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Abstract
Sentiment analysis determines the sen-
timent polarity towards a given docu-
ment, sentence or aspect. The output
of such classification gives us the informa-
tion about emotional tone of given text.
In this thesis, we perform several experi-
ments and we report results of sentence-
level and document-level sentiment analy-
sis, aspect category detection, and aspect
category sentiment analysis. We also dis-
cuss the theoretical background of such
methods and review state-of-the-art mod-
els and datasets. Even though our models
achieve worse results compared to state-
of-the-art, the common advantage of our
approaches is low time and space complex-
ity.

Keywords: natural language processing,
sentiment analysis, aspect category
sentiment analysis

Supervisor: Ing. Jan Pichl

Abstrakt
Analýza sentimentu určuje polaritu sen-
timentu vzhledem k danému dokumentu,
větě či aspektu. Výstup této klasifikace
nám dává informaci o emoční zabarve-
nosti daného textu. V této práci pro-
vádíme množství experimentů a repor-
tujeme výsledky analýzy sentimentu na
úrovni vět a dokumetů, detekce katego-
rie aspektů a analýzy sentimentu kate-
gorie aspektů. Také popisujeme teoretic-
kou stránku těchto metod a děláme prů-
zkum současných modelů a datasetů. I
když naše modely vykazují horší výsledky
než současná řešení, mají nízkou časovou
a paměťovou náročnost.

Klíčová slova: zpracování přirozeného
jazyka, analýza sentimentu, analýza
sentimentu kategorie aspektů

Překlad názvu: Pokročilé metody
rozpoznávání sentimentu
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Chapter 1

Introduction

In this thesis, we focus on the task of Sentiment analysis. We perform senti-
ment analysis on three levels: document-level sentiment analysis, sentence-
level sentiment analysis and aspect-based sentiment analysis (aspect category
sentiment analysis in particular). Also, we propose methods for such classifi-
cation tasks. Our motivation to focus on Sentiment analysis stems from a
wide range of applications of this task. Using models trained for sentiment
analysis, we can determine the emotional tone of the given text. Information
about the polarity of certain text can be used in conversational systems
to generate more accurate responses from chatbots. In addition, sentiment
analysis can be used to classify reviews on social media so brands can monitor
how customers feel about them.

1.1 Goal of the thesis

The goal of the thesis is to analyze and implement methods for sentence-level,
document-level, and aspect-based sentiment analysis. In both practical and
theoretical parts of the thesis, we have followed these steps:.Theoretical background of NLP. Review of current methods used for sentiment analysis and named entity

recognition. Review the current datasets for sentiment analysis and named entity
recognition. Review state-of-the-art methods for sentiment analysis and named entity
recognition. Implementation of proposed methods for sentiment analysis which are
time and memory-efficient, training on selected datasets. Discussion of results and conclusion of the thesis

1



1. Introduction .....................................
1.2 Structure of the thesis

This thesis is divided into six chapters:..1. Introduction: Describes motivation and goals of this thesis...2. Theoretical background: Introduces basic terms, such as: Machine
Learning or Natural Language Processing. Describes theory of algorithms
used to approach Named Entity Recognition and Sentiment Analysis
tasks. Explains various concepts of how to numerically represent words...3. Problem description and related work: Defines the problem we
focus on in this thesis, both in theoretical and practical parts. Describes
related work and available datasets...4. Proposed methods: Describes methods we implemented to solve various
tasks of sentiment analysis...5. Experiments: Describes practical experiments with reference to datasets,
algorithmic approaches and discusses achieved results...6. Conclusion: Reviews achieved results and used methods, concludes the
whole thesis.

2



Chapter 2

Theoretical background

In this chapter, we describe the theoretical background of methods used
for sentiment analysis and named entity recognition. Also, we provide a
general overview of Machine Learning (ML) and Natural Language Processing
(NLP).

2.1 Machine Learning

Machine Learning is the field of computer science that focuses on computa-
tional methods based on learning from experience. The experience means
provided data in this context. Various statistical methods are trained on a
corpus of data and subsequently used for the classification or clustering of new
and unseen data samples. Ultimately, we try to train the model which gives
the most accurate predictions and generalizes well over sample space.

The term Machine Learning was first used in 1959 by IBM employee Arthur
Samuel as he proposed an algorithm to solve the game of checkers[1]. Since
then, many techniques have been developed (such as: Decision trees, Support
Vector Machines, or Neural Networks) which improved state-of-the-art results.
Nowadays, the area of Machine Learning is rapidly growing and is widely
used in various applications[2], such as:. Image recognition used for face detection or traffic monitoring in self-

driving cars. Speech recognition to convert voice input to text and analyze it in order
to produce the most relevant answer in chatbots. Spam filtering in email inboxes using Naive Bayes or Multilayer Percep-
tron classifiers. Product recommendations based on user interest and their purchase
history

3



2. Theoretical background ................................
Every machine learning algorithm uses provided dataset to train the classifi-
cation model. Each record in the dataset describes attributes of the object
from the area of our interest. The span of these attributes is called feature
space. Let D = {x1...xn} be given dataset composed of n samples. Every
sample is characterized by k features. Therefore, every instance is formalized
as xi = {xi1...xik}. Also, each sample can be assigned with its outcome
called label. Then, ith sample is written as tuple of (xi, yi). We split the
data into two sets - training and test. We build our model using training
set. The process is called training or learning. Afterwards, we evaluate the
quality of the model on test set. The point is to train the model which best
approximates the ground truth[3].

Whether the given data are labelled or not, there are four main types of
machine learning:..1. Supervised Learning involves training a model using labelled data

and making predictions based on that learning...2. Unsupervised Learning is about training a model using unlabeled
data, which means that the data has not been classified or labelled. Later,
it is used in applications such as clustering, association or dimensionality
reduction...3. Semi-Supervised Learning trains a model on the combination of a
small amount of labelled data with a large amount of unlabeled data...4. Reinforcement Learning trains a model to make decisions based on
feedback from its environment. The model learns to take actions that
maximize a reward function.

2.2 Natural Language Processing

One subfield of computer science that heavily relies on machine learning
is Natural Language Processing (NLP). NLP focuses on the interaction
between computers and human language. It involves the development of
algorithms and models that enable computers to understand, interpret, and
generate human language. NLP involves a wide range of tasks, including
language translation, text classification, named entity recognition, part-of-
speech tagging, and sentiment analysis. Previously, research in this area
focused on training individual models on specific tasks. In recent years, this
paradigm has shifted away in favour of large language models. These deep
learning models commonly use transformer architecture and are trained on a
large text corpus. On the upside, these general-purpose models perform well
on a wide range of NLP tasks. Unfortunately, they require a lot of memory
and computational power and the whole training process costs millions of
dollars.

All in all, NLP is a very promising industry with a lot of future challenges
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................................. 2.3. Word representations

and opportunities. One of many reasons to be optimistic about the outlook
of this field is the user interest and extensive media coverage of ChatGPT
released by OpenAI in November 2022. To put it into perspective, Figure 2.1
shows the estimated market size of this field.

Figure 2.1: Estimated size of NLP market[4].

2.3 Word representations

In this section, we describe how to numerically represent words. Such repre-
sentations treat words either as discrete symbols regardless of meaning, or
as embedding vectors with encoded context using distributional semantics.
Subsequently, numeric word representations are used as input for machine
learning algorithms.

2.3.1 One-hot Vectors

The simplest way to represent words for ML models is to regard them as
discrete symbols using one-hot vectors. The representation uses a word
index from the provided vocabulary. It means that ith word from the vo-
cabulary has one on ith index of vector and the rest of the dimensions
are filled with zeros. The example is shown in 2.1 where vocabulary is
V = [cat, dog, lion, horse, monkey].

dog = [0 1 0 0 0]
cat = [1 0 0 0 0]

(2.1)

5



2. Theoretical background ................................
As a vocabulary, we can use large lexical database named WordNet, published
in [5], where we can find synonyms or hypernyms. WordNet is also available
in Python NLTK package1. Unfortunately, vocabulary resources, such as
WordNet, have a lot of problems. It is impossible to keep those databases up
to date and they lack accurate computation of word similarity.

In general, one-hot vectors cannot compute the similarity of words. The
result of the dot product of two different one-hot vectors is always orthogonal.
Working with one-hot vectors is also computationally expensive because vector
dimension equals the vocabulary size. Since one-hot vectors do not capture
word meaning or context, it is a very inaccurate representation.

2.3.2 Word embeddings

A more complex method of representing words is to use word embeddings.
Based on semantic theory, the meaning of the word is determined by words
that frequently appear in the same context. In other words, “You shall know
a word by the company it keeps” [6]. Word embeddings take the context of
the words into account and thus accurately describe relationships among
vectors with similar, or completely different meanings. As a result, we can
compute the similarity between two embeddings using dot product or perform
subtraction and addition operations. Also, embeddings have fewer dimensions
than one-hot vectors, mostly between 100D and 1000D. The distance among
embeddings in vector space corresponds to their closeness in terms of meaning.
There have been multiple algorithms to generate word embeddings. Table 2.1
shows some examples.

Embedding framework Dimension Associated paper
fasttext 300 [7]

word2vec 300 [8, 9]
GloVe 25,50,100,200,300 [10]
USE 512 [11]

ELMo 1024 [12]

Table 2.1: Examples of embedding frameworks.

word2vec

One of the embedding frameworks is word2vec, published in [8] and [9]. Firstly,
the algorithm constructs vocabulary from a large corpus of text. Then, it
iterates over each word presented in the text corpus and treats each word
as center word and context (or outside) word. The center word is the ith
word at ith position in the text during ith iteration. The context words are
surrounding words that appear within the fixed-size window. The size of the

1https://www.nltk.org/howto/wordnet.html
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................................. 2.3. Word representations

context window is an integer constant. Researchers behind word2vec came
up with two models of training: Continuous Bag of Words (CBOW) and
Skip-gram (SG).

CBOW predicts the center word given a bag of context words. Whereas, SG
predicts the context words given the center word. The prediction is position
independent. During the training process performed in multiple epochs, we
keep adjusting the probabilities in word vectors in order to maximize them.
We start with randomly initialized word vectors. The difference between
CBOW and SG is shown in Figure 2.2.

Figure 2.2: Difference between training models of word2vec[8].

Using SG, we predict outside words based on the center word. The objective
of SG is to maximize log probability described in Equation 2.2. T is the size
of training text corpus, wt is center word and wt+j is context word within
fixed-size window c.

1
T

T∑
t=1

∑
−c≤j≤c, j ̸=0

log p(wt+j |wt) (2.2)

Conditional probability using softmax function is defined in Equation 2.3
where c is the centre word and o is the outside (context) word. For each word,
we have center vector v and context vector u. V is the dictionary size.

p(o|c) = exp(uo
T vc)∑

w∈V exp(uw
T vc)

(2.3)

At the end of training, we end up with two vectors for each word - context
and center. We average them to obtain the final one.

7



2. Theoretical background ................................
Since computing softmax is a very expensive method, word2vec introduced
two efficiency techniques for training: Hierarchical softmax and Negative
sampling.

Hierarchical softmax. Hierarchical softmax uses binary Huffman tree (in-
troduced in paper [13]). Each node can be reached from the root node using
binary classification based on the sigmoid function. With W words, we only
evaluate log W nodes. Therefore, the cost of computing power is lower.

Negative sampling. Negative sampling trains individual sigmoid functions
for each word. It selects several negative samples and decreases their gradi-
ents.

fasttext

The idea of enriching embeddings with subword information was introduced in
three similar publications: [14], [15] and [7]. Paper [7] came up with fasttext
algorithm that incorporates n-gram features.

Fasttext is an extension of the word2vec algorithm. Word2vec treats each
word as a general sequence of chars and represents it with a distinct vector.
It does not take the morphology or semantic structure of words into account.
As a result, word2vec performs poorly in morphologically rich languages
where certain words appear rarely in the training corpora. However, fasttext
represents each word by character n-grams[7].

For example, if we take the word “under” and n = 3, its n-gram representation
would be: <un, und, nde, der, er>. Each n-gram representation starts and
ends with special symbols “<>” to distinguish prefixes and suffixes. The
final word vector is obtained as the sum of word embedding and embeddings
of character n-grams. Formally, it is defined in Equation 2.4. Function s
maps its scores of (word, context) to R. Gw is the set of word’s n-grams and
vc is the vector of context. zg defines the vector representation of character
n-grams[7].

s(w, c) =
∑

g∈Gw

zT
g vc (2.4)

Paper [16] used fasttext for classification tasks. It achieved state-of-the-
art performance and higher accuracy on sentiment-analysis datasets than
methods based on deep learning. The objective of the classification model
is to minimize negative log-likelihood. Formally, it is defined in Equation
2.5.

− 1
N

N∑
n=1

yn log (f(BAxn)) (2.5)

8



.......................... 2.4. Traditional machine learning models

N is the set of documents, yn is the label of nth document and xn is the vector
representation of nth document. The vector representation of each document
is the average of its word embeddings. A and B are weight matrices and f
is softmax function. The architecture of the model is similar to the CBOW
method but fasttext classifier replaces the middle word with the label.

Universal Sentence Encoder (USE)

Paper [11] introduced two new models for sentence-level embeddings. They
take an English string as input and output a 512-dimensional vector repre-
sentation of given text. They were implemented in TensorFlow[17]. Training
data of both encoders include supervised as well as unsupervised samples.
Unsupervised data come from online sources, such as: Wikipedia, discussion
forums or news pages. Annotated data were retrieved from Stanford Natural
Language Inference (SNLI) corpus[18]. Paper [11] proposed two variants of
embedding models. One is based on Transformer architecture[19] and the
other uses deep averaging network (DAN)[20]. Using transformer-based, or
DAN model is a trade-off between accuracy and efficiency.

Transformer-based USE creates embeddings by the encoder block of the
Transformer model. The encoding layer takes input text and converts it
into a representation with attention information. 512-dimensional sentence
vector is obtained after computing the element-wise sum of each word. USE
based on Transformer architecture achieves better accuracy but with longer
computation time and higher memory requirements[11].

DAN-based USE works with deep averaging network. Feedforward neural
network, fed with averaged word embeddings, generates 512-dimensional
sentence embeddings. This variant of USE is more memory and time efficient
but gives worse results thus resulting in lower accuracy[11].

2.4 Traditional machine learning models

The term “traditional machine learning models” refers to a collection of
models characterized by their simple structure. These models can be used
for addressing classification, regression, or clustering problems. The usage of
the term “traditional machine learning” typically serves to contrast it with
“deep learning”, which denotes deep neural network models. Deep learning
models exhibit a more complex architecture and are often employed for tasks
requiring higher levels of abstraction and representation learning. The group
of traditional machine learning models includes various algorithms, such
as:. Support vector machines (SVM). k-nearest neighbours (KNN)

9



2. Theoretical background ................................
. Logistic regression.K-means. Naive Bayes. Conditional random fields (CRF). Hidden Markov model (HMM)

2.4.1 Logistic regression

Logistic regression is a statistical model whose objective is to train a classifier.
Logistic regression learns on training samples by minimizing loss function,
such as cross-entropy. Minimization of such loss function is done using
stochastic gradient descent (SGD) that constantly adjusts parameters of the
model, weights and biases, during the training process. After we have learned
optimal weights and biases, we can make predictions on test set[21]. The
mathematical formula is shown in Equation 2.6.

y = Xw + b (2.6)

X ∈ R(n,c) is the matrix of n test data with c features, w ∈ R(c,1) is the
column vector of weights and b ∈ R(n,1) is the column vector of biases. The
vector y ∈ R(n,1), test data multiplied by weights and summed with biases,
holds predicted labels for each vector from n input vectors.

In the case of binary classification, we compute the probability z of classifying
sample xi into class 1. The formula is shown in Equation 2.7.

z = σ(w · xi + b) (2.7)

The probability of classifying xi as class 0 can be obtained by 1 − z. To make
the final decision, we have to set a decision threshold and then determine the
final label.

If we want to approach multiclass classification, we can use multinomial
logistic regression which computes probabilities by softmax function. In
general, logistic regression has various applications in classification tasks, for
example: sentiment classification or part-of-speech tagging[21].

2.4.2 Hidden Markov model (HMM)

Hidden Markov model (HMM) is a statistical model characterized by two
stochastic processes. The first one represents the Markov model with a finite
set of states. In the case of HMM, states are hidden and thus unobservable.
Such Markov model is described by a probability matrix of transitioning from

10



.......................... 2.4. Traditional machine learning models

one state to another called the transition probability matrix. Also, the initial
probability matrix determines the probability of starting in a certain state.
The second defining stochastic process is the observation process. Since states
are hidden in HMM, they can be learned by observing observations that were
generated by the most probable sequence of hidden states. Hidden states
generate observations with probability distribution called emission probability.
The objective of HMM is to find the most suitable sequence of hidden states
that caused given observations. As shown in Table 2.2, HMMs are formalized
by quintuple (S, A, π, B, O)[22].

S = s1...sN set of N states
A = a11...aN1...aNN transition probability matrix
π = π1...πN initial probability distribution
O = o1...oT T observations
B = bi(ot) emission probabilities

Table 2.2: Formalization of HMMs[21].

HMMs assume that the probability of appearing in the next hidden state
depends exclusively on the current hidden state we are in. It is called Markov
assumption[22]. The formula is shown in Equation 2.8.

P (si|s1...si−1) = P (si|si−1) (2.8)

Another assumption instantiated by HMM is the independence assumption.
It says that the probability of current observation is solely determined by the
last producing hidden state and not by any other states or observations[21].
The formal definition is shown in Equation 2.9.

P (oi|s1...si, ..., sT , o1, ..., oi, ..., oT ) = P (oi|si) (2.9)

The transition probability is probability distribution specifying the probability
of transitioning from one hidden state to another. Emission probability refers
to the likelihood of observing certain outputs generated by a particular hidden
state. Both transition and emission probabilities are parameters which are
learned during the training process. To optimally adjust these parameters,
we can use algorithms such as: Baum–Welch, forward-backward algorithm,
or Expectation Maximization (EM)[21].

HMMs model the relationships among hidden states and output observations.
The process of discovering a sequence of hidden states given observations
is called decoding. To decode the sequence of hidden states, we use the
Viterbi algorithm. Viterbi algorithm uses the principle of dynamic program-
ming. In four steps (initialization, recursion, termination and backtrack-
ing), Viterbi finds the most probable sequence of hidden states given the
observations[22].
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2. Theoretical background ................................
Overall, HMMs can be useful architecture for various NLP tasks, for example:
Named entity recognition (NER). In NER task, hidden states represent
entity labels and observations are word tokens. Our goal is to find the most
probable sequence of entity tags for a given text. Unfortunately, HMMs
cannot capture long-range dependencies. The fact that they capture only
a little context makes HMMs less accurate than more advanced machine
learning methods.

2.4.3 Conditional random field (CRF)

Conditional random field (CRF) is a discriminative model for labelling se-
quential data. In this subsection, we focus on linear-chain CRF. It is the
variant of CRF that has fewer computational requirements and is mainly
used in NLP tasks.

Compared to HMMs, CRFs do not assume that the current state is solely
dependent on the previous state. In general, we consider the concept of
CRFs as more universal than HMMs. CRF determines the most probable
sequence of labels Y with respect to the entire sequence of input words X.
The objective of CRF is to classify all input words with the most optimal
tags[21]. An example of CRF is shown in Figure 2.3.

Figure 2.3: Example of CRFs[23].

Given the input words X = x1...xN , output tags Y = y1...yN and possible
tag sequences Y , CRFs maximize the posterior probability P = (Y |X) during
training to determine the predictions[21]. The mathematical expression is
shown in Equation 2.10.

Ŷ = arg max
Y ∈Y

P (Y |X) (2.10)

To model the relationships between input words and output labels, CRFs use
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................................... 2.5. Neural Networks

feature functions. Feature functions extract relevant information from text.
We can use various feature functions[24], such as:.word length.word suffix or prefix.word embeddings

Posterior probability takes advantage of feature functions which map the
sequence of X and Y to feature vector. The complete equation of finding the
best tag sequence is in Equation 2.11.

Ŷ = arg max
Y ∈Y

P (Y |X) = arg max
Y ∈Y

N∑
i=1

K∑
k=1

wkfk(yi−1, yi, X, i) (2.11)

As shown in Equation 2.11, the optimal sequence of labels is found by
maximizing the sum over input words and the sum of weighted features. Each
feature function fk is multiplied by weight wk. Feature functions, in the linear
chain variant of CRF, take current tag yi, previous tag yi−1, input string X
and timestamp index i on the input. As in the case of HMMs, we can use
the forward-backward algorithm to adjust weights and the Viterbi algorithm
to find the optimal sequence of labels[21].

Compared to HMMs, CRFs can capture long-range dependencies. Therefore,
they can model relationships between words that appear far from each other
in sentences. For example, we can use CRFs for part-of-speech tagging (POS)
or named entity recognition (NER).

2.5 Neural Networks

Neural networks (NNs) are computational models based on the structure and
function of the human brain. Neurons are basic units of the brain and nervous
system. They are specialized cells that transmit information throughout the
body in the form of electrical signals. Neurons are connected by synapses that
transmit nerve impulses from one neuron to another. When a neuron receives
a signal, it generates an electrical impulse that fires into other neurons. With
a network composed of billions of neurons, the human brain is able to process
information or control behaviour.

Neural networks model replaces neurons with nodes with activation functions
and biases which are connected by edges with weights. These layers of
interconnected nodes are used for various regression and classification tasks,
such as: image recognition or text classification. An example of NN is shown
in Figure 2.4.
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2. Theoretical background ................................

Figure 2.4: Example of NN architecture[25].

There are different types of neural networks with different architecture and
preferred usage:. Feedforward Neural Networks. Convolutional Neural Networks (CNNs). Recurrent Neural Networks (RNNs). Long Short-Term Memory (LSTM) Networks.Transformers

2.5.1 Feedforward Neural Networks

This is the simplest form of neural network. Information flows in only one
direction, from input to output. Feedforward neural network is composed
of the input layer, one or more hidden layers and the output layer. This
architecture was introduced in paper [26]. Layers composed of neurons are
fully connected by edges without cycles. It means that neurons take outputs
from all neurons in the previous layer as inputs. Compared to previous
methods, such architecture works with linearly nonseparable data. The
objective of NNs is to minimize training loss. Loss is modelled using loss
functions, such as: negative log-likelihood, mean squared error or binary cross-
entropy. The output layer is the last layer of NNs and outputs probability
distribution. According to paper [27], feedforward NNs with as few as one
hidden layer can approximate any continuous functions.

The value of the loss function indicates how well our network fits the train-
ing data. Lower value indicates better performance. Each neuron has its
activation function and bias. Edges connecting neurons have weights. On
training examples, we compute weighted sums of outputs from the previous
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layer. Formally, weighted sum is defined in Equation 2.12 where w is a weight
vector and x is an input vector.

z = w · x (2.12)

Weighted sum z is then summed with bias b and fed into the activation
function associated with each neuron. The output of activation function σ in
mth neuron is described in Equation 2.13.

am = σ(zm + bm) (2.13)

After we complete forward propagation through all layers, we get the output
probability distribution. We can use various activation functions in our
models, such as:. tanh

f(x) = ex − e−x

ex + e−x. sigmoid
f(x) = 1

1 + e−x. ReLU
f(x) = max(0, x). softplus
f(x) = ln (1 + ex)

The loss function models the distance between the output of NN and ground
truth. To find parameters of such minimized loss function, we use a gradient
descent algorithm. Gradient descent minimizes loss function by taking partial
derivatives with respect to individual weights and biases. To determine
optimal weights and biases, we use the backpropagation algorithm. The
vector that contains partial derivatives of weights and biases is called a
gradient. Gradient descent finds local minima of loss function by taking steps
in size of learning rate in the negative direction of gradient [21]. Formally, it
is defined in Equation 2.14. θ is parameter vector, f is differentiable function
and η is learning rate.

θk+1 = θk − η∇f(θk) (2.14)

Since performing gradient descent on all training samples and averaging
their weights and biases is very slow, we use Stochastic gradient descent
(SGD). In each training epoch, it selects a certain number of samples from
randomly shuffled training data and finds parameters of loss function on those
mini-batches.
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2. Theoretical background ................................
In general, setting the learning rate has been recognized as tricky. SGD is
very sensitive to the value of the learning rate. High learning rate results
in divergence and NN with low learning rate converges slowly. We can use
various optimizers to improve convergence to the optimal solution. Such
optimizers are for example: Adam[28] or AdaGrad[29].

2.5.2 Recurrent Neural Networks

Recurrent neural network (RNN) is a type of NN which is an extension of
simple feedforward neural network. RNN introduces the concept of time series
data into the training process. While inputs and outputs in feedforward neural
networks are independent of each other, RNN has memory through hidden
layers to influence current input and output as it remembers calculations
from prior outputs. RNNs share weights and biases across each layer thus
these parameters are constantly adjusted during training. At each time step,
prior outputs and current inputs are used to determine the current output.
As in feedforward neural networks, weights and biases are optimized by SGD.
Conversely, RNNs use backpropagation through time algorithm that takes
time steps into account. An example of RNN architecture is shown in Figure
2.5.

Figure 2.5: Example of RNN architecture[30].

RNNs are widely used for tasks in the field of natural language processing
or speech recognition. However, RNNs suffer from vanishing and exploding
gradient problems. Also, they tend to run into difficulties with long sequences
of data. To partially fix these issues, more complex variants of RNNs have
been proposed. In particular, Long Short-Term Memory (LSTM) and Gated
recurrent unit (GRU) which use gated mechanisms. In most cases, LSTM
and GRU perform similarly. But papers [31] and [32] showed examples where
LSTM gives better results.

2.5.3 Transformers

Current state-of-the-art models in NLP are Transformers. Introduced in
paper [19], their architecture is based on the Attention mechanism. The
transformer-based models consist of two parts: encoder and decoder. An
example of Transformer’s internal structure is shown in Figure 2.6.
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Figure 2.6: Architecture of transformer-based model[19].

Firstly, the input sequence is converted into positional input embeddings and
fed into the encoder block. The encoding layer is composed of multi-head
attention followed by a fully-connected layer. Multi-head attention uses
self-attention to associate words from input with each other. The output
from multi-head attention is then put into a feedforward network with ReLU
as an activation function for further computation. In general, the encoder
block encodes the input into a representation with attention information.
Then, the decoder uses this information for the purpose of focusing on the
appropriate words.

Similarly as the encoding layer, the decoding layer has two multi-head atten-
tion layers and a fully-connected feedforward network plus linear and softmax
layers. The objective of the decoder block is to generate text sequences. The
output of a fully-connected network goes to the linear classifier and softmax
function that generates output probabilities.
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2. Theoretical background ................................
Some of the widely used large language models were developed using transformer-
based architecture. To be specific, some of them are: BERT[33], GPT-3[34]
and RoBERTa[35].
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Chapter 3

Problem description and related work

In this chapter, we describe the NLP tasks of Named entity recognition (NER)
and Sentiment analysis (SA). We also introduce related work and available
datasets for such tasks.

3.1 Sentiment Analysis

Sentiment analysis is a natural language processing technique used to deter-
mine the sentiment or emotional tone expressed in a piece of text, such as: a
movie review, social media post or news article. Sentiment analysis can be
applied to a wide range of applications[36], such as:. Social media monitoring to find out what customers are saying about a

particular brand and respond to negative comments.Analyze and categorize customer reviews.Analyze customer sentiment towards products, services, or brands to
gain insights into consumer behaviour and preferences.Monitor trending issues of customer support in order to assess its effec-
tiveness

Sentiment Analysis (SA) is considered a classification task which determines
attitude towards the given body of text. It can be divided into three levels so
we can perform such classification of polarity on document, sentence or aspect
level. Document-level SA takes a block of text, composed of multiple sentences,
and identifies whether it is positive, or negative. Whilst, sentence-level SA
decide whether the individual sentence is expressing positive, or negative
feelings. Even though sentence-level SA provides a more detailed examination
of emotional tone in a given text, there is no fundamental difference between
these two classification levels[37].

The most thorough analysis of sentiment provides classification performed on
aspect level. Aspect-level or aspect-based sentiment analysis (ABSA) focuses
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3. Problem description and related work ..........................
on sentiment analysis with respect to individual aspects of each sentence.
Aspect can be a term explicitly mentioned in given sentence, or an implicit
category predefined in the used dataset. Each sentence can contain multiple
aspects with different polarities. Therefore, ABSA is a more challenging task
compared to document-level and sentence-level SA.

3.1.1 Sentence-level and Document-level sentiment
analysis

Sentence-level sentiment classification is the NLP task that analyzes sentiment
in individual sentences. Algorithms, developed for this task, determine
the overall polarity of opinions expressed in sentence samples. Polarity of
expressed sentiment can be positive, or negative. Alternatively, it is either
the three-way classification task which labels whether the emotional tone
of a sentence is positive, negative, or neutral, or multiclass classification in
general. The output of sentence-level sentiment analysis can be used to gain
insights into how people feel about a particular topic or product[38].

Document-level sentiment analysis is also NLP task that analyzes sentiment.
In this case, sentiment analysis is performed on document level. Document-
level sentiment analysis takes blocks of text, composed of multiple sentences,
and determines sentiment polarity labels. It could be binary classification with
positive and negative tags, three-way classification with positive, negative
and neutral classes, or multiclass classification in general.

Related work

Paper [39] proposed three models based on LSTM classifiers. These models
differ in network architecture and parameters.

In [40], researchers introduced a model that implements four deep learning
techniques. Firstly, sentences from the movie review dataset were encoded
using word2vec. The architecture of the model was composed of Convolutional
layer, Maxpooling layer, LSTM layer and Dense layer.

Paper [41] fine-tuned transformer-based model named RoBERTa. The exper-
iment was performed on movie review dataset.

The classification model, published in [42], proposed an architecture where
three state-of-the-art classifiers were trained: Naive Bayes, Support vector
machines (SVM) and Maximum entropy. A trained classifier was then applied
to test data from the Sentiment140 dataset to predict positive and negative
labels. It also incorporated unigram and bigram features to improve the
performance of the model.
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Available datasets

We can find a large number of datasets for the tasks of sentence-level and
document-level sentiment analysis. The dataset, published in [43] and created
by Stanford University, is composed of 1.6 million tweets about products
or brands. Tweets are labelled either as positive, or negative. The dataset
from [44], obtained also by Stanford University, contains fifty thousand highly
polar movie reviews. Reviews have either positive, or negative polarity. Paper
[45] introduced the Stanford Sentiment Treebank dataset that contains movie
reviews scrapped from the Rotten Tomatoes database. Models trained on
this dataset try to predict five labels: negative, somewhat negative, neutral,
positive and somewhat positive. Paper [46] constructed dataset for the task of
Twitter sentiment analysis. Samples were manually annotated with positive,
negative, or neutral labels. A thorough analysis of datasets, used in the
experimental part of this thesis, is in sections 5.1.1 and 5.1.2.

3.1.2 Aspect-based sentiment analysis

Aspect-based sentiment analysis is the text classification task that determines
the sentiment polarity with respect to aspects from the given sentence. This
level of sentiment analysis gives the most detailed analysis of opinions as it
tries to detect multiple aspects with different polarities. According to paper
[47], the sentiment analysis is composed of two main elements: target g and
sentiment s. Those two components generate tuple (g, s), where g is the
aspect about which an opinion has been declared and s is the emotional tone
of such opinion - positive, negative, or neutral.

Aspect is expressed either as an aspect term, or aspect category. Overall, the
research of ABSA focuses on the detection, extraction or classification of four
main attributes - aspect category, aspect term, opinion term and sentiment
polarity. Aspect category represents a unique aspect which labels entities
from text. Aspect categories come from the predefined set that corresponds
to specific dataset. For example, FOOD and PRICE categories appear in data
from restaurant domain. An aspect term is an entity explicitly mentioned
in the text. Such entity is the target of opinion. In the sentence “Iphone is
expensive”, the aspect term is Iphone. Opinion term is judgement expressing
sentiment towards the target. The emotional tone of the opinion term
determines the polarity of the target. In the sentence “Iphone is expensive”,
the word expensive is the opinion term. Sentiment polarity is label that
describes the attitude of opinion term towards the target. Mostly, sentiment
polarity is one of positive, negative, or neutral[48]. Another example of ABSA
classification is shown in Figure 3.1.
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Figure 3.1: Example of ABSA classification[48].

ABSA is a complex task composed of multiple subtasks which are associated
with the four main attributes defined above. There are three underlying
subtasks: Opinion target extraction (OTE), Aspect category detection (ACD)
and Sentiment polarity (SP). Opinion target extraction is concerned with
labelling multiple aspect terms in sentences. Aspect category detection deals
with identifying aspect categories that are mentioned in given text. Sentiment
polarity task determines the positive, negative and neutral tags with respect
to aspect terms or aspect categories.

In this thesis, we focus on aspect category and sentiment polarity pair
extraction. For each sample from test set, we predict one or more pairs (aspect
category, sentiment polarity). Such task is called aspect category sentiment
analysis (ACSA)[49]. Formally, let s = [w1, ..., wn] be the sentence s composed
of n words. Also, given a predefined set of m categories C = {c1, ..., cm}
and sentiment polarities P = {positive, negative, neutral}. The goal of
ACSA is to predict {..., (yi

c, yi
p), ...} for each sentence, where yi

c is the ith
aspect category and yi

p is the ith sentiment polarity towards predicted aspect
category[50].

Related work

Paper [51] proposed a new End-to-End Convolutional neural network (CNN)
that jointly performed ACD and SP on GermEval 2017 dataset. Apart from
classifying positive, negative and neutral polarity towards aspect category
as done in previous papers, they added extra dimension "N/A" denoting
whether the aspect category appears in the sentence, or not. As a result,
they performed ACD and SP simultaneously with significant performance
gains.

Model from [52] performed ACSA on the Chinese dataset. They used two
CNNs to obtain a representation of each sample. The final embedding
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was input into multiple Multilayer perceptron (MLP) classifiers for joint
learning.

Paper [50] presented a Hierarchical Graph Convolutional Network (Hier-
GCN) as an approach to tackle ACSA. Lower-level GCN was used to detect
aspect categories and higher-level GCN predicted corresponding sentiment
polarities.

Approach from [53] transformed ACSA as a classification task into a language
modelling task. They used language models to predict aspect category and
sentiment polarity.

In paper [54], they proposed a model composed of five layers for joint clas-
sification of aspect categories and sentiment polarities. The layers are: the
input layer, the shared BiLSTM layer, the special BiLSTM layer, the multiple
perspective attention layer, and the multilabel classifier layer.

Paper [55] introduced a model based on AS-Capsules where hidden vectors are
encoded by recurrent neural networks (RNN). The number of AS-Capsules
equals to the number of aspect categories and each capsule outputs the
probability of aspect category and sentiment polarity distribution.

Available datasets

The biggest disadvantage of this task is the lack of large datasets. In most of
the existing papers, the SemEval datasets, released in papers [56], [57] and
[58], are benchmarks. The data come from restaurant and laptop reviews.
Paper [59] took the data from restaurant reviews for the period 2014-2016
and merged them. As a result, "Restaurant-Large" dataset was constructed.
Also, paper [60] released dataset for ACSA which contains at least two aspect
categories with different polarities per each sentence. A thorough analysis of
datasets, used in the experimental part of this thesis, is in section 5.1.3.

3.2 Named Entity Recognition

Named entity recognition (NER) is a natural language processing (NLP)
task that involves identifying and classifying named entities in text. Named
entities are terms specifically mentioned in the text by name, such as: people,
organizations, locations, or products. Firstly, NER models identify words
that correspond to named entities. It means that they label whether the given
word is named entity, or not. Then, NER systems classify named entities
into predefined categories. For example, the NER system might identify the
words Tom Cruise and New York in text and classify them as PERSON and
LOCATION, respectively. We can use NER in a wide range of applications,
for example: information extraction, knowledge base construction, and text
summarization. It is also an important component of many natural language
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processing systems as named entities give key contextual information about
the given text.

To predict labels of named entities in given dataset, we can use multiple
algorithms. Most common sequence labelling algorithms divide into the
following categories[61]:. Rule-based methods using vocabularies or dictionaries.. Feature-based supervised learning approaches such as: HMM or CRF..Deep learning techniques using machine learning models, for example:

RNN or LSTM.

These three major categories are the most commonly used to tackle NER-
related tasks. Particularly, Feature-based and deep learning approaches
represent state-of-the-art technologies widely employed for extracting named
entities from text with high accuracy.

The technique to label entities in given dataset is called IOB. IOB tagging,
also known as Inside-Outside-Beginning tagging, is scheme for annotating
text data with named entity labels. Using IOB tagging, each word in the text
is assigned label that indicates whether it is the beginning of the named entity
(B), inside of the named entity (I), or outside of the named entity (O). For
example, consider the following text: “Tom Cruise was born in New York”.
Words Tom and Cruise would be labelled as B-PER (beginning of PERSON
entity) and I-PER (inside of PERSON entity), respectively. Likewise, word
New would be labelled as B-LOC (beginning of a LOCATION entity). Lastly,
the word York would be labelled as I-LOC (inside a LOCATION entity). The
remaining words in the text would be labelled as O (outside of the named
entity). Another example is shown in Figure 3.2.

Figure 3.2: Example of IOB tagging[62].

3.2.1 Related work

Paper [63] proposed new BioALBERT model. This transformer-based model
was created by fine-tuning ALBERT[64] on large text corpora from biomedical
domain. It was tested on domain-specific datasets to extract named entities
of diseases, chemicals and etc.

Model from [65] made use of neural network architecture composed of CNN,
bidirectional LSTM and CRF. Character-level representations, computed by
CNN and GloVe word embeddings, were concatenated and fed into bidirec-
tional LSTM. The final label was obtained by CRF.
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Classifier proposed in paper [66] used model from paper [67] and replaced
widely used cross entropy loss with dice loss. Such solution tackles the
problem of imbalanced datasets and achieves state-of-the-art results.

Model from [68] applied GRU and CRF on entity detection and classification.
They performed two experiments: multi-task training and cross-lingual train-
ing. Multi-task training involves joint training of models for POS and NER
tasks. The cross-lingual method involves joint training of model for one task
(POS, or NER) in multiple languages.

In paper [69], BERT model was used to perform NER on Czech datasets.

3.2.2 Available datasets

Paper [70] created the NER dataset in two languages: English and German.
Four types of named entities are recognized in the text. Data were taken from
Reuters news articles. Paper [71] proposed dataset composed of broadcast
news and web data. Eighteen entity types were defined in such dataset.
Dataset from paper [72] include named entities annotated on Czech text.
There are forty six entity types. Paper [73] introduced dataset composed of
annotated data with four entity types. Data come from Wikipedia articles.
Research published in paper [74] introduced dataset for NER task from
the medical domain. It classifies entities into five predefined categories of
proteins.
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Chapter 4

Proposed methods

In this chapter, we describe methods we have used to obtain results in the
experimental part of the thesis. Methods have been used for aspect cate-
gory detection, aspect category sentiment analysis, document-level sentiment
analysis and sentence-level sentiment analysis.

4.1 Fasttext supervised classification

According to paper [16], fasttext can be used for various text classification
tasks. Reported results from paper [16] have outperformed methods based on
deep learning techniques but with significantly lower computation costs and
memory requirements. The efficiency and accuracy of the fasttext classifier
are the main reasons why we have used fasttext in our experiments.

We were given sentences from our selected datasets. After performing text
formatting and cleaning operations (data preprocessing is described in 5.3),
we fed training samples into fasttext classifier. The sentence is tokenized
using an internal fasttext tokenizer and represented as a set of N ngram
features. Formally, training corpus is composed of K sentences S = {s1...sK}
and ith sentence consists of ngram features as si = {x1...xN }. Averaged repre-
sentations of words are fed into linear classifier. The probability distribution
over predefined labels is computed by softmax function. Figure 4.1 depicts
the internal structure of fasttext classifier.

Regarding sentence-level sentiment analysis, each training sentence was la-
belled as positive, or negative. In case of document-level sentiment analysis,
each training sample, composed of multiple sentences, has also either positive,
or negative label. We did binary classification on those samples. Input data
were in desired fasttext format. Example is shown in 4.1.

__label__positive i like chocolate

__label__negative i hate bananas
(4.1)
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Figure 4.1: Internal structure of fasttext classifier[16].

In aspect category sentiment analysis, each sentence is assigned with one, or
more aspect categories and corresponding sentiment labels. Therefore, it is a
multi-label classification task. Aspect categories come from a predefined set
and their sentiment polarities are positive, negative, or neutral. In this method,
we concatenated aspect category labels with labels of sentiment polarities
by underscore “_” char. Given set of L aspect categories C = {c1...cL} and
sentiment polarities P = {positive, negative, neutral}, the total number of
all possible labels was determined as all_labels = {c“_”p : c ∈ C, p ∈ P}.
Format of data was augmented for fasttext classifier, example is in 4.2.

__label__service_negative __label__food_positive the service was horrible

but the pizza was great

(4.2)

Trained fasttext model was then used to classify samples from test set. In the
case of binary classification, the output label was the one with the highest
probability. For multi-label classification, we set a probability threshold that
determines the set of tags we predict for certain training sentences.

4.2 Two-step fasttext classifier

As opposed to joint training and classification of aspect categories and their
sentiment polarities, we came up with two-step fasttext classifier exclusively
for ACSA. This method divides ACSA into two subtasks: ACD and SP.
These subtasks are approached individually and performed one after an-
other. Therefore, we do not have to concatenate aspect categories with
their corresponding sentiment polarities. Ultimately, the detection of aspect
categories is multi-label but subsequent sentiment polarity classification is
multiclass.
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Firstly, aspect category detection is performed. Given a set of L aspect
categories C = {c1...cL}, each sentence is assigned with one, or more aspect
categories. Obtained fasttext model from the training phase is then used
to detect aspect categories in all sentences from test set. Detected aspect
categories are later used in sentiment polarity classification.

Sentiment polarity classification makes use of detected aspect categories from
the previous step. The fasttext model for sentiment polarity classification was
trained on the same sentences as aspect category detection. For the purpose
of the learning process, model is fed with sentences which have been linked
together with original gold annotations. An example of such concatenation is
shown in 4.3.

< text of sentence > [SEP ] < aspect category > (4.3)

If one sentence has multiple aspect categories, such sentence is added to
input data multiple times joined by different aspect category in each in-
stance. To evaluate this model, we concatenate sentences from test set with
detected aspect categories from previous classification. Then, the model
outputs predicted sentiment polarities. This concludes classification process
of this method because we obtained predicted aspect categories and sentiment
polarities. Complete overview of the proposed architecture is shown in Figure
4.2.

4.3 Classification using Logistic regression

Another method we propose is logistic regression. In this approach, we make
use of logistic regression both for binary and multi-label classification. Logistic
regression determines the probability of a sample being in a certain class by
sigmoid function. If the number of possible classes is higher than two, we
have to use multinomial logistic regression with softmax function. This is
the alternative approach to joint fasttext classification. We also incorporated
embedding framework USE[11] that can represent sentences as a whole, not
just as an averaged sequence of words. It is optimized for greater-than-word
length text.

Even though the ACSA task is multi-label, we came up with the method to
train individual binary classifiers. We obtained labels by performing sentiment
polarity classification after aspect category detection. Such structure of the
classification pipeline split the initial multilabel task into multiple binary
classifications thus allowing to use an ensemble of binary logistic regressions.
Firstly, the input sentence samples were encoded by USE framework[11].
Then, we trained binary logistic regression for each aspect category. Individ-
ual classifiers determine whether the given sentence falls into a certain aspect
category, or not. This is the first phase of our approach that handles aspect
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SENTENCE

Fasttext ACD classifier

Predicted t aspect categories
predicted_categories={c1…ct}

<sentence>[SEP]< ct ><sentence>[SEP]< c1 >

…
Fasttext SP classifier

Predicted sentiment 
polarity

Predicted sentiment 
polarity

…

Figure 4.2: Architecture of two-step fasttext classifier.
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category detection. To do sentiment polarity classification, we implemented
another ensemble of logistic regressions. In this part of the classification,
it is the ensemble of multinomial logistic regressions because sentiment is
positive, negative, or neutral. The number of multinomial logistic regressions
corresponds to the number of aspect categories. Each multinomial logistic
regression classifies the sentiment polarity of samples from one particular
aspect category. The output of this ensemble of multinomial logistic regres-
sions is the sentiment polarity label for each aspect category detected in
the previous step. This concludes the classification process of this method
because we obtained predicted aspect categories and their corresponding
sentiment polarity labels. Visualization of the model’s architecture is shown
in Figure 4.3.
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SENTENCE

USE

Detected L aspect categories
detected_aspect_categories={c1…cL}

…Predicted sentiment 
polarity

Predicted sentiment 
polarity

lgr_spKlgr_sp1 …

lgr_acdKlgr_acd1 …

Figure 4.3: Architecture of ensemble of logistic regressions.

Formally, given K aspect categories C = {c1...cK}, in the phase of aspect
category detection, we construct the ensemble of K binary logistic regressions
LGR_ACD = {lgr_acd1...lgr_acdK}. To determine sentiment polarity, we
implemented chain of multiple multinomial logistic regressions. The number of
multinomial logistic regressions corresponds to the number of aspect categories.
Let LGR_SP = {lgr_sp1...lgr_spK} be the ensemble of multinomial logistic

32



..........................4.3. Classification using Logistic regression

regressions. The outputs are sentiment polarities (positive, negative, or
neutral) towards L detected aspect categories detected_aspect_categories =
{c1...cL} with respect to given input sentence.

Regarding sentence-level and document-level sentiment analysis, it is a binary
classification problem. Therefore, we proposed the solution of using binary
logistic regression because the sentiment polarity label for each sentence or
block of text is either positive or negative. Using binary logistic regression, we
predict the sentiment polarity of each sample from the test set. The input of
such classifier is sentence or block of text encoded by USE[11] to embedding
vector. The output is a sentiment polarity label for a given sample: positive,
or negative.
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Chapter 5

Experiments

In this chapter, we describe our experiments and discuss the results we have
obtained. Since the nature of our datasets is ACSA, or sentence-level and
document-level sentiment analysis, experiments on NER are not relevant so
we do not provide such results in this chapter.

5.1 Used Datasets

5.1.1 Datasets for document-level sentiment analysis

For document-level sentiment analysis, we have used IMDB[44] dataset.

IMDB dataset[44] consists of highly polar movie reviews scrapped from
IMDB1. They are labelled either as positive, or negative. Analysis of IMDB
dataset is shown in Table 5.1.

Train Test Dev
# samples 20000 25000 5000
avg # words per sample(with/without stopwords) 230/105 225/103 232/106
#positive 10000 12500 2500
#negative 10000 12500 2500

Table 5.1: Analysis of IMDB[44] dataset.

5.1.2 Datasets for sentence-level sentiment analysis

For sentence-level sentiment analysis, we have used Sentiment140[43] dataset.

Sentiment140 dataset[43] is a large-scale dataset composed of tweets. The
annotation of each tweet is either positive, or negative. Table 5.2 shows the
analysis of this dataset.

1https://www.imdb.com/
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Train Test

# samples 1280000 320000
avg # words per sample(with/without stopwords) 13/7 13/7
#positive 640156 159844
#negative 639844 160156

Table 5.2: Analysis of Sentiment140[43] dataset.

5.1.3 Datasets for aspect category sentiment analysis

For the ACSA, we have used three datasets: res14[56], Restaurant large[59]
and the ACSA variant of MAMS[60].

In the res14 dataset[56], English restaurant reviews (a subset of them come
from [75]) were manually annotated. Aspect categories are from the predefined
set of labels: FOOD, SERVICE, PRICE, AMBIENCE, MISC. Sentiment
polarities towards given categories are positive, negative, neutral. Analysis of
the res14 dataset is shown in 5.3.

Train Test
# samples 2898 767
avg # words per sample(with/without stopwords) 13.3/8 13.6/8.3
% of samples with more than one label 19 22
#positive 2164 728
#negative 807 196
#neutral 637 196
#FOOD 1166 402
#SERVICE 562 167
#PRICE 302 80
#AMBIENCE 385 105
#MISC 1103 219

Table 5.3: Analysis of res14[56] dataset.

MAMS dataset[60], its ACSA variant in particular, is composed of English
reviews of restaurants. Aspect categories are: FOOD, SERVICE, STAFF,
PRICE, AMBIENCE, MENU, PLACE, MISCELLANEOUS. Sentiment polar-
ities towards them are: positive, negative, neutral. In this dataset, sentences
consist of at least two aspect categories with different sentiment polarities.
Table 5.4 shows the statistics and label distribution of MAMS dataset.
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Train Test Dev
# samples 3149 400 400
avg # words per sample(with/without stopwords) 23.4/17.5 23/17.3 23.1/17.3
% of samples with more than one label 100 100 100
#positive 1929 245 241
#negative 2084 263 259
#neutral 3077 393 388
#FOOD 2307 291 290
#SERVICE 631 78 84
#PRICE 322 38 45
#AMBIENCE 324 32 36
#MENU 475 76 51
#PLACE 694 81 88
#STAFF 1383 169 165
#MISCELLANEOUS 954 136 129

Table 5.4: Analysis of MAMS[60] dataset.

Restaurant large dataset[59] was created by merging datasets from restaurant
domains published in [56, 57, 58]. Aspect categories include: RESTAURANT,
FOOD, DRINKS, AMBIENCE, SERVICE, PRICE, MISC and LOCATION.
Labels of sentiment polarity are positive, negative and neutral. Analysis of
the Restaurant large dataset is in Table 5.5.

Train Test
# samples 3815 1963
avg # words per sample(with/without stopwords) 13.6/8 13.2/8.2
% of samples with more than one label 19 20
#positive 2710 1505
#negative 1198 680
#neutral 757 241
#FOOD 1597 928
#SERVICE 802 475
#PRICE 321 83
#AMBIENCE 525 243
#DRINKS 39 56
#RESTAURANT 245 386
#LOCATION 13 21
#MISC 1123 234

Table 5.5: Analysis of Restaurant large[59] dataset.

5.2 Evaluation metrics

There are several evaluation metrics that can be used to assess the performance
of our classification. In this thesis, we use precision, recall, f1-score and accu-
racy. These evaluation metrics allow us to compare models with each other.
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Therefore, we can determine the best architecture for our selected classifica-
tion task. In our result section 5.4, we use micro average of mentioned metrics.
In the case of ACSA task, the pair (aspect category, sentiment polarity) has
to be completely correct to consider it as one of the correct predictions for the
given sample. Formally, we define our evaluation metrics as follows:. precision

Tp

Tp + Fp. recall
Tp

Tp + Fn. F1-score
2 × Precision × Recall

Precision + Recall. accuracy
# correct predictions

# all predictions

Tp is number of true positives. Fn is number of false negatives whereas Fp is
number of false positives.

5.3 Implementation details

Our experiments were developed using Python 3.9 programming language and
PyCharm IDE. We trained and tested our methods on a personal notebook
with Intel(R) Core(TM) i5-9300H 2.40 GHz CPU and 16GB of RAM. We
performed a number of data preprocessing steps before training our classifiers.
Such data preprocessing procedures include: lemmatization, removal of leading
and trailing spaces, conversion of uppercase characters to lowercase and
removal of HTML elements and punctuation. In the case of fasttext models,
we also removed stopwords (using scikit-learn2 and NLTK3) because such
trained classifiers give better results. We measured training time using
Python time module4 and memory allocations using Python tracemalloc
module5.

Regarding fasttext classifier implementation, we used Python library fasttext6

and its fasttext supervised classifier. For fine-tuning pretrained embeddings,
2https://scikit-learn.org/stable/modules/classes.html#module-sklearn.

feature_extraction.text
3https://www.nltk.org/search.html?q=stopwords
4https://docs.python.org/3/library/time.html
5https://docs.python.org/3/library/tracemalloc.html
6https://pypi.org/project/fasttext/
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we chose 300-dimensional English vectors7 which were trained on Common
Crawl and Wikipedia corpus. Since res14[56], Restaurant large[59] and
Sentiment140[43] datasets do not provide official development split, we took
10% of all samples and chose it from a randomly shuffled train set. We used
development sets to find the best combination of hyperparameters with an
automatic hyperparameter optimization tool from fasttext library.

Methods based on logistic regression were implemented by scikit-learn library8.
In addition, we used USE embeddings, both DAN-based9 and Transformer-
based10 variants.

5.4 Results

We discuss our results in this section. In section 5.4.2, we discuss the results
of sentence-level sentiment analysis and section 5.4.1 presents the results of
document-level sentiment analysis. Section 5.4.3 presents the results of the
aspect category detection subtask and section 5.4.4 presents the results of
aspect category sentiment analysis.

5.4.1 Document-level sentiment analysis

In Table 5.6, we present results of document-level sentiment analysis evalu-
ated on IMDB dataset[44]. The fasttext model with fine-tuning pre-trained
embeddings has only slightly better accuracy than the fasttext model trained
from scratch. It indicates that such pretrained embeddings do not hold crucial
data needed for this kind of classification task. Both logistic regressions with
DAN-based and Transformer-based USE embeddings give the same results
in terms of accuracy. SOTA from [41] fine-tuned RoBERTA model[35] to
perform this classification task.

Model Acc Training(s) Memory(MB)
fasttextours 0.87 43 139
fasttext with pretrained vectors[76]ours 0.89 286 140
lgr with USE (DAN variant)ours 0.86 230 1069
lgr with USE (Transformer-based variant)ours 0.86 520 1132
fine-tuned RoBERTA model[41]sota 0.96

Table 5.6: Results of document-level sentiment analysis on IMDB dataset[44].

In general, document-level sentiment analysis is a simpler task compared to
aspect category sentiment analysis. Therefore, our proposed methods and

7https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz
8https://scikit-learn.org/stable/
9https://tfhub.dev/google/universal-sentence-encoder/4

10https://tfhub.dev/google/universal-sentence-encoder-large/5
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their results are comparable to SOTA models. In addition, our approaches
are very time and memory efficient.

5.4.2 Sentence-level sentiment analysis

Table 5.7 shows results of sentence-level sentiment analysis on Sentiment140
dataset[43]. The fasttext model trained from scratch performs similarly as the
fasttext classifier with fine-tuning pretrained embeddings. However, the fast-
text model trained from scratch is three times faster. Logistic regression with
Transformer-based USE embeddings has slightly better accuracy than its re-
spective counterpart with DAN-based embeddings but training is significantly
slower. SOTA from [42] proposed Maximum entropy classifier.

Model Acc Training(s) Memory(MB)
fasttextours 0.77 158 730
fasttext with pretrained vectors[76]ours 0.78 473 730
lgr with USE (DAN variant)ours 0.78 477 2962
lgr with USE (Transformer-based variant)ours 0.81 1350 3125
Maximum entropy classifier[42]sota 0.88

Table 5.7: Results of sentence-level sentiment analysis on Sentiment140
dataset[43].

On the whole, sentence-level sentiment analysis is a relatively simple task.
Therefore, our time-efficient and less complex methods trained on CPU,
achieve comparable results as state-of-the-art models. In addition, the Sen-
timent140 dataset has a large number of training samples. Combination of
large-scale dataset and binary classification task results in the similar per-
formance of fasttext models and logistic regressions with more sophisticated
classifiers.

5.4.3 Aspect category detection

In Table 5.8, we present results of aspect category detection on MAMS
dataset[60]. It shows that fasttext classification model outperforms logistic
regression with USE embeddings by 1-4% in all presented evaluation metrics.
Comparison of fasttext classifier with and without fine-tuning pretrained
embeddings (300-dimensional English vectors from [76]) shows similar results.
It indicates that pretrained vectors do not hold crucial contextual information
needed for this classification. Also, training of fasttext classifier with fine-
tuning pretrained embeddings is slower than training the fasttext classifier
from scratch. Since the pretrained embedding file has 4.4GB, training process
takes four minutes compared to the three-second learning process of model
trained from scratch. Logistic regression with USE (DAN variant) has slightly
worse performance than USE with Transformer-based embeddings. On the
other hand, the training process of logistic regression with DAN-based USE
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embeddings is more than four times faster. SOTA result published in [53]
shows better F1-score because it uses large language model BART[77].

Model P R F1 Training(s) Memory(MB)
fasttextours 0.90 0.81 0.85 3 82
fasttext with pretrained vectors[76]ours 0.87 0.83 0.85 256 82
lgr with USE (DAN variant)ours 0.81 0.81 0.81 12 133
lgr with USE (Transformer-based variant)ours 0.83 0.82 0.82 52 196
BART model[53]sota 0.91

Table 5.8: Results of aspect category detection on MAMS dataset[60].

Table 5.9 shows results of ACD subtask on Restaurant large dataset[59].
Both fasttext models and logistic regressions with USE embeddings per-
form similarly in terms of F1-score. Fasttext with fine-tuning pretrained
embeddings does not show significant improvement as opposed to the fasttext
model trained from scratch. Therefore, it indicates that such pretrained
embeddings do not provide crucial contextual or semantic information for
the ACD subtask on this dataset. Logistic regression with DAN-based USE
embeddings has lower F1-score and recall compared to the same model but
with Transformer-based USE embeddings. Even though the fasttext model
without fine-tuning pretrained embeddings and logistic regression with DAN-
based USE embeddings achieve slightly worse results in terms of F1-scores,
their training is faster. The learning process of such methods takes seconds
as opposed to the training phases of their respective counterparts. SOTA
from [54] uses model based on double BiLSTM.

Model P R F1 Training(s) Memory(MB)
fasttextours 0.65 0.76 0.70 4 78
fasttext with pretrained vectors[76]ours 0.67 0.76 0.71 235 78
lgr with USE (DAN variant)ours 0.75 0.65 0.69 13 145
lgr with USE (Transformer-based variant)ours 0.70 0.72 0.71 58 208
double BiLSTM model[54]sota 0.76

Table 5.9: Results of aspect category detection on Restaurant large dataset[59].

Another set of ACD results is shown in Table 5.10. Logistic regression with
Transformer-based USE outperforms all of our methods in terms of F1-score,
precision and recall. Since res14 dataset[56] has the smallest number of
training samples compared to the other datasets, more complex embedding
frameworks and classification methods outperform fasttext models by a signif-
icant margin. Regarding fasttext models, we can see that classification with,
or without fine-tuning pretrained vectors, give very similar results. There-
fore, we consider that pretrained embeddings do not provide the necessary
information for the ACD task. In addition, training of fasttext model with
fine-tuning pretrained embeddings takes significantly longer. SOTA model
from [53] approaches ACD task with BART[77].
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Model P R F1 Training(s) Memory(MB)
fasttextours 0.76 0.83 0.80 4 85
fasttext with pretrained vectors[76]ours 0.79 0.80 0.80 267 85
lgr with USE (DAN variant)ours 0.83 0.87 0.85 13 119
lgr with USE (Transformer-based variant)ours 0.85 0.88 0.87 48 182
BART model[53]sota 0.93

Table 5.10: Results of aspect category detection on res14 dataset[56].

Overall, aspect category detection is a simpler task. Therefore, our time-
efficient, memory-efficient and less complex methods give slightly worse
results than SOTA models that use large language models or deep learning
techniques. However, our proposed methods can be trained on personal
computers only with CPUs because they are memory efficient. Only results
on res14 dataset show a larger margin between logistic regression and fasttext.
The reason is that the res14 dataset has less training samples compared to
other datasets. As a result, simpler encoding algorithms and classifiers give a
worse performance.

5.4.4 Aspect category sentiment analysis

Results of ACSA task on MAMS dataset are shown in Table 5.11. In this case,
logistic regression with Transformer-based USE embeddings outperforms all
of our other methods with respect to F1-score and recall. Logistic regression
with DAN-based USE embeddings has worse results but training is almost
seven times faster compared to its respective counterpart. Two-step fasttext
gives better results than one-step fasttext in terms of F1-score and recall.
Also, our two-step fasttext architecture shows the best results being trained
from scratch as opposed to one-step fasttext giving better results with fine-
tuning pretrained embeddings. Therefore, the training process of two-step
fasttext is significantly faster than the training of one-step fasttext. SOTA
from [53] proposed architecture based on BART[77].

Model P R F1 Training(s) Memory(MB)
one-step fasttextours 0.61 0.45 0.52 297 82
two-step fasttextours 0.58 0.51 0.54 4 82
lgr with USE (DAN variant)ours 0.57 0.57 0.57 28 133
lgr with USE (Transformer-based variant)ours 0.59 0.59 0.59 188 196
BART model[53]sota 0.77

Table 5.11: Results of ACSA on MAMS dataset[60].

Table 5.12 shows the results of ACSA on Restaurant large dataset[59]. In
terms of F1-score, logistic regression with Transformer-based USE embeddings
gives better results than the second variant of the logistic regression model.
Compared to its respective counterpart with DAN-based USE embeddings,
the training process is significantly slower. The one-step fasttext model,
with fine-tuning pretrained embeddings, has worse results of recall and F1-
score than the two-step fasttext classifier, also with fine-tuning pretrained
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embeddings. However, training of one-step fasttext is two times faster. SOTA
from [54] uses BERT[33] to approach the ACSA task on this dataset.

Model P R F1 Training(s) Memory(MB)
one-step fasttextours 0.58 0.58 0.58 228 79
two-step fasttextours 0.58 0.61 0.60 516 82
lgr with USE (DAN variant)ours 0.56 0.57 0.57 20 144
lgr with USE (Transformer-based variant)ours 0.60 0.61 0.60 178 208
BERT model[54]sota 0.77

Table 5.12: Results of ACSA on Restaurant large dataset[59].

Table 5.13 shows results of the ACSA task on res14 dataset[56]. Both variants
of fasttext classifier incorporate fine-tuning of pretrained embeddings. The
two-step fasttext model outperforms the one-step fasttext by 3% and 5%
in terms of F1 and recall. However, training of one-step fasttext model
is two times faster. Logistic regression with DAN-based embeddings has
better overall results than both fasttext classifiers. Yet, the best results
come from logistic regression with Transformer-based USE embeddings. It
beats its respective counterparts in all evaluation metrics but training is
significantly slower than in the case of logistic regression with DAN-based
USE embeddings. SOTA from [54] uses BERT[33] to approach the ACSA
task on this dataset.

Model P R F1 Training(s) Memory(MB)
one-step fasttextours 0.60 0.56 0.58 235 85
two-step fasttextours 0.60 0.61 0.61 498 85
lgr with USE (DAN variant)ours 0.69 0.72 0.70 14 119
lgr with USE (Transformer-based variant)ours 0.74 0.76 0.75 103 182
BERT model[54]sota 0.85

Table 5.13: Results of ACSA on res14 dataset[56].

On the whole, our proposed methods are time-efficient, memory-efficient
and can be trained on the CPU of the personal computer. Compared to
ACD, ACSA is more complex task that requires a better understanding
of context when classifying sentiment polarities with respect to detected
aspect categories. Therefore, the margins between our results and SOTA
results are wider than in the case of the ACD task. Regarding our proposed
methods, logistic regression with Transformer-based USE outperforms other
models on MAMS dataset in terms of recall and F1-score. The reason is that
each sentence in this dataset is labelled with at least two aspect categories
with different polarities. Thus, the more advanced embedding framework is
required. Similarly, on the res14 dataset, logistic regression with Transformer-
based USE has the best results. It is because the res14 dataset has fewer
training samples compared to other datasets. So, simpler encoding algorithms
and classificators have worse results.
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Chapter 6

Conclusion

In this thesis, we have introduced and described the problems of sentiment
analysis and named entity recognition. In the case of sentiment analysis, we
focused on document-level sentiment analysis, sentence-level sentiment analy-
sis, and aspect-based sentiment analysis, aspect category sentiment analysis
in particular. We reviewed state-of-the-art methods and datasets currently
used to approach these tasks. We also discussed the theoretical background
of such methods. Chapter 2 explained concepts of word representations,
traditional machine learning models, and neural networks as well as machine
learning and natural language processing in general. The primary focus of
our experiments was to create classifiers that can be trained on the CPU and
have low computational requirements. Therefore, we proposed classification
approaches based on fasttext supervised classifier and logistic regression com-
bined with embedding framework named Universal Sentence Encoder. We
have performed several experiments and we report results of sentence-level
and document-level sentiment analysis, aspect category detection, and aspect
category sentiment analysis in Chapter 5. Even though our models have
achieved worse results compared to state-of-the-art, the common advantage
of our approaches is low time and space complexity. As opposed to widely
used deep learning techniques and large language models with millions of
parameters that need GPUs for training, our proposed methods, with less
complex internal architectures, are time and memory efficient.
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Appendix B

List of shortcuts

ABSA: Aspect-based sentiment analysis
ACD: Aspect category detection
ACSA: Aspect category sentiment analysis
AS-Capsules: Aspect-level sentiment capsules
Acc: Accuracy
AdaGrad: Adaptive gradient algorithm
Adam: Adaptive Moment Estimation
BART: Bidirectional Auto-Regressive Transformers
BERT: Bidirectional Encoder Representations from Transformers
BiLSTM: Bidirectional Long short-term memory
CBOW: Continuous Bag of Words
CNN: Convolutional neural network
CRF: Conditional random field
DAN: Deep averaging network
F1: F1-score
GCN: Graph Convolutional Network
GPT-3: third generation Generative Pre-trained Transformer
GRU: Gated recurrent unit
HMM: Hidden Markov model
Hier-GCN: Hierarchical Graph Convolutional Network
IDE: Integrated development environment
IOB: Inside-Outside-Beginning
LSTM: Long short-term memory
ML: Machine Learning
MLP: Multilayer perceptron
NER: Named entity recognition
NLP: Natural language processing
NLTK: Natural Language Toolkit
NN: Neural network
OTE: Opinion term extraction
P: Precision
POS: Part-of-speech tagging
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B. List of shortcuts ...................................
R: Recall
RNN: Recurrent neural network
RoBERTa: A Robustly Optimized BERT Pretraining Approach
SA: Sentiment analysis
SG: Skip-gram
SGD: Stochastic gradient descent
SOTA: State-of-the-art
SP: Sentiment polarity
USE: Universal Sentence Encoder
lgr: Logistic regression
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