
F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

ROADEF Challenge 2022:
Optimization of truck fleet loading

Bc. Tomáš Hromada

May 2023
Supervisor: Ing. David Woller

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483629 Personal ID number: Hromada Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

ROADEF Challenge 2022: Optimization of truck fleet loading

Master’s thesis title in Czech:

ROADEF Challenge 2022: Optimalizace nakládání flotily kamionů

Guidelines:

This thesis is motivated by ROADEF Challenge 2022, a prestigious international competition focused on solving newly
formulated challenging combinatorial optimization problems from industrial applications.
Instructions:
1) Get familiar with standard techniques for solving large-scale problems of combinatorial optimization, especially
metaheuristics. Research successful solution approaches to related problems (3D truck loading, delivery fleet management,
task assignment) in the existing literature. Identify a suitable approach for the newly formulated competition problem.
2) Design and implement a custom optimization algorithm for the competition problem and participate in the competition.
3) Evaluate your method's performance on the available datasets and compare it with the results of other competitors.

Bibliography / sources:

[1] Potvin, J.Y. and Gendreau, M. eds., 2018. Handbook of Metaheuristics. Berlin/Heidelberg, Germany: Springer.
[2] Berbeglia, G., Cordeau, J.F., Gribkovskaia, I. and Laporte, G., 2007. Static pickup and delivery problems: a classification
scheme and survey. Top, 15(1), pp.1-31.
[3] Yüceer, Ü. and Özakça, A., 2010. A truck loading problem. Computers & Industrial Engineering, 58(4), pp.766-773.

Name and workplace of master’s thesis supervisor:

Ing. David Woller Intelligent and Mobile Robotics CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 31.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. David Woller
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to express my sincere
thanks to my supervisor, Ing. David
Woller, for his exceptional guidance,
insightful feedback, and continuous
support, which significantly contributed
to the accomplishment of this work.

Computational resources were pro-
vided by the e-INFRA CZ project
(ID:90140), supported by the Ministry
of Education, Youth and Sports of the
Czech Republic.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of the university thesis.

Prague, 26 May 2023

. .

v

Abstrakt / Abstract

Tato diplomová práce se zabývá
problémem optimalizace 3D nakládání
kamiónů představeným v rámci týmové
soutěže ROADEF/EURO Challenge
2022. Abychom uspokojivě řešili daný
problém sestávající z velmi velkých
instancí, vyvinuli jsme heuristickou
metodu založenou na Iterative Local
Search metodě, pro kterou jsme vy-
vinuli specifické operátory. Dále jsme
vytvořili vlastní algoritmus pro vyhle-
dávání validních konfigurací balíků v
rámci nákadového prostoru kamiónu,
metody vyvažování nákladu a pertur-
bační proceduru. Pomocí dřívější verze
navrhované metody jsme se kvalifikovali
do finálového kola soutěže, které končí
15. června 2023.

Provedli jsme srovnání mezi řeše-
ními generovanými naší metodou a
nejlepšími známými hodnotami řešení
zveřejněnými organizátory. Dosáhli
jsme vynikajících výsledků na datové
sadě A ze sprint kola soutěže a srov-
natelných výsledků na datové sadě B z
kvalifikačního kola.

Klíčová slova: Optimalizace, Naklá-
dání kamionů ve 3D, Flotila kamionů,
Local Search

This master thesis addresses the
3D truck loading optimization prob-
lem introduced in ROADEF/EURO
Challenge 2022, which is a team com-
petition. To tackle the given problem
consisting of very large instances, we
developed a heuristic method based on
Iterative Local Search with problem-
specific local search operators, a custom
Depth-First Tree Search algorithm for
finding feasible stack arrangements in
trucks, Truckload balancing methods,
and a perturbation procedure. Using an
earlier version of this method we qual-
ified for the competition’s final round,
which ends on June 15th, 2023.

We have conducted a comparison
between the solutions generated by our
method and the best-known objectives
published by organizers. Our method
demonstrates satisfactory performance,
achieving strong results in Dataset A
from Sprint round, and competitive out-
comes in Dataset B from Qualification
round.

Keywords: Optimization, 3D Truck
Loading, Truck Fleet, Local Search

vi

Contents /

1 Introduction 1

2 Related Works 2
2.1 Exact Algorithms 2
2.2 Heuristic Algorithms 3

3 Problem Statement 5
3.1 Problem Description 5
3.2 Notations 6

3.2.1 Input Constants 6
3.2.2 Solution Variables 8

3.3 Objective 9
3.4 Constraints 9

3.4.1 Items Constraints 9
3.4.2 Stacks Constraints 10
3.4.3 Placements Constraints . . 10
3.4.4 Weight Constraints 11

3.5 Solution Representation 12
4 Proposed Method 13

4.1 Stack Placement 14
4.2 Initial Solution 15
4.3 Truck Load Balancing 16
4.4 Local Search 17

4.4.1 Parameters Controlling
Local Search Cycle 18

4.5 Stack Swap operator 19
4.5.1 Constraints to check 19
4.5.2 Operator Application . . . 19

4.6 Stack Move operator 20
4.6.1 Constraints to check

(donor truck) 20
4.6.2 Constraints to check

(receiver truck) 21
4.6.3 Operator Application . . . 21

4.7 Truck Delete operator 23
4.7.1 Constraints to check 23
4.7.2 Operator Application . . . 23

4.8 Truck Replace operator 24
4.8.1 Constraints to check 24
4.8.2 Operator Application . . . 26

4.9 Item Swap operator 27
4.9.1 Constraints to check 27
4.9.2 Operator Application . . . 27

4.10 Item Move operator 28
4.10.1 Constraints to check

(donor stack) 28

4.10.2 Constraints to check
(receiver stack) 28

4.10.3 Operator Application . . . 28
4.11 Depth-First Tree Search

Algorithm 29
4.11.1 Tree Search Parameters . . 30

4.12 Perturbation 31
4.13 Parameters 32
4.14 Implementation notes 32

5 Results 34
5.1 Instances 34
5.2 Results for Dataset A 35
5.3 Results for Dataset B 36
5.4 Comparison of Depth-First

Tree Search and Integer
Linear Program Model 37

5.4.1 Experiments 37
5.4.2 Results 39

5.5 Contributions of operators . . . 39
6 Conclusion 41

References 42

A Source code 45

vii

Tables / Figures

4.1 List of parameters 33
5.1 Parameter sets of available

Datasets . 34
5.2 Instance properties of avail-

able Datasets 35
5.3 Comparison of the proposed

method with results from the
Sprint round on Dataset A 36

5.4 Comparison of best-known
objectives, an older and cur-
rent versions of proposed
method on Dataset B 38

5.5 Comparison of ILP model
solved by Gurobi and DFTS. . . 39

5.6 Contribution of each Local
Search operator 40

3.1 Example of trucks’ routes.6
3.2 Example of a stack with

items whose nesting height
is greater than 0.8

3.3 Constants and variables re-
lated to truck weights com-
putation .9

3.4 Figure demonstrates P3 con-
straints. 10

3.5 P4: Truck with stacks from
different suppliers 11

3.6 P4: Truck with stacks with
different plant docks 11

3.7 Example of solution encoding . 12
4.1 Canidate List Updating 14
4.2 Stack Placement. 15
4.3 Truck Load Balancing 17
4.4 Stack Swap Operator 19
4.5 Stack Move Operator 20
4.6 Truck Delete Operator 23
4.7 Truck Replace Operator 24
4.8 Item Swap Operator 27
4.9 Item Move Operator 28

4.10 Example of stacks arrange-
ments in a truck 29

4.11 Example of an expanded tree
representing stack arrange-
ments . 30

4.12 Example of perturbation
progress . 31

viii

Chapter 1
Introduction

The ROADEF/EURO Challenge [1] is a team competition that is held every two years
and is organized by the French Society of Operations Research and Decision Support
(ROADEF [2]) and the Association of European Operational Research Societies (EURO
[3]). This event aims to provide an opportunity for industrial partners to stay up-to-date
with the latest advancements in Operations Research and Decision Analysis while giving
young researchers a chance to tackle a complex industrial optimization problem in the
junior category. Additionally, the challenge serves as a platform for qualified researchers
to connect with industrial partners through the senior category. Participating teams
have the opportunity to compete for various financial prizes, including prizes for the
top three teams and a prize for the best junior team.

This year, ROADEF/EURO Challenge 2022 is organized in cooperation with the
Renault Group [4] and it is dedicated to a 3D truck loading optimization problem with
numerous real-world constraints. The challenge lasts throughout the whole year [5] - it
started in July 2022 and ends in June 2023. During this period, two rounds, the Sprint
round (with a deadline on October 30th, 2022) and Qualification round (January 31st,
2023) already took place. Our team succeeded in the qualification round placing 3rd in
the junior category and 9th among all 51 teams [6]. Since the qualification round our
method was improved significantly and currently we are preparing for the final round
which will take place on June 15th, 2023.

The proposed optimization problem addresses the transportation of a large number
of items from suppliers to plants by utilizing a fleet of trucks while minimizing the costs.
This complex problem combines several subproblems such as dividing items into stacks,
assigning stacks to trucks, loading stacks into truck loading space while considering their
physical dimensions and weights, and combining the cost of used trucks with items
inventory cost. The problem includes many additional constraints on stack creation
and stack loading into trucks. The large sizes of competition instances presented in
each round in combination with a tight computation budget make this problem even
more challenging and beyond the capabilities of generic commercial solvers such as
Gurobi or CPLEX.

In this thesis, our heuristic approach to solving this problem is presented. We devel-
oped and implemented a method based on Iterated Local Search with a large number
of problem-specific components such as Local Search operators, perturbation operators,
and a custom depth-first search method for finding geometry-feasible stack arrangement
in a truck.

The thesis is organized as follows.
Chapter 2 provides an overview of solutions for similar problems.
Chapter 3 gives a detailed description of the problem, notation, and all constraints.
Chapter 4 is dedicated to our proposed method with a full description of all details.
Chapter 5 provides a proposed method evaluation and a comparison of generated

results and best-known results to given datasets.
Finally, Chapter 6 presents a conclusion and an overview of the work.

1

Chapter 2
Related Works

The combinatorial problem introduced in this challenge combines several subproblems.
One of them is the Container Loading Problem (CLP) - loading items into a truck and
meeting all stack, placement, and weight constraints. Another subproblem is a variant
of the Generalized Assignment Problem (GAP) [7] as we need to assign items to trucks
and decide which trucks will be used. Another related problem can be considered the
Capacitated Vehicle Routing Problem (CVRP). In this chapter, we review the existing
literature on these problems.

Bortfeldt and Wäscher’s work [8] provides a comprehensive overview of CLP, its
variants, and the classes of constraints that can be applied. According to this work,
CLP can be regarded as a geometric assignment problem, in which three-dimension
items must be assigned to three-dimensional, rectangular large objects (containers)
such that a given objective function is optimized and two basic geometric feasibility
conditions hold, all items must be within the container and items can not overlap.
Additionally, CLP can be subjected to other constraints, such as weight limits, weight
distribution, forced items’ orientations, and many others.

In GAP, the goal is to find an assignment of 𝑛 tasks to 𝑚 agents, where each task
must be assigned to exactly one agent, while minimalizing cost subject to capacity
restrictions on the agents.

In CVRP, we need to deliver demanded items to customers using one or more delivery
vehicles with a defined capacity at minimum transit cost. This problem combines both
the Bin Packing Problem [9] and the Traveling Salesman Problem [10].

In the following sections, we discuss the existing approaches (both exact and heuris-
tic) to these problems and try to identify a suitable approach for our problem.

2.1 Exact Algorithms
CLP, GAP, and CVRP are known to be NP-hard problems, which makes the use of
exact methods impractical for large-scale problems. Nonetheless, exact methods can
be useful for small-sized problems. For instance, in [11] authors present a Mixed In-
teger Linear Program model for solving N-dimensional allocation problems (a variant
of CLP). The study demonstrated that for small-sized problems, such as packing 13
items into 4 containers, the optimal solution can be obtained in a few seconds. A Mixed
Integer Linear Programming model was also proposed in [12]. This work deals with the
planning of truck scheduling for cross-dock centers and presents a case study at Renault
company. The problem entities are very similar to entities from the problem introduced
in the challenge. However, the work does not contain the Truck loading problem, only
the item-truck assignment and truck scheduling. The proposed method was tested on
instances with up to 3606 packages and 22 trucks.

Another exact approach is presented in [13], where the authors developed a branch-
and-bound algorithm for CLP that can solve instances of up to 90 items. The problem
on which the method was tested does not include any other constraints than two basic

2

. 2.2 Heuristic Algorithms

geometric constraints on fitting items in the container without overlapping. In [14], a
method based on depth-first-search and dynamic programming is proposed. The author
studied the unconstrained variant of the CLP. The author’s experiments showed the
method is able to solve instances of up to 50 items. For the vast majority of 64 instances,
an optimal solution was found. The last example of an exact method is presented in
[15]. The authors developed a two-level tree search algorithm that can optimally the
most of their 150 instances with up to 80 items, but the optimal solution was always
found only for instances with up to 20 items. In [16] a branch-and-bound algorithm
is presented for solving GAP. The computational results were obtained from instances
with up to 4,000 0-1 variables. In [17], authors present an exact algorithm for solving
CVRP based on the set partitioning formulation with additional cuts. The algorithm
was able to compute CVRP with 76 customers in under one hour.

2.2 Heuristic Algorithms
While there exist some exact methods for solving the CLP their practical utility for
large-scale problems is limited. Therefore, most research studies have focused on the
development of heuristic and meta-heuristic algorithms. According to the state-of-the-
art review [8], heuristic algorithms, particularly metaheuristics, are considered the most
important class of algorithms for solving CLP in practice, even in the foreseeable future.
This is because only these algorithms are capable of generating solutions of reasonable
quality within reasonable computing time for realistic size problems (hundreds/thou-
sands of items).

In [18], the authors present the approach for solving a pallet loading problem (a
variant of CLP, where rectangular boxes need to be loaded on a 2D pallet). The
first feasible solution is found quickly using a greedy method, then a complex branch-
and-bound algorithm is applied repeatedly until the solution is proven optimal or the
time limit is reached. A similar heuristic algorithm derived from a branch-and-bound
algorithm for loading an open container is presented in [19]. The authors state the
method was tested on 800 instances with up to 1000 items.

Several works studied using nature-inspired metaheuristics for these relevant combi-
natorial problems. For example, a method for solving CLP based on genetic algorithms
is presented in [20]. Another example can be considered the algorithm for solving CLP
(with a single container) introduced in [21]. The authors propose a method that hy-
bridizes a novel placement procedure with a multi-population genetic algorithm based
on random keys. The instance classes were based on additional constraints enforce-
ment and the level of item heterogeneity. The results of experiments conducted by the
authors showed that the approach performs well across all instance classes. In [22], a
simulation approach is proposed to deal with the designing loading and transportation
processes utilizing vehicle fleets in open-pit mines. The proposed approach is based on
simulation combined with the firefly metaheuristic algorithm. Authors of other work
[23] addressed the two-dimensional loading vehicle routing problem and proposed a hy-
brid approach to solve it. Specifically, a heuristic algorithm is used to solve the loading
part, while the overall optimization is handled by an ant colony optimization (ACO)
algorithm.

Many papers explore the usage of various of Local Search metaheuristics. Local
Search [24] is a widely used approach to solve combinatorial optimization problems and
is particularly suitable for NP-hard problems, for which it is not feasible to find an
optimal solution in a reasonable amount of time. Instead, the goal is to find a good

3

2. Related Works .
suboptimal solution within a reasonable runtime. Well-known examples of local search
metaheuristics are Iterative Improvement, Simulated Annealing (SA), and Tabu Search
(TS), Iterative Local Search (ILS), Variable Neighborhood Search (VNS), Guided Local
Search (GLS), and Greedy Randomized Adaptive Search Procedure (GRASP). In the
following paragraph, several works using these metaheuristics are mentioned and briefly
described.

