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Abstract 
The goal of this thesis is to design and implement a software-defined oscilloscope using the 

Raspberry Pi Pico and a web-based user interface. Both parts of the system - the firmware for the 

Pico and the web-based user interface were implemented as part of this thesis. The oscilloscope 

includes three analog channels, a PWM generator and was designed to enable equivalent time 

sampling. The WebUSB API is used for communication between the microcontroller and the user 

interface. 

Abstrakt 
Cílem této práce je návrh a implementace softwarově definovaného osciloskopu založeného na 

mikrokontrolu Raspberry Pi Pico ve spojením s webovým uživatelským rozrhaní. Součástí této práce 

je implementace obou částí osciloskopu – firmwaru pro Raspberry Pi Pico i webového rozhraní. 

Navržený osciloskop má tři kanály, PWM generátor a podporuje záznam signálu metodou equivalent 

time sampling. Pro komunikaci mezi mikrokontrolerem a uživatelským rozhraním je použito 

rozhraní WebUSB API. 
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1 Introduction 
 

Modern microcontrollers are powerful enough to be used for implementing instruments such as 

oscilloscopes or logic analysers on the low end of the performance spectrum. When the devices are 

implemented using readily available and cost-effective development boards such as the STM32 

Nucleo or the Raspberry Pi Pico, they are particularly suited for use in classrooms - both in university 

courses or at high schools.  

 

Multiple instruments based on microcontroller evaluation boards have been already created at the 

Department of measurement at CTU in Prague. For example, the LEO (Little Embedded Oscilloscope) 

[1] is an oscilloscope and a signal generator based on the STM32F303 Nucleo board which is widely 

used in laboratory lessons at CTU. The user interface for the LEO is a native Windows program 

written in C++. While native Windows applications are very efficient, they have an obvious drawback 

- they cannot run on other operating systems. 

 

For this reason, I decided to create a new multiplatform (or platform independent) software-defined 

oscilloscope capable of running on all major operating systems – Windows, Linux and Mac OS X.  

There are multiple approaches to creating multiplatform applications, one of them being the 

currently popular Electron framework. Applications using the Electron framework are developed 

using standard web technologies – HTML, JavaScript and CSS and shipped with a modified version of 

the Google Chrome kernel, on which they are run. The modified browser kernel enables applications 

access to the file system, USB devices and other system capabilities. One obvious downside of this 

approach is the need to bundle a 120MB web browser kernel with every application. As an 

alternative, new web APIs have been created (in an effort led mainly by Google) to bring capabilities 

of standard web pages closer to native applications, potentially removing the need to install 

programs at all.  

 

One of these APIs is the WebUSB API [2], which enables web pages client-side access to USB devices 

of the user.  The WebUSB API is used for the oscilloscope developed in this thesis. With the use of this 

API, the user interface can be implemented as a standard web page, capable of running on Windows, 

Linux and Mac OS X without a need to be installed, which is a major advantage for use both in 

classrooms and at home. In case internet connection is an issue, the user interface can also be 

downloaded and run locally. 

 

The Raspberry Pi Pico microcontroller board was selected as the hardware portion of the 

oscilloscope. The reasons for choosing the Pico are mainly its availability, low price and the presence 

of an USB peripheral (not just an USB-UART converter chip) on the board. The Pico has a relatively 

slow analog-digital converter, so the oscilloscope is designed to enable the equivalent time sampling 

technique. Using equivalent time sampling, sample rates up to 48MHz can be reached for certain 

types of captured signals, despite the modest speed of the ADC. 
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2 Overview of the oscilloscope design 
An oscilloscope is a measurement instrument used to capture an analog voltage signal and display it 

as a two-dimensional time-voltage plot. While it is mainly used to inspect and verify the operation of 

electronic circuits, it is also a valuable tool for learning about electronics in a hands-on, visual way. 

Digital oscilloscopes, which are prevalent today, are based on analog-digital converters (ADCs). An 

ADC is an electronic circuit that converts analog voltage into a discrete digital representation. The 

ADC samples the voltage signal at a specific frequency (called the sample rate), as is shown in figure 

1.  The captured samples are saved into memory and when a specified number of samples is captured, 

they are displayed on the screen of the oscilloscope.  

 
Figure 1: Analog voltage sampled at a frequency f = 1/T. 

Practically, the oscilloscope developed in this thesis is divided into two parts: the hardware and the 

web-based user interface, as is shown in Figure 2. A crucial, and arguably the most novel part of the 

design is the communication interface between these two parts - the USB interface and the WebUSB 

API. 

 

 
Figure 2: Overview of the oscilloscope design. 

The Raspberry Pi Pico was chosen for the hardware part of the Oscilloscope. The main reasons for 

this decision are its availability, affordability and the presence of an USB peripheral on the board. A 

major downside of the Pico, or more precisely the RP2040 MCU present on the Pico board, is the low 

speed of the ADC peripheral, which cannot match the speed of instruments such as the LEO, which 
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uses the STM32F303 microcontroller. However, the goal behind developing the oscilloscope is to 

make basic electrical measurements as accessible as possible, so a tradeoff in favor of the Raspberry 

Pi Pico was taken when choosing the hardware for the oscilloscope. The hardware features of the 

Pico are described in detail in the chapter 4. 

 

In very simple terms, the Raspberry Pi Pico will have the following tasks: 

1. Receive capture configuration from the user interface over USB. 

2. Monitor the ADC for trigger condition. 

3. Capture signal samples into a buffer when a trigger condition occurs. 

4. Send the captured samples to the user interface over USB. 

5. Repeat 

 

Additionally, the PWM generator of the Pico will be used as a configurable PWM generator, so it will 

receive PWM configuration messages from the user interface and configure the PWM peripheral 

accordingly. 

The user interface of the oscilloscope will be developed as a standard web page using HTML, CSS and 

JavaScript. The user interface will feature control panels for configuring the signal capture, such as 

capture depth, sample rate, number of channels, and trigger conditions. The GUI will plot the 

captured signals and allow the user to scale, zoom and pan the plotted signals. 

 

To enable the use of the equivalent time sampling method (this method is described in detail in 

chapter X), the GUI must allow the user to set the oscilloscope sample rate and PWM generator 

frequency precisely. Because it is not always possible to reach the desired frequencies with the PWM 

and ADC peripherals, the actual frequencies of the PWM and ADC peripherals will be shown in the 

GUI too.  

 

The user interface will also feature vertical and horizontal cursors, to enable precise measurement 

of time or voltage difference in the captured signals. 
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3 WebUSB API 

3.1 Introduction 

A crucial (and arguably the most novel) part of the proposed oscilloscope design is the 

communication between the hardware and the GUI. The WebUSB API serves exactly this purpose - 

communication between an USB device and software running in the browser.  

