction accuracy, over 100 offers for each of the three shops
were manually reviewed and the extracted results were compared with the
real offers presented in the flyers. The correctness of the amount, name,
price, and their mutual matching was verified. Results of the comparison are
summarized in the table 3.1. As can be seen from the table, the accuracy on
the test dataset is 92 % for Lidl flyers, 90% for Albert flyers, and 100% for
Billa flyers. Let’s discuss why are there differences between the accuracies.

Albert

Albert flyers are dense - the products are listed close to each other and
therefore, there is a higher chance that the product name to price matching
will be incorrect. Also since the different texts are close to each other, the
OCR accuracy is worse and it is more likely that it will group unrelated words
into the same paragraph or block.

One advantage of Albert flyers is that the amounts are positioned beneath
the product names, which are more challenging to identify than prices. This
property can be utilized to enhance product name detection - texts that do
not have their corresponding amount can be removed from the list of name

35

3. Data acquisition
Lidl Albert Billa

Real number of products in the flyer 127 123 111
Correctly extracted products 118 111 111
Number of extracted products 125 112 111
Missed products 2 11 0
Missing amount 2 0 0
Incorrect name - price matching 0 1 0
Incorrectly detected amount 2 0 0
Incorrectly detected price 0 0 0
Incorrectly detected name (incomplete name,
name from product image, ...) 3 0 0

Table 3.1: Flyer extraction results

candidates. This approach effectively filters out the majority of non-product
name strings from being mistaken as product names. It also explains the
higher number of missed products, since both amount and name have to be
detected in order for the product to be listed in the results.

Lidl

Products in Lidl flyers are listed further from each other. Therefore the OCR
performance is better and the risk of incorrect matching is lower. On the
other hand, the amounts are positioned above prices and cannot be used to
improve product name detection. This causes a higher number of errors as
sometimes words detected in product photos are considered to be product
names. Also, the online version of the flyer is only available in worse quality
than the Albert flyer, which also has an effect on OCR performance and
increases the risk of errors.

Billa

Billa flyers are available as structured PDF files and the text can be extracted
directly from them without the need to use OCR. Therefore there are no
errors caused by OCR inaccuracies. Also, it is easier to determine which texts
are part of the product name, price, or amount based on the exact font and
font size provided in the PDF. As a result, the extraction accuracy for the
test dataset was 100 %.

Discussion

Missing items are not as critical as incorrectly detected information. Espe-
cially incorrect price detection is an issue as it can interfere with the whole
price optimization process and a non-cheapest shop combination can be
recommended to the user instead of an optimal combination.

Therefore it is crucial to correctly pair the product name with its price.
In the test dataset, the pairing failed once. After analyzing the failure, it

36

............................ 3.3. Product Matching and Merging

was found that it occurred because a product name was not detected, and its
corresponding price was the closest price to another product name, leading to
an incorrect pairing. Detecting such situations is challenging. The solution
used in this work tries to detect such situations when the product is being
added to the database. If the product already exists in the database, its
lowest (L) and highest (H) prices present in the database are determined. If
the detected price deviates from the [L, H] range by more than P percent18,
the offer is not added to the database.

The analysis also revealed cases where the product name was detected
incorrectly. The name was incorrect either because the detected name was
incomplete or because the text from the product image was detected instead
of the product name. These cases are mostly mitigated by word grouping
(described in Section 3.2.3) and product image masking (Figure 3.7) and
occurred only for three product names.

A more robust product image detection and text merging method [8] would
be required to further improve this aspect. However, in most cases, a product
with an incorrect name added to the database will have only this one offer
assigned to it, and therefore, it will not be prioritized in the search results
(Section 2.1.5). Furthermore, the words that must appear in a product name
for it to be added to a group closely specify the product type the group
represents. Therefore, if essential words are missed, the product is unlikely
to be assigned to any group, and thus, it will not impact the process of price
optimization even if the shopping list contains product groups.

Incorrect amount detection occurred twice in the test dataset. In both
cases, it was due to OCR misdetection. Font sizes of amounts in flyers are
small and therefore challenging for the OCR to detect.

To prevent populating the database with incorrect names and amounts,
automatic creation of new product records in the database by extractors from
PDF flyers can be disabled. Consequently, if the detected product name and
amount do not match any existing product (Section 3.3), they are not added
to the database. Instead, they are added to a list of products to be reviewed
and added manually.

Although there is a room for further improvements, the results are already
quite satisfactory (with more than 90% accuracy) considering that flyer
extraction is not the main focus of this thesis.

3.3 Product Matching and Merging

When dealing with products from different supermarkets, it is common to
encounter products with different names even though they are essentially the
same. To effectively compare and merge these products, matching mechanism
must be implemented. This section provides an overview of the product
matching and merging process employed in the application.

18P is a preset constant

37

3. Data acquisition
3.3.1 Unified Categorization

Each supermarket classifies its products into categories. These categoriza-
tions can differ across supermarkets, necessitating the creation of a unified
categorization system. A manually created mapping table is used to map each
supermarket’s categorization to the unified categorization schema. This cate-
gorization system has multiple levels, such as "Dairy products" → "Yogurts"
→ "White yogurts".

3.3.2 Computing Match Rate

When adding a new product to the database, the match rate between the new
product and each existing product is computed. If the match rate is higher
than a preset threshold, the new product is merged with the existing product
that has the highest match rate. This helps to avoid matching unrelated
products. The match rate is determined as follows:..1. If the two products have the same barcode, they are always matched...2. If the packaging of the two products differs, they are considered different

products...3. If the prices of the two products differ by more than P percent19, they
are considered different products...4. If the products are not in the same category and don’t have a common
categorization path (e.g., a product in "Dairy products" can be merged
with a product from "Dairy products"→"Yogurts", but not with a product
from "Fruits and vegetables"), they are considered as different products...5. Otherwise, the match rate is calculated as

0.7 × nameMatch + 0.3 × brandMatch,

where nameMatch and brandMatch are the similarities of product names
and brand names, respectively. The name similarity must exceed a spec-
ified threshold. Additionally, the brand match rate is also computed
against the product name. If this rate surpasses the match rate against
the other brand name, it is used instead. The motivation for this step is
that often the brand name is contained in the product name.

