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Abstract

Thyroid cancer is a prevalent disease, and
nuclear imaging methods play a vital role
in its diagnosis and treatment. However,
the current imaging modalities, such as
SPECT and PET, have limitations in
terms of size, cost, sensitivity and tracer
flexibility, hindering their widespread us-
age and impeding progress in clinical un-
derstanding of the treatment. In this
context, the Compton camera, with its
smaller size, reduced cost, higher sensi-
tivity and capability to handle multiple
tracers emerges as a potential alternative
for diagnosing various cancer types.

This thesis addresses the development of a
3D image reconstruction method for radio-
pharmaceutical distribution from Comp-
ton data. The proposed solution aims to
meet the practicality criteria of medical
radionuclide examination.

A Monte Carlo simulator is developed
to generate synthetic data, and a base-
line reconstruction method is established.
Through computational optimization and
regularization techniques, the reconstruc-
tion method is refined. Evaluation is con-
ducted on both synthetic and real data.

The proposed method exhibits compara-
ble qualitative performance to state-of-
the-art methods, while being versatile and
time-sensitive. The experimental evalua-
tion demonstrates its practical usefulness
and potential for incorporation into a clin-
ical solution.

Keywords: Compton camera, thyroid
cancer, list-mode data, MLEM, MAPEM,
total variation
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Abstrakt

Rakovina stitné zlazy je rozsifené onemoc-
néni a nuklearni zobrazovaci metody hraji
vyznamnou roli v jejim diagnostikovani a
lécbé. Pouziti klasickych zobrazovaci mo-
dalit SPECT a PET je omezené velikosti,
naklady, vyuzitelnosti traceru a citlivosti,
coz brani jejich sirokému vyuziti a zpoma-
luje pokrok v porozumeéni prubéhu 1écby.
V této souvislosti se jako potencidlni al-
ternativa pro diagnostiku riznych typt
rakoviny objevuje Comptonova kamera,
ktera ma mensi velikost, snizené naklady,
vyssi citlivosti a umoznuje pracovat s vice
tracery.

Tato prace se zabyva vyvojem 3D rekon-
strukéni metody obrazu pro zobrazeni ra-
dioléciv z dat ziskanych Comptonovou ka-
merou. Navrhované feseni si klade za cil
splnit praktickd kritéria pro medicinské
pouziti.

Byl vyvinut Monte Carlo simuldtor pro
generovani syntetickych dat a vytvorena
zakladni rekonstrukcéni metoda. Prostied-
nictvim vypocetni optimalizace a regula-
rizacnich technik byla rekonstrukéni me-
toda vylepsena. Evaluace byla provedena
jak na syntetickych, tak na realnych da-
tech.

Navrhovand metoda vykazuje srovnatelné
kvalitativni vysledky s nejlepsimi dostup-
nymi metodami, pricemz je zaroven vse-
stranna a respektuje ¢asova omezeni. Ex-
perimentalni hodnoceni ukazuje jeji prak-
tickou uzitecnost a potencial pro zaclenéni
do klinického feseni.

Klicova slova: Comptonova kamera,
rakovina stitné zlazy, list-mode data,
MLEM, MAPEM, total variation

Preklad nazvu: Rekonstrukce 3D
obrazu z Comptonovy kamery
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Chapter 1

Introduction

. 1.1 Motivation

Thyroid cancer is among the most prevalent cancers in young adults. The di-
agnostics is usually accommodated by nuclear imaging methods. If diagnosed
early, a simple surgical extraction of the thyroid can be completely curative.
In the later stages of thyroid cancer, where nodules are formed, radionuclide
therapy is needed to remove these residues.

Currently used nuclear imaging modalities include SPECT and PET. These
systems are large in size, expensive, do not provide sufficient spatial resolution
to detect some of these residues, are limited to only one tracer at a time,
and do not allow measurements at high photon fluxes at a high activity
rate. Because of this, they cannot be employed regularly in cancer patients,
hindering their treatment options as well as research progress in the clinical
understanding of the treatment dynamics.

An alternative detector called the Compton camera shows promising potential
by providing high sensitivity, a wide field of view, and the ability to work
with multiple traces at once. Moreover, due to its small size and reduced cost,
it could be utilized for diagnostics of patients suffering from a wide spectrum
of cancer types.

A research project called ThyroPIX was proposed by a consortium of aca-
demic, clinical and industrial institutions to explore the potential of Compton
cameras for thyroid cancer patients. The main goal was to build a prototype
of a healthcare device for detecting thyroid remnants and nodes.

. 1.2 Problem statement

The task of this thesis is to develop a 3D image reconstruction method of
the radiopharmaceutical distribution from Compton camera images. The
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main application is the imaging of 3!I distribution in thyroid remnants
and nodules in thyroid cancer using the Compton camera developed in the
ThyroPIX project. The nature of this task implies several criteria for the
solution. Namely, the reconstruction must run in a reasonable time (the
existing examination method takes around 20 minutes), work with the amount
and quality of Compton data obtained during a typical examination of the
thyroid (105 — 10 Compton events) and be compatible with the ThyroPIX
Compton camera system.

. 1.3 Thesis structure

The thesis is structured as follows:

Chapter [2 provides a background information on the medical and physical
aspects and introduces the imaging modalities.

Chapter [3| introduces notation and datasets. Furthermore, it contains
information about the existing simulators and a description of the proposed
simulator.

In Chapter 4|, the theoretical foundations of the proposed reconstruction
methods are laid. In adition to that, the chapter discusses the related work
and state of art.

In Chapter |5, the author presents the proposed reconstruction methods
with their description.

Chapter [6| contains the results of the individual methods as well as of the
complete solution, demonstrated on experiments.

Chapter [7] then highlights the important findings, presents a comparison
with existing approaches and concludes this thesis with a summary and a
proposal for future work.

Appendix [A| contains the details of the implementation and project struc-
ture.

Appendix [B| contains the details of an experimental integration of a learning-
based method.



Chapter 2

Background

B 2.1 Medical background

B Anatomy

The thyroid gland, an essential component of the endocrine system responsible
for hormone production, is situated in the neck, beside the trachea, below
the larynx. The thyroid has an overall characteristic shape, resembling a
butterfly, which is easily recognizable in various imaging modalities - see
Figure In adults, each thyroid lobe usually measures around 4-5 cm in
height, 2 ¢cm in width, and 2 cm in thickness, weighing approximately 20-30
g. However, pathologies affecting the gland can cause significant enlargement,
sometimes weighing up to 500 g [1].

B Physiology

The thyroid gland synthesizes and secretes thyroid hormones, which are
integral to numerous physiological processes including normal brain develop-
ment, childhood growth, female reproductive system, bone development, and
mitochondrial activity [3].

B Pathology

Well-differentiated papillary thyroid cancer is the most prevalent endocrine
malignancy, accounting for 96.0% of all endocrine cancers and 66.8% of
endocrine cancer-related deaths [4]. Most thyroid cancer forms are not
aggressive and have an excellent prognosis [3]. Thyroid pathologies are
visualized in Figure
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Figure 2.1: Thyroid anatomy, source [2].
B Symptoms

Dysfunction of the thyroid gland can manifest in various signs and symptoms
across multiple organ systems [3]. Thyroid nodules, often detected during
physical examinations, are the first signs of most thyroid cancers [4].

B Diagnostics

The first-line test for assessing thyroid function is a blood test, followed by
ultrasonography as a second diagnostic step. In case of a suspected finding,
nuclear medicine is regarded as the gold standard in thyroid pathology
diagnostics. Nuclear medicine imaging utilizes small amounts of radioactive
stances, referred to as radiopharmaceuticals, which are injected, inhaled, or
ingested by the patient. By monitoring the distribution and uptake of these
radiopharmaceuticals in the body, nuclear medicine imaging can offer valuable
information about the function of the thyroid. Pathological thyroid nodules
can be either cold - producing too little thyroid hormone - or hot - producing
too much thyroid hormone [3].

B Treatment of thyroid cancer

Thyroid cancer is usually treated through surgery as a first resort. Surgical
procedures aim to remove the whole thyroid gland or its parts. Following
surgery, 11 may be used as a treatment option, with the aim to destroy any

4
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Figure 2.2: Thyroid cancer, sources [5], [6].

residual thyroid tissue and prevent recurrence [7]. The most common method
for 311 therapy is the administration of a large and fixed-dose, regardless of
the percentage uptake of 3T or treatment response of the patient [S].

B 22 Physical background

In the realm of nuclear medicine, the atom is considered the primary con-
stituent of matter, consisting of a dense nucleus that contains neutrons and
protons, surrounded by a sparse cloud of electrons. The atomic number (Z)
corresponds to the number of protons in the nucleus. The atomic mass num-
ber, also called nucleon number (A), corresponds to the number of protons
and neutrons in the nucleus. Isotopes are atoms sharing the same atomic
number yet differing in the number of neutrons. A nuclide refers to a collection
of atoms with the same number of neutrons and protons. Stability among
different nuclides varies, with some inherently stable and others unstable
radionuclides. Unstable radionuclides achieve stability through radioactive
decay, a process that leads to a stable configuration. The decay type largely
depends on the presence of either a neutron excess or deficiency compared to
a stable configuration.

B Radioactive decay
There are three main types of decay.

® One type of decay is alpha decay, which involves the emission of an alpha
particle consisting of two protons and two neutrons from the nucleus of
an atom. Radon (#2Rn) is a well-known example of a radioisotope that

5
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undergoes alpha decay. Alpha particles, being heavy, can only travel
a short distance of a few centimetres in the air and are incapable of
penetrating the skin or clothing, posing a low health risk if they remain
outside the body.

B Beta decay represents another decay type. Beta particles are ionizing
radiation comprising high-energy, electrically charged subatomic particles
- fast-moving positrons or electrons (8% or 7). B~ decay occurs when a
neutron changes into a proton, emitting an electron and an antineutrino.
An example of B~ decay is the first step of iodine (13!1) decay. On the
other hand, 3% decay occurs when a proton changes into a neutron,
emitting a positron and a neutrino. While beta particles can travel
several meters through the air, they can be stopped by a thin sheet of
aluminium or a few centimetres of wood.

® The third type of decay is gamma decay. Gamma decay results in the
emission of photons, which are typically shorter in wavelength than
X-rays. A nucleus in an excited state emits excess energy in the form
of one or more gamma rays. Although gamma radiation is a form of
ionizing radiation, it is less ionizing compared to alpha or beta radiation
[3].

The types of decay are summarized in Figure 2.3. The energy of gamma
rays is measured in kiloelectron volts (keV). One electron volt is the energy
required to move one electron through an electric potential difference of one
Volt. Gamma rays are considered to be radiation with photon energies above
10 keV [9]. The rate at which nuclear decays occur is called radioactivity.
The SI unit for radioactivity is the becquerel (Bq), which equates to 1
transformation per second.

B Interaction of radiation with matter

Radiation interactions with matter are vital in nuclear medicine, with three
important effects being the photoelectric effect, Compton scattering and pair
production. They occur when a flying incident photon hits an atom. Each
interaction’s probability differs based on the incident photon’s energy and
the material’s atomic number - see Figure 2.4. A simple scheme is presented
in Figure 2.5,

The photoelectric effect occurs when a photon (with energy between a few
keV and approximately 1 MeV [11]) interacts with one of the orbital electrons
of an atom, causing the atom to absorb the entire energy of the incident
photon. This energy exceeds the electron’s binding energy, leading to the
electron’s release and disappearance of the initial photon. A free electron
then substitutes the ejected electron. This interaction is more probable when
a low-energy photon strikes a substance with a high atomic number.

6
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Figure 2.3: Types of radioactive decay, source [10].

Compton scattering (incoherent scattering) is an inelastic interaction be-
tween the incident photon and an electron. An electron partially absorbs
the incident photon’s energy, resulting in a photon with lower energy than
the initial photon. Furthermore, the collision causes the photon and electron
to deviate at an angle dependent on the incident photon’s energy. This
interaction is probable in elements with low atomic numbers and high photon
energy (several tens of keV to MeV) [12].