 

Before describing the WebUSB API in more detail, I will cover a few terms and concepts relating to 

the USB interface itself. To accommodate devices with diverse communication requirements, USB is 

highly configurable. An USB device can use multiple (up to 32, although it is rare to use so many) 

virtual communication pipes, also called endpoints. There are three different types of endpoints: 

bulk, suitable for transferring large amounts of data, isochronous, which guarantee low latency, and 

control, mainly used for device configuration. When an USB device is connected to a host system, it 

sends the host a description of the required endpoints (this process is called enumeration), which 

the host system will then provide to the device. 

 

On the host side of an USB connection is a device driver, which communicates with the device through 

endpoints exposed by the USB stack. Usually, an USB driver is written in C or C++ and runs inside the 

host operating system kernel. The WebUSB API exposes the USB device endpoints directly to the 

JavaScript runtime inside a web browser, so the device driver can be implemented directly using 

JavaScript. 

 

Currently, WebUSB is in experimental phase and it is not a standard web API. Only web browsers 

based on the Chrome kernel (Chrome, Chromium and Microsoft Edge) support it at this time. There 

are officially no plans in the other two major browsers (Firefox and Safari) to implement this API, 

citing security concerns as the reason. 

While these concerns are certainly valid, the way in which WebUSB exposes USB devices to the 

browser is more secure than it might sound. First, the user must explicitly select an USB device in a 

pop-up window for the web browser to access it. Second, it is not possible to access devices belonging 

to common USB classes such as HID (keyboards, mouses), Mass storage, Network interfaces and 

others. WebUSB can only access devices outside these classes, which are usually only very specialized 

hardware devices.  

3.2 An example 

Code snippet 1 demonstrates connecting to an USB device with the vendor ID equal to 0xCAFE. The 

requestDevice function does not select an USB device by itself: when it is called, a pop-up window 

appears in the browser, prompting the user themselves to select a particular USB device. The filters 

object passed to the function can be used to filter the USB devices listed to the user. The device vendor 

ID, product ID or serial number can be set to only allow a particular device(s) to be listed. After a 

device is selected, a device configuration and interface are chosen. It is rare for an USB device to have 
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multiple interfaces and even rarer to have multiple configurations. In this example, the first 

configuration and interface are selected. 

 
let device = await navigator.usb.requestDevice({ 

   filters: [{ vendorId: 0xcafe }] 

}); 

await device.open(); 

await device.selectConfiguration(1); 

await device.claimInterface(1); 
Code snippet 1: Connecting to an USB device using the WebUSB API. 

 

After connecting, we can start communicating with the device. An example of sending data to the 

device is shown in code snippet 2. The transferOut function parameters are the number of the 

endpoint (3 in this case) to which a message will be sent to, and the message itself. The message must 

be an ArrayBuffer object, such as an Uint8Array, which is basically an array of bytes. 

 

let message = new Uint8Array([1, 2, 3, 4]); 

device.transferOut(3, message); 

Code snippet 2: Sending an array of bytes to an endpoind of an USB device. 

Similarly, the transferIn function can be used to receive data from a particular endpoint. The second 

parameter of the function sets the maximum number of bytes to be received. The function returns a 

DataView object, which can be parsed to an Uint8Array or other array types. 

 
let result = await device.transferIn(3, 4); 

let bytes = result.data.getUint8(); 

Code snippet 3:Requesting a transfer with a size of 4 bytes from an USB device. 

 

 

In code snippet 4, a more complete example of a web page using the WebUSB API is shown. The web 

page contains a button for connecting to an USB device and a button for reading data. Received data 

are shown inside a HTML div element on the page.  

 
// HTML content of the page: 

<button id="connect">Connect device</button> 

<button id="readData">Read data</button> 

<div id="display"></div> 

 

// JavaScript code: 

let device; 

 

document.addEventListener('DOMContentLoaded', () => { 

   document.getElementById('connect').addEventListener('click',  

requestUSBDevice); 

   document.getElementById('readData').addEventListener('click', 

readData); 
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}); 

 

async function requestUSBDevice() { 

   device = await navigator.usb.requestDevice({ filters: [] }); 

   console.log('USB device selected:', device); 

   await device.open(); 

   await device.selectConfiguration(1); 

   await device.claimInterface(0); 

} 

 

async function readData() { 

  const endpointIn = device.configuration.interfaces[0].endpoints[0]; 

 

  const result = await device.transferIn(1, 1); 

  let parsedData = result.data.getUint8(); 

   

  document.getElementById('display').textContent = 'Received: ' +            

parsedData[0]; 

} 

 

Code snippet 4: Example of a simple web page capable of connecting to an USB device, reading and displaying received data. 

 

While it is possible to read data from an USB device as shown in code snippet 3, there is one issue – 

the transferIn can return less data than was requested. An obvious solution would be to simply 

request additional data until all the requested data were received, as shown in code snippet 5. 

 

 
Let readSize = 128; 

let result = []; 

while (result.length < readSize) { 

   let rec = await device.transferIn(3, result.length - readSize); 

   result.append(rec.data.getUint8()); 

} 
Code snippet 5: Reading data of size readSize inside a loop to deal with data being fragmented. 

3.3 Practical insights of using the WebUSB API 

Because WebUSB is not widely adopted, there are only a few resources available to help with 

development. The first is an article called Access USB Devices on the Web [3],  which contains a simple 

example of using WebUSB and also considers platform-specific issues with using the API, which will 

be described later. The second resource is the official draft [2] of the WebUSB API, which describes 

components of the API in more detail. 

 

These resources only include very basic examples, so a large amount of experimentation was 

required to use the API in practice. These struggles were heightened by my limited knowledge of 

JavaScript and the browser runtime. JavaScript can only run in a single thread inside a browser 
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window tab, and this thread also handles re-rendering of the web page. This means that any blocking 

JavaScript code would cause the whole web page to stop responding. 

3.4 Special USB descriptor on Windows 

For the Windows operating system to allow the WebUSP API to communicate with an USB device, the 

device needs to include a special USB descriptor during its enumeration. This descriptor, called the 

Microsoft OS 2.0 platform capability descriptor, is fortunately included in the TinyUSB [4] open source 

USB stack, which was used for the oscilloscope firmware development. 

3.5 Udev rules on Linux 

Linux does not require a special USB descriptor, but it disables user space applications from accessing 

USB devices as a default behavior. To enable access to an USB device, an udev rule file needs to be 

added to the /etc/udev/rules.d/ folder. This file needs to have the .rules extension and content shown 

in code snippet 4: 

 
SUBSYSTEM=="usb",ATTR{idVendor}=="cafe",MODE="0664",GROUP="plugdev" 

Code snippet 6: Content of an udev rule file enabling WebUSB access to an USB device. 