String similarity computation

A set of metrics for product name matching are compared in study by Horch,
Kett and Weisbecker [6]. The study proposes and compares different similarity
values (metrics) of product names. According to the comparison results, the
"Intersection of Words" similarity value produces the best precision with

19preset constant

38

............................ 3.3. Product Matching and Merging

reasonable recall for matching. This means that it produces a low number of
false positive matches while detecting a reasonable number of true positives.

The Intersection of Words metric is calculated by dividing the number of
shared words between two strings by the total number of words in the longer
string. It can be represented by the following formula:

common(words(string1), words(string2))
max(len(words(string1)), len(words(string2)))

One main issue with this metric is that similar but not identical words
(with missing characters, plural vs singular, etc.) don’t increase the match
rate. Additionally, if the number of words differs between the two strings, the
match rate decreases. This lowers the recall when one shop provides longer
product names with detailed information and extra marketing words, while
another shop provides brief product names. To address these issues, I made
two modifications to the metric.

The first modification aims to increase the match rate of names containing
words that are not identical but are similar. The study’s proposed "Similarity
of Strings" metric is used to increase the match rate when words are similar.
The pseudocode in Listing 3.2 (lines 7-20) explains the change: it increments
the common words count by the "Similarity of Strings" of similar words. The
"Similarity of Strings" is a metric computed by comparing two strings using
the difflib library’s SequenceMatcher ratio method 20. It is computed using
the Longest Contiguous Subsequence (LCS) method as follows:

matchRatio = 2 × LCS(word1, word2)
|word1| + |word2|

The second modification increases the match rate when the length of strings
differs but the longer one of the two strings contains all the words present in
the shorter one. Instead of dividing the common word count by the length of
the longer string, it is divided by the average length of the two strings. The
resulting pseudocode in Listing 3.2 summarizes the modified logic used to
compute the name similarity.

20https://docs.python.org/3/library/difflib.html

39

https://docs.python.org/3/library/difflib.html

3. Data acquisition
Listing 3.2: String similarity computation

1 function similaritiesOfWords(words1, words2){
2 maxLength = max(words1.size, words2.size);
3 minLength = min(words1.size, words2.size);
4 commonWords = numberOfWordsPresentInBothSets(
5 words1, words2);
6
7 for (let word1 of words1 \ commonWords){
8 bestRatio = 0
9 //find most similar word to word1

10 for (let word2 of words2 \ commonWords){
11 bestRatio = max(
12 bestRatio,
13 similarityOfStrings(word1, word2)
14)
15 }
16 if (bestRatio > 0.5){
17 commonWords += bestRatio;
18 words2.delete(bestRatioWord);
19 }
20 }
21
22 if (commonWords == minLength)
23 return commonWords/((maxLength+minLength)/2);
24 else return commonWords/maxLength;
25 }

3.3.3 Merge Process

Once the match rate has been computed and found higher than the preset
threshold, the new product is merged with the existing product that has the
highest match rate. This process involves updating the product offers.

The old offers from the same shop with unknown offer end date are inval-
idated and the new offers are added. Invalidation of nondiscount offers is
skipped when discount offer alone is being added (this is the case when offer
found by flyer extraction is being added).

3.3.4 Challenges and Improvements

The product matching and merging process described above is not without
its challenges. The match rate threshold is set to a relatively high value to
avoid merging unrelated products. As a result, if the names corresponding to
the same product differ too much, they are not matched. To further improve
the matching process, perhaps machine learning could be used.

40

Chapter 4
Conclusion

The primary goals of this work have been successfully achieved, resulting in
a comprehensive and user-friendly solution for optimizing shopping lists and
minimizing costs.

The designed flyer extraction system is capable of correctly extracting over
90 % of all offers present in a marketing flyer. By reverse-engineering the
APIs of multiple online shopping services, specialized scrapers were created
to acquire product information from these sources. Methods for matching
corresponding products and grouping similar ones were developed. Altogether,
this resulted in a comprehensive and up-to-date database, containing over
40,000 offers and 25,000 products from the seven largest supermarket chains
operating in the Czech Republic.

Building on this extensive database, a web application was developed that
allows users to manage and optimize their shopping lists. It allows comparing
the total price of their shopping across different shops and shop combinations.

4.1 Future work

While the goals of this work were achieved, several ideas for future work could
further enhance the application and user experience.

Improvements in product matching and grouping could be made. The
current product matching process is rigorous to avoid matching of unrelated
products. However, this strictness occasionally results in related products not
being recognized as such, causing them to remain as separate records in the
database. This poses a problem for users seeking specific products. When
a user adds one of these products to their shopping list, the optimization
process will overlook offers linked to other, separate product records. Con-
sequently, the resulting shopping suggestion might not be optimal, or the
product might appear to be unavailable in some shops, as the relevant offers
are associated with the other records. This challenge could be addressed
by employing more sophisticated product matching tools, such as Natural
Language Processing techniques.

Moreover, the product offer database for some shops is incomplete, neces-
sitating manual intervention. For instance, the Kaufland scraper can only
acquire offers for products with known barcodes (Section 3.1.6). Currently

41

4. Conclusion......................................
only barcodes for products offered in Globus are known, other ones need to
be manually collected. Similarly, the Lidl product database is incomplete. It
is only limited to discounted products extracted from flyers since Lidl does
not provide an online service with database of offered products.