Pair production occurs when the incident photon has high energy (more
than 1.022 MeV [11]). The photon is entirely absorbed, and its energy is
converted into creating an electron-positron pair and the kinetic energy of
the newly created pair. After the creation, the electron annihilates with the
positron, releasing two gamma rays (with energy of 511 keV) in mutually
opposite directions. [13]

B Radiopharmaceuticals

The most commonly employed radionuclide in the thyroid gland for diagnostic
and therapeutic purposes is iodine (3!1) [4]. Upon decay, it emits beta
particles and gamma rays. Gamma rays have different energies, 82% with an
energy of 364 keV. 13!T has a physical half-life of 8.04 days.

Another important thyroid radionuclide is technetium (*°Tc). It emits
gamma rays, 89% with an energy of 141 keV and has a physical half-life of 6

7
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Figure 2.5: Types of radioactive decay, source [14].

1317 and 99Tc are used with gamma cameras and SPECT imaging. In case
of PET imaging, a positron-emitting radioisotope fluorine (**F) is broadly
used [3].

B 23 Imaging modalities

The primary function of nuclear medicine imaging methods is to display a
2D /3D image of the distribution of the concentration of the radiopharmaceu-
ticals in the body. There are two possible classical modalities - Single-photon
emission computed tomography (SPECT) and Positron Emission Tomography
(PET).
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B 23.1 Gamma camera

A gamma camera is an elementary device for imaging gamma sources. See
Figure for a visualization. Gamma camera consists of a detector, a
scintillator and a collimator. Positioned nearest to the patient is the collimator,
which permits photons from a perpendicular direction to pass through to the
crystal. Here, the photon undergoes scintillation, and the measured values
are converted into electrical signals for processing. The use of collimators is
essential for image reconstruction. However, it also reduces the detector’s
sensitivity [3]. Various collimator types exist depending on photon energy,
and there is always a design trade-off between sensitivity and resolution

[L2][13].

B 232 SPECT

Single-Photon Emission Computed Tomography (SPECT) represents a tomo-
graphic imaging system. As a scintigraphic method, SPECT tracks gamma
rays emitted by radiopharmaceuticals. The radioactive material is adminis-
tered to the patient and emits gamma photons captured by a gamma camera
detector.

SPECT acquires planar images from multiple angles, either with multiple
gamma cameras or with a rotating gamma camera. During imaging, each
projection takes 15-20 seconds, and there are about 30-120 projections [16].
The average examination time is 15-20 minutes [I7]. The captured images
are reconstructed to produce either a 2D tomographic image or a 3D image
of the radiopharmaceutical distribution in the tissue. The resolution is in the
order of 10-20mm [16] [1§].
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Modern SPECT systems frequently integrate low-dose CT scanners to
enable the display of both anatomical and functional properties [3].

B 233 PET

Positron Emission Tomography (PET) is an alternative nuclear imaging
system. PET utilizes a 8 emitter, usually '8F, that generates positrons.
During the decay, generated positrons annihilate with nearby electrons, pro-
ducing two gamma radiation photons that travel in opposite directions with
the same energy. This property is then utilized in the detection process.
A PET scanner is composed of a ring of detectors that captures photons.
The PET scanner identifies corresponding photon pairs using their time of
arrival. When the system detects these two photons, it generates a so-called
line of response - a path between two detectors used to localize the tracer.
PET then superimposes numerous lines of response from different angles for
reconstruction. Similar to SPECT, modern PET systems employ additional
CT for better reconstruction outcomes [9]. Compared to SPECT, PET has
higher sensitivity and spatial resolution (around 10 mm [16]), corresponding
to clearer pictures obtained in shorter acquisition times [I3]. On the other
hand, PET is more costly to operate. Figure|2.7/shows the physical differences
between PET/SPECT, Figure shows typical images obtained.

Figure 2.7: Photo of a SPECT (left) and PET (right) system, sources [19], [20].

Bl 2.3.4 Compton camera

A Compton camera is a gamma ray detection device that utilizes Compton
scattering to determine the distribution of gamma ray sources. The device
consists of two separate sub-detectors: the scatterer, which primarily fa-
cilitates Compton scattering and is generally made of low atomic number
material, and the absorber, which predominantly facilitates the photoelectric
effect and is typically constructed from high atomic number material. By
analyzing the series of interactions between incoming gamma ray photons
and the sub-detectors, gamma ray source distribution can be reconstructed

[23] [11].

10
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thyroid cancer

Figure 2.8: Image from a SPECT scan (left) and PET scan (right). Both fused
with CT, sources [21], [22].

(a) : Schema of photon emission and detection.
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‘Ymeasured

(b) : Schema of Comptopjreconstruction principle.

Figure 2.9: Illustrations of Compton imaging principles.
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Compton imaging is based on the idea that the Compton scattering angle
can be computed using measurements of the incoming photon’s energy. The
photon deposits part of its initial energy in the scatterer and the remaining
energy in the absorber [I2]. See Figure [2.9| for schema). If the detection
positions on the scatterer and absorber are known, the Compton scattering
angle # can be computed using the Compton scattering formula [24]

AN=)N - )\=

(1 —cosb) (2.1)

meC

which can be rearranged as

1 1

— - 2.2
BB (2.2)

0 = arccos |1 — mec?(

where Ej is the energy of the initial photon, Ej is the energy of the scattered
photon, m. is the electron’s mass, and c is the speed of light in a vacuum.

From the perspective of the reconstruction, the Equation [2.3.4! constrains
the direction from which the photon originated to a conical shape known
as the Compton cone, with the apex at the scattering detection point. The
cone’s central axis is the line that connects the positions of the absorption
and scattering detections. The half-apex angle of the cone corresponds to the
scattering angle.

When the Compton camera records a series of such incidents, referred to as
Compton events, it becomes possible to reconstruct the spatial distribution
of the gamma source [25].

It is important to note, that the Compton scattering formula holds if the
photon interacts with an electron at rest. This assumption is often violated
in real scenarios, resulting in the so-called Doppler broadening effect [11].

B Kiein-Nishina formula

The Klein-Nishina formula is a mathematical equation that quantifies the
likelihood of a Compton scattering at a specific angle while considering
relativistic effects and adhering to the principles of energy and momentum
conservation. The formula (Equation 2.3) computes the differential cross
section, that is proportional to the probability density, given the initial energy
of the incident photon Fjy, the energy of the scattered photon Ej, and the
scattering angle 6. Figure |2.10 presents probability distributions for different
energy levels of Fj.

12
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8e-030

90

Figure 2.10: Klein-Nishina distribution for given photon energies, source [26].
The graph expresses the probability of Compton scattering under different angles
given different initial energies (in color).

do 2 (E1\?[E, E )
do0 _re (Li\T 1B Po 2.
an -~ 2 (EO) [EO+E1 sin” (2:3)

B Poisson distribution

Poisson distribution is a discrete probability distribution that describes the
probability that exactly k events will occur in some given time period. It is a
vital distribution for Compton reconstruction as it governs the radioactive
decay. The expected number of decays is given by the parameter A, which is
non-negative and integer-valued. The probability mass function is defined as:

)\k
Pr(X =k)=e . T (2.4)

B Applications of Compton cameras

The Compton camera concept was initially proposed by Schonfelder in 1973 for
applications in high-energy astrophysics [27]. Since then, Compton cameras
have been employed on satellites and spacecraft to observe near and far space

13
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[L3] [12].

Following the 2011 Tohoku earthquake and tsunami and the subsequent
Fukushima Daiichi Nuclear Power Plant disaster, Compton cameras have
been built to survey for radiation contamination in Japan and the USA [28]
[13]. Application in homeland security was proposed in the UK [29].

Usage of Compton cameras in the medical field was pioneerd by Todd et
al. in 1974 [30]. Over the past decade, Compton cameras have emerged as
potential substitutes for mechanically collimated SPECT systems in nuclear
medical imaging. Compton cameras offer the potential to work with high-
energy traces and can measure multiple radiopharmaceuticals simultaneously.
Nonetheless, applications remain confined to preclinical research at this stage
[12]. Another recent medical application involves using Compton cameras in
hadron therapy for real-time monitoring of the particle beam range during

treatment [12][25].

B ThyroPIX Compton camera

A research project called ThyroPIX is engaged in the development of a
Compton camera for the context of thyroid cancer patients. The ThyroPIX
project is supported by the Technology Agency of the Czech Republic (TACR).
The members of the projects are Radalytica a.s., Advacam s.r.o., University
Hospital in Motol, Czech Metrology Institute and The Center for Advanced
Preclinical Imaging.

The ThyroPIX detection system is the one used in this thesis. A small and
lightweight Timepix3 Compton camera is integrated into a measuring head
that is attached to a collaborative robotic arm mounted on a mobile platform

(Figure 2.11)).

Figure 2.11: Model of the ThyroPIX system (left), current prototype version
(right).

The design of ThyroPIX ensures the device’s high portability and enables
patient in-room measurements during radiopharmaceutical treatment. The
final camera could potentialy serve as an effective alternative to the SPECT
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2.3. Imaging modalities

cameras and provide vital information about the progress of the treatment
enabling the usage of personalised dosage.

The Compton detection module comprises a 1 mm thick square shaped
scatterer layer made of Si and a 1 mm thick square shaped absorber layer
made of CdTe. A distance of 20 mm separates the layers (see Figure). Each
detector has 256x256 pixels with a pixel size of 55 ym. Timepix3 records time-
of-arrival and energy of the gamma-ray with high precision (time resolution 1.6
ns; energy resolution 7 keV at 356 keV). The system is capable of processing
up to 80 Mhits/cm?/s.

The ThyroPIX detector automatically processes the raw acquired data
(with interaction positions and energies) and outputs the cone parametrization
(Equation 3.1)).
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Chapter 3

Simulators and datasets

. 3.1 Notation introduction

We have a volume in space represented by a uniform voxel grid V with a
defined origin, dimensions and voxel size. Each voxel j has defined center

) T
point ¢ = [cgg Cy cz} .

Furthermore, we have a detector system comprising of two identical rect-
angle detectors, a scatterer and an absorber. Scatterer’s position is defined
by its centre point Scenter, its corner point Sc.orner, two side vectors s; and so
and a normal vector n. The absorber has the same size and normal as the
first one, but is shifted by distance sg behind the first detector’s plane. See

Figures 3.1 and [2.9 for a schema.

l&»enter
D

absorber scatterer

Figure 3.1: Scheme of the detector’s geometry and used notation.
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3. Simulators and datasets

In the voxel grid V' we have a distributed source emitting photons of known
energy Ey. A photon originating from the center of a voxel j with coordinates
c may head towards a detector system called a Compton scattering detector.

When the photon hits the scatterer at point Py, it undergoes Compton
scattering, being scattered with an angle 0,..,;. The photon then continues
with the decreased energy F7 until it reaches a point P2 on the absorber
where it is absorbed using the photoelectric effect. This interaction of the
photon with the detector system is called a (Compton) event.

For the reconstruction, there are two related frames of reference - one is the
frame of reference of the scatterer D with the origin at Scenter, X-axis aligned
with —s;, y-axis aligned with —ss, z-axis aligned with normal vector n. The
other frame of reference is the world reference frame W. The detector’s frame
of reference D is defined using a pose vector

T
posep = [Scenterz Scentery Scenterz « ﬁ ’7] (31)

where the first three elements are the coordinates of the center of the first
detector in the world reference frame W and the last three coordinates are
the Euler angles (Z-Y-X notation) that correspond to the rotation of the
robot with reference to the three axis of the world frame. The voxel centers
coordinates are also in the world reference frame.

Each measured Compton event i is defined by the cone parameters given in
the scatterer’s reference frame D. The cone’s parameters are:

T
event; = [Pﬂ Plg PlDZ Gy Ay ay Hmeasured} (32)

where the first three elements are the coordinates of the cone apex in the

reference frame of the detector, the next three elements are the coordinates
of the cone axis vector a = Py — P9y and the last element is the measured
scattering angle.

B 32 Compton simulators

A crucial role in the development, testing, and validation of algorithms and
techniques for Compton imaging systems play simulators. Mainly based on
the Monte Carlo principle, simulators are tools that can generate synthetic
data, model detector response and validate reconstruction algorithms before
being deployed in the real world.

