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Abstract
Current deep learning models perform
very well on a wide range of tasks and
are capable of outperforming humans
on many of them. This is especially
true for image classification tasks, where
deep neural networks have proven to be
very effective. However, good results
can only be achieved when the training
and testing data come from the same
distribution. In real-world applications,
domain shifts are often present, and
this assumption is violated. This leads
to significant performance drops when
evaluated on out-of-distribution (OOD)
data. Domain generalization (DG) is a
task formulation that addresses this is-
sue by training models that generalize
well under domain shifts. While most
existing DG methods perform poorly on
OOD data, techniques based on data
augmentation and style transfer have
shown promise. However, current meth-
ods use style transfer only as a random
data augmentation technique. We try
to improve upon them by proposing a
novel method that uses style transfer in
a more structured way in order to sim-
ulate new synthetic domains. We also
study the performance of our proposed
method in synergy with the existing DG
method CORAL. Furthermore, we pro-
pose an additional novel way of using
style transfer for DG, targeting the vali-
dation and model selection phase instead
of the training phase.
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image classification
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Abstrakt
Současné modely hlubokého učení si ve-
dou velmi dobře v široké škále úloh a
v mnoha z nich jsou schopny překonat
člověka. To platí zejména pro úlohy kla-
sifikace obrázků, kde se hluboké neuro-
nové sítě ukázaly jako velmi efektivní.
Dobrých výsledků však lze dosáhnout
pouze tehdy, pokud trénovací a testovací
data pocházejí ze stejné distribuce. V re-
álných aplikacích se často vyskytují do-
ménové posuny a tento předpoklad je po-
rušen. To vede k výraznému poklesu vý-
konu při vyhodnocování na datech mimo
distribuci (OOD). Doménové zobecnění
(DG) je formulace úlohy, která tento
problém řeší trénováním modelů, které
dobře generalizují při doménových posu-
nech. Zatímco většina stávajících metod
DG má na OOD datech špatné výsledky,
techniky založené na augmentaci dat a
přenesení stylu se ukázaly jako slibné.
Současné metody však používají přene-
sení stylu pouze jako techniku náhodné
augmentace dat. Pokoušíme se je vylep-
šit tím, že navrhujeme novou metodu,
která používá přenesení stylu strukturo-
vanějším způsobem za účelem simulace
nových syntetických domén. Zkoumáme
také výkonnost námi navržené metody
v součinnosti se stávající metodou DG
CORAL. Dále navrhujeme další nový
způsob využití přenesení stylu pro DG,
který se zaměřuje na fázi validace a vý-
běru modelu namísto trénovací fáze.

Klíčová slova:
doménové zobecnění, posun domény,
zobecnění mimo distribuci, robustnost,
strojové učení, hluboké učení,
generování dat, generativní modely,
přenesení stylu, stylizace obrázků,
klasifikace obrázků
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Chapter 1
Introduction

Classification is one of the most studied tasks in machine learning (ML). In recent years,
deep learning has dominated the field due to the increase in computational power and
the availability of large datasets. Neural networks have been widely used in numerous
ML tasks, achieving excellent results, in many cases even outperforming humans [2]. In
particular, image classification, which is nowadays tackled using complex, well-tuned
convolutional neural network (CNN) architectures, can be considered an almost solved
problem where human performance has long been surpassed [1].

However, such excellent results can only be achieved when the training and testing
data come from the same distribution. The Empirical Risk Minimization (ERM)
principle [37], which is the basis of most ML algorithms, assumes that the training
and testing samples are drawn from the same unknown joint probability distribution
PXY . Data that follow this assumption, where the testing samples are drawn from the
same distribution as the training samples, are called in-distribution data. Learning
models that perform well on in-distribution data is often relatively easy, given enough
training data.

In real-world applications, this assumption on the data distribution is often violated.
In practice, it may be costly or even impossible to obtain samples from the exact
same domain on which the classification model is to be deployed. In some cases, the
distribution may also change after the deployment of the model, and we would like
for the model to perform well even under such circumstances. Optimally, we would
like to train the model on the data we have available at the time of training, and
for the model to generalize to the out-of-distribution (OOD) data (i.e., data from a
different distribution) that the model has not seen during training. This problem is
called domain generalization (DG) or sometimes OOD generalization. Models that do
not account for distribution shifts often suffer large performance drops when evaluated
on OOD data. Note that the ability to generalize to OOD data is natural for humans
and we want the same for our ML models.

In some applications, the training data may even be collected from multiple domains
that are slightly different in some way, but are still related. Using data from only one
of them might result in poor performance because the number of training samples
might be small. By combining them, we can get more samples, and we can also use the
information about which domain each training sample comes from. This relationship
between samples and domains can be exploited by the model to better generalize to
unseen domains.

The problem of DG has been studied for some time now and many methods have
been proposed specifically to solve it. However, the performance of these methods on
OOD data is not satisfactory and they are often outperformed by simple baselines
[12, 4]. Methods that seem to perform well on OOD data are mostly based on data
augmentation and generating additional training data. In particular, methods based
on style transfer have been shown to be very effective in this task [18, 34, 4]. Style
transfer is a technique that can be used to transfer the style of one image to another.

1



1. Introduction ........................................
It can be used in the DG setting to simulate previously unseen domains by changing
the style of existing training samples.

In this thesis, we focus on the problem of DG and specifically on the methods that
try to solve it by generating additional training data through style transfer. The
existing methods use style transfer merely as a random augmentation technique to
generate more diverse training data for the model [18, 34, 4]. We try to improve upon
them by proposing a new method that tries to use style transfer for DG in a more
structured way to simulate new synthetic domains. We also study the performance of
our proposed method in synergy with the existing DG method CORAL [35]. Finally, we
also propose a novel way of utilizing style transfer for DG, which targets the validation
and model selection phase instead of the training phase.

1.1 Outline

The rest of this thesis is organized as follows. We start by introducing the problem of
DG and related concepts in Chapter 2. In the same chapter, we also present several
datasets that are often used to evaluate DG methods. Next, we introduce the concept of
style transfer and some methods that achieve style transfer using deep neural networks
in Chapter 3. In Chapter 4, we examine several existing methods that attempt to solve
the problem of DG, with an emphasis on methods that use style transfer to generate
additional training data. In the following Chapter 5, we discuss the importance of
proper evaluation methodology in the DG setting and look at the performance of
several state-of-the-art methods on DG benchmarks. Chapter 6 is dedicated to our
novel proposed methods that try to utilize style transfer for DG in a different way
than the existing methods. Finally, in Chapter 7, we evaluate the performance of our
proposed methods and compare them with the existing ones.

2



Chapter 2
Domain generalization

In this chapter, we formally define the problem of DG and related concepts, discuss
possible variants of DG, and compare it with related problems. We also present several
datasets that are commonly used to evaluate the performance of DG methods.

2.1 Formal definition

To define the DG problem, we first need to understand the concept of domain and
introduce some notation.
Definition 2.1 (Domain [40]). Let X denote a non-empty input space (features) and Y
an output space (labels). A domain is composed of data that are sampled from a joint
distribution of features and labels. We denote it as S = {(xi, yi)}ni=1 ∼ PXY , where
x ∈ X ⊂ Rd, y ∈ Y ⊂ R, n ∈ N is the number of samples and PXY denotes the joint
distribution of the features and labels. X and Y denote the corresponding random
variables.

The situation where two domains S and S′ are sampled from different distributions
(i.e., PXY 6= P ′

XY ) is called domain shift. Domain shift is the main challenge of DG.
Given multiple domains, where domain shift occurs between each pair of domains, we
can define the DG problem as follows:
Definition 2.2 (Domain generalization [40]). In domain generalization, we are
given a finite set of M training (source) domains Strain =

{
Si

∣∣ i = 1, . . . ,M
}

, where
Si = {(xij , yij)}

ni
j=1 denotes the i-th domain. The joint distributions between each

pair of domains are different: P i
XY 6= P j

XY , 1 ≤ i 6= j ≤ M . The goal of domain
generalization is to learn a robust and generalizable predictive function h : X → Y
from the M training domains to achieve a minimum prediction error on an unseen test
(target) domain Stest ∼ P test

XY (i.e., Stest cannot be accessed in training and P test
XY 6= P i

XY

for i ∈ {1, . . . ,M}):

min
h

E(x,y)∈Stest

[
l(h(x), y)

]
, (2.1)

where E is the expectation and l(·, ·) is the loss function.
In this work, we are mainly concerned with the classification task. Therefore, we

assume a cross-entropy loss function in place of l. However, the concept of DG extends
beyond classification and can be applied to any supervised learning task.

The objective of DG, as shown in (2.1), reveals why DG is such a challenging problem.
We are interested in minimizing the expected loss on the test domain Stest, which is not
available to us at the time of model training. The only information we have available
about the testing domain Stest is that it is somehow related to our training domains
Strain, but it is not from the same distribution (the definition is intentionally vague).

One way to define the relationship between domains more concretely and formally
is to introduce the notion of hyperdistribution [40]. The same underlying hyperdistri-

3



2. Domain generalization ...................................
bution P on (x, y) distributions is followed by both the test domain and all training
domains: P test

XY ∼ P and P i
XY ∼ P for i ∈ {1, . . . ,M}.

Since minimizing the expectation in (2.1) is impossible without access to the target
domain Stest, we instead want to minimize the expected risk over all possible target
domains that follow the hyperdistribution P:

E(h) := EPXY ∼PE(x,y)∼PXY
[l(h(x), y)] . (2.2)

Evaluating this expected risk E(h) is still unfeasible, but it can be estimated using a
finite set of source domains Strain:

Ê(h) := 1

M

M∑
i=1

1

ni

ni∑
j=1

l(h(xij), y
i
j) . (2.3)

However, because the source and target domains are not sampled from the same distri-
bution, the expected risk Ê(h) can be very far from the true risk E(h). Consequently,
a more sophisticated approach than simply minimizing Ê(h) is needed to solve DG
problems.

2.2 Variations

Single-source vs. multi-source DG. We can further distinguish between single-source
and multi-source DG. In the single-source DG, only one training domain is available
(i.e., M = 1). In the multi-source DG, there is more than one training domain available
(i.e., M ≥ 2). As we will see in Chapter 4, some methods dealing with DG require
more than one source domain to be applicable (i.e., they require domain labels).
Others do not distinguish between source domains and are therefore applicable to both
single-source and multi-source DG. In the case of multi-source DG, they simply ignore
the domain labels and treat all source domains as a single source.

Single-target vs. multi-target DG. Another distinction can be made based on
the number of target domains. If we have only one target domain, as defined in
Definition 2.2, we speak of a single-target DG. However, sometimes we may have more
than one target domain and be interested in measuring performance on each of them
individually. This is known as multi-target DG. However, since the target domains are
not available during training, we cannot optimize the model specifically for each target
domain. Instead, a single model is trained to generalize well on all target domains,
and then its performance is measured on each of them separately.

2.3 Related problems

Supervised learning. Similarly to DG, the objective of supervised learning is to
learn a predictive function h : X → Y from training data Strain to achieve a minimum
prediction error on testing data Stest (same as (2.1)). The difference is that in supervised
learning, we assume that the training and testing data are sampled from the same
distribution PXY (i.e., no domain shift occurs). Because of this, the estimation of
the expected risk (2.3) is much more reliable. This makes the problem of supervised
learning solvable by standard ERM [37]. On the other hand, DG is more useful in
real-world applications, where the assumption of sampling from the same distribution
usually does not hold.

4



.......................................... 2.4. Datasets

Domain adaptation. Domain adaptation (DA) is a problem that is closely related
to DG. Both deal with the problem of domain shift, and their objective is the same
(i.e., to minimize the prediction error on the target domain Stest (2.1)). The difference
is that in DA, we have access to unlabeled (or sparsely labeled) data from the target
domain Stest during training. In other words, the marginal distribution P test

X of the
target domain is known. This information can be used during training to adapt the
model to the target domain Stest. Note that all DG methods can be used for DA
problems by simply not using the unlabeled target data during training. However,
this puts them at a disadvantage compared to DA methods, which can leverage the
unlabeled target data. The opposite is not true. DA-specific methods usually cannot
be used for DG problems without modification.

2.4 Datasets

DG has been studied for several years, and several datasets have been compiled for
evaluation purposes and to ease the comparison of different approaches to DG. In this
chapter, we present some of the most widely used datasets that can be used to study
the DG problem. All of these datasets consist of multiple domains and are therefore
suitable for multi-source DG.

These datasets do not distinguish between source and target domains. Typically,
methods are evaluated in a leave-one-out fashion, where one domain is used as the
target domain and the rest of the domains are used as source domains. In this way, a
model is trained for each domain individually in a multi-source, single-target setting.
We can then measure the performance of the given method on each domain separately
or average the performance across all domains.

2.4.1 Digits

The MNIST dataset [22] of handwritten digits has become the de facto standard
dataset for debugging and demonstration purposes in the field of image classification.
Naturally, several variants of MNIST have been created for the same purposes in
DG. Most notably, these include Colored MNIST [3] (C-MNIST), Rotated MNIST
[9] (R-MNIST), and MNIST-M [5], all three of which consist of modified digits from
the standard MNIST dataset. C-MNIST colors each digit either red or green with
strong spurious correlation with the class label (correlation is reversed in the testing
domain), R-MNIST rotates digits by different angles in each domain, and MNIST-M
blends randomly cropped photographs into the background and their inverse into the
foreground of the images.

