
Diploma thesis
Czech technical university in Prague

Faculty of Electrical engineering

Department of Measurement

Raspberry Pi Pico oscilloscope

 with a web-based user interface

Jan Fiala

Supervisor: doc. Ing. Jan Fischer, CSc.
May 2023

Abstract
The goal of this thesis is to design and implement a software-defined oscilloscope using the

Raspberry Pi Pico and a web-based user interface. Both parts of the system - the firmware for the

Pico and the web-based user interface were implemented as part of this thesis. The oscilloscope

includes three analog channels, a PWM generator and was designed to enable equivalent time

sampling. The WebUSB API is used for communication between the microcontroller and the user

interface.

Abstrakt
Cílem této práce je návrh a implementace softwarově definovaného osciloskopu založeného na

mikrokontrolu Raspberry Pi Pico ve spojením s webovým uživatelským rozrhaní. Součástí této práce

je implementace obou částí osciloskopu – firmwaru pro Raspberry Pi Pico i webového rozhraní.

Navržený osciloskop má tři kanály, PWM generátor a podporuje záznam signálu metodou equivalent

time sampling. Pro komunikaci mezi mikrokontrolerem a uživatelským rozhraním je použito

rozhraní WebUSB API.

Keywords
Oscilloscope, software-defined instrument, microcontroller, Raspberry Pi Pico, RP2040, WebUSB

Acknowledgement
I would like to thank my supervisor doc. Ing. Jan Fischer, CSc. for his help and patience.

Declaration
I declare that the presented work was developed independently and that I have listed all sources of

information used within it in accordance with the methodical instructions for observing the ethical

principles in the preparation of university theses.

Signature:

In Prague, May 26, 2023

Table of Contents

1 Introduction ... 1

2 Overview of the oscilloscope design .. 2

3 WebUSB API ... 4

3.1 Introduction ... 4

3.2 An example ... 4

3.3 Practical insights of using the WebUSB API .. 6

3.4 Special USB descriptor on Windows .. 7

3.5 Udev rules on Linux ... 7

3.6 Debugging tools .. 7

4 Hardware platform – the Raspberry Pi Pico ... 8

4.1 Overview .. 8

4.2 The Raspberry Pi Pico .. 8

4.3 DMA peripheral ... 8

4.4 USB peripheral .. 9

4.5 Analog-digital converter ... 9

4.6 PWM generator ... 10

5 Oscilloscope firmware ... 13

5.1 Pico SDK and development setup .. 13

5.2 USB stack and use of the second microcontroller core .. 15

5.3 Firmware overview ... 15

5.4 GUI communication - message format .. 16

5.5 Signal capture .. 17

6 The graphical user interface .. 18

6.1 Architecture overview ... 18

6.2 Interface design... 18

6.3 Signal plotting .. 19

6.4 Implementing cursors .. 20

6.5 Configuration pop-up windows ... 20

6.6 Running the GUI locally ... 21

7 Achieved results ... 22

7.1 Oscilloscope parameters and features .. 22

7.1.1 Sample rate ... 22

7.1.2 Capture depth... 22

7.1.3 Capture modes ... 22

7.1.4 Trigger settings ... 22

7.1.5 PWM generator ... 22

7.1.6 Cursors .. 22

7.2 Real time sampling .. 23

7.3 Equivalent time sampling ... 24

7.4 Long signal Capture ... 26

8 User manual ... 27

8.1 Technical specification ... 27

Oscilloscope .. 27

PWM generator ... 27

8.2 Connections (Pinout) .. 27

8.3 Flashing the firmware .. 28

8.4 Browser and operating system compatibility .. 28

8.5 Connecting to the Raspberry Pi Pico .. 28

8.6 Capture modes .. 29

8.7 Capture settings .. 29

8.7.1 Sample rate setting .. 29

8.7.2 Capture depth setting ... 30

8.7.3 Active channels .. 30

8.8 Trigger settings ... 31

8.9 Vertical (channel) view settings... 32

8.10 Horizontal view settings.. 32

8.11 Cursor settings .. 33

8.12 Generator settings ... 33

8.13 Capture export ... 34

9 Conclusion ... 35

10 List of figures .. 36

11 List of abbreviations .. 37

12 Bibliography .. 38

1

1 Introduction

Modern microcontrollers are powerful enough to be used for implementing instruments such as

oscilloscopes or logic analysers on the low end of the performance spectrum. When the devices are

implemented using readily available and cost-effective development boards such as the STM32

Nucleo or the Raspberry Pi Pico, they are particularly suited for use in classrooms - both in university

courses or at high schools.

Multiple instruments based on microcontroller evaluation boards have been already created at the

Department of measurement at CTU in Prague. For example, the LEO (Little Embedded Oscilloscope)

[1] is an oscilloscope and a signal generator based on the STM32F303 Nucleo board which is widely

used in laboratory lessons at CTU. The user interface for the LEO is a native Windows program

written in C++. While native Windows applications are very efficient, they have an obvious drawback

- they cannot run on other operating systems.

For this reason, I decided to create a new multiplatform (or platform independent) software-defined

oscilloscope capable of running on all major operating systems – Windows, Linux and Mac OS X.

There are multiple approaches to creating multiplatform applications, one of them being the

currently popular Electron framework. Applications using the Electron framework are developed

using standard web technologies – HTML, JavaScript and CSS and shipped with a modified version of

the Google Chrome kernel, on which they are run. The modified browser kernel enables applications

access to the file system, USB devices and other system capabilities. One obvious downside of this

approach is the need to bundle a 120MB web browser kernel with every application. As an

alternative, new web APIs have been created (in an effort led mainly by Google) to bring capabilities

of standard web pages closer to native applications, potentially removing the need to install

programs at all.

One of these APIs is the WebUSB API [2], which enables web pages client-side access to USB devices

of the user. The WebUSB API is used for the oscilloscope developed in this thesis. With the use of this

API, the user interface can be implemented as a standard web page, capable of running on Windows,

Linux and Mac OS X without a need to be installed, which is a major advantage for use both in

classrooms and at home. In case internet connection is an issue, the user interface can also be

downloaded and run locally.

The Raspberry Pi Pico microcontroller board was selected as the hardware portion of the

oscilloscope. The reasons for choosing the Pico are mainly its availability, low price and the presence

of an USB peripheral (not just an USB-UART converter chip) on the board. The Pico has a relatively

slow analog-digital converter, so the oscilloscope is designed to enable the equivalent time sampling

technique. Using equivalent time sampling, sample rates up to 48MHz can be reached for certain

types of captured signals, despite the modest speed of the ADC.

2

2 Overview of the oscilloscope design
An oscilloscope is a measurement instrument used to capture an analog voltage signal and display it

as a two-dimensional time-voltage plot. While it is mainly used to inspect and verify the operation of

electronic circuits, it is also a valuable tool for learning about electronics in a hands-on, visual way.

Digital oscilloscopes, which are prevalent today, are based on analog-digital converters (ADCs). An

ADC is an electronic circuit that converts analog voltage into a discrete digital representation. The

ADC samples the voltage signal at a specific frequency (called the sample rate), as is shown in figure

1. The captured samples are saved into memory and when a specified number of samples is captured,

they are displayed on the screen of the oscilloscope.

Figure 1: Analog voltage sampled at a frequency f = 1/T.