Authors of [25] developed an algorithm for the CLP based on the GRASP paradigm.
The method consists of two steps. The algorithm greedily builds a solution, and then
it improves the solution with a local search algorithm to the first local optimum. A
similar approach is also used in the work [26] in which authors present a heuristic
algorithm based on GLS for solving a three-dimensional bin-packing problem. Firstly,
a solution with an upper bound number of bins is found using the greedy method. Then
it iteratively decreases the number of bins, each time searching for a feasible packing of
the boxes. Experiments on instances with up to 200 boxes show a solid performance.
Authors of [27] addressed the practical variant of the CVRP. They proposed a hybrid
metaheuristic methodology that combines the strategies of TS and GLS. The conducted
TS is periodically controlled by a guiding mechanism, which locates and penalizes low-
quality features present in the candidate solution. TS heuristic is also proposed in [28]
for solving GAP. In [29], the author introduced a solution method for the CVRP with
Time Windows. The method uses four improvement operators in a steepest descent
search strategy. The resulting algorithm was tested on Solomon’s capacitated vehicle
routing problems with time windows. The algorithm produces a better solution for
longer routes than the other compared methods, for shorter routes it performed slightly
worse. However, they have been able to generate 12 new best solutions for Solomon’s
problems.

After reviewing the literature on the existing solutions for CLP, GAP, CVRP, and
other similar problems, we came to the conclusion that developing an efficient exact
algorithm for the problem introduced in the challenge is not realistic. Based on the
heuristic and metaheuristic approaches discussed in this chapter, we conclude that the
Local Search approach is the most suitable solution method for this problem due to
its ability to produce good solutions and its good scalability. Scalability is crucial for
this problem, as we need to handle large instances with up to 200,000 items and several
thousands of trucks while operating within a relatively small computing budget of 30-60
minutes.

4

Chapter 3
Problem Statement

The problem definition is fully described in official challenge documentation [30–31]. We
provide a condensed problem description needed to understand our proposed method.
In the rest of this chapter, we introduce the notation, the objective, and the constraints
with all the necessary details, based on the challenge documentation. Additionally, we
introduce our chosen solution representation.

3.1 Problem Description

The problem involves the transportation of a large number of items from suppliers to
plants using trucks. The suppliers produce items, which can be loaded into trucks
in a dock. A supplier can have multiple docks and produce multiple types of items.
Similarly, a plant can have multiple docks, in which items can be unloaded from a truck.
Figure 3.1 shows an example of truck routes.

There is a given set of items that need to be transported from a specific supplier
dock to a specific plant dock. Each item must be delivered within a time window that
consists of the earliest and the latest arrival time. If an item is delivered before the
latest arrival time an inventory cost must be paid for each day before the latest date.

All items loaded into a truck must be packed into a stack. A stack can contain one or
more items. There are multiple constraints (Section 3.4.2) on how items can be packed
into stacks. For example, all items must share the same width and length, the maximal
number of items stacked on each other is limited, the maximal density of a stack is
defined, etc.

A set of planned trucks is given. Each truck can visit multiple predefined suppliers.
At each supplier, the truck can stop at multiple docks and load stacks from them.
Afterwards, the truck goes to a single plant, where it can stop at multiple docks and
unload stacks. The order of visited suppliers and docks is given, and the stacks must
be loaded onto a truck in the same order. Each truck has a set of items it can pick up.
There are several stack placement constraints (Section 3.4.3) and also weight constraints
(Section 3.4.4), such as a maximum weight limit for the total load and maximum weight
limits for each truck axle that must not be exceeded.

Every planned truck has its cost that is paid only if the truck is used. If necessary, it
is possible to duplicate any planned truck and create one or more extra trucks. However,
the cost of an extra truck is higher than the cost of a planned truck.

The goal is to deliver all items and minimize the total cost. A solution consists of
the definition of all stacks and their assigned trucks, 3D in-truck-coordinates of every
item and stack, and a set of used trucks and their loading characteristics.

5

3. Problem Statement .

Figure 3.1. Example of routes taken by three different trucks labeled A, B, and C. Truck
A stops at Supplier A, where it visits both the cyan and green docks, then proceeds to
Supplier B, stopping at both the orange and dark green docks, before moving on to Supplier
C, where it stops at the red and yellow docks. Finally, it arrives at Plant X and stops at
the white and teal docks. Truck B travels from Supplier A, stopping at the cyan and pink
docks, before moving on to Supplier B, where it stops only at the orange dock. Then it
arrives at Plant X and stops at the white and pink docks. Truck C travels to Supplier C
and stops at all three docks before proceeding to Plant X, where it also visits all the docks

available.

3.2 Notations
The following notation is adapted from the challenge documentation. We define input
data and solution variables. All constants and variables representing distance are in
millimeters (𝑚𝑚), all weights are in kilograms (𝑘𝑔), cost in euros (EUR), and stack
density is in 𝑘𝑔/𝑚2. To better understand constraints and variables related to trucks
and the computation of truck weight on axles see Figure 3.3.

3.2.1 Input Constants
Input data contains the following constants.

Entity sets

- ̃𝐼 : set of items 𝑖
- ̃𝑃 : set of plants 𝑝
- ̃𝑈 : set of suppliers 𝑢
- ̃𝐺 : set of plant docks 𝑔
- �̃� : set of supplier docks 𝑘
- ̃𝛾 : set of products 𝛾 - each item has its product code

Items

- 𝐼𝐿𝑖, 𝐼𝑊𝑖, 𝐼𝐻𝑖, ̂𝐼𝐻𝑖, 𝐼𝑀𝑖 : length, width, height, nesting height (see Figure 3.2),
weight of item 𝑖

- 𝐼𝑆𝑖 : stackability code of item 𝑖,
- 𝐼𝑆𝑀𝑖 : maximal stackability of item 𝑖

6

. 3.2 Notations

- 𝐼𝑅𝑖 : product of item 𝑖, 𝐼𝑅𝑖 ∈ ̃𝛾
- 𝐼𝑂𝑖 : forced orientation of item 𝑖
- 𝐼𝐷𝐸𝑖, 𝐼𝐷𝐿𝑖 : earliest and latest arrival time of item 𝑖
- 𝐼𝑃𝑖 : destination plant of item 𝑖
- 𝐼𝐺𝑖 : plant dock of item 𝑖
- 𝐼𝑈𝑖 : supplier of item 𝑖
- 𝐼𝐾𝑖 : supplier dock of item 𝑖
- 𝐼𝐶𝑖 : inventory cost of item 𝑖

Trucks

- ̃𝑇 𝑅𝑡 : set of candidate products picked-up by truck 𝑡
- ̃𝑇 𝑈𝑡 : set of candidate suppliers visited by truck 𝑡
- ̃𝑇 𝐾𝑢𝑡 : set of candidate supplier docks 𝑘 of supplier 𝑢 loaded into truck 𝑡
- ̃𝑇 𝐺𝑝𝑡 : set of candidate plant docks 𝑔 of plant 𝑝 delivered by truck 𝑡
- 𝑇 𝐿𝑡, 𝑇 𝑊𝑡, 𝑇 𝐻𝑡, 𝑇 𝑀𝑚

𝑡 : length, width, height, max authorized loading weight of
truck 𝑡

- 𝑇 𝑃𝑡 : destination plant of truck 𝑡
- 𝑇 𝐷𝐴𝑡 : arrival time of truck 𝑡 at 𝑇 𝑃𝑡
- 𝑇 𝑀𝑀𝑡𝛾 : maximal total weight of all the items packed above the bottom item

associated with product 𝛾 in any stack of truck 𝑡
- 𝑇 𝐹𝑡 : flag ’stack with multiple docks’ for truck [𝑡, 𝑡𝑟𝑢𝑒 / 𝑓𝑎𝑙𝑠𝑒] - this flag allows

loading stacks with multiple plant docks into truck 𝑡
- 𝑇 𝐸𝑀𝑡 : maximal density of stacks in truck 𝑡
- 𝑇 𝐶𝑡 : cost of truck 𝑡
- 𝑇 𝐸𝑡 : supplier loading order for truck 𝑡 : it is a list indexed by elements of ̃𝑇 𝑈𝑡

containing for each supplier its loading order
- 𝑇 𝐾𝐸𝑢𝑡 : dock loading order of supplier 𝑢 for truck 𝑡 : it is a list indexed by the

elements of ̃𝑇 𝐾𝑢𝑡 containing for each supplier dock its loading order
- 𝑇 𝐺𝐸𝑝𝑡 : dock loading order of plant 𝑝 for truck 𝑡 : it is a list indexed by the elements

of ̃𝑇 𝐺𝑝𝑡 containing for each plant dock its loading order
- 𝐶𝑀 : weight of the tractor
- 𝐶𝐽𝑓𝑚 : distance between the front and middle axles of the tractor
- 𝐶𝐽𝑓𝑐 : distance between the front axle and the center of gravity of the tractor
- 𝐶𝐽𝑓ℎ : distance between the front axle and the harness of the tractor
- 𝐸𝑀 : weight of an empty trailer
- 𝐸𝐽ℎ𝑟 : distance between the harness and the rear axle of the trailer
- 𝐸𝐽𝑐𝑟 : distance between the center of gravity of the trailer and the rear axle
- 𝐸𝐽𝑒ℎ : distance between the start of the trailer and the harness
- 𝐸𝑀𝑚𝑟 : max weight on the rear axle of the trailer
- 𝐸𝑀𝑚𝑚 : max weight on the middle axle of the trailer

Parameters

- 𝛼𝑇 : coefficient of transportation cost in the objective function
- 𝛼𝐼 : coefficient of inventory cost in the objective function
- 𝛼𝐸 : coefficient of cost for extra trucks

7

3. Problem Statement .
3.2.2 Solution Variables

The following variables define a solution and are used in objective computing or con-
straint checking.

Variables

- ̂𝑇 : set of used trucks
- ̂𝑇 𝑆𝑡 : set of the stacks packed into truck 𝑡
- ̂𝑆𝐼𝑠 : set of the items of stack 𝑠
- ̂𝑆𝐺𝑠 : set of the plant docks of stack 𝑠
- 𝑠𝑙𝑠, 𝑠𝑤𝑠, 𝑠ℎ𝑠, 𝑠𝑚𝑠 : length, width, height, weight of stack 𝑠
- 𝑠𝑥𝑜

𝑠, 𝑠𝑦𝑜
𝑠 , 𝑠𝑧𝑜

𝑠 : coordinates of the origin point of stack 𝑠
- 𝑠𝑥𝑒

𝑠, 𝑠𝑦𝑒
𝑠 , 𝑠𝑧𝑒

𝑠 : coordinates of the extremity point of stack 𝑠. (𝑠𝑥𝑒
𝑠 = 𝑠𝑥𝑜

𝑠 + 𝑠𝑙𝑠,
𝑠𝑦𝑒

𝑠 = 𝑠𝑦𝑜
𝑠 + 𝑠𝑤𝑠, 𝑠𝑧𝑒

𝑠 = 𝑠𝑧𝑜
𝑠 + 𝑠ℎ𝑠)

- 𝑠𝑜𝑠 : orientation of stack 𝑠
- 𝑠𝑢𝑠 : supplier of stack 𝑠
- 𝑠𝑘𝑠 : supplier dock of stack 𝑠
- 𝑠𝑡𝑠 : truck of stack 𝑠
- 𝑖𝑑𝑎𝑖 : arrival time of item 𝑖
- 𝑡𝑚𝑡 : weight of the stacks loaded into the truck 𝑡
- 𝑒𝑗𝑒 : distance between center of gravity of stacks and the start of the trailer
- 𝑒𝑗𝑟 : distance between center of gravity of stacks and the rear axle of the trailer
- 𝑒𝑚ℎ : weight on the harness of the trailer
- 𝑒𝑚𝑟 : weight on the rear axle of the trailer
- 𝑒𝑚𝑚 : weight on the middle axle of the trailer

Figure 3.2. Example of a stack with items whose nesting height is greater than 0. Figure
source: [30].

8

. 3.3 Objective

Figure 3.3. Figure showing constants and variables related to axles load computation

3.3 Objective
The goal is to transport all items from their suppliers to their destination plants in the
defined time window while minimizing the combined cost of all trucks and the inventory
cost of items. See the objective function (1) below.

min 𝛼𝑇 × ∑
𝑡∈ ̃𝑇

𝑇 𝐶𝑡 + 𝛼𝐼 × ∑
𝑖∈ ̃𝐼

𝐼𝐶𝑖 × (𝐼𝐷𝐿𝑖 − 𝑖𝑑𝑎𝑖) (1)

3.4 Constraints
A valid solution must meet multiple hard constraints. Constraints are divided into
four groups: Items Constraints, Stack Constrains, Placement Constraints, and Weight
Constraints.

3.4.1 Items Constraints

. (I1): All items must be packed into stacks, which must be loaded into trucks.. (I2): An item 𝑖 can be loaded into a truck 𝑡 only if 𝑡 arrives at the item’s plant 𝐼𝑃𝑖.. (I3): An item 𝑖 can be loaded into a truck 𝑡 only if 𝑡 can pickup the item’s product
𝐼𝑅𝑖.. (I4): An item 𝑖 can be loaded into a truck 𝑡 only if 𝑡 stops by the item’s supplier 𝐼𝑈𝑖. (I5): An item 𝑖 can be loaded into a truck 𝑡 only if 𝑡 arrives at the plant in the item’s
time window:

𝐼𝐷𝐸𝑖 ≤ 𝑇 𝐷𝐴𝑡 ≤ 𝐼𝐷𝐿𝑖 . (2)

9

3. Problem Statement .
3.4.2 Stacks Constraints

. (S1): All the items 𝑖 packed in a stack 𝑠 must share the same supplier 𝐼𝑈𝑖, plant 𝐼𝑃𝑖,
stackability code 𝐼𝑆𝑖 and supplier dock 𝐼𝐾𝑖.. (S2): For any stack 𝑠, packed into truck 𝑡 and if (𝑇 𝐹𝑡 = 𝑛𝑜), then all the items 𝑖 of
stack 𝑠 must share the same plant dock 𝐼𝐺𝑖.. (S3): For any stack 𝑠, packed into truck 𝑡, if (𝑇 𝐹𝑡 = 𝑦𝑒𝑠), stack 𝑠 may contain items
𝑖1, 𝑖2 with 2 plant docks 𝐼𝐺𝑖1

, 𝐼𝐺𝑖2
with consecutive loading orders.. (S4): If one item 𝑖 of a stack 𝑠 has a forced orientation 𝐼𝑂𝑖, then all the items of

stack 𝑠 must share the same orientation (𝑠𝑜𝑠 = 𝐼𝑂𝑖).. (S5): For any stack 𝑠, packed into truck 𝑡, the total weight of the items packed above
the bottom item associated with product 𝛾 must not exceed the maximal weight
𝑇 𝑀𝑀𝑡𝛾:

∑
𝑖∈ ̂𝑆𝐼𝑠 ∧ 𝑖≠𝑏𝑜𝑡𝑡𝑜𝑚

𝐼𝑀𝑖 ≤ 𝑇 𝑀𝑀𝑡𝛾 . (3)

. (S6): The number of items packed into a stack 𝑠 must not exceed the smallest ’max
stackability’ 𝐼𝑆𝑀𝑖 of the items 𝑖 present in stack 𝑠.. (S7): The density of a stack 𝑠 must not exceed the maximal stack density defined for
the truck 𝑡 into which the stack 𝑠 is loaded:

𝑠𝑚𝑠
𝑠𝑙𝑠 × 𝑠𝑤𝑠

≤ 𝑇 𝐸𝑀𝑡 . (4)

3.4.3 Placements Constraints

. (P1): The placement of a stack 𝑠 into a truck 𝑡 must not exceed the truck’s dimensions:

∀𝑡 ∈ ̂𝑇 , ∀𝑠 ∈ ̂𝑇 𝑆𝑡, 𝑠𝑥𝑒
𝑠 ≤ 𝑇 𝐿𝑡 ∧ 𝑠𝑦𝑒

𝑠 ≤ 𝑇 𝑊𝑡 ∧ 𝑠𝑧𝑒
𝑠 ≤ 𝑇 𝐻𝑡 . (5)

. (P2): The stacks packed into a truck 𝑡 cannot overlap:

∀𝑡 ∈ ̂𝑇 , ∀𝑠1, 𝑠2 ∈ ̂𝑇 𝑆𝑡 (𝑠𝑥𝑜
𝑠1 ≤ 𝑠𝑥𝑜

𝑠2 ∧ 𝑠𝑥𝑜
𝑠2 < 𝑠𝑥𝑒

𝑠1) ⇒ 𝑠𝑦𝑜
𝑠2 ≥ 𝑠𝑦𝑒

𝑠1 ∨𝑠𝑦𝑒
𝑠2 ≤ 𝑠𝑦𝑜

𝑠1 . (6)

. (P3): Any stack must be adjacent to another stack on its left on the X axis, or if
there is a single stack in the truck, the unique stack must be placed at the front of
the truck (adjacent to the truck driver). Figure 3.4 provides an example of incorrect
and correct stack configurations in a truck.