Figure 2.1: Examples from MNIST, MNIST-M, SVHN and SYN datasets.
Image source: [43]

5



2. Domain generalization ...................................

Figure 2.2: Examples of dog class from all four domains of the PACS dataset.
Image source: [43]

Another widely used dataset with digits is the Street View House Numbers (SVHN)
dataset [27]. It is mainly used in object detection tasks, but its cropped variant can
also be used for image classification. Ganin et al. [5] have introduced a synthetic
variant of SVHN called SYN, which was “generated from Windows fonts by varying
the text, positioning, orientation, background and stroke colors, and amount of blur.”

Figure 2.1 shows examples from MNIST, MNIST-M, SVHN, and SYN datasets that
can be bundled together to form a multi-domain dataset for DG problems.

2.4.2 PACS

PACS [24] is a dataset that has been put together from other smaller datasets specifically
for the purposes of DG. It consists of 4 domains, 7 classes and 9991 images. The
available domains are Art, Cartoon, Photo and Sketch. PACS classes include dog,
elephant, giraffe, guitar, horse, house and person. Despite its smaller size, it is one
of the most widely used datasets for DG. Figure 2.2 shows examples of the dog class
from all four domains of the PACS dataset.

2.4.3 OfficeHome

OfficeHome [38] is similar to the PACS dataset and was also created for DG purposes.
It contains images of objects from office and home environments. It consists of 4
domains, 65 classes, and 15,500 images. The domains used are Art, Clipart, Product,
and Real World. However, the OfficeHome dataset is not as well-curated as the PACS
dataset. Images from the Art, Product, and Real World domains are often very
similar, so the assumption of different distributions does not hold so well. Despite
these shortcomings, OfficeHome is still widely used for DG evaluation. Figure 2.3
shows examples of different classes from all four domains of the OfficeHome dataset.

Figure 2.3: Examples of several classes from all four domains of the OfficeHome dataset.
Image source [38]

6



.......................................... 2.4. Datasets

Figure 2.4: Examples of several classes from all six domains of the DomainNet dataset.
Image source: [30]

2.4.4 DomainNet

DomainNet [30] is an ImageNet-like dataset [32]. It was originally created for the
purposes of DA. However, since both DA and DG deal with generalization under
domain shift, it is also suitable for DG. It consists of 6 domains, 345 classes, and
about 0.6 million images. In contrast to the previous datasets, DomainNet is a large-
scale dataset with substantially more classes and is therefore more challenging. The
domains used are clipart, infograph, painting, quickdraw, real, sketch. Figure 2.4 shows
examples for a subset of classes and all six domains of the DomainNet dataset.

2.4.5 WILDS

WILDS [21] is “a curated collection of benchmark datasets that represent distribution
shifts faced in the wild”. It has been collected for the purpose of studying DG and
subpopulation shifts. The WILDS collection emphasizes that the datasets are from
real-world applications. It is very diverse as it contains 10 datasets of different sizes,
input and output types, application areas, domains, classes, etc. In addition to image
datasets for image classification, it also contains datasets with natural language, code
or molecular graphs. Details of the WILDS datasets can be seen in Figure 2.5.

Figure 2.5: Details of the WILDS dataset with example images.
Image source: [21]
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Chapter 3
Style transfer

In this chapter, we introduce style transfer as a general technique for image manip-
ulation, along with some approaches that achieve style transfer using deep neural
networks.

Style transfer is a technique that allows transferring the style of one image to another.
It usually takes two images as input, a content image and a style image, and produces
a stylized image as output. Its goal is to transfer the style from the style image to the
content image while preserving the content. In this setting, style is understood as the
texture, color, and local visual patterns of the image, while content is understood as
the actual objects and their arrangement in the image.

The emergence of style transfer was motivated mainly by the desire to automatically
create artistic images and to allow users to easily generate their own stylized content
on demand. However, style transfer has many other applications. For us, the most
important application is the ability to generate additional synthetic training data for
ML models. This way, style transfer can be thought of as a data augmentation or
generation technique that can be used to improve the generalization of ML models.

3.1 Neural style transfer

Style transfer has been studied for some time before the advent of deep learning.
However, it was not until the introduction of deep neural networks that it became
possible to achieve high-quality style transfer in real time. Style transfer that utilizes
deep neural networks is often referred to as neural style transfer. Gatys et al. [6] were
the first to introduce neural style transfer. Since then, many different approaches have
been developed to improve the quality and speed of neural style transfer. Jing et al.
[19] provide a comprehensive overview of the existing methods.

The general idea of neural style transfer is to use a neural network, usually pre-
trained on an image classification task, to extract a representation of content and style
from input images. Then, a stylized output image is found by an optimization process
that simultaneously minimizes the distances between the extracted content and style
representations and the corresponding representations of the output image.

3.1.1 Extracting content and style representations

By training on an image classification task, CNNs develop a hierarchy of feature maps
(i.e., the output of intermediate layers) that capture information about the input image
at different levels of abstraction [6]. The lower layers capture the low-level information,
such as edges and textures, that are more related to the style of the image. On the
other hand, the higher layers capture high-level information, such as objects and their
arrangement, which is more related to the content of the image. The key contribution
of Gatys et al. [6] is the finding that the representations of both content and style can
be extracted from the feature maps and that they are separable to some extent.

9



3. Style transfer ........................................
Obtaining the content representation from the content image Ic is straightforward.

Let F l(Ic) ∈ RC×H×W be the feature maps of the content image Ic at some intermediate
layer l of the pre-trained network, where C is the number of channels and H and W
are the height and width of the feature maps at layer l, respectively. Then the content
representation at layer l is simply F l(Ic).

Getting the style representation from the style image Is is more complicated. Gatys
et al. [6] propose using the so-called Gram-based representation. They use a feature
space built on top of the feature maps of the neural network designed to capture
texture information. This feature space consists of correlations between individual
filters (channels) of the feature maps. The Gram-based representation is obtained
by computing the Gram matrix G(F l(Is)

′) ∈ RC×C over the reshaped feature maps
F l(Is)

′ ∈ RC×(HW ):

G(F l(Is)
′) =

[
F l(Is)

′
] [

F l(Is)
′
]>

(3.1)

or alternatively

G(F l(Is)
′)ij =

HW∑
k=1

F l(Is)
′
ikF l(Is)

′
jk . (3.2)

The Gram matrix G(F l(Is)
′) is then used to represent the style at layer l. When

computing the Gram matrix, the sums are taken over the spatial dimensions of the
feature maps, and thus the spatial information is lost. This is desirable because the
style representation should capture only the texture information and not the spatial
information. Note that the choice of the Gram-based representation is not the only
possible choice for the style feature space. We merely use it to extract global feature
distributions (in this case, second-order statistics) from feature maps with spatial
information removed.

3.1.2 Image reconstruction

With the representations of content and style ready, the stylized output image Io is
found by an optimization process that tries to minimize the following loss function:

L(Ic, Is, Io) = αLcontent(Ic, Io) + βLstyle(Is, Io) , (3.3)

where α and β are weights that control the importance of content and style loss,
respectively [6].

The content loss Lcontent is defined as the squared error between the content repre-
sentations (feature maps) extracted from the content image Ic and the output image
Io at layer l:

Lcontent(Ic, Io) =
1

2

C∑
i=1

HW∑
j=1

[
F l(Ic)

′
ij −F l(Io)

′
ij

]2
. (3.4)

To improve the quality of the stylized output image, Gatys et al. [6] suggest using
multiple layers to compute the style loss. The style loss Ll

style at a specific layer l
is defined as the squared error between the style representations (Gram matrices)
extracted from the style image Is and the output image Io at layer l:

10
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Ll
style(Is, Io) =

1

4C2(HW )2

C∑
i=1

C∑
j=1

[
G(F l(Is)

′)ij − G(F l(Io)
′)ij

]2
. (3.5)

The loss Ll
style is further normalized by the factor 1

4C2(HW )2
to make it independent of

the size of the feature maps of layer l. The total style loss Lstyle is then defined as the
weighted sum of the style losses on individual layers:

Lstyle(Is, Io) =
∑
l∈L

wlLl
style(Is, Io) , (3.6)

where L is a subset of the network layers used to compute the style loss and wl are the
corresponding weights that control the importance of the style loss at each layer.

The gradients of the loss function (3.3) with respect to the feature maps F l(Io)
of the output image Io can be found analytically. From these gradients, gradients
with respect to the individual pixel values of the output image Io can be computed
using backpropagation. The optimization process starts with a white noise image and
iteratively updates its pixel values using a standard gradient descent algorithm until
convergence.

3.2 Improving neural style transfer

The image reconstruction process described in Section 3.1.2 is very time-consuming
because it uses gradient descent to iteratively update the individual pixel values of the
output image. To speed up the process, one can use a decoder network to generate the
output image directly from the content and style representations.

Such an approach has been proposed by Huang et al. [14]. It follows the general
encoder-decoder architecture used in several other deep learning applications. In
addition, Huang et al. [14] propose to use a novel normalization layer called adaptive
instance normalization (AdaIN). The AdaIN layer replaces the Gram-based representa-
tion used by Gatys et al. [6] and combines the content and style representations into a
single input for the decoder network. Examples of stylized images produced by this
approach are shown in Figure 3.2.

3.2.1 AdaIN layer

The AdaIN layer is a simple extension of the instance normalization (IN) layer [36].
Given an input batch x ∈ RN×C×H×W , the IN layer is defined as

IN(x) = γ

(
x− µ(x)

σ(x)

)
+ β , (3.7)

where γ, β ∈ RN×C are affine parameters learned from the data and N is the batch
size. IN differs from the widely used batch normalization (BN) layer [17] in that µ(x)
and σ(x) are computed over spatial dimensions independently for each channel and
sample:
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µnc(x) =
1

HW

H∑
h=1

W∑
w=1

xnchw , (3.8)

σnc(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xnchw − µnc(x))
2 + ε , (3.9)

where ε is a small constant added for numerical stability.
Assuming x is a content input batch and y is a style input batch, the AdaIN layer is

defined as
AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) . (3.10)

AdaIN replaces the learnable affine parameters γ and β in (3.7) with the statistics
σ(y) and µ(y) of the style input y. In other words, the AdaIN layer aligns the mean
and variance of the content input x to match the mean and variance of the style input
y. Note that, similar to IN, the statistics µ(y) and σ(y) are computed over spatial
dimensions independently for each channel and sample (see (3.8) and (3.9)). This
results in preserving the spatial information of the content input x, while changing its
feature distribution to match the distribution of the style input y.

3.2.2 Architecture

The architecture proposed by Huang et al. [14] is shown in Figure 3.1. It consists
of an encoder network f , a decoder network g, and a single AdaIN layer in between.
The decoder mostly mirrors the encoder with some minor changes. All pooling layers
are replaced by nearest-neighbor upsampling layers, and all normalization layers are
removed. The encoder uses weights pre-trained on an image classification task and is
frozen during both training and inference, while the decoder is trained from scratch
using the loss function defined in (3.13).

Figure 3.1: Encoder-decoder architecture of the style transfer network with AdaIN layer.
Image source: [14].

Both the content image Ic and the style image Is are fed into the encoder network f
to extract their feature maps f(Ic) and f(Is). These feature maps are then combined
using the AdaIN layer as described in (3.10) to produce the target feature maps t:

t = AdaIN
(
f(Ic), f(Is)

)
. (3.11)
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The stylized output image Io is then generated by the decoder network g from the
target feature maps t:

Io = g(t) . (3.12)

3.2.3 Loss function

Similarly to (3.3), the loss function used by the AdaIN style transfer method consists
of content loss Lcontent and style loss Lstyle:

L(Ic, Is) = Lcontent(Ic, Is) + λLstyle(Ic, Is) , (3.13)

where λ is the style loss weight, which controls the strength of stylization.
As ilustrated in Figure 3.1, the content loss Lcontent is computed as the Euclidean

distance between the target feature maps t and the feature maps of the output image:

Lcontent(Ic, Is) = ‖f(g(t))− t‖2 . (3.14)

This ensures that the content of the content image Ic encoded in the target feature
maps t is preserved in the output image Io.

The style loss Lstyle is defined as the Euclidean distance between the IN statistics
of the input style image Is and the output image Io at selected layers of the encoder
network f :

Lstyle(Ic, Is) =
∑
l∈L

[∥∥∥µ(F l(g(t)))− µ(F l(Is))
∥∥∥
2
+
∥∥∥σ(F l(g(t)))− σ(F l(Is))

∥∥∥
2

]
,

(3.15)
where L is a subset of the network layers used to compute the style loss. This ensures
that the IN statistics that encode the style of the style image Is are matched by the
output image Io.

In addition to the ability to control the content-style tradeoff by adjusting the style
loss weight λ during training, Huang et al. [14] also propose a method to control the
strength of the style transfer at inference time. This is achieved by introducing a style
interpolation parameter α, which controls the amount of style transfer performed by
the AdaIN layer:

Io = g
(
(1− α)f(Ic) + αAdaIN

(
f(Ic), f(Is)

))
. (3.16)

If α = 0, the AdaIN layer is not applied at all and t = f(Ic). On the other hand, if
α = 1, the AdaIN layer is fully applied as described in (3.11). Setting α to a value
between 0 and 1 allows for a smooth transition in stylization strength.
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3. Style transfer ........................................

Figure 3.2: Examples produced by the encoder-decoder style transfer network
with AdaIN layer. Columns correspond to content images, and each row has

been stylized with a different style image. Image source: [14].

14



Chapter 4
Domain generalization methods

As mentioned before, DG is an area that has been studied for more than a decade
now. A plethora of different methods and approaches have been developed to improve
the performance of ML models under domain shift. Wang et al. [40] and Zhou et al.
[43] have tried to provide a comprehensive overview of the existing approaches. In
this chapter, we look at some of them in more detail, with an emphasis on methods
that utilize style transfer to improve generalization under domain shift through data
generation.