Future work could also include the development of native mobile applica-
tions for iOS and Android platforms, making the tool even more user-friendly
and accessible. Additionally, introducing features such as prepared shopping
lists for different occasions or meals could help users plan their shopping
more conveniently. Moreover, adding support for multi-user collaboration
would enable users to share and collaborate on shopping lists with friends
and family members.

These enhancements would further enhance the application, becoming
an even more valuable resource for users looking to optimize their grocery
shopping expenses.

The remaining challenge is to maintain the database and keep the data
scrapers updated. Shops frequently change product prices, assortment, their
online services, and the structure of discount flyers. It is essential to track
these changes and adjust the data extractors accordingly.

42

Glossary

API Application Programming Interface. 2, 19–26, 29, 41

CA Certificate Authority. 20, 22

DAO Data Access Object. 3

DTO Data Transfer Object. 4

HTML Hypertext Markup Language. 21, 24

HTTPS Hypertext Transfer Protocol Secure. 10, 20, 22

ILP Integer linear programming. vii, 1, 16, 18, 30, 31

JSON JavaScript Object Notation. 21

MITM Man in the middle attack. 20, 22–24

OCR Optical character recognition. vii, ix, 2, 26–29, 31, 33, 35–37

PDF Portable Document Format. vii, 26, 35–37

REST Representational state transfer. vii, 3, 4, 9

ROI Region of interest. vii, 27, 29

SMTP Simple Mail Transfer Protocol. 8

SQL Structured query language. 4, 8

UML Unified Modeling Language. ix, 4, 6, 8

URL Uniform Resource Locator. 8, 21

43

Bibliography

[1] Ravindra Ahuja, Thomas Magnanti, and James Orlin. Network flows.
01 1993.

[2] John Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698,
1986.

[3] James William Cooper. Java design patterns: a tutorial. Addison-Wesley
Professional, 2000.

[4] Ignazio Gallo, Alessandro Zamberletti, and Lucia Noce. Content extrac-
tion from marketing flyers. volume 9256, pages 325–336, 09 2015.

[5] Dick Hardt. The oauth 2.0 authorization framework. Technical report,
2012.

[6] Andrea Horch, Holger Kett, and Anette Weisbecker. Matching product
offers of e-shops. In Huiping Cao, Jinyan Li, and Ruili Wang, editors,
Trends and Applications in Knowledge Discovery and Data Mining, pages
248–259, Cham, 2016. Springer International Publishing.

[7] B. H. Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer-Verlag, 2012.

[8] Harlinton Palacios Mosquera and Yakup Genç. Recognition and classify-
ing sales flyers using semi-supervised learning. In 2019 4th International
Conference on Computer Science and Engineering (UBMK), pages 1–6,
2019.

[9] Course of combinatorial optimization. https://cw.fel.cvut.cz/wiki/
courses/ko/start. (last visited on 05.05.2023).

[10] Flyer data extraction. https://github.com/grahamhoyes/flyer-data-
extraction. (last visited on 05.05.2023).

[11] Background removal with python. https://towardsdatascience.com/
background-removal-with-python-b61671d1508a. (last visited on
25.05.2023).

44

https://cw.fel.cvut.cz/wiki/courses/ko/start
https://cw.fel.cvut.cz/wiki/courses/ko/start
https://towardsdatascience.com/background-removal-with-python-b61671d1508a
https://towardsdatascience.com/background-removal-with-python-b61671d1508a

..................................... 4.1. Future work

[12] Google cloud vision ocr. https://cloud.google.com/vision/docs/
ocr. (last visited on 05.05.2023).

[13] lp_solve. https://lpsolve.sourceforge.net/5.5/. (last visited on
05.05.2023).

[14] Minimum cost flows solver. https://developers.google.com/
optimization/flow/mincostflow. (last visited on 05.05.2023).

[15] Tesseract. https://github.com/tesseract-ocr/tesseract. (last vis-
ited on 05.05.2023).

[16] Tesseract documentation - improving the quality of the out-
put. https://tesseract-ocr.github.io/tessdoc/ImproveQuality.
html#binarisation. (last visited on 05.05.2023).

[17] Mitmproxy. https://mitmproxy.org/. (last visited on 05.05.2023).

[18] Dinesh Rajput. Spring 5 Design Patterns: Master efficient application
development with patterns such as proxy, singleton, the template method,
and more. Packt Publishing Ltd, 2017.

[19] Ashutosh Satapathy, Jenila Livingston, et al. A comprehensive survey
on ssl/tls and their vulnerabilities. International Journal of Computer
Applications, 153(5):31–38, 2016.

[20] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

45

https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/vision/docs/ocr
https://lpsolve.sourceforge.net/5.5/
https://developers.google.com/optimization/flow/mincostflow
https://developers.google.com/optimization/flow/mincostflow
https://github.com/tesseract-ocr/tesseract
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html#binarisation
https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html#binarisation
https://mitmproxy.org/

Chapter 5
Attachments

5.1 REST API Documentation

5.1.1 Endpoints.POST /rest/users
Registers a new user.
Request Body: RegisterDTO (JSON).GET /rest/users/verifyEmail
Verifies an email address.
Request Params: email (String), id (String).GET /rest/users/requestPasswordResetEmail
Requests a password reset email.
Request Params: email (String).GET /rest/users/requestVerificationEmail
Requests a verification email.
Request Params: email (String).POST /rest/users/resetPassword
Resets a user’s password.
Request Body: ResetPasswordDTO (JSON).POST /rest/users/changePassword (ADMIN, USER)
Changes a user’s password.
Request Body: ChangePasswordDTO (JSON).GET /rest/users/current (ADMIN, USER)
Retrieves the current user’s data.
Response: ClientDTO (JSON).DELETE /rest/users/removeShop/{shopId} (ADMIN, USER)
Removes a shop from the user’s list of preferred shops.
Path Params: shopId (Integer)