Practically, the oscilloscope developed in this thesis is divided into two parts: the hardware and the

web-based user interface, as is shown in Figure 2. A crucial, and arguably the most novel part of the

design is the communication interface between these two parts - the USB interface and the WebUSB

API.

Figure 2: Overview of the oscilloscope design.

The Raspberry Pi Pico was chosen for the hardware part of the Oscilloscope. The main reasons for

this decision are its availability, affordability and the presence of an USB peripheral on the board. A

major downside of the Pico, or more precisely the RP2040 MCU present on the Pico board, is the low

speed of the ADC peripheral, which cannot match the speed of instruments such as the LEO, which

3

uses the STM32F303 microcontroller. However, the goal behind developing the oscilloscope is to

make basic electrical measurements as accessible as possible, so a tradeoff in favor of the Raspberry

Pi Pico was taken when choosing the hardware for the oscilloscope. The hardware features of the

Pico are described in detail in the chapter 4.

In very simple terms, the Raspberry Pi Pico will have the following tasks:

1. Receive capture configuration from the user interface over USB.

2. Monitor the ADC for trigger condition.

3. Capture signal samples into a buffer when a trigger condition occurs.

4. Send the captured samples to the user interface over USB.

5. Repeat

Additionally, the PWM generator of the Pico will be used as a configurable PWM generator, so it will

receive PWM configuration messages from the user interface and configure the PWM peripheral

accordingly.

The user interface of the oscilloscope will be developed as a standard web page using HTML, CSS and

JavaScript. The user interface will feature control panels for configuring the signal capture, such as

capture depth, sample rate, number of channels, and trigger conditions. The GUI will plot the

captured signals and allow the user to scale, zoom and pan the plotted signals.

To enable the use of the equivalent time sampling method (this method is described in detail in

chapter X), the GUI must allow the user to set the oscilloscope sample rate and PWM generator

frequency precisely. Because it is not always possible to reach the desired frequencies with the PWM

and ADC peripherals, the actual frequencies of the PWM and ADC peripherals will be shown in the

GUI too.

The user interface will also feature vertical and horizontal cursors, to enable precise measurement

of time or voltage difference in the captured signals.

4

3 WebUSB API

3.1 Introduction

A crucial (and arguably the most novel) part of the proposed oscilloscope design is the

communication between the hardware and the GUI. The WebUSB API serves exactly this purpose -

communication between an USB device and software running in the browser.

Before describing the WebUSB API in more detail, I will cover a few terms and concepts relating to

the USB interface itself. To accommodate devices with diverse communication requirements, USB is

highly configurable. An USB device can use multiple (up to 32, although it is rare to use so many)

virtual communication pipes, also called endpoints. There are three different types of endpoints:

bulk, suitable for transferring large amounts of data, isochronous, which guarantee low latency, and

control, mainly used for device configuration. When an USB device is connected to a host system, it

sends the host a description of the required endpoints (this process is called enumeration), which

the host system will then provide to the device.

On the host side of an USB connection is a device driver, which communicates with the device through

endpoints exposed by the USB stack. Usually, an USB driver is written in C or C++ and runs inside the

host operating system kernel. The WebUSB API exposes the USB device endpoints directly to the

JavaScript runtime inside a web browser, so the device driver can be implemented directly using

JavaScript.

Currently, WebUSB is in experimental phase and it is not a standard web API. Only web browsers

based on the Chrome kernel (Chrome, Chromium and Microsoft Edge) support it at this time. There

are officially no plans in the other two major browsers (Firefox and Safari) to implement this API,

citing security concerns as the reason.

While these concerns are certainly valid, the way in which WebUSB exposes USB devices to the

browser is more secure than it might sound. First, the user must explicitly select an USB device in a

pop-up window for the web browser to access it. Second, it is not possible to access devices belonging

to common USB classes such as HID (keyboards, mouses), Mass storage, Network interfaces and

others. WebUSB can only access devices outside these classes, which are usually only very specialized

hardware devices.

3.2 An example

Code snippet 1 demonstrates connecting to an USB device with the vendor ID equal to 0xCAFE. The

requestDevice function does not select an USB device by itself: when it is called, a pop-up window

appears in the browser, prompting the user themselves to select a particular USB device. The filters

object passed to the function can be used to filter the USB devices listed to the user. The device vendor

ID, product ID or serial number can be set to only allow a particular device(s) to be listed. After a

device is selected, a device configuration and interface are chosen. It is rare for an USB device to have

5

multiple interfaces and even rarer to have multiple configurations. In this example, the first

configuration and interface are selected.

let device = await navigator.usb.requestDevice({

 filters: [{ vendorId: 0xcafe }]

});

await device.open();

await device.selectConfiguration(1);

await device.claimInterface(1);
Code snippet 1: Connecting to an USB device using the WebUSB API.

After connecting, we can start communicating with the device. An example of sending data to the

device is shown in code snippet 2. The transferOut function parameters are the number of the

endpoint (3 in this case) to which a message will be sent to, and the message itself. The message must

be an ArrayBuffer object, such as an Uint8Array, which is basically an array of bytes.

let message = new Uint8Array([1, 2, 3, 4]);

device.transferOut(3, message);

Code snippet 2: Sending an array of bytes to an endpoind of an USB device.

Similarly, the transferIn function can be used to receive data from a particular endpoint. The second

parameter of the function sets the maximum number of bytes to be received. The function returns a

DataView object, which can be parsed to an Uint8Array or other array types.

let result = await device.transferIn(3, 4);

let bytes = result.data.getUint8();

Code snippet 3:Requesting a transfer with a size of 4 bytes from an USB device.

In code snippet 4, a more complete example of a web page using the WebUSB API is shown. The web

page contains a button for connecting to an USB device and a button for reading data. Received data

are shown inside a HTML div element on the page.

// HTML content of the page:

<button id="connect">Connect device</button>

<button id="readData">Read data</button>

<div id="display"></div>

// JavaScript code:

let device;

document.addEventListener('DOMContentLoaded', () => {

 document.getElementById('connect').addEventListener('click',

requestUSBDevice);

 document.getElementById('readData').addEventListener('click',

readData);

6

});

async function requestUSBDevice() {

 device = await navigator.usb.requestDevice({ filters: [] });

 console.log('USB device selected:', device);

 await device.open();

 await device.selectConfiguration(1);

 await device.claimInterface(0);

}

async function readData() {

 const endpointIn = device.configuration.interfaces[0].endpoints[0];

 const result = await device.transferIn(1, 1);

 let parsedData = result.data.getUint8();

 document.getElementById('display').textContent = 'Received: ' +

parsedData[0];

}

Code snippet 4: Example of a simple web page capable of connecting to an USB device, reading and displaying received data.

While it is possible to read data from an USB device as shown in code snippet 3, there is one issue –

the transferIn can return less data than was requested. An obvious solution would be to simply

request additional data until all the requested data were received, as shown in code snippet 5.

Let readSize = 128;

let result = [];

while (result.length < readSize) {

 let rec = await device.transferIn(3, result.length - readSize);

 result.append(rec.data.getUint8());

}
Code snippet 5: Reading data of size readSize inside a loop to deal with data being fragmented.

3.3 Practical insights of using the WebUSB API

Because WebUSB is not widely adopted, there are only a few resources available to help with

development. The first is an article called Access USB Devices on the Web [3], which contains a simple

example of using WebUSB and also considers platform-specific issues with using the API, which will

be described later. The second resource is the official draft [2] of the WebUSB API, which describes

components of the API in more detail.