3.6 Debugging tools 

Few tools proved to be useful for troubleshooting during the initial phase of development. The first 

is a utility inside the Chrome web browser, called USB Internals. It can be accessed by typing 

chrome://usb-internals/ into the search bar and lists all USB devices connected to the system. It also 

allows creating a virtual USB device (this device is only visible from inside the web browser, so it only 

has a limited utility, such as troubleshooting a WebUSB connection). Another utility, called Web USB 

tester [5], can be found on GitHub. It is a simple web page which can be used to test connection to an 

USB device with a specific USB vendor ID and product ID. Finally, the well-known WireShark packet 

analyzer can be used to capture and inspect “raw” USB communication on Linux, however this 

requires changing a few settings of the system. The required steps are described in a StackOverflow 

discussion [6].  
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4 Hardware platform – the Raspberry Pi Pico 

4.1 Overview 

There are several features of a microcontroller that are crucial for using it as an oscilloscope – an 

analog-digital converter to convert a signal into digital samples, a large enough RAM to store the 

captured samples, and a DMA peripheral to move the samples from the ADC into memory without 

overloading the microcontroller processing core. Additionally, a PWM generator is needed to 

implement a signal generator. A general overview of a microcontroller-based oscilloscope is shown 

in Figure 3 below, indicating communication between different parts of the microcontroller, with 

data transfer from the ADC peripheral to RAM being handled by the DMA peripheral without 

involvement of the CPU. 

 
Figure 3: Overview of a microcontroller-based oscilloscope. 

4.2 The Raspberry Pi Pico 

The Raspberry Pi Pico, which was chosen as the hardware part of the oscilloscope developed in this 

thesis, contains the RP2040 microcontroller. The RP2040 features two ARM Cortex-M0 cores with 

clock speed up to 133MHz, 264kB of SRAM and peripherals such as the ADC, USB (including a PHY), 

DMA, PWM generator and others. The peripherals relevant to the oscilloscope are discussed in detail 

in this chapter. Besides the microcontroller, the Pico also contains a switching-mode DC-DC regulator 

for generating 3.3V from the USB power supply and a flash memory chip (the RP2040 does not have 

internal flash memory).  

4.3 DMA peripheral 

 

The DMA (direct memory access) peripheral of the RP2040 can be used to transfer data between a 

peripheral and the RAM independently of the microcontroller cores. In the oscilloscope, this is a 

crucial feature, because samples from the ADC peripheral need to be moved at regular intervals to a 

buffer in the memory, while the processor cores are doing other tasks such as trigger detection or 

handling USB communication.  
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Because ADC samples are saved to a circular buffer in the RAM, a “circular” DMA mode, as it is called 

in datasheets of certain STM32 microcontrollers, is required. While this mode is not available on the 

RP2040, it is possible to chain two DMA channels together to achieve the effect of a circular DMA 

transfer. This solution was inspired by a logic analyzer based on the Raspberry Pi Pico created as the 

diploma thesis of Ing. Vít Vaněček [8]. 

4.4 USB peripheral 

The RP2040 features an USB peripheral including the PHY, which handles the physical layer of the 

USB protocol and converts the chip-level electrical signals to and from the 5V signals on the USB bus. 

The peripheral supports the USB 2.0 Full speed device mode, with communication speed of 12Mb/s. 

Both the USB peripheral and the USB protocol itself are relatively complex, so the configuration of 

the peripheral as well as tasks such as the enumeration of the device are handled by a port of the 

TinyUSB stack included in the Pico software development kit. 

4.5 Analog-digital converter 

The analog-digital converter of the RP2040 has five channels, with one channel connected to the 

internal temperature sensor. The structure of the ADC is shown in figure 4. On the Raspberry Pi Pico, 

one of the four remaining channels is used to measure the power supply voltage (VSYS), leaving three 

usable ADC channels for the oscilloscope. The maximum sample rate of the ADC is 500kHz. All 

channels share the single analog-digital converter over an analog multiplexer, so the per-channel 

maximum sample rate is one half or one third of the maximum ADC sample rate when two or three 

channels are active, respectively. 

 

When the ADC is in free-running mode, as is the case with the oscilloscope, conversions are started 

at regular intervals, triggered by the pacing timer inside the ADC peripheral. The pacing timer is fed 

with a 48MHz clock and features a configurable fractional divider with 16 integer and eight fractional 

bits to slow down the input clock. The fractional part of the divider causes jitter in the timing of the 

ADC sampling, which is undesirable (particularly when using the oscilloscope in equivalent time 

sampling mode), so only the integer part of the divider is used. The sample rate of the ADC can be 

calculated using equation 1. 
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Figure 4:Analog-digital converter of the RP2040. 

 

                                                                    𝑓𝐴𝐷𝐶 = 48𝑀𝐻𝑧
𝑑𝑖𝑣⁄ , 𝑑𝑖𝑣 ≥ 96                                                           ( 1) 

 

The resolution of the ADC can be set to 8 or 12 bits. When it is set to 8 bits, each sample fits into one 

byte of memory. In 12 bit mode, two bytes are needed to store each sample, leading to wasted space 

in the memory. However, as the SRAM of the RP2040 is large enough, it was decided to use the 12-

bit mode for the oscilloscope for greater resolution of the signal capture. Out of the 264kB of SRAM 

on the chip, 200kB could be used as the capture buffer, meaning up to one hundred thousand 12-bit 

samples can be saved at a time. 

 

The RP2040 does not contain a reference voltage for the ADC - an external reference voltage must be 

supplied to a specific microcontroller pin. On the Raspberry Pi Pico board, the 3.3V output from the 

onboard SMPS (switching-mode power supply) is used as the reference voltage for the ADC. The 

SPMS chip present on the Pico features two regulation modes - pulse frequency modulation and pulse 

width modulation. One of the GPIO pins of the RP2040 is connected to a pin of the SMPS which selects 

the regulator mode, so it can be selected by the firmware.  Because the switching mode of the SMPS 

can influence the stability of the 3.3V ADC reference during certain conditions, the switching mode 

can be configured in the oscilloscope GUI. 

4.6 PWM generator 

The PWM peripheral of the RP2040 will be used as a configurable PWM signal generator of the 

oscilloscope. In addition to being used as a configurable clock source, the generator is crucial in signal 

capturing using the equivalent time sampling method. The structure of the PWM peripheral is shown 

in figure 5. 
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Figure 5: PWM peripheral of the RP2040. Taken from [7]. 

 

The generator consists of a clock divider, an up/down counter and an output compare unit.  

The clock divider, which is fed with the 125MHz system clock, allows division of the system clock by 

a fractional number div with eight integer and four fractional bits. However, the fractional part of the 

generator causes jitter in the output signal, which would make it unsuitable when using the 

oscilloscope in equivalent time sampling mode. With eight integer bits of the division factor, the 

divider can be configured to slow the output down by a factor from one to 255.  