46

...............................5.1. REST API Documentation

.POST /rest/users/addShop/{shopId} (ADMIN, USER)
Adds a shop to the user’s list of preferred shops.
Path Params: shopId (Integer).DELETE /rest/users/removeMembership/{membershipId} (AD-
MIN, USER)
Removes a membership from the user’s membership list.
Path Params: membershipId (Integer).POST /rest/users/addMembership/{membershipId} (ADMIN,
USER)
Adds a membership to the user’s membership list.
Path Params: membershipId (Integer).DELETE /rest/users/blacklist/{productId} (ADMIN, USER)
Removes a blacklisted product from the user’s blacklist.
Path Params: productId (Integer).POST /rest/users/blacklist/{productId} (ADMIN, USER)
Adds a blacklisted product to the user’s blacklist.
Path Params: productId (Integer).PUT /rest/users/setMaxShopCount/{maxShopCount} (AD-
MIN, USER)
Sets the maximum number of shops used optimization for the user.
Path Params: maxShopCount (Integer).POST /rest/optimize (ADMIN, USER)
Optimizes the shopping list for the current user.
Response: List of ShoppingDTO (JSON).GET /rest/products/search
Searches for products by name.
Request Params: searchString (String)
Response: List of ProductSearchDTO (JSON).GET /rest/products/id (ADMIN, USER)
Retrieves product details by ID.
Path Params: id (Integer)
Response: ProductDTO (JSON).GET /rest/products/getRecommendations (ADMIN, USER)
Retrieves recommendations of product groups on sale.
Response: List of ProductSearchDTO (JSON).GET /rest/shops
Retrieves all available shops.
Response: List of ShopDTO (JSON)

47

5. Attachments
.GET /rest/shopping (ADMIN, USER)

Retrieves the current user’s shoppings.
Response: List of ShoppingDTO (JSON, without items).PUT /rest/shoppingItem/itemId/uncheck (ADMIN, USER)
Unchecks a shopping item.
Path Params: itemId (Long)
Response: No Content.PUT /rest/shoppingItem/itemId/check (ADMIN, USER)
Checks a shopping item as bought.
Path Params: itemId (Long)
Response: No Content.PUT /rest/shopping/shoppingId/finish (ADMIN, USER)
Finishes a shopping.
Path Params: shoppingId (Long)
Response: List of ShoppingListItemDTO (JSON).GET /rest/shopping/shoppingId (ADMIN, USER)
Retrieves a shopping by ID.
Path Params: shoppingId (Long)
Response: ShoppingDTO (JSON).POST /rest/shopping/start (ADMIN, USER)
Starts a new shopping.
Request Body: ShoppingDTO (JSON)
Response: ShoppingDTO (JSON).GET /rest/shoppingList (ADMIN, USER)
Retrieves the current user’s shopping list items.
Response: List of ShoppingListItemDTO (JSON).PUT /rest/shoppingList (ADMIN, USER)
Updates a shopping list item.
Request Body: ShoppingListItemDTO (JSON)
Response: ShoppingListItemDTO (JSON).POST /rest/shoppingList (ADMIN, USER)
Adds a shopping list item.
Request Body: ShoppingListItemDTO (JSON)
Response: ShoppingListItemDTO (JSON).POST /rest/shoppingList/changeItemState (ADMIN, USER)
Changes the state of a shopping list item.
Request Body: ChangeStateDTO (JSON)
Response: No Content.PUT /rest/adminTools/refreshProductDb (ADMIN)
Refreshes the product database (needs to be called after database changes

48

...............................5.1. REST API Documentation

from outside of the application by scrapers.
Response: No Content. PUT /rest/adminTools/generateCsvWithAllProducts (ADMIN)
Generates a CSV file with all products.
Response: No Content

5.1.2 Data Transfer Objects (DTOs)

ChangePasswordDTO. email: String
The user’s email address.. password: String
The new password for the user.. oldPassword: String
The user’s current password.

ChangeStateDTO. shoppingListItemId: Long
The unique identifier of the shopping list item.. state: String
The new state of the shopping list item (ACT, NACT, HID, OS).

ClientDTO. email: String
The email address of the client.. firstName: String
The first name of the client.. lastName: String
The last name of the client..maxShopCount: Integer
The maximum number of shops the client wants to visit.. role: String
The role of the client in the system (ADMIN, USER, TO_VERIFY).. gender: String
The gender of the client (MALE, FEMALE, OTHER).. birthDate: LocalDate
The birth date of the client.

49

5. Attachments
. town: String

The town where the client resides.. shoppingListItems: List<ShoppingListItemDTO>
The list of shopping list items associated with the client.. shoppings: List<ShoppingDTO>
The list of shopping instances associated with the client.. currentShopping: ShoppingDTO
The current shopping instance of the client..memberships: List<Integer>
The list of user’s membership’s IDs.. shops: List<Integer>
The list of user’s preferred shop’s IDs.. blacklistedProducts: Set<Integer>
The set of product IDs blacklisted by the client.

ClientVerification. email: String
The email address of the client.. uuid: String
The unique identifier (UUID) associated with the client verification.

OfferDTO. shopId: Integer
The identifier of the shop where the offer is available.. offerId: Long
The unique identifier of the offer.. amount: Float
The amount of product offered.. cost: Float
The cost of the product in the offer.. isSale: boolean
Indicates whether the offer is a sale or not.. offerEnd: LocalDateTime
The date and time when the offer ends.. percentageSale: Integer
The percentage of the sale, if applicable.

50

...............................5.1. REST API Documentation

ProductDTO. id: Integer
The unique identifier of the product.. name: String
The name of the product.. baseAmountUnit: String
The unit of base amount of the product (G,KG,ML,L,PKG,M,KS).. baseAmount: Float
The base amount of the product.. type: String
The type of the product (P, G).. offersByShop: Map<Integer, OfferDTO>
A map containing the shop identifier as the key and the corresponding
offer details as the value.. subproducts: List<SubproductDTO>
A list of subproducts associated with the product.. packageSizeUnit: String
The unit of package size of the product (G,KG,ML,L,PKG,M,KS).. packageSize: Float
The size of the package of the product.. brand: String
The brand of the product.. category: String
The category the product belongs to.