These resources only include very basic examples, so a large amount of experimentation was

required to use the API in practice. These struggles were heightened by my limited knowledge of

JavaScript and the browser runtime. JavaScript can only run in a single thread inside a browser

7

window tab, and this thread also handles re-rendering of the web page. This means that any blocking

JavaScript code would cause the whole web page to stop responding.

3.4 Special USB descriptor on Windows

For the Windows operating system to allow the WebUSP API to communicate with an USB device, the

device needs to include a special USB descriptor during its enumeration. This descriptor, called the

Microsoft OS 2.0 platform capability descriptor, is fortunately included in the TinyUSB [4] open source

USB stack, which was used for the oscilloscope firmware development.

3.5 Udev rules on Linux

Linux does not require a special USB descriptor, but it disables user space applications from accessing

USB devices as a default behavior. To enable access to an USB device, an udev rule file needs to be

added to the /etc/udev/rules.d/ folder. This file needs to have the .rules extension and content shown

in code snippet 4:

SUBSYSTEM=="usb",ATTR{idVendor}=="cafe",MODE="0664",GROUP="plugdev"

Code snippet 6: Content of an udev rule file enabling WebUSB access to an USB device.

3.6 Debugging tools

Few tools proved to be useful for troubleshooting during the initial phase of development. The first

is a utility inside the Chrome web browser, called USB Internals. It can be accessed by typing

chrome://usb-internals/ into the search bar and lists all USB devices connected to the system. It also

allows creating a virtual USB device (this device is only visible from inside the web browser, so it only

has a limited utility, such as troubleshooting a WebUSB connection). Another utility, called Web USB

tester [5], can be found on GitHub. It is a simple web page which can be used to test connection to an

USB device with a specific USB vendor ID and product ID. Finally, the well-known WireShark packet

analyzer can be used to capture and inspect “raw” USB communication on Linux, however this

requires changing a few settings of the system. The required steps are described in a StackOverflow

discussion [6].

8

4 Hardware platform – the Raspberry Pi Pico

4.1 Overview

There are several features of a microcontroller that are crucial for using it as an oscilloscope – an

analog-digital converter to convert a signal into digital samples, a large enough RAM to store the

captured samples, and a DMA peripheral to move the samples from the ADC into memory without

overloading the microcontroller processing core. Additionally, a PWM generator is needed to

implement a signal generator. A general overview of a microcontroller-based oscilloscope is shown

in Figure 3 below, indicating communication between different parts of the microcontroller, with

data transfer from the ADC peripheral to RAM being handled by the DMA peripheral without

involvement of the CPU.

Figure 3: Overview of a microcontroller-based oscilloscope.

4.2 The Raspberry Pi Pico

The Raspberry Pi Pico, which was chosen as the hardware part of the oscilloscope developed in this

thesis, contains the RP2040 microcontroller. The RP2040 features two ARM Cortex-M0 cores with

clock speed up to 133MHz, 264kB of SRAM and peripherals such as the ADC, USB (including a PHY),

DMA, PWM generator and others. The peripherals relevant to the oscilloscope are discussed in detail

in this chapter. Besides the microcontroller, the Pico also contains a switching-mode DC-DC regulator

for generating 3.3V from the USB power supply and a flash memory chip (the RP2040 does not have

internal flash memory).

4.3 DMA peripheral

The DMA (direct memory access) peripheral of the RP2040 can be used to transfer data between a

peripheral and the RAM independently of the microcontroller cores. In the oscilloscope, this is a

crucial feature, because samples from the ADC peripheral need to be moved at regular intervals to a

buffer in the memory, while the processor cores are doing other tasks such as trigger detection or

handling USB communication.

9

Because ADC samples are saved to a circular buffer in the RAM, a “circular” DMA mode, as it is called

in datasheets of certain STM32 microcontrollers, is required. While this mode is not available on the

RP2040, it is possible to chain two DMA channels together to achieve the effect of a circular DMA

transfer. This solution was inspired by a logic analyzer based on the Raspberry Pi Pico created as the

diploma thesis of Ing. Vít Vaněček [8].

4.4 USB peripheral

The RP2040 features an USB peripheral including the PHY, which handles the physical layer of the

USB protocol and converts the chip-level electrical signals to and from the 5V signals on the USB bus.

The peripheral supports the USB 2.0 Full speed device mode, with communication speed of 12Mb/s.

Both the USB peripheral and the USB protocol itself are relatively complex, so the configuration of

the peripheral as well as tasks such as the enumeration of the device are handled by a port of the

TinyUSB stack included in the Pico software development kit.

4.5 Analog-digital converter

The analog-digital converter of the RP2040 has five channels, with one channel connected to the

internal temperature sensor. The structure of the ADC is shown in figure 4. On the Raspberry Pi Pico,

one of the four remaining channels is used to measure the power supply voltage (VSYS), leaving three

usable ADC channels for the oscilloscope. The maximum sample rate of the ADC is 500kHz. All

channels share the single analog-digital converter over an analog multiplexer, so the per-channel

maximum sample rate is one half or one third of the maximum ADC sample rate when two or three

channels are active, respectively.

When the ADC is in free-running mode, as is the case with the oscilloscope, conversions are started

at regular intervals, triggered by the pacing timer inside the ADC peripheral. The pacing timer is fed

with a 48MHz clock and features a configurable fractional divider with 16 integer and eight fractional

bits to slow down the input clock. The fractional part of the divider causes jitter in the timing of the

ADC sampling, which is undesirable (particularly when using the oscilloscope in equivalent time

sampling mode), so only the integer part of the divider is used. The sample rate of the ADC can be

calculated using equation 1.

10

Figure 4:Analog-digital converter of the RP2040.

 𝑓𝐴𝐷𝐶 = 48𝑀𝐻𝑧
𝑑𝑖𝑣⁄ , 𝑑𝑖𝑣 ≥ 96 (1)

The resolution of the ADC can be set to 8 or 12 bits. When it is set to 8 bits, each sample fits into one

byte of memory. In 12 bit mode, two bytes are needed to store each sample, leading to wasted space

in the memory. However, as the SRAM of the RP2040 is large enough, it was decided to use the 12-

bit mode for the oscilloscope for greater resolution of the signal capture. Out of the 264kB of SRAM

on the chip, 200kB could be used as the capture buffer, meaning up to one hundred thousand 12-bit

samples can be saved at a time.

The RP2040 does not contain a reference voltage for the ADC - an external reference voltage must be

supplied to a specific microcontroller pin. On the Raspberry Pi Pico board, the 3.3V output from the

onboard SMPS (switching-mode power supply) is used as the reference voltage for the ADC. The

SPMS chip present on the Pico features two regulation modes - pulse frequency modulation and pulse

width modulation. One of the GPIO pins of the RP2040 is connected to a pin of the SMPS which selects

the regulator mode, so it can be selected by the firmware. Because the switching mode of the SMPS

can influence the stability of the 3.3V ADC reference during certain conditions, the switching mode

can be configured in the oscilloscope GUI.

4.6 PWM generator

The PWM peripheral of the RP2040 will be used as a configurable PWM signal generator of the

oscilloscope. In addition to being used as a configurable clock source, the generator is crucial in signal

capturing using the equivalent time sampling method. The structure of the PWM peripheral is shown

in figure 5.