B 3.2.1 Review of existing simulators

An example of such a simulator is the Geant4 toolkit [3I], developed by
CERN. It is an advanced general-purpose Monte Carlo simulation platform for
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particle transport in matter, widely used in high-energy physics, astrophysics,
and radiation protection. An open-source module called GATE [32] has
been developed for Geantd to accommodate the needs of medical image
reconstruction. GATE is a robust simulator, that enables realistic physics
modelling and complex experimental settings. However, it has a steep learning
curve and therefore its usage was outside of the scope of this thesis.

Another available simulator is the Compton Camera Simulator (CoCam
Sim) developed by Advacam s.r.o.. It is a Monte Carlo simulator that allows
to generate simulation data from sources of different geometrical primitives.
CoCam Sim consideres a smaller subset of the physics modelling than GATE
- probability of Compton scattering and photoelectric absorbtion including
the interaction point, Klein-Nishina distribution of the scattering angle and
attenuation coefficient inside of the detector. Furthermore, it takes into
account specific detection probablities of the Timepix3 detection materials
(Si and CdTe). The CoCam Sim therefore presents a very good tool for
validation of the developed reconstruction methods. The disadvantage of
the simulation is a relatively naive implementation in Python - point-source
simulation of 10% photons took on average 41 seconds (wall time) - along with
the limited detector geometry customizability. CoCam Sim allows sampling
only at predefined locations. These are limiting factors in case of generating
complex experimental scenarios or in scenarios with high number of events.

B 33 Development of custom simulator

To test the reconstruction methods, generate high volumes of sample data
and complex scenarios, a simulator was developed as part of this thesis. The
task was to design a Monte Carlo algorithm that performs photon tracing
simulation, specifically considering Compton scattering. The simulation
algorithm implements a simplification of the detection process, with the
level of simplification chosen to match the model used in the reconstruction
(described further). The following section describe the individual components
of the developed solution.

B Uniform sampling of directions of emitted photons

First task is to uniformly sample directions in which the photons exit given
point source located at the voxel center c;. A simple uniform generation of
two spherical angles # and ¢ would result in uneven distribution of the final
directions, with pole regions having more samples than equatorial areas.

Therefore, a review of available sampling methods was done and approach by
Simon [33] was adopted. It uses inverse transform sampling that leads to the
set of equations:

19



3. Simulators and datasets

u~U(0,1)

0 =2rmu

¢ = arccos(1 — 2u)
e; = sin(¢) cos (0)
ey = sin(¢) sin(6)

By uniformly sampling u, randomly sampled emission vectors e can be

obtained.

B Raytracing and finding intersection with the first (front) detector

Once the voxel center c; and the direction of the emitted photon e are defined,
we can find the intersection with the first detector. This can be done using
linear algebra. We first find if the photon intersects the detector’s plane and
if so, we find if it intersects the rectangular detector. For simplification, we
asume that the interaction probablity is 1 regardless of the path of the photon

(incident photon will always interact).

B Intersection with the detector’s plane

Intersection occurs when
e-n<0

The intersection point P; then lies on a line parameterized by
P, =cj+ae

where a € R is an unknown parameter.
Because it must hold that Sf’l -n = 0 it must also hold that

(cj_f’l - c;S) n=20

which can be rewritten as
(P1—¢j)—(S—=c¢;)) n=0
((a) — (S —¢;) -m =0
(8-cj):n

e-n

a =

20

(3.6)



3.3. Development of custom simulator

Substituting the computed value of a into the parameterized line’s equation
then leads to the intersection point P1.

B Intersection with the rectangular detector

To decide whether the intersection point P is inside the rectangular detector’s
space, we have to project the vector SP; onto the side vectors s; and so

S1p = (Pl—S)-Sl
P HSIH (38)
Sgp _ (P1 — S) + S92
Izl

The intersection point P is inside the rectangular detector’s space if

0 < [ls1pll < [lsall

(3.9)
0 < [[sgp|| < [Is2]]

Il Path from the first to the second detector

On the subset of photons that hit the first detector, we have to simulate
Compton scattering and follow their new scattered path.

B Sampling the scattering angle 6,ca

Given initial energy of photon FEjy, the differential cross section of scattering
angle 6..,1 is given by Klein-Nishina formula. To sample angles according
to the Klein-Nishina distribution, an approach using the inverse cumulative
distribution function was adopted.

The idea is to uniformly sample N angles 6.1, find their corresponding
probabilities using the Klein-Nishina formula and compute cumulative sums
of the probabilities. The resulting vector is the discretized inverse cumulative
distribution function with uneven step-size. To account for that, cubical
interpolation is used to create even spacing between the samples. This
procedure needs to be done once and the resulting vector can be saved. In
the runtime, a uniform random sample is taken, multiplied by N, rounded
and the result is used to index the saved vector of angles.

B Sampling the emitting direction of the scattered photon

We have a point P, a direction vector e and a scattering angle 0;¢,;. We
want to find all vectors e; with a fixed angle from vector e and sample one of
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3. Simulators and datasets

them. There is a cone of possible solutions.

Assuming e, is a unit vector, we can construct a plane perpendicular to e;
at P1 + e;. The cone intersects this plane at a circle of radius r = tan(«)
centered at Py + e,

The cone points can be described by

P.=(Pi+e)+rv (3.10)

where v is a unit vector perpendicular to e;

The vector v can be decomposed into two vectors vi and vs.

v = cos(¢) vy + sin(y)) v (3.11)

given angle 1.

By picking v; and v to be orthogonal and selecting v, we obtain the
vector v.

This creates the final parametrization of the cone

P, =t(P1 + e5) + tan(brea1) (cos(¥) vy + sin(¢)va) (3.12)

where ¢t € R, 9 € [0, 27]

A single sample is found after sampling ¢ uniformly
W~ U(0,27) (3.13)
generating vi and vo using projection and plugging it into the final parametriza-

tion equation (3.3).

B Finding the intersection on the second detector

Finding the intersection with the second detector is now straightforward.
We find the intersection applying the same procedure as when finding the
intersection with the first detector (Section 3.3).

The resulting cone apex is the point P, the cone axis is given by P, — P;
and scattering angle 0e,1.

B Optimization of the algorithm

To speed up the computation, the solution was implemented in the matrix form
(utilizing PyTorch library), processing multiple photons at once, resulting in
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a fast performance. A point-source with 109 photons was simulated in 0.16
seconds (wall time), compared to CoCam Sim’s 41 seconds on a standard PC.
Thanks to the implementation in PyTorch, the simulator could also be run
on GPU, further increasing the performance boost. The proposed simulator
also allows a configuration in terms of source location and shape, detection
poses, number of generated events, uncertainty in the scattering angle (using
Gaussian noise) and random coincidences generation.

. 3.4 Dataset

A dataset serves as the foundation for model development and evaluation. As
the reconstruction problem is very specific, there are no generally available
datasets. Therefore, a custom dataset was compiled using simulators and real
laboratory measurements. The design of the data was chosen to validate the
reconstruction methods as well as to reflect the anatomical properties of the
thyroid examination.

B 3.4.1 Simulated data

B Own simulator

The developed simulator was used heavily to generate scenarios with different
geometrical primitives. In total, around 150 scenarios were generated. The
simulated shapes include spheres, elipsoids, cylinders, cones, crosses and
rectangles in different configurations. The sensing locations vary from a single
projection to scenarios with complex projection setup. Different sizes of the
voxel grid and distances from the center of the voxel grid were considered.
For some shapes, scenarios with noise in the scattering angle or with random
events were generated. A sample of the generated scenarios is available in
Figure [3.4.1.

B CoCam Sim

The CoCam Sim was used for the validation of reconstruction methods using
a more complex underlying physics model. The available shapes included a
similar geometrical primitive set as the proposed simulator. The scenarios
generated using CoCam Sim had a smaller number of generated events and
limited sensing locations, due to the nature of the simulator.
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3. Simulators and datasets

Figure 3.2: Sample images of the generated data.

B 3.4.2 Experimental measurements

Thanks to the ThyroPIX project, the organization of real measurements was
possible.

The first experiment took place at the Department of Nuclear Medicine
and Endocrinology, 2nd Medical Faculty, Charles University and University
Hospital Motol. The experiment sample consisted of four 3'I capsules placed
on two concentric cylinders (Figure . The size of the capsules was 16x7
mm. Two capsules had an activity of 25 MBq, one activity of 12 MBq and
one 7.5 Mbq. The measurement was done on a rotating table, scanning a
full 360 degrees turn with a step of 5 degrees (72 projections in total). The
distance from the axis of rotation was 73 mm. The number of Compton
events acquired was 46 685.

(b) : Front view of the experimental
(a) : Measurement setup, with the phantom sample with marked locations and
in front of the detector. activities of the capsules.

Figure 3.3: Overview of the concentric cylinder phantom (without the capsules).

The second experiment utilized an anthropomorphic human phantom with
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3.5. Data preprocessing

a neck insert containing three capsules (16x7 cm) of 3! (63 MBq, 33 MBq
and 23 MBq). The phantom was developed by the Czech Metrology Institute,
using a special material that provides similar properties as human tissue. The
capsules were fitted into the insert and then bathed in a gel-like solution.
The measurements were done using the ThyroPIX robotic prototype system,
acquiring data from 21 sensing locations that imitated a very restrictive
medical examination scenario (horizontal range of 70°, vertical range of 25°).
Using the same sensing locations, the insert was firstly measured inside of the
human phantom and then standalone, obtaining 40 406 and 81 505 events,
respectively.

Figure 3.4: Overview of the anthropomorphic human phantom.

Clinical data from patients were unfortunately not acquired in the time of
this thesis due to the complexity of clinical trial approval, but are scheduled
later this year.

B 35 Data preprocessing

As the input data were obtained in multiple sensing locations and coordinates
are in the reference frame of the detectors, preprocessing was done on the
input data to transform the coordinates into the world coordinate frame.

Given the detector pose from Equation the transformation from detec-
tor’s reference frame D into world reference frame W can be formulated as a
rigid transformation and computed using the rotation matrix
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3. Simulators and datasets

R =R,(a) - Ry(B) - Rx(7)

cos(a) —sin(a) 0 cos(f) 0 sin(p) 1 0 0
= |sin(a) cos(a) O] - 0 1 0 |-]|0 cos(y) —sin(y)
0 0 1 —sin(8) 0 cos(B) 0 sin(y) cos(y)
t= Scenter

(3.14)

The coordinates of the cone parameters in the coordinate frame of the
detector D are then transformed into the coordinates in the world reference
frame W using a simple transformation

PV =R .-PP 1t
VRl (3.15)

In the following parts of the thesis, the cone parameters are always assumed
to be in the world reference frame W, and the reference frame index is
omitted.
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Chapter 4

Reconstruction methods overview

Medical image reconstruction algorithms convert raw data acquired from
various imaging modalities into high-quality, interpretable images that assist
clinicians in the diagnostics of various medical conditions. In contrast to
PET/SPECT, the Compton camera provides information about the scattering
angles of individual photons. This allows us to obtain higher detection
efficiency (up to two orders of magnitude [34]), but at the expense of a
complex image reconstruction process. Whereas PET/SPECT associates each
photon with a line (2 DOF), Compton imaging links measurement events to a
cone surface (5 DOF), implying a more ill-conditioned problem. The size and
mutual arrangement of the scatterer and the absorber can also non-trivially
affect the probability of detection [35].

For the reasons mentioned above, traditional PET/SPECT reconstruction
methods are not applicable for the Compton camera system. Although it’s
theoretically possible to formulate the Compton reconstruction methods
in a similar manner, the difference in the dimensionality of the projection
operator presents a significant difference. In Compton imaging, we’re unable
to capture, store, or process the projections and are instead compelled to
operate exclusively with a discrete list of detections, referred to as list-mode.

. 4.1 List-mode

List-mode presents a data processing approach that is needed in Compton
reconstruction. While PET/SPECT utilizes bins - discrete intervals used
to organize, aggregate and represent individual events. In the list-mode
approach, the size of the bins is reduced so that at most one event is in
each bin and bins with zero events are ignored - adopting the list-mode
approach. In the context of Compton reconstruction, the list-mode method
works with coincidence lists containing parameters of every event (cone
apex position, cone axis, scattering angle). This approach avoids binning
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4. Reconstruction methods overview

and associated quantization problems while maintaining reasonable memory
requirements [35]. To generate list-mode data, the detection system must be
event-based rather than pixel-based — meaning it must contain fast read-out
electronics and memory to give information about every incoming photon
[16]. Reconstruction methods then work with individual events as opposed
to collections of events (bins) in SPECT/PET.