RegisterDTO. email: String
The email address of the user registering.. firstName: String
The first name of the user registering.. lastName: String
The last name of the user registering.. password: String
The password for the user registering.. gender: String
The gender of the user registering (MALE,FEMALE,OTHER).

51

5. Attachments
. birthDate: String

The birth date of the user registering, stored as a string in the format
"yyyy-MM-dd".. town: String
The town where the user registering lives in.

ResetPasswordDTO. email: String
The email address of the user requesting a password reset.. password: String
The new password for the user.. uuid: String
The unique identifier for the password reset request.

ShopDTO. id: Integer
The unique identifier of the shop.. name: String
The name of the shop..memberships: List<Membership>
The list of memberships associated with the shop.

ShoppingDTO. id: Long
The unique identifier of the shopping.. shopIds: List<Integer>
The list of unique shop identifiers where the shopping items are bought.. timestamp: LocalDateTime
The timestamp of the shopping creation.. state: String
The state of the shopping (ONGOING, FINISHED, PARTIAL, ABORTED,
UNSOLVABLE).. shoppingItems: List<ShoppingItemDTO>
The list of shopping items in the shopping.. totalCost: Float
The total cost of the shopping.

52

...............................5.1. REST API Documentation

. extraCost: Float
The cost of shopping items corresponding to products that the user only
wanted to buy if some condition was met (sale, price lower than limit)
and for which this condition was met.

ShoppingItemDTO. id: Long
The unique identifier of the shopping item.. offerId: Long
The unique identifier of the offer associated with the shopping item.. confirmed: Boolean
The flag indicating whether the shopping item is confirmed (already
bought) or not.. offerEnd: LocalDateTime
The end date and time of the offer associated with the shopping item.. percentageSale: Integer
The percentage discount of the offer associated with the shopping item.. cost: Float
The cost of the shopping item.. name: String
The name of the shopping item.. brand: String
The brand of the shopping item.. packageSizeUnit: String
The unit of the package size of the shopping item (G,KG,ML,L,PKG,M,KS).. packageSize: Float
The package size of the shopping item.. amountUnit: String
The unit of the amount of the shopping item (G,KG,ML,L,PKG,M,KS).
Used for type MISS or EXTRA (when concrete product is not associated
with the shopping item).. amount: Float
Number of pieces.. category: String
The category of the shopping item.. shopName: String
The name of the shop where the shopping item is to be bought.

53

5. Attachments
.membershipName: String

The name of the membership associated with the shopping item, if any.. productId: Integer
The unique identifier of the product associated with the shopping item.. type: String
The type of the shopping item (MISS, EXTRA, REQ, NOTE).

ShoppingListItemDTO. id: Long
The unique identifier of the shopping list item.. type: String
The type of the shopping list item (N, P).. amount: Float
The amount of the shopping list item.. amountUnit: String
The unit of the amount of the shopping list item (G,KG,ML,L,PKG,M,KS)..maxCost: Float
The maximum cost of the shopping list item.. state: String
The state of the shopping list item (ACT, NACT, HID, OS).. lastBuyDate: LocalDate
The date when the shopping list item was last bought.. previousPurchasesCount: Integer
The number of times the shopping list item was previously purchased.. productId: Integer
The unique identifier of the product associated with the shopping list
item.. category: String
The category of the shopping list item.. name: String
The name of the shopping list item.. isGroup: boolean
The flag indicating whether the shopping list item refers to a product
group or not.. bestOffer: OfferDTO
The best offer available for the shopping list item.

54

...............................5.1. REST API Documentation

. shopIds: List<Integer>
The list of unique shop identifiers where the shopping list item is available.. subproducts: List<SubproductDTO>
The list of subproducts associated with the shopping list item.

SubproductDTO. id: Integer
The unique identifier of the subproduct.. name: String
The name of the subproduct.. packageSizeUnit: String
The unit of the package size of the subproduct (G,KG,ML,L,PKG,M,KS).. packageSize: Float
The package size of the subproduct.. brand: String
The brand of the subproduct.. bestOffer: OfferDTO
The best offer available for the subproduct.. shopIds: List<Integer>
The list of unique shop identifiers where the subproduct is available.

55

5. Attachments
5.2 Albert API

In the response formats, irrelevant attributes are omitted for clarity.

5.2.1 Common for all requests

Base URL https://api.albertdomuzdarma.cz/
Method GET

GET parameters
operationName= //depends on request
variables={

//depends on request
}
extensions={

"persistedQuery": {
"version": 1,
"sha256Hash": //depends on request

}
}

Response format JSON

5.2.2 Acquisition of list of all categories

GET parameters
operationName=LeftHandNavigationBar
variables={

"rootCategoryCode": "",
"cutOffLevel": "4",
"lang": "cs"

}

Response format
{"data": {"leftHandNavigationBar": {

"categoryTreeList": [{
"categoriesInfo": [{

"categoryCode": "zeSILF",
"levelInfo": [{

"name": "Grilovaci tacky",
"productCount": 1,
"url": "/cs−cz/shop/Domacnost−a−zahrada/

Zahrada/Grilovani/Grilovaci−tacky/c/zeSILF",
"code": "zeSILF",
"__typename": "CategoryLevelInfo"

}],
"__typename": "CategoryInfo"

}],
"level": "4",
"__typename": "CategoryLevel"

}],
"__typename": "LeftHandNavigationBar"