∀𝑡 ∈ ̂𝑇 , ∀𝑠1 ∈ ̂𝑇 𝑆𝑡 (𝑠𝑥𝑜
𝑠1

> 0) ⇒

⇒ ∃𝑠2 ∈ ̂𝑇 𝑆𝑡, 𝑠𝑥𝑒
𝑠2

= 𝑠𝑥𝑜
𝑠1

∧ (𝑠𝑦𝑜
𝑠2

∈ [𝑠𝑦𝑜
𝑠1

, 𝑠𝑦𝑒
𝑠1

] ∨ 𝑠𝑦𝑒
𝑠2

∈ [𝑠𝑦𝑜
𝑠1

, 𝑠𝑦𝑒
𝑠1

]) (7)

Figure 3.4. Figure demonstrates P3 constraints. Stacks C and D in the left truck violate
the P3 constraint because they are not adjacent to any stack or front of the truck. While

all stacks in the right truck are placed correctly with respect to the P3 constraint.

10

. 3.4 Constraints

. (P4): The stacks loaded onto the truck must follow a specific order. (1) They must be
placed in ascending order from the front to the rear of the truck in accordance with
the supplier’s pickup order. See Figure 3.5. (2) Among the stacks from the same
supplier, they must also be arranged in ascending order based on the supplier dock
loading order. (3) If there are multiple stacks from the same supplier and supplier
dock, they must be organized in increasing order according to the plant dock loading
order. See Figure 3.6. The goal is to fulfill these three requirements. It is not required
to optimize the unloading process.

∀𝑡 ∈ ̂𝑇 , ∀𝑠1 ∈ ̂𝑇 𝑆𝑡, ∀𝑠2 ∈ ̂𝑇 𝑆𝑡,
(1) (𝑇 𝐸𝑢𝑠1

< 𝑇 𝐸𝑢𝑠2
) ⇒ 𝑠𝑥𝑜

𝑠1
≤ 𝑠𝑥𝑜

𝑠2
(8)

(2) (𝑢𝑠1
= 𝑢𝑠2

∧ 𝐾𝐸𝑘𝑠1
< 𝐾𝐸𝑘𝑠2

) ⇒ 𝑠𝑥𝑜
𝑠1

≤ 𝑠𝑥𝑜
𝑠2

(9)

(3) 𝑢𝑠1
= 𝑢𝑠2

∧ 𝐾𝐸𝑘𝑠1
= 𝐾𝐸𝑘𝑠2

∧ 𝐺𝐸𝑔𝑠1
< 𝐺𝐸𝑔𝑠2

, ∀𝑔𝑠1
∈ ̂𝑆𝐺𝑠1

, ∀𝑔𝑠2
∈ ̂𝑆𝐺𝑠2

) ⇒

⇒ 𝑠𝑥𝑜
𝑠1

≤ 𝑠𝑥𝑜
𝑠2

(10)

Figure 3.5. Truck loaded with stacks from four different suppliers meeting the P4 con-
straint, where 𝑇 𝐸𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐴 < 𝑇 𝐸𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐵 < 𝑇 𝐸𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐶 < 𝑇 𝐸𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐷.

Figure 3.6. Same truck as presented in Figure 3.5, Plant docks of stacks are shown, where
𝐺𝐸𝑃𝑙𝑎𝑛𝑡𝐷𝑜𝑐𝑘𝐵1 < 𝐺𝐸𝑃𝑙𝑎𝑛𝑡𝐷𝑜𝑐𝑘𝐵2 and 𝐺𝐸𝑃𝑙𝑎𝑛𝑡𝐷𝑜𝑐𝑘𝐶1 < 𝐺𝐸𝑃𝑙𝑎𝑛𝑡𝐷𝑜𝑐𝑘𝐶2 < 𝐺𝐸𝑃𝑙𝑎𝑛𝑡𝐷𝑜𝑐𝑘𝐶3.

3.4.4 Weight Constraints

. (W1): The weights of the stacks packed in a truck 𝑡 should not exceed the truck’s
maximal loading weight:

∀𝑡 ∈ ̂𝑇 𝑡𝑚𝑡 ≤ 𝑇 𝑀𝑚
𝑡 , 𝑡𝑚𝑡 = ∑

𝑠∈𝑆𝑡

𝑠𝑚𝑠 (11)

. (W2): The weights on the middle axle and on the rear axle of a truck must not exceed
the max weights authorized for these 2 axles:

𝑒𝑚𝑚 ≤ 𝐸𝑀𝑚𝑚 ∧ 𝑒𝑚𝑟 ≤ 𝐸𝑀𝑚𝑟 (12)

11

3. Problem Statement .
Figure 3.3 provides a clearer understanding of the weights of truck axles. The con-
straint (W2) must be satisfied every time the truck is on the road. For example, if
the truck stops at supplier A, and at supplier B, then goes to plant X, the constraint
must be satisfied with only items from supplier A in the truck while driving from
supplier A to B, and also with all the items from suppliers A and B, when the truck
goes from supplier B to plant X.

3.5 Solution Representation
We chose the following representation of a solution for the presented problem. A solu-
tion is encoded as a vector of nodes with variable length. There are four types of nodes:
truck start node, item node, stack orientation node, and stack position node.

A solution vector is divided by the truck start node into sub-vectors representing
each truck’s load. Additionally, the truck start node encodes the identifier of the used
truck. After the truck start node, the rest of the sub-vector defines stacks and items
loaded into this truck. Before each sector representing a stack, 𝑘, 𝑘 ≥ 0 stack position
nodes can be inserted. Number 𝑘 encodes the chosen position of the stack (see Section
4.1 for more details). After these nodes, item nodes follow. Each item node defines a
single item and its type packed into the current stack. The order of item nodes matches
the order of items packed into the current stack bottom-up. A stack is terminated with
a stack orientation node, which encodes the stack orientation. An example of a simple
solution vector is shown in Figure 3.7.

This representation has been chosen, because it is suitable for performing Local
Search operations, such as swapping stacks in trucks. Also, it can be efficiently imple-
mented using a C++ vector of integers.

Figure 3.7. Example of solution encoding: the vector encodes solution with one truck of
type id=4, 3 stacks, where the first stack is located at a position with index 0, contains 3
items of type 1, and is oriented length-wise. The second stack contains items 13 and 14,
it is located at a position with index 1 and is oriented width-wise. The last stack contains
only one item with id = 5, is located at a position with index 2, and is oriented length-wise.

12

Chapter 4
Proposed Method

In this chapter, we present our proposed method for solving the problem introduced
in the previous chapters. Our method is based on the Iterated Local Search (ILS)
metaheuristic, augmented with a custom Depth-First Tree Search (DFTS) algorithm
that explores feasible stack arrangements in trucks. To address the specific requirements
of this problem, we have designed six Local Search operators tailored to optimize the
solution. Additionally, our method incorporates an algorithm for truckload balancing,
which ensures that the weight is distributed evenly allowing adding new stacks to a
truck.

The solution generation consists of three main steps. First, an initial solution is
obtained using a greedy method (line 3 Alg. 4.0). This solution serves as a starting
point for subsequent improvement.

Next, the Local Search operators (line 4 Alg 4.0) are applied to iteratively refine
the solution by exploring the local neighborhoods. The operators make incremental
changes to the solution, aiming to improve the objective function. This iterative process
continues until a local minimum is reached, where no further improvement can be made.

Finally, to avoid local optima, the method employs a perturbation strategy (line 7
Alg. 4.0). The best current solution is repeatedly perturbed to escape from the local
optimum, which increases the chances of finding a better global solution. If a better
solution is found the solution is stored as the current best solution (lines 10-13 Alg.
4.0). This process continues until a time limit is reached (line 6 Alg. 4.0).

In the following sections, we will provide a detailed description of each component of
our proposed method and implementation details.

1 # Main method
2 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 ← getTime()
3 𝑠𝑜𝑙𝑖𝑛𝑖𝑡 ← findSolutionGreedy()
4 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 ← reachLocalMinimum(𝑠𝑜𝑙𝑖𝑛𝑖𝑡)
5 𝑜𝑏𝑗𝑏𝑒𝑠𝑡 ← calculateObj(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)
6 while getTime() - 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 < 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 do
7 𝑠𝑜𝑙𝑛𝑒𝑤 ← perturbate(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)
8 𝑠𝑜𝑙𝑛𝑒𝑤 ← reachLocalMinimum(𝑠𝑜𝑙𝑛𝑒𝑤)
9 𝑜𝑏𝑗 ← calculateObj(𝑛𝑒𝑤𝑆𝑜𝑙)

10 if 𝑜𝑏𝑗 < 𝑏𝑒𝑠𝑡𝑂𝑏𝑗 then
11 𝑜𝑏𝑗𝑏𝑒𝑠𝑡 ← 𝑜𝑏𝑗
12 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 ← 𝑠𝑜𝑙𝑛𝑒𝑤
13 end if
14 end while
15 return 𝑠𝑜𝑙𝑏𝑒𝑠𝑡

Alg. 4.0. Pseudo-code of the proposed method described in high-level.

13

4. Proposed Method .

4.1 Stack Placement
All items must be packed in a stack. These stacks are placed into a truck, there are
several constraints (see Section 3.4.3) that a stack placement has to satisfy. Stacks are
loaded into a truck in the same order as the order in the solution vector. Considering
the vast number of possibilities for arranging stacks in a truck, we propose the following
structure of Loading space, which thanks to its properties assures meeting constraints
P1, P2, and P3 without any additional checks.

Figure 4.1. The figure illustrates updating of the candidate positions list on six examples.
The red boxes represent stacks already placed in the truck, the blue boxes are newly added
stacks, red and purple crosses represent candidate positions before insertion while blue
and purple crosses denote candidate positions after the insertion. Dashed lines demarcate

available areas for each candidate position.

The Loading space structure comprises a list of candidate positions where a stack can
be placed. Each candidate position is represented as a tuple (𝑥, 𝑦, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑤𝑖𝑑𝑡ℎ, 𝑚𝑊),
which defines an available area. Here, 𝑥 and 𝑦 denote the coordinates of the area’s
origin, 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑤𝑖𝑑𝑡ℎ represent the dimensions of the area, and 𝑚𝑊 indicates the
minimum required width for a stack to fit within this area. The minimum width is
specifically determined for the case illustrated in the example 𝐷 in Figure 4.1, for the
candidate position represented by the blue cross with 𝑦 = 0, it must be defined 𝑚𝑊
greater than zero. Otherwise, a new stack could not be adjacent to the blue stack.

The candidate list is ordered primarily in ascending order of 𝑥 and secondarily in
descending order of 𝑦.

The candidate positions list is defined for a given stack arrangement. If a stack is
added or removed the list must be updated accordingly. When a truck 𝑡 is empty,
the initial candidate position (0, 0, 𝑇 𝐿𝑡, 𝑇 𝐻𝑡, 0) is added to the candidate list. Sub-
sequently, as stacks are placed in the truck, the candidate list is updated. The new
position candidates are derived from the corners of the added stack. The algorithm for
updating candidate positions is illustrated in examples in Figure 4.1.

The algorithm used for generating the candidate list is designed to be simplified,
which means it may not discover all possible stack arrangements. Also, this approach

14

. 4.2 Initial Solution

has a tendency to create gaps in the loading space and narrow unoccupied spaces. In
examples 𝐷, 𝐸, and 𝐹 shown in Figure 4.1, it can be observed that placing a stack
to some of the generated candidate positions results in the creation of small unutilized
areas between stacks. Despite these limitations, the algorithm is capable of finding the
vast majority of arrangements. Based on the empirical evaluation, we have determined
that this approach is satisfactory for our purposes. An example of stack arrangements
with data from an introduced instance is shown in Figure 4.2.

As mentioned in the previous chapter in Section 3.5 presenting solution representa-
tion, stack position in a truck is defined using position nodes. The number of position
nodes inserted before a stack defines the index of the selected candidate position from
the candidate position list. For example, if a new stack 𝑠 was added to the truck shown
in Figure 4.2 and 3 position nodes are preceding, the stack 𝑠 is placed at the position
marked 4 with coordinates (𝑠𝑥𝑜

𝑠, 𝑠𝑦𝑜
𝑠) = (130000, 0) in the figure. It is important to

note that the position indexes depend on the stacks loaded before the current stack 𝑠.
If a stack preceding stack 𝑠 is added or removed, the candidate positions list must be
updated, along with the number of position nodes for stack 𝑠.

Figure 4.2. The figure illustrates the algorithm for finding free space for a stack place-
ment. The corners of the position candidate areas are marked as red crosses with numbers
representing the order in the list, the corresponding area is shaded. Note the white gaps

between stacks.

4.2 Initial Solution
The initial solution is obtained using a greedy algorithm. The algorithm begins with
an empty set of used trucks ̂𝑇. The items ̃𝐼 are pre-sorted by supplier dock, plant dock,
and time window. Then, each item 𝑖 ∈ ̃𝐼 is added to a truck one by one. The item 𝑖 can
be added in one of three ways: 1) to an already existing stack in a truck 𝑡 ∈ ̂𝑇, 2) to a
newly created stack placed in a truck 𝑡 ∈ ̂𝑇, or 3) to a newly created stack in a truck
𝑡, which will be added to ̂𝑇. The option that is both feasible and minimizes weighted
increment of objective value is selected. The weighted increment of objective value for
ways 1) and 2) is computed as 𝛼𝐼 × 𝐼𝐶𝑖 × (𝐼𝐷𝐿𝑖 − 𝑇 𝐷𝐴𝑡), while for option 3), it is
computed as 𝛾 × 𝛼𝑇 × 𝑇 𝐶𝑡 + 𝛼𝐼 × 𝐼𝐶𝑖 × (𝐼𝐷𝐿𝑖 − 𝑇 𝐷𝐴𝑡). Here, 𝛾 is a parameter to
weigh adding new trucks. If two options have the same value, the option with a lower
index is chosen. The position for a newly created stack in a truck is determined as the
first feasible position from the candidate positions list. This process continues until all
items are loaded into trucks ̂𝑇.

This algorithm quickly generates a feasible solution. Best results for instances from
Dataset A and B were achieved when the parameter 𝛾 was set to a small positive
number (e.g., 0.0005). The algorithm, with this setup, generates solutions that minimize
the inventory part of the objective. This approach is based on the observation that
the inventory cost of items is significant and can be much higher than the cost of
trucks. Also, if the initial solution contains more trucks than needed, Local Search

15

4. Proposed Method .
operators perform better due to the larger search neighborhood available. Furthermore,
we leverage the fact that an initial solution contains more trucks, and we specifically
design our Local Search operators to focus on deleting trucks. However, for some
instances from Dataset C, which have a high value of 𝛼𝑇, it is possible that a different
value of the parameter 𝛾 may be more suitable. Note, that at the time of writing this
work, the method has not been fully tuned for instances from Dataset C yet.