 

The output of the divider is fed into a 16 bit up/down counter. The counter has a configurable wrap 

value, which causes the counter to reset when the value is reached. The wrap value determines the 

period of the PWM signal relative to the divider output, so it can be configured along with the division 

factor of the divider to achieve the highest possible frequency range of the PWM generator. The 

frequency of the PWM output for given wrap and div values can be calculated using equation 2. 

 

                                                                       𝑓𝑃𝑊𝑀 =
𝑓𝑆𝑌𝑆

𝑑𝑖𝑣 ∙ 𝑤𝑟𝑎𝑝⁄                                                                     ( 2) 

 

The output of the counter is compared to a threshold value inside the output compare unit, which 

then drives an output pin of the microcontroller. When the counter output is lower than the threshold 

value, the output pin is set high. After the counter value reaches the threshold, the pin is kept low 

until the counter reaches the wrap value and is reset. The threshold value determines the duty cycle 

of the PWM duty signal, as is shown in equation 3. 

 

                                                                        𝑑𝑢𝑡𝑦 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑤𝑟𝑎𝑝⁄                                                                   ( 3) 

 

Obviously, the user of the oscilloscope will not be asked to set the div and wrap values of the PWM 

peripheral by themselves. It is possible to calculate the required div and wrap values for a desired 

frequency fSET using equations 4 and 5: 
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                                                                              𝑑𝑖𝑣 = ⌈
𝑓𝑆𝑌𝑆

𝑓𝑆𝐸𝑇∙216⌉                                                                              ( 4) 

 

 

                                                                             𝑤𝑟𝑎𝑝 = ⌈
𝑓𝑆𝑌𝑆

𝑓𝑆𝐸𝑇∙𝑑𝑖𝑣
⌉                                                                           ( 5) 

 

It is not always possible to generate the exact desired frequency. In that case, the actual frequency 

can be calculated using equation 6 with the div and wrap values obtained using equations 4 and 5. 

 

                                                                          𝑓𝑅𝐸𝐴𝐿 =  
𝑓𝑆𝑌𝑆

𝑑𝑖𝑣∙𝑤𝑟𝑎𝑝
                                                                                ( 6) 
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5 Oscilloscope firmware 

5.1 Pico SDK and development setup 

For development of the oscilloscope firmware, the Raspberry Pi Pico SDK (software development kit) 

[9] was used. The SDK contains drivers for the peripherals of the RP2040 and simple examples of the 

of using the peripherals of the Pico. One part of the SDK I found to be lacking is the USB stack. The 

Pico SDK uses a port of the TinyUSB USB stack, but it only implements a few basic USB classes. The 

WebUSB device class, which is present in TinyUSB, is missing in the Pico SDK port. However, the only 

special requirement of a WebUSB device is an additional Platform capability descriptor, which I was 

able to add from the main TinyUSB branch. 

 

To make development easier, a second Raspberry Pi Pico flashed with the Picoprobe firmware was 

used. The Picoprobe firmware enables the Pico to function as a debugger and an USB-UART 

converter. The Pico with the oscilloscope firmware was connected to the Picoprobe with its SWD and 

UART ports, so it could be flashed without having to press the BOOT button on the flashed board each 

time. The UART port could be used for debugging too, when debugging using logging was preferred. 

The oscilloscope development setup is shown in figure 6. 

 

 
Figure 6: Overview of the development setup using Picobrobe firmware. 

 

The Visual Studio Code IDE with the Cortex-Debug plugin was used for writing the firmware. As is 

shown in figure 7, the Cortex-Debug plugin features breakpoints and code stepping, as well as 

variable and microcontroller peripheral register inspection. The Picoprobe firmware, as well as 

configuration of the Visual Studio Code IDE for use with the Picoprobe are described in the Getting 

started with Raspberry Pi Pico document [10]. The wiring between a Pico flashed with the Picoprobe 

firmware and another Pico is shown in figure 8. 
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Figure 7: Visual Studio Code configured for oscilloscope firmware development. 

 

 
Figure 8: Connecting Picoprobe (left) to debug another Pico. Taken from [10]. 
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5.2 USB stack and use of the second microcontroller core 

While the first of the two cores of the RP2040 handles the “application” logic of the oscilloscope, the 

second core is dedicated to handling USB communication. The TinyUSB stack, which is used as the 

USB stack in the firmware, defers interrupts generated by the USB peripheral into a queue. A function 

that handles any interrupts in the queue must be called periodically by the application code, so by 

doing this on the second core, the first core can handle time-critical tasks such as trigger condition 

detection.  

 

The RP2040 features a hardware queue to enable communication between the cores, however it was 

decided to use a simpler approach to share USB messages between the cores instead. The two 

firmware threads running on the two cores share two buffers: usb_rec_buffer and usb_send_buffer and 

two global variables: usb_rec_bytes and usb_send_bytes. When the second core receives data from the 

USB peripheral, it copies the data into usb_rec_buffer and sets usb_rec_bytes to the number of received 

bytes. When the first core wishes to read the data, it polls usb_rec_bytes until its value is greater than 

zero and then reads the received data from usb_rec_buffer and resets usb_rec_bytes to zero. 

Conversely, when the first processor core wishes to send data over the USB bus, it polls 

usb_send_bytes until it is set to zero and then copies the data into usb_send_buffer and sets 

usb_send_bytes to the number of bytes to be sent. The second core checks the value of usb_send_bytes 

periodically and when its value is greater than zero, it copies data from usb_send_buffer into the USB 

peripheral and resets usb_send_bytes to zero. 

5.3 Firmware overview  

The first core of the RP2040, which handles the signal capture, is executing a loop shown in figure 9. 

After the microcontroller is powered on and the USB peripheral is configured, the Pico waits for a 

message from the host PC. There are three types of messages: capture configuration messages, PWM 

configuration messages and capture abort messages. Capture configuration message contains 

capture parameters such as the sample rate, trigger conditions, number of active channels and others. 

PWM configuration message contains the PWM generator frequency and duty cycle, as well as an 

indication whether the PWM should be turned on or off. The capture abort message is used to abort 

an ongoing signal capture when the capture parameters are changed by the user, so a new capture 

with updated configuration could be started. 
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Figure 9: Simplified diagram of the oscilloscope firmware. 

 

When a capture configuration is received, the ADC and DMA peripherals are configured accordingly, 

and the capture is started. When the capture is finished, the captured data is sent to the host PC and 

the Pico waits for another message. Sometimes, it is necessary to stop a capture before it is finished 

- most often when the user changes capture settings so the capture needs to be restarted with 

updated capture configuration. For this reason, there is another type of message called the abort 

message. When the Pico receives this message while a capture is running, it immediately aborts the 

capture and waits for another configuration message from the host PC. 

 

When a PWM configuration message is received, it is compared to the current configuration of the 

PWM peripheral (this is done to avoid restarting the peripheral and causing a glitch in the PWM signal 

when it is not necessary). If the received configuration is different, the PWM peripheral is 

reconfigured accordingly. 