}}}

56

..................................... 5.2. Albert API

5.2.3 Retrieve a product page in a category by category code

GET parameters
operationName=GetCategoryProductSearch
variables={

"category": "CATEGORY_ID",
"searchQuery": "",
"lang": "cs",
"pageNumber":0,
"pageSize":20,
"filterFlag":true

}

Response format
{"data": {"categoryProductSearch": {"products": [

{
"available": true,
"code": "24228862",
"badgeBrand": {

"code": "albertova trznice",
"image": {

"url": "/medias/sys_master/hb4/hb2/8834760474654.png",
"__typename": "Image"

},
"__typename": "ProductBadge"

},
"images": [

{
"format": "thumbnail",
"imageType": "PRIMARY",
"url": "/medias/sys_master/h4e/h73/8816931635230.jpg",
"__typename": "Image"

},
],
"name": "Albert Paprika sladka",
"onlineExclusive": null,
"price": {

"approximatePriceSymbol": "cca",
"currencySymbol": "Kc",
"formattedValue": "36,90 Kc",
"priceType": "BUY",
"supplementaryPriceLabel1": "1 kus = 9,95 Kc",
"supplementaryPriceLabel2": "2 ks",
"showStrikethroughPrice": true,
"discountedPriceFormatted": "19,90 Kc",
"discountedUnitPriceFormatted": "5 kus = 9,37 Kc",
"unit": "piece",
"unitPriceFormatted": "36,90 ",
"unitCode": "pieces",
"unitPrice": 36.9,
"value": 36.9,
"__typename": "Price"

},
"productProposedPackaging": 1,
"productProposedPackaging2": null,
"url": "/cs−cz/shop/Ovoce−a−zelenina/Zelenina/

Plodova−zelenina/Albert−Paprika−sladka/p/24228862",
"__typename": "Product"

},
"__typename": "CategoryProductSearchList"
}}}

57

5. Attachments
5.2.4 Getting a specific product based on ID

GET parameters
operationName=ProductDetails
variables={"productCode":"PRODUCT_CODE","lang":"cs"}

Response format
{"data": {"productDetails": {

"available": true,
"badgeBrand": {"code": "albertova trznice"},
"categories": [

{"code": "zeGG10","name": "Jablka a hrusky"},
{"code": "zeGG01","name": "Ovoce"},
{"code": "zeG001","name": "Ovoce a zelenina"}

],
"code": "20442422",
"description": "Stavnate zelene jablka odrudy Granny Smith.",
"isAvailableByCase": false,
"limitedAssortment": false,
"manufacturerName": "",
"manufacturerSubBrandName": null,
"mobileClassificationAttributes": [

{"code": "BRAND","value": "ALBERTOVA TRZNICE"}
],
"name": "Jablka Granny Smith skladana",
"onlineExclusive": null,
"price": {

"approximatePriceSymbol": "cca",
"averageSize": 0.25,
"currencySymbol": "Kc",
"discountedPriceFormatted": null,
"supplementaryPriceLabel1": "1 kg = 44,90 Kc",
"supplementaryPriceLabel2": "250 g",
"discountedUnitPriceFormatted": null,
"unit": "kg",
"unitPrice": 44.9,
"value": 11.23,
"variableStorePrice": false,
"warehouseCode": "2316",

},
"productProposedPackaging": 1,
"productProposedPackaging2": null,
"proposedPackagingByPiece": 1,
"proposedPackagingByCase": null,
"purchasable": true,
"stock": {

"inStock": true,
"inStockBeforeMaxAdvanceOrderingDate": false,
"partiallyInStock": false,
"availableFromDate": null,
"__typename": "Stock"

},
"uid": null,
"__typename": "Product"

}}}

58

............................... 5.3. Globus shopping list API

5.3 Globus shopping list API

In the response formats, irrelevant attributes are omitted for clarity.

5.3.1 Common elements of requests

Base URL https://selfscanwebservice1.globus.cz/api
Headers

’Accept: ∗/∗’,
’Connection: keep−alive’,
’User−Agent: GlobusCZ/1.9.2

(cz.globus.mujglobus; build:298; iOS 15.6.0) Alamofire/5.6.2’,
’Accept−Language: cs−CZ;q=1.0, en−CZ;q=0.9’,

Response format JSON

5.3.2 Login request

Path /connect/token
Request type POST

POST parameters
{

username: c_up>CCD17A3F−04F0−4D5C−A3F3−A145C9A9EABB>
iPhone SE>EMAIL,

password: PASSWORD,
scope: ’apiCustomerProfile apiCoupon apiOnlineAsset apiProductCatalog

apiRecommender apiShoppingList apiNotificationRegistration
apiArticleSnitchService apiGastro apiFoodPickup
apiCustomerCockpit apiIMProxy offline_access’,

grant_type: "password"
}

Extra Headers
’Content−Type: application/x−www−form−urlencoded’,
’Authorization: Basic HARD_CODED_BEARER_TOKEN_IN_APP’,

Response format
{

"access_token": ACCESS_TOKEN,
"expires_in": 3600,
"refresh_token": REFRESH_TOKEN,
"token_type": "Bearer"

}

59

5. Attachments
5.3.3 Renew token request

Path /connect/token
Request type POST

POST parameters
{

grant_type: ’refresh_token’,
refresh_token: REFRESH_TOKEN,

}

Extra Headers
’Content−Type: application/x−www−form−urlencoded’,
’Authorization: Basic HARD_CODED_BEARER_TOKEN_IN_APP’,

Response format
{

"access_token": ACCESS_TOKEN,
"expires_in": 3600,
"refresh_token": REFRESH_TOKEN,
"token_type": "Bearer"

}

5.3.4 Get suggestions (search)

Path /Recommender/2/houses/4003/suggestions
Request type GET

Query parameters
"filter": "SearchText:contains TEXT;;ReturnEntities:in Product",
"page": 0,
"pageSize": 10