4.3 Truck Load Balancing
One of the constraints introduced in the challenge is that maximal limits on the middle
and rear truck axle can not be exceeded (W2). The following formulas (1), (2), (3),
(4), (5) stated in [30] can be used for the computation of weights on both axles.

𝑒𝑗𝑒 =
∑𝑠∈ ̂𝑇 𝑆𝑡

(𝑠𝑥𝑜
𝑠 + (𝑠𝑥𝑒

𝑠−𝑠𝑥𝑜
𝑠)

2) × 𝑠𝑚𝑠

𝑡𝑚𝑡
(1)

𝑒𝑗𝑟 = 𝐸𝐽𝑒ℎ + 𝐸𝐽ℎ𝑟 − 𝑒𝑗𝑒 (2)

𝑒𝑚ℎ = 𝑡𝑚𝑡 × 𝑒𝑗𝑟 + 𝐸𝑀 × 𝐸𝐽𝑐𝑟

𝐸𝐽ℎ𝑟 (3)

𝑒𝑚𝑟 = 𝑡𝑚𝑡 + 𝐸𝑀 − 𝑒𝑚ℎ (4)

𝑒𝑚𝑚 = 𝐶𝑀 × 𝐶𝐽𝑓𝑐 + 𝑒𝑚ℎ × 𝐶𝐽𝑓ℎ

𝐶𝐽𝑓𝑚 (5)

Note that stacks are loaded onto a truck from the beginning of the loading space
toward its end and the middle axle has a significantly smaller weight limit than the
rear axle (e.g., 𝐸𝑀𝑚𝑚 = 12000, 𝐸𝑀𝑚𝑟 = 31500). We observed that sometimes stacks
are loaded only in the first half of the truck and no more stacks can be added because
it would overload the middle axle. However, if some stacks were placed further than
the rear axle or even if 𝑒𝑗𝑒 was greater, it would lower the weight on the middle axle
and allow adding new stacks into the truck.

Based on this motivation we introduce a method that iterates over trucks and searches
for trucks 𝑡 that have 𝑒𝑚𝑚 near their limit while loading length is less than 80% of
𝑇 𝐿𝑡. Stacks in these trucks are split into two in order to move the load center of mass
𝑒𝑗𝑒 toward the end of the truck.

The method is implemented in the following way. The first stack 𝑠 with the lowest
𝑠𝑥𝑜

𝑠 (closest to the beginning of truck loading space), and containing more than one
item, is selected for splitting. The top item of this stack is moved to a newly created
stack 𝑠𝑛𝑒𝑤, now with one item. If possible, stack 𝑠𝑛𝑒𝑤 is placed before the original stack
𝑠, with the two stacks being adjacent to each other, such that 𝑠𝑥𝑜

𝑠 = 𝑠𝑥𝑒
𝑠𝑛𝑒𝑤

. Otherwise,
the search for other splittable stacks continues. If the stack was successfully split and
placed, the truckload center of mass is shifted toward the rear axle, which is shown in
the upper half of Figure 4.3. This process is repeated until either the middle axle is no
longer nearly overloaded or no more feasibly splittable stacks are found.

This approach, however, introduces a new problem. Let’s consider the following
example: a truck’s middle axle becomes nearly overloaded, the method splits stacks
and increases 𝑒𝑗𝑒, effectively lowering the weight on the middle axle. This adjustment

16

. 4.4 Local Search

enables the addition of new heavy stacks, which are placed beyond the rear axle, further
lowering the weight on the middle axle. However, the truck loading space becomes fully
occupied and no more stacks can be added. In such cases, where split stacks are no
longer needed, we created an inverse method that allows merging stacks and lowering
the 𝑒𝑗𝑒.

The implementation of this method is the following: method searches for trucks with
the length of load approaching its maxima and 𝑒𝑚𝑚

𝐸𝑀𝑚𝑚 < 85%. Within each truck
meeting these criteria, the method attempts to merge stacks if possible. The stacks
are checked in ascending order along the x-axis, with the rearmost stacks being merged
first. This ordering ensures that the middle axle does not start overloading again. The
merging process is repeated until either the condition is no longer met or no feasible
stack merges are found. An example of merging stacks is demonstrated in the bottom-
half of Figure 4.3.

These truckload balancing methods are run during the local search between selected
local search operators.

Figure 4.3. Example illustrating the truck balancing method in action. The upper half of
the figure demonstrates the splitting of stacks to move the center of gravity (represented
as the distance 𝑒𝑗𝑒) towards the rear axle, effectively balancing the weight distribution.
Conversely, the second half showcases the inverse method, where stacks are merged to

create additional space for new potential stacks.

4.4 Local Search
Local search [32] is an approach used for addressing hard combinatorial optimization
problems. Many optimization problems do not have an algorithm that guarantees find-
ing an optimal solution in a reasonable time. That is why heuristic methods returning
good suboptimal solutions are often used. One of them is the local search approach,
which can flexibly trade solution quality against computation time.

The local search starts with an initial solution 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆, 𝑆 is a set of solutions (line
2 Alg. 4.4). A neighborhood function 𝑁: 𝑆 → 𝑃(𝑆), where 𝑃(𝑆) is the set of all
subsets of solutions in 𝑆, is defined. Then, using calling all neighborhood functions 𝑁
sequentially, we obtain a set 𝑆′ of reachable solutions (line 6 Alg. 4.4). We choose
somehow a solution 𝑠 ∈ 𝑆′ (line 11 Alg. 4.4), for example, we can choose a solution
with minimal objective value, and we call the neighborhood functions on this solution
𝑆′′ = 𝑁(𝑠) again. We iteratively repeat this process until we arrive at a local minimum.

In our implementation, the neighborhood function 𝑁 is defined by a set of Local
Search operators. Specifically, we have designed six operators tailored to the problem

17

4. Proposed Method .

1 # Local Search
2 𝑠 ← 𝑠𝑖𝑛𝑖𝑡
3 while 𝑡𝑟𝑢𝑒 do
4 𝑆′ ← ∅
5 for 𝑁 ∈ 𝑁 ′ do
6 𝑆′ ← 𝑆′ ∪ 𝑁(𝑠)
7 end for
8 if 𝑆′ = ∅ then
9 break

10 end if
11 𝑠 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑜𝑏𝑗(𝑠′)), 𝑠′ ∈ 𝑆′

12 end while

Alg. 4.4. Local Search written in pseudo-code, 𝑁 ′ set of operators

at hand, taking advantage of the both problem’s and the initial solution’s inherent
properties. We propose 4 operators working on the stack level: Stack Swap, Stack
Move, Truck Delete, and Truck Replace, these operators consider a stack as static,
meaning that it can not be changed. Additionally, we describe two operators working
on the item level: Item Swap and Item Move, which are able to modify stacks. The
changes they make are relatively minor in comparison with operators on the stack level.

The operators are executed in a predefined order, with each operator exhaustively
generating all possible improvements it can find. Once an operator has completed
its turn, the next operator in the sequence proceeds. After the last operator in the
sequence finishes, the first operator is proceeded again, creating a cycle. This cycle
continues until no further improvements are discovered. If an operator fails to find any
improvements during its turn, it is deactivated and skipped in the subsequent cycles.
The deactivation of operators is primarily implemented to enhance performance speed,
as it is possible that an operator may find an improvement in future cycles when the
current solution has changed. However, based on our observations, the negative impact
of deactivating operators is negligible or even non-existent in some instances.

4.4.1 Parameters Controlling Local Search Cycle

The Local Search cycle can be customized using various parameters. Each operator
can be activated or deactivated for the entire Local Search run. The maximum number
of cycles can be controlled by the parameter 𝑚𝑎𝑥𝐶𝑦𝑐𝑙𝑒𝑠𝐿𝑆. By setting the parameter
𝑡𝑤𝑜𝐶𝑦𝑐𝑙𝑒𝑠 to 𝑡𝑟𝑢𝑒, two cycles are created. In the first cycle, operators working with
stacks are executed, while in the second cycle, only item operators are executed. The
parameter 𝑡𝑟𝑢𝑐𝑘𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 allows the utilization of truckload balancing methods
described in Section 4.3.

The default order of operators and auxiliary methods is as follows: Truck Load
balancing, Stack Move, Truck Delete, Truck Replace, Stack Move, Stack Swap, Item
Move, Item Swap. However, by setting the parameter 𝑓𝑖𝑟𝑠𝑡𝑆𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒 to 𝑓𝑎𝑙𝑠𝑒, the
first Stack Move Operator can be skipped. We determined the order of operators
empirically.

18

. 4.5 Stack Swap operator

4.5 Stack Swap operator

Figure 4.4. Stack Swap Operator

The Stack Swap operator illustrated in Figure 4.4 is designed to reduce the sum of
inventory cost of two stacks using swapping their places. Stacks, denoted as 𝑠𝑎 and 𝑠𝑏,
are located in two trucks, in truck 𝑡𝑎 and truck 𝑡𝑏, respectively, where 𝑡𝑎 ≠ 𝑡𝑏.

Application of this operator will result in a state where stack 𝑠𝑎 is loaded into truck
𝑡𝑏 in the same location and orientation as stack 𝑠𝑏 originally was. Similarly, stack 𝑠𝑏
will be moved to the original location and orientation of stack 𝑠𝑎 in truck 𝑡𝑎. No other
stacks in these two trucks are manipulated during the process.

4.5.1 Constraints to check
Before applying the Stack Swap operator to stacks 𝑠𝑎 and 𝑠𝑏, the following constraints
must be checked for both stacks in their respective new trucks, stack 𝑠𝑎 in truck 𝑡𝑏 and
stack 𝑠𝑏 in truck 𝑡𝑎.

. I2 - New truck must arrive at the plant, where the new stack must be delivered.. I3 - New truck might not be able to pick up all items from the new stack.. I4 - New truck might not stop at the supplier where the new stack is distributed
from.. I5 - Not all items in the stack might be delivered in the time window.. S4 - Stack orientation may be forced and new orientation may be in conflict with it.. S5 - Maximal weight above the bottom item is related to a truck. The new truck’s
limit for the bottom item might be lower than the original.. S7 - Maximal density of a stack is related to a truck. The maximal density might be
lower in the new truck.. P1 - New stack might be bigger which may result in some stacks will not fit into the
truck.. P4 - New stack might have a different supplier, supplier dock, or plant dock which
may result in violating this constraint.. W1 - New stack can weigh more than the old one which may result in overloading
the truck.. W2 - A different weight of the new stack may overload one of the axles.

4.5.2 Operator Application
Ordered stacks are iterated one by one (see line 2 Alg. 4.5). The currently iterated
stack is denoted as 𝑠𝑎 and is considered fixed. Then, it is searched for the best candidate
stack 𝑠𝑏 to swap with 𝑠𝑎. To do so, the operator checks all other stacks that come after
𝑠𝑎 in the order (line 5 Alg. 4.5). The swap that results in the greatest improvement in
the objective value and satisfies all constraints is then applied (line 16 Alg. 4.5). If no

19

4. Proposed Method .

1 # Stack Swap operator
2 for 𝑠𝑎 in 𝑆 do
3 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒 ← (− inf)
4 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑐𝑘 ← (−1)
5 for 𝑠𝑏 in 𝑆 ∖ {𝑠, 𝑖𝑛𝑑𝑒𝑥(𝑠) <= 𝑖𝑛𝑑𝑒𝑥(𝑠𝑎)} do
6 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 ← 𝐼𝐶(𝑠𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑠𝑎)) + 𝐼𝐶(𝑠𝑏, 𝑡𝑟𝑢𝑐𝑘(𝑠𝑏))
7 𝑜𝑏𝑗𝑛𝑒𝑤 ← 𝐼𝐶(𝑠𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑠𝑏)) + 𝐼𝐶(𝑠𝑏, 𝑡𝑟𝑢𝑐𝑘(𝑠𝑎))
8 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 − 𝑜𝑏𝑗𝑛𝑒𝑤
9 if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ≤ 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒 ∨ ¬𝑖𝑠𝑆𝑤𝑎𝑝𝑉 𝑎𝑙𝑖𝑑(𝑠𝑎, 𝑠𝑏) then

10 continue
11 end if
12 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑐𝑘 ← 𝑠𝑏
13 𝑏𝑒𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒
14 end for
15 if 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑐𝑘 ≠ −1 then
16 𝑠𝑤𝑎𝑝𝑆𝑡𝑎𝑐𝑘𝑠(𝑠𝑎, 𝑏𝑒𝑠𝑡𝑆𝑡𝑎𝑐𝑘)
17 end if
18 end for

Alg. 4.5. Pseudo-code of Stack Swap Operator Application. 𝑆 = set of all stacks, 𝐼𝐶(𝑠, 𝑡)
= inventory cost of stack 𝑠 in truck 𝑡, 𝑡𝑟𝑢𝑐𝑘(𝑠) = truck where stack 𝑠 is placed

feasible swap is found, the stack 𝑠𝑎 is skipped. In both cases, the iteration continues to
the next stack.

4.6 Stack Move operator

Figure 4.5. Stack Move Operator

The Stack Move operator illustrated in Figure 4.5 is designed to reduce the inventory
cost of a stack. A stack, denoted as 𝑠𝑎, currently located in truck 𝑡𝑎 (donor) is moved
into truck 𝑡𝑏 (receiver), where 𝑡𝑎 ≠ 𝑡𝑏. Moving a stack out of or into a truck may violate
a constraint, therefore stacks in both trucks 𝑡𝑎 and 𝑡𝑏 need to be rearranged. The new
positions and orientations of stacks that come after stack 𝑠𝑎 in a solution vector, in
either the original or new location, are recomputed.

If the stack 𝑠𝑎 is the only stack in the truck 𝑡𝑎 and stack 𝑠𝑎 is moved into a different
truck, the whole truck 𝑡𝑎 is deleted.

4.6.1 Constraints to check (donor truck)
The following constraints must be checked in a truck 𝑡𝑎 (donor) before applying the
Stack Move operator.

20

. 4.6 Stack Move operator

. P4 - Moving out a stack might result in violating the constraint for stacks’ positions
and loading orders.. W2 - Moving out a stack might result in overloading one of the axles.

4.6.2 Constraints to check (receiver truck)

The following constraints must be checked in a truck 𝑡𝑏 (receiver) before applying the
Stack Move operator.

. I2 - New truck must arrive at the plant, where the new stack must be delivered.. I3 - New truck might not be able to pick up all items from the new stack.. I4 - New truck might not stop at the supplier where the new stack is distributed
from.. I5 - Not all items in the stack might be delivered in the time window.. S4 - Stack orientation may be forced and new orientation may be in conflict with it.. S5 - Maximal weight above the bottom item is related to a truck. The new truck’s
limit for the bottom item might be lower than the original.. S7 - Maximal density of a stack is related to a truck. The maximal density might be
lower in the new truck.. P1 - New stack might not fit into the truck.. P4 - New stack’s supplier dock or plant dock might result in violating this constraint.. W1 - New stack can exceed the truck weight limit.. W2 - A weight of the new stack may overload one of the axles.

4.6.3 Operator Application

The Stack Move operator is designed to apply only the best-known improvements. It
iterates through all possible stacks (line 6 Alg. 4.6) to find valid moves that result in
improvement. The currently iterated stack is denoted as 𝑠𝑎 and is considered fixed.
The algorithm then searches for the best candidate truck 𝑡𝑏 (line 11 Alg. 4.6) where
stack 𝑠𝑎 can be moved. In the implementation, all trucks are sorted for each stack
based on the inventory cost of the stack in ascending order. This ensures that the first
truck into which the stack can be loaded is the best candidate that can be used. If the
inventory cost of the currently tested truck is greater than the current stack’s inventory
cost, it means no improving candidate can be found for this stack, and no other trucks
are checked before proceeding to the next stack (line 14 Alg. 4.6). If a moving stack 𝑠𝑎
to 𝑡𝑏 is not valid, the algorithm proceeds to the next truck (line 17 Alg. 4.6).

