
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Botnets and Distributed Denial-of-Service attacks

Jan Lukáš

Ing. Alexandru Moucha, Ph.D.

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

Get closer to the problematic of Distributed Denial-of-Service attacks (DDoS) and their

connection to botnets.

Focus on DDoS attacks and document how they can be categorised and what differences

are between them. What resources they need to operate, what is their target, how they

are controlled and coordinated and how it all connects to the problematic of botnets.

Describe what botnets are and explain how they operate in a simplified manner.

Choose a few DDoS attacks (e.g. SYN flood) and describe their functioning and possible

protections against them. Next, design a model in which selected attacks could be

executed, their effectiveness measured, and protections against them tested. Make a

testing network by implementing this model either by using a simulation, building a real

network, or both.

Analyse how the attacks are influencing your network. Deploy previously discussed

protections and repeat the measurements.

Compare the results of the measurements and discuss their implications.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 12 November 2022 in Prague.

Bachelor’s thesis

BOTNETS AND
DISTRIBUTED
DENIAL-OF-SERVICE
ATTACKS

Jan Lukáš

Faculty of Information Technology
Computer Security and Information technology
Supervisor: Ing. Alexandru Moucha, Ph.D.
May 10, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Jan Lukáš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Lukáš Jan. Botnets and Distributed Denial-of-Service attacks. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Introduction to DDoS and DoS problematics 3
1.1 Dangers of Denial of Service . 3
1.2 Introduction to botnets . 4

2 Taxonomy of DoS 7
2.1 Classification by exploited vulnerabilities . 8
2.2 Classification by controlled machines number . 9
2.3 Classification by DoS effect achieving method . 10
2.4 Classification by victims type . 10
2.5 Classification by rate dynamic . 11
2.6 Final word on taxonomy of DoS . 11

3 Taxonomy of Botnet Behavior 13
3.1 Propagation . 14
3.2 Rallying . 15
3.3 Command and Conquer . 15
3.4 Purpose . 16
3.5 Topology . 17
3.6 Evasion . 18
3.7 Final word on Botnets . 20

4 DoS Countermeasures 21
4.1 Classification by countermeasure phase . 22

4.1.1 Prevention . 22
4.1.2 Detection . 22
4.1.3 Mitigation . 23
4.1.4 Response . 23

4.2 Classification by deployed location . 24
4.3 Classification by cooperation degree . 24

5 DDoS attack examples 25
5.1 DDoS attacks over TCP . 25

5.1.1 SYN Flood . 25
5.1.2 ACK Flood . 27

iii

iv Contents

5.1.3 TCP Semantic Floods . 28
5.1.4 UDP Flood . 28

5.2 SSL/TLS Flood attack . 29
5.3 HTTP/HTTPS Flood . 30
5.4 FTP Flood . 30
5.5 SIP (VoIP) Flooding . 31
5.6 SMTP DDoS . 32
5.7 DDoS attacks on DNS . 33

5.7.1 DNS Flood . 33
5.7.2 DNS reflection/amplification DDoS . 33

5.8 Fragmentation DDoS attacks . 34
5.8.1 TCP fragmentation attacks(Teardrop) . 34
5.8.2 Tiny fragment attack . 35
5.8.3 UDP and ICMP fragmentation attacks . 35

5.9 DDoS with broadcast amplification . 35
5.9.1 Smurf . 35
5.9.2 Fraggle . 36
5.9.3 Papasmurf . 36

5.10 Final word on DDoS attack examples . 36

6 Model environment design 37
6.0.1 Network structure . 37
6.0.2 Apache HTTP Server . 38
6.0.3 Pybotnet . 38

6.1 Applied countermeasure . 42
6.1.1 TCP handshake flood . 43
6.1.2 HTTP GET flood attack . 44
6.1.3 Measurement methods . 45

7 Measurements of DDoS attacks 47
7.1 TCP handshake flood - 100 requests . 47
7.2 TCP handshake flood - 1000 requests . 49
7.3 GET flood - 100 requests . 51
7.4 GET flood - 1000 requests . 53
7.5 TCP handshake flood with countermeasures - 100 requests 55
7.6 GET flood with countermeasures - 100 requests 57

8 Conclusion 59

Content of the attached media 65

List of Figures

1.1 An example of a botnet performing a DDoS attack 5

2.1 Taxonomy of DoS attacks as described in Taxonomy of DoS attacks and their
countermeasures with added definition numbers 7

3.1 Life-cycle of Botnet from Bots and botnets . 13
3.2 Taxonomy of Botnet Behavior from Taxonomy of Botnet Behavior, Detection, and

Defence . 14
3.3 Topology (a) Centralised (b) Decentralised Mechanisms. 17

4.1 Taxonomy of DoS countermeasures from Taxonomy of DoS attacks and their coun-
termeasures . 21

5.1 TCP and TSL protocols in ISO/OSI model and their handshakes 26

6.1 Constructed network structure . 39

7.1 TCP flood 100 attack - Graph of incoming traffic 48
7.2 TCP flood 100 attack - Graph of CPU usage . 48
7.3 TCP flood 1000 attack - Graph of incoming traffic 50
7.4 TCP flood 1000 attack - Graph of CPU usage . 50
7.5 GET flood 100 attack - Graph of incoming traffic 52
7.6 GET flood 100 attack - Graph of CPU usage . 52
7.7 GET flood 1000 attack - Graph of incoming traffic 54
7.8 GET flood 1000 attack - Graph of CPU usage . 54
7.9 TCP flood 100 attack, after hardening - Graph of incoming traffic 56
7.10 TCP flood 100 attack, after hardening - Graph of CPU usage 56
7.11 GET flood 100 attack, after hardening - Graph of incoming traffic 58
7.12 GET flood 100 attack, after hardening - Graph of CPU usage 58

List of Tables

5.1 Table of ISO/OSI model and categorized protocols. 26
5.2 Classification of SYN Flood attack . 27
5.3 Classification of ACK Flood attack . 27
5.4 Classification of TCP Semantic Flood attacks . 28
5.5 Classification of UDP Flood attacks . 28
5.6 Classification of TLS flood attack . 29

v

5.7 Classification of HTTP flood attack . 30
5.8 Classification of FTP flood attack . 31
5.9 Classification of SIP Register and SIP Call flood attack 32
5.10 Classification of SMTP flood attack . 32
5.11 Classification of DNS flood attack . 33
5.12 Classification of DNS reflection attack . 34
5.13 Classification of Fragmentation attack . 35
5.14 Classification of Smurf & Fraggle attack . 36

6.1 Classification of Pybotnet botnet . 41

7.1 TCP flood 100 attack - Statistics of incoming traffic 47
7.2 TCP flood 100 attack - Average CPU usage . 47
7.3 TCP flood 1000 attack - Statistics of incoming traffic 49
7.4 TCP flood 1000 attack - Average CPU usage . 49
7.5 GET flood 100 attack - Statistics of incoming traffic 51
7.6 GET flood 100 attack - Average CPU usage . 51
7.7 GET flood 1000 attack - Statistics of incoming traffic 53
7.8 GET flood 1000 attack - Average CPU usage . 53
7.9 GET flood 1000 attack - Average CPU usage, while receiving communication . . 53
7.10 TCP flood 100 attack, after hardening - Statistics of incoming traffic 55
7.11 TCP flood 100 attack, after hardening - Average CPU usage 55
7.12 GET flood 100 attack, after hardening - Statistics of incoming traffic 57
7.13 GET flood 100 attack, after hardening - Average CPU usage 57

List of code listings

6.1 TCP Flood code . 43
6.2 HTTP GET Flood code . 44

vi

I would like to express my heartfelt gratitude to Ing. Alexandru
Moucha, Ph.D., the supervisor of this thesis, for his invaluable in-
spiration and guidance that enabled me to complete this work. His
lectures have been a great source of motivation and have introduced
me to the fascinating world of computer networking. I am also
deeply grateful to my friends whose unwavering support has been in-
strumental in my three-year journey at FIT CTU. Lastly, I extend
my sincere appreciation to my parents and sister, whose support and
assistance have been invaluable beyond measure.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

viii

Abstract

This bachelor’s thesis aims to investigate and describe various types of DDoS attacks. The liter-
ature review begins by introducing fundamental concepts and progresses to provide a thorough
definition of botnets, DoS attacks, and their corresponding countermeasures. Leading to specific
examples of DDoS attacks, which are classified based on the pre-established classification. The
thesis also presents potential countermeasures for mitigating the identified attacks. Notably, the
work emphasizes the possibility of selecting countermeasures based on the attack classification,
which is a significant outcome of this research.

Following the literature review, the thesis describes a test model used to illustrate DDoS
attacks. This involves deploying a botnet and executing DDoS attacks on a web page. The
experiment is then repeated after implementing a chosen countermeasure, and the results are
analyzed and compared.

Overall, this thesis provides a comprehensive understanding of DDoS attacks, including their
objectives, vulnerabilities, and practical examples. Readers will gain valuable insights into the
types of DDoS attacks and what a basic DDoS attack may look like.

Keywords DoS & DDoS attacks, DDoS & DoS countermeasures, Botnet, DDoS classification

Abstrakt

Ćılem této bakalářské práce je výzkum a popis vybraných útok̊u typu DDoS. Literárńı rešerše
zač́ıná od základńıch pojmů a postupně se přez detailńı definici botnetu, DoS útok̊u a jejich
protiopatřeńı dostavá ke konkrétńım př́ıpad̊um DDoS útok̊u. Vybrané útoky řad́ı podle dř́ıve
definované klasifikace a uvád́ı možná řešeńı na jej́ıch mitigaci. Jedńım z hlavńıch výstup̊u práce
je následná úvaha nad otázkou výběru protiopatřeńı podle klasifikace útoku.

Následně je popsán testovaćı model, který je použit na představeńı DDoS útok̊u nasazeńım
botnetu a provedeńı DDoS útok̊u na webovou stránku. Měřeńı jsou následně opětovně provedena
po nasazeńı vybraného protiopatřeńı a výsledky porovnány.

Čtenář po přečteńı źıská znalosti z oblasti DDoS útok̊u od ćıl̊u a slabých mı́st r̊uzných typ̊u
DDoS útok̊u po praktické znalosti, jak může jednoduchý DDoS útok vypadat.