5.4 GUI communication - message format 

The first byte of each message indicates the message type and is followed by a fixed-length message 

payload. The content of the message does not follow any defined format such as JSON or Protobuf, 

messages are encoded and decoded with hand-written parsing methods in the GUI and in the 

firmware. As more features were added to the oscilloscope during development and additional fields 

were added to the configuration messages, this ad-hoc parsing of messages started to become time 

consuming and error-prone. Given this experience, I would use a message format such as JSON or 

Protobuf [11] if I were to implement the oscilloscope firmware again. 
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5.5 Signal capture 

In a very simple digital oscilloscope, ADC samples would be monitored for a trigger condition and 

when a trigger condition would be detected, a defined number of samples would be captured and 

transferred to a buffer inside memory. However, one crucial feature of an oscilloscope would not be 

possible to implement with this approach: capturing a portion of the signal before the trigger 

appears. The length of this portion of the signal, or its ratio to the total capture length, is usually called 

the pretrigger setting. When the pretrigger setting is larger than zero, it is too late to start saving 

signal samples when a trigger condition appears. Instead, samples are transferred continually into a 

circular buffer from the moment the capture is started.  

 

A circular buffer is a data structure implemented using a fixed-length continuous buffer inside 

memory. New data (samples) are inserted at the end of the buffer sequentially. When the buffer is 

filled with data, an additional sample added to the end of the buffer will overwrite the first element 

of the buffer - the least recent sample. This means that, once full, a buffer of size n will always contain 

the n most recent samples. The concept of the circular buffer is shown in figure 10 below. 

 

 
Figure 10: Conceptual diagram of a ring buffer. 

 

As an example, let’s say the length of the capture buffer is 100 samples and the pretrigger ratio is set 

to 20%. After a trigger is detected, the capture is stopped after 80 more samples are captured. This 

leaves the buffer with 20 signal samples before the trigger and 80 after. 

 

 
Figure 11: Storing a capture inside a ring buffer, including the pretrigger portion of the capture. 

 

As was explained above, after a trigger condition is detected, it is necessary to stop the signal capture 

after a defined number of samples. While it is possible to configure the DMA peripheral to transfer a 

certain number of samples, it is not possible to change this number while the DMA is running on the 

RP2040. Instead, the first core of the microcontroller is continually checking the number of 

transferred samples in the register of the DMA peripheral. When the required number of samples is 

acquired, the ADC and the DMA are stopped. While this is not the most elegant solution, it works well 

given the slow speed of the ADC relative to the microcontroller cores.  
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6 The graphical user interface 

6.1 Architecture overview 

Being an interactive web page, the GUI of the oscilloscope was developed using standard web 

technologies: HTML for defining the web page elements, JavaScript for implementing the interactivity 

and CSS for styling. While it would be perfectly possible to use plain HTML, JavaScript and CSS, it was 

decided to use the React web development framework due to the complexity of GUI. React is a 

component-based framework, meaning the web page is built from components such as buttons or 

text fields, from which larger components such as entire control panels of the GUI are build. In React, 

each component is essentially a JavaScript function which, according to its input, generates and 

returns some HTML code.  When the page is loaded, the React runtime calls each of these functions 

and builds the web page from the fragments generated by each function. When needed, components 

are generated again with updated parameters and portions of the GUI are redrawn. 

 

The GUI is composed of control panels such as the PWM generator control panel, Trigger 

configuration panel or Channel configuration panels. These components are often similar, both style 

and functionality wise, so basic components such as buttons, numeric input fields or text fields were 

often reused with the help of the React framework. As an example, various control panels built using 

the same basic components are shown in figure 12 below. 

 

 
Figure 12: Different control panels of the user interface sharing the same basic components. 

6.2 Interface design 

The final design of the GUI is shown in figure 13. The interface is divided into four parts – the top bar, 

the left and right side panels and the signal plot in the center. Capture depth and sample rate settings, 

as well as buttons for starting the signal capture in various modes are located in the top bar. The right 

side bar contains settings for individual channels, trigger configuration and horizontal control panel 

used for zooming and panning the captured signal. Additional features of the oscilloscope – cursor 

settings, PWM generator settings and the SMPS power supply mode setting are located in the left side 

bar. In the future, any additional features of the oscilloscope would be probably added to the left side 

bar. 
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Figure 13: Design of the oscilloscope GUI. 

The GUI was designed to accommodate various browser window sizes. To achieve this, the main 

elements of the interface – the top bar, the side bars and the signal plot – are placed inside a CSS grid 

layout. The height of the top bar, as well as the widths of the side bar are constant, while the signal 

plot adjusts to the available remaining space on the screen. To respond to the browser window being 

resized during use, an event listener redraws the plot in the correct size when the web page onresize 

event is triggered. 

6.3 Signal plotting 

There are two general ways of drawing rendering graphics (such as signal plots) on a web page. One 

of them is the svg HTML element, in which basic vector graphics elements such as lines or bezier 

curves can be inserted. The other is the canvas HTML element, which allows pixel-wise manipulation 

of the element content, treating it as a bitmap. While a signal plot is essentially a complex curve or a 

series of lines, making the svg element seem more suitable, performance issues appeared with this 

approach. Thankfully, this was still in the early development phase, so it was possible to switch to 

using the canvas element. 
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6.4 Implementing cursors 

In initial iterations of the user interface, the oscilloscope cursors were controlled using HTML slider 

elements located in the right side bar of the oscilloscope, as is shown in figure 14 - Dragging the slider 

elements with a mouse would move the cursors in the signal plot accordingly. However, because the 

sliders had to be only about 120 pixels wide to fit in the side bar, positioning the cursors precisely 

was difficult – a change of the cursor position in the plot view corresponded to a much smaller change 

of the position of the slider. 

 
Figure 14: Cursor control panel in an early iteration of the GUI. 

For this reason, a different, more precise way of positioning the oscilloscope cursors had to be 

devised. Arguably, the most intuitive way of controlling the cursors would be dragging the cursors 

with a mouse directly in the signal plot. There are no existing HTML control elements that would 

enable this behavior, so it had to be implemented in JavaScript. This was done by rendering the 

cursors on top of the signal plot as absolutely positioned HTML div elements as shown in figure 15. 

The cursor lines themselves are only a few pixels wide, which would make clicking on them with a 

mouse difficult – for this reason, the div elements are transparent and have a width of 20 pixels, with 

only their left or right borders visible. Clicking on and dragging the elements is detected using the 

onclick and onmousemove events, which trigger repositioning of the div elements to a new location.  

 

 
Figure 15: Horizontal cursors implemented as HTML div elements. 