After cycling through all the stacks and trucks, if a valid improving move is found
(line 26 Alg. 4.6), it is applied to create a new solution. This process is repeated until
no further valid improvement moves are found (line 28 Alg. 4.6).

21

4. Proposed Method .

1 # Stack Move operator
2 do
3 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 0
4 𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑐𝑘 ← 𝑁𝑢𝑙𝑙
5 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 ← 𝑁𝑢𝑙𝑙
6 for 𝑠𝑎 in 𝑆 do
7 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 ← 𝐼𝐶(𝑠𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑠𝑎))
8 if 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 == 0 then
9 continue

10 end if
11 for 𝑡𝑏 in 𝑇 ∖ {𝑡𝑏 = 𝑡𝑟𝑢𝑐𝑘(𝑠𝑎)} do
12 𝑜𝑏𝑗𝑛𝑒𝑤 ← 𝐼𝐶(𝑠𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑠𝑏))
13 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 − 𝑜𝑏𝑗𝑛𝑒𝑤
14 if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ≤ 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒 then
15 break
16 end if
17 if ¬𝑖𝑠𝑀𝑜𝑣𝑒𝑉 𝑎𝑙𝑖𝑑(𝑠𝑎, 𝑡𝑏) then
18 continue
19 end if
20 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒
21 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 ← 𝑡𝑏
22 𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑐𝑘 ← 𝑠𝑠
23 end for
24 end for
25 if 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 ≠ 𝑁𝑢𝑙𝑙 then
26 𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘(𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑐𝑘, 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘)
27 else
28 break
29 end else
30 while 𝑡𝑟𝑢𝑒
31

Alg. 4.6. Pseudo-code of Stack Move Operator Application. 𝑆 = set of all stacks, 𝑇 = set
of used trucks, 𝐼𝐶(𝑠, 𝑡) = inventory cost of stack 𝑠 in truck 𝑡, 𝑡𝑟𝑢𝑐𝑘(𝑠) = truck where stack

𝑠 is placed

22

. 4.7 Truck Delete operator

4.7 Truck Delete operator

Figure 4.6. Truck Delete Operator

Truck Delete operator illustrated in Figure 4.6 is introduced to reduce the transport
part of the objective value. The basic idea is to empty a given truck, denoted by 𝑡𝑎, by
moving all of its stacks to other trucks. If all stacks are moved to other trucks, truck
𝑡𝑎 can be deleted. It is important to note that this operator may result in an increase
in the inventory costs of the moved stacks. For this reason, the sum of the increased
inventory costs must still be lower than the cost saved by deleting truck 𝑡𝑎.

This operator plays a major role in the solution improvement, because the way how
initial solution is found is very permissive in adding new trucks into the solution.

4.7.1 Constraints to check

If all stacks are moved from the donor truck 𝑡𝑎 successfully, the truck is deleted and no
constraints are needed to check.

The constraints needed to check whether a stack can be loaded into a receiving truck
are the same as constraints for the Move Stack operator 4.6.2.

4.7.2 Operator Application

The Truck Delete operator is implemented similarly to the Stack Move operator, also
only best-known improvements are applied.

It is iterated over all trucks (line 6 Alg. 4.7). For each truck 𝑡𝑎, the current solution
is stored (line 7 Alg. 4.7). Then, it is iterated over all stacks 𝑠 loaded in truck 𝑡𝑎 (line
11 Alg. 4.7). It searches for a valid stack 𝑠 moved to another truck, following a similar
approach as the Stack Move operator. If a valid move is found, stack 𝑠 is moved 𝑡𝑏,
𝑖𝑛𝑣𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 is updated, and the move is stored (lines 16-20 Alg. 4.7). The process then
proceeds to the next stack. If no feasible move for the stack is found, the algorithm
continues to the next truck (lines 24-26 Alg. 4.7). If it is possible to move all stacks
to other trucks, resulting in an improvement 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 > 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒, the truck delete
action is stored (lines 30-34 Alg. 4.7). After processing the truck, the original solution
is restored (line 35 Alg. 4.7).

23

4. Proposed Method .
After iterating all trucks, it checks if 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 is not null, and if so, the truck deletion

is applied (lines 37-39 Alg. 4.7). The process continues until no more truck deletion is
found.

4.8 Truck Replace operator

Figure 4.7. Truck Replace Operator

The Truck Replace operator illustrated in Figure 4.7 is designed to reduce the num-
ber of used trucks, which leads to lower transportation costs. Unlike the Truck Delete
operator, which deletes only one truck, the Truck Replace operator deletes two trucks
and moves all stacks from these trucks to a newly added truck. A newly added truck
is usually a truck type that is not in the solution yet. Similarly to the Truck Delete
operator, moving stacks into other trucks may increase their inventory cost. The oper-
ator is applied only if the sum of saved truck costs is greater than the increase in stack
inventory costs.

This operator was introduced because of the way how the initial solution is found.
The solution contains many unique trucks with few stacks, that can not be moved to
any other trucks, because there are no other compatible trucks with these stacks in the
current solution. Neither the Stack Move nor Truck Delete operators can move these
stacks, making it necessary to introduce a new operator such as this, which is able to
add new truck types.

This approach can be generalized to delete not only two trucks but to delete 𝑘 trucks
and add one new truck containing all stacks from deleted trucks. However, in small-
scale experiments, the operator version for 𝑘 ≤ 3 showed only a negligible improvement
compared to 𝑘 = 2, while the 𝑘 ≤ 5 version produced the same results as the 𝑘 ≤ 3
version. Both of these versions consumed significantly more processor time than the
𝑘 = 2 version. Therefore, for the sake of time efficiency, the operator is kept to delete
only two trucks.

4.8.1 Constraints to check

If all stacks are moved from the donor trucks successfully, the trucks are deleted and
no constraints are needed to check.

The constraints needed to check whether a stack can be loaded into a receiving truck
are the same as constraints for the Move Stack operator 4.6.2.

24

. 4.8 Truck Replace operator

1 # Truck Delete operator
2 do
3 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 0
4 𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠 ← 𝑁𝑢𝑙𝑙
5 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 ← 𝑁𝑢𝑙𝑙
6 for 𝑡𝑎 in 𝑇 do
7 𝑠𝑜𝑙𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝑠𝑜𝑙𝑐𝑢𝑟
8 𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘𝑠𝑀𝑜𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒
9 𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠 ← []

10 𝑖𝑛𝑣𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ← 0
11 for 𝑠 in 𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑎) do
12 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 ← 𝐼𝐶(𝑠, 𝑡𝑎)
13 𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
14 # T is ordered by inventory cost of 𝑠 in 𝑡𝑏
15 for 𝑡𝑏 in 𝑇 ∖ {𝑡𝑎} do
16 if 𝑖𝑠𝑀𝑜𝑣𝑒𝑉 𝑎𝑙𝑖𝑑(𝑠𝑎, 𝑡𝑏) then
17 𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘(𝑠𝑎, 𝑡𝑏)
18 𝑖𝑛𝑣𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ← 𝑖𝑛𝑣𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 + (𝐼𝐶(𝑠𝑎, 𝑡𝑏) − 𝑜𝑏𝑗𝑜𝑟𝑖𝑔)
19 𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠 ← 𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠 ∪ (𝑠𝑎, 𝑡𝑏)
20 𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒
21 break
22 end if
23 end for
24 if ¬𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑑 ∨ 𝑖𝑛𝑣𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 > 𝑇 𝐶(𝑡𝑎) then
25 𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘𝑠𝑀𝑜𝑣𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
26 break
27 end if
28 end for
29 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑇 𝐶(𝑡𝑎) − 𝑖𝑛𝑣𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒
30 if 𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘𝑠𝑀𝑜𝑣𝑒𝑑 ∧ 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 > 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒 then
31 𝑏𝑒𝑠𝑡𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒
32 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 ← 𝑡𝑎
33 𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠 ← 𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠
34 end else
35 𝑠𝑜𝑙𝑐𝑢𝑟 ← 𝑠𝑜𝑙𝑜𝑟𝑖𝑔𝑖𝑛
36 end for
37 if 𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘 ≠ 𝑁𝑢𝑙𝑙 then
38 𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑐𝑘𝑠𝑇 𝑜𝑂𝑡ℎ𝑒𝑟𝑇 𝑟𝑢𝑐𝑘𝑠(𝑏𝑒𝑠𝑡𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑠)
39 𝑡𝑟𝑢𝑐𝑘𝐷𝑒𝑙𝑒𝑡𝑒(𝑏𝑒𝑠𝑡𝑡𝑟𝑢𝑐𝑘)
40 else
41 break
42 end else
43 while 𝑡𝑟𝑢𝑒
44

Alg. 4.7. Pseudo-code of Truck Delete Operator Application. 𝑇 - list of used trucks, 𝐼𝐶(𝑠, 𝑡)
= inventory cost of stack 𝑠 in truck 𝑡, 𝑠𝑡𝑎𝑐𝑘𝑠(𝑡) = stacks in truck 𝑡

25

4. Proposed Method .
4.8.2 Operator Application

Pseudo-code Alg. 4.8 is designed for 𝑘 = 2. To apply the operator, a list of potential
trucks 𝑠ℎ𝑜𝑟𝑡𝑇 𝑟𝑢𝑐𝑘𝑠 to remove based on their loading length is created. The method
starts an iteration over the potential trucks (line 2 Alg. 4.8), with the currently iterated
truck denoted as 𝑡𝑎. It iterates over all truck types, 𝑝𝑇, from the input files. If the
stacks from truck 𝑡𝑎 can not be added into truck type 𝑡𝑛, it proceeds to the next 𝑡𝑛
(lines: 4-6 Alg. 4.8).

For each 𝑡𝑛 a candidate list of trucks 𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑, is created to which all stacks from
𝑡𝑎 can be loaded (lines 7-13 Alg. 4.8). The candidate list is sorted in ascending order
(line 14 Alg. 4.8).

The algorithm then iterates over 𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑 in order to find a suitable 𝑡𝑏 that allows
improving the objective by deleting trucks 𝑡𝑎 and 𝑡𝑏 while moving all stacks from these
trucks to the newly created truck 𝑡𝑛. If a suitable pair of trucks, 𝑡𝑎 and 𝑡𝑏, is found,
they are deleted, and truck 𝑡𝑛 is added to the solution loaded with all stacks from the
deleted trucks (lines 17-21 Alg. 4.8).

The iteration then continues to the next potential truck 𝑡𝑎, regardless of whether the
trucks were deleted or not.

1 # Truck Replace operator
2 for 𝑡𝑎 in 𝑠ℎ𝑜𝑟𝑡𝑇 𝑟𝑢𝑐𝑘𝑠 do
3 for 𝑡𝑛 in 𝑝𝑇 do
4 if ¬𝑐𝑎𝑛𝐵𝑒𝐼𝑛(𝑠𝑡𝑎𝑐𝑘(𝑡𝑎), 𝑡𝑛) then
5 continue
6 end if
7 𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑 ← []
8 𝑜𝑏𝑗𝑡𝑎

← 𝐼𝐶(𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑎), 𝑡𝑛)
9 for 𝑡𝑏 in 𝑇 ∖ {𝑡𝑎} do

10 if 𝑐𝑎𝑛𝐵𝑒𝐼𝑛(𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑏), 𝑡𝑛) then
11 𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑 ← 𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑 ∪ ((𝐼𝐶(𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑏), 𝑡𝑛)), 𝑡𝑏)
12 end if
13 end for
14 sort(𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑)
15 for 𝑡𝑏, 𝑜𝑏𝑗𝑡𝑏

in 𝑡𝑟𝑢𝑐𝑘𝑠𝑐𝑎𝑛𝑑 do
16 if 𝑇 𝐶(𝑡𝑎) + 𝑇 𝐶(𝑡𝑏) > 𝑇 𝐶(𝑡𝑛) + 𝑜𝑏𝑗𝑡𝑎

+ 𝑜𝑏𝑗𝑡𝑏
then

17 if 𝑐𝑎𝑛𝐵𝑒𝐿𝑜𝑎𝑑𝑒𝑑(𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑎) ∪ 𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑏), 𝑡𝑛)) then
18 𝑚𝑜𝑣𝑒𝐴𝑙𝑙𝑆𝑡𝑎𝑐𝑘𝑠𝑇 𝑜𝑁𝑒𝑤𝑇 𝑟𝑢𝑐𝑘((𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑎) ∪ 𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑏), 𝑡𝑛)
19 𝑑𝑒𝑙𝑒𝑡𝑒𝑇 𝑟𝑢𝑐𝑘(𝑡𝑎)
20 𝑑𝑒𝑙𝑒𝑡𝑒𝑇 𝑟𝑢𝑐𝑘(𝑡𝑏)
21 𝑠ℎ𝑜𝑟𝑡𝑇 𝑟𝑢𝑐𝑘𝑠 ← 𝑠ℎ𝑜𝑟𝑡𝑇 𝑟𝑢𝑐𝑘𝑠 ∖ {(𝑜𝑏𝑗𝑡𝑎

, 𝑡𝑎) ∪ (𝑜𝑏𝑗𝑡𝑏
, 𝑡𝑏)}

22 break for loop at line 3
23 end if
24 end if
25 end for
26 end for
27 end for

Alg. 4.8. Pseudo-code of Truck Replace Operator Application. 𝑝𝑇 - list of planned truck
types, 𝐼𝐶(𝑆, 𝑡) = inventory cost of stacks 𝑆 in truck 𝑡, 𝑠𝑡𝑎𝑐𝑘𝑠(𝑡) = stacks in truck 𝑡

26

. 4.9 Item Swap operator

4.9 Item Swap operator

Figure 4.8. Item Swap Operator

The Item Swap operator (see Figure 4.8) works very similarly to Stack Swap operators
(described in Section 4.5). It is designed for reducing the inventory part of the objective
function. The idea is the same, the only difference is that this operator works on the
item level and can modify stacks. An item 𝑖𝑎 from stack 𝑠𝑎 and truck 𝑡𝑎 is swapped for
another item 𝑖𝑏 from stack 𝑠𝑏 and truck 𝑡𝑏, where 𝑡𝑎 ≠ 𝑡𝑏.

4.9.1 Constraints to check

Before applying the Item Swap operator to items 𝑖𝑎 and 𝑖𝑏, the following constraints
must be checked for both items in their respective new stacks and trucks, item 𝑠𝑎 in
stack 𝑠𝑏 and truck 𝑡𝑏 and item 𝑖𝑏 in stack 𝑠𝑎 and truck 𝑡𝑎.

. I2 - New truck must arrive at the plant, where the new item must be delivered.. I3 - New truck might not be able to pick up a new item.. I4 - New truck might not stop at the supplier where the new item is distributed from.. I5 - The item might not be delivered in the time window.. S1 - New item might not be compatible with a stack. S4 - Stack orientation may be forced and new item’s orientation may be in conflict
with it.. S5 - Maximal weight above the bottom item might be exceeded.. S7 - Maximal density of a stack item might be exceeded.. W1 - New item can weigh more than the old one which may result in overloading the
truck.. W2 - A different weight of the new item may overload one of the axles.

4.9.2 Operator Application

The operator is applied in a ’first improve’ fashion due to a large number of items. It
is iterated over all pairs of items 𝑖𝑎 and 𝑖𝑏 which do not share the same truck (lines 2-6
Alg. 4.9). If the objective of swapped items is lower than the original one, items are
swapped and it proceeds to the next item (lines 9-11 Alg. 4.9).