Domain
generalization
algorithms

Data
manipulation
(Sec. 4.1)

Data augmentation
Domain randomization: DRPC [29]/ SDR [30]/ FSDR [31]/ [32, 33, 34, 35, 36]

Adversarial data augmentation: CrossGrad [37]/ ADA [38]/ DDAIG [39]

Data generation
M-ADA [40]/ UFDN [41]/ UNVP [42]/ L2A-OT [43]/ M3L [44]/ FSUS [45]/ ADAGE [46]/
DomainMix [47]/ MixALL [48]/ MixStyle [49]/ DeGIA [50]/ MBDG [51]/ PDEN [52]/
SFA [53]/ OpenDG [54]/ FACT [55]/ [56, 57, 36, 58, 59]

Representation
learning
(Sec. 4.2)

Domain-invariant
representation learning

Kernel methods: MTL [6, 60]/ Multi-TCA [61]/ DICA [27]/ UDICA [62]/ CIDG [63]/ SCA [64]/
ESRand [65]/ MDA [66]/ [28]

Explicit feature alignment: MTAE [67]/ CCSA [68]/ BNE [69]/ SNR [70, 71]/ MMD-AAE [72]/
DDGFD [73]/ DSDGN [74]/ DG-YOLO [75]/ MatchDG [76]/ DSON [77]/ DFDG [78]/ DSAF [79]/
AdaRNN [80]/ ASR-Norm [81]/ RNA-Net [82]/ FAR [83]/ LAG [84]/ [85, 86, 87, 88, 89, 90]

Domain adversarial learning: DANN [91, 92]/ MMD-AAE [72]/ DLOW [93]/ CIAN [94]/ ER [95]/
MADDG [96]/ FSUS [45]/ MMLD [97]/ DANNCE [98]/ CAADG [99]/ SSDG [100]/ AdaRNN [80]
ASR-Norm [81]/ SADG [101]/ [102, 103]

Invariant risk minimization: IRM [104]/IB-IRM [105]/VRex [106]/ReLIC [107]/[108, 109, 110, 111, 112]

Feature disentanglement

Multi-component analysis: LRE-SVM [113, 114]/ UndoBias [115]/ MVDG [116]/ CSD [117]/
Domain2Vec [118, 119]/ DCAC [120]/ FLUTE [121]/ [122, 2, 123]

Generative modeling: DIVA [124]/ DAL [125]/ M-ADA [40]/ DDG [126]/ SagNet [127]/ GILE [128]
RobustNet [129]/ [130]

Causality-inspired methods: MatchDG [76]/ Deep CAMA [131]/ CSG [132]/ LaCIM [133]/
StableNet [134]/ [107, 135, 136]

Learning
strategy
(Sec. 4.3)

Ensemble learning D-SAM [137]/ DAEL [8]/ COPA [138]/ [139, 140, 141, 142]

Meta-learning
MLDG [17]/ MetaReg [18]/ FC [19]/ MASF [143]/ MetaVIB [20]/ DADG [144]/ DGSML [145]/ M3L [44]/
Epi-FCR [146]/ [147, 148, 149]

Gradient operation RSC [150]/ Fish [151]/ Fishr [152]/ NCDG [153]/ KDDG [154]

Distributionally robust optimization VRex [106]/ JTT [155]/ GroupDRO [156]/ [157, 158]

Self-supervised learning JiGen [159]/ SelfReg [160]/ [161, 162]

Others Random forest [163]/Shape-invariant [164]/Lottery ticket hypothesis [165]/Flat minima [166]/ Metric learning [167]

Figure 4.1: Taxonomy of domain generalization methods. Image source: [40]
(Note that the references correspond to the references in the original source)

Figure 4.1 illustrates the overwhelming amount of methods that have been developed
to tackle DG, as well as the taxonomy of DG methods [40]. The methods can be
categorized into three general groups based on how they approach the domain shift
problem: data manipulation, representation learning, and learning strategy. We will
look at each of these groups in more detail in the following sections.

4.1 Data manipulation

Methods in this category focus on manipulating the input training data itself, rather
than changing the training procedure or model architecture. They do this by either
augmenting the existing data or generating additional data from it. The performance

15



4. Domain generalization methods...............................
of ML models is highly dependent on the quantity and quality of available training
data. Data manipulation techniques are useful even in the absence of domain shift, as
they can help improve the robustness and generalization of ML models and prevent
overfitting. Having more and more diverse samples is almost always beneficial for
model performance.

We can reformulate the general objective of DG, as shown in (2.1), for data manipu-
lation methods as:

min
h

(
E(x,y) [l(h(x), y)] + E(x′,y)

[
l(h(x′), y)

])
, (4.1)

where x′ = M(x) denotes the manipulated data using a manipulation function M(·)
[40]. Thus, we train the model not only on the original input x, but also on its
manipulated version x′. Based on how the function M is defined, we can further divide
these methods into two subcategories: data augmentation and data generation.

4.1.1 Data augmentation

Simple data augmentation techniques are widely used, especially in computer vision,
to improve the robustness of ML models and reduce their overfitting. Random
computer vision augmentation techniques, such as cropping, flipping, rotating, scaling,
adding noise, or changing color, can be easily incorporated into DG training in
place of manipulating function M and can have a positive impact on generalization.
Because of their ease of implementation, they are a popular choice as generalization
techniques. Despite being random and not exploiting domain information, their impact
on generalization under domain shift has been shown to be positive [12].

Several methods have been proposed that attempt to systematically augment the
input data using adversarial training that exploits domain information. Shankar et al.
[33] has proposed CrossGrad, an adversarial augmentation technique that perturbs the
input data in the direction of the largest domain change. To this end, in addition to
the label classifier h, it also trains a domain classifier G, which outputs the domain
label. Both classifiers, h and G, are trained simultaneously in an adversarial manner.
Using the gradient of G, the input for h is perturbed along the direction of the largest
domain change, while enforcing that its label does not change. This way, CrossGrad
tries to simulate samples from unseen domains.

Another DG method that also uses adversarial training has been proposed by Volpi
et al. [39]. Unlike the previous method, it does not use the domain labels and can
therefore be considered a single-source DG method. It is an iterative procedure in which
adversarial examples are appended to the training data in each iteration, alternating
with the training of the classifier h. The adversarial examples are created by perturbing
the actual input data so that they come from a fictive target domain that is “hard”
under the current model (i.e., they come from the worst-case fictive target distribution).
This is achieved by the adversarial perturbation being based on the gradient of the
loss function l with respect to the input data.

4.1.2 Data generation

Data generation is another popular data manipulation method that attempts to
generate new diverse data in order to generalize to unseen domains. Here, the data
manipulation function M(·) is often implemented using a deep generative model such
as a variational autoencoder (VAE) [20] or a generative adversarial network (GAN)
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Figure 4.2: Motivational ilustration of L2A-OT
effect on digit datasets. Image source: [44]

Figure 4.3: Effect of mixup
(α = 1) on a toy problem.

Green: Class 0. Orange: Class 1.
Blue shading indicates p(y = 1|x).

Image source: [42]

[10]. However, new examples can also be generated from existing samples in an easier
way. Methods based on style transfer also fall into this category, as they generate new
samples from existing ones by changing their style. However, since this is the main
focus of this thesis, we will discuss them separately in Section 4.1.3.

Zhou et al. [44] have proposed a data generation method called L2A-OT. In this
method, new samples are generated in each iteration from pseudo-novel domains using
a generator network. The generator takes as input the original image and a novel
domain label. Novel domains are synthesized from existing domains by maximizing
the distribution divergence between the original and the novel domain. L2A-OT uses
Wasserstein distance as the divergence measure, with the cost function defined as
the cosine distance between images mapped into the latent space. The latent space
is learned using an additional fixed network called critic, which is pre-trained using
domain classification loss. To ensure semantic consistency of novel domains, cycle
consistency and classification losses are imposed on the generator. This ensures that
the newly generated diverse samples retain their semantic meaning as well as their label.
An illustration of the effect of L2A-OT on digit domains can be seen in Figure 4.2.

An example of a data generation method that does not use deep generative models
is mixup [42]. It uses a fairly simple technique that generates new data by linearly
interpolating between existing samples and their corresponding labels. The linear
interpolation is done on the raw inputs, not in latent space. The weights for the linear
combination are sampled from a Beta distribution. As a result, a model trained with
this procedure behaves linearly between training examples, improving generalization
capabilities. The effect of mixup method on the toy problem can be seen in Figure 4.3.
We can see the linear transition of the decision boundary between classes, contrary to
the standard ERM.

4.1.3 Style transfer

Biased towards texture. Geirhos et al. [7] were the first to propose the use of style
transfer as a form of data generation technique in ML. While they did not directly
target DG, their work served as a source of inspiration for later research in this area.
Specifically, Geirhos et al. [7] used the AdaIN style transfer method [14] and the Painter
by Numbers dataset [28] as a style source to create a new dataset, Stylized-ImageNet
(SIN). SIN was created by applying a random style to each image from the original
ImageNet (IN) dataset [32].

They then compared the behavior of CNNs trained on SIN with the behavior of
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Figure 4.4: Example from a cue conflict experiment and the corresponding predictions
of a CNN trained on the standard ImageNet dataset. Image source: [7]

CNNs trained on the original IN dataset. Using a texture-shape cue conflict experiment,
which measures the ratio of texture to shape decisions made, they showed that CNNs
trained on the IN dataset are heavily biased towards texture because they rely almost
exclusively on texture information to classify images. Humans, on the other hand, rely
primarily on shape information to classify images. However, they also found that this
texture bias was not inherent to the CNN architecture itself, but rather a feature of
the IN dataset, which is how most CNNs are pre-trained nowadays. By training CNNs
exclusively on SIN, Geirhos et al. [7] were able to significantly reduce the texture bias
in these models.

An example from the cue conflict experiment and the corresponding predictions of a
CNN trained on IN can be seen in Figure 4.4. We can see that the model assigned
the cue conflict image based on texture, indicating that it is biased towards texture.
On the other hand, both humans and CNNs trained on SIN would be more likely to
assign the cue conflict image based on its shape.

Inspired by these findings, they also experimented with using SIN as a source of
data augmentation. By training jointly on both IN and SIN datasets, they were able
to improve classification performance on the original IN dataset, as well as on transfer
learning tasks such as object detection. Furthermore, this approach improved the
robustness of CNNs to a variety of distortions and corruptions (such as noise, blur,
weather effects, compression, pixelation, etc.), suggesting that style transfer could
be used to improve generalization in a wide range of ML tasks as a technique for
generating new data. Potentially, it could also be used to improve generalization under
domain shift.

Data Augmentation via Style Randomization. Building on the work of Geirhos
et al. [7], Jackson et al. [18] propose to use style transfer as a form of data generation
technique for DG. However, they use a different style transfer method proposed by
Ghiasi et al. [8]. This style transfer method is also pre-trained on the Painter by
Numbers dataset. Unlike the AdaIN style transfer method, Ghiasi et al. [8] use a style
embedding space z ∈ R100 as input to the generator (decoder) network. This allows
sampling arbitrary styles that are not available in a finite style source dataset and
also speeds up the style transfer process. The authors sample z from a multivariate
Gaussian distribution N (µ,Σ), where µ and Σ are the empirical mean and covariance
of style embeddings from the Painter by Numbers dataset. Additionally, control over
the strength of style transfer is achieved by interpolating between the sampled style
embedding and the style embedding of the content image:

18



..................................... 4.1. Data manipulation

z = αN (µ,Σ) + (1− α)P (Ic) , (4.2)

where P is the style predictor network and α ∈ [0, 1] is a parameter that controls the
strength.

Incorporating this style transfer method into the training process is straightforward.
Given an augmentation ratio a : u of stylized (augmented) to original (unaugmented)
images and a strength of style transfer α, each training image is stylized using a
sampled style embedding z (as shown in (4.2)) with probability corresponding to the
augmentation ratio. Otherwise, the image remains unchanged.

They find that this method improves standard classification performance on some
datasets without domain shift, but not all. However, it consistently improves DG
performance under domain shift. When combined with traditional data augmentation
methods (such as random cropping, flipping, color jittering, etc.), it improves DG per-
formance even further. The authors also perform experiments to find optimal values for
the ratio a : u and strength α hyperparameters. However, the differences in performance
are not significant (except for α = 0, which corresponds to no augmentation).

They further show that the method improves transfer learning performance in a
monocular depth estimation task. Collecting real-world data to train depth estimation
models is expensive and time-consuming. Using synthetic data from virtual environ-
ments is a common approach to reduce the cost of data collection. However, this
introduces a domain shift between the synthetic training data and the real-world test
data. Style transfer as a data augmentation can be used to reduce this domain shift.
Specifically, the authors show that their method improves performance on real-world
data, producing sharper output depth maps and fewer artifacts. Overall, Jackson et al.
[18] demonstrate that style transfer can be used as a form of data generation for DG
and can improve model robustness to domain shift.

Domain Generalization via Image Stylization. Another method that uses style trans-
fer to generate new training data for DG problems has been proposed by Somavarapu
et al. [34]. They use the AdaIN style transfer method, which requires an external style
source dataset for pre-training and also an input style image for each style transfer
during training. The training process is very similar to the one proposed by Jackson
et al. [18]. During training, each image is stylized with a predefined probability p,
otherwise it is left unchanged. However, they propose a modification that allows style
transfer to be used for DG tasks without an external style source.

In addition to stylization by a random style image sampled from the external style
source dataset, they also propose two other methods that do not require an additional
external style source during training: inter-source and intra-source stylization. Inter-
source stylization is performed by sampling the style image from other training (source)
domains. For example, in the case of the PACS dataset, a sketch image could be
stylized as a photo image. Intra-source stylization is more extreme, where the style
image is sampled from the same domain as the content image. For example, a photo
image could be stylized as another photo image.