Kĺıčová slova DoS a DDoS útoky, Ochrany proti DDoS a DoS, Botnet, klasifikace DDoS

ix

List of abbreviations

ATP Advanced Threat Protection
C&C Command and Control
CPU Central Processing Unit

DDoS Distributed Denial of Service
DMZ Demilitarized Zone
DNS Domain Name System
FTP File Transfer Protocol
HTT Hypertext Transfer Protocol

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol
IDS Intrusion Detection System

IP Internet Protocol
IRC Internet Relay Chat
ISO International Organization for Standardization
LTE Long-Term Evolution
MIB Management Information Base

MTA Mail Transfer Agent
MTU Maximum Transmission Unit

OS Operating System
OSI Open Systems Interconnection
P2P Peer-to-Peer
PID Process Identifier
PPS Packets Per Second
SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol
SSL Secure Sockets Layer

TCP Transmission Control Protocol
TCP RFC Transmission Control Protocol Request for Comments

TLS Transport Layer Security
UDP User Datagram Protocol
URL Uniform Resource Locator

VLAN Virtual Local Area Network
VoIP Voice over Internet Protocol
WAF Web Application Firewall

x

Introduction

In today’s world, we are surrounded by online services like online banking, online shops, and
online school systems. State-funded online services are also becoming more and more frequent.
Providing convenient ways to communicate with state authorities. Every such service is part
of a bigger system, that’s responsible for keeping the service available for its clients. With how
effective and convenient these services are some providers shifted their services only to this online
form. And so they became a crucial means of income for providers with a natural need for high
security against dangerous attacks like DoS attacks. By targeting vulnerable parts of providers’
systems a DoS attack makes the service unresponsive or even takes it down.

As targets of these attacks are whole corporations or states, attackers are likewise backed by
corporations or states resulting in corporate warfare or cyber warfare. Meaning both the attack
and defense sides are well funded, resulting in every attack being properly researched making
it unique often targeting different resources with different methods. With a diverse range of
DoS attacks comes a myriad of different approaches and defensive strategies to prevent them.
Proper defense mechanisms can be anything from applying a patch to redesigning a part of the
company network so it can handle the pressure from a DoS attack. This means, that taking
proper measures to counter DoS attacks is a difficult task.

This thesis aims at providing security researchers with a broad knowledge of how different
DoS attacks work and what are the possible defense mechanisms. Making it easier to choose
proper strategies to avoid and negate them.

We will start with a basic explanation of DoS followed by an in-depth classification of DoS,
providing us with means to detect parts of our system, that DoS attacks may target. Later we will
focus on the inner operations of a special attack network called botnets responsible for launching
many DoS attacks. After that, we will focus on the classification of DoS defense mechanisms
followed by an analysis of the more common DoS attack with our established taxonomies and
specific countermeasures. The last part of this thesis will give a few examples by preparing a
testing environment and measuring simple DoS attacks.

1

2 Introduction

Chapter 1

Introduction to DDoS and DoS
problematics

The first chapter introduces the problematics of DoS and DDoS attacks and why companies
and states must be prepared and build defenses against them. Because botnets are a necessity
for launching DDoS attacks, it suggests a basic explanation of their structure and functioning.
Each explanation is on a basic level, which will be further developed in the following chapters.

1.1 Dangers of Denial of Service
Special services like online transactions provided by online banking systems can be considered
critical since denial of such service can mean a massive monetary loss for the service provider.
Taking down a critical service may also lead to even more severe consequences than monetary
loss as attacks targeting the healthcare sector or the army are not uncommon. To properly
defend and negate DoS attacks we must first understand their basics.

▶ Definition 1.1. (Denial of Service) Denial of Service (DoS) is a state describing that a service
is unavailable to its users.

If DoS is a result of malicious actions its purpose is essentially causing monetary loss to the
provider every time the service would be used or providing some other benefits to the attacking
party. To create a DoS effect the Denial of Service attacks need to target vulnerable parts of the
systems, which are responsible for keeping the service available.

The definition of DoS attacks is often simplified to attacks on websites resulting in the website
being nonoperational for some time. This is because websites providing customer service(banking
systems, online shops) are the most common targets of DoS attacks. In this thesis, we assume
that our DoS attacks are carried on over the internet as it’s the most common practice.

IT Security experts often use broader definitions as shown in the following citations, because
DDoS encompasses many different attacks with different targets, techniques, and goals.

“A Denial of Service attack is an attack that attempts to block access to and use of a resource.
It is a violation of availability. DOS (or DoS) attacks include flooding, connection exhaustion,
and resource demand.” [1]

“A Denial of Service attack is an attack resulting in the prevention of authorized access to
resources or the delaying of time-critical operations. (Time-critical may be milliseconds or it
may be hours, depending upon the service provided.)” [2]

3

4 Introduction to DDoS and DoS problematics

DoS attacks can originate from one or more points. These points of origin are devices gen-
erating internet traffic directly responsible for causing the DoS effect. Measuring the number of
these devices is the simplest classification of DoS. Single point-of-origin DoS attacks are not very
common, because they mostly require a presence of an exploitable bug on the targeted system.
On the other hand, Distributed Denial of Service (DDoS) attacks, which are DoS attacks with
multiple attack sources are much more frequent.

DDoS is a subcategory of DoS and as such will be properly defined later in DoS classification.
Essentially it’s a DoS attack, where the attacker operates an attack network (botnet) so the
source of the attack is a network, not one device. Once again the reader can use definitions cited
from the Committee on National Security Systems Glossary and the Cybersecurity glossary of
terms for better understanding.

“Distributed Denial of Service is a Denial of Service technique that uses numerous hosts to
perform the attack” [2]

“Distributed Denial of Service attack is an attack that attempts to block access to and use of a
resource. It is a violation of availability. DDoS is a variation of the DoS attack and can include
flooding attacks, connection exhaustion, and resource demand. The distinction between DDoS
and DoS is that the attack traffic may originate from numerous sources or is reflected or bounced
off of numerous intermediary systems. The purpose of a DDoS attack is to significantly amplify
the level of the attack beyond that which can be generated by a single attack system in order to
overload larger and more protected victims. DDoS attacks are often waged using botnets.” [1]

As stated in the citation flooding attacks, connection exhaustion attacks(bandwidth attacks),
and resource depletion attacks can be considered the main categories of DDoS attacks and will
be disgusted later.

To conclude, the main danger of DoS for companies is a monetary loss, and for states, it’s
losing a critical part of the infrastructure. And so proper defense is needed on all state and
corporate levels.

1.2 Introduction to botnets

The prerequisite for performing a DDoS attack is having multiple devices (points of origin) taking
part in the DoS attack. Such a device (bot) is created by infecting a vulnerable device with a
malicious code called bot binary.

▶ Definition 1.2. (Botnet) A botnet is a special network composed of infected devices (bots)
whose numbers can even approach millions of individual devices.

A botnet by itself is just a powerful tool with high computational powers. Its purpose and
actions are determined by a person called a botmaster. DDoS attacks are just one of the possible
actions botnets can perform. Communication between the C&C server and bots is needed to
instruct the bots on what actions should they perform. This communication is called Command
& Control (C&C) communication. Botmaster can command the botnet from a C&C server or
one of the nodes of the botnet. This depends on what kind of structure the botnet has. In most
cases, devices comprising the botnet can be separated into bots, C&C servers, and stepping-
stones, which are devices between them often with special functions. Botnets are also using a
myriad of evasion techniques to stay undetected.

The reader can once again compare the author’s explanation with definitions from other
sources.

“Botnet is a collection of innocent computers which have been compromised by malicious
code in order to run a remote control agent granting an attacker the ability to remotely take

Introduction to botnets 5

advantage of the system’s resources in order to perform illicit or criminal actions. These actions
include DoS flooding attacks, hosting false Web services, spoofing DNS, transmitting SPAM,
eavesdropping on network communications, recording VOIP communications, and attempting to
crack encryption or password hashes. Botnets can be comprised of dozens to over a million
individual computers. The term botnet is a shortened form of robotic network.” [1]

“A bot, originating from the term ‘robot’, is an application that can perform and repeat a
particular task faster than a human. When a large number of bots spread to several computers
and connect through the Internet, they form a group called a botnet, which is a network of bots.
A botnet comes from three main elements - the bots, the command and control (C & C) servers,
and the botmasters. A bot is designed to infect targets (e.g. computers or mobiles) and make
them a part of a botnet without their owners’ knowledge under the control of a person, known
as the botmaster. The botmaster sends orders to all the bots on infected targets and controls the
entire botnet through the Internet and the C & C servers. The botmasters try to get control of
these targets and carry out their malicious activities.” [3]

The following figure shows an example of a botnet performing a DDoS attack on the victim’s
server. Botnet is divided into two parts with the left side using a centralized structure and
the right decentralized structure. Botnet’s structure, functioning, and individual parts will be
discussed later in greater detail.

Figure 1.1 An example of a botnet performing a DDoS attack

6 Introduction to DDoS and DoS problematics

Chapter 2

Taxonomy of DoS

The second chapter focuses on DoS attacks. It introduces one of the DoS classifications and
sheds light on how attacks are controlled, what they target, and how.

DoS attack is a broad term encompassing many different techniques. Classifying DoS attacks
itself is a topic explored by other scientific texts and so this paper will only focus on one the
Taxonomy of DoS attacks and their countermeasures [4] as it’s made from comparing different
aspects of many DoS taxonomies. It uses the following classifications to differentiate DoS attacks.

Figure 2.1 Taxonomy of DoS attacks as described in Taxonomy of DoS attacks and their counter-
measures with added definition numbers

[4]

7

8 Taxonomy of DoS

2.1 Classification by exploited vulnerabilities

Classification by exploited vulnerabilities provides us with valuable information on what flaw of
the provider’s system is the DoS targeting.

▶ Definition 2.1. (Bug exploitation attack) A bug exploitation attack is an attack whereby
exploiting a vulnerability in the right place the attacker can perform a DoS attack on the victim.
This implies that suitable vulnerability must be found first.

▶ Definition 2.2. (Bug exploitation attack from outside) When a vulnerability exploited in a
bug exploitation attack is located so, that its exploitation directly causes DoS we call the attack a
bug exploitation attack from outside.

▶ Definition 2.3. (Bug exploitation attack from inside) When a vulnerability exploited in a bug
exploitation attack helps the attacker in privilege escalation we call the attack a bug exploitation
attack from inside. The attacker later causes the DoS attack with the use of gained privileges.

▶ Definition 2.4. (Bandwidth depletion attack) A bandwidth depletion attack is a DoS attack
caused by sending a massive amount of data to the victim. It creates a situation where no more
data can be sent to the victim and thus causing the DoS by bandwidth exhaustion.

▶ Definition 2.5. (Resource depletion attack) A resource depletion attack is a DoS attack caused
by sending a massive amount of data to the victim creating a situation where no more data can
be processed.