B 4.2 Forward projection

Classical approaches to image reconstruction are mainly based on the so-
called forward and backward projection operators. Forward projection is a
mathematical process that computes individual projections of an unknown
image function [35].

In traditional PET/SPECT reconstruction methods, this process is done
using Radon transform, a linear transformation that converts the unknown
image function p (assumed to be proportional to the radioisotope source
densities) into the projection function Ry using a line kernel. The projection
function Ry is parametrised by pixel index and angular orientation of the
detector. Radon transformation can be represented as an integral or as a
dot product. Albeit the Radon transform is defined for the continuous case,
it is in practice often discretized. The linearity of Radon transform is very
convenient as the Radon transform of the entire volume is the sum of Radon
transforms of the individual points [16].

In case of Compton imaging, line kernel must be replaced by a conic kernel
and direct standard Radon transformation cannot be used. The detection
itself is a stochastical process and forward projection is better formulated as
a probability distribution over events. For some restrictive cases, projections
can be computed using conical Radon transform [36], however there is no
analytical solution for the general case.

To illustrate the concept of Radon transform, let us consider a simple 2D
case. We introduce an unknown image function of two variables ;(x) that
represents the photon density - estimated number of photons emitted in at
point x. The projection function p is the Radon transform of function p and
is defined as

p(r) = Rur) = [ ) da (4.1)
where 7 is the parametrisation of the projection and the integral is taken

with respect to the kernel ¢ - in case of PET/SPECT a line (Figure 4.1), in
case of Compton imaging a cone.
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H(x, y)

Figure 4.1: Principle of a Radon transform, source [37].
B Reconstruction

The task of image reconstruction is to approximate the inverse of the forward
operator. Given one or more projection functions p, the goal is to compute
the unknown image function pu, from which the projections originated.

Forward projection
(Radon transformation)

Vo)

aS€ b
Backward projection
Cross-section (Reconstruction)

0 180 e

ulx, y) p(t 6)

Figure 4.2: Basic scheme of image reconstruction, source [37].

B a3 Backprojection

Backprojection is the dual operator to the forward projection (Figure 4.2).
It takes the projection data from the detector space (cone parameters) and
distributes it back into the image space.

For PET/SPECT, this procedure is formulated as a sum across all available
projections (Figure 4.3).
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where 7 is a normalization factor, in case of Compton data %

ol

Projection at 0° Projection at 90°
I I ' " |

“Yolk” location

4 projections 8 projections 24 projections 120 projections

Figure 4.3: Principle of the backprojection method, source [37].

In case of Compton reconstruction, each measured event corresponds to a
cone surface distribution. These distributions are projected on the voxel grid
and superimposed.

. 4.4 Filtered backprojection

As stated in the previous section, naive backprojection superimposes available
projections.

In the case of an line projection setup (PET/SPECT), these projections
overlap more in the center of the volume than on the boundaries. To correct
for this factor, filtered-backprojection proposes to apply a convolution to the
projection data using a filter kernel. An ideal filter would be in the form of
|w|. However, due to the presence of high-frequency noise, modifications such
as the Ram-Lak filter (Equation 4.3) are often used [38].

Hw) = lwl], for |w| < w, (4.3)
0, for |w| > we
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4.5. [terative methods

In PET/SPECT, each projection is filtered and the projections are superim-
posed as in the case of a simple back-projection (Figure|4.4)). Even though the
filtered backprojection method has underlying assumptions such as linearity
of the projection operator, infinite amount of projections, continuous space,
etc., it works surprisingly well even in many real-life scenarios and is broadly
used [38].

120 projections 120 projections
With ramping filter

Figure 4.4: Principle of a filtered backprojection method, source [37].

In Compton imaging, the superimposed conical projections of individual
events usually accumulate near the detector, but the location also depends
on the particular scanning procedure and layout of the available projections.
Direct application of the filtered backprojection is not possible, but there
have been attempts ([39] [40]) to develop a similar procedure for the case
of Compton imaging. The most widely regarded approach uses spherical
harmonics [39] — it transforms the original detector’s surface by moving each
pixel in the centre of a unit sphere. This step allows Radon’s transform to
be applied, enabling a fast reconstruction. However, this approach is very
sensitive to the discretization and to the number of available projections.
Furthermore, normalization of the intensity values is challenging [35].

B 4.5 Iterative methods

The iterative methods inherently work with a discretized model, which can
be modelled as a system of equations

Tz =b (4.4)

where the unknown variables x are the values of the unknown source densities,
which are trying to satisfy the measured projection data b, given the dis-
cretized projection operator matrix T. The matrix T is also called a system
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modelling matrix and describes the contribution of elements of the discretized
image function to projection data.

In general, the system of equations is often overdetermined or underdeter-
mined and cannot be solved directly. The overdetermined problem is often
reformulated as minimizing the norm of the residuals

mwinHTac —bl|, (4.5)

the underdetermined as a regularization problem.

A direct solution is not obtainable (because of the large size of matrix
T) and iterative methods are employed. Most methods usually start from
some prior initial guess of the discretized image function. Given this guess,
a set of projections is created and compared with the measured projections.
The difference between these two is used to correct the estimated discretized
image function. These steps are repeated until the estimate converges to an
acceptable level.

. 4.6 Maximum-likelihood expectation-maximization
(MLEM)

Maximum likelihood expectation maximization (MLEM) is an iterative sta-
tistical method that tries to find the maximum likelihood parameters of
statistical models. Usually, these models include hidden (latent) variables or
unobserved data points.

In the context of nuclear image reconstruction, the latent variables are the
Poisson distribution parameters j\j, that are proportional to the concentration
of the radionuclide. The task is to find the maximum likelihood parameter
for each pixel/voxel.

In a general case, maximum likelihood parameters are often calculated
using gradient methods by computing derivates of the likelihood function.
However, when latent variables are present, the solution is either complicated
to derive or non-existent. Therefore a two-step algorithm called Expectation-
maximization is utilized.

The EM algorithm consists of two steps that alternate:

® E-step: Computes the expected log-likelihood given the latent model
parameters A\; from the previous iteration.

® M-step: Aims to find the new estimate of the j\j, that maximizes the
conditional expectation.
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When the underlying statistical model is of an exponential family, it is often
possible to derive a closed-form formula for each iteration.

B 4.6.1 Derivation

The following section provides a derivation of MLEM for classical nuclear
imaging methods (PET/SPECT) and then presents adaptation for the list-
mode Compton reconstruction. In the interest of brevity and a slight abuse of
notation, assume in this derivation that ¢ denotes either a measurement bin
(in context of PET/SPECT) or one Compton event (in context of Compton
imaging).

Assume that the mean number of counts detected in bin ¢ follows Poisson
distribution and the probability that data from bin ¢ originated in voxel j is
denoted t;;. This probability contains all physical features of the detection
process and detector geometry.

The expected mean number of counts detected in bin i given Poisson
parameters \; and probability ¢;; is:

i =Y tij- X (4.6)
J

We introduce random Poisson variables X;; and Y;. X;; represents the
number of photons emitted by voxel j contributing to bin 4. Y; is the total
number of photons recorded bin ¢, which is equal to Y; = >, X;;. The X;;
consistutes the unobserved data, and Y; is the measured number of photons.

The probability of seeing the data y; ~ Y; given the mean value p; is given
by

Llyi . (Zj tl-]..,\j) w (4.7)

. N — oM
p(yilpi) = e " "

Assuming the measurements are independent, the likelihood of seeing the
measured data given the emission rate values A is then computed as

I
LY|X) =[] p(yil i) (4.8)
=1

The task is to maximize this likelihood with respect to A. In practice,
maximizing the likelihood L is often replaced by maximizing the log-likelihood
log(L). We first express this log-likelihood as
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log(L(Y|A)) = log (H p(yi|mi)> = log (p(yilmi)) =
i=1 i=1

- Z (=i + yi log(p:) — log(yi!)) =
i=1

= Zn: (_ (Z tij - )\j) + y; log( (Z tij - )\j)) _ IOg(yi!))
=1 j 7

(4.9)

It is impossible to derive the closed-form solution and we have to resort to
the EM algorithm instead.

The goal of the E-step is to determine the conditional expectation of the
likelihood given the measurements and the estimate A Following the deriva-
tion of Lange et al. [41], after neglecting the term log(y;!), the conditional
expectation is

tijA,

E(log(L(YA)IA) = =
Zk tik)\k

(4.10)

The M-step follows from that and determines the new estimate \ that
maximizes the conditional expectation.

0 ~
S Eos(LOYIA)IA) =0 (4.11)

Solving this equation gives the final update formula.

. A tiy;
At = ZINT T (4.12)
! Sj ; Dok tik>\§€
where s; is the probability of detecting a photon from voxel j calculated
across all projections s; = 3, t;;.

When using list-mode data in Compton imaging, we consider each event
i separately (notice the change in notation). Consequently, the Equation
4.12 has to be modified. Firstly, the term g; has only binary values and
can be excluded, summing only over measured events. Furthermore, due to
the inability to compute ¢;; for all possible Compton events 4, it is no more
possible to compute s; = ), t;; and separate models must be derived for the
computation of this term. The initial estimate of A; values can be uniform
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or obtained using backprojection [42]. The final LM-MLEM formula for the
application in Compton imaging has the form:

~

AL y
) Ll (4.13)
555 Zk tikkk

Given a non-negative estimate, the formula guarantees the non-negativity of
the solution.

A

B System modelling

Elements t;; are called system modelling factors or a system matrix elements
(although the system matrix itself can be constructed only for PET/SPECT).
They represent the probability that a photon emitted from voxel j will be
detected as event 7. The system modelling factors account for the Compton
detection process and play a significant role in the final resolution of recon-
structed images. Currently, there is no established model for the calculation
of the system model. A few models have been reported in the literature for
some cases [11], and others use Monte-Carlo simulations for the detection
process and the behaviour of detector devices [34].

B Sensitivity modelling

Elements s; are called sensitivity factors. They represent the probability that
a photon emitted from voxel j will be detected during the entire scanning
procedure. Sensitivity can be understood as a correcting factor that accounts
for not all voxels being scanned from the same angle and distance. Sensitivity
is the sum of a subset of system modelling matrix s; = >, ;;. With binned
data (PET/SPECT), the system elements for all possible detections can be
quantified and summed. When using a list-mode approach, system matrix
elemenents are calculated only for a small number of detections and sensitvity
must be modelled using alternative methods.

B Properties of MLEM

Introduced by Lange and Carson in 1984 [41], the MLEM algorithm is widely
regarded as a standard method in Compton imaging.

The advantage of the MLEM algorithm is the ability to model and compen-
sate for a wide range of phenomena present in the detection process. However,
its high computational complexity (rooted in the computation of the system
matrix factors) hinders widespread use. Code must be optimized and some
modelling factors must be neglected to obtain reasonable time performance
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[35] [42]. Furthermore, the algorithm guarantees converges only to a local
optimum, and the convergence rate cannot be bounded [43]. In practise, the
statistical noise and the ill-conditioned nature of the problem may lead to
significant noise in the reconstructed images. As a consequence, the iterations
of the MLEM algorithm have to be stopped at some point [13].

B 27 wmap

The MAP (Maximum A Posteriori) algorithm is an extension of the MLEM
algorithm based on the Bayesian estimation principle. The objective is to
maximize the posterior probability function, given the measured data and
some prior information or constraints, such as smoothness or continuity.

A = arg m}z}x(L(YP\) - P(X)) (4.14)

MAP can be understood as a MLEM with incorporated regularization.
The regularization can incorporate assumptions about the source’s spatial
distribution, such as penalization for changes between neighbouring pixels (ex.
convex non-quadratic smoothing prior). Such an approach usually results in
smoother images with less noise and fewer artefacts, especially in low count
rates, although at the cost of increased computational complexity.

MAP generally produces smoother images with lower noise levels than
MLEM. However, the choice of prior information in MAP can significantly
impact its performance [35].

B 4.7.1 Total variation

Total variation [44] presents a regularization method for noise reduction, that
aims to remove noise while preserving edges. The total variation is defined as

TV(\) = /V IVA(v)|do. (4.15)

The idea is to minimize the Li-norm of the gradient in the reconstructed
volume.

Minimizing total variation presents a significant challenge due to the non-
smooth nature of the loss function associated with it. Achieving adequate
convergence utilizing the gradient descent algorithm proves to be a diffi-
cult task. The primal-dual formulation is often employed to achieve fast
convergence.
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4.8. Compton reconstruction state of the art
B Aigorithm of Fadili-Peyré [45]

It is an iterative algorithm that minimizes the total variation using a projection
on the set of images whose total variation is bounded. To compute the
projection, a dual formulation is used.

B Algorithm of Chambolle [46]

It is an iterative algorithm that performs the minimization of the total
variation using a dual formulation, in which the original problem is formulated
as a discrete problem and uses a specific splitting of the energy functional to
make the problem easier to solve.

Several solutions to the MAP-EM problem given total variation prior

(maximum likelihood with minimum L;-norm) were proposed in the literature
for SPECT and PET reconstruction [47], [48].

B s Compton reconstruction state of the art

Tashima et al. [25] provided a brief summary of the history of Compton
reconstruction in the medical field: Todd et al. [30] first employed the
Compton camera in nuclear medicine imaging in 1974, initially using simple
backprojection techniques. Throughout the 1980s and 1990s, mathematical
investigations were conducted to derive analytical formulas and iterative
methods. Around 2000, some progress was made in developing analytical
formulas, but the primary emphasis shifted to iterative methods, specifically
the Compton list-mode MLEM [41]. A few innovative methods have emerged
recently, but the LM-MLEM and its variants continue to be considered the
golden standard [25].

B Discretization

Lojacono [I1] discussed the challenge of conversion from continuous space
to discrete. The team reviewed existing methods of voxel-cone intersection,
dividing them into elipse stacking (slicing of volume) and ray tracing. Further-
more, Lojacono focused on the comparison of three methods called Surface of
Intersection, Volume of Intersection and Center of Voxels. Lojacono concluded
that the Center of Voxels approach has the advantage of being simple to
implement and compute.
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4. Reconstruction methods overview

B Method selection

Frandes et al. [35] performed a review focusing on selecting appropriate
reconstruction methods for different Compton imaging applications. The
researchers concluded that backprojection and MLEM are suitable methods
for near-field source imaging.

B MLEM

Regarding the iterative methods, Parajuli et al. [I2] analyzed the MLEM
method, stating that algorithms must be optimized to perform imaging at
realistic times and machine specifications for each objective. According to
the article, determining the correct system matrix model is essential for
reconstruction accuracy.

Feng et al. [34] [I3] provided an extensive study of Compton imaging.
The researchers accessed the limits of the ideal Compton imaging scenario
by considering a simple geometry, an ideal detection process and a mono-
energetic synthetic phantom. The ideal data were produced by Monte Carlo
simulation. The reconstructed volume size was 121x34x34 voxels with a
spatial size of 0.253 cm®. They tested gamma-ray energies 511 keV, 2 MeV,
and 4 MeV. The team utilized both conical filtered backprojection and MLEM.
Feng et al. concluded that the analytic methods are fast but work reasonably
well only for a high number of events and restricted scenarios. In particular,
the list-mode MLEM methods needed a range between 2 - 10* — 10% while the
filtered backprojection algorithm required more (Figure |4.5). Furthermore,
analytic methods could not adequately account for the detection model,
statistical noise, and missing projections, giving less precise results. Regarding
gamma-ray energy, the advantage of Compton cameras over standard imaging
modalities is more evident at high energies where the collimators become
transparent. Feng et al. stated that without regularization, the MLEM tends
to diverge in practice (Figure |4.6). The reconstruction quality was assessed
using the structural similarity (SSIM) index between the reconstructed image
and the reference normalized to their maximum intensity. The researchers
argued against optimizing the reconstruction for the smallest MSE as better
uniformity in constant intensity regions could be obtained with a larger MSE.

Sakai et al., 2020 [49] introduced a median root prior OSEM algorithm
to reduce noise by adding a median filter. The OSEM is an enhancement of
the MLEM that is designed to improve computational efficiency [12]. The
raw data are divided into subsets, reducing the amount of processing in
each iteration, and updates are performed for each subset. The resulting
reconstruction after each subset becomes the starting value for the next
subset. Researchers state that the optimal number of iterations is not known
in advance, and MLEM and OSEM are prone to amplifying the noise through
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Figure 4.5: Influence of the number of Compton events on the reconstruction
outcome - left: TV-MAP-EM after 200 iterations with number of events on the
left; right: filtered backprojection after 1.25 - 107 events, source [13].
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Figure 4.6: Comparison of convergence of a standard MLEM and the regularized
TV-MAP-EM, source [34].

excessive iterations. Sakai et al. evaluated their reconstruction method using
Monte Carlo simulations of two point sources of 511 keV gamma rays, with a
separation distance ranging from 5-15 mm, using 16 000 Compton events.
The algorithm reconstructed 2D images.

B Alternative methods

Zhiyang et al., 2020 [50] discussed the use of a deconvolution with a point
spread function, which is reportedly hard to implement because the point
spread function is spatially variant. The team developed a list-mode ordered
subset expectation maximization algorithm variant with the shift-variant
point spread function (LM-OSEM-SV-PSFs). In their study, the SV-PSFs
were derived from the Monte Carlo simulated point source measurements at
various positions.

Daniel et al. [51] proposed a novel approach using an inversion method
that utilizes Bayesian approach. Their solution used a single-plane pixelated
miniature detector, and the results are 2D images. The algorithm works
well for the 2D reconstruction of far-field sources, where it surpasses the
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Figure 4.7: Results of Kishimoto et al., source [53].

performance of direct backprojection with slower runtime.

Andreyev et al. [52] introduced the stochastic origin ensemble (SOE)
method. This algorithm is based on the Monte Carlo Markov chains and
draws inspiration from the Metropolis—Hastings algorithm. Unlike other
iterative methods that work with a set of voxels, SOE reconstructs a set of
discrete sources and works with the origins of the measured events. SOE is
mainly used in the far-field imaging of environmental sources [25] [12].

| Existing medical applications

Compton imaging technology is still in the developmental stage and is not
yet routinely used in clinical practice [25]. For the practical application
of Compton imaging in medicine, there are challenges related to detector
performance, processing hardware, and imaging algorithms [12].

In 2017, Kishimoto et al. [563] demonstrated multicolour imaging using a
Compton camera prototype consisting of two scatterers and one absorber
(Figure 4.7). The detector system rotated around a single axis. The team
simultaneously measured three types of nuclides 31 (364 keV), ®°Sr (514 keV),
and %°Zn (1116 keV). Kishimoto et al. reported that combining high-energy
tracers could provide a significant clinical benefit [25]. The imaging procedure
was reported to take from two to four hours.

Tashima et al. [28] developed a full-ring Compton imaging system and
used it to compare the performance of the Compton camera and PET. The
team conducted experiments with cylindrical, small rod phantoms filled with
8971, which emits both 909 keV gamma rays and positron pairs. For both
Compton imaging and PET, reconstruction was performed using OSEM.
The researchers highlighted the significance of an accurate system response
model but also noted that factors must be neglected to avoid computational
complexity. The implementation of Tashima et al. required two hours for one
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Figure 4.8: Results of Nakano et al., source [I8].

iteration using two GPUs.

Hatsukawa et al. [54] performed Compton imaging with another type of
Compton camera called electron-tracking Compton camera (ETCC), which
utilizes a gas to track the electron detached in the Compton scattering
interaction. The researchers reconstructed 2D images with the list-mode
MLEM reconstruction method.

Nakano et al. [I8] published a study describing the first clinical patient
study, which employed Si/CdTe Compton camera for simultaneous imaging
of ¥Tc and '8F injected in a body of a human volunteer. The team presented
2D images superimposed onto CT slices (Figure .
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Chapter 5

Methods

. 5.1 Conic projection methods

First step in the reconstruction was the construction of backward projection
operator.

Approaches based on center of voxels were selected for cone projection as
[11] reported this approach to show the best performance in time-constrained
scenarios.

Proposed methods can be divided into distance-metric functions and error-
evaluation function.

The following two distance-metric functions were proposed:

8 Angular difference

For each voxel j, we construct the emission vector e = I?é between the
given cone apex and voxel center. Furthermore, we compute the angle
Ocomputea between the emission vector e and the given cone axis vector a
and compare it to the given angle 0,,cqsured

e=c—P;
0. = arccos (e - a) (5.1)
€rror = H‘gmeasured - 9computed||

® Perpendicular distance

This method works by computing the perpendicular distance of a voxel
center to the conic surface. The idea is to compute first the real distance
to the axis of the cone and then compute the ideal distance to the axis
that the surface of the cone has. These distances are then subtracted
resulting in the error.
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5. Methods

dr = [le —(e-a)-a]
di =|le-a-tanb,|| (5.2)

error = ||d, — d|

There are two evaluation functions proposed:

® Binary step function given by

1 if <
voxel increment(error) = ' error' 7 (5.3)
0 otherwise

where 7 is a threshold

® Normal distribution error function given by

1 _ error?

e 202 5.4
V22 (54)

voxel__increment (error) =

where ¢ is a parametric variance

All of the proposed conic projection methods have been vectorized and will
therefore be treated as vector operations in the further text.

B 52 Backprojection

Proposed implementation of backprojection works by superimposing all the
measured events onto the volume V. For each event, the algorithm uses first
a distance function to measure the distance between a voxel and the conic
surface and then uses a evaluation function to compute the increment that
the event in consideration contributes to the particular voxel.

The proposed implementation uses PyTorch functions and uses computations
in matrix form. This enables to avoid computation-heavy cone-tracing al-
gorithms and instead calculate the event increment for every voxel at once,
especially if GPU is available.

The general implementation is straightforward and is described in Algorithm
1

B 53 LM-MLEM

After a thorough look at state of the art, the maximum likelihood expectation
maximization was selected as a baseline method. This is due to its favourable
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53. LM-MLEM

Algorithm 1 Backprojection

1: procedure COMPUTEBACKPROJECTION(list of events I, centers of voxels
C)

Initialize vector A =0

for each event i do

A += EvaluationFunction(DistanceFunction(I[i], C))

end for
return A\
6: end procedure

properties in the near-field and convenient modeling ability. List-mode was
adopted. The multiple detector poses are simply treated as more bins for the
Compton data.

Naive implementation of the Equation [4.13]is presented in Algorithm [2].

Algorithm 2 LM-MLEM - naive implementation

1: procedure COMPUTELM-MLEM(list of events I, centers of voxels C,
detector poses D)

2: A = Backprojection(I, C) > Initialize vector with backprojection
3: for each iteration [ do
4: for each voxel index j do
5: CumSum =0 > Set cumulative sum
6: for each event i do
7: EventSum = 0 > Set event sum
8: for each voxel index k do
9: EventSum += tz’k>\€€
10: end for
11: ti; = SystemModel(i)
12: CumSum += ¢;;/EventSum
13: end for
14: s; = SensitivityModel(C,D)
15: set )\é-ﬂ = ()\éﬂ . CumSum) /slj]
16: end for
17: end for
return \

18: end procedure

B 5.3.1 Computational optimization

Several improvements have been proposed to optimize the runtime and avoid
unnecesary calculations.

B Sensitivity values can be precomputed, saved for each scenario and loaded
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during runtime.
B Given event ¢ we can evaluate system probabilities for all voxels at once.
® Operations can be vectorized, enabling batch computation.

® If implemented correctly, the reconstruction method can be employed
on GPU. In particular, the RCI cluster [55], comprising CPU and GPU
nodes can be utilized. The GPU nodes consist of NVIDIA Tesla V100
with 32GB memory.