All three methods (external, inter-source, and intra-source stylization) improve
DG performance compared to the baseline without style transfer. As expected, the
performance of intra-source stylization is worse compared to the method, which
uses external style source dataset. However, inter-source stylization performance is
surprisingly comparable to the method with external styles (while external stylization
performance is still slightly better). This suggests that the style variability between
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source domains in some datasets is sufficient for style transfer to be effective and that
the external style source may not be completely necessary during training.

They also analyze a variant where the AdaIN style transfer method is pre-trained
only on the source domains instead of the external style source dataset. However, this
variant performs worse than the one with access to the external style source during
pre-training. This suggests that the external style source dataset is still needed for
pre-training the style transfer model to reach its full potential. Using external style
images also during training seems to give the best results.

Rethinking Domain Generalization Baselines. Borlino et al. [4] propose to use
style transfer data augmentation as a new baseline for DG problems and show that
simple style transfer data augmentation method similar to those discussed above
can outperform several state-of-the-art DG methods (including mixup discussed in
Section 4.1.2) on several DG datasets (including PACS and OfficeHome). They also
use the AdaIN style transfer method and propose using training domains as the only
style source, similar to the inter-source stylization method [34]. They also find that
not allowing the style transfer method to access external style source data during
pre-training slightly reduces performance.

Similar to Jackson et al. [18], Borlino et al. [4] also perform an analysis of the
hyperparameters p and α. They find that the optimal value of the style transfer
strength is α = 1 when using the AdaIN style transfer method as a data augmentation
technique, regardless of the dataset or the stylization probability p. On the other hand,
the optimal value for p is not so clear. With α = 1, even small values of p can give
good results, and the differences between different values of p are not significant.

4.2 Representation learning

Representation learning is a category of ML models in which we explicitly think of
the model as composed of two parts. The first part of the model, the featurizer, is
responsible for learning a good representation (features) that hopefully captures the
underlying distribution of the input data. The second part of the model, the predictor,
then uses this intermediate (latent) representation to make a prediction.

In our case, the prediction function h is decomposed as h = f ◦ g, where g : X → H
is a representation learning function (featurizer), f : H → Y is the classifier function
(predictor), and H denotes the latent feature space. This decomposition is used by
many DG methods. They can be divided into two subcategories based on how they
approach learning the feature extraction function g: domain-invariant representation
learning and feature disentanglement.

4.2.1 Domain-invariant representation learning

Methods in this category try to minimize the difference between learned feature
representations of individual source domains. The argument is that if the representation
learned by the featurizer g is invariant to domain labels, it is general and will perform
well for unseen target domains. There have been many attempts to achieve domain
invariance in latent feature space.

Probably the most notable and also most discussed method in this category is
the Invariant Risk Minimization (IRM) proposed by Arjovsky et al. [3]. Instead of
making the representations of different source domains match directly, IRM enforces
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the optimal classifier f to be the same for all source domains. This can be formulated
as:

min
g:X→H
f :H→Y

M∑
i=1

Ê i(f ◦ g)

subject to f ∈ argmin
f̄ :H→Y

Ê i(f̄ ◦ g) ∀ i ∈ {1, . . . ,M} ,
(4.3)

where Ê i(·) is the estimated risk on the source domain Si. However, Rosenfeld et al.
[31] later proved that IRM lacks severely in formal guarantees and demonstrated that
IRM fails to generalize under domain shift and does not improve on standard ERM on
DG problems.

One method that attempts to explicitly align the latent feature spaces of different
domains is Deep CORAL (or simply CORAL) [35]. CORAL stands for CORrelation
ALignment and was originally developed for unsupervised DA. In its original formula-
tion, CORAL tries to minimize the difference between the second-order statistics of
the source and target domains. Specifically, it minimizes the squared Frobenius norm
of the difference between the source and target covariance matrices using the following
loss:

LCORAL = ‖CS − CT ‖2F , (4.4)

where CS and CT are the covariance matrices of source and target computed in the
latent feature space produced by the featurizer g. The CORAL loss LCORAL is then
combined with the classification loss LCE to form the final objective function:

L = LCE + λLCORAL , (4.5)

where λ is a weight that trades off between classification accuracy and domain alignment.
CORAL can be adapted to the DG setting by aligning only the correlations between

the source domains, instead of aligning the source and target domains. This is done by
computing the covariance matrix for each source domain separately and then summing
over the differences between the covariance matrices of all pairs of source domains:

LCORAL =
2

M(M − 1)

∑
i 6=j

‖Ci
S − Cj

S‖
2
F , (4.6)

where Ci
S is the covariance matrix of the ith source domain. In this case, the CORAL

loss LCORAL is normalized by the number of source domain pairs to ensure that the
loss does not grow with the number of domains.

4.2.2 Feature disentanglement

Disentangled representation learning methods aim to decompose each sample into
independent parts that together contain all the information about the sample. They
do this by learning a function that maps the features produced by the featurizer g
to another latent space composed of several independent subspaces. Each subspace
consists of a subset of dimensions, and together the subspaces span the entire latent
space. Some subspaces are domain-shared (i.e., they contain domain-invariant features),
while others are domain-specific. Samples can then be classified using only the domain-
shared subspaces, which should be invariant to domain shift.
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Ilse et al. [15] propose a semi-supervised method called Domain Invariant Variational

Autoencoder (DIVA), which attempts to learn three independent latent subspaces,
domain, class, and residual, using a VAE-type framework. This is achieved by using
an encoder-decoder architecture with a single decoder and three encoders, one for each
subspace. During training, an objective similar to the variational lower bound is used
to ensure that the latent subspaces are independent and that the decoder is able to
reconstruct the input from them. To further improve the disentanglement, two other
auxiliary classifiers are used to predict the domain and class labels from the respective
latent subspaces. This also ensures that the domain and class subspaces contain the
desired information (i.e., domain-specific and domain-invariant features, respectively).
Only the class encoder and the auxiliary class classifier are used for prediction.

4.3 Learning strategy

DG has also been addressed by many general ML paradigms, such as ensemble learning,
meta-learning, gradient operation-based learning, distributionally robust optimization,
or self-supervised learning. We will look at only two of them in more detail: ensemble
learning and meta-learning.

4.3.1 Ensemble learning

Ensemble learning is a powerful ML technique that combines the predictions of multiple
models to boost their performance. Apart from traditional ensemble learning, which
trains the same model multiple times, several non-traditional approaches have been
proposed specifically for DG. By using special ensemble architectures and training
strategies, domain information can be exploited to improve generalization under domain
shift.

For example, Mancini et al. [25] have trained a special neural network architecture
consisting of multiple domain-specific classifiers (experts), one for each source domain,
and a single domain classifier. The domain-specific classifiers are trained to predict
correct class labels only on their respective source domains. They share the weights of
all layers except the last one, which is domain-specific. The domain classifier is trained
to assign samples to the correct source domain. At inference time, the predictions of
the domain-specific classifiers are combined according to the weights predicted by the
domain classifier.

4.3.2 Meta-learning

Meta-learning, often called learning-to-learn, is an alternative ML paradigm in which
models are trained in multiple training episodes on related tasks, using experience
from previous episodes to improve their learning performance. Meta-learning has also
been used to improve generalization in DG.

Li et al. [23] have proposed MLDG, a meta-learning strategy for DG. MLDG splits
the source domains into meta-train and meta-test domains in each iteration to simulate
the domain shift during training. Gradient steps are required to improve not only
on meta-train but also on meta-test. This is achieved by combining the standard
cross-entropy loss on meta-train with the loss on meta-test, which is computed using
parameters after a gradient step on metatrain. This requires a second derivative of
the loss function with respect to the model parameters. Such an approach is model
agnostic and can be therefore used with any model.
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Chapter 5
Performance of state-of-the-art methods

In this chapter, we discuss the importance of proper evaluation methodology in DG
research, introduce several testbeds that have been created to allow fair comparison of
proposed DG methods and look at the results they provide.

5.1 Evaluation methodology

Gulrajani et al. [12] point out that many works in DG research use methodologically un-
sound model selection methods when evaluating the performance of proposed methods.
Some works use testing (target) data to guide the model selection process (i.e., tuning
of hyperparameters, choice of model checkpoint, etc.), which is exactly what we want to
avoid in the DG setting. This data leakage leads to biased performance measures and
makes it extremely difficult to compare different methods. Furthermore, researchers
often use different datasets and backbone architectures, making fair comparisons almost
impossible. Gulrajani et al. [12] further point out that many works do not report
standard deviations of their results, making it difficult to assess the significance of the
results.

5.1.1 Selection methods

To this end, Gulrajani et al. [12] recommend that test data should not be used for
model selection (i.e., the oracle selection method). They further suggest that all DG
methods should be responsible for specifying the model selection method they use
and suggest two model selection methods suitable for DG settings: training-domain
validation set and leave-one-domain-out cross-validation.

Training-domain validation set. This method splits each source domain into training
and validation subsets. The training subsets are used to train the model as individual
source domains. The validation subsets of all training domains are then combined into
a single validation set. Finally, the model is selected to maximize performance on this
validation set.

Leave-one-domain-out cross-validation. Given M source domains, we train M
models with the same hyperparameters, but each model is trained on M − 1 domains
with one domain held out. Each model is then evaluated on the held-out domain and
the performance is averaged over all M models. Finally, we select the model with the
highest average performance and retrain it again on all M domains.

5.2 Testbeds

For the reasons pointed out above, several testbeds have been created to provide a fair
comparison of proposed DG methods and to aid future research. They aim to provide a

23



5. Performance of state-of-the-art methods ..........................
Algorithm C-MNIST R-MNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1
VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

Table 5.1: Average target domain accuracies (in %, ± SE) from
the DomainBed benchmark using the training-domain validation

set as the model selection method. Data source: [11]

unified framework for evaluating DG methods and typically include implementations of
several DG methods and their benchmarks on several DG datasets. They use the same
datasets, backbone architectures, and model selection methods for all methods, which
makes comparison of results much easier. They also compare the proposed methods to
a baseline in the form of ERM [37], which does not account for domain shift at all.

5.2.1 DomainBed

DomainBed [11] introduced by Gulrajani et al. [12] is a “a PyTorch [29] testbed for
domain generalization”. It contains implementations of many DG methods (including
IRM, mixup, MLDG, and CORAL, which we discussed in Chapter 4) and benchmarks
them on several DG datasets (including PACS, OfficeHome, and DomainNet, which
we discussed in Section 2.4).

It uses the ResNet-18 or ResNet-50 [13] CNN architecture as the backbone of the
classification model and allows the use of grid search for hyperparameter tuning. It
also provides three model selection criteria: training-domain validation set, leave-one-
domain-out cross-validation, and test-domain validation set (i.e., oracle). DomainBed
also features standard data augmentation techniques (e.g., random cropping, horizontal
flipping, or color jittering), as they have been shown to reduce some variation between
domains and improve performance under domain shift [12]. DomainBed can be
easily extended with new algorithms and datasets. We show benchmark results from
DomainBed in Table 5.1.

5.2.2 DeepDG

DeepDG [41] introduced by Wang et al. [40] is “an easy-to-learn, easy-to-extend, and
for-fair-comparison toolkit based on PyTorch for domain generalization”. DeepDG
builds on DomainBed by simplifying the execution of experiments and adding some
new features.

It also uses ResNet-18 and ResNet-50 architectures as the backbone for the classifi-
cation models and uses hyperparameter grid search similar to DomainBed. However,
at the time of writing, DeepDG offers a smaller number of algorithms and datasets
compared to DomainBed. Table 5.2 shows the benchmark results of several algorithms
on PACS and OfficeHome datasets in the DeepDG testbed.
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PACS OfficeHome
Algorithm Art Cartoon Photo Sketch Avg Art Clipart Product Real Avg

ERM 83.20 81.70 96.65 83.69 86.31 67.66 55.92 77.70 80.47 70.44
DANN 87.26 83.45 95.33 84.35 87.60 67.49 56.66 76.73 79.21 70.02
Mixup 89.36 82.08 96.65 84.63 88.18 67.41 58.24 78.46 80.84 71.24
RSC 87.84 80.33 97.72 81.50 86.85 66.30 55.21 76.95 79.00 69.36
MMD 85.74 83.58 95.51 83.46 87.07 66.71 56.54 78.37 79.00 70.36
CORAL 86.77 84.04 94.85 85.95 87.90 66.58 56.17 78.55 79.76 70.27
GroupDRO 84.18 83.15 96.11 83.94 86.84 66.87 57.04 77.97 79.69 70.39
ANDMask 84.91 76.45 97.72 81.19 85.07 62.30 54.78 74.99 78.31 67.59
Vrex 87.11 82.85 96.95 84.07 87.75 68.19 56.29 78.35 80.42 70.81

Table 5.2: Average target domain accuracies (in %) from the DeepDG
benchmark on PACS and OfficeHome datasets using the training-domain

validation set as the model selection method. Data source: [41]

5.3 Performance

The benchmark results shown do not contradict each other and provide similar results.
Minor discrepancies may be caused by the fact that none of the methods is thoroughly
tuned and both testbeds use slightly different experimental settings. As can be seen
from both benchmarks, none of the existing methods can significantly improve on
standard ERM (especially in the DomainBed benchmark). On the contrary, some
methods specifically designed to deal with DG are inferior to ERM, which does not
deal with domain shift in any special way. Methods that show some improvement over
ERM do so only marginally.