6.5 Configuration pop-up windows 

To enable the use of the equivalent sampling method (which is described in detail in section 7.2), a 

precise way of configuring the oscilloscope sample rate and the PWM generator frequency was 
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needed. For this reason, configuration pop-up windows, which can be seen in figure 16 below, were 

implemented. The windows contain an HTML text input form and allow the user to input the desired 

PWM frequency or sample rate using their keyboard. Because it is not always possible to reach the 

desired configuration with the PWM and ADC hardware, the actual configured PWM frequency or 

sample rate is shown below the value set by the user. The pop-up windows were implemented as 

absolutely positioned HTML div elements rendered on top of the rest of the user interface. To take 

advantage of the component-based architecture of the React framework, the pup-up windows (as 

well as the oscilloscope welcome screen, shown in figure 13) are all based on a single React 

component and only differ in the content. 

 

 
Figure 16: Oscilloscope GUI with sample rate and PWM generator pop-up windows opened. 

6.6 Running the GUI locally 

One clear disadvantage of web-based software is the dependency on internet connection. The 

oscilloscope GUI is, from the point of view of the server, a purely static website - the server only sends 

requested JavaScript and HTML files to the client and after that, all functionality of the GUI is handled 

by the client-side JavaScript code without further interaction with the server.  It is therefore possible 

to run the GUI locally (by locating the index.html file of the application and opening it in a web 

browser). Only a small modification is needed in the NMP build configuration in this case - for this 

reason, two builds of the GUI exist - one to be hosted on a server and one to be downloaded and run 

locally.  
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7 Achieved results 

7.1 Oscilloscope parameters and features 

7.1.1 Sample rate 

The oscilloscope has three analog channels. The maximum per-channel sample rate is 500kS/s with 

one active channel, 250kS/s with two active channels and 166kS/s with three active channels. To 

enable long signal captures, the minimum sample rate is 1kS/s.  The sample rate can be selected in 

defined steps in the user interface and a pop-up window was implemented to allow the user to select 

the desired sample rate precisely. 

7.1.2 Capture depth 

The maximum total capture depth is 100kS. When more than one channels are active, the capture 

buffer is shared between all active channels, leading to a maximum per-channel capture depth of 

50kS with two active channels and 33.3kS with three channels. The capture depth is configurable in 

the user interface in defined steps between 1kS and 100kS. 

7.1.3 Capture modes 

The oscilloscope has three capture modes called Continuous, Single and Force. In continuous mode, 

the oscilloscope performs new signal captures continuously until stopped. In single mode, only one 

signal capture is performed. Force mode is similar to single mode, with the difference that the trigger 

condition is forced immediately after the capture starts. 

7.1.4 Trigger settings 

Various parameters of the trigger condition can be configured: The trigger channel, rising or falling 

signal edge, trigger level and prettriger ratio. 

7.1.5 PWM generator 

The oscilloscope includes a configurable PWM generator with configurable frequency between 7.5Hz 

and 50MHz and configurable duty cycle between 1% and 100%. A pop-up window was implemented 

to allow the user to select the desired generator frequency precisely. 

7.1.6 Cursors 

The oscilloscope features horizontal and vertical cursors, allowing the user to measure time or 

voltage difference between two points in the capture as well as the signal frequency. 
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7.2 Real time sampling 

Example of a basic usage of the oscilloscope is shown in figure 17. In this example, the output of the 

PWM generator of the oscilloscope with a frequency of 1kHz is captured by channel 1. Channels 2 

and 3 are connected to an external signal generator. The frequency and amplitude of a triangle 

shaped signal on channel 2 are determined by the horizontal and vertical cursors of the oscilloscope 

(cursors are indicated by purple colored vertical and horizontal lines in the signal plot). The trigger 

is set to the rising edge of channel 2 – trigger voltage and position are indicated by light-blue 

horizontal and vertical lines in the plot view, respectively. The capture channels are vertically scaled 

down and offset using the channel configuration panel settings, so they don’t overlap in the signal 

plot. 

 

 
Figure 17: Example of a capture with three analog channels. 

In certain cases, the sample rate of the oscilloscope is not high enough. One such example is shown 

in figure 18 – a closeup of a rising edge of a 100kHz signal generated by the oscilloscope PWM 

generator, captured at the maximum oscilloscope sample rate of 500kS/s.  Only a single signal sample 

was captured during the rising edge of the signal. To reach a higher sample rate, a method called 

equivalent time sampling might be used. This method is described in the following section. 
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Figure 18: Rising edge of a 100kHz signal captured using RTS. 

7.3 Equivalent time sampling 

For certain periodic signals, it is possible to effectively reach a much higher sample rate than the 

sample rate of the oscilloscope ADC using a technique called equivalent time sampling (ETS). ETS is 

based on the principle of capturing samples of a signal with frequency fPWM at an appropriately 

selected frequency fSAMP. This technique is described in detail in [12]. Because the performance of this 

method is dependent on being able to set the sampling frequency very close to the frequency of the 

sampled signal, the captured signal is often excited with a signal generator sharing the same clock as 

the oscilloscope. The interface of the oscilloscope was designed to make the sampling frequency and 

PWM generator frequency as precisely configurable as the PWM and ADC peripherals of the 

Raspberry Pi Pico allow. 

 

When capturing a periodic signal with frequency fPWM at an appropriately selected frequency fSAMP, 

the achieved effective sampling frequency fEFF can be obtained with equation 9 using the coefficient 

kAEQ calculated using equation 8. 
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                                                                            𝑘𝑆 ≈
𝑓𝑃𝑊𝑀

𝑓𝑆𝐴𝑀𝑃
                                                                                        ( 7) 

 

                                                                   𝑘𝐴𝐸𝑄 =
𝑓𝑃𝑊𝑀

𝑓𝑃𝑊𝑀−𝑘𝑆∙𝑓𝑆𝐴𝑀𝑃
                                                                            ( 8) 

 

                                                                   𝑓𝐸𝐹𝐹 =  𝑘𝐴𝐸𝑄 ∙  𝑓𝑆𝐴𝑀𝑃                                                                               ( 9) 

 

As an example, when the sample rate of the oscilloscope is set to 9997.9171Hz (the closest frequency 

to 10kHz achievable by the ADC hardware) and the PWM generator frequency is set to 100kHz, the 

factor kAEQ will be equal to approximately 4800. The effective sample rate achieved is is 

approximately 48MHz. The coefficient kAEQ can also be used to convert the time scale of the signal 

captured using ETS to the real time scale of the signal by simply dividing the time scale of the captured 

signal by the coefficient. 

 

To demonstrate the capabilities of the ETS method, the capacitance of one of the ADC inputs of the 

Pico was calculated using the configuration described in the above example. By connecting the PWM 

generator output to the ADC of the oscilloscope through a 10kΩ resistor, an RC circuit was formed. 