The improved LM-MLEM algorithm is presented in Algorithm |3

Algorithm 3 LM-MLEM - optimized implementation

1: procedure COMPUTELM-MLEM(list of events I, centers of voxels C,
detector poses D)

2: A = Backprojection(I, C) > Initialize values with backprojection
3: s = SensitivityModel(C, D) > Precompute sensitivity
4: for each iteration [ do
5: AXinerement = 0 > Initialize iteration increment
6: for each event ¢ do
7: t; = SystemModel(i)
8: d=1t;- X > Compute denominator sum
9: Aincrement += 1-’i/d
10: end for
11: AH—l = (AZ—H : )\increment) /S
12: end for

return A\

13: end procedure

B 5.3.2 System modelling

Due to the large dimensionality of the projection operators and large am-
mounts of data, system matrix cannot be formed and system modelling factors
are computed in the runtime of the MLEM algorithm. They reflects the
probability that event ¢ originated in voxel j. The proposed system model
is inspired by a model of [I3] and presents a tradeoff between fidelity and
computation complexity. There are three functions involved in the proposed
model:

tij = R(e,n) - K(Ocomputed, Eo) - I (Oairs) (5.5)

The first function R represents the probability that the photon reaches the
detector in the first place. It is an approximation of the solid angle of the
detector, that would be expensive to compute. The approximation considers
the probability to be directly proportional to the normalized dot product of
detector’s normal n and emission vector e and inversely proportional to the
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square of distance from the voxel center. Futhermore, we assume that the

probability of detecting a photon coming from behind the scatterer’s plane is

0.

maxX( faffe 0).
le]l?

The second function K accounts for the probability, that the photon will
undergo Compton scattering with an angle 0.omputeqd- It is given by the
Klein-Nishina formula

R(e,n) = (5.6)

n-e

B

1
1+ (mEe%2> [1 —cos (ecomputed)]
_ 1 2,2 2
K(ecomputed7E0) = ia TCP(ecomputeda EO)

[P<gcomputed7 EO) + P(ecomputem EO)il — sin (gcomputed)ﬂ
(5.7)

P (ecomputed’ EO) =

The last function reflects the uncertainty in the measurement and Doppler
broadening and denotes a probability that a scattering angle 6,..,; will be
measured as @,,cqsured- It is modelled by the Normal distribution

Hdiff = ||97‘eal - HmeasuredH
1 RGN (5.8)

where ¢ is a tunable parameter.

B 5.3.3 Sensitivity calculation

Sensitivity is the general probability of detecting a photon that was emitted
from voxel j given a list of sensing locations. It is apparent, that a voxel
that is far away or behind the detector system has almost zero probability of
being sensed even if it contains an emitting source.

Two sensitivity models were used in this thesis

® Analytical model

The main idea of the sensitivity model is to approximate the space of all
possible detections using point-wise evaluation of every detector’s pixel
(256x256). Given voxel j, we consider coordinates of every pixel in the
every detector’s sensing location and for each, compute the point-wise
sensitivity function. The sensitivity value for voxel j is then sum of
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point-wise sensitivities.

For the point-wise sensitivity function a model considering only the
approximation of solid angle has been chosen (Equation 5.6). The low
computational demand allows fast evaluation of the whole sensitivity
model.

The full procedure is described in Algorithm /4l

Algorithm 4 Sensitivity computation - analytical method

1: procedure COMPUTESENSITIVITY (centers of voxels C, detector poses D)
2 s=0 > Initialize sensitivity vector
3 for each voxel index j do

4 set s[j] =0

5: for each detector_pose index k£ do

6 for each detector_pixel [ do

7 compute emission vector e and detector normal n

8 set s[j]+ = R(e,n) > compute the point-wise sensitivity
9: end for

10: end for

11: end for

return s
12: end procedure

® Monte Carlo method

The idea of the second proposed sensitivity model is to utilize the
developed simulator and determine the sensitivity value experimentally.
That is, we simulate a large number of photons emitted by a voxel j
(= 107 — 108), follow their paths and count portion of the photons that
resulted in a detected Compton events in one of the sensing locations.
The steps are described in Algorithm [5|

Algorithm 5 Sensitivity computation - Monte Carlo method

1. procedure SIMULATESENSITIVITY (centers of voxels C, detector poses D,
number of simulated photons per each voxel n)
s=0 > Initialize sensitivity vector
for each voxel index j do
simulate n photons emitting from voxel j
m = number of Compton events generated
s[j] = m/n
end for
return s
end procedure

%
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. 5.4 Regularization

Several techniques are proposed for the regularization of the reconstructed
volumes.

B 541 MAP-EM

An extension of the LM-MLEM was proposed for regularization. After
performing review of available methods, total variation (TV) was chosen as
the prior because of its convenient denoising properties and low computation
cost.

Two implementations of TV minimization were considered, namely the
algorithm of Fadili/Peyré [45] was implemented in PyTorch and the algorithm
of Chambolle [46] was used from the skimage Python library.

When implementing the MAP-EM with total variation prior, the idea is to
compute a standard MLEM iteration as described in Algorithm [3| followed
by an additional TV minimization smoothing step. The result of the TV
minimization is then used in the next iteration of MLEM (see Algorithm (6).

Algorithm 6 MAP-EM

1: procedure COMPUTEMAP-EM(list of events I, centers of voxels C,
detector poses D)

2: Initialize lambda vector A using backprojection
3: Precompute sensitivity vector s given the detection geometries
4: for each iteration [ do
5: A2 = ComputeLM-MLEMStep(I, C, D, A%
6: AF! — TV-Regularization(A1/2)
T end for
return A

8: end procedure

M 55 Summary

The whole project is depicted in Figure |5.1. Namely, simulator generates
Compton data, that is preprocessed and passed into the reconstruction
pipeline. There, backprojection is computed and then used as a prior for
the MAPEM. Optionally, the result of MAPEM is also passed to the deep
regularization network to obtain the final reconstruction.
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Figure 5.1: Schematics of the final solution flow.
B 5.6 Metrics

Various metrics are used to assess the reconstruction’s quality and accuracy.
These metrics help compare the reconstructed volume to the ground-truth
volume and provide a quantitative measure. In this thesis, the metrics were
computed after first scaling both prediction and ground-truth to interval [0,
1].

B Mean square error (MSE)

MSE measure the mean of the squared differences between the reference
and reconstructed image. MSE ranges from 0 to infinity, with 0 meaning a
complete match.

MSE = % > sy, (Prediction(z, y, 2) — GT(z,y, z))?

B Peak Signal-to-Noise Ratio (PSNR)

PSNR evaluates the quality of the reconstructed image relative to the reference
image. It builds on the MSE, considering the maximum possible intensity
value L. PSNR is usually expressed in logarithmical scale:
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L2

A higher PSNR value indicates a better match. In the case of a perfect
match, MSE is 0, resulting in an undefined PSNR, value. PSNR is most mean-
ingful when comparing different reconstructed images to the same reference
image.

Bl ssim

SSIM [56] is a widely metrics used for accessing structural similarity [57].
It takes into account the luminance, contrast and structural information to
assess the similarity between the reference and reconstructed images. The
SSIM values range from -1 to 1, with 1 indicating a perfect match.

(2-pa-pup+C1)(2-0ap+ Ca)
(1% + pE + Ci)(0F + 0% + Ca)

SSIM(A, B) = (5.10)

A and B are the two 3D signals being compared, a4 and pp are their
respective mean values, 04 and op are their respective standard deviations,
o4p is the covariance between A and B, and C7 and Cy are small constants
to stabilize the division when the denominator is close to zero.

For computation, a window size is used to set the size of the local region.
The default size of the window is 11, however, its choice depends on the
specific application and scale of structures in the image. The function is
evaluated on all possible positions and the output is combined to return the
final SSIM value. This thesis adopts the window sizes of 3, 5 and 11 as they
showed to express the most information in the context of the Compton data.
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Chapter 6

Experiments and results

B 6.1 Conic projection methods

Figure[6.1]shows the difference between the proposed conic projection methods.
Notice the widening of the cone in case of angular difference method and the
sharp edges in step error function and faded edges in Normal error function.
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(a) : Angular difference distance function with binary step function error (7 = 3°).
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(b) : Perpendicular distance function with Normal error (o = 1°)

Figure 6.1: Comparison of conic projection methods demonstrated using back-
projection of one event.

Experimental evaluation showed that the best performance is achieved
with either a combination of angular difference distance function and binary
step function or with perpendicular distance function with Normal error func-
tion. The angular difference distance function better accommodates for the
scattering angle uncertainty, however, it projects widening cones that present
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reconstruction problems in scenarios with large voxel grid (100x100x100).
The perpendicular distance function generally performs well in most scenar-
ios, however it exhibits limitations in situations with large scattering angle
uncertainty.

B 6.1.1 Sensitivity

The results of the proposed sensitivity computation approaches are presented
in Figures The methods are evaluated on a grid of size 50x50x50.
In case of 1 pose, a visible difference can be seen in the top view. Monte
Carlo result shows the sensitivity to be more restricted in the direction of
the incoming photon and less restricted to the distance. This difference is
even more apparent in the case of 6 pose scenario.

Front view Top view Right view
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(a) : 1 pose - analytical sensitivity, integral approximated using 256x256 pixel centers,
computation took 10.16s

Front view Top view Right view x10-3
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(b) : 1 pose - MC sensitivity, simulated 340 000 photons from each of the 125 000
sources, recorded 99 877 493 events, simulation ran for 1h 25min, results smoothed
using median filter with kernel 3x3x3.

Figure 6.2: Comparison of sensitivity calculation methods - part 1.
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(a) : 6 poses - analytical sensitivity, integral approximated using 256x256 pixel centers,
computation took 50.22s
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(b) : 6 poses - MC sensitivity, simulated 390 000 photons from each of the 125 000
sources, recorded 99 630 510 events, simulation ran for 1h 39min, results smoothed
using median filter with kernel 3x3x3.

Figure 6.3: Comparison of sensitivity calculation methods - part 2.

Experiment was performed to asses the influence of the two sensitivity
methods on the reconstruction outcome. A cylindrical phantom was simulated
using the CoCam Sim from 6 poses (5 - 10° events in total) and reconstructed
using first the analytical sensitivity model and then the Monte Carlo sensitivity
model. Figure 6.4 shows the results. Differences can be seen near the edges of
the volume, as these are the areas outside of furthest away from the sensing
locations.
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Figure 6.4: Demonstration of the effect of sensitivity function selection on the
MLEM reconstruction outcome. First row presents reconstruction obtained using
analytical sensitivity model, second row shows reconstruction obtained using
Monte Carlo sensitivity
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B 6.1.2 Total variation minimization

The total variation minimization methods were tested standalone on noised

phantoms. Representative results on a sphere are outlined in Figure

6.9}

The Fadili-Peyre’s implementation often did not converge to the desired
reference volume. Chambolle’s algorithm performed better, and the only

challenge was in the selection of regularization weight A (not to mist
with the A used in the Compton reconstruction context). In light of
above-mentioned, Chambolle’s algorithm was selected for integration into
MAPEM algorithm.

Top view Right view

Front view

x10-2

ake
the
the

(a) : Input to the total variation minimization algorithms (3D view and slices)
- the object is a simulated noised sphere phantom (not an actual output of the
reconstruction).

Top view Right view

Front view 108

10.0

AV

(b) : Result (3D view and slices) obtained using Chambolle’s algorithm, with
parameter A = 2. Computation took 0.010s.

Front view Top view Right view 10

~100

(c) : Result obtained using Fadili-Peyre’s algorithm, with parameter k = 100
Computation took 0.0027s.

Figure 6.5: Comparison of total variation minimization methods.
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B 6.2 Demonstration of the complete method

Il 6.2.1 Results on simulated data

An ellipsoidal phantom was used to demonstrate the quality of the recon-
struction during different stages of the reconstruction pipeline. The results
are presented in Figure

Convergence of the MAPEM (and subsequently also MLEM) method is
presented in Figure The time requirements are described in Table
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(a) : Ground truth source distribution.
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(b) : Ground truth source distribution according to the events detected. MSE 1.719e+-07,
SSIM3 9.384e-01, SSIM5 9.220e-01, SSIM11 8.964e-01.
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(c) : Result after backprojection, MSE 2.134e+09, SSIM3 2.300e-02, SSIM5 2.247e-02,
SSIM11 2.612e-02.
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(d) : Results after 20 iterations of MLEM. MSE 1.721e+07, SSIM3 9.059¢-01, SSIM5

8.838e-01, SSIM11 8.430e-01.
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(e) : Results after 20 iterations of MAPEM (A=33), MSE 1.721e+07, SSIM3 8.730e-01,
SSIM5 8.739e-01, SSIM11 8.712e-01.