This is likely due to the fact that, unlike other work in DG research, Gulrajani
et al. [12] carefully tune the hyperparameters of the ERM algorithm and use strong
data augmentation techniques during training. They also employ a larger network
architecture (ResNet-50) than most previous works. This suggests that standard
techniques used to improve in-distribution generalization may also be effective for OOD
generalization and generalization under domain shift. Therefore, Gulrajani et al. [12]
suggest the use of large network architectures, strong data augmentation techniques,
and careful hyperparameter tuning with ERM as a baseline for future DG research.

One DG method that seems to provide a consistent performance improvement over
ERM is CORAL, which we discussed in Section 4.2.1. Although this improvement
is consistent across most datasets of both benchmarks, it is still marginal. The
performance of other methods seems to be highly dependent on the dataset. For
example, mixup, discussed in Section 4.1.2, works very well on some datasets, but is
outperformed by ERM baseline on others.

Gulrajani et al. [12] also point out that the model selection method is important
and has a significant impact on the results. Using the training-domain validation set
selection method outperforms leave-one-domain-out cross-validation on most datasets
and algorithms. They further show that using oracle selection (i.e., using testing data
for model selection) leads to better performance of all methods. They report about
+2% accuracy improvement for most methods when using the oracle selection method
compared to training-domain validation set. Although these results are corrupted by
the data leakage and should not be reported as true performance of given models,
they suggest that there is possible headroom for future improvement. Models that
perform better on target domains do exist and can be trained. However, current
methodologically sound model selection methods without data leakage are unable to
find them.
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Overall, the results of both benchmarks are rather pessimistic and there is still a lot

of room for improvement. Most current methods fail to improve on standard ERM,
and those which do, improve only marginally. This casts doubt on the effectiveness
of current DG methods and their ability to address the problem of domain shift, and
raises other important questions for discussion. Is ERM as good as it gets? Is it
even possible to achieve better performance in DG tasks? Are current datasets and
benchmarks suitable for DG research?

Gulrajani et al. [12] point out the power of data augmentation techniques and careful
hyperparameter tuning and suggest that future DG research should focus on these
aspects. Data augmentation, if properly applied, can remove the spurious correlations
that vary between domains and help learn more domain-invariant representations that
would generalize better to unseen domains. Borlino et al. [4] join this call for new
methods and further suggest using style transfer as a data augmentation technique,
which has been shown to be effective in the DG setting.
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Chapter 6
Style transfer in domain generalization

In this chapter, we explore the use of style transfer in DG in more depth than was
previously done by the methods discussed in Section 4.1.3. Motivated by the success
of data augmentation methods in DG [12] and style transfer as a data augmentation
technique [7], we focus on the use of style transfer as a data generation method for
improving DG performance. Style transfer has been used in DG before, but only
as a random augmentation method without any structure [18, 34, 4]. We propose
a novel method that uses style transfer to generate new data in a more structured
way and study its effect alone and in combination with the CORAL DG method [35].
Furthermore, we propose a novel data generation method based on style transfer that
focuses on model selection and validation procedure instead of changing the training
procedure.

6.1 Random stylization

As already mentioned, style transfer has been used in DG before, but only as a random
augmentation method without any structure [18, 34, 4]. The methods proposed by
these works are almost identical and are based on the same idea. They differ only in
the choice of style transfer method and the choice of style source. Jackson et al. [18]
use the style transfer method proposed by Ghiasi et al. [8], which was pre-trained on
the Painter by Numbers dataset [28] and sample style embeddings from latent space.
Somavarapu et al. [34] and Borlino et al. [4] use the AdaIN style transfer method [14],
also pre-trained on the Painter by Numbers dataset and sample style images from other
source domains. Below, we describe the random stylization method as we implemented
it in our own experiments to be able to compare it with our proposed method.

The random stylization method is very straightforward. We use the AdaIN style
transfer method pre-trained on the Painter by Numbers dataset. We also use the Painter
by Numbers dataset as a source of style images during training, as it yields the best
results. We adopt the way of constructing a batch of training data from DomainBed
[11]. The batch is divided into M equally sized parts, each part containing images
from one source domain. The random stylization method has two hyperparameters:
the probability of stylization p and the strength of stylization α. When constructing
a batch of training data, each image is stylized with probability p using a randomly
sampled style image from the Painter by Numbers dataset with stylization strength α
as described in (3.16). This results in a batch of training data where p of all samples
are stylized on average.

An example of a training batch generated by this random stylization method is
shown in Figure 6.1. We can see that the stylization is random and unstructured and
serves only as a random data augmentation method. In this example, we use the PACS
dataset with M = 3 source domains (Cartoon, Photo, and Sketch) and 36 images
per batch. This results in 12 images per source domain. In this example, we set the
stylization probability p = 0.25 and the stylization strength α = 1.
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Figure 6.1: Random stylization batch example from the PACS dataset.
batch size = 36, p = 0.25, α = 1

6.2 Aligned stylization

The random stylization method, as described in Section 6.1, is very simple and
straightforward. Despite its simplicity, it has been shown to be effective in generalizing
under domain shift. However, it has no structure and its goal is only to provide more
diverse training data. We try to improve this method by introducing a more structured
way of stylizing training data with a specific goal in mind. We call this method aligned
stylization.

The idea behind aligned stylization is to simulate more source domains by duplicating
a part of each source domain within a batch and stylizing each duplicate with a different
style image. This results in more synthetic source domains within each batch because
we consider each stylization group to be a separate source domain. Furthermore, each
training image occurs multiple times within a batch but is stylized with a different
style each time. This way, the model should be forced to learn more domain/style
invariant features after averaging the gradients within each batch. Our hypothesis is
that style-dependent features will be averaged out and only style-invariant features
will remain, resulting in better generalization under domain shift. Below, we describe
the aligned stylization method in more detail.

We use the same Painter by Numbers dataset and AdaIN style transfer method as
in the random stylization method. The aligned stylization method has two hyperpa-
rameters: the number of style groups G and the strength of the stylization α. The
batch construction is again based on DomainBed. As before, the batch is divided into
M equally sized parts, each part containing images from one source domain. However,
these parts are further divided into G groups. The groups are duplicated within each
source domain, but each duplicate is stylized with a newly sampled style image, except
for the first group, which is left in its original form. The stylization is applied with
the stylization strength α as described in (3.16). This results in a batch of training
data where exactly G−1

G of all samples are stylized. Furthermore, the batch contains G
times more synthetic source domains compared to the random stylization method.

Figure 6.2 shows an example of a training batch generated by our proposed aligned
stylization method. Again, we use the PACS dataset with M = 3 source domains
(Cartoon, Photo, and Sketch) and 36 images per batch. As before, this results in 12
images per source domain. However, in this case, these domain batches are further
divided into 4 groups, each containing 3 images, since we are using G = 4. These
groups contain the same duplicated images within each source domain, but each group
is stylized with a different style image, except for the first original group. This results
in each image appearing 4 times within a batch, but each time with a different style.
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Figure 6.2: Aligned stylization batch example from the PACS dataset.
batch size = 36, G = 4, α = 1

6.2.1 CORAL synergy

The aligned stylization method may improve generalization under domain shift on
its own, as described above. However, we hypothesize that it may work even better
in combination with the CORAL DG method [35] described in Section 4.2.1. When
applied to DG problems, CORAL attempts to align second-order statistics computed
in feature space between individual source domains. Specifically, it tries to align the
covariance matrices between each pair of source domains in a given batch by adding a
CORAL loss term to the original loss function (see (4.6)).

By using aligned stylization, we can simulate more source domains within each batch.
Each stylization group is treated as a separate source domain by assigning a different
domain label to each group. Furthermore, each training image occurs multiple times
within a batch, but each time within a different stylization group (i.e., belonging to a
different synthetic source domain). By combining aligned stylization with CORAL,
in addition to aligning the original source domains, CORAL also attempts to align
the covariance matrices between groups of the same images with different styles. We
conjecture that by combining these two methods, we can force the model to learn even
more domain/style invariant features than with either method alone, and thus further
improve generalization under domain shift. Note that this combination is only possible
with aligned stylization, as random stylization does not simulate more source domains
within a batch, but only augments individual images.

6.3 Stylized validation

Both random stylization and aligned stylization are data generation methods that
are used only during training. They work by generating more diverse training data,
which improves generalization under domain shift by helping the model learn more
domain-invariant features. Gulrajani et al. [12] find that there is a significant gap
between model performance when using the held-out training-domain validation set
for model selection versus the oracle selection method (i.e., test-domain validation set).
Inspired by this finding, we propose a novel data generation method that focuses on
validation and model selection procedure instead of augmenting training data.

The gap mentioned above could be explained by the fact that in the case of training-
domain validation, the validation data come from the same distribution as the training
data. However, the goal of DG is to generalize to previously unseen domains. Therefore,
it makes sense to validate and select the model based on its performance on unseen
domains as well. The performance achieved on held-out training data may not be a
good indicator of performance on unseen domains, since the model was trained on
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data from the same distributions.

One way to address this issue is to use the leave-one-domain-out cross-validation
procedure proposed by Gulrajani et al. [12], as described in Section 5.1.1. However,
this method has been shown to perform poorly in practice. This may be due to the
fact that DG datasets contain a small number of source domains, and by holding out
one source domain for validation, we significantly reduce the variety of training data
and thus the ability of the model to generalize.

In an attempt to address this issue and close the gap between oracle and validation
performance, we propose a novel data generation method that utilizes style transfer
and specifically targets the validation procedure. We use the same AdaIN style transfer
method and Painter by Numbers dataset as in the previous methods. However, instead
of using it to generate more training data, we use it to generate new validation data in
order to simulate previously unseen domains.

Stylized validation does not change the training procedure in any way and can
therefore be used in combination with any DG method. It has two hyperparameters:
the number of validation styles Sval and the stylization strength α. We first sample Sval

style images from the Painter by Numbers dataset and create a new validation domain
for each pair of source domain and style image. Each validation domain contains
images from the corresponding source domain stylized with the corresponding style
image using the stylization strength α as described in (3.16). Note that only the part
of the source domain held out for validation is stylized and used for validation. This
results in M · Sval validation domains. The original unstylized source domains are not
used for validation in this case.

During validation, performance is measured on each validation domain separately
and then averaged across all validation domains with equal weights. This means that
we treat all validation domains equally, regardless of the number of images they contain.
This is motivated by the fact that we want the model to generalize equally well to
all unseen domains. Finally, we select the model with the best average performance
across all validation domains.
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Chapter 7
Experimental evaluation

In this chapter, we describe the experimental setup and implementation details of
the experiments. We then look at the search for the best values of some of the
hyperparameters. Finally, we present and discuss the results of the experiments
in which we compare our proposed methods with ERM [37] baseline and random
stylization.

7.1 Experimental setup

In this section, we describe in detail the experimental setup of the experiments presented
in Section 7.3. Our goal is to compare our proposed method, aligned stylization, with
the baseline ERM method and random stylization. Furthermore, we analyze the effect
of CORAL [35] synergy with aligned stylization. Finally, we also study the effect of
stylized validation on the performance of the models, both alone and in combination
with other methods.

7.1.1 Prestylized datasets

As mentioned in Sections 6.1 and 6.2, we use the AdaIN style transfer method [14] as
our style transfer method of choice. We use the implementation and models pre-trained
on the Painter by Numbers dataset [28] provided by Inoue [16]. Specifically, we use
the style transfer method as a preprocessing step to create prestylized datasets [26].
Prestyling makes the training process easier and faster, since we do not have to style
images on the fly during training. However, it also results in a limited number of styles.

We randomly sample 1000 style images from the Painter by Numbers dataset and
create a stylized version of the PACS and OfficeHome datasets for each of the 1000
styles. We use only PACS [24] and OfficeHome [38] datasets for our experiments as
their size allows us to create prestylized versions for all 1000 styles in a reasonable
amount of time and disk space. These prestylized datasets are then used as a source
of stylized images for both training stylization (random and aligned) and stylized
validation. We use the same 1000 styles for all experiments to ensure a fair comparison.
We also study the effect of limiting the number of styles available during training of
random and aligned stylization.

7.1.2 Framework

We use Python for all experiments, in particular the PyTorch deep learning library
[29]. We implement our own framework for the evaluation of DG methods, inspired by
DomainBed [11]. This framework eases working with prestylized datasets, as it requires
the implementation of specific dataset and sampler classes. It includes implementations
of our proposed methods: aligned stylization and stylized validation. Furthermore,
we also implemented our own random stylization, since no code was available for this
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method at the time of writing. In addition to the methods mentioned above, we use
DomainBed’s implementation of CORAL and adapt it to our framework. The source
code of our framework is available in the attachment and its structure is described in
Appendix C.

7.1.3 Hardware

All experiments were run on the Research Centre for Informatics (RCI) cluster, a
high-performance computing infrastructure intended for research purposes. Specifically,
the experiments were run in parallel on multiple nodes with AMD EPYC 7543 32-core
CPUs and NVIDIA TESLA A100 40GB GPUs. Despite the high performance of the
cluster, it took several days to complete the experiments due to their large number.
The prestyling step is also very time-consuming. Therefore, we do not compare the
methods in terms of training time, but focus only on the performance of the models.

7.1.4 Training

We use ResNet-50 [13] as the backbone for the classification models in all experiments
with weights pre-trained on ImageNet dataset [32]. The classification head is replaced
by a simple linear layer with the number of outputs equal to the number of classes in
the given dataset. ResNet-50 takes images of size 224x224 as input, so all images must
be resized to this size.

We use the Adam optimizer and cross-entropy loss for all experiments (except
CORAL, which adds a penalty term to the loss). Since we encountered exploding
gradients during training, we also use gradient clipping. Similar to DomainBed,
we use basic image augmentation techniques during training. Specifically, we use
random horizontal flipping, random cropping, random grayscale, and color jitter, which
randomly changes the brightness, contrast, saturation, and hue of the images. We do
not use these basic augmentation techniques during validation and testing, only during
training.