11

Figure 5: PWM peripheral of the RP2040. Taken from [7].

The generator consists of a clock divider, an up/down counter and an output compare unit.

The clock divider, which is fed with the 125MHz system clock, allows division of the system clock by

a fractional number div with eight integer and four fractional bits. However, the fractional part of the

generator causes jitter in the output signal, which would make it unsuitable when using the

oscilloscope in equivalent time sampling mode. With eight integer bits of the division factor, the

divider can be configured to slow the output down by a factor from one to 255.

The output of the divider is fed into a 16 bit up/down counter. The counter has a configurable wrap

value, which causes the counter to reset when the value is reached. The wrap value determines the

period of the PWM signal relative to the divider output, so it can be configured along with the division

factor of the divider to achieve the highest possible frequency range of the PWM generator. The

frequency of the PWM output for given wrap and div values can be calculated using equation 2.

 𝑓𝑃𝑊𝑀 =
𝑓𝑆𝑌𝑆

𝑑𝑖𝑣 ∙ 𝑤𝑟𝑎𝑝⁄ (2)

The output of the counter is compared to a threshold value inside the output compare unit, which

then drives an output pin of the microcontroller. When the counter output is lower than the threshold

value, the output pin is set high. After the counter value reaches the threshold, the pin is kept low

until the counter reaches the wrap value and is reset. The threshold value determines the duty cycle

of the PWM duty signal, as is shown in equation 3.

 𝑑𝑢𝑡𝑦 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑤𝑟𝑎𝑝⁄ (3)

Obviously, the user of the oscilloscope will not be asked to set the div and wrap values of the PWM

peripheral by themselves. It is possible to calculate the required div and wrap values for a desired

frequency fSET using equations 4 and 5:

12

 𝑑𝑖𝑣 = ⌈
𝑓𝑆𝑌𝑆

𝑓𝑆𝐸𝑇∙216⌉ (4)

 𝑤𝑟𝑎𝑝 = ⌈
𝑓𝑆𝑌𝑆

𝑓𝑆𝐸𝑇∙𝑑𝑖𝑣
⌉ (5)

It is not always possible to generate the exact desired frequency. In that case, the actual frequency

can be calculated using equation 6 with the div and wrap values obtained using equations 4 and 5.

 𝑓𝑅𝐸𝐴𝐿 =
𝑓𝑆𝑌𝑆

𝑑𝑖𝑣∙𝑤𝑟𝑎𝑝
 (6)

13

5 Oscilloscope firmware

5.1 Pico SDK and development setup

For development of the oscilloscope firmware, the Raspberry Pi Pico SDK (software development kit)

[9] was used. The SDK contains drivers for the peripherals of the RP2040 and simple examples of the

of using the peripherals of the Pico. One part of the SDK I found to be lacking is the USB stack. The

Pico SDK uses a port of the TinyUSB USB stack, but it only implements a few basic USB classes. The

WebUSB device class, which is present in TinyUSB, is missing in the Pico SDK port. However, the only

special requirement of a WebUSB device is an additional Platform capability descriptor, which I was

able to add from the main TinyUSB branch.

To make development easier, a second Raspberry Pi Pico flashed with the Picoprobe firmware was

used. The Picoprobe firmware enables the Pico to function as a debugger and an USB-UART

converter. The Pico with the oscilloscope firmware was connected to the Picoprobe with its SWD and

UART ports, so it could be flashed without having to press the BOOT button on the flashed board each

time. The UART port could be used for debugging too, when debugging using logging was preferred.

The oscilloscope development setup is shown in figure 6.

Figure 6: Overview of the development setup using Picobrobe firmware.

The Visual Studio Code IDE with the Cortex-Debug plugin was used for writing the firmware. As is

shown in figure 7, the Cortex-Debug plugin features breakpoints and code stepping, as well as

variable and microcontroller peripheral register inspection. The Picoprobe firmware, as well as

configuration of the Visual Studio Code IDE for use with the Picoprobe are described in the Getting

started with Raspberry Pi Pico document [10]. The wiring between a Pico flashed with the Picoprobe

firmware and another Pico is shown in figure 8.

14

Figure 7: Visual Studio Code configured for oscilloscope firmware development.

Figure 8: Connecting Picoprobe (left) to debug another Pico. Taken from [10].

15

5.2 USB stack and use of the second microcontroller core

While the first of the two cores of the RP2040 handles the “application” logic of the oscilloscope, the

second core is dedicated to handling USB communication. The TinyUSB stack, which is used as the

USB stack in the firmware, defers interrupts generated by the USB peripheral into a queue. A function

that handles any interrupts in the queue must be called periodically by the application code, so by

doing this on the second core, the first core can handle time-critical tasks such as trigger condition

detection.

The RP2040 features a hardware queue to enable communication between the cores, however it was

decided to use a simpler approach to share USB messages between the cores instead. The two

firmware threads running on the two cores share two buffers: usb_rec_buffer and usb_send_buffer and

two global variables: usb_rec_bytes and usb_send_bytes. When the second core receives data from the

USB peripheral, it copies the data into usb_rec_buffer and sets usb_rec_bytes to the number of received

bytes. When the first core wishes to read the data, it polls usb_rec_bytes until its value is greater than

zero and then reads the received data from usb_rec_buffer and resets usb_rec_bytes to zero.

Conversely, when the first processor core wishes to send data over the USB bus, it polls

usb_send_bytes until it is set to zero and then copies the data into usb_send_buffer and sets

usb_send_bytes to the number of bytes to be sent. The second core checks the value of usb_send_bytes

periodically and when its value is greater than zero, it copies data from usb_send_buffer into the USB

peripheral and resets usb_send_bytes to zero.

5.3 Firmware overview

The first core of the RP2040, which handles the signal capture, is executing a loop shown in figure 9.

After the microcontroller is powered on and the USB peripheral is configured, the Pico waits for a

message from the host PC. There are three types of messages: capture configuration messages, PWM

configuration messages and capture abort messages. Capture configuration message contains

capture parameters such as the sample rate, trigger conditions, number of active channels and others.

PWM configuration message contains the PWM generator frequency and duty cycle, as well as an

indication whether the PWM should be turned on or off. The capture abort message is used to abort

an ongoing signal capture when the capture parameters are changed by the user, so a new capture

with updated configuration could be started.

16

Figure 9: Simplified diagram of the oscilloscope firmware.

When a capture configuration is received, the ADC and DMA peripherals are configured accordingly,

and the capture is started. When the capture is finished, the captured data is sent to the host PC and

the Pico waits for another message. Sometimes, it is necessary to stop a capture before it is finished

- most often when the user changes capture settings so the capture needs to be restarted with

updated capture configuration. For this reason, there is another type of message called the abort

message. When the Pico receives this message while a capture is running, it immediately aborts the

capture and waits for another configuration message from the host PC.

When a PWM configuration message is received, it is compared to the current configuration of the

PWM peripheral (this is done to avoid restarting the peripheral and causing a glitch in the PWM signal

when it is not necessary). If the received configuration is different, the PWM peripheral is

reconfigured accordingly.

5.4 GUI communication - message format

The first byte of each message indicates the message type and is followed by a fixed-length message

payload. The content of the message does not follow any defined format such as JSON or Protobuf,

messages are encoded and decoded with hand-written parsing methods in the GUI and in the

firmware. As more features were added to the oscilloscope during development and additional fields

were added to the configuration messages, this ad-hoc parsing of messages started to become time

consuming and error-prone. Given this experience, I would use a message format such as JSON or

Protobuf [11] if I were to implement the oscilloscope firmware again.