27

4. Proposed Method .

1 # Item Swap
2 for 𝑖𝑎 in ̂𝐼 do
3 for 𝑖𝑏 in ̂𝐼 do
4 if 𝑡𝑟𝑢𝑐𝑘(𝑖𝑎) == 𝑡𝑟𝑢𝑐𝑘(𝑖𝑏) then
5 continue
6 end if
7 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 ← 𝐼𝐶(𝑖𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑖𝑎)) + 𝐼𝐶(𝑖𝑏, 𝑡𝑟𝑢𝑐𝑘(𝑖𝑏))
8 𝑜𝑏𝑗𝑛𝑒𝑤 ← 𝐼𝐶(𝑖𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑖𝑏)) + 𝐼𝐶(𝑖𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑖𝑏))
9 if 𝑜𝑏𝑗𝑛𝑒𝑤 < 𝑜𝑏𝑗𝑜𝑟𝑖𝑔 ∧ 𝑣𝑎𝑙𝑖𝑑𝑆𝑤𝑎𝑝(𝑖𝑎, 𝑖𝑏) then

10 𝑠𝑤𝑎𝑝𝐼𝑡𝑒𝑚𝑠(𝑖𝑎, 𝑖𝑏)
11 break
12 end if
13 end for
14 end for

Alg. 4.9. Pseudo-code of Item Swap. 𝐼𝐶(𝑖, 𝑡) = inventory cost of item 𝑖 in truck 𝑡, 𝑡𝑟𝑢𝑐𝑘(𝑖)
= truck where item 𝑖 is placed.

4.10 Item Move operator

Figure 4.9. Item Move Operator

The Item Move operator (see Figure 4.9) is an item equivalent to Stack Move Op-
erator (described in Section 4.6). It is designed to reduce the inventory part of the
objective function. This operator is also able to modify stacks by adding and removing
items. An item 𝑖𝑎 from stack 𝑠𝑎 and truck 𝑡𝑎 is moved to stack 𝑠𝑏 in truck 𝑡𝑏, where
𝑡𝑎 ≠ 𝑡𝑏.

4.10.1 Constraints to check (donor stack)
Both following constraints must be checked if an item is removed from a stack.

. S5 - If an item is removed from the bottom of the stack, a new bottom item can have
a lower maximal weight above the bottom item.. W2 - Removing an item from a stack can overload an axle.

4.10.2 Constraints to check (receiver stack)
The constraints needed to check whether an item can be added to a stack in a different
truck are the same as constraints for the Item Swap operator 4.9.1.

4.10.3 Operator Application
The operator is just like the Item Swap operator applied in a ’first improve’ fashion
due to a large number of items. Pseudo-code Alg. 4.10 describes the iteration over all

28

. 4.11 Depth-First Tree Search Algorithm

1 # Item Move
2 for 𝑖𝑎 in ̂𝐼 do
3 for 𝑡𝑏 in 𝑇 ∖ {𝑡𝑟𝑢𝑐𝑘(𝑖𝑎)} do
4 for 𝑠𝑏 in 𝑠𝑡𝑎𝑐𝑘𝑠(𝑡𝑏) do
5 if 𝐼𝐶(𝑖𝑎, 𝑡𝑏) < 𝐼𝐶(𝑖𝑎, 𝑡𝑟𝑢𝑐𝑘(𝑖𝑎)) ∧ 𝑣𝑎𝑙𝑖𝑑𝑀𝑜𝑣𝑒(𝑖𝑎, 𝑠𝑏) then
6 𝑚𝑜𝑣𝑒𝐼𝑡𝑒𝑚(𝑖𝑎, 𝑖𝑏)
7 break for loop at line 3
8 end if
9 end for

10 end for
11 end for

Alg. 4.10. Pseudo-code of Item Move. 𝐼𝐶(𝑖, 𝑡) = inventory cost of item 𝑖 in truck 𝑡, 𝑡𝑟𝑢𝑐𝑘(𝑖)
= truck where item 𝑖 is placed.

items 𝑖𝑎 (line 2 Alg. 4.10), where it tests whether loading 𝑖𝑎 into truck 𝑡𝑏 results in a
better solution. If a better solution is found and the move is valid, the item is moved
from its original stack to a new stack 𝑠𝑏 (line 6 Alg. 4.10).

4.11 Depth-First Tree Search Algorithm
By default, if we want to insert a stack into a truck, we do not change the order of
stacks already loaded in a truck. The stack is inserted into the solution vector and the
positions of the following stacks are recalculated. This approach is fast and works well
if a truck is relatively empty.

However, in cases where a truck is nearly fully loaded, the previous approach may
struggle to find a feasible position for the new stack. In such situations, rearranging the
existing stacks by changing their order, orientations or positions may result in finding
a feasible position for a new stack as it is shown in an example in Figure 4.10.

Figure 4.10. The figure illustrates two loading spaces containing the same three stacks
but arranged differently. On the left loading space, the arrangement is unfeasible due to
stack 𝐶 exceeding the dimensional limits of the truck. Conversely, the right loading space

displays an alternative arrangement which is feasible.

To address the problem of adding a new stack to an already nearly fully loaded truck,
we introduced a custom Depth-First Tree Search (DFTS) algorithm. The algorithm
explores different stack permutations, stack orientations, and stack positions in order
to determine feasible arrangements for all original stacks as well as the newly added
stack. The generated tree is illustrated in Figure 4.11. The depth-first search begins
at a node representing an empty truck and expands the node to identify all possible
stacks and their configurations that can be added. It then traverses to one of the child
nodes representing a feasible stack arrangement and inserts the corresponding stack.

29

4. Proposed Method .
This process continues until a feasible arrangement of all stacks is found or until the
limit of visited nodes is reached.

Figure 4.11. An expanded tree representing stack arrangements for 3 stacks A, B, C.

The number of arrangements is enormous. For instance, considering 𝑛 stacks, the
number of arrangements can be approximately up to 𝑛! × 2 × 𝑛𝑃, where 𝑛 is on average
≈ 14 and can be up to 24 (values are based on solutions for Dataset B instances) and
𝑛𝑃 represents the number of positions. To manage this vast search space, our method
incorporates several pruning techniques.

Firstly, stacks are sorted into sectors based on supplier loading orders, supplier dock
loading orders, and plant dock loading orders. These sectors are then loaded one by
one in only one feasible order, significantly reducing the number of permutations to
∑𝑠𝑒𝑐∈𝑆𝑒𝑐 |𝑠𝑒𝑐|!), 𝑆𝑒𝑐 denotes the list of sectors. Additionally, we maintain the available
area within the truck during the search, terminating the process if the area required by
the unloaded stacks exceeds the available space.

Furthermore, certain stacks have predefined orientations, further reducing the num-
ber of possible arrangements. Additionally, some positions may not be feasible for
certain stacks, thereby narrowing down the potential search space.

4.11.1 Tree Search Parameters
The behavior of the DFTS algorithm is governed by three parameters: 𝑚𝑎𝑥𝑉 𝑖𝑠𝑁𝑜𝑑𝑒𝑠,
𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑙𝑖𝑐𝑦, and 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠. The parameter 𝑚𝑎𝑥𝑉 𝑖𝑠𝑁𝑜𝑑𝑒𝑠 sets the maximum num-
ber of visited nodes during the search. Once this limit is reached, the search process is
terminated.

In our observations and experiment described in Section 5.4, we have noticed a pat-
tern that if a feasible solution exists, it is typically found relatively quickly. Conversely,
if the search runs for an extended duration without finding a solution, it is likely that
no feasible arrangement exists. Therefore, it is often effective to set the 𝑚𝑎𝑥𝑉 𝑖𝑠𝑁𝑜𝑑𝑒𝑠
parameter to a relatively low value, such as 800, to avoid prolonged search attempts
for not-likely feasible arrangements. This approach is especially beneficial considering
the requirement for the algorithm to execute swiftly, as it is run multiple times.

30

. 4.12 Perturbation

The 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑙𝑖𝑐𝑦 parameter defines the order in which the algorithm explores the
children nodes. It can take one of two values: 𝑟𝑎𝑛𝑑𝑜𝑚 or 𝑠𝑡𝑎𝑡𝑖𝑐. When 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑙𝑖𝑐𝑦
is set to 𝑟𝑎𝑛𝑑𝑜𝑚, the children nodes are shuffled to ensure a randomized exploration.
In contrast, 𝑠𝑡𝑎𝑡𝑖𝑐 follows the original stack order in the truck.

Additionally, the parameter 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 specifies the number of independent runs for
the search. By performing multiple runs, the algorithm can explore different regions
of the search space increasing the chance in finding a feasible stack arrangement. It is
important to note that this approach is effective only when the 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑙𝑖𝑐𝑦 is set to
𝑟𝑎𝑛𝑑𝑜𝑚, as repeated searches with a 𝑠𝑡𝑎𝑡𝑖𝑐 policy would yield identical results, covering
the same search space repeatedly.

4.12 Perturbation
When we reach a local minimum using the Local Search, we would like to escape this
minimum and try to explore a different part of the solution space and potentially find
a better local minimum or even a global minimum. For small instances, local search
converges relatively quickly and the majority of the given time budget for runtime would
be unused. For these reasons, a simple perturbation [33] procedure was implemented.

The current best solution is perturbated in the following way. The solution is com-
posed of trucks filled with stacks made of items. The 𝑝 of randomly selected trucks
(line 4 Alg. 4.12), where 𝑝 is a parameter representing the percentage of trucks that
will be removed, is deleted (line 6 Alg. 4.12), and all stacks loaded into deleted trucks
are separated into single items which are stored in a list of items (line 5 Alg. 4.12).

This solution is not valid, because it does not contain all items. Therefore, all items
from deleted trucks stored in 𝑖𝑡𝑒𝑚𝑠𝑑𝑒𝑙𝑡𝑒𝑑 are loaded onto the trucks in the same way the
initial solution is created. (lines 9-11 Alg. 4.12). That means that the inventory cost
of these items will be minimal. During this process, it is possible to plan new trucks
and new extra trucks.

After this procedure solution is valid and hopefully after using local search it con-
verges to a different local minimum. If this solution is better than the original solution
from which this procedure started, it becomes the new best solution and other pertur-
bation procedure runs will start from this solution.

The process of how perturbation improves solution quality is visually represented in
Figure 4.12. In the plot, each blue point corresponds to the objective value of a solution
after it has undergone the perturbation procedure and reached a local minimum.

Figure 4.12. The perturbation progress on instance RT (from Dataset A), the green marker
shows the solution after the first local search and the red marker shows the best solution

found.

31

4. Proposed Method .

1 # Pertubation
2 𝑖𝑡𝑒𝑚𝑠𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ← []
3 for 𝑡 in 𝑡𝑟𝑢𝑐𝑘𝑠(𝑠𝑜𝑙) then
4 if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 100) < 𝑝 then
5 𝑖𝑡𝑒𝑚𝑠𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ← 𝑖𝑡𝑒𝑚𝑠𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ∪ 𝑖𝑡𝑒𝑚𝑠(𝑡)
6 𝑑𝑒𝑙𝑒𝑡𝑒𝑇 𝑟𝑢𝑐𝑘𝐹𝑟𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡, 𝑠𝑜𝑙)
7 end
8 end for
9 for 𝑖 in 𝑖𝑡𝑒𝑚𝑠𝑑𝑒𝑙𝑒𝑡𝑒𝑑 do

10 𝑙𝑜𝑎𝑑𝐼𝑡𝑒𝑚𝑇 𝑜𝐴𝑇 𝑟𝑢𝑐𝑘𝐺𝑟𝑒𝑒𝑑𝑦(𝑡, 𝑠𝑜𝑙)
11 end for

Alg. 4.12. Pseudo-code of Perturbation procedure. 𝑠𝑜𝑙 = current solution, 𝑡𝑟𝑢𝑐𝑘𝑠(𝑠) =
used trucks in solution 𝑠, 𝑖𝑡𝑒𝑚𝑠(𝑡) = set of all items placed in truck 𝑡.

4.13 Parameters
Several parameters are used in the implementation of the proposed method, particularly
for controlling the DFTS and Local Search components. A comprehensive list of all the
parameters, including their types, default values, and brief descriptions, can be found
in Table 4.1.

Parameters are incorporated to provide flexibility in tuning our method, specifically
for the available problem instances, aiming to achieve optimal results in the competition.
By leveraging parameters, it becomes possible to disable specific operators and adjust
the behavior of the DFTS to enhance performance and meet the time constraints,
particularly for larger instances. This adaptability allows us to optimize the method’s
effectiveness based on given instances.

We successfully employed the irace tool [34] for parameter tuning on the Dataset B
instances during the Qualification round. For the upcoming Final round, we intend
to follow a similar approach, leveraging the publicly available Dataset C. However, it
should be noted that Dataset X, which will also be used for evaluation in the Final
round, is not public. As a result, our plan is to generate multiple parameter sets based
on the characteristics of the instances, in particular instance size.

4.14 Implementation notes
The program implementing the designed method and solving the given problem was
written in C++, because of the high-performance demands created by relatively small
time limits and large data instances. OpenMP [35] was used for parallelization to
increase computing power utilization.

Input and output files are in CSV format and the structures of these files are defined
by organizers. The program reads from its arguments paths for input files and paths
to output files.

The challenge is still in progress. In this thesis, we present the properties and results
of the implementation available in Appendix A.

32

. 4.14 Implementation notes

Parameter Type Default Description

𝑠𝑒𝑒𝑑 integer 477 167 Random generator seed
𝛾 float 0.0005 Weight used in initial solution
𝑚𝑎𝑥𝑉 𝑖𝑠𝑁𝑜𝑑𝑒𝑠 integer 800 DFTS: limit for max visited nodes
𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑙𝑖𝑐𝑦 enum random DFTS: order of nodes static/random
𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 integer 2 DFTS: number of clear starts
𝑚𝑎𝑥𝐶𝑦𝑐𝑙𝑒𝑠𝐿𝑆 integer -1 LS: max number of LS cycles, −1 → ∞
𝑓𝑖𝑟𝑠𝑡𝑆𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒 bool true LS: start LS with Stack Move operator
𝑡𝑤𝑜𝐶𝑦𝑐𝑙𝑒𝑠 bool false LS: separate operators to two cycles
𝑡𝑟𝑢𝑐𝑘𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 bool true LS: allow truckload balancing
𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒𝑈𝑠𝑒𝑠𝑇 𝑆 bool true LS: allow DFTS in Stack Move
𝑡𝑟𝑢𝑐𝑘𝐷𝑒𝑙𝑒𝑡𝑒𝑈𝑠𝑒𝑠𝑇 𝑆 bool true LS: allow DFTS in Truck Delete
𝑠𝑡𝑎𝑐𝑘𝑆𝑤𝑎𝑝 bool true LS: allow Stack Swap operator
𝑠𝑡𝑎𝑐𝑘𝑀𝑜𝑣𝑒 bool true LS: allow Stack Move operator
𝑡𝑟𝑢𝑐𝑘𝐷𝑒𝑙𝑒𝑡𝑒 bool true LS: allow Truck Delete operator
𝑡𝑟𝑢𝑐𝑘𝑅𝑒𝑝𝑙𝑎𝑐𝑒 bool true LS: allow Truck Replace operator
𝑖𝑡𝑒𝑚𝑆𝑤𝑎𝑝 bool true LS: allow Item Swap operator
𝑖𝑡𝑒𝑚𝑀𝑜𝑣𝑒 bool true LS: allow Item Move operator
𝑝 integer 15 Perturbation parameter, percentage of deleted trucks

Table 4.1. Table of parameters used in the implementation

33

Chapter 5
Results

In this chapter, we present a comparison of our method results on the available datasets
(Dataset A and B). We also compare the current method with the older version which
our team submitted for the qualification round. Then, we present the comparison of the
DFTS method for finding feasible stack arrangements in a truck with an Integer Linear
Programming model. Finally, we provide an overview of the contribution of each Local
Search operator and its time consumption.

Please note that during writing this work Roadef challenge is still ongoing, the results
presented are generated approximately 6 weeks before the final round deadline. We are
still tuning our method implementation. The method implementation on which the
following experiments were conducted can be found in Appendix A.