We deal with the class imbalance of the PACS and OfficeHome datasets by sampling
with replacement during training according to the frequency of each class. The models
are trained in a multi-source, single-target setting, where one of the domains is held
out and used as the target domain, and the remaining domains are used for training.
This is repeated for all domains and the results are stored separately for each domain
and also averaged over all domains. The target domain is used in its entirety for
evaluation, while the source domains are split into training and validation sets in an
80:20 ratio. We train all models for 2500 steps (i.e., on 2500 batches) and evaluate
them on both validation and test sets every 50 steps. This results in 50 checkpoints,
which are then used by the model selection method to select the best model. Since we
are using pre-trained models, the training curves seem to saturate after this number of
steps, and training for longer does not seem to improve performance.

We repeat each experiment multiple times with different seeds to reduce the effect
of randomness and obtain more reliable results. This allows us to report the standard
error (SE) of the mean test accuracy for each experiment. In addition to all random
operations, the seed also determines the train-validation splits of the source domains and
the limited subset of styles used for stylization and style validation. Therefore, to ensure
a fair comparison, we use the same set of seeds for all methods and hyperparameter
values.

32



................................... 7.2. Hyperparameter search

7.1.5 Hyperparameters

For most of the hyperparameters, we use the same values as in DomainBed or values
that are commonly used in deep learning. For some of the hyperparameters, namely
the number of validation styles, the number of style groups in aligned stylization,
and the CORAL penalty weight λ, we perform a search for the best value in the
next Section 7.2. The limit on the number of training styles in random and aligned
stylization is studied in the main results in Section 7.3.

We adjust the commonly used batch size of 256 used in GPU-accelerated deep
learning to 240 to be divisible by the number of source domains in the PACS and
OfficeHome datasets. This results in 80 images per source domain per batch, since
both datasets have 4 domains, but one of them is always used as the target domain.
The domain batch size of 80 is nice to work with as it allows us to experiment with
different values for the number of groups in the aligned stylization (domain batch size
must be divisible by the number of groups). Furthermore, we use learning rate of
0.0001, weight decay of 0.0001, and gradient clipping with maximum norm of 1.0.

We set the styling strength α = 1 for the AdaIN style transfer method, as it was
found to give the best results. The styling probability p is set to 0.1 for random
stylization because Somavarapu et al. [34] use it as a default value and other works
mention that performance is not very sensitive to this hyperparameter.

7.2 Hyperparameter search

In this section, we look at the results of searching for the best values of some of the
hyperparameters mentioned in Section 7.1.5. We perform the search on the PACS
dataset only, using 3 different seeds for each hyperparameter value and target domain.
We search for values of hyperparameters that are new to our proposed methods and for
which we have no intuition. We also search for the best value of the CORAL penalty
weight λ, since it is an important hyperparameter of the CORAL method. The search
is performed in isolation, i.e. we keep all other hyperparameters fixed. Also note that
basic image augmentation is not used in these searches, and therefore the results differ
slightly from the results in Tables 5.1 and 7.4.

7.2.1 CORAL λ

We first look at the effect of the CORAL penalty weight λ on the performance of the
model and compare it to the baseline ERM method. In CORAL, λ is used to trade off
between the classification loss and the CORAL penalty term. The higher the value of
λ, the more emphasis is placed on the alignment of the source domains. We perform
the search on the PACS dataset with 3 different seeds for each value of λ and target
domain. The values of λ we test are 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0. The results
are shown in Table 7.1.

The first thing to note is that CORAL outperforms the ERM baseline in average
performance for all values of λ. This is consistent with the results from the testbed
benchmarks in Section 5.3. CORAL seems to help the most on the Art and Sketch
domains. On the other hand, the performance on the Cartoon domain is surprisingly
worse than that of ERM baseline for all values of λ. However, this changes when
CORAL is used in combination with basic image augmentation (see Tables 5.2 and 7.4).
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Alg. λ Art Cartoon Photo Sketch Average

Erm 82.99 ± 0.40 82.57 ± 1.10 96.47 ± 0.60 64.60 ± 4.75 81.66 ± 1.14
Coral 0.125 85.66 ± 0.17 80.70 ± 2.03 96.97 ± 0.39 69.46 ± 0.57 83.20 ± 0.55

0.25 87.13 ± 0.77 79.49 ± 1.87 96.03 ± 0.26 71.25 ± 0.89 83.47 ± 0.51
0.5 85.19 ± 2.24 81.64 ± 0.74 96.33 ± 0.07 69.20 ± 1.38 83.09 ± 0.50
1.0 85.21 ± 1.04 82.18 ± 0.59 96.31 ± 0.44 70.03 ± 1.26 83.43 ± 0.06
2.0 84.49 ± 0.34 81.63 ± 0.51 96.19 ± 0.55 70.05 ± 1.04 83.09 ± 0.50
4.0 82.70 ± 0.72 81.30 ± 1.08 97.17 ± 0.35 69.85 ± 3.37 82.75 ± 1.03
8.0 86.25 ± 1.70 80.38 ± 0.20 95.87 ± 0.54 72.23 ± 0.88 83.68 ± 0.32

Table 7.1: CORAL penalty weight λ hyperparameter search results on the PACS dataset.
Average target domain accuracies (in %, ± SE) over 3 runs.

Another thing to observe is that the performance of CORAL is actually not that
sensitive to the value of λ, at least in this case. The performance on individual domains
varies a bit, but the average performance is very similar for all values of λ. The best
value of λ seems to be 8.0 as it achieves the best average performance. However, the
value 8.0 seems to be a bit extreme and the differences between the other values of λ
are so negligible that we decide to use the value 1.0 for the main experiments, as this
is also the default value used for CORAL in DomainBed.

7.2.2 Number of validation styles

The next hyperparameter we look at is the number of styles used for the stylized
validation Sval. As described in Section 6.3, Sval styles are randomly sampled from the
external set of styles and used to create a new validation set for each source domain
to simulate unseen domains. Note that stylized validation becomes computationally
expensive as the number of styles increases, since the model must be evaluated on
each combination of style and source domain validation set. Also bear in mind that
stylized validation does not use the original source domain validation sets. Here we
also perform the search on the PACS dataset with 3 different seeds for each value of
Sval and target domain. We test values of 1, 2, 4, 8, 16, 32, and 64 for the number of
validation styles Sval. The results of this search are shown in Table 7.2.

As expected, the average performance of the model increases with increasing number
of styles used for stylized validation. When using a small number of styles, the baseline
model validated on the original validation sets performs better than the models using
stylized validation. Using a larger number of styles can surpass the baseline model, but

StyVal Sval Art Cartoon Photo Sketch Average

False 82.99 ± 0.40 82.57 ± 1.10 96.47 ± 0.60 64.60 ± 4.75 81.66 ± 1.14
True 1 82.49 ± 1.12 78.97 ± 1.01 96.41 ± 0.54 61.84 ± 1.73 79.93 ± 0.61

2 82.94 ± 1.37 78.47 ± 0.76 96.77 ± 0.48 56.95 ± 1.08 78.78 ± 0.15
4 83.11 ± 1.52 78.47 ± 0.76 97.33 ± 0.19 59.47 ± 1.59 79.59 ± 0.84
8 84.10 ± 1.49 80.79 ± 1.15 96.49 ± 0.50 62.48 ± 2.66 80.96 ± 0.73

16 85.17 ± 0.97 78.65 ± 0.83 96.53 ± 0.48 68.14 ± 3.02 82.12 ± 0.68
32 84.47 ± 1.38 79.42 ± 2.01 96.81 ± 0.44 67.99 ± 2.87 82.17 ± 0.98
64 85.22 ± 0.94 79.39 ± 1.98 96.53 ± 0.48 68.05 ± 2.93 82.30 ± 1.20

Table 7.2: Stylized validation Sval hyperparameter search results on the PACS dataset.
Average target domain accuracies (in %, ± SE) over 3 runs.
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Styling G Art Cartoon Photo Sketch Average

none 82.99 ± 0.40 82.57 ± 1.10 96.47 ± 0.60 64.60 ± 4.75 81.66 ± 1.14
align 4 88.64 ± 0.56 83.45 ± 0.09 95.73 ± 0.14 86.25 ± 0.70 88.52 ± 0.32

8 88.22 ± 0.26 81.53 ± 0.44 95.69 ± 0.12 84.64 ± 1.18 87.52 ± 0.30
16 88.28 ± 0.10 81.00 ± 0.59 94.85 ± 0.28 86.20 ± 0.89 87.58 ± 0.30

Table 7.3: Aligned stylization G hyperparameter search results on the PACS dataset.
Average target domain accuracies (in %, ± SE) over 3 runs.

the improvement is marginal and not significant, taking into account the standard errors.
As using a large number of styles is computationally expensive and the performance
seems to saturate around 16 styles, we decide to use Sval = 16 for the main experiments.

Similar to Section 7.2.1, the biggest improvement can be observed in the Art and
Sketch domains. Again, the performance of Cartoon surprisingly degrades regardless
of the number of styles used.

7.2.3 Number of aligned stylization groups

Finally, we take a look at the effect of the number of style groups G on the performance
of the aligned stylization method. As described in Section 6.2, during aligned stylization,
the parts of the batch that belong to individual source domains are further split into
G groups. The groups within each domain are duplicated and stylized with different
styles. Thus, G controls both the number of synthetic source domains in the given
batch and the number of times each image is duplicated within that batch. The domain
batch size (number of images per source domain per batch) must be divisible by G.
The search is again performed on the PACS dataset with 3 different seeds for each
value of G and target domain. We test values of 4, 8, and 16 for the number of style
groups G, since these values divide the domain batch size of 80 without remainder. In
this case, the number of training styles from which we randomly sample the style for
each group is limited to 64. The results of this search can be seen in Table 7.3.

The results show that the aligned stylization significantly improves upon the baseline
method without any stylization. Again, the improvement is most noticeable on the Art
and Sketch domains, with the Sketch domain achieving an improvement of more than
20%. Similar performance gains can be achieved by basic augmentation techniques that
include, among others, random color jitter (see ERM baseline in Table 7.4). Images
from the PACS Sketch domain are simple black line drawings with a white background.
We assume that by augmenting training images with color (either by random color
jitter or by stylization), the model is able to learn more robust features that are not
dependent on the color and thus generalize better to the black and white images from
the Sketch domain. On the other hand, performance on the Photo domain degrades
slightly compared to the baseline.

Smaller values of G seem to perform better than larger values. It may be that a
smaller number of styles (such as G = 4) is sufficient to increase the diversity of the
batch and that a larger number of styles does not provide any additional benefit. On
the other hand, larger values of G result in too many duplicate images in the batch,
reducing the overall information content of the batch. The best value of G is 4, as it
achieves the best performance on all domains and improves on the baseline even on
the Cartoon domain. We therefore use G = 4 for the main experiments.
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7.3 Comparison of methods

In this section, we present and discuss the main results of our experiments. We study
the impact of our proposed methods on the performance of the model and compare
them to the ERM baseline. We also compare our novel aligned stylization method with
the random stylization method [18, 34, 4]. Furthermore, the methods were designed to
work in combination with each other. Therefore, in addition to comparing individual
methods, we also study the effect of combining them. We are particularly interested in
the synergy of aligned stylization with CORAL, as described in Section 6.2.1. The
only combination of methods that we do not study is the combination of CORAL with
random stylization, since they were not designed to work together. We also analyze
how performance changes with increasing limit on the number of training styles in
random and aligned stylization. Values of 8, 64, and 256 are used for the limit on the
number of training styles Strain.

The comparison is performed on the PACS and OfficeHome datasets. Basic image
augmentation techniques have been found to significantly improve DG performance
[12]. Therefore, we present results with basic image augmentation enabled in this
section, as we are mainly interested in improving current state-of-the-art methods.
Results without basic image augmentation are shown separately in Appendix A. The
hyperparameters are set as described in Section 7.1.5 or to the values found by the
hyperparameter search in Section 7.2. The results are shown in Tables 7.4 and 7.5
for PACS and OfficeHome datasets, respectively. Each combination of methods and
hyperparameters is run 5 times with different seeds, and the average accuracies in the
target domain are reported with standard errors. This results in 22 rows × 4 domains
× 5 seeds = 440 runs in total for each dataset. The best results in each column are
highlighted in bold, taking into account the standard errors.

7.3.1 PACS

The accuracies achieved on the PACS dataset are generally very high. Specifically, on
the Photo domain, the accuracies are very close to 97%. This is due to the fact that
the Photo domain is very similar to the ImageNet dataset, which is used to pre-train
the ResNet-50 backbone of the models. Therefore, generalizing to the Photo domain is
not very challenging. Accuracies for the remaining domains are lower, but still very
high.

CORAL improves the ERM baseline method on all domains except Photo, where
performance is already very high. This is consistent with the results from the testbed
benchmarks in Section 5.3 and shows that CORAL improves generalization to unseen
domains. The improvement is most noticeable on the Cartoon and Sketch domains,
probably because these domains are the most different from the ImageNet on which
the model is pre-trained. This trend can be observed for all other DG methods as well.

Random stylization outperforms the baseline ERM method on all domains except
Photo, similar to CORAL. Furthermore, it also outperforms CORAL on the same
domains. This confirms that style transfer data augmentation is a powerful method for
DG setting. The response to different values of Strain is interestingly quite unstable and
varies from domain to domain. Random stylization also achieves the best performance
of all methods on the Cartoon domain. However, the lead over the aligned stylization
is only marginal and not significant considering the standard errors.

The aligned stylization method suffers the greatest performance loss on the Photo

36



...................................7.3. Comparison of methods

Alg. StyVal Styling Strain Art Cartoon Photo Sketch Average

Erm False none 85.81 ± 0.67 81.57 ± 0.73 96.72 ± 0.27 81.69 ± 1.72 86.45 ± 0.55
align 8 88.77 ± 0.53 84.96 ± 0.61 95.75 ± 0.20 88.31 ± 0.27 89.45 ± 0.23

64 88.26 ± 0.46 84.73 ± 0.37 95.99 ± 0.20 89.20 ± 0.10 89.54 ± 0.18
256 88.62 ± 0.48 85.24 ± 0.70 95.99 ± 0.19 89.38 ± 0.58 89.81 ± 0.20

rand 8 88.89 ± 0.20 85.06 ± 0.58 96.37 ± 0.14 86.06 ± 0.82 89.10 ± 0.21
64 88.70 ± 0.43 84.78 ± 0.69 96.36 ± 0.15 87.56 ± 0.96 89.35 ± 0.46

256 87.84 ± 0.77 85.27 ± 0.48 96.47 ± 0.20 86.16 ± 1.07 88.94 ± 0.37
True none 85.55 ± 0.59 81.60 ± 0.90 96.61 ± 0.19 83.63 ± 0.89 86.85 ± 0.42

align 8 88.84 ± 0.27 84.39 ± 0.49 95.88 ± 0.09 87.48 ± 0.42 89.15 ± 0.19
64 89.12 ± 0.41 84.13 ± 0.47 95.90 ± 0.14 89.52 ± 0.46 89.67 ± 0.18

256 89.72 ± 0.19 84.39 ± 0.57 96.22 ± 0.10 89.80 ± 0.70 90.03 ± 0.26
rand 8 89.21 ± 0.95 85.34 ± 0.26 96.44 ± 0.24 85.89 ± 1.32 89.22 ± 0.47

64 88.92 ± 0.36 84.53 ± 0.95 96.56 ± 0.16 88.07 ± 0.40 89.52 ± 0.39
256 89.20 ± 0.38 85.35 ± 0.47 96.63 ± 0.08 87.63 ± 0.54 89.70 ± 0.28

Coral False none 86.28 ± 0.41 84.06 ± 0.52 96.63 ± 0.39 83.92 ± 0.54 87.72 ± 0.24
align 8 88.74 ± 0.21 83.89 ± 1.16 96.01 ± 0.35 86.28 ± 0.67 88.73 ± 0.43

64 88.98 ± 0.18 84.61 ± 0.43 96.18 ± 0.20 87.01 ± 1.71 89.20 ± 0.38
256 88.66 ± 0.65 84.66 ± 0.39 96.05 ± 0.19 89.54 ± 0.49 89.73 ± 0.25

True none 86.59 ± 0.33 83.26 ± 0.40 96.87 ± 0.17 83.66 ± 0.26 87.60 ± 0.20
align 8 89.29 ± 0.40 84.83 ± 0.33 96.36 ± 0.18 86.61 ± 0.92 89.27 ± 0.25

64 89.36 ± 0.39 84.44 ± 0.41 96.06 ± 0.20 88.49 ± 0.59 89.59 ± 0.14
256 88.99 ± 0.39 84.91 ± 0.35 95.90 ± 0.12 90.11 ± 0.29 89.98 ± 0.08

Table 7.4: Comparison of methods on the PACS dataset with basic image
augmentation. Average target domain accuracies (in %, ± SE) over 5 runs.

domain. However, it improves significantly on all other domains compared to ERM
and even outperforms CORAL, similar to random stylization. In contrast to random
stylization, the performance of aligned stylization seems to increase with increasing
limit on the number of training styles Strain, especially on the Sketch domain. When
comparing the performance of aligned and random stylization, aligned stylization comes
out on top when the results are averaged over all domains. The largest difference is
observed on the Sketch domain, where aligned stylization excels. On average, aligned
stylization achieves about 1% higher accuracy than random stylization. In combination
with stylized validation, the average performance of aligned stylization is the best of
all methods, closely followed by random stylization. The synergy between aligned
stylization and CORAL is not as strong as we expected in this case. In fact, the
performance of this combination is comparable to the performance of aligned stylization
alone.

Stylized validation does not seem to improve performance when used with ERM
baseline or CORAL. The only exception is the Sketch domain, where the performance
of ERM improves by about 2% when stylized validation is used. On the other hand,
stylized validation works well with both stylization methods and slightly improves
their performance in all domains. We suspect that this is related to the fact that the
stylization methods, unlike the ERM and CORAL methods, saw other stylized images
during training. However, we are not sure of the exact reason for this behavior.

7.3.2 OfficeHome

The accuracies achieved on the OfficeHome dataset are lower than those on PACS in
general. The OfficeHome dataset is more challenging compared to PACS because it
contains more classes (65 vs. 7), making it more difficult to correctly classify the images.
Furthermore, as mentioned in Section 2.4.3, the Art, Product, and Real domains in
the OfficeHome dataset are very similar to each other. Therefore, the assumption of a
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Alg. StyVal Styling Strain Art Clipart Product Real Average

Erm False none 65.16 ± 0.23 48.50 ± 0.28 76.09 ± 0.30 78.50 ± 0.22 67.06 ± 0.10
align 8 63.58 ± 0.30 51.47 ± 0.42 73.62 ± 0.34 75.87 ± 0.31 66.14 ± 0.07

64 64.10 ± 0.35 52.89 ± 0.21 73.12 ± 0.18 75.74 ± 0.22 66.46 ± 0.14
256 63.50 ± 0.40 53.23 ± 0.30 73.16 ± 0.23 75.59 ± 0.28 66.37 ± 0.20

rand 8 65.72 ± 0.37 49.41 ± 0.70 76.21 ± 0.23 78.68 ± 0.12 67.50 ± 0.15
64 66.13 ± 0.55 50.51 ± 0.72 76.03 ± 0.34 78.54 ± 0.30 67.80 ± 0.12

256 65.87 ± 0.40 51.76 ± 0.48 75.51 ± 0.34 79.04 ± 0.12 68.04 ± 0.13
True none 63.86 ± 0.59 46.89 ± 0.77 74.85 ± 0.67 78.66 ± 0.17 66.06 ± 0.13

align 8 63.75 ± 0.50 52.05 ± 0.27 73.59 ± 0.40 75.90 ± 0.31 66.32 ± 0.23
64 63.63 ± 0.29 53.01 ± 0.29 73.53 ± 0.29 75.84 ± 0.08 66.50 ± 0.16

256 64.04 ± 0.28 53.18 ± 0.22 73.37 ± 0.45 75.74 ± 0.30 66.58 ± 0.13
rand 8 66.13 ± 0.49 50.83 ± 0.66 76.01 ± 0.27 78.76 ± 0.25 67.93 ± 0.22

64 65.67 ± 0.42 51.61 ± 0.64 75.54 ± 0.19 78.68 ± 0.18 67.87 ± 0.12
256 66.37 ± 0.40 51.91 ± 0.15 75.81 ± 0.31 78.64 ± 0.13 68.18 ± 0.12

Coral False none 68.65 ± 0.56 50.60 ± 0.27 77.71 ± 0.21 80.36 ± 0.11 69.33 ± 0.18
align 8 66.18 ± 0.23 53.61 ± 0.08 75.20 ± 0.16 78.02 ± 0.26 68.25 ± 0.05

64 66.81 ± 0.31 54.66 ± 0.27 75.01 ± 0.16 77.73 ± 0.27 68.55 ± 0.18
256 65.50 ± 0.43 55.06 ± 0.30 74.65 ± 0.33 77.53 ± 0.28 68.19 ± 0.16

True none 69.14 ± 0.69 49.79 ± 0.25 77.65 ± 0.12 79.94 ± 0.48 69.13 ± 0.16
align 8 66.63 ± 0.36 53.92 ± 0.19 75.30 ± 0.25 77.80 ± 0.26 68.41 ± 0.16

64 66.72 ± 0.41 55.31 ± 0.21 74.34 ± 0.34 77.66 ± 0.28 68.51 ± 0.18
256 66.17 ± 0.18 55.24 ± 0.31 74.79 ± 0.45 77.47 ± 0.21 68.42 ± 0.14

Table 7.5: Comparison of methods on the OfficeHome dataset with basic image
augmentation. Average target domain accuracies (in %, ± SE) over 5 runs.

different distribution does not hold so well and the results must be interpreted with
caution, as the domain shifts between these domains are not that large. This is also
reflected in the results, as the general behavior of the methods is different from that
seen on the PACS dataset.

The first thing we notice is that CORAL performs better on the OfficeHome dataset
compared to PACS. It is able to improve on the ERM baseline in all domains and
achieves the best average performance. This is again consistent with the results from
the testbed benchmarks in Section 5.3 and confirms that CORAL does indeed improve
generalization in the DG setting. CORAL achieves the best performance on the
three similar domains (Art, Product and Real). However, it is outperformed by both
stylization methods on Clipart, which is the only domain that is significantly different
from the others.

Random stylization is able to slightly improve performance on the Clipart domain
compared to the ERM baseline. However, performance on other domains is comparable
to ERM and the differences are not significant. This confirms that random stylization is
able to improve generalization under true domain shift. On average, random stylization
achieves slightly better performance than ERM, but the improvement is marginal.
Using a larger limit on the number of training styles Strain seems to help a bit on the
Clipart domain. However, performance on other domains is not affected by increasing
the number of styles.

Unlike the random stylization, the performance of the aligned stylization on the Art,
Product, and Real domains drops significantly compared to the ERM baseline. It is
therefore worse than both random stylization and ERM on these domains individually
and on average. We believe this is caused by the fact that the domains are too
similar, and aligned stylization can decrease performance on in-distribution data
compared to ERM. However, performance on the Clipart domain is improved the
most by aligned stylization. In fact, aligned stylization outperforms ERM, CORAL,
and random stylization on Clipart, and in combination with CORAL and stylized
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validation achieves the best overall performance on this domain. This result is most
important to us because Clipart is the only domain that differs significantly from the
rest, and therefore the only situation where true domain shift occurs in the OfficeHome
dataset. Using larger values of Strain slightly improves performance on Clipart, but
seems to decrease performance on the other domains. The effect of combining aligned
stylization with CORAL seems to be additive in this case, with no additional benefit.

Stylized validation does not seem to help much in the case of the OfficeHome dataset.
Surprisingly, it reduces performance when used only with the ERM and CORAL
methods. However, it seems to help a little when used in combination with both
stylization methods. This is similar to the behavior seen on the PACS dataset.
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Chapter 8
Conclusion

In this work, we have explored the problem of domain generalization (DG) in the
context of image classification. Despite being a well-studied problem, most of the
existing DG methods are not yet able to achieve satisfactory results under domain
shifts that are common in real-world applications. We have studied the existing DG
methods and their performance, focusing on those methods that tackle the DG problem
by generating additional training data. It has been shown that data augmentation
methods, and especially methods using style transfer, are successful in improving
performance on out-of-distribution (OOD) data. Therefore, we focused our attention
on style transfer methods and their application in the DG setting.

Inspired by the success of style transfer methods in both DG [18, 34, 4] and other
applications [7], we have proposed two novel methods that use style transfer to improve
DG performance. The first method, aligned stylization, is an attempt to improve
existing random stylization methods by simulating synthetic domains with style transfer
in individual batches. The second method, stylized validation, utilizes style transfer for
DG in a novel way by applying it in the validation and model selection phase instead
of on the training data.

We have thoroughly tested the performance of the proposed methods on PACS [24]
and OfficeHome [38] datasets and compared them with existing DG methods. We have
also analyzed the effect of several hyperparameters on the performance of the proposed
methods and performed a search for the optimal values of these hyperparameters.
Furthermore, we studied the effect of combining the proposed methods and hypothesized
that the combination of aligned stylization and the CORAL DG method [35] could
further improve the performance.

We have found that the performance of stylization methods varies greatly across
datasets and even domains. Therefore, choosing the right datasets for evaluation in
the DG setting is crucial and results should be interpreted with caution. We have
shown that the aligned stylization method can improve generalization under strong
domain shifts, but that its performance suffers slightly on in-distribution data. Aligned
stylization was also shown to perform slightly better than random stylization in the true
DG setting, but the difference is only marginal. Furthermore, this improvement could
be due to the fact that aligned stylization is more aggressive than random stylization,
since the ratio of stylized to original images is higher.

The hypothesis that aligned stylization might perform better in combination with
CORAL, an existing DG method, proved to be false. We found that the improvement
from this combination is additive at best.

The style validation method seems to have no or even a small negative effect on OOD
generalization when used only with the ERM [37] and CORAL methods. However,
when combined with both random and aligned stylization methods, it slightly improves
performance under domain shift. We suspect that this is related to the fact that the
stylization methods, unlike the ERM and CORAL methods, saw other stylized images
during training. However, we are not sure of the exact reason for this behavior.
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8. Conclusion .........................................
Although the proposed methods improve generalization performance in the true DG

setting, the improvement over existing methods is only marginal. There is also a large
variance in the results across seeds, indicating that DG evaluation is highly unstable
and that the results should be interpreted with caution. Despite these shortcomings,
we believe that the proposed methods are a step in the right direction and that further
research in this area is needed.

8.1 Future Work

Due to time constraints, we were not able to test the performance of the proposed
methods on larger and more diverse datasets, such as DomainNet [30] or WILDS [21].
We believe that measuring the performance on larger and more complex datasets is
crucial for obtaining more reliable results and would provide more insight into the
generalization capabilities of the proposed methods.

In our work, we only performed a simple isolated search for the optimal values of
some of the hyperparameters. We believe that a more thorough hyperparameter grid
search would be beneficial for the performance of the proposed methods and could
provide more insight into the effects of individual hyperparameters. However, due to
the huge time requirements of such a search, we were not able to perform it.