Figure 6.6: Comparison of different reconstruction methods on ellipsoidal

phantom.
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6.2. Demonstration of the complete method

Method Time duration
Preprocessing 5.22s
Backprojection 27.02s
One iteration 46.36s

DL inference 0.56s

Total time (20 iterations)  959.0s = 16minutes
Total time (50 iterations) 2349.8s = 39minutes

Table 6.1: Time requirements of the proposed method

B 6.2.2 Results on real data

The reconstruction method was validated using real measurements.

B Concentric cylinder phantom

(a) : Front view of the experiment sample with marked locations and activities of the
capsules (are not present in this image).

Front view Top view Right view

[N A

~60 60 ~60
—60 —40 -20 0 20 40 60 —60 —40 -20 0 20 40 60 60 40 20 0 -2 -40 —60
X X z

(b) : Results of the MAPEM reconstruction.

Figure 6.8: Reconstruction (3D view and projections) of the concentric cylinder
phantom.
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6. Experiments and results

Figure shows the results of the reconstruction. All of the capsules can be
clearly identified and their location corresponds well. The activities of the
capsules cannot be directly deduced from the intensities of the reconstructed
image, however a relationship is present. The capsule with the least amount
of activity (7.5 MBq) is barely visible, nevertheless it can be discerned.

B Anthropomorphic human phantom

Figure 6.9/ shows the results of the reconstruction for the case of measurement
of whole human phantom as well as for only the insert. All of three capsules
can be clearly identified and their location corresponds well, especially in case
of the measurement of standalone insert. The quality of the reconstruction
of the human phantom is decreased, due to the lower number of events
and presence of scattering medium between the radioactive source and the
detector. Elongation can be present in both of the reconstructions due to the
limited viewing angle. The capsule with the highest activity can be recognized
in both of the reconstructions.

a) : Top view of the experiment sample with marked locations and activities of the
T i f th i t le with ked locati d activities of th
capsules

Right view C10-1

|30
20

Front view Top view

20 20 10
2.0
~NO -‘ . >0 NO Lis
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(b) : Reconstruction (3D view and projections) of the anthropomorphic human phantom,
40 406 Compton events were provided.
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(c) : Reconstruction (3D view and projections) of the insert of the anthropomorphic
human phantom, 81 505 Compton events were provided.

Figure 6.9: Reconstruction of the anthropomorphic human phantom. The
position of the capsules was not the same in both scenarios, because the insert
needed to be extracted from the phantom. See Figure [3.4] for description of the
data.

B 6.2.3 Influence of number of events

To demonstrate the performance of the proposed method with different event
numbers, a cross-shaped phantom was selected. This experiment evaluates
the reconstruction pipeline for 1 046 058 events, 46 714 events and for 4 688
events.

The results are presented in Figure In case of 1 046 058 events, nearly
perfect reconstruction can be seen. In case of 46 714 events, the performance
of the reconstruction method is still acceptable. However, with 4688 events,
the reconstruction performs poorly and only a rough shape of the cross can
be recognized.
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(a) : Ground-truth source distribution
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(b) : Results (3D view and slices) obtained with 1 046 058 events. MSE 6.345e+08,
SSIM3 9.200e-01, SSIM5 9.251e-01, SSIM11 9.268e-01.
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(c) : Results (3D view and slices) obtained with 46 714 events. MSE 1.253e+06, SSIM3
8.631e-01, SSIM5 8.622e-01, SSIM11 8.604e-01.

Front view Top view Right view x10-%

20 —20 20

10 ~10 10 re
=
>0 NO >0
Ls
& L

R * —20 20 -20
P .

s "
g b » -20  -10 0 10 20 -20  -10 0 10 20 20 10 0 -0 -20
X X z

(d) : Results (3D view and slices) obtained with 4688 events. MSE 1.253e+4-04, SSIM3
7.830e-01, SSIMb5 7.772e-01, SSIM11 7.710e-01.

Figure 6.10: Demonstration of reconstruction performance under different
number of events. Cross phantom was generated using the CoCam Sim.

B 6.2.4 Influence of sensing locations

Another experiment was done to evaluate the performance of the reconstruc-
tion pipeline in case of limited sensing locations. A cylindrical phantom was
selected and simulated. First scenario presents ideal situation where sensing
is possible from each of the 6 sides of the voxel grid. Second case presents
scenario, that is usual in case of thyroid measurement - only the frontal pose,
along with four tilts of 50° (up, down, left, right) is possible. The last scenario
considers measurement from one sensing location only.

Figure shows that the proposed method works as expected in case of
ideal number of sensing locations. Furthermore, even in a realistic scenario
of thyroid measurement, the reconstruction is only slightly compromised.
However, in case of only one sensing location available, the method suffers
from lack of information.
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(a) : Ground truth source distribution.
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(b) : Results (3D view and slices) with 100k events, sensing from 6 poses. MSE
1.462e+-07, SSIM3 8.972e-01, SSIM5 8.955e-01, SSIM11 8.945e-01.
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(c) : Results (3D view and slices) with 100k events, sensing from 5 poses (central
projection and directional tilts of 50deg).MSE 1.462e+4-07, SSIM3 8.860e-01, SSIM5
8.845e-01, SSIM11 8.834e-01.
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(d) : Results (3D view and slices) with 100k events, sensing from 1 pose. MSE
1.462e+07, SSIM3 7.755e-01, SSIM5 7.608e-01, SSIM11 7.327e-01.

Figure 6.11: Demonstration of reconstruction performance given different sensing
locations. Cylinder phantom was simulated by the proposed simulator.

B 6.2.5 Influence of measurement errors

This experiment was motivated by the nature of uncertainty in the scattering
angle measurement, that is present in the real world scenarios. A phantom
comprising of three different-sized spheres was simulated using the CoCamSim
(allows more detailed physics modelling). The scattering angles were generated
with a Normally distributed noise with different values of . A control sample
had an uncertainty of o = 0°, followed by a sample with o = 3° that presents
a typical uncertainty reported by the detector. The last two experiments were
generated with o = 10°. Both angular and perpendicular distance functions
were evaluated.

63



6. Experiments and results

Figure shows the results of the experiments. The proposed method
shows robust performance in case of ¢ = 3°. In case of ¢ = 10°, perpendicular
distance function performs worse than the angular distance function. However,
even with the angular distance function, the smallest sphere is more detected.
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(b) : Results (3D view and slices) obtained with no scattering angle uncertainty 0°

using perpendicular distance measure function. MSE 9.144e4-06, SSIM3 9.388e-01,
SSIMb5 9.407e-01, SSIM11 9.355e-01.
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(c) : Results (3D view and slices) obtained with a scattering angle uncertainty of 5°

using perpendicular distance measure function. MSE 9.144e4-06, SSIM3 9.512e-01,
SSIM5 9.381e-01, SSIM11 9.116e-01.
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(d) : Results (3D view and slices) obtained with a scattering angle uncertainty of 10°

using perpendicular distance measure function. MSE 9.145e4-06, SSIM3 8.448e-01,
SSIM5 8.307e-01, SSIM11 8.186e-01.
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6.2. Demonstration of the complete method
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(e) : Results (3D view and slices) obtained with a scattering angle uncertainty of 5°
using angular distance measure function. MSE 9.144e+06, SSIM3 9.421e-01, SSIM5
9.231e-01, SSIM11 8.879¢-01.

Figure 6.12: Demonstration of reconstruction performance with scattering angle
uncertainty using a spherical phantom generated by the CoCam Sim (100k
events).

B 6.2.6 Influence of false events

Last experiment aimed to test the robustness of the reconstruction pipeline
by incorporating false Compton events. This phenomenon occurs very often
in the real data, especially in the case of high photon flux. In these situations,
correct scatterer/absorber interaction pairing is challenging and incorrect cor-
respondences are generated, leading to false Compton cones. This experiment
aims to test the reconstruction at 0% of false events, 20% and 50%, using a
conical phantom.

The Figure presents decent performance in case of both 0% and 20%
false events. With 50% of false events, the reconstruction quality is severely
degraded and only a rough shape of the cone can be recognized.
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(a) : Ground truth source distribution.
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(b) : Results (3D view and slices) obtained with 0% false events present. MSE
1.475e+4-07, SSIM3 7.731e-01, SSIM5 7.762e-01, SSIM11 7.816e-01.
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(c) : Results (3D view and slices) obtained with 20% false events present. MSE
1.475e4-07, SSIM3 7.024e-01, SSIM5 7.054e-01, SSIM11 7.103e-01.
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(d) : Results (3D view and slices) obtained with 50% false events present. MSE
1.475e+07, SSIM3 2.901e-01, SSIM5 2.957e-01, SSIM11 3.019e-01.

Figure 6.13: Demonstration of reconstruction performance with false coinci-
dences presented on a conical phantom generated by the proposed simulator
using 100k events.
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Chapter 7

Discussion and conclusion

. 7.1 Discussion

Bl Simulator

Let us first analyze the proposed data simulator. The biggest advantage
of the simulator can be considered its computational speed and straightfor-
ward implementation. Even though the simulator includes only a simple
physics model and does not account for more advanced phenomena such
as the detection probability or Doppler broadening, it provided a vital tool
for the validation of the reconstruction methods. The transition from the
proposed simulator to a more sophisticated CoCam Sim did not introduce
any unexpected phenomena in the reconstruction. This can be accounted to
the fact that the impact of neglected phenomena is small.

B MLEM

The presented results show that the selected reconstruction method is suitable
for the application of 3D Compton reconstruction of radiopharmaceutical
distribution. The experiments showed that the proposed analytical sensitivity
was not ideal for the use with the Thyropix detector (Figure|6.4). The reason
can be accounted to the missing geometrical properties (mutual arrangement
of the detectors), as the model only considered distance and angle to the
front detector. On the other hand, the Monte Carlo sensitivity provided an
unexpected performance boost, probably caused by the ability to correctly
model the abovementioned geometrical arrangement of the detectors. However,
a high number (10%) of events recorded was necessary to obtain a good
sensitivity estimate, which considerably extended the time needed. Therefore
the sensitivity approaches present a tradeoff between accuracy and time
requirements. Thirdly, in cases of lower event count or non-ideal data, MLEM
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7. Discussion and conclusion

has often converged to a non-smooth solution (Figure 6.6). In such cases, it
is assumed that the Poisson nature of the underlying principles introduced
noise that was amplified in the MLEM algorithm, as reported by [I3]. This
motivated the implementation of regularization strategies.

B Total variation regularization

The choice of total variation regularization is well described in the literature.
However, the minimization problem is challenging. Chambolle’s projection
algorithm worked well (Figure 6.5). The weakness of the Chambolle’s approach
is the need for accurate tuning of the parameter A\. The presented results
were obtained after experimenting with the parameters extensively. A similar
parameter setting could be used for the same voxel grid and similar source,
easing the difficulty. However, in clinical practice, this could not be relied on,
and the process of finding the proper regularization weights would have to be
automated.

B MAPEM

The MAPEM reconstruction method with total variation prior provided more
significant improvements of the MLEM than was anticipated. Especially,
the MAPEM method provides robust performance even in lower numbers of
events and limited sensing locations. The resolution of the reconstruction
depends on the error in the measurement data. The following conclusions
were drawn regarding the limitations of the proposed method: The minimum
recommended number of events is in the order of 103 — 10* (Figure |6.10)),
depending on the complexity of the source distribution. A higher number
of events is associated with a higher reconstruction quality, and numbers
around 10* — 10° provide enough information for a reasonable reconstruction.
The voxel grid must be sensed from multiple locations to obtain the spatial
information of the source. However, the method is capable of reconstructing
objects with a limited range of projection angles, as presented in Figure
6.11. It must be noted that the limited range of sensing locations can cause
elongation in the unseen axes. In the context of uncertainties, the proposed
method is more robust than anticipated and reconstructs volumes given data
that contain scattering angle error up to o = 5o (Figure 6.12). Approximately
20% of false coincidental events can be present in the data without influencing
the outcome (Figure 6.13]).

B Comparison with related work

Qualitatively speaking, results are comparable to state-of-the-art work. The
reconstructions of uniform plane source presented by [53] are qualitatively
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7.2. Conclusion

comparable to the reconstructions of geometrical primitives used in this thesis.
The experimental cylindrical phantom reconstruction of [28] resembles the
cylindrical phantom reconstruction in this thesis (Figure|6.11) while reportedly
relying on significantly more events. In comparison with these applications,
the advantage of this thesis lies in its versatility and computational speed.