17

5.5 Signal capture

In a very simple digital oscilloscope, ADC samples would be monitored for a trigger condition and

when a trigger condition would be detected, a defined number of samples would be captured and

transferred to a buffer inside memory. However, one crucial feature of an oscilloscope would not be

possible to implement with this approach: capturing a portion of the signal before the trigger

appears. The length of this portion of the signal, or its ratio to the total capture length, is usually called

the pretrigger setting. When the pretrigger setting is larger than zero, it is too late to start saving

signal samples when a trigger condition appears. Instead, samples are transferred continually into a

circular buffer from the moment the capture is started.

A circular buffer is a data structure implemented using a fixed-length continuous buffer inside

memory. New data (samples) are inserted at the end of the buffer sequentially. When the buffer is

filled with data, an additional sample added to the end of the buffer will overwrite the first element

of the buffer - the least recent sample. This means that, once full, a buffer of size n will always contain

the n most recent samples. The concept of the circular buffer is shown in figure 10 below.

Figure 10: Conceptual diagram of a ring buffer.

As an example, let’s say the length of the capture buffer is 100 samples and the pretrigger ratio is set

to 20%. After a trigger is detected, the capture is stopped after 80 more samples are captured. This

leaves the buffer with 20 signal samples before the trigger and 80 after.

Figure 11: Storing a capture inside a ring buffer, including the pretrigger portion of the capture.

As was explained above, after a trigger condition is detected, it is necessary to stop the signal capture

after a defined number of samples. While it is possible to configure the DMA peripheral to transfer a

certain number of samples, it is not possible to change this number while the DMA is running on the

RP2040. Instead, the first core of the microcontroller is continually checking the number of

transferred samples in the register of the DMA peripheral. When the required number of samples is

acquired, the ADC and the DMA are stopped. While this is not the most elegant solution, it works well

given the slow speed of the ADC relative to the microcontroller cores.

18

6 The graphical user interface

6.1 Architecture overview

Being an interactive web page, the GUI of the oscilloscope was developed using standard web

technologies: HTML for defining the web page elements, JavaScript for implementing the interactivity

and CSS for styling. While it would be perfectly possible to use plain HTML, JavaScript and CSS, it was

decided to use the React web development framework due to the complexity of GUI. React is a

component-based framework, meaning the web page is built from components such as buttons or

text fields, from which larger components such as entire control panels of the GUI are build. In React,

each component is essentially a JavaScript function which, according to its input, generates and

returns some HTML code. When the page is loaded, the React runtime calls each of these functions

and builds the web page from the fragments generated by each function. When needed, components

are generated again with updated parameters and portions of the GUI are redrawn.

The GUI is composed of control panels such as the PWM generator control panel, Trigger

configuration panel or Channel configuration panels. These components are often similar, both style

and functionality wise, so basic components such as buttons, numeric input fields or text fields were

often reused with the help of the React framework. As an example, various control panels built using

the same basic components are shown in figure 12 below.

Figure 12: Different control panels of the user interface sharing the same basic components.

6.2 Interface design

The final design of the GUI is shown in figure 13. The interface is divided into four parts – the top bar,

the left and right side panels and the signal plot in the center. Capture depth and sample rate settings,

as well as buttons for starting the signal capture in various modes are located in the top bar. The right

side bar contains settings for individual channels, trigger configuration and horizontal control panel

used for zooming and panning the captured signal. Additional features of the oscilloscope – cursor

settings, PWM generator settings and the SMPS power supply mode setting are located in the left side

bar. In the future, any additional features of the oscilloscope would be probably added to the left side

bar.

19

Figure 13: Design of the oscilloscope GUI.

The GUI was designed to accommodate various browser window sizes. To achieve this, the main

elements of the interface – the top bar, the side bars and the signal plot – are placed inside a CSS grid

layout. The height of the top bar, as well as the widths of the side bar are constant, while the signal

plot adjusts to the available remaining space on the screen. To respond to the browser window being

resized during use, an event listener redraws the plot in the correct size when the web page onresize

event is triggered.

6.3 Signal plotting

There are two general ways of drawing rendering graphics (such as signal plots) on a web page. One

of them is the svg HTML element, in which basic vector graphics elements such as lines or bezier

curves can be inserted. The other is the canvas HTML element, which allows pixel-wise manipulation

of the element content, treating it as a bitmap. While a signal plot is essentially a complex curve or a

series of lines, making the svg element seem more suitable, performance issues appeared with this

approach. Thankfully, this was still in the early development phase, so it was possible to switch to

using the canvas element.

20

6.4 Implementing cursors

In initial iterations of the user interface, the oscilloscope cursors were controlled using HTML slider

elements located in the right side bar of the oscilloscope, as is shown in figure 14 - Dragging the slider

elements with a mouse would move the cursors in the signal plot accordingly. However, because the

sliders had to be only about 120 pixels wide to fit in the side bar, positioning the cursors precisely

was difficult – a change of the cursor position in the plot view corresponded to a much smaller change

of the position of the slider.

Figure 14: Cursor control panel in an early iteration of the GUI.

For this reason, a different, more precise way of positioning the oscilloscope cursors had to be

devised. Arguably, the most intuitive way of controlling the cursors would be dragging the cursors

with a mouse directly in the signal plot. There are no existing HTML control elements that would

enable this behavior, so it had to be implemented in JavaScript. This was done by rendering the

cursors on top of the signal plot as absolutely positioned HTML div elements as shown in figure 15.

The cursor lines themselves are only a few pixels wide, which would make clicking on them with a

mouse difficult – for this reason, the div elements are transparent and have a width of 20 pixels, with

only their left or right borders visible. Clicking on and dragging the elements is detected using the

onclick and onmousemove events, which trigger repositioning of the div elements to a new location.

Figure 15: Horizontal cursors implemented as HTML div elements.

6.5 Configuration pop-up windows

To enable the use of the equivalent sampling method (which is described in detail in section 7.2), a

precise way of configuring the oscilloscope sample rate and the PWM generator frequency was

21

needed. For this reason, configuration pop-up windows, which can be seen in figure 16 below, were

implemented. The windows contain an HTML text input form and allow the user to input the desired

PWM frequency or sample rate using their keyboard. Because it is not always possible to reach the

desired configuration with the PWM and ADC hardware, the actual configured PWM frequency or

sample rate is shown below the value set by the user. The pop-up windows were implemented as

absolutely positioned HTML div elements rendered on top of the rest of the user interface. To take

advantage of the component-based architecture of the React framework, the pup-up windows (as

well as the oscilloscope welcome screen, shown in figure 13) are all based on a single React

component and only differ in the content.

Figure 16: Oscilloscope GUI with sample rate and PWM generator pop-up windows opened.

6.6 Running the GUI locally

One clear disadvantage of web-based software is the dependency on internet connection. The

oscilloscope GUI is, from the point of view of the server, a purely static website - the server only sends

requested JavaScript and HTML files to the client and after that, all functionality of the GUI is handled

by the client-side JavaScript code without further interaction with the server. It is therefore possible

to run the GUI locally (by locating the index.html file of the application and opening it in a web

browser). Only a small modification is needed in the NMP build configuration in this case - for this

reason, two builds of the GUI exist - one to be hosted on a server and one to be downloaded and run

locally.