Extra Headers
’Content−Type: application/json’,
’X−System−Version: 15.6’,
’X−App−Platform: iOS’,
’X−App−Version: 298’,

Response format
[

{
"ID": "00174769000",
"LastChange": "2023−01−31T22:12:32",
"Text": "Zott Zottarella Mozzarella classic 125 g",
"Type": "Product",
"Vanr": "00174769000"

},...
]

60

............................... 5.3. Globus shopping list API

5.3.5 Get details

Path /ProductCatalog/2/houses/4003/products
Request type GET

Query parameters
filter: "vanr:in VANR1,VANR2,VANR3,....",
page: 0,
pageSize: 100

Extra Headers
’Content−Type: application/json’,
’X−System−Version: 15.6’,
’X−App−Platform: iOS’,
’X−App−Version: 298’,

Response format
{

"allergens": [],
"articleType": 0,
"brand": {"brandId": "0","name": "normalni"},
"contains": "...",
"ean": [

"4014500234816",
"4014500504391",

],
"modified": "2023−01−31T21:12:32",
"name": "Zott Zottarella Mozzarella classic 125 g",
"nutritionValues": [...]
"producer": "Zott SE & Co. KG",
"productCategories": [

"cls_czr_mozzarella_bryndza",
"cls_czr_soft_cheeses_mozzarella",
"cls_czr_cheese",
"cls_czr_milk_dairy_products_and_eggs",

],
"productInHouse": {

"actualPrice": 36.9,
"availability": "A",
"discountPercentage": null,
"modified": "2023−02−06T05:47:28",
"originalPrice": 36.9,
"placements": [

{
"category": "Syry",
"department": "Cerstve potraviny",
"facing": 3,
"name": "Syry_Salatove 2.cast_5RJ_03_4P",
"presentationStock": 27.0,
"presentationType": 2,
"subcategory": "Salatove syry"

}
],
"priceValidFrom": "2022−11−21T00:00:00",
"priceValidTo": "9999−12−31T23:59:59",
"securityTag": false,
"stockAmount": 56.0

},
"unitAmount": 125.0,
"unitId": "g",
"vanr": "00174769000",

},

61

5. Attachments
5.4 Globus scanner API

In the response formats, irrelevant attributes are omitted for clarity.

5.4.1 Common elements of requests

Base URL https://selfscanwebservice1.globus.cz/api
Request type POST

Headers
’Content−Type: application/json; charset=utf−8’,
’Accept: ∗/∗’,
’Connection: keep−alive’,
’X−StoreNumber: SHOP_ID’,
’Accept−Language: cs−CZ,cs;q=0.9’,
’User−Agent: GlobusCZ/298 CFNetwork/1335.0.3 Darwin/21.6.0’

Response format JSON

5.4.2 Initiation of shopping

Path /shopping/start
POST parameters

{
"data": {

"appVersion": "",
"branchId": SHOP_ID,
"clubCard": CLUBCARD_ID,
"lang": "",
"location": {

"lat": 0,
"lng": 0

}
},
"deviceId": DEVICE_ID

}

Response format
{

"address": "Praha − Cerny most",
"branchId": 4002,
"currency": "Kc",
"customerAddressing": "ACCOUNT_NAME",
"customerGender": "",
"customerId": 1490445,
"expire": "2022−10−18T19:54:05.981Z",
"goldenScanner": null,
"name": "Cerny most",
"onlinePayment": false,
"showTutorial": true,
"token": TOKEN

}

62

..................................5.4. Globus scanner API

5.4.3 Finalization of shopping

Path /shopping/stop
POST parameters

{
"data": {

"reason": "UserCancel"
},
"deviceId": DEVICE_ID,
"token": TOKEN

}

Response format
{

"succcess": true
}

63

5. Attachments
5.4.4 Getting information about an item

Path /article
POST parameters

{
"data": {

"articles": [BARCODE],
"branchId": SHOP_ID

},
"deviceId": DEVICE_ID,
"token": TOKEN

}

Response format
{

"7613035093331": {
"articleImage": null,
"articleKey": "7613035093331",
"articlePrice": 60.0,
"articlePriceBeforeDiscount": 112.9,
"departmentId": "627",
"depositArticle": null,
"depositKey": "",
"groupByInnerArticleKey": false,
"innerArticleKey": null,
"isDiscountEAN": true,
"isForSale": true,
"isWeightedItem": false,
"maxAmount": 200,
"multipack": false,
"name": "NF ORION GRANKO 450G",
"pnb": "1020771ST",
"ratio": 1.0,
"savers": [

{
"active": true,
"articleDependencies": null,
"articleKey": "7613035093331",
"articleKeys": [

"7613035093331"
],
"bucketId": 1,
"clubCard": false,
"description": "SLEVA",
"end": "2022−10−17T22:00:00",
"isIgnored": false,
"minimumItemValue": 0.0,
"start": "2022−10−15T22:00:00",

}
],
"secondName": "NF ORION GRANKO 450G",
"secondaryCodeRequired": false,
"subDepId": "0",
"totalPrice": 60.0,
"units": null,
"weight": null

}
}

64

...................................... 5.5. Billa API

5.5 Billa API

In the response formats, irrelevant attributes are omitted for clarity.