5.1 Instances
The organizers of the competition introduced 4 datasets with instances, Datasets A, B,
C, and X. Datasets A, B, and C are public, they were released during the competition
for the evaluation of different rounds. Dataset X is private, it is meant to be used
together with Dataset C for the evaluation of the final round and will be released after
it [5].

An instance is composed of 3 files: input_items.csv, input_trucks.csv, and input_pa-
rameters.csv. The files are in the comma-separated values (CSV) format.

The input_items.csv file contains all information about items. The input_trucks.csv
file contains all information related to planned trucks. The input_parameters.csv in-
cludes 4 parameters, 𝛼𝐼, 𝛼𝑇, 𝛼𝐸, and the time limit. The used set of parameters among
all datasets can be seen in Table 5.1 while Table 5.2 shows the properties of datasets.

Dataset Set 𝛼𝐼 𝛼𝑇 𝛼𝐸 Time Limit [s]

A 1 10.0 1.0 0.2 -
A 2 30.0 1.0 0.5 -
B 1 1.0 1.0 0.2 1800
B 2 5.0 1.0 0.2 1800
C 1 1.0 1.0 0.2 3600
C 2 5.0 1.0 0.2 3600
C 3 1.0 5.0 0.2 3600

Table 5.1. Parameter sets of available Datasets

Dataset A [36] was published at the beginning of the competition on 5th July 2022
[5]. It was used for the evaluation of the Sprint round and consists of 30 instances.
These instances are described by organizers as small/medium size instances [31]. It
should be noted that although a time limit was present in input files, it was not used
during the Sprint round, and teams submitted only the best solutions they obtained.

34

. 5.2 Results for Dataset A

Dataset B [37] was published along with the results of the Sprint round on 30th Oc-
tober 2022 [5]. This dataset was used for the evaluation of the Qualification round
and consists of 40 instances. These instances are described by organizers also as
small/medium size instances [31].

Finally, Dataset C [37] was released after the qualification results [5]. This dataset,
together with Dataset X, will be used for the evaluation of the final round. It is com-
posed of 50 instances. These instances are considered regular-size instances according
to [31]. The time limit for these instances is one hour.

Dataset Attribute Min Value Max Value

A

Single Item Count 5 017 85 435
Item Classes 953 19 114
Truck Count 220 5 821
𝐼𝐶𝑖 0 25 630
𝑇 𝐶𝑡 1 500 1 500

B

Single Item Count 736 84 607
Item Classes 203 21 063
Truck Count 30 6 098
𝐼𝐶𝑖 0 6 780
𝑇 𝐶𝑡 1 500 1 500

C

Single Item Count 2 881 208 318
Item Classes 684 65 274
Truck Count 66 6 775
𝐼𝐶𝑖 0 4 941
𝑇 𝐶𝑡 1 500 1 500

Table 5.2. Instance properties of available Datasets

5.2 Results for Dataset A
Dataset A was used for the evaluation of the Sprint round. The organizers then pre-
sented the best-known objectives [38] for each instance. As the teams only submitted
solution files, we do not have information about their hardware specifications or run-
times. Objectives in Table 5.3 obtained using the proposed method were generated with
a time limit of 16 hours, which we set. We ran the proposed method on Metacentrum
[39] cluster, which consists of an AMD EPYC Processor (with IBPB) 2.400 GHz (8
threads), 8 GB RAM, and Debian BULLSEYE. The method used default parameters
described in Section 4.13.

It is worth noting that the Sprint round took place in October 2022, and we are
comparing the Sprint results to the solutions generated by the latest version (May 2023)
of the proposed method. Since the Sprint submission, we have improved our method
significantly, and it is reasonable to assume that other teams have also improved their
methods. Considering all the above, the best-known objectives listed in the Sprint
results may now be outdated.

However, the proposed method obtained 13 new best objectives out of 30 instances.
If these results were included in the scoreboard, our team would have found the most
best-known objectives out of all teams, with team S30 finding 12 best-known objectives
and team S41 finding 5. The average gap between Sprint’s best-known objectives and

35

5. Results .
obtained objectives is -0.65%. The maximal gap is 2.90% (FL instance), while the
minimal gap of -7.89% was achieved for instance CC. Overall, the proposed method
performed very well on Dataset A.

Instance Sprint1 Proposed method Gap2

AS 395 040 396 300 0.32%
BU 520 110 496 850 -4.47%
BY 3 273 230 3 343 050 2.13%
BY2 3 644 520 3 708 900 1.77%
CA 790 800 790 430 -0.05%
CC 922 930 850 150 -7.89%
CI 1 677 310 1 706 030 1.71%
CI2 1 844 250 1 883 940 2.15%
CL 1 719 300 1 753 090 1.97%
DO 1 726 530 1 737 930 0.66%
DO2 1 957 890 1 958 040 0.01%
FC 237 720 223 400 -6.02%
FL 1 786 880 1 838 660 2.90%
FS 490 200 460 990 -5.96%
MA 2 552 530 2 592 920 1.58%
MA2 2 846 220 2 892 150 1.61%
MT 1 038 000 1 059 720 2.09%
PA 3 159 800 3 169 170 0.30%
PA2 3 516 780 3 507 840 -0.25%
RM 807 610 803 270 -0.54%
RM2 877 680 859 710 -2.05%
RT 320 650 298 490 -6.91%
SA 3 323 430 3 331 410 0.24%
SA2 3 739 860 3 769 080 0.78%
TA 2 758 140 2 711 380 -1.70%
TA2 3 025 500 3 060 720 1.16%
TR 1 963 680 1 922 900 -2.08%
TR2 2 097 750 2 124 330 1.27%
VA 3 037 030 2 974 880 -2.05%
VA2 3 369 000 3 299 550 -2.06%

Average -0.65%

Table 5.3. Comparison of objective values of the best solutions from the sprint round and
objective values of solutions found using the proposed method

1Best-known value from Sprint round 2Gap computed as 𝑜𝑏𝑗−𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛
𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛

5.3 Results for Dataset B
In the Qualification round, Dataset B was used to evaluate the submitted methods. We
compared the best-known objective values among all competitors with those generated
by our proposed method, as well as with results from an older version of our proposed
method that we submitted for the Qualification round. Using the qualification score-
board [6], which has already been published, we are able to compare our results with
other teams’ programs.

36

. 5.4 Comparison of Depth-First Tree Search and Integer Linear Program Model

It should be noted that the competition organizers based their scoreboard and best-
known objectives on results obtained by submitted programs running on their hardware,
which consisted of a Google Cloud Platform virtual machine with 8 CPUs, 32GB of
RAM, and CentOS 7 [31]. In contrast, the proposed method was tested on a laptop
with an Intel(R) Core(TM) i7-1065G7 CPU - 1.30 GHz (8 threads), 16 GB RAM, and
Windows 10. Both setups were run for 30 minutes for each instance. We performed
parameter tuning specific to each instance, and these tuned parameters were used also in
both setups. The organizers revealed only the best-known objective for each instance
and the score of each qualified team. Therefore, these hardware specifications are
important to consider when interpreting the results.

Table 5.4 presents the best-known objectives, as well as the objectives obtained using
the proposed method in both a version that was used in the Qualification round and
the current version, along with their percentage gaps. The average gap between the
best-known objectives and the old version is 20.49%, and the biggest gap is 30.61% for
instance CA. However, the method was able to find a solution with the same objective
as the best-known objective for two instances (RT, RT2). Despite the average gap being
relatively high, we were able to place 9th among all teams and 3rd among junior teams,
which is significant considering 51 teams worldwide registered, 20 of which were junior
teams.

Since the qualification round, the proposed method has been significantly improved,
with the average gap between the obtained objectives and best-known objectives drop-
ping to 8.70%. The maximum gap dropped to 15.59% (instance CI). The current
proposed method still managed to obtain the best-known objectives for RT and RT2
instances. Furthermore, for instances AS and CC2, the proposed method generated
solutions that were very close to the best-known values, with gaps less than or equal to
2.0%.

5.4 Comparison of Depth-First Tree Search and Integer
Linear Program Model

In this section, we compare our custom algorithm, based on Depth-First Tree Search
(DFTS) described in Section 4.11, to the Integer Linear Programming (ILP) model
solved by Gurobi [40] for finding a feasible stack arrangement in trucks. The task is to
load a set of stacks 𝑆 = 𝑆′ ∪ 𝑠 into the truck 𝑡, satisfying all constraints. It is known
that a set of stacks 𝑆′ is feasible to load into a truck 𝑡, and 𝑠 is a new stack to add.

One alternative way to solve this problem is to create an ILP model and solve it
using a solver. The Gurobi Solver, which is listed in the rules of the competition [31]
as an available program, can be used for this purpose. However, this approach may be
too time-consuming for our purposes compared to our custom tree search. Therefore,
we conducted an experiment to compare the performance of these two approaches.

5.4.1 Experiments
We created an ILP model without an objective function, incorporating constraints
derived from the problem, such as placement constraints P1, P2, P3, P4 (Section 3.4.3),
stack constraint S4 (Section 3.4.2), and weights constrain W2 (Section 3.4.4). The
model was then implemented into the program, and the success rate and time needed
to run these methods were measured for both methods (ILP model and DFTS) on
several instances from Dataset B. All data were collected from one run of the first delete
operator. For the DFTS method, we used the following parameters: 𝑚𝑎𝑥𝑉 𝑖𝑠𝑁𝑜𝑑𝑒𝑠 =

37

5. Results .

Instance Qualification1 Old2 Gap3 Current4 Gap3

AS 912 146 1 044 568 14.52% 962 164 5.48%
AS2 988 795 1 056 880 6.89% 1 008 505 1.99%
BU 449 984 558 164 24.04% 491 235 9.17%
BU2 495 355 588 740 18.85% 522 725 5.53%
BY 2 779 694 3 284 573 18.16% 3 073 669 10.58%
BY2 3 037 000 3 544 190 16.70% 3 332 165 9.72%
CA 689 674 900 805 30.61% 758 408 9.97%
CA2 747 790 948 110 26.79% 780 270 4.34%
CC 636 928 747 003 17.28% 662 718 4.05%
CC2 698 115 798 125 14.33% 712 110 2.00%
CI 2 225 621 2 828 960 27.11% 2 572 675 15.59%
CI2 2 445 335 3 024 375 23.68% 2 791 760 14.17%
CL 1 192 162 1 457 361 22.25% 1 297 437 8.83%
CL2 1 276 130 1 521 145 19.20% 1 339 860 4.99%
DO 1 523 537 1 834 915 20.44% 1 712 133 12.38%
DO2 1 722 765 1 913 710 11.08% 1 842 225 6.93%
FC 281 660 356 525 26.58% 311 220 10.49%
FC2 324 140 386 670 19.29% 339 590 4.77%
FL 1 504 229 1 847 710 22.83% 1 685 566 12.06%
FL2 1 681 390 2 019 725 20.12% 1 789 095 6.41%
FS 505 146 623 284 23.39% 536 899 6.29%
FS2 562 170 662 980 17.93% 593 765 5.62%
MA 2 415 304 3 108 594 28.70% 2 760 723 14.30%
MA2 2 809 290 3 258 175 15.98% 3 008 840 7.10%
MT 1 176 550 1 519 494 29.15% 1 296 990 10.24%
MT2 1 303 555 1 626 250 24.75% 1 387 605 6.45%
PA 2 282 468 2 962 467 29.79% 2 501 929 9.62%
PA2 2 618 020 3 153 550 20.46% 2 820 260 7.72%
RM 842 282 1 077 148 27.88% 952 458 13.08%
RM2 949 855 1 127 895 18.74% 1 020 960 7.49%
RT 43 500 43 500 0.00% 43 500 0.00%
RT2 43 500 43 500 0.00% 43 500 0.00%
SA 2 536 199 3 269 450 28.91% 2 914 087 14.90%
SA2 2 774 020 3 552 155 28.05% 3 137 090 13.09%
TA 2 135 459 2 677 396 25.38% 2 411 171 12.91%
TA2 2 328 060 2 862 065 22.94% 2 575 195 10.62%
TR 1 429 757 1 727 387 20.82% 1 649 503 15.37%
TR2 1 551 015 1 850 675 19.32% 1 754 415 13.11%
VA 2 160 686 2 623 032 21.40% 2 408 352 11.46%
VA2 2 394 030 2 756 455 15.14% 2 618 365 9.37%
Average 20.49% 8.70%

Table 5.4. Comparison of best-known objectives, an older version of the proposed method
used in the Qualification round, and current proposed method on Dataset B.

1Best-known objectives from Qualification round 2Objectives obtained using proposed
method submitted for the Qualification round 3Gap computed as 𝑜𝑏𝑗−𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛

𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛
4Objec-

tives obtained using current proposed method

38

. 5.5 Contributions of operators

500, 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑙𝑖𝑐𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚, and 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 1. The ILP model was tested with
time limits ranging from 0.1 s up to 10 s. The program for both methods was run on a
computer equipped with Intel(R) Core(TM) i7-1065G7 CPU - 1.30 GHz, 16 GB RAM,
and Windows 10.

5.4.2 Results

The results, shown in Table 5.5, indicate that DFTS found significantly more feasible
solutions than ILP in every test. For instance, in the case of instance MA2, the ILP
model with a time limit of 0.5 seconds found 444 feasible solutions out of 3 739 cases,
with a total CPU time of 1 482 seconds, which is almost the whole of 1 800 seconds time
budget for an instance. In contrast, DFTS found 895 solutions in only 145 seconds.
For the RT instance, DFTS found a feasible solution for every one of the 98 runs in an
average time of 1.1 milliseconds per solution, while ILP found only 61 even with a time
limit of 10 seconds. These results clearly demonstrate that DFTS outperformed ILP
significantly both in terms of speed and ability to find feasible solutions.

Moreover, considering that a time limit of 0.1 seconds is hardly feasible for the stated
problem and the number of found feasible solutions by ILP model is very low, we have
concluded that our custom DFTS algorithm is more appropriate for this problem, and
we will not further investigate the Gurobi ILP model approach for this problem.

ILP DFTS
Instance Runs TL1 F2 Ft3 NFt4 Tt5 F2 Ft3 NFt4 Tt5

AS 4 155 0.1 4 51.9 117.3 487.1 119 4.3 21.8 88.5
FC 1 671 0.1 4 60.3 64.4 107.7 140 11.1 33.4 46.0
FC 1 671 0.2 9 134.5 114.3 191.7 140 11.1 33.4 46.0
FC 1 671 0.5 10 190.6 252.7 421.8 140 11.1 33.4 46.0

MA2 3 739 0.1 322 45.1 102.0 390.3 895 9.7 48.0 145.4
MA2 3 739 0.5 444 113.1 434.8 1,482 895 9.7 48.0 145.4
RT 98 0.5 29 132.9 543.8 41.4 98 1.1 - 0.1
RT 98 1.0 36 234.0 1037.5 72.8 98 1.1 - 0.1
RT 98 5.0 52 1,089 5,051 289.0 98 1.1 - 0.1
RT 98 10.0 61 1,920 10,069 489.7 98 1.1 - 0.1

Table 5.5. Comparison of ILP solved by Gurobi and DFTS for finding stack feasible ar-
rangements.

1Time limit of Gurobi run [s] 2Number of runs ended with a feasible solution found 3Average
time of run with a feasible solution found [ms] 4Average time of run with no solution found

[ms] 5Total Time [s] spent on all runs

5.5 Contributions of operators
In this section, we present an analysis of the contribution of each Local Search oper-
ator to a solution improvement. Our program was run for 1 hour for each instance
from dataset B. We measure solution improvement and runtime per operator for all
instances. We combine all improvements of each operator and analyze contribution,
time consumption, and contribution per time ratio. The contribution is determined as
a percentage of the total improvement in solution objectives across all instances and
local search runs.