22

7 Achieved results

7.1 Oscilloscope parameters and features

7.1.1 Sample rate

The oscilloscope has three analog channels. The maximum per-channel sample rate is 500kS/s with

one active channel, 250kS/s with two active channels and 166kS/s with three active channels. To

enable long signal captures, the minimum sample rate is 1kS/s. The sample rate can be selected in

defined steps in the user interface and a pop-up window was implemented to allow the user to select

the desired sample rate precisely.

7.1.2 Capture depth

The maximum total capture depth is 100kS. When more than one channels are active, the capture

buffer is shared between all active channels, leading to a maximum per-channel capture depth of

50kS with two active channels and 33.3kS with three channels. The capture depth is configurable in

the user interface in defined steps between 1kS and 100kS.

7.1.3 Capture modes

The oscilloscope has three capture modes called Continuous, Single and Force. In continuous mode,

the oscilloscope performs new signal captures continuously until stopped. In single mode, only one

signal capture is performed. Force mode is similar to single mode, with the difference that the trigger

condition is forced immediately after the capture starts.

7.1.4 Trigger settings

Various parameters of the trigger condition can be configured: The trigger channel, rising or falling

signal edge, trigger level and prettriger ratio.

7.1.5 PWM generator

The oscilloscope includes a configurable PWM generator with configurable frequency between 7.5Hz

and 50MHz and configurable duty cycle between 1% and 100%. A pop-up window was implemented

to allow the user to select the desired generator frequency precisely.

7.1.6 Cursors

The oscilloscope features horizontal and vertical cursors, allowing the user to measure time or

voltage difference between two points in the capture as well as the signal frequency.

23

7.2 Real time sampling

Example of a basic usage of the oscilloscope is shown in figure 17. In this example, the output of the

PWM generator of the oscilloscope with a frequency of 1kHz is captured by channel 1. Channels 2

and 3 are connected to an external signal generator. The frequency and amplitude of a triangle

shaped signal on channel 2 are determined by the horizontal and vertical cursors of the oscilloscope

(cursors are indicated by purple colored vertical and horizontal lines in the signal plot). The trigger

is set to the rising edge of channel 2 – trigger voltage and position are indicated by light-blue

horizontal and vertical lines in the plot view, respectively. The capture channels are vertically scaled

down and offset using the channel configuration panel settings, so they don’t overlap in the signal

plot.

Figure 17: Example of a capture with three analog channels.

In certain cases, the sample rate of the oscilloscope is not high enough. One such example is shown

in figure 18 – a closeup of a rising edge of a 100kHz signal generated by the oscilloscope PWM

generator, captured at the maximum oscilloscope sample rate of 500kS/s. Only a single signal sample

was captured during the rising edge of the signal. To reach a higher sample rate, a method called

equivalent time sampling might be used. This method is described in the following section.

24

Figure 18: Rising edge of a 100kHz signal captured using RTS.

7.3 Equivalent time sampling

For certain periodic signals, it is possible to effectively reach a much higher sample rate than the

sample rate of the oscilloscope ADC using a technique called equivalent time sampling (ETS). ETS is

based on the principle of capturing samples of a signal with frequency fPWM at an appropriately

selected frequency fSAMP. This technique is described in detail in [12]. Because the performance of this

method is dependent on being able to set the sampling frequency very close to the frequency of the

sampled signal, the captured signal is often excited with a signal generator sharing the same clock as

the oscilloscope. The interface of the oscilloscope was designed to make the sampling frequency and

PWM generator frequency as precisely configurable as the PWM and ADC peripherals of the

Raspberry Pi Pico allow.

When capturing a periodic signal with frequency fPWM at an appropriately selected frequency fSAMP,

the achieved effective sampling frequency fEFF can be obtained with equation 9 using the coefficient

kAEQ calculated using equation 8.

25

 𝑘𝑆 ≈
𝑓𝑃𝑊𝑀

𝑓𝑆𝐴𝑀𝑃
 (7)

 𝑘𝐴𝐸𝑄 =
𝑓𝑃𝑊𝑀

𝑓𝑃𝑊𝑀−𝑘𝑆∙𝑓𝑆𝐴𝑀𝑃
 (8)

 𝑓𝐸𝐹𝐹 = 𝑘𝐴𝐸𝑄 ∙ 𝑓𝑆𝐴𝑀𝑃 (9)

As an example, when the sample rate of the oscilloscope is set to 9997.9171Hz (the closest frequency

to 10kHz achievable by the ADC hardware) and the PWM generator frequency is set to 100kHz, the

factor kAEQ will be equal to approximately 4800. The effective sample rate achieved is is

approximately 48MHz. The coefficient kAEQ can also be used to convert the time scale of the signal

captured using ETS to the real time scale of the signal by simply dividing the time scale of the captured

signal by the coefficient.

To demonstrate the capabilities of the ETS method, the capacitance of one of the ADC inputs of the

Pico was calculated using the configuration described in the above example. By connecting the PWM

generator output to the ADC of the oscilloscope through a 10kΩ resistor, an RC circuit was formed.

The RC time constant τ, which is the product of the capacitance of the capacitor and the resistance of

the resistor in the RC circuit, can be obtained by measuring the time it takes to charge the capacitor

to approximately 63% of the voltage applied to the circuit. The measured time, converted to the “real”

time scale using the kAEQ coefficient, is approximately 456.9ns. Using equation 10, the internal

capacitance of the ADC (together with the capacitance of the breadboard used for connecting the

components) was determined to be approximately 45.7pF.

 𝜏 = 𝑡𝑟𝑖𝑠𝑒 = 𝑅𝐶 (10)

The detail of the rising edge of a signal 100kHz signal generated by the PWM generator of the

oscilloscope using the ETS method is shown in figure 19. For comparison, the same signal captured

without ETS at the maximum sample rate of the oscilloscope is shown in figure 18.

26

Figure 19: Rising edge of a 100kHz signal captured using ETS.

7.4 Long signal Capture

Sometimes, the ability to capture a long duration of a signal can be useful. The relatively large RAM

of the RP2040 allows capturing up to one hundred thousand during a single capture. With the

minimal sample rate of 1kS/s, up to 100 seconds of a signal can be captured. The Force button of the

oscilloscope, which “forces” the capture of the signal immediately after starting can be useful in this

case, allowing the oscilloscope to be used as a kind of an analog data logger. As an example, a 50

seconds long capture of a capacitor being charged is shown in figure 20.

Figure 20: Capture of an 470uF capacitor being charged using Force mode.

27

8 User manual

8.1 Technical specification

Oscilloscope

Oscilloscope channels 3
ADC resolution 12 bits/channel
Input voltage range 0V – 3.3V
Maximum sample rate – real time mode 500kS/s (total for all active channels)
Maximum sample rate – ETS mode 48MHz
Maximum capture depth 100kS (total for all active channels)
Maximum capture time 100s at 1kS/s with one channel active

PWM generator

Frequency 7.5Hz to 50MHz
Duty cycle 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%
Amplitude Low: 0V, high: 3.3V

8.2 Connections (Pinout)

Figure 21:Oscilloscope ADC channels and PWM generator pin locations on the Pico.

28

8.3 Flashing the firmware

The Raspberry Pi Pico needs to be flashed with the oscilloscope firmware before it can first be used.