The findings of this thesis also confirm those found by Feng et at., especially
the number of events required (Figure 4.5).

Direct quantitative comparison with other state-of-the-art approaches was
hindered by the lack of dataset benchmarks or detailed method description
and is therefore replaced by the demonstrated experiments and limitation
assessment discussed above.

. 7.2 Conclusion

The purpose of this master’s thesis was to develop a 3D Compton reconstruc-
tion method for the application of radionuclide examination of the thyroid
gland. After briefly familiarizing with existing nuclear imaging modalities
and thyroid cancer, this method focused on Compton camera imaging.

Available datasets and simulators were reviewed, and a Monte Carlo simu-
lator was developed. We contributed with a dataset consisting of numerous
geometrical primitives, which enables the validation of the reconstruction
methods. Two experiments were also conducted to acquire real data.

This thesis investigated available reconstruction methods for the task of
3D reconstruction of near-field sources. Then, backprojection operators
were proposed, and a baseline approach with an LM-MLEM algorithm was
implemented. Results show that backprojections operators accurately track
the conic surface. An analytical system model for MLEM was adopted.
The sensitivity model was obtained both analytically and through a Monte
Carlo simulation. The simulated model provided better performance. The
reconstruction algorithm was accelerated, and the methods were optimized
to work in the time-constrained environment.

To improve the quality of the reconstruction, a regularization approach
was implemented. The regularization approach included LM-MAPEM with a
total variation prior. Comparing MLEM and MAPEM approaches, MAPEM
provided significantly better performance.

A final reconstruction algorithm was integrated into a pipeline and demon-
strated. Several scenarios were presented, showing both strengths and lim-
itations of the proposed method. The method provides similar qualitative
performance as publicly available state-of-the-art methods while being ver-
satile and time-sensitive. Experimental evaluation showed that this thesis
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7. Discussion and conclusion

provides a competitive approach which is practically useful and serves the
needs required. The reconstruction method will be used in the ThyroPIX
research project and potentially in the final clinical product, assisting both
patients and clinicians in thyroid cancer imaging.

B 7.2.1 Future work

Further research could focus on the development of a method for automatical
tuning of the A parameter of the total variation method to automatize the
reconstruction process.

It may also be worth further exploring the application of deep regularization
(described in the Appendix BJ).

Last but not least, object detection and segmentation on the reconstructed
volumes could be employed to assist in the diagnostic process of thyroid
nodules.
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Appendix A

Project structure

Due to the large scale of the project and various methods involved, the code
repository was organized according to a modular structure, comprising the
following components.

B A _simulator

B B_dataset

® C_backprojection

D_MLEM

E_MAPEM
B F_deep_regularization

B G_utils

The code was written with Python, utilizing mainly the PyTorch library

[58]. |Git repository was set up, and access is available on request.

B A_simulator

Folder A_simulator contains codes for data generation. Subfolder CoCamSim
contains the CoCamSim simulator, subfolder VP_sim contains the simulator
proposed by this thesis. To set up the simulation, user has to first edit
simulation_config.yaml and then run the simulate.py script.

B B_dataset

Both input files and reconstructions are stored in the B_dataset folder.
The structure is depicted in Figure [A.1l For the input data folders, each
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A. Project structure

B_dataset

INPUT DATA OUTPUT DATA

SCENARIO
(defined by NUMBER OF SCENARIO
EVENTS, POSES, ...)

14 \
CONE DATA

M M RECONSTRUCTION
COMPTON RECONSTRUCTION ID &
DATA CONFIGS SENSITIVITIES

\
RECONSTRUCTION
EVALUATION

RECONSTRUCTION
DATA

Figure A.1: Schematics of the dataset structure.

contains a subfolder with cone data in txt files named with the detector’s
pose. Along with that, there is a short textual description of the scenario
and a prepared reconstruction configuration yaml file. The output data
folders contain all products created in the reconstruction process - there is
preprocessed Compton data file cone_data_total.pt, ground truth data
folder, precomputed sensitivities file and the reconstructions themselves. They
are organized in a hierarchical structure based on the voxel grid properties,
reconstruction method and particular experiments. The experiment folder
contains folders for each iteration data as well as final evaluation. In each
iteration folder, there current model, metrics and 2D slices are provided.

B C_backprojection

Folder C_backprojection provides routines for the conic projection and
the code for running backprojection method. Furthermore, it also contains
coordinate transformation procedure.

B D_MLEM

The MLEM algorithm class is provided in folder D_MLEM. The folder contains
implementations of system modelling and sensitivity computation approaches.
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A. Project structure
B E_MAPEM

Folder E_MAPEM provides codes related to the MAPEM regularization approach.
Namely, there are the implementations of the total variation along with
experiment files that validate the approaches.

[ | F__deep_regularization

F_deep_regularization folder contains the deep learning regularization
pipeline. The Unet3D architecture implementation is stored in the 3dunet
folder. In addition to that, there is a subfolder d1_data that contain the
dataset used, separated into training and validation parts. In d1_utils there
is an aparatus for data import and output conversion, parameter grid search
and evaluation of the method. Learned models and training logs are provided
in the two remaining folders d1_models and d1_logs.

B G_utils

This folder provides various codes and snippets for miscelaneous tasks needed
in the project, such as visualisations, metric calculations, data conversion,
bulk renaming, etc.
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Appendix B

Deep regularization

. B.1 Deep learning in Compton reconstruction

B Motivation

The output of the image reconstruction process contains noise and incon-
sistencies. Deep learning could be deployed as an alternative to classical
regularization approaches to improve the reconstructed images’ quality by
reducing noise and the presence of artefacts.

Bl U-Net

U-Net [59] is a popular convolutional neural network architecture initially
designed for biomedical image segmentation. It can be employed in both
2D and 3D images. U-Net has potential to be used for the task of deep
regularization because of its simplicity and universality demonstrated by a
wide range of existing applications [60].

U-Net has a characteristic U shape (Figure , consisting of two parts —
encoder and decoder, that are connected by intermediate and skip connections.
The encoder presents a contracting path that consecutively shrinks the input
image’s dimensionality until a final feature tensor is reached. The decoder
presents an expanding path that upsamples the feature tensor to reconstruct
a final image. The skip connections allow for better preservation of spatial
information.

There are many variants of U-Net depending on the used upsampling
method, use of skip connections or dimensionality of the intermediate steps.
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B. Deep regularization
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Figure B.1: Schema of the U-Net archtecture 3D implementation, source [61].
B B.1.1 Existing deep learning applications

The usage of deep learning in nuclear imaging has emerged very recently, with
the first applications in PET. Pain et al. [62] provided a review summarizing
the usage of deep learning in PET.

B Learnable components

In PET, deep learning is used in learnable components for existing iterative
methods.

In MAPEM-Net [63], the convolutional neural network is combined with
the MAPEM iterative algorithm. In each iteration, the current estimate is
passed in parallel to U-Net (for denoising) and MAPEM and their outputs
are fused.

A similar approach has been adopted in FSBEM-Net [64], which uses a
parallel MAP-EM and CNN approach. Mehrain et al. trained the network
with PET & MRI images to enhance the final output. Researchers used
shallow networks, which reduced the necessary amount of training data to
approx. 35 samples.

These methods work only with binned data available in PET/SPECT and
can not be used with Compton data.

B End-to-end neural network systems
Another type of approach implements end-to-end solutions using neural
networks.

Learned primal-dual (LDP) method [65] combines two networks, where
one network is taught to do the forward projection and the other to do
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B.1. Deep learning in Compton reconstruction

the backprojection (in PET imaging). By chaining these networks into an
iterative algorithm, reconstruction can be obtained. The method learns to
encode the raw data into a cropped sinogram and decode it to reconstruct
the reference image.

At present, these direct deep learning methods look to be impractical,
having been demonstrated only for small 2-dimensional reconstructions. There
is no availability to utilize physical understanding [62].

B Postprocessing

The third application field employs deep learning in the postprocessing of
the reconstruction. Several methods in PET have been used for enhancing
resolution or decreasing acquisition time while maintaining the quality of the
reconstruction.

The solution proposed by Chaudhari et al. [66] uses a 2.5D encoder—decoder
U-Net to perform denoising on PET data.

Some commercial options, like FDA-approved subtlePET [67], are already
available. SubtlePET has shown the ability to reduce the radiation dose to
25% while preserving PET image quality.

Applications in Compton imaging lag behind PET applications. Recent
usage has been proposed by Daniel [68]. Their application was designed to
improve the quality of 2D reconstruction images. First, researchers computed
a backprojected image and used it as input for a CNN. The output of the CNN
was a 2025 elements vector containing probabilities that the radioisotope
source was in the direction given by discretized angles (longitudinal and
latitudinal).

B Event estimation and filtration

In the context of Compton imaging, deep learning has been used to estimate
and filter event data.

Takashima et al. [69] worked with a single-layer Compton camera and used
a neural network to determine the correspondences of photon interaction with
the detector and estimate parameters of the Compton event.

Navarathna [70] used shallow networks for binary classification to filter
out false events before image reconstruction. The approach was trained on
1,443,993 events and used 15 features.
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Figure B.2: Schematics of the proposed deep regularization solution flow.

B B.1.2 Method description

A learning-based method is proposed to improve the outcome of the recon-
struction method. Inspired by the PET denoising methods (Section ,
the idea is that a simple CNN will learn to correct for the measurement
uncertainties and incomplete model (see Figure .

The proposed learning-based method uses a U-Net3D architecture [71], in
particular its implementation by [72]. The architecture works with the voxel
grid V of dimensions 50x50x50.

The models were trained on a specially created dataset consisting of 5 geomet-
rical primitives (spheres, ellipsoids, crosses, cylinders and cones) in different
spatial configurations (5 variants) and with different number of events (3
variants). The geometrical primitives were simulated, reconstructed using
MAPEM and then used as input for the training. The labels were taken
from the ground truth source distribution, provided by the simulator. The
dataset was split into training and validation part (80/20 ratio). To enhance
the training dataset, augmentations were used. Namely, training images were
randomly flipped, rotated and shifted.

Several configuration of the U-Net feature layers (from 16 to 256), loss func-
tions (L1, SmoothL1, L2) and input normalization (no normalization, [0, 1],
[-1, 1]) were tested. Adam optimizer was selected.

The models were trained on the created dataset for 100 epochs. After each
epoch, the model was evaluated on the validation dataset. The final model was
selected after visually evaluating the performance on the validation dataset.
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B.1. Deep learning in Compton reconstruction

B B.1.3 Selected results and discussion

Table shows the parameters of the network with the best outcome. The
progress of the training is depicted in Figure [B.3| Typical reconstruction is
presented in Figure |B.4

Parameter Value
Network UNet3D
Features 16,32,64,128

Epochs 100
Optimizer Adam
Learning rate 0.0002
Weight decay 0.00001
Loss SmoothL1Loss

Table B.1: Parameters of the deep regularization network

Training loss Validation loss
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Figure B.3: Training progress of the deep regularization network.
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(a) : Output of the MAPEM reconstruction used as an input of the deep regularization.
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(b) : Output of the deep regularization.

Figure B.4: Sample evaluation of the deep regularization

Notice that the deep regularization lowered the ammount of noise near
the ellipsoids, but at the cost of introducing significant ammount of noise
in the whole volume. Compared to classical MAPEM implementation, deep
regularization did not provide a significant advantage and was not therefore
used in the reconstruction pipeline.

The proposed deep regularization method presented a simple solution to
explore the potential use of learnable methods in Compton imaging. Fixed
sized voxel grid was assumed, and a small-scale dataset was generated. The
output of the network shows promising deblurring performance in some
scenarios while introducing artefacts in others. Experimental work showed
that the L1 and especially SmoothL1Loss were more appropriate than the 1.2
loss. Furthermore, the utilized augmentations showed a positive impact on
the performance. We conclude that more positive results could be gained by

® utilizing loss functions more appropriate for 3D reconstruction, such as
SSIM

® constructing and leveraging a large-scale dataset or taking advantage of
transfer learning

® providing the network with additional information, such as sensitivity

This deep regularization is an open problem suggested for further work.
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