Another interesting direction for future research is to investigate the effect of different
style transfer methods used for stylization. In our work, we used only one style transfer
method, but there are many other methods that could be used instead and may be
more appropriate for the DG setting. The choice of style transfer method goes hand in
hand with the choice of external style source dataset. We used the Painter by Numbers
dataset [28] for our research, which contains only artistic images. This affects the
possible styles that can be achieved by the style transfer, and thus the performance
of the stylization methods. We believe that using a more diverse style source dataset
could further improve the performance of the stylization methods.

While the stylization methods have been shown to improve performance on OOD
data with strong domain shift, they unfortunately also suffer from performance drops
on in-distribution data. This is a major problem for real-world applications where the
models need to perform well on both in-distribution and OOD data. Therefore, we
believe that more research is needed in this area.
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Appendix A
Results without data augmentation

Tables A.1 and A.2 contain a comparison of methods on the PACS [24] and Office-
Home [38] datasets, respectively, without basic image augmentation. Otherwise, the
experiments follow the same setup as described in Chapter 7. The results are averaged
over 5 runs with different seeds and the standard error is reported together with the
mean. The best results in each column are highlighted in bold, taking into account
the standard errors.

PACS. As expected, the results without basic image augmentation are worse compared
to ones with image augmentation. This is most noticeable on the Cartoon and Sketch
domains. The overall behavior of the methods is similar to the results seen in Table 7.4.

When basic image augmentation is disabled, the aligned stylization method seems to
outperform random stylization more significantly. On average, the aligned stylization
achieves the best results. Both stylization methods are able to outperform the ERM
[37] baseline with image augmentation enabled (see Table 7.4), given that the limit
on the number of training styles Strain is high enough. This means that style transfer
augmentation is more suitable for the DG setting than the standard image augmentation.
However, as seen in Table 7.4, using both together gives the best results.

Stylized validation is able to improve performance only slightly on Art, Photo and
Sketch, but surprisingly suffers performance drop on the Cartoon domain. This is
different from the results with image augmentation enabled, where stylized validation

Alg. StyVal Styling Strain Art Cartoon Photo Sketch Average

Erm False none 83.60 ± 1.44 81.66 ± 0.82 96.12 ± 0.40 66.62 ± 2.88 82.00 ± 0.76
align 8 87.23 ± 0.73 82.60 ± 0.52 95.32 ± 0.28 83.96 ± 0.85 87.28 ± 0.36

64 88.37 ± 0.40 83.15 ± 0.55 95.71 ± 0.11 85.91 ± 0.60 88.29 ± 0.23
256 88.60 ± 0.45 83.40 ± 0.61 95.80 ± 0.19 86.17 ± 1.06 88.49 ± 0.39

rand 8 86.88 ± 0.55 82.20 ± 0.61 95.96 ± 0.18 75.37 ± 3.95 85.10 ± 0.99
64 86.89 ± 1.13 82.65 ± 0.67 95.99 ± 0.24 84.03 ± 1.82 87.39 ± 0.44

256 88.20 ± 0.59 81.59 ± 0.59 96.41 ± 0.13 84.68 ± 1.88 87.72 ± 0.58
True none 84.35 ± 0.84 79.88 ± 0.92 96.35 ± 0.29 67.84 ± 1.81 82.10 ± 0.42

align 8 88.41 ± 0.48 83.20 ± 0.15 95.77 ± 0.23 82.35 ± 1.65 87.43 ± 0.47
64 88.32 ± 0.39 82.60 ± 0.43 95.54 ± 0.11 86.33 ± 0.43 88.20 ± 0.16

256 89.00 ± 0.46 82.42 ± 0.66 95.99 ± 0.16 88.04 ± 0.24 88.86 ± 0.13
rand 8 87.28 ± 0.49 82.51 ± 0.28 96.46 ± 0.15 80.74 ± 1.50 86.75 ± 0.36

64 87.53 ± 0.42 83.04 ± 0.69 96.13 ± 0.19 83.73 ± 0.95 87.61 ± 0.24
256 88.49 ± 0.65 82.54 ± 0.74 95.81 ± 0.16 84.30 ± 0.40 87.78 ± 0.13

Coral False none 86.23 ± 0.99 82.91 ± 0.87 96.92 ± 0.34 70.83 ± 1.92 84.22 ± 0.53
align 8 88.05 ± 0.48 81.89 ± 0.88 95.44 ± 0.15 82.76 ± 0.52 87.03 ± 0.14

64 87.90 ± 0.52 83.42 ± 0.45 95.58 ± 0.08 84.54 ± 0.58 87.86 ± 0.15
256 87.68 ± 0.45 81.96 ± 0.59 95.80 ± 0.10 86.56 ± 1.15 88.00 ± 0.29

True none 87.07 ± 0.35 80.73 ± 0.87 96.46 ± 0.39 71.36 ± 2.01 83.91 ± 0.80
align 8 88.00 ± 0.36 82.12 ± 0.39 95.59 ± 0.19 83.44 ± 0.93 87.29 ± 0.25

64 88.43 ± 0.32 82.86 ± 0.47 95.70 ± 0.10 86.79 ± 0.19 88.44 ± 0.19
256 89.56 ± 0.50 82.35 ± 0.35 95.77 ± 0.16 87.57 ± 0.61 88.81 ± 0.21

Table A.1: Comparison of methods on the PACS dataset without basic image
augmentation. Average target domain accuracies (in %, ± SE) over 5 runs.
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had very little impact on the final accuracy of ERM and CORAL [35] methods.

OfficeHome. The difference between the results with and without basic image
enhancement on the OfficeHome [38] dataset is marginal. This may be due to the fact
that classification on the OfficeHome dataset is more difficult, and therefore simple
image augmentation does not have a large impact.

The overall behavior of the methods is almost identical to that seen in Table 7.5.
CORAL seems to achieve the best results and outperforms both stylization methods
on Art, Product, and Real domains. However, aligned stylization is able to signifi-
cantly outperform CORAL on the Clipart domain, similar to the results with image
augmentation.

Alg. StyVal Styling Strain Art Clipart Product Real Average

Erm False none 64.29 ± 0.49 48.04 ± 0.54 75.77 ± 0.14 79.15 ± 0.11 66.81 ± 0.20
align 8 63.12 ± 0.37 51.64 ± 0.22 72.89 ± 0.31 76.44 ± 0.17 66.02 ± 0.07

64 62.97 ± 0.65 52.96 ± 0.33 72.61 ± 0.29 76.23 ± 0.26 66.19 ± 0.19
256 62.60 ± 0.52 53.43 ± 0.50 72.55 ± 0.23 75.59 ± 0.14 66.04 ± 0.21

rand 8 65.43 ± 0.32 50.10 ± 0.38 75.85 ± 0.40 78.56 ± 0.23 67.49 ± 0.23
64 66.04 ± 0.60 50.99 ± 0.46 75.71 ± 0.30 78.15 ± 0.11 67.72 ± 0.20

256 65.32 ± 0.20 51.62 ± 0.53 75.78 ± 0.23 78.44 ± 0.34 67.79 ± 0.16
True none 63.92 ± 0.71 46.52 ± 1.06 75.63 ± 0.35 78.01 ± 0.65 66.02 ± 0.43

align 8 63.34 ± 0.63 51.87 ± 0.35 73.21 ± 0.46 76.38 ± 0.23 66.20 ± 0.24
64 63.18 ± 0.59 53.23 ± 0.24 72.66 ± 0.21 75.28 ± 0.27 66.09 ± 0.20

256 62.95 ± 0.50 53.47 ± 0.23 72.80 ± 0.52 75.48 ± 0.46 66.18 ± 0.21
rand 8 65.28 ± 0.61 49.68 ± 0.53 75.95 ± 0.34 78.69 ± 0.12 67.40 ± 0.19

64 66.17 ± 0.22 51.88 ± 0.24 75.95 ± 0.20 78.61 ± 0.26 68.15 ± 0.09
256 65.35 ± 0.55 52.43 ± 0.13 75.38 ± 0.33 78.16 ± 0.13 67.83 ± 0.13

Coral False none 67.75 ± 0.37 49.44 ± 0.35 77.37 ± 0.47 81.04 ± 0.14 68.90 ± 0.10
align 8 65.56 ± 0.39 54.24 ± 0.26 74.84 ± 0.25 77.74 ± 0.12 68.09 ± 0.08

64 65.22 ± 0.48 55.02 ± 0.28 74.24 ± 0.28 77.49 ± 0.24 67.99 ± 0.11
256 65.46 ± 0.22 55.22 ± 0.35 74.34 ± 0.16 77.21 ± 0.30 68.06 ± 0.17

True none 66.35 ± 1.07 48.50 ± 0.57 77.74 ± 0.15 80.99 ± 0.23 68.40 ± 0.25
align 8 65.47 ± 0.18 54.69 ± 0.40 75.22 ± 0.44 77.51 ± 0.25 68.22 ± 0.15

64 65.45 ± 0.27 55.15 ± 0.45 74.33 ± 0.24 77.18 ± 0.22 68.03 ± 0.18
256 65.19 ± 0.22 55.77 ± 0.30 74.30 ± 0.41 76.92 ± 0.24 68.04 ± 0.15

Table A.2: Comparison of methods on the OfficeHome dataset without basic image
augmentation. Average target domain accuracies (in %, ± SE) over 5 runs.
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Appendix B
Additional experiments

Here, we present additional experiments that we performed during the development
of our method. We include them here for completeness. These experiments were
performed in the DomainBed framework [11] with default hyperparameters.

Digits. Before we settled on using style transfer as our method for generating synthetic
data, we explored other methods. Our hypothesis was that the performance of models
on ODD data could be improved by generating synthetic domains from an existing
ones. To test this hypothesis, we used the digits datasets. MNIST was used as the
source domain and SYN was used as the target domain. MNIST-M is a dataset that
was created by blending a randomly cropped photographs into the images from MNIST
[5]. Therefore, we used it in place of the synthetic domain.

Table B.1 shows the results of this experiment. The results are averaged over 5 runs
with different seeds and we also report the standard error. The models were trained
both with and without image augmentation.

We can see that adding synthetic domain as a new source domain significantly
improves the performance of the model. Adding MNIST-M as a source domain even
outperforms basic image augmentation. However, when we use image augmentation
together with synthetic domain, the performance is even better.

Augment Source domains SYN

False MNIST 18.6 ± 1.5
MNIST, MNIST-M 48.8 ± 1.8

True MNIST 39.2 ± 1.2
MNIST, MNIST-M 58.9 ± 1.4

Table B.1: Results of experiment on digits datasets (in %, ± SE) over 5 runs.

StylizedImageNet-10. We also performed an experiment on a dataset similar to the
StylizedImageNet proposed by Geirhos et al. [7]. We used a subset of ImageNet [32]
that contains only 10 classes because the original dataset is too large. We created
10 prestyled domains by applying different styles to the ImageNet images using the
AdaIN style transfer method [14].

2 of the prestyled domains were used for validation and another 2 were used as
target domains. The remaining 6 domains were used for training as synthetic source
domains along with the original domain. However, we gradually increased the number
of source domains used for training. Again, we trained the models with and without
image augmentation. Since all domains contained the same images, we used split ratios
of 0.7, 0.15, and 0.15 for training, validation, and testing, respectively, to avoid data
leakage. Table B.2 shows the results of this experiment. For completeness, we also
report the performance on the original test split.

We can see that the performance of the model increases significantly with the number
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of source domains used for training. The performance on the original test split also
improves, but not as much as on the synthetic domains. We can also see that the
performance on the two synthetic target domains is slightly different, even though
they were both created from the same source domain. This means that the final
accuracy depends on the style image used for style transfer. Surprisingly, basic image
augmentation seems to have a negative effect on the performance of the model when
combined with larger number of synthetic domains.

Augment Strain Original Style A Style B Avg

False 0 97.8 ± 0.3 58.1 ± 1.0 56.9 ± 3.1 70.9
1 98.6 ± 0.1 79.4 ± 0.8 83.7 ± 1.5 87.2
3 98.8 ± 0.1 87.1 ± 0.8 88.1 ± 1.1 91.3
6 99.0 ± 0.1 91.7 ± 0.2 91.9 ± 0.4 94.2

True 0 98.1 ± 0.2 62.9 ± 2.0 57.2 ± 1.9 72.7
1 98.4 ± 0.1 83.2 ± 1.4 86.5 ± 0.5 89.4
3 98.6 ± 0.1 88.3 ± 0.4 88.1 ± 0.7 91.6
6 98.7 ± 0.1 91.2 ± 0.6 91.3 ± 0.3 93.7

Table B.2: Results of experiment on StylizedImageNet-10 dataset (in %, ± SE) over 5 runs.
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Appendix C
Source code attachment

Figure C.1 shows the directory structure of the source code attachment. A more
detailed description of the StylizedDomainGeneralization framework is provided in
the README.md file.

./
StylizedDomainGeneralization/ - root directory of the framework

README.md - README file, contains a detailed description of the framework,
installation instructions and instructions on how to replicate the experiments
configs/ - directory containing YAML configuration files

default.yaml - default configuration file
data/ - directory containing symbolic links to datasets
experiments/ - directory containing definitions of experiments
models/ - directory containing pretrained AdaIN style transfer models
requirements.txt - requirements file for pip package manager
run.batch - batch file specification for SLURM jobs submission
stylizeddomaingeneralization/ - source code directory

datasets.py - file containing dataset classes
model.py - file containing model classes
scripts/ - directory containing scripts

summary.py - script for summarizing results
train.py - script for training a model
...

...
submit.sh - script that transforms experiment to individual SLURM jobs

Figure C.1: Source code attachment directory structure.
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