39

5. Results .
The results in Table 5.6 show the measured values. The Truck Delete operator

was found to have the highest contribution to total solutions improvement at 64.73%,
while consuming 25.37% of the total time. The Stack Move operator was the second
contributing 28.34% to total improvements. It should be noted that the Stack Move
operator behaved similarly to the Truck Delete operator in some cases when a truck
contains only one stack, which explains its significant contribution. The Stack Move
operator also consumed a significant amount of time at 49.09%, as it was run more
times than Truck Delete or Truck Replace. The third most effective operator was Truck
Replace, which contributed 4.968% and consumed 22.38% of the total time spent on
solution improvements. The Item Move Operator had a contribution of 1.12%, followed
by Stack Swap with 0.74%, and Item Swap with the least contribution of 0.1%.

The high contributions of the Truck Delete, Stack Move, and Truck Replace operators
can be attributed to their ability to lower the transportation cost component of the
objective function. This cost is initially high due to the way the initial solution is
found. In contrast, the Item Move, Stack Swap, and Item Swap operators provide only
minor improvements to a solution as they only focus on the inventory component of
the objective.

The Truck Delete Operator is the most important operator with a significant contri-
bution to the total improvement achieved. It is also the most time-effective operator,
with an average improvement of 2.84 EUR per millisecond. Another highly effective
operator is the Stack Swap operator, which has an average improvement of 2.29 EUR
per millisecond. On the other hand, the least helpful operator is the Item Swap, which
has a very low contribution. During the tuning phase of Dataset C, the Item Swap
operator will likely be turned off for many instances.

Operator Contribution [%] Time1 [%] Obj2 [EUR/ms]
Truck Delete 64.734 25.370 2.844
Stack Move 28.336 49.093 0.643
Truck Replace 4.968 22.372 0.247
Item Move 1.120 1.424 0.877
Stack Swap 0.742 0.361 2.291
Item Swap 0.100 1.381 0.080

Table 5.6. Contribution of each Local Search Operator, percentage of time consumed, and
the ratio of solution improvement per millisecond over all instances in Dataset B.

1Time consumption 2EUR per millisecond

40

Chapter 6
Conclusion

In this thesis, we have studied the introduced Truck loading problem and developed a
method based on Iterative Local Search to address this problem. We proposed six Local
Search operators specifically designed for this problem, as well as truck load balancing
methods, the DFTS algorithm, and a perturbation procedure.

I, the author of this thesis, developed and implemented the entire codebase for incor-
porating the proposed methods, and I also conducted all the experiments. The team
registered for the competition consists of myself and my supervisor, Ing. David Woller.

With an earlier version of our proposed method, our team successfully qualified for
the Final round of the Roadef Challenge 2022, achieving 9th place out of 51 teams
overall and 3rd place in the junior category. Since then, we have made significant
improvements to our method, as evidenced by the reduction in the average gap on
Dataset B instances from 20.49% to 8.70%. For two instances (RT, RT2) from Dataset
B, we found 2 solutions with the best-known objective. Additionally, on Dataset A, we
discovered 13 new best solutions out of 30 instances, with an average gap of -0.65%.

Despite the promising results achieved by our proposed method, we acknowledge
certain limitations. Notably, there are instances with relatively high gaps between
published best-known results and ours, such as the 15.37% gap for the TR instance
and the 15.59% gap for the CI instance, both from Dataset B. Additionally, the loading
space of trucks could be utilized more effectively as we currently employ a simplified
approach for loading stacks. The upcoming Final round will serve as a true test of the
quality of the solutions generated by our method.

In the experiments, I conducted a comparison between DFTS and the Gurobi ILP
model. The results demonstrated that the proposed DFTS outperformed the ILP model
in terms of both speed and the number of feasible solutions found for the given problem.
Additionally, I provided an overview of the contribution of each Local Search operator
and its time consumption.

Our future steps involve fine-tuning our method specifically for Dataset C and ex-
ploring the optimal setup of Local Search operators to maximize the trade-off between
solution quality and computation time. Additionally, we aim to estimate parameter
sets suitable for the unknown Dataset X.

Overall, we firmly believe that our team, armed with this method, has a strong
potential to achieve interesting results in the competition, particularly within the junior
category.

41

References

[1] Roadef.org. Challenge ROADEF/euro 2022: Trucks loading problem.
https://www.roadef.org/challenge/2022/en/.

[2] Société française de Recherche Opérationnelle et d’aide à la décision.
https://www.roadef.org/.

[3] EURO - The Association of European Operational Research Societies.
https://www.euro-online.org/.

[4] Renault Group, car manufacturer - Official website.
https://www.renaultgroup.com/.

[5] Roadef.org. SCHEDULE OF THE ROADEF/EURO CHALLENGE 2022.
https://www.roadef.org/challenge/2022/en/calendrier.php.

[6] Roadef.org. CHALLENGE ROADEF/EURO 2022 QUALIFICATION RESULTS .
https://www.roadef.org/challenge/2022/en/qualifresult.php.

[7] Dirk G. Cattrysse, and Luk N. Van Wassenhove. A survey of algorithms for the
generalized assignment problem. European Journal of Operational Research. 1992,
60 (3), 260-272. DOI https://doi.org/10.1016/0377-2217(92)90077-M.

[8] Andreas Bortfeldt, and Gerhard Wäscher. Constraints in container loading – A
state-of-the-art review. European Journal of Operational Research. 2013, 229 (1),
1-20. DOI https://doi.org/10.1016/j.ejor.2012.12.006.

[9] Silvano Martello, and Paolo Toth. Bin-packing problem. Knapsack problems: Al-
gorithms and computer implementations. 1990, 221–245.

[10] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Chapter 4 The traveling
salesman problem. Handbooks in Operations Research and Management Science.
1995.
https://www.sciencedirect.com/science/article/pii/S0927050705801215.

[11] Joakim Westerlund, Lazaros Papageorgiou, and Tapio Westerlund. A MILP model
for N-dimensional allocation. Computers Chemical Engineering. 2007, 31 1702-
1714. DOI 10.1016/j.compchemeng.2007.02.006.

[12] Christian Serrano, Xavier Delorme, and Alexandre Dolgui. Scheduling of truck
arrivals, truck departures and shop-floor operation in a cross-dock platform, based
on trucks loading plans. International Journal of Production Economics. 2017,
194 102-112. DOI https://doi.org/10.1016/j.ijpe.2017.09.008. Special Issue: Inno-
vations in Production Economics.

[13] Silvano Martello, David Pisinger, and Daniele Vigo. The three-dimensional bin
packing problem. Operations research. 2000, 48 (2), 256–267.

[14] Mhand Hifi. Exact algorithms for unconstrained three-dimensional cutting prob-
lems: a comparative study. Computers & Operations Research. 2004, 31 (5),
657–674.

42

https://www.roadef.org/challenge/2022/en/
https://www.roadef.org/
https://www.euro-online.org/
https://www.renaultgroup.com/
https://www.roadef.org/challenge/2022/en/calendrier.php
https://www.roadef.org/challenge/2022/en/qualifresult.php
http://dx.doi.org/https://doi.org/10.1016/0377-2217(92)90077-M
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2012.12.006
https://www.sciencedirect.com/science/article/pii/S0927050705801215
http://dx.doi.org/10.1016/j.compchemeng.2007.02.006
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2017.09.008

. .
[15] Sándor P. Fekete, Jörg Schepers, and Jan C. Van der Veen. An exact algorithm

for higher-dimensional orthogonal packing. Operations Research. 2007, 55 (3),
569–587.

[16] G. Terry Ross, and Richard M. Soland. A branch and bound algorithm for the
generalized assignment problem. Mathematical programming. 1975, 8 (1), 91–103.

[17] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm
for the vehicle routing problem based on the set partitioning formulation with
additional cuts. Mathematical Programming. 2008, 115 351–385.

[18] Johannes Terno, Guntram Scheithauer, Uta Sommerweiß, and Jan Riehme. An
efficient approach for the multi-pallet loading problem. European Journal of Op-
erational Research. 2000, 123 (2), 372-381. DOI https://doi.org/10.1016/S0377-
2217(99)00263-5.

[19] Andreas Bortfeldt, and Daniel Mack. A heuristic for the three-dimensional strip
packing problem. European Journal of Operational Research. 2007, 183 (3), 1267-
1279. DOI https://doi.org/10.1016/j.ejor.2005.07.031.

[20] Andreas Bortfeldt, and Hermann Gehring. A hybrid genetic algorithm for the
container loading problem. European Journal of Operational Research. 2001, 131
(1), 143-161. DOI https://doi.org/10.1016/S0377-2217(00)00055-2.

[21] José Fernando Gonçalves, and Mauricio G.C. Resende. A parallel
multi-population biased random-key genetic algorithm for a container
loading problem. Computers Operations Research. 2012, 39 (2), 179-190.
DOI https://doi.org/10.1016/j.cor.2011.03.009.

[22] H Hadizadeh Ghaziania, Masoud Monjezi, Amin Mousavi, Hesam Dehghani, and
Ezzeddin Bakhtavar. Design of loading and transportation fleet in open-pit mines
using simulation approach and metaheuristic algorithms. Journal of Mining and
Environment. 2021, 12 (4), 1177–1188.

[23] Guenther Fuellerer, Karl F. Doerner, Richard F. Hartl, and Manuel
Iori. Ant colony optimization for the two-dimensional loading vehicle
routing problem. Computers Operations Research. 2009, 36 (3), 655-673.
DOI https://doi.org/10.1016/j.cor.2007.10.021.

[24] W. Michiels, E. H. L. Aarts, and J. Korst. Theory of Local Search. In: Rafael Marti,
Panos M. Pardalos, and Mauricio G. C. Resende, eds. Handbook of Heuristics.
Cham: Springer International Publishing, 2018. 299–339. ISBN 978-3-319-07124-
4.
https://doi.org/10.1007/978-3-319-07124-4_6.

[25] A. Moura, and J.F. Oliveira. A GRASP approach to the container-loading problem.
IEEE Intelligent Systems. 2005, 20 (4), 50-57. DOI 10.1109/MIS.2005.57.

[26] Oluf Faroe, David Pisinger, and Martin Zachariasen. Guided local search for the
three-dimensional bin-packing problem. Informs journal on computing. 2003, 15
(3), 267–283.

[27] Christos D. Tarantilis, Emmanouil E. Zachariadis, and Chris T. Kiranoudis. A
Hybrid Metaheuristic Algorithm for the Integrated Vehicle Routing and Three-
Dimensional Container-Loading Problem. IEEE Transactions on Intelligent Trans-
portation Systems. 2009, 10 (2), 255-271. DOI 10.1109/TITS.2009.2020187.

[28] Juan A. Diaz, and Elena Fernández. A tabu search heuristic for the generalized
assignment problem. European Journal of Operational Research. 2001, 132 (1),
22–38.

43

http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00263-5
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00263-5
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.07.031
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(00)00055-2
http://dx.doi.org/https://doi.org/10.1016/j.cor.2011.03.009
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.10.021
https://doi.org/10.1007/978-3-319-07124-4_6
http://dx.doi.org/10.1109/MIS.2005.57
http://dx.doi.org/10.1109/TITS.2009.2020187

References .
[29] Philip Kilby, Patrick Prosser, and Paul Shaw. Guided Local Search for the Vehicle

Routing Problem with Time Windows. In: Stefan Voß, Silvano Martello, Ibrahim
H. Osman, and Catherine Roucairol, eds. Meta-Heuristics: Advances and Trends
in Local Search Paradigms for Optimization. Boston, MA: Springer US, 1999.
473–486. ISBN 978-1-4615-5775-3.
https://doi.org/10.1007/978-1-4615-5775-3_32.

[30] Christian Serrano Alain Nguyen, Mohamed-Amine Khatouf. Challenge
ROADEF/euro 2022.
https : / / github . com / renault - iaa / challenge - roadef - 2022 / blob /
1cfa2ed09b45c6e1432b6e1bcc3cd9c252762b3a/challenge_ROADEF_2022.pdf.

[31] Christian Serrano Alain Nguyen, Mohamed-Amine Khatouf. Challenge
ROADEF/euro 2022.
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/
Rule_Challenge_2022.pdf.

[32] Abraham Duarte, Jesus Sanchez-Oro, Nenad Mladenovic, and Raca Todosijevic.
Theory of Local Search. In: Rafael Marti, Panos M. Pardalos, and Mauricio G. C.
Resende, eds. Handbook of Heuristics. Cham: Springer International Publishing,
2018. 299–338. ISBN 978-3-319-07124-4.
https://doi.org/10.1007/978-3-319-07124-4_9.

[33] Madalina M Drugan, and Dirk Thierens. Stochastic Pareto local search: Pareto
neighbourhood exploration and perturbation strategies. Journal of Heuristics.
2012, 18 (5), 727–766.

[34] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, and Mauro Birattari. The irace package: Iterated Racing for Automatic
Algorithm Configuration. Operations Research Perspectives. 2016, 3 43–58.
DOI 10.1016/j.orp.2016.09.002.

[35] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[36] Renault-Iaa. Challenge-roadef-2022/dataseta.zip at main · Renault-IAA/Chal-
lenge -ROADEF-2022. 2022.
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/
datasetA.zip.

[37] Renault-Iaa. Challenge-roadef-2022/dataset_b.zip at main · Renault-IAA/Chal-
lenge -ROADEF-2022. 2023.
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/
dataset_B.zip.

[38] Roadef.org. CHALLENGE ROADEF/EURO 2022 SPRINT RESULTS .
https://www.roadef.org/challenge/2022/en/sprintresult.php.

[39] MetaCentrum (MetaVO) - Virtual Organization. 2023.
https://metavo.metacentrum.cz/.

[40] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2023.
https://www.gurobi.com.

44

https://doi.org/10.1007/978-1-4615-5775-3_32
https://github.com/renault-iaa/challenge-roadef-2022/blob/1cfa2ed09b45c6e1432b6e1bcc3cd9c252762b3a/challenge_ROADEF_2022.pdf
https://github.com/renault-iaa/challenge-roadef-2022/blob/1cfa2ed09b45c6e1432b6e1bcc3cd9c252762b3a/challenge_ROADEF_2022.pdf
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/Rule_Challenge_2022.pdf
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/Rule_Challenge_2022.pdf
https://doi.org/10.1007/978-3-319-07124-4_9
http://dx.doi.org/10.1016/j.orp.2016.09.002
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/datasetA.zip
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/datasetA.zip
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/dataset_B.zip
https://github.com/renault-iaa/challenge-roadef-2022/blob/main/dataset_B.zip
https://www.roadef.org/challenge/2022/en/sprintresult.php
https://metavo.metacentrum.cz/
https://www.gurobi.com

Appendix A
Source code

src/ Folder containing source code of the implementation
CMakeLists.txt CMake configuration file

params.conf An example of a parameters file
README.MD Instructions on how to build and run the program

45

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Related Works
	Exact Algorithms
	Heuristic Algorithms

	Problem Statement
	Problem Description
	Notations
	Input Constants
	Solution Variables

	Objective
	Constraints
	Items Constraints
	Stacks Constraints
	Placements Constraints
	Weight Constraints

	Solution Representation

	Proposed Method
	Stack Placement
	Initial Solution
	Truck Load Balancing
	Local Search
	Parameters Controlling Local Search Cycle

	Stack Swap operator
	Constraints to check
	Operator Application

	Stack Move operator
	Constraints to check (donor truck)
	Constraints to check (receiver truck)
	Operator Application

	Truck Delete operator
	Constraints to check
	Operator Application

	Truck Replace operator
	Constraints to check
	Operator Application

	Item Swap operator
	Constraints to check
	Operator Application

	Item Move operator
	Constraints to check (donor stack)
	Constraints to check (receiver stack)
	Operator Application

	Depth-First Tree Search Algorithm
	Tree Search Parameters

	Perturbation
	Parameters
	Implementation notes

	Results
	Instances
	Results for Dataset A
	Results for Dataset B
	Comparison of Depth-First Tree Search and Integer Linear Program Model
	Experiments
	Results

	Contributions of operators

	Conclusion
	References
	Source code