The RC time constant τ, which is the product of the capacitance of the capacitor and the resistance of 

the resistor in the RC circuit, can be obtained by measuring the time it takes to charge the capacitor 

to approximately 63% of the voltage applied to the circuit. The measured time, converted to the “real” 

time scale using the kAEQ coefficient, is approximately 456.9ns.  Using equation 10, the internal 

capacitance of the ADC (together with the capacitance of the breadboard used for connecting the 

components) was determined to be approximately 45.7pF. 

 

                                                                                  𝜏 = 𝑡𝑟𝑖𝑠𝑒 =  𝑅𝐶                                                                        ( 10) 

 

The detail of the rising edge of a signal 100kHz signal generated by the PWM generator of the 

oscilloscope using the ETS method is shown in figure 19.  For comparison, the same signal captured 

without ETS at the maximum sample rate of the oscilloscope is shown in figure 18. 
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Figure 19: Rising edge of a 100kHz signal captured using ETS.  

7.4 Long signal Capture 

Sometimes, the ability to capture a long duration of a signal can be useful. The relatively large RAM 

of the RP2040 allows capturing up to one hundred thousand during a single capture. With the 

minimal sample rate of 1kS/s, up to 100 seconds of a signal can be captured. The Force button of the 

oscilloscope, which “forces” the capture of the signal immediately after starting can be useful in this 

case, allowing the oscilloscope to be used as a kind of an analog data logger. As an example, a 50 

seconds long capture of a capacitor being charged is shown in figure 20. 

 

 
Figure 20: Capture of an 470uF capacitor being charged using Force mode. 
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8 User manual 

8.1 Technical specification 

Oscilloscope 

Oscilloscope channels 3 
ADC resolution 12 bits/channel 
Input voltage range 0V – 3.3V 
Maximum sample rate – real time mode 500kS/s (total for all active channels) 
Maximum sample rate – ETS mode 48MHz 
Maximum capture depth 100kS (total for all active channels) 
Maximum capture time 100s at 1kS/s with one channel active 

PWM generator 

Frequency 7.5Hz to 50MHz 
Duty cycle 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% 
Amplitude Low: 0V, high: 3.3V 

 

8.2 Connections (Pinout) 

 
Figure 21:Oscilloscope ADC channels and PWM generator pin locations on the Pico. 
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8.3 Flashing the firmware 

The Raspberry Pi Pico needs to be flashed with the oscilloscope firmware before it can first be used. 

To flash the firmware, the following steps need to be performed: 

1. If the Pico is connected to the computer, disconnect it first 

2. Press and hold the BOOT button on the Pico 

3. While keeping the BOOT button pressed, connect the pico to the computer 

4. Release the BOOT button 

5. The Pico will appear as an USB storage device in the computer file system 

6. Copy the .uf2 file with the firmware to the Pico 

7. The Pico is flashed with the firmware and is ready to be used 

8.4 Browser and operating system compatibility 

The oscilloscope depends on the WebUSB API for communication between the user interface and the 

Raspberry Pi Pico. Currently, WebUSB API is only available on Chrome, Edge and Opera web 

browsers. Current browser compatibility status, including compatible browser versions, is available 

at the CanIUse website [13], which tests web browser compatibility with web standards and APIs. 

 

To use the oscilloscope on Linux, an udev rule needs to be added to enable the web browser access to 

USB devices. The udev rule can be added by performing the following terminal commands: 

 
cd /etc/udev/rules.d 

sudo echo SUBSYSTEM=="usb",ATTR{idVendor}=="cafe",MODE="0664", GROUP="plugdev" > pico.rules 
Code snippet 7: Linux terminal commands to add an udev rule to the system. 

8.5 Connecting to the Raspberry Pi Pico 

Once the Pico is flashed with the WebScope firmware, load the GUI web page or open the index.html 

file in case you downloaded the offline version of the GUI. Clicking the Connect device button in the 

welcome screen or on the top bar will bring up a pop-up window similar to the one shown in figure 

22. In case the pop-up window does not appear, the browser you are using does not support the 

WebUSB API required for communication with the Pico – consult section 8.4 to learn about browser 

compatibility. 

 
Figure 22: WebUSB connection pop-up browser window. 
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 In the pop-up window, select WebScope Rpi Pico and press the Connect button. In case the Raspberry 

Pi Pico does not appear in the pop-up window, it is probably not flashed with the WebScope firmware 

– flashing the firmware is described in section 8.4.  

8.6 Capture modes 

 
Figure 23: Auto/normal mode selection panel. 

The oscilloscope has two trigger modes, auto and normal. Trigger mode can be set with the buttons 

Auto and Normal, located on the top bar. 

●  In Normal mode, the oscilloscope waits for a trigger condition indefinitely. 

●  In Auto mode, the oscilloscope first waits for a trigger condition for a defined time period, 

equal to three times the capture length. If the trigger condition does not occur in this time 

window, the oscilloscope then starts the signal capture automatically. The later mode is 

useful for capturing an unknown signal, where the user is not sure how to set the trigger 

condition. 

 
Figure 24: Capture control panel in stopped state. 

Independently of the Auto and Normal trigger modes, there are three capture modes in which the 

oscilloscope can be started: 

● In Run mode, the oscilloscope is capturing continuously - after a trigger occurs and the signal 

is captured, new capture is started immediately. 

● In Single mode, only a single capture is performed, and the oscilloscope stops. 

● In Force mode, the oscilloscope “forces” a trigger immediately after capture. 

8.7 Capture settings 

8.7.1 Sample rate setting 

 
Figure 25: Sample rate configuration panel. 

The sample rate of the oscilloscope is the frequency at which new signal samples are captured. The 

oscilloscope has only one analog-digital converter, which is shared between multiple channels when 

more than one channel is active. This means that the per-channel sample rate is equal to the sample 

rate divided by the number of active channels. The sample rate configuration panel, which is located 

on the top bar, allows the user to set the desired sampling frequency. The sample rate can be changed 

in defined steps using the - and + buttons. 
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Figure 26: Sample rate configuration pop-up window. 

The sample rate can be set more precisely by clicking the Edit button in the sample rate configuration 

panel, which opens a configuration pop-up window (shown on picture above). In the pop-up window, 

the value can be set using numerical keys on the keyboard. After the desired sample rate value is set, 

clicking the Set button in the pop-up window configures the oscilloscope to the new value. Due to 

limitations of the hardware, not all sample rate values can be achieved by the oscilloscope. The 

oscilloscope calculates the closest sample rate it can achieve - the actual sample rate is shown in the 

pop-up window, below the sample rate set by the user. The minimum sample rate of the oscilloscope 

is 1kS/s and the maximum is 500kS/s. 

8.7.2 Capture depth setting 

 
Figure 27: Capture depth configuration panel. 