5.5.1 Getting page of products belongingto category

URL https://shop.billa.cz/api/categories/CATEGORY/products?
page=PAGE&pageSize=30&sortBy=relevance

Request type GET
Response format

{
"count": 1,
"offset": 0,
"total": 1,
"results": [

{
"amount": "1",
"category": "Citrusy",
"descriptionShort": "Pomeranc",
"name": "Pomeranc",
"packageLabel": "",
"parentCategories": [[

{"name": "Ovoce a zelenina","slug": "ovoce−a−zelenina−1165"},
{"name": "Ovoce","slug": "ovoce−1166"},
{"name": "Citrusy","slug": "citrusy−1167"}

]],
"price": {

"baseUnitShort": "kg",
"basePriceFactor": "1",
"regular": {

"perStandardizedQuantity": 4990,
"promotionValue": 1646,
"promotionValuePerStandardizedQuantity": 4990,
"tags": [],
"value": 1646

}
},
"productId": "7a3868c4−e7ba−45ba−903c−34f3b35eda65",
"sku": "82−203616",
"slug": "pomeranc−82203616",
"volumeLabelKey": "kg",
"weight": 1.0,
"isWeightArticle": true,
"isWeightPieceArticle": true,
"weightPerPiece": 330,
"brandMarketing": "",
"grossWeight": "",
"productMarketing": "Odruda Navelina, I. jakost",
"regulatedProductName": "Pomeranc",
"minQuantity": 1,
"quantityStepSize": 1,
"published": true,
"seasonal": false,
"weightArticle": true,
"weightPieceArticle": true

}
]

}

65

5. Attachments
5.6 Kaufland application API

In the response formats, irrelevant attributes are omitted for clarity.

5.6.1 Access token renewal

URL https://account.kaufland.com/token-srv/token
POST parameters

{
client_id: CLIENT_ID,
grant_type: ’refresh_token’,
refresh_token: REFRESH_TOKEN,
v: ’1.5.0’,
preferredStore: STORE_ID

}

Headers
’Content−Type: application/x−www−form−urlencoded; charset=utf−8’ ,
’Connection: Keep−Alive’,
’User−Agent: okhttp/4.9.2’

Response format JSON

5.6.2 Common elements of requests

Base URL https://live.api.schwarz/kfl/mss/myscan/v1/Basket
Request type POST

Headers
‘Authorization: Bearer ACCESS_TOKEN‘,
‘CidaasID: CIDAAS_ID,
’Kl_Country: CZ’,
’Accept: application/json’,
’Content−Type: application/json; charset=utf−8’,
’Connection: Keep−Alive’,
’User−Agent: okhttp/4.9.2’,

Response format JSON

66

............................... 5.6. Kaufland application API

5.6.3 Initiation of shopping

Path /Start
POST parameters

{
"customerId": CUSTOMER_ID,
"language": "CZ",
"origin": "Android",
"storeId": STORE_ID

},

Response format
{

"attributes": {
"expires": "99991231235959",
"storeName": "2050 − Praha−Mecholupy"

},
"basketId": "BASKET_ID",
"basketState": "Started",
"basketView": {

"items": [],
},

}

Response set-cookie BusinessServerSessionId: BUSSINESS_SESSION_ID

5.6.4 Remove item from cart

Path /Remove
Cookie BusinessServerSessionId: BUSSINESS_SESSION_ID

POST parameters
{

"basketId": BASKET_ID,
"barcode": ANY_BARCODE,

},

Response format Code 200

67

5. Attachments
5.6.5 Adding item to cart

Path /Add
Cookie BusinessServerSessionId: BUSSINESS_SESSION_ID

POST parameters
{

"basketId": BASKET_ID,
"barcode": BARCODE,

},

Response format
{

"addedItem": {
"barcode": "4337185855528",
"id": "P00138023",
"longDescription": "KLC.Tortilla.6ks370g",
"price": {

"grossPrice": 25.9,
"itemDiscount": 0.0,
"netPrice": 25.9,

},
"quantity": 1,
"shortDescription": "KLC.Tortilla.6ks370g"

},
"attributes": {

"expires": "20221024104226"
},
"basketId": "yhljmYfJGkmEl7SnFKjY7A",
"basketState": "Shopping",
"basketView": {

"items": [...],
}

}

Response format
if packaging

required {
"availablePackagings": [

{
"capacity": 0,
"descriptions": [],
"type": "None"

},
{

"capacity": 1,
"descriptions": [],
"packagingId": "00138023",
"type": "Multipack"

}
],
"resultMessage": "PackagingRequired"

}

68

	Introduction
	Application Implementation
	Server and interface it provides
	Server structure
	Database model
	Optimized Shopping Options
	User Management
	Product Search
	Sale Recommendations
	REST API
	Deployment, Runtime environment

	Frontend
	Server Request Management Layer
	Main Pages

	Product Groups
	Defining Product Groups
	Assigning Products to Groups
	Utilizing Product Groups in Optimization
	Challenges and Improvements

	Optimization of Shopping Costs
	Finding the best offer for a specific product
	Computing required number of packages
	Optional shopping list items
	Formulation of the ILP Problem
	Implementation

	Data acquisition
	Data Scraping
	Mobile Apps APIs reverse engineering
	Albert products scraping
	Tesco Products Scraping
	Billa Products Scraping
	Penny Products Scraping
	Kaufland products scraping
	Kaufland Sales Scraping
	Globus Products Scraping
	Scraper scheduling

	Data extraction from flyers
	Preprocessing
	OCR
	Searching for ROIs (Regions of Interest)
	Pairing product name with a price
	Pairing amount to a product
	Structured PDFs
	Start and end date extraction
	Results

	Product Matching and Merging
	Unified Categorization
	Computing Match Rate
	Merge Process
	Challenges and Improvements

	Conclusion
	Future work

	Glossary
	Bibliography
	Attachments
	REST API Documentation
	Endpoints
	Data Transfer Objects (DTOs)

	Albert API
	Common for all requests
	Acquisition of list of all categories
	Retrieve a product page in a category by category code
	Getting a specific product based on ID

	Globus shopping list API
	Common elements of requests
	Login request
	Renew token request
	Get suggestions (search)
	Get details

	Globus scanner API
	Common elements of requests
	Initiation of shopping
	Finalization of shopping
	Getting information about an item

	Billa API
	Getting page of products belongingto category

	Kaufland application API
	Access token renewal
	Common elements of requests
	Initiation of shopping
	Remove item from cart
	Adding item to cart