To flash the firmware, the following steps need to be performed:

1. If the Pico is connected to the computer, disconnect it first

2. Press and hold the BOOT button on the Pico

3. While keeping the BOOT button pressed, connect the pico to the computer

4. Release the BOOT button

5. The Pico will appear as an USB storage device in the computer file system

6. Copy the .uf2 file with the firmware to the Pico

7. The Pico is flashed with the firmware and is ready to be used

8.4 Browser and operating system compatibility

The oscilloscope depends on the WebUSB API for communication between the user interface and the

Raspberry Pi Pico. Currently, WebUSB API is only available on Chrome, Edge and Opera web

browsers. Current browser compatibility status, including compatible browser versions, is available

at the CanIUse website [13], which tests web browser compatibility with web standards and APIs.

To use the oscilloscope on Linux, an udev rule needs to be added to enable the web browser access to

USB devices. The udev rule can be added by performing the following terminal commands:

cd /etc/udev/rules.d

sudo echo SUBSYSTEM=="usb",ATTR{idVendor}=="cafe",MODE="0664", GROUP="plugdev" > pico.rules
Code snippet 7: Linux terminal commands to add an udev rule to the system.

8.5 Connecting to the Raspberry Pi Pico

Once the Pico is flashed with the WebScope firmware, load the GUI web page or open the index.html

file in case you downloaded the offline version of the GUI. Clicking the Connect device button in the

welcome screen or on the top bar will bring up a pop-up window similar to the one shown in figure

22. In case the pop-up window does not appear, the browser you are using does not support the

WebUSB API required for communication with the Pico – consult section 8.4 to learn about browser

compatibility.

Figure 22: WebUSB connection pop-up browser window.

29

 In the pop-up window, select WebScope Rpi Pico and press the Connect button. In case the Raspberry

Pi Pico does not appear in the pop-up window, it is probably not flashed with the WebScope firmware

– flashing the firmware is described in section 8.4.

8.6 Capture modes

Figure 23: Auto/normal mode selection panel.

The oscilloscope has two trigger modes, auto and normal. Trigger mode can be set with the buttons

Auto and Normal, located on the top bar.

● In Normal mode, the oscilloscope waits for a trigger condition indefinitely.

● In Auto mode, the oscilloscope first waits for a trigger condition for a defined time period,

equal to three times the capture length. If the trigger condition does not occur in this time

window, the oscilloscope then starts the signal capture automatically. The later mode is

useful for capturing an unknown signal, where the user is not sure how to set the trigger

condition.

Figure 24: Capture control panel in stopped state.

Independently of the Auto and Normal trigger modes, there are three capture modes in which the

oscilloscope can be started:

● In Run mode, the oscilloscope is capturing continuously - after a trigger occurs and the signal

is captured, new capture is started immediately.

● In Single mode, only a single capture is performed, and the oscilloscope stops.

● In Force mode, the oscilloscope “forces” a trigger immediately after capture.

8.7 Capture settings

8.7.1 Sample rate setting

Figure 25: Sample rate configuration panel.

The sample rate of the oscilloscope is the frequency at which new signal samples are captured. The

oscilloscope has only one analog-digital converter, which is shared between multiple channels when

more than one channel is active. This means that the per-channel sample rate is equal to the sample

rate divided by the number of active channels. The sample rate configuration panel, which is located

on the top bar, allows the user to set the desired sampling frequency. The sample rate can be changed

in defined steps using the - and + buttons.

30

Figure 26: Sample rate configuration pop-up window.

The sample rate can be set more precisely by clicking the Edit button in the sample rate configuration

panel, which opens a configuration pop-up window (shown on picture above). In the pop-up window,

the value can be set using numerical keys on the keyboard. After the desired sample rate value is set,

clicking the Set button in the pop-up window configures the oscilloscope to the new value. Due to

limitations of the hardware, not all sample rate values can be achieved by the oscilloscope. The

oscilloscope calculates the closest sample rate it can achieve - the actual sample rate is shown in the

pop-up window, below the sample rate set by the user. The minimum sample rate of the oscilloscope

is 1kS/s and the maximum is 500kS/s.

8.7.2 Capture depth setting

Figure 27: Capture depth configuration panel.

The capture depth is the number of samples that will be captured during a single capture. The capture

buffer is shared between all active channels, so when more than one channel is active, the per-

channel number of samples that will be captured is equal to the capture depth divided by the number

of active channels. Capture depth can be configured using the - and + buttons in the capture depth

configuration panel, which is located on the top bar. The minimum capture depth is 1kS and the

maximum is 100kS.

8.7.3 Active channels

The three channels of the oscilloscope can be turned on and off individually using the ON/OFF

buttons in the channel configuration panels, located on the right side bar. The number of active

channels influences the maximum achievable per-channel sample rate and capture depth, so it is

advised to turn off unnecessary channels when maximum performance is needed.

31

8.8 Trigger settings

Figure 28: Trigger configuration panel.

The trigger settings define the conditions which cause the signal capture to start. The trigger channel,

trigger edge, trigger voltage and pretrigger value can be set in the trigger configuration panel located

on the right side bar.

● The trigger channel is the channel which the oscilloscope checks for the trigger condition.

The channel can be set using the 1, 2, and 3 buttons in the Channel section of the trigger

configuration panel

● The oscilloscope can trigger either on the rising edge or the falling edge of the signal. The

behavior can be set using the Rise and Fall buttons in the Edge section of the trigger

configuration panel.

● The trigger level is the voltage level at which the oscilloscope checks for the trigger condition.

The trigger level voltage can be set using the - and + buttons in the Level section of the trigger

configuration panel.

● The pretrigger value determines the portion of the signal before the trigger condition which

will be included in the capture. The pretrigger value can be set using the - and + buttons in

the Pretrig. section of the trigger configuration panel. For example, when the pretrigger value

is set to 10%, the ratio of captured samples before and after the trigger will be 10%/90%.

The pretrigger value can be set to values between 0% and 100%.

32

8.9 Vertical (channel) view settings

Figure 29: Channel 1 configuration panel.

The captured signals can be individually horizontally scaled using the - and + buttons in the Scale

section of the channel configuration panels located on the right side bar. Similarly, signals can be

moved up and down in the plot using the - and + buttons in the Offset section of the channel

configuration panels. Both the scale and offset can be reset using the 0 buttons in the Scale and Offset

sections of the configuration panel.

8.10 Horizontal view settings

Figure 30: Horizontal control panel.

The captured signals can be horizontally zoomed in or out using the - and + buttons in the Zoom

section of the horizontal control panel. A zoomed-in signal can be moved to the right or left using the

- and + buttons in the Offset section of the horizontal control panel. Both the zoom and offset can be

reset using the 0 buttons in the Zoom and Offset sections of the horizontal configuration panel. To

make navigation in the captured signal easier, it is also possible to use the Up/Down arrow keys on

the keyboard to zoom the signal in or out and the Left/Right arrow keys to move the signal to the left

or right.

33

8.11 Cursor settings

Figure 31: Cursor control panel

Oscilloscope cursors can be used to precisely measure voltage, time or voltage and time difference in

the captured signal. The channel to be measured can be set using the 1, 2, and 3 buttons on the

cursors panel, located on the left side bar. Clicking the X and Y buttons on the control panels activates

the X (vertical) and Y (horizontal) cursors. The cursors are indicated by purple lines inside the signal

view and can be moved by dragging them with a mouse over the signal view.

8.12 Generator settings

Figure 32:PWM generator configuration panel.

The oscilloscope features a configurable PWM signal generator. The generator can be activated using

the ON/OFF button in the generator configuration panel located on the left side bar. The frequency

of the signal can be adjusted by 100 Hz increments using the - and + buttons in the frequency section

of the control panel. The duty cycle (the percentage of the signal period during which the signal is in

high state) can be adjusted by 10% increments using the - and + buttons in the duty cycle section of

the control panel.

34

Figure 33: PWM generator frequency setting pop-up window.

The signal frequency can be set more precisely by clicking the Edit button in the generator

configuration panel, which opens a configuration pop-up window (shown in picture above). In the

pop-up window, the value can be set using numerical keys on the keyboard. After the desired

frequency is set, clicking the Set button in the pop-up window configures the generator to the new

value. Due to limitations of the hardware, not all frequencies can be achieved by the generator. The

oscilloscope calculates the closest PWM frequency it can achieve - the actual frequency is shown in

the pop-up window, below the frequency set by the user. The minimum frequency of the generator

7.5Hz and the maximum is 100MHz.

8.13 Capture export

TBD - CSV export button in the oscilloscope menu.

The captured signals can be downloaded in CSV format for additional processing. To download the

capture, click the Export CSV button located in the menu (located in the top left corner of the GUI) of

the oscilloscope. The csv file has the following format:

Ch1, .. Chn, Timestamp,
Ch1, .. Chn, Timestamp,
Ch1, .. Chn, Timestamp,
Ch1, .. Chn, Timestamp,
…

Where the Ch1, … Ch2 values on each row are the samples of the active channels and Timestamp is

the time of capture for each row in milliseconds.

35

9 Conclusion
The goal of this thesis was to design and implement a software-defined oscilloscope based on the

Raspberry Pi Pico microcontroller and a web-based user interface. The first part of the thesis is

devoted to implementing communication between the Pico and a web application using the WebUSB

API. After the communication using the API was established, the firmware and the GUI web

application were implemented. The concept of using a web application for controlling a software

defined instrument has proven to be effective, even with a highly interactive interface of an

oscilloscope. The motivation behind the thesis – developing a platform-independent oscilloscope

capable of running on all major operating systems was also met.

The oscilloscope meets all major criteria that were set: it features three analog channels, cursors,

PWM generator, precise sample rate and PWM frequency settings to enable equivalent time

sampling.

While the performance of the oscillocope is limited by the used hardware, an effort was made to

utilize all the hardware resources as much as possible. Using the PWM generator of the developed

oscilloscope, an effective sample rate of up to 48MHz was reached for certain suitable signals using

the equivalent time sampling method.

Hopefully, the oscilloscope will find its use in classrooms and in the homes of students and hobbyists,

making electronics education and experiments more accessible.

36

10 List of figures
Figure 1: Analog voltage sampled at a frequency f = 1/T. .. 2

Figure 2: Overview of the oscilloscope design. ... 2

Figure 3: Overview of a microcontroller-based oscilloscope. ... 8

Figure 4:Analog-digital converter of the RP2040. ... 10

Figure 5: PWM peripheral of the RP2040. Taken from [7]. ... 11

Figure 6: Overview of the development setup using Picobrobe firmware. ... 13

Figure 7: Visual Studio Code configured for oscilloscope firmware development. 14

Figure 8: Connecting Picoprobe (left) to debug another Pico. Taken from [10]. .. 14

Figure 9: Simplified diagram of the oscilloscope firmware. .. 16

Figure 10: Conceptual diagram of a ring buffer. ... 17

Figure 11: Storing a capture inside a ring buffer, including the pretrigger portion of the capture. ... 17

Figure 12: Different control panels of the user interface sharing the same basic components. 18

Figure 13: Design of the oscilloscope GUI. .. 19

Figure 14: Cursor control panel in an early iteration of the GUI. .. 20

Figure 15: Horizontal cursors implemented as HTML div elements. .. 20

Figure 16: Oscilloscope GUI with sample rate and PWM generator pop-up windows opened. 21

Figure 17: Example of a capture with three analog channels. .. 23

Figure 18: Rising edge of a 100kHz signal captured using RTS. .. 24

Figure 19: Rising edge of a 100kHz signal captured using ETS.. 26

Figure 20: Capture of an 470uF capacitor being charged using Force mode. .. 26

Figure 21:Oscilloscope ADC channels and PWM generator pin locations on the Pico. 27

Figure 22: WebUSB connection pop-up browser window. .. 28

Figure 23: Auto/normal mode selection panel. .. 29

Figure 24: Capture control panel in stopped state. ... 29

Figure 25: Sample rate configuration panel. .. 29

Figure 26: Sample rate configuration pop-up window. ... 30

Figure 27: Capture depth configuration panel. ... 30

Figure 28: Trigger configuration panel. ... 31

Figure 29: Channel 1 configuration panel. .. 32

Figure 30: Horizontal control panel... 32

Figure 31: Cursor control panel .. 33

Figure 32:PWM generator configuration panel. ... 33

Figure 33: PWM generator frequency setting pop-up window. ... 34

37

11 List of abbreviations

ADC Analog-digital converter

API Application interface

CSV Comma separated values

CSS Cascading style sheets

DMA Direct memory access

ETS Equivalent time sampling

GUI Graphical user interface

HTML Hypertext markup language

IDE Integrated development environment

PFM Pulse-frequency modulation

PWM Pulse-width modulation

RTS Real time sampling

SDI Software defined instrument

SVG Scalable vector graphics

SWD Serial wire debug

UART Universal asynchronous receiver-transmitter

38

12 Bibliography

[1] Little Embedded Oscilloscope.
URL: https://embedded.fel.cvut.cz/platformy/leo

[2] WebUSB API, Draft Community Group Report. 2023.
URL: https://wicg.github.io/webusb/

[3] Accessing USB devices on the Web. 2023.
URL: https://developer.chrome.com/en/articles/usb/

[4] TinyUSB. 2023.
URL: https://docs.tinyusb.org/

[5] WebUSB Tester. 2022
URL: https://larsgk.github.io/webusb-tester/

[6] Capturing USB trafic on Linux using WireShark. 2015.
URL: https://stackoverflow.com/questions/31054437/how-to-install-

wireshark-on-linux-and-capture-usb-traffic

[7] RP2040 Datasheet. 2022.
URL: https://datasheets.raspberrypi.com/rp2040/rp2040-

datasheet.pdf

[8] V. Vaněček, Logic analyser based on Raspberry Pi Pico. Diploma thesis. 2022.

[9] Raspberry Pi Pico SDK. 2023.
URL: https://github.com/raspberrypi/pico-sdk

[10] Getting started with Raspberry Pi Pico. 2022.
URL: https://datasheets.raspberrypi.com/pico/getting-started-with-

pico.pdf

[11] Protocol Buffers Documentation. 2023.
URL: https://protobuf.dev/

[12] Increasing of Sampling Rate of Internal ADC in microcontrollers by Equivalent-Time Sampling.

IMEKO International symposium proceedings. 2022.
URL:https://embedded.fel.cvut.cz/sites/default/files/kurzy/ETC22/

Prednasky_ETC22_B/IMEKO_2022_Proceedings.pdf

[13] Can I use. 2023.
URL: https://caniuse.com/