The capture depth is the number of samples that will be captured during a single capture. The capture 

buffer is shared between all active channels, so when more than one channel is active, the per-

channel number of samples that will be captured is equal to the capture depth divided by the number 

of active channels. Capture depth can be configured using the - and + buttons in the capture depth 

configuration panel, which is located on the top bar. The minimum capture depth is 1kS and the 

maximum is 100kS. 

8.7.3 Active channels 

The three channels of the oscilloscope can be turned on and off individually using the ON/OFF 

buttons in the channel configuration panels, located on the right side bar. The number of active 

channels influences the maximum achievable per-channel sample rate and capture depth, so it is 

advised to turn off unnecessary channels when maximum performance is needed. 
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8.8 Trigger settings 

 
Figure 28: Trigger configuration panel. 

The trigger settings define the conditions which cause the signal capture to start. The trigger channel, 

trigger edge, trigger voltage and pretrigger value can be set in the trigger configuration panel located 

on the right side bar.  

● The trigger channel is the channel which the oscilloscope checks for the trigger condition. 

The channel can be set using the 1, 2, and 3 buttons in the Channel  section of the trigger 

configuration panel 

● The oscilloscope can trigger either on the rising edge or the falling edge of the signal. The 

behavior can be set using the Rise and Fall buttons in the Edge section of the trigger 

configuration panel. 

● The trigger level is the voltage level at which the oscilloscope checks for the trigger condition. 

The trigger level voltage can be set using the - and + buttons in the Level section of the trigger 

configuration panel. 

● The pretrigger value determines the portion of the signal before the trigger condition which 

will be included in the capture. The pretrigger value can be set using the - and + buttons in 

the Pretrig. section of the trigger configuration panel. For example, when the pretrigger value 

is set to 10%, the ratio of captured samples before and after the trigger will be 10%/90%. 

The pretrigger value can be set to values between 0% and 100%. 
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8.9 Vertical (channel) view settings 

 
Figure 29: Channel 1 configuration panel. 

The captured signals can be individually horizontally scaled using the - and + buttons in the Scale 

section of the channel configuration panels located on the right side bar. Similarly, signals can be 

moved up and down in the plot using the - and + buttons in the Offset section of the channel 

configuration panels. Both the scale and offset can be reset using the 0 buttons in the Scale and Offset 

sections of the configuration panel. 

8.10 Horizontal view settings 

 
Figure 30: Horizontal control panel. 

The captured signals can be horizontally zoomed in or out using the - and + buttons in the Zoom 

section of the horizontal control panel. A zoomed-in signal can be moved to the right or left using the 

- and + buttons in the Offset section of the horizontal control panel. Both the zoom and offset can be 

reset using the 0 buttons in the Zoom and Offset sections of the horizontal configuration panel. To 

make navigation in the captured signal easier, it is also possible to use the Up/Down arrow keys on 

the keyboard to zoom the signal in or out and the Left/Right arrow keys to move the signal to the left 

or right. 
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8.11 Cursor settings 

 
Figure 31: Cursor control panel 

Oscilloscope cursors can be used to precisely measure voltage, time or voltage and time difference in 

the captured signal. The channel to be measured can be set using the 1, 2, and 3 buttons on the 

cursors panel, located on the left side bar. Clicking the X and Y buttons on the control panels activates 

the X (vertical) and Y (horizontal) cursors. The cursors are indicated by purple lines inside the signal 

view and can be moved by dragging them with a mouse over the signal view. 

8.12 Generator settings 

 
Figure 32:PWM generator configuration panel. 

The oscilloscope features a configurable PWM signal generator. The generator can be activated using 

the ON/OFF button in the generator configuration panel located on the left side bar. The frequency 

of the signal can be adjusted by 100 Hz increments using the - and + buttons in the frequency section 

of the control panel. The duty cycle (the percentage of the signal period during which the signal is in 

high state) can be adjusted by 10% increments using the - and + buttons in the duty cycle section of 

the control panel. 
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Figure 33: PWM generator frequency setting pop-up window. 

The signal frequency can be set more precisely by clicking the Edit button in the generator 

configuration panel, which opens a configuration pop-up window (shown in picture above). In the 

pop-up window, the value can be set using numerical keys on the keyboard. After the desired 

frequency is set, clicking the Set button in the pop-up window configures the generator to the new 

value. Due to limitations of the hardware, not all frequencies can be achieved by the generator. The 

oscilloscope calculates the closest PWM frequency it can achieve - the actual frequency is shown in 

the pop-up window, below the frequency set by the user. The minimum frequency of the generator 

7.5Hz and the maximum is 100MHz. 

8.13 Capture export 

TBD - CSV export button in the oscilloscope menu. 

The captured signals can be downloaded in CSV format for additional processing. To download the 

capture, click the Export CSV button located in the menu (located in the top left corner of the GUI) of 

the oscilloscope. The csv file has the following format: 

 

Ch1, .. Chn, Timestamp, 
Ch1, .. Chn, Timestamp, 
Ch1, .. Chn, Timestamp, 
Ch1, .. Chn, Timestamp, 
… 

 

Where the Ch1, … Ch2 values on each row are the samples of the active channels and Timestamp is 

the time of capture for each row in milliseconds. 
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9 Conclusion 
The goal of this thesis was to design and implement a software-defined oscilloscope based on the 

Raspberry Pi Pico microcontroller and a web-based user interface. The first part of the thesis is 

devoted to implementing communication between the Pico and a web application using the WebUSB 

API. After the communication using the API was established, the firmware and the GUI web 

application were implemented.  The concept of using a web application for controlling a software 

defined instrument has proven to be effective, even with a highly interactive interface of an 

oscilloscope. The motivation behind the thesis – developing a platform-independent oscilloscope 

capable of running on all major operating systems was also met.  

 

The oscilloscope meets all major criteria that were set: it features three analog channels, cursors, 

PWM generator, precise sample rate and PWM frequency settings to enable equivalent time 

sampling.  

 

While the performance of the oscillocope is limited by the used hardware, an effort was made to 

utilize all the hardware resources as much as possible. Using the PWM generator of the developed 

oscilloscope, an effective sample rate of up to 48MHz was reached for certain suitable signals using 

the equivalent time sampling method. 

 

Hopefully, the oscilloscope will find its use in classrooms and in the homes of students and hobbyists, 

making electronics education and experiments more accessible. 
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11 List of abbreviations 
 

ADC Analog-digital converter 

API  Application interface 

CSV  Comma separated values 

CSS  Cascading style sheets 

DMA  Direct memory access 

ETS  Equivalent time sampling 

GUI  Graphical user interface 

HTML  Hypertext markup language 

IDE  Integrated development environment 

PFM  Pulse-frequency modulation 

PWM  Pulse-width modulation 

RTS  Real time sampling 

SDI  Software defined instrument 

SVG  Scalable vector graphics 

SWD Serial wire debug 

UART Universal asynchronous receiver-transmitter 
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