For this instance, we add a citation directly from the source paper for better understanding.
When a system receives a query, it allocates the relevant part of its resources to the query

processing and possibly its execution. If all queries require quite a lot of resources, there could be
not enough resources in this system for all incoming queries and it stops working properly. The
resource depletion attack uses such situations for denial of service. [4]

Further categorization of resource depletion attacks is also possible by type-depleting resource
and packet modification allowing to better know the DoS target, thus making prevention more
clear.

Classification by depleting resource type
▶ Definition 2.6. (Memory depletion attack) Memory depletion attack is a resource deple-
tion attack where incoming queries allocate so much memory that further memory allocation is
impossible, thus causing DoS.

▶ Definition 2.7. (CPU work depletion attack) CPU work depletion attack is a resource deple-
tion attack where the attacker sends data in such a way, that their processing uses most of the
CPU resources. The incapability of the system to further process other data results in DoS.

Classification by package modification need
▶ Definition 2.8. (Brute-force resource depletion attack) A brute-force resource depletion attack
is a resource depletion attack where the attacker uses huge amounts of queries to overload the
victim’s system.

▶ Definition 2.9. (Semantic resource depletion attack) A semantic resource depletion attack is
a resource depletion attack where the attacker uses specially modified packets so that the system
uses more resources.

Classification by controlled machines number 9

2.2 Classification by controlled machines number
As stated in section 1.2, botnets are comprised of many infected devices called bots. Each bot
provides the botnet with its computational power to carry out the assigned tasks. The number
of bots is proportional to the computation power of the botnet, making more powerful attacks
possible. Attacks without the use of botnets are also possible although much less frequent. This
makes it a good metric to differentiate DoS attacks as single source attacks are special and can
mostly be avoided by patching.

▶ Definition 2.10. (Single source attack) A single source attack is an attack launched from a
single point of origin.

Single-source attacks are mostly bug exploitation(2.1) or semantic resource depletion(2.9) attacks
as one device can only create a limited number of requests per second.

▶ Definition 2.11. (Distributed Denial of Service attack) Distributed Denial of Service attack
is a DoS attack launched from multiple points of origin by the attacker.

The attacker in this case controls a special attack network called a botnet, which is essential for
coordinating a large number of bots. The inner workings of botnets will be further discussed in
a later chapter. In the end, DDoS is just a subcategory of DoS. Our selected taxonomy further
classifies DDoS by how botnet formation technique and communication with the bots. To unite
terms in this paper we will use botnet instead of agent army and bots instead of agents unlike
it’s in the source.[4]

Classification by botnet formatting
This classification is closely tied to botnet propagation, which will be explained in a later chapter
about botnets.

This is not the best metric for classifying DDoS as information about how the botnet is
formatted is not helpful to stop already ongoing attacks or in its prevention. It is mainly useful
to stop botnets from infecting more devices and describe botnet models.

▶ Definition 2.12. (Manual botnet formation) When an attacker must manually find and install
malicious code to create bots resulting in a Manual botnet formation.

▶ Definition 2.13. (Semi-automatic botnet formation) When an attacker uses tools for finding
vulnerable devices or installing malicious code or both the resulting botnet formation technique
is called Semi-automatic botnet formation. This technique needs at least a little bit of human
action.

▶ Definition 2.14. (Automatic botnet formation) When the botnet formation requires human
action only for the launch we call it an Automatic botnet formation. Some kind of tool will
handle the actual creation of the botnet.

▶ Definition 2.15. (Takeover of an existing botnet) There are other methods how to acquire
access to a botnet then botnet formation. They can be rented, borrowed, or even stolen instead.
The possession and use of botnets are highly illegal so any transactions are made over the darknet.
We call this type of botnet acquisition a Takeover of an existing botnet.

Classification by communication with bots
Classification by communication with bots is essential for breaking botnets apart. This can
prevent any future actions of the botnet and will be later defined as Command and Control
communication.

10 Taxonomy of DoS

▶ Definition 2.16. (Direct command assignment) Direct command assignment is a communi-
cation method, where bots are directly controlled over some ports.

▶ Definition 2.17. (Indirect command assignment) Indirect command assignment is a commu-
nication method, where bots are controlled indirectly. Some examples can be taking commands
from IRC (Internet Relay Chat) chatroom, Facebook/Twitter, or from other agents in P2P (Peer
to Peer) botnets.

2.3 Classification by DoS effect achieving method
In other literature, DoS attacks known for overloading systems by sending a very high volume of
traffic are also called flood attacks. To make these attacks more dangerous attackers may send
traffic to some intermediate device to use amplification or reflection techniques.

▶ Definition 2.18. (DoS attack with direct causing of DoS effect) When infected devices trans-
mit directly to the victim they are directly causing the DoS effect without using any amplification
techniques.

▶ Definition 2.19. (DoS attack with reflector usage) When infected devices transmit to an
intermediate machine and this machine then sends greater traffic to the victim as a response, we
call it a reflection usage. It is mostly done by changing the source IP to the victim to spoof IP
packets.

▶ Definition 2.20. (Amplifier usage) When the IP address of the victim is indicated as a
broadcast address the packets are retransmitted to the whole network. We call this amplifier
usage as it enables attackers to amplify the transmission many times and even attack whole
networks.

2.4 Classification by victims type
It’s essential to know what part of the system is the DoS trying to take down. DoS defenses can
be deployed in vulnerable places in advance to prevent useful DoS attacks. The most common
victim is a singular internet node because it allows attackers to concentrate all traffic on one
place making its defense harder.

▶ Definition 2.21. (Node type victim) The target of the DoS attack is a singular internet node.

There are two possible results of performing a successful DoS attack on a node.

▶ Definition 2.22. (Denial of node) Denial of a node is a result of a DoS attack on an internet
node characterized by the absence of a response from the node or node shutdown.

▶ Definition 2.23. (Denial of service in node) Denial of node is a result of a DoS attack on
an internet node characterized by a shutdown of some services on the node. Keeping node is still
operational.

Whole networks can also be targeted for example by using amplification techniques(2.20).

▶ Definition 2.24. (Network type victim) The target of the DoS attack is part of a network.

Attackers can even try to take down the service by taking down physical infrastructure like
electrical systems to put servers offline. An additional example can be taking down a DNS
server, where the victim’s domain IPs are resolved. This is the primary result of an attack called
a DNS flood attack.

▶ Definition 2.25. (Infrastructure type victim) The target of the DoS attack is some part of
the systems infrastructure responsible for keeping the service functioning.

Classification by rate dynamic 11

2.5 Classification by rate dynamic
Traffic rate dynamic is very important for the detection of DoS attacks and so attackers might try
changing the rate to hide the attack. The exact place of detection may vary in different defense
solutions nevertheless in a classical scenario, unusual traffic is picked up at the firewall and sent
to some Security Information and Event Management which evaluates it as a DoS attack.

▶ Definition 2.26. (DoS attack with constant rate) DoS attack results in a constant rate of
incoming traffic to the victim system.

▶ Definition 2.27. (DoS attack with variable rate) Dynamic of incoming traffic to the victim
system generated by the DoS attack varies over time.

Rate variation in flood attacks is uniformly increasing as the attacker is trying to overload the
system with as much traffic as possible.

▶ Definition 2.28. (Uniformly increasing variable rate) The variable rate of a DoS attack where
the traffic rate to the victim’s systems is increasing over time is called uniformly increasing.

Artificial readjustments in traffic rate are also used to evade detection as it makes it harder to
differentiate the DoS traffic rate from the standard traffic rate.

▶ Definition 2.29. (Pulsar variable rate) The variable rate of a DoS is periodically increasing
and decreasing while still keeping some pattern in the variable rate.

▶ Definition 2.30. (Random variable rate) The variable rate of a is as random as possible.

2.6 Final word on taxonomy of DoS
We described what can the attacker exploit, how he can amplify his resources, and also how
he can try to hide the attack from detection. With now complete taxonomy of DoS, we know
what forms can a DoS attack take and have a good tool to describe and categorize them, which
is essential to find the appropriate defenses. DDoS attacks are not excluded as they are just
a subcategory of DDoS as shown in classification by controlled machine number(2.11). Our
examination of DoS attack will be limited to DDoS attacks over the World Wide Web. As such
our classification needs to be adjusted by additional classification by communication protocol
and omitting classification tied to botnet creation, which will be discussed in the next chapter.
Used classification comprises of following parts.

Classification by communication protocol

Classification by exploited vulnerabilities

Classification by DoS effect achieving method

Classification by victims type

Classification by rate dynamic

12 Taxonomy of DoS

Chapter 3

Taxonomy of Botnet Behavior

The third chapter is presenting in-depth knowledge of botnet behavior in form of its classi-
fication. Covering topics such as the botnet’s purpose, means to prolong its lifespan, how it
spreads, communication, and structure.

Figure 3.1 Life-cycle of Botnet
from Bots and botnets

[3]

As it was presented in the introduction for an in-depth un-
derstanding of DDoS a good knowledge of botnets is needed
as they are responsible for launching these kinds of attacks.
As there are many different kinds of botnets the best way to
present them in a comprehensive way is once again a taxon-
omy.

A botnet can be described as a network of infected de-
vices, that are controlled and used for some purpose. The
higher the number(computational power) of infected devices
the more it can do, although it also makes its detection eas-
ier. From this, we can derive the basic behavior of botnets.

Firstly it needs to spread using some propagation tech-
nique and hide from detection by using evasion techniques.
For the infected devices to act as networks there must be
some structure and means of communication. And lastly,
the botnet is a tool, so the botmaster has some goals.

The behavior of botnets can be displayed throughout the
botnet live cycle as shown in the figure on the right.

The following taxonomy is based on a Taxonomy of Bot-
net Behavior from A Taxonomy of Botnet Behavior, Detec-
tion, and Defence [5]. It classifies botnets by the same be-
havior we uncovered above. The main defined behavior is as
follows.

Purpose of the DDoS - What’s the botmaster’s motive?

Botnet’s topology - Structure of the botnet.

Propagation - Means of spreading to new hosts.

Evasion techniques - Techniques to avoid detection.

Rallying - Establishment of connection between a new bot and the C&C server.

C&C communication - Protocol used for C&C communication.

13

14 Taxonomy of Botnet Behavior

Figure 3.2 Taxonomy of Botnet Behavior from Taxonomy of Botnet Behavior, Detection, and Defence
[5]

3.1 Propagation
The bigger the botnet gets the more and the bigger tasks it can accomplish. Therefore one of
the natural behaviors of botnets is self-propagation to new hosts.

▶ Definition 3.1. (Bot propagation) The act of creating new bots is called propagation. It’s
done by infecting vulnerable devices with a code called bot binary. Execution of bot binary puts
persistent malware on the system, which then can be used to control the device.

Most of the bots have built-in mechanisms to make this task possible since in some cases, this
requires human interaction. This mostly differentiates spreading botnets automatically by bots
or by tricking users.

▶ Definition 3.2. (Active propagation) Active propagation is a kind of propagation where bots
can discover and infect new hosts without human interaction. The predominant activity of these
bots is scanning because they need to find hosts with exploitable vulnerabilities to infect. The
process then continues with exploitation, privilege escalation, and finally, execution of bot binary
followed by rallying. Bot’s behavior of copping itself and spreading is similar to worm-type
malware.

▶ Definition 3.3. (Passive propagation) Passive propagation is botnet propagation where the
creation of a bot requires some sort of human interaction.

Passive propagation can mean various methods. The most common are a drive-by download,
infected media, and social engineering.

▶ Definition 3.4. (Drive-by download propagation) Propagation with the use of malicious or
compromised websites is called drive-by download propagation. The human interaction in this
case is visiting such websites or clicking on malicious content. As a result, a bot binary is
downloaded and executed.

▶ Definition 3.5. (Infected media propagation) Infection by a USB or any other kind of physical
media (floppy disc etc.) is called infected media propagation. This count on the curiosity of
uneducated people for connecting the media to some device.

▶ Definition 3.6. (Social engineering propagation) All methods causing the victim to download
bot binary into their systems willingly are categorized as social engineering propagation. Mostly
done with the help of fake knockoffs of real websites and apps like fake winRaR, which is also a
bot binary.

Rallying 15

We also should mention the effect of defensive measures on botnet propagation. Anti-viruses
are a great tool to stop bot binaries from infecting the device even if the bot binary reaches
the device. Another mandatory measure is warning users to be wary of unknown USB and
weird emails, this is important prevention against possible espionage by bots in internal sys-
tems. Proper vulnerability management and patching are also necessary to avoid the spread by
exploitation.

This of course does nothing against a DDoS attack as it can only limit the power of the
botnet and the infected devices are not in the victim’s possession.

3.2 Rallying
Rallying is the second step after creating a new bot, connecting it with the communication
backbone of the botnet, and registering it as a part of it.

▶ Definition 3.7. (Bot rallying) “Rallying is the process used by bots to discover their C&C
servers. This marks the formal registration of newly infected machines with the botnet.” [5]

There are multiple techniques for how a bot can discover its C&C servers or stepping-stones.
Crucial information for this is either IP Address or domain name. This fact results in three main
techniques that are used to provide the bot with the necessary information

▶ Definition 3.8. (Rallying with hardcoded information) Rallying with hard-coded information
results in the IP address or domain name being hard-coded in the bot binary. It’s the more
common method, because it eliminates the need for a DNS server, therefore making the botnet
stealthier.

▶ Definition 3.9. (Rallying with IP seeding) Rallying with IP seeding results in the bot being
provided an IP address from one of its peers. To do this the bot binary needs to contain a list
of some peers. This list is also regularly updated with time and can be hidden anywhere in the
victim’s system. This method is mainly used by p2p botnets.

▶ Definition 3.10. (Rallying with domain generation) Rallying with domain generation is
achieved by using Domain Generation Algorithm on bots with the same parameters, while also
having the generated domains registered in advance. Taking down a domain takes time and when
it’s done the botnet already switches to a new one. This is also called bot-herding.

The best course of action to prevent rallying is proper firewall management as it can directly stop
any communication between bots and C&C servers. Rallying information can be acquired by
forensic analyses of bots and communication inspection and can help to better configure firewall
blacklists.

3.3 Command and Conquer
C&C communication is probably the most important characteristic of botnets providing it with
means of communication between registered bots and C&C servers.

▶ Definition 3.11. (Command and Conquer communication) Communication between bots and
C&C servers is called command and conquer communication or C&C communication. It must
be simple, available, stealthy, and able to hide in other normal communication. It can either use
existing protocols for communication or custom-made ones.

▶ Definition 3.12. (C&C communication by existing protocol) C&C communication by existing
protocol uses well-known and tested protocols for C&C communication. These protocols are tested
and known to do the job well and can hide among similar communication as they are regularly
used.

16 Taxonomy of Botnet Behavior

In the past IRC(Internet Relay Chat) was the go-to choice for botnets. It was simple and
widely deployed providing almost real-time communication. This is no longer the case as with
its use declining and almost no use in corporate networks attackers switched to more modern
protocols. Blocking IRC communication is easy for all corporations, however blocking HTTP
communication is mostly impossible. Thus passing firewalls by using HTTP is easier. HTTP
C&C communication is also hard to find since HTTP is the most used internet protocol. Making
it ideal for C&C. Use of HTTP results in botnet with a hierarchical structure.

Peer-to-Peer protocols such as BitTorrent are likewise effective. By nature of P2P network
communication, the commands can be passed through any node and are consequently making
detection very difficult. In addition, it’s hard to detect and filter by gateway security devices,
due to how hard it is to classify.

▶ Definition 3.13. (C&C communication by neoteric protocol) C&C communication by neo-
teric protocol means communication by proprietary application protocols or even using existing
applications to pass the commands.

Neoteric protocols are a double-edged sword. On one side it hides well with other commands
given to the applications from the network. On the other, it can also raise suspicion, because of
unexpected app communication. For example, fake Facebook or Twitter accounts can be used
as stepping stones for C&C, although they are much more easily taken down than domains.

Once again from the defense perspective, decrypting a C&C communication can help to
destroy the botnet or order bots to stop. The problem with this approach is that proper inspection
is time intensive task with uncertain results as botnets use encryption regularly.

3.4 Purpose
As we already in the botnet definition, DoS is just one possible task a botnet can perform. We
will mention some of the possible tasks the botnet can be used for. Causing a DoS effect falls
under the network service disruption category. Another notable one is information gathering
because it’s a precursor to all DoS attacks.

Information Gathering - Botnets that are comprised of a reasonable amount of bots and
are well hidden are the perfect tool to gather sensitive information about infected machines,
users, and networks. Anything from passwords, card info, and personal information to target
behavior on the internet has its price and can be sold. Cyber espionage is a real threat to
many companies and countries.
Advanced Persistent Threats or ATPs are cybercrimes that target assets of companies or
countries. Groups performing APTs are often sponsored by another company or state. They
are highly skilled and don’t lack resources. These attacks are carried out over longer periods
of time and mostly with some final goal.
What more information gathering about system vulnerabilities are always needed for further
attacks.

Distributed Computing - The goal of distributed computing is to use the combined processing
power of the bots. Good examples are distributed password hacking or crypto mining.

Cyberfraud - Cyberfraud refers to online activities related to deliberate deception. This can
be anything from phishing with fake websites, rigging polls, or manipulating search engine
rankings.

Spreading Malware - Of course, botnets can install other malware and run it. For example,
attackers can use ransomware for financial gains.

Topology 17

Cyberwarfare - Usage of the botnet by the state to damage or disrupt another state. One of
the more famous is the DDoS attack on Estonian websites in 2007, allegedly by Russia.

Unsolicited Marketing - Sending spam emails, showing popups to the users. Using botnets
for spamming can be especially effective, as every device sends just a few emails it’s hard to
blacklist them.

Network Service Disruption - By combining the power of thousands of bots botmaster can
bring down legitimate internet services, resulting in DoS. By using a botnet this DoS is always
DDoS as the attack has multiple bots as sources. The purpose behind this can be either to
damage the group behind the service(company, state) or to extort money for stopping the
DDoS, which is often less expensive than having the service denied. All botnets from DDoS
examples in this paper fit into this category.

In our experiments, we will use constructed botnets only for network disruption.

3.5 Topology
Topology in the context of botnets means topology of C&C communication. The topology is the
practical result of what protocol is the botnet using.

Figure 3.3 Topology (a) Centralised (b) Decentralised Mechanisms.
[3]

▶ Definition 3.14. (Centralized topology) Centralized topology means that all bots receive com-
mands from a single main C&C server.

Centralized topologies are easy to implement. Their vulnerable part is the main C&C server.
Typical examples are botnets using IRC and HTTP protocols.

▶ Definition 3.15. (Star & Hierarchical topologies) A star topology is a centralized topology,
where bots are connected directly to the C&C server. On the other hand, adding stepping stones
between bots and the C&C server is called a hierarchical topology.

IRC botnets mainly used a star centralized topology, which increases the speed of communication.
As mentioned before these botnets are dismantled if the central C&C server is taken down.

▶ Definition 3.16. (Decentralized topology) Decentralized topology means that the botnet man-
agement is either handled by multiple C&C servers or there’s no obvious master-slave relationship
between C&C servers and bots. Which can lead to further differentiation into a distributed and
random topology.

▶ Definition 3.17. (Distributed topology) Distributed topology results in the botnet being man-
aged by multiple C&C servers that are communicating with each other. Each controlling subset
of all bots. This allows fast communication to the closest nearest server. If one of these servers
is taken down its load can be shared by the rest and its bot redistributed.

18 Taxonomy of Botnet Behavior

There’s no single point of failure in distributed topology. It’s also harder to take down legally
since the servers are usually in different states. On the other hand, it makes its implementation
more complex.

▶ Definition 3.18. (Random topology) Random topology means there’s no master-slave rela-
tionship in the botnet. Any bot can be used to issue commands to other bots.

Prime examples of random topology are P2P botnets, where the botmaster can use any peer
node to broadcast commands to other bots. The absence of centralized C&C makes it extremely
difficult to locate the botmaster or hijack the botnet. There is no loss if one of the bots is taken
down unlike in hierarchical topology. The disadvantage of this topology is that unexpected
communication delays in the botnet make it unsuitable for large-scale operations and secondly
capture of a single bot reveals all bots in its peer list.

▶ Definition 3.19. (Hybrid topology) Hybrid topology is a combination of hierarchical and
decentralized topology. For example, using a central C&C server for communication to proxies
and P2P communication between bots.

3.6 Evasion
Maybe the most important attribute of a botnet is its detection evasion. How stealthily can it
operate directly determines its survival duration. There are multiple techniques how to evade
detection for all parts of the botnet. This can be used for its classification.

Bot evasion techniques
The most common bot detection methods are pattern-based detection and memory-based detec-
tion. Pattern-based detection can be avoided, considering the bot binary can exist in multiple
forms. This trait is also called polymorphism. Polymorphism can be achieved with the use of
encryption or packing(file condensation). When executed, the bot-binary is however decrypted
or unpacked to the same code. So polymorphic binaries can be still detected by using memory-
based detection techniques. This flaw can be avoided by code metamorphism allowing the binary
to be rewritten to semantically equivalent, yet different code.

▶ Definition 3.20. (Binary Obfuscation) Binary obfuscation means applying code polymorphism
and or code metamorphism.

Security researchers analyze bots behavior in virtual machines or sandboxes. Powerful tools
at their disposal are honeypots. Honeypots are essentially network-attached systems set up
as a decoy to lure cyber attackers and detect, deflect, and study hacking attempts to gain
unauthorized access to information systems.

▶ Definition 3.21. (Anti-Analysis) Anti-Analysis evasion techniques aim to inform the bot if
it’s in an enclosed environment. If the bot-binary is able to detect it can either refuse to run or
even modify itself to avoid the detection.

Anti-Analysis has two flaws. Most programs are not checking in what environment they are,
therefore it can be suspicious behavior secondly legitimate targets such as users and companies
are using virtual machines making. This is the main reason why this technique is rarely used in
modern botnets.

▶ Definition 3.22. (Rootkit Technology) Rootkit Technology hides the bot’s presence by using
a program that maintains a persistent and undetectable presence on the infected machine by
subverting operating system behavior called a rootkit.

Evasion 19

Installing rootkits on infected systems enables the bot to bypass normal authentication and
authorization resulting in traditional anti-virus detection evasion.

▶ Definition 3.23. (Security Suppression) Security suppression means evading detection by
disabling security software and features on infected machines. Sometimes even disposing of com-
peting malware.

C&C server evasion techniques

▶ Definition 3.24. (IP Flux) IP Flux is a technique resolving the domain name of a set of
proxies(stepping stones) into the IP address of a different proxy every few seconds.

IP Flux to evade blocking and blacklisting. Prerequisites for this are the existence of multiple
stepping stones and the use of a dynamic domain name server(DDNS). Basically, the attacker
utilizes the load balancing technique round-robin DNS with the addition of setting short TTL
for each IP address.

This principle is called single-flux and can be taken further to double-flux by adding another
layer of fluxing by using the same principle on an authoritative name server. Meaning that the
domain is resolved into different IPs and by different servers.

The only reliable method of stopping IP flux is taking down the domain name, which its
registrars are not always able to do or refuse to do entirely.

▶ Definition 3.25. (Domain Flux) Domain Flux is a technique with the purpose of associating
multiple domain names to a single IP address.

Domain Flux helps to evade URL-based detection and filtering. It can be achieved by either
using a domain generation algorithm or wildcard domains on existing DNS.

The domain wildcard can for example look like “*.cvut.fit.cz”. For use of the domain name
generation algorithm strategy, both the botmaster and bots are using the same settings for the
algorithm. It generates a long list of domain names for both. Botmaster chooses and reserves
one of those domains and bots try to contact all domains from the list. Successful contact means
C&C was found. As this technique results in a large number of DNS Non-Existent Domain
responses it’s a sign of possible device infection.

▶ Definition 3.26. (Roque DNS Server) Roque DNS Server is a DNS server in a location,
where requests for takedown will be ignored. Be it a country or some criminal DNS provider. It
makes resolving C&C address an easy job, is stealthy, and can’t be taken down.

▶ Definition 3.27. (Anonymization) Anonymization techniques make tracing the messages to
the C&C server impossible and network surveillance very hard. This can be achieved with the
use of Tor.

Botmaster evasion techniques

▶ Definition 3.28. (Stepping-Stones) Stepping-Stones are intermediate devices and services
between C&C servers and bots. They hide the C&C server from detection by running network
redirection services such as proxies or SSH servers. With such a setup they negate traceback
mechanisms as redirection services operate on the application level.

To make taking Stepping-Stones down harder, they are often set up in countries with lax cy-
bercrime policies. Anonymization networks also count as Stepping-Stones and have additional
benefits like obscuring the botmaster’s IP.

20 Taxonomy of Botnet Behavior

C&C communication evasion techniques
Firstly classical encryption is used to make content base analysis impossible.

▶ Definition 3.29. (Protocol Manipulation) Protocol manipulation means using protocol tun-
neling to disguise the C&C botnet communication.

The use of HTTP tunneling helps to pass firewalls since they mostly allow HTTP. IPv6 tunneling
can allow transportation to pass over intermediate devices that are misconfigured or don’t support
IPv6.

▶ Definition 3.30. (Traffic Manipulation) Traffic manipulation is a technique where the bot-
master purposefully lowers C&C traffic to avoid detection.

Rate limiting of DDoS attacks can be counted as Traffic manipulation. However, it can also
mean changing just the traffic rate of C&C communication.

▶ Definition 3.31. (Novel Communication Techniques) Botnets can also use novel communi-
cation techniques such as communicating by social networks like Facebook or Twitter for C&C
communication. The commands can for example be hidden in the statuses or encrypted in posted
images.

3.7 Final word on Botnets
As we showed in this chapter, botnets are really complicated topic and can differentiate in many
of their attributes. For prolonged and effective use the essential trait is its ability to evade
detection. Because many resources are put into this, any examination of how botnets operate
is difficult. Botnets can be used for many purposes, this paper is focused on one of them the
DDoS attacks, in which they play a crucial part. A proper understanding of the botnet can help
to take it down, stopping DDoS attack or even preventing it before it happens.

Chapter 4

DoS Countermeasures

The fourth chapter provides an overview of possible countermeasures types for defending
against DDoS (Distributed Denial of Service) attacks.

Every DDoS attack can be countered or at least partly prevented. We turn to the second part
of the Taxonomy of DoS attacks and their countermeasures [4], where the countermeasures are
organized into a system, providing us with the surface level insight needed for later experiments.

Figure 4.1 Taxonomy of DoS countermeasures from Taxonomy of DoS attacks and their countermea-
sures

[4]

21

22 DoS Countermeasures

4.1 Classification by countermeasure phase
DoS attacks can be countered in four phases Prevention, Detection, Mitigation, and Response.

4.1.1 Prevention
Prevention countermeasures are countermeasures preventing DDoS before they even happen by
preparing for possible future DDoS attacks.

Attack prevention - Attack prevention means prevention against all DoS attacks no matter
what kind. It mainly focuses on global network maintenance.

1. Detect and neutralize handlers - If detection and elimination of all access points(be
it botmasters or devices) to the botnets is possible we can prevent the execution of DoS.

2. Detect/prevent potential attacks - It’s possible to observe signs of attack by monitor-
ing internet traffic. This can be done by using egress filtering and MIB statistics.

3. Detect/prevent secondary victims - This essentially means preventing infection of
healthy devices by patching, updating, and proper management.

4. Dynamic pricing - This approach needs the service providers to take taxes for network
usage. Everyone would then be more interested to use this service properly only as needed.
The potential cost of flooding attacks may outweigh the benefits of taking the service down.

DoS prevention - DoS prevention tries to block a DoS attack before it happens by proper
management.

1. Resource management - Preventing DoS by having more resources at ready.
Resource multiplication - By adding more resources the system may handle bigger
DDoS attack, but this of course have its cost.
Resource accounting - By providing only necessary resources to users. Restricting
them with privileges, the system is both better secured and has more resources to spare.
(client puzzles and cost-functions)

2. Elimination of vulnerabilities - By proper vulnerability management botnets are harder
to spread and Bug Exploitation DoS attacks can be mostly avoided.

Patches and upgrades - By keeping all systems up to date, we can avoid all exploita-
tion of vulnerabilities that are patched in the latest versions.
Build-in defenses - If patches cannot be applied or there are non yet and exploitation
of the vulnerability is handled by different methods we call these methods Build-in
defenses.

3. Deflection - Setting up a fake more vulnerable parts of systems is also an option. These
parts are called honeypots and are used to annalize and deflect attacks of all kinds.

4.1.2 Detection
If prevention is not sufficient, the next important step is to detect the attack. Hopefully, before
the DoS effect is caused, so that it can be prevented from happening.

Detection strategy - What are our detection systems trying to detect?

1. Pattern detection - Strategy based on the comparison of all communications with the
existing records in the attack signatures database. For better understanding, we add a
definition of attack signature. “A file containing a data sequence used to identify an attack

Classification by countermeasure phase 23

on the network, typically using an operating system or application vulnerability. Such
signatures are used by an Intrusion Detection System (IDS) or firewall to flag malicious
activity directed at the system.” [6]

2. Anomaly detection - Detection by comparing current traffic with its usual state. If
there are abnormalities for example huge amount of traffic or some unusual protocol usage
it can be a sign of a DoS attack.

3. Third-party detection - Mechanisms that rely on a third party for detecting the attack.

Observed information - What kind of information are we using for potential attack detection?

1. Packet header observation - Observation of IP address and other packet attributes.
For instance, by observing source IP we can stop vulnerable servers from reflecting DDoS
attacks.

2. Packet content observation - Detection by inspecting packet content, which can help
to match the event with some attack signature.

3. Traffic rate observation - As mentioned in the Taxonomy of DoS attacks there are
multiple rate dynamics like uniformly increasing, pulsar and random used by attackers to
appear as part of normal traffic. Some attacks like SYN flood cause huge amounts of traffic
and can thus be easily detected.

4.1.3 Mitigation
If the DDoS is already happening, there are multiple possible defense mechanisms that can either
lighten its impact or even stop it entirely.

Load balancing - Lightening the DoS impact by balancing the load that the affected devices
are under, be it memory management, expanding bandwidth, or multiplying other resources.

Flow control - Controlling the traffic flow can help to handle more traffic. Flow control can
also be applied on the application level through multiple software and hardware solutions.
One such example is the min-max fair server-centric router throttle method, where the access
to the server is adjusted by multiple interconnected routers that cooperate to share the load
together.

Filtering - Dropping some packets either random or some specifically selected. Basically, any
filtering by firewall and Web Application Firewalls (WAF) results in a drop of suspicious
packets. This is the best method to prevent flood attacks on the victim’s side.

4.1.4 Response
Response or post-action forensics aims at preventing similar attacks in the future, for instance
providing new attack signatures for pattern detection.

Event log analysis - Event log analysis is used to better understand where and how exactly
the attack hit the system.

Traffic pattern analysis - Traffic pattern analysis can be used to provide new attack signatures
for better detection.

IP trace back - Tracing back the attacker’s IP can give various results. In the best case, this
can result in eliminating the attacker’s C&C server or some vulnerable part of his botnet in
a crippling way. In most cases, this will give us some bot IP, IP of the redirection server, or
stepping stones.

24 DoS Countermeasures

4.2 Classification by deployed location
DoS countermeasures can also be classified by where they are deployed in between the victim’s
systems running the service and the source of the attack. The further from the victim’s system
the more hard is to deploy them.

Victims machine - Countermeasures deployed in the victim’s machine running the service,
which is the target for the DoS attack.

Victims network - Countermeasure is deployed somewhere in the victims network.

Source network - Countermeasures can even be deployed in the source network. This can be
because of the provider, that the attacker is using or even by directly counterattacking in
some way. (mostly cyber warfare)

Intermediate network - Countermeasure is deployed somewhere in networks between the
source and victims network. An example can be a countermeasure on the provider’s side.

4.3 Classification by cooperation degree
The countermeasure mechanism can work independently, detecting and countering the attack. A
more complicated mechanism must be deployed in more than one deployment point. The whole
mechanism is then built on cooperation between these points.

Autonomous - Works independently where they are deployed.

Cooperative - Points can work independently, but also cooperate.

Interdependent - Mechanism must be deployed in multiple places in order to work.

Chapter 5

DDoS attack examples

The fifth chapter introduces different examples of real DDoS attacks over multiple communi-
cation protocols. It classifies the attacks by the taxonomy introduced in Chapter 2 and shows
possible ways to mitigate them.

In previous chapters, we introduced the taxonomy of DoS and DDoS and the taxonomy of DoS
countermeasures. To continue our effort we will examine a few well-known DDoS attacks, apply
DDoS taxonomy, and show possible countermeasures that can be taken to mitigate the threat of
these attacks. This gives us valuable information about how the classification of DDoS influences
what countermeasures can be applied.

All DDoS attacks are carried out with the contribution of network or application communica-
tion protocols (or both). Several of them even leverages the innate weaknesses of those protocols
to create the DoS effect. While others focus on exploiting vulnerabilities on the victim’s side.

Communications protocols are usually described with ISO/OSI model. Its parts and catego-
rized protocols are shown in table 5.1.

5.1 DDoS attacks over TCP
Transmission Control Protocol (TCP) is a connection&stream-oriented, full duplex protocol,
that maintains the order of data. It runs on the Transportation layer of the ISO/OSI model
over the Internet Protocol (IP) of the Network layer and is the most used transmission protocol.
TCP communication is established by the use of a TCP handshake. Individual messages that
the handshake is composed of are shown in figure 5.1.

5.1.1 SYN Flood
SYN Flood is probably the most famous DDoS attack. It can be used anywhere as TCP protocol
is the most used Transport protocol. There’s no possible way to filter legitimate SYN communi-
cation from irregular DDoS one as SYN packet is simple and its contents are limited. It’s been
known for a long time so there are many different countermeasures against it.

▶ Definition 5.1. (SYN Flood) SYN flood is a DDoS attack that exploits TCP handshake (figure
5.1), particularly the SYN (synchronize) packets. To a SYN packet, the server must respond with
one or more SYN/ACK (synchronization accepted) packets and leave an open port to receive the
ACK packet. To perform SYN flood the attacker sends a large number of SYN packets, and the
server waits for all of them with open ports. When all ports are taken server is unable to respond
to any other TCP requests, resulting in the DoS effect.

25

26 DDoS attack examples

Table 5.1 Table of ISO/OSI model and categorized protocols.

ISO/OSI
model layer Description Protocols

Application Ensures smooth interaction between user and appli-
cations.

HTTP, HTTPS,
SMTP, DHCP,
FTP, Telnet,
SNMP

Presentation

Ensures data are transferred in standardized formats
by converting them to formats readable by applica-
tions. Encryption and decryption are defined on this
level.

TLS, SSL

Session Creates and terminates sessions between source and
destination nodes. PPTP, SAP

Transport Ensures data transfer from the source to the desti-
nation node. TCP, UDP

Network Ensures data transfer between internet nodes. IPv4, IPv6, ICMP,
IPSec

Data link
Compiles data from the Physical layer to frames
and helps detect transfer errors by the addition of
headers.

ARP

Physical Hardware and cabling layer.

Figure 5.1 TCP and TSL protocols in ISO/OSI model and their handshakes
[7][8]

DDoS attacks over TCP 27

If the source IP in SYN packets is spoofed the attacker may also send SYN/ACK packets to
another target possibly overwhelming it. If the source and destination are the same then the
attack is called a LAND attack and can overwhelm the server even faster with the use of additional
SYN/ACK packets.[9]

Table 5.2 Classification of SYN Flood attack

Protocol TCP (Transportation layer)
Exploited vulnerabilities Bandwidth depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Service)
Rate dynamic Uniformly increasing variable rate

SYN Flood countermeasures
Increasing Backlog queue - Practically means providing the system means to support more
open ports simultaneously.

Recycling the Oldest Half-Open TCP connection - Works by recycling the oldest open ports,
when the backlog queue is full. However, this countermeasure requires that legitimate con-
nections are established faster than the ones by SYN Flood. It also fails if the attack volume
increases or the backlog size is too small.

SYN cookies - The server does not put items in the backlog queue but sends an ACK/SYN
with a specially encoded index. If its receiver sends a special index encoded in an ACK packet
a connection is established.

5.1.2 ACK Flood
ACK Flood is very similar to the SYN Flood attack as it also leverages one part of the TCP
handshake. Concretely the ACK packet.

▶ Definition 5.2. (ACK Flood) ACK flood is a DDoS attack that exploits TCP handshake
(figure 5.1), particularly the ACK (Acknowledgement) packets. The victim’s server must process
every ACK packet it receives. With an ACK flood, the attacker sends many ACK packets so the
server runs out of resources, resulting in the DoS effect. [10][11]

ACK packets are hard to filter since they are small and the information contained is small.
There’s no payload whose legitimacy can be tested for filtering.

Table 5.3 Classification of ACK Flood attack

Protocol TCP (Transportation layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Node)
Rate dynamic Uniformly increasing variable rate

ACK Flood countermeasures
Proxy filtering of ACK flag(in TCP packets) - Filters all ACK packets that are not associated
with any TCP connection establishment(not preceded with SYN/ACK packet)

28 DDoS attack examples

5.1.3 TCP Semantic Floods
TCP Semantic floods are floods of TCP packets, that use misused TCP flags (URG, ACK, PSH,
RST, SYN, FIN) as shown in the following definitions. All packets with illegal flag combinations
by the Original TCP RFC can be placed in this category. The victim’s device is not able to
handle these packets and crashes or wastes resources.

Table 5.4 Classification of TCP Semantic Flood attacks

Protocol TCP (Transportation layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Semantic resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Node)
Rate dynamic Uniformly increasing variable rate

▶ Definition 5.3. (TCP NULL flood) TCP NULL flood is a DDoS attack where the attacker
floods the system with TCP packets, without any flags set.[12]
▶ Definition 5.4. (TCP Xmas) TCP NULL flood is a DDoS attack where the attacker floods
the system with TCP packets, where all flags are set.[13]
Other combinations like ACK/SYN/FIN Flood and URG/ACK/RST/SYN/FIN Flood are also
possible.

TCP Semantic Floods countermeasures
Proxy filtering of wrong flag combination.

5.1.4 UDP Flood
UDP flooding is done by using the User Datagram Protocol(UDP), which operates on the trans-
portation layer. It does not require prior communication to set up communication channels or
data paths. It does not guarantee delivery of the data as some packets may be lost in the process.
This must be handled by application on a higher level. [14]
▶ Definition 5.5. (UDP flood) UDP flood functions by flooding random ports on the victim’s
device with a large amount of UDP packets filled with random data. With every UDP packet, the
device firstly checks if any application is listening on that port. When it finds none it responds
with an ICMP Destination Unreachable packet to the source IP provided in the UDP packet.
Constant checking and responding to many packets cause the DoS effect.
Generally, the source IP address is spoofed, which can bring even more harm to the victim’s
systems.

Table 5.5 Classification of UDP Flood attacks

Protocol UDP (Transportation layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Node)
Rate dynamic Uniformly increasing variable rate

SSL/TLS Flood attack 29

UDP Flooding countermeasures
ICMP-rate limiting - Performed automatically by the most modern OS. Unfortunately, this
can also filter legitimate UDP communication.

Firewall UDP inspection and filtering - Inspection of UDP packets and filtering ones with
irrelevant information. This can put a high load onto the firewall or even take it down.

Filtering UDP packets unless it’s DNS communication - If filtering is done in the right place
in the victim’s network the UDP will be stopped before getting to the targeted device.

5.2 SSL/TLS Flood attack
Transport Layer Security(TLS) protocol is running over TCP protocol and belongs to the Pre-
sentation layer. Its primary focus is to provide security, privacy (confidentiality), integrity, and
authenticity of TCP communication through the use of cryptography.[15] Older versions were
called the Secure Sockets Layer(SSL), but those versions are long deprecated with the newest
version being TLS 1.3. Its most well-known use is securing HTTPS protocol in the Application
layer. TCP handshake is shown in figure 5.1.

After the TLS handshake connects both devices all further communication is encrypted.
This also means that all data received must be decrypted upon arrival. The decryption of data
demands many resources from the system, particularly CPU work.
▶ Definition 5.6. (SSL/TLS Flood attack) TLS DDoS attacks and TLS DoS attacks target the
TLS handshake mechanism, send garbage data to the TLS server, or abuse functions related to
the TLS encryption key negotiation process. TLS attacks in the form of a DoS attack can also be
launched over TLS-encrypted traffic, making it extremely difficult to identify.[16] It’s also called
a TLS Exhaustion attack in some literature.

Table 5.6 Classification of TLS flood attack

Protocol TLS(Session layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Node)
Rate dynamic Uniformly increasing variable rate

As the demands for decryption are great sources[16] claims that a single standard home PC
can take down an entire TLS-encrypted web application, and several computers can take down
a complete farm of large, secure online services. Each TLS session handshake consumes 15 times
more resources from the server side than from the client side[16]. Such attack can also be called
asymmetric as it takes significantly more server resources to deal with the attack than it does to
launch it.

SSL/TLS Flood mitigation
As the encryption rate of internet communication is 95% TLS communication is a standard
and thus it’s the DDoS Flood is unrecognizable from normal communication before decryption.
Mass decryption of TLS requires a notable amount of computing power. SSL inspection comes
after the decryption. This process is mostly done by Web Application Firewalls(WAF). WAFs
with proper setup can mostly mitigate TLS Floods, depending on the computation power of the
WAFs.

30 DDoS attack examples

5.3 HTTP/HTTPS Flood

HyperText Transfer Protocol(HTTP) is an application layer protocol, used for communication
between clients and servers. It’s one of the cornerstones of the word wide Web and is used
by every website. HTTPS stands for HTTP Secure and uses TLS to encrypt communication.
HTTPS attacks are in their nature mostly TLS floods.

An HTTP flood attack is a DDoS. It overwhelms the system by sending a massive amount
of HTTP requests making it impossible to respond to more requests. There are two methods
differentiated by the use of POST or GET requests. The same techniques apply to HTTPS.[17]

▶ Definition 5.7. (HTTP/HTTPS POST attack) HTTP POST attack floods the victim’s sys-
tem with an enormous amount of POST requests. It typically works by sending multiple forms
that are submitted on the website. Response to such requests requires relatively big processing
power to work with a database overloading the system.

▶ Definition 5.8. (HTTP/HTTPS GET attack) HTTP GET attack floods the victim’s system
with an enormous amount of GET requests. It typically works by sending multiple requests for
images, files, or some other assets.

Table 5.7 Classification of HTTP flood attack

Protocol HTTP/HTTPS(Application layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Node)
Rate dynamic Uniformly increasing variable rate

HTTP Flood mitigation
Filtering by WAF inspection.

Using load balancers to handle the load better.

5.4 FTP Flood

“File Transfer Protocol (FTP), first introduced in 1971, is one of the oldest Internet protocols.
It is used to transfer files from one computer to another on a network. FTP uses ports 20 and
21. FTP does not encrypt file transfers OR login credentials. Recently, major browser vendors
have disabled FTP support; it now requires a separate, dedicated FTP client program.” [18]

“File Transfer Protocol SSL (FTPS) allows the encryption of either the command channel,
the data channel or both. De/encryption is performed by Transport Layer Security (TLS), the
latest incarnation of Secure Socket Layer (SSL). It uses ports 989 and 990. Secure File Trans-
port Protocol (SFTP) provides the same security protections as FTPS but in an entirely different
manner. SFTP (like Secure Shell – SSH) uses port 22. Each of these protocols has numerous
features; for example, an FTP client may request a secure connection or an SFTP server might
be set up to grant access to anonymous users. By its very nature, FTP is susceptible to DoS
and DDoS attacks. A Denial of Service attack is when an attacker tries to overwhelm a victim’s
server by flooding it with requests.” [18]

SIP (VoIP) Flooding 31

▶ Definition 5.9. (FTP Flood attack) An FTP Flood attack is a DDoS attack targeting an FTP
server by sending a large number of requests.

Table 5.8 Classification of FTP flood attack

Protocol FTP(Application layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Service)
Rate dynamic Uniformly increasing variable rate

Today FTP is not supported by main browsers(chrome, firefox, and edge) by default, so the
potential danger of FTP Flood is minimal.

FTP Flood countermeasures

In this case, FTP is an old protocol and there are better protocols to use instead.

Disabling FTP unless needed - Use FTPS or SFTP instead.

Isolate FTP servers.

Use firewall rules to limit access to trusted IP addresses or MAC addresses.

5.5 SIP (VoIP) Flooding

Voice over Internet Protocol is a protocol that uses UDP protocol on the transportation layer
and IP protocol on the network layer of the ISO/OSI model. It provides means of voice commu-
nications over the internet. Session Initiation Protocol(SIP) is used for initiating, maintaining,
and terminating communication sessions that include voice, video, and messaging applications.
It’s used in VoIP, LTE, and private IP telephone communication. The journal Overview of
SIP Attacks and Countermeasures [19] is the primary source for the following definitions and
countermeasures.

▶ Definition 5.10. (SIP Flooding) “SIP Flooding is a DDoS attack where the attacker uses a
high volume of SIP traffic to overload the SIP server. This can be either a SIP Register Flooding
with SIP REGISTER requests or a Call Flooding Attack with SIP INVITE requests.

SIP Register Flooding makes the SIP device(server) check its user database if the sent user-
name already exists, thus making it spend resources.

With a Call Flooding Attack attacker keeps sending SIP INVITE requests and hangs up once
it receives the Ringing or 100 OK messages from the end-device. Making the end-device unable
to respond to any calls.”

32 DDoS attack examples

Table 5.9 Classification of SIP Register and SIP Call flood attack

Protocol SIP(Application layer)
Exploited vulnerabilities Resource(Register)/Bandwidth(Call) depletion
Depleting resource type CPU work depletion(Register)
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Service)
Rate dynamic Uniformly increasing variable rate

SIP Flood countermeasures
The use of ingress filtering at the network border - Implementing ingress filtering at the
network border will allow spoofed IP packets from outside the network to be dropped. This
can be done with the use of WAF.

Rate limiting - Deploying a VoIP rate-limiting device that can monitor and limit the number
of SIP messages accepted at the border gateway.

The use of a separate VLAN for VoIP signaling and data.

Enabling authentication for various types of requests

5.6 SMTP DDoS
Simple Mail Transfer Protocol(SMTP) is an application protocol that delivers email through the
internet. Servers providing communication with SMTP are called Mail Transport Agents(MTA).
As SMTP is a delay-tolerant service, the MTA sender can send the particular email later. This
means that DDoS on SMTP will only delay the emails.

▶ Definition 5.11. (SMTP DDoS attack) Generally, overloading SMTP servers does not cause
a system crash. The SMTP protocol contains countermeasures for DoS attacks. If the load is too
high, the server can stop receiving emails with temporary errors or just by refusing connections.

In consequence, a DoS condition of MTA is not a system crash or e-mails lost. It’s instead
a bad user experience. If a message is received only after 3 hours, it can easily be understood as
a DoS for that receiver party. So the proper definition of the SMTP DoS is the case when the
delivery process is harmed so much that the legitimate e-mails are affected with a non-tolerable
delay.

The attacker attacks the MTA by flooding it with emails, resulting in a multitude of problems
on the server. Generally, the server stops receiving emails because lacking computational capa-
bilities. Sending emails with attached files can also put a load on local systems that need to scan
the files.[20]

Table 5.10 Classification of SMTP flood attack

Protocol SMTP(Application layer)
Exploited vulnerabilities Resource depletion
Depleting resource type CPU work depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Service, in this special case delay of service)
Rate dynamic Uniformly increasing variable rate

DDoS attacks on DNS 33

SMTP Flood countermeasures
SMTP Flood is difficult to mitigate as there are multiple attack vectors. The server can be
flooded by large files, depleting its memory. If proper inspection is used it can deplete CPU work
by inspecting the contents of many files. Flooding the server with a large number of emails at
the same time can lead to the same problems.

Providing SMTP servers with enough memory to store emails before and after inspection.

Inspecting email content, set a limit to file size in emails.

Use load balancing for SMTP server.

5.7 DDoS attacks on DNS

Domain Name System(DNS) servers are responsible for resolving domain names into IP addresses
of corresponding servers and in reverse. There’s a multitude of attacks that can be performed
on a DNS ranging from spoofing to DDoS. With DDoS, the attack can target the DNS itself or
reflect from it multiplying its power.

5.7.1 DNS Flood
▶ Definition 5.12. (DNS Flood) DNS Flood is a DDoS attack, that disrupts DNS resolution
for a domain by flooding the DNS server. The attacker sends a large amount of spoofed valid
packets so the DNS server must respond to all of them. The server is thus unable to resolve any
other regular request. Resulting in the domain being unreachable. It can be considered a type of
UDP flood since DNS servers use UDP for name resolution. UDP flood goal is the depletion of
DNS bandwidth. [21]

Table 5.11 Classification of DNS flood attack

Protocol UDP(Transportation layer)
Exploited vulnerabilities Bandwidth depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Service)
Rate dynamic Uniformly increasing variable rate

DNS Flood countermeasures
Use multiple DNS servers from different providers. When one provider is under attack the
second DNS still functions.

Keep separate DNS servers for resolving internal organization websites private.

Use third-party DDoS protection solutions (mostly from providers)

5.7.2 DNS reflection/amplification DDoS
A DNS open-resolver server is a server that accepts recursive queries from all IP addresses and
is exposed to the Internet.

34 DDoS attack examples

▶ Definition 5.13. (DNS reflection/amplification attack) DNS reflection attack leverages the
functionality of an open DNS resolver to overwhelm the target with a huge amount of traffic.
The aim of the attack is to send small queries to the DNS, that result in large responses. This
combined with source IP spoofing sends amplified traffic to the victim’s IP. Causing a denial of
service. This also makes the DNS server a stepping-stone. [22]

Table 5.12 Classification of DNS reflection attack

Protocol UDP(Transportation layer)
Exploited vulnerabilities Resource depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Reflector usage
Victim type Node (Denial of Service)
Rate dynamic Uniformly increasing variable rate

5.7.2.1 DNS reflection/amplification countermeasures
With DNS reflection attack there is little that can be done as a direct countermeasure from the
victim’s side. As the main problem is mostly a misconfigured DNS server.

Restrict the DNS server to resolve requests only from trusted sources.

Limit the number of requests per source IP on the DNS server.

Proper configuration of firewalls.

Use a third-party solution for server hosting.

5.8 Fragmentation DDoS attacks

All networks have a set largest size of a frame or Maximum Transmission Unit(MTU), which
is generally 1500 bytes. Any frames larger than MTU must be divided into parts, sent, and
finally reassembled by the destination device. This process is called fragmentation. Fragmenta-
tion attacks exploit vulnerabilities in the reassembly mechanism of frames, by sending wrongly
formatted packets. [23]

5.8.1 TCP fragmentation attacks(Teardrop)
▶ Definition 5.14. (Teardrop attacks) Teardrop attacks are a class of DDoS/DoS attacks that
threatens older versions of OS, that have a bug in the reassembly of TCP/IP communication
fragments. It crashes the OS of the victim’s device by sending frames with a changed offset
field so that the fragments overlap. When the OS tries to reassemble the fragments it fails and
eventually crashes. [24]

There are multiple different attacks for example Teardrop, NewTear, Nestea, SynDrop, Jolt, and
Bonk. [25]

Teardrop - Sends a 2-fragment IP packet, with one fragment too small. This causes IP stacks
to overwrite a large amount of memory and crash. Affects mostly Linux and Win95/NT hosts

Bonk - Sends fragment with a fragment offset larger than the packet size. Bonk attacks only
port 53. Boink is a newer variant attacking a range of ports. Affects Windows machines.

DDoS with broadcast amplification 35

NewTear - Modified version of Teardrop, which changes padding length and increases the
UDP header length field to twice the packet size. Affects Windows machines.

The latest Teardrop exposed systems were Windows Vista and Windows 7 in 2009.

5.8.2 Tiny fragment attack
▶ Definition 5.15. (Tiny fragment attack) A tiny fragment attack is a fragmentation attack,
where the first TCP packet size is made small enough to force some of a TCP packet’s TCP
header fields into the second data fragment. Filter rules that specify patterns for those fields will
not match. [26]

5.8.3 UDP and ICMP fragmentation attacks
▶ Definition 5.16. (UDP and ICMP fragmentation attacks) UDP and ICMP fragmentation
attacks are fragmentation attacks where the packet size is larger than the MTU or corrupted in
some other way to make the victim spend resources on fragmentation reassembly. [27]

Table 5.13 Classification of Fragmentation attack

Protocol UDP/ICMP/etc. (Transportation layer)
Exploited vulnerabilities Bug exploitation attack from outside
Package modification need Semantic resource depletion
DoS effect achieving method Direct causing of DoS effect
Victim type Node (Denial of Node)
Rate dynamic Uniformly increasing variable rate(volume of traffic is not important)

Fragmentation DDoS attacks countermeasures
Use a more modern and up-to-date OS, that are without vulnerabilities in the reassembly of
TCP/IP communication.

Use firewall and third-party solutions to inspect the traffic as it’s malformed and can be
filtered.

5.9 DDoS with broadcast amplification

The following attacks show the use of amplification by sending the packets to an IP broadcast
address. They are mostly mitigated as today IP broadcasting addresses at each network router
and firewall are disabled by default.

5.9.1 Smurf
▶ Definition 5.17. (Smurf) Smurf is an ICMP flood attack with spoofed packets, where the
source address is set to the victim’s IP address and the destination address is an IP broadcasting
address of where the targeted device is situated. The packets are sent to a firewall or router,
which sends a broadcast request to all devices by broadcast. Each device responds with an ICMP
Echo Reply packet to the victim’s IP, resulting in an ICMP flood and possible DoS effect. [28]

36 DDoS attack examples

5.9.2 Fraggle
▶ Definition 5.18. (Smurf) Fraggle is a very similar attack to Smurf but uses UDP packets
instead of ICMP packets.

5.9.3 Papasmurf
▶ Definition 5.19. (Smurf) Papasmurf is another well-known DDoS attack, although it’s just
a combination of Smurf and Fraggle attacks.

Table 5.14 Classification of Smurf & Fraggle attack

Protocol ICMP(Smurf), UDP(Fraggle) (Application,Transportation layer)
Exploited vulnerabilities Resource depletion
Package modification need Brute-force resource depletion
DoS effect achieving method Amplification usage
Victim type Node/Network
Rate dynamic Uniformly increasing variable rate

Smurf and Fraggle countermeasures
Disable IP broadcasting addresses at each network router and firewall. This is done by default
in modern devices.

5.10 Final word on DDoS attack examples
In conclusion, by examining different kinds of DDoS we can observe a few useful facts.

Bug exploitation attacks can be prevented by using up-to-date versions of OS and applica-
tions.

Bandwidth attacks can be mitigated by either better allocation of resources(load balancing,
providing more resources) or freeing up the resources that were used last to never fill the
bandwidth.

Resource depletion attacks are mostly solved by filtering by firewalls and WAFs, since if the
communication arrives at its intended destination it’s already too late.

We can see how the need for protection against DDoS (and other attacks) influenced the structure
of company networks. Word wide web connected to the company systems through multiple
firewalls. WAF filtering and inspecting communication to vulnerable applications are open to
the internet. Load balancing being performed in multiple places to handle the incoming load.
The structure of every company network is influenced by the need to defend against DDoS.

On the other hand scope of our examples is inherently limited. Our examples are well-known
DDoS attacks with known possible countermeasures. DDoS attacks on companies and states are
mostly created to target a specific structure. These structures differ greatly and so DDoS vectors
of attacks differ too. This is the reason why companies and states hire other companies for red
teaming.

Chapter 6

Model environment design

The sixth chapter introduces individual the parts used to create our testing environment for
DDoS attacks and their countermeasures. It will cover the network structure, botnet usage,
server hosting, and measuring methods.

In the fifth chapter, we took different DDoS attacks and classified them by our metrics. By
mentioning countermeasures to each of them we were able to observe correlations between how
the DDoS was classified and what kind of countermeasure was applied.

When new (zero-day) DDoS attacks emerge, security specialists can use our findings to de-
duce the appropriate place where they should be mitigated and how by classifying them. For
example, if a new type of TCP flood appeared, the researchers would most likely develop a new
countermeasure that uses WAF filtering. Since the attack could be detected by inspection of
flags or wrong order in TCP handshake communication.

To conclude this essay we will design a simple testing environment and measure DDoS attacks
and show the application of our findings in practice.

6.0.1 Network structure
A typical company network structure, that prepares against the potential DDoS attack includes
the following parts:

Internet-facing firewall - This is the first line of defense for the network, and it sits between
the company’s internal network and the Internet. The firewall is configured to allow only
authorized traffic to enter the network while blocking any other traffic that might be malicious.

DMZ - The DMZ is a separate network segment that sits between the internet-facing firewall
and the company’s internal network. The DMZ is designed to provide a buffer zone between
the internet and critical internal resources such as web servers, email servers, and other
internet-facing applications. The DMZ is typically configured with its own firewalls and
security policies to provide an additional layer of protection against external threats.

Load balancers - A load balancer is a device or software application that distributes incoming
network traffic across multiple servers or resources to optimize resource utilization, maximize
throughput, and minimize response time. Load balancers are commonly used in high-traffic
websites, web applications, and other network services that require high availability, scalabil-
ity, and reliability.

Intrusion detection/prevention systems (IDS/IPS) - IDS/IPS systems are designed to detect
and block malicious traffic that might evade other security measures. These systems can be

37

38 Model environment design

deployed at various points in the network, including the internet-facing firewall, the DMZ,
and the internal network. For example SIEM (Security Information and Event Management).

This type of network structure is designed to provide multiple layers of protection against
external threats, while also ensuring that critical internal resources are protected from both
external and internal threats.

Such a structure is very difficult to simulate and study since every part must be properly
studied and implemented, which would require separate studies.

The goal of our experiment is a measurement of DDoS effects on the hosting server. Our
chosen attacks are normally handled by firewalls, however by choosing to implement counter-
measures directly at the hosting server we can simplify our testing environment. By not needing
firewalls, there’s no need for separate networks resulting in one local network (10.0.0.0/24) with a
hosting server and bots. The target of our attacks will be a website, hosted on the local network
(10.0.0.10).

We were granted access to a networking laboratory consisting of 12 switches and 23 computers
running Linux Kali 2022 OS. All computers must be connected to both the local network and
the internet, as the bots require internet connectivity to receive commands. All connections in
the local network are limited to only 100Mb, which is enough for all created traffic. The final
network topology can be seen in figure 6.1.

6.0.2 Apache HTTP Server
As the target of our DDoS attacks is a website, we use server hosting software to host it.
Our hosting software is version 2.4.57 of the Apache HTTP Server [29], which will provide
standard HTTP communication for all visitors. Since we only need to check website availability
we use the default HTML page provided with this version. In our case (Linux) it’s located at
/var/www/html. It’s hosted on the host server’s IP address, port 80.

6.0.3 Pybotnet
We have opted to use the pybotnet [30] project as our botnet. This project, written in Python,
employs a telegram bot as its C&C server. We have chosen to utilize the original, unmodified
version of pybotnet as it offers all the necessary functionalities required for our purposes. The
selection of pybotnet was made because it closely mimics real-world botnets in terms of its
evasion techniques and C&C communication. As such, it provides an excellent foundation for
the creation of a botnet that could be utilized in actual attacks.

Pybotnet life cycle
The initial stage of our botnet’s life cycle involves distributing the complete pybotnet package
to the machines that will serve as bots. To prevent any potential misuse, we choose passive
propagation via the Infected Media method, as other methods could have harmful consequences.
Given that we are operating on a live network that is connected to both the faculty network and
the internet, we took care to avoid violating the security policy of the faculty.

Bot rallying is done with a hardcoded telegram token (ID of a group chat where the bots
listen for commands) and admin user ID (ID of botmasters account, which sends commands for
bots). This information is written in configs.py file. The rallying itself will start with the manual
execution of the main bot file simple.py.

Commands are passed to the bots when the admin account writes a specific command like
/help or /dos ACKFlood 10.0.0.2 1 10 to the group chat. Bots then read these commands,
execute them and report after each. After the experiment, the bots are dissembled by stopping
the process running simple.py.

39

Figure 6.1 Constructed network structure

40 Model environment design

Pybotnet usage
Pybotnet comes with the following commands and functionalities, which can be used for a single
bot or an entire botnet.

/help [command] - Shows descriptions of commands.

/echo - Prints a message in stdout.

/who - Returns scripts name, mac address, OS, global IP, uptime, hostname, local IP, current
route, pid (process ID), CPU count, and pybotnet version.

/shell [command] - Opens a remote shell session or runs commands on bots.

/screenshot - Takes a screenshot from bot and sends a link for download.

/put file [URL] - Puts a file onto bot.

/get file [route1] [route2] - Gets a file from bot.

/runcode [python command] - Run python code in bot, returns stdout.

/openurl [URL] [n] - Opens URL n number of times.

/schedule [x] [script path] - Run script for x seconds, can also stop scheduled processes
and list them.

/keylogger [start/stop] - Operates keylogger on bot.

/ping - Returns simple response from bot.

/hello world - Returns hello world from bot.

/sys data - Returns system info same as /who.

/counter [number]- Multiple bots count from number.

By using the commands above attacker can manipulate the victim’s system. By deploy-
ing scanner various scripts he can attempt privilege escalation and disrupt security measures.
Pybotnet also contains primitive DDoS flood commands which will be used for our testing.

/dos GETFlood [count] [ipv4] [count of requests] - HTTP Flood, which sends HTTP
GET request to target ’/’ route

/dos ACKFlood [count] [ipv4] [count of requests] - SYN Flood, which sends random
data to IP:port. (misnamed by the author of pybotnet, the attack is a TCP handshake flood
attack)

Both flood attacks are without any IP spoofing, so the source IP is the real IP of one bot.
From our experimentation we concluded, that creating custom packets(spoofing IP, changing
TCP flags) is for obvious reasons guarded by administrator privileges. For example, the use of
Python library sockets to create custom sockets proved to be difficult. We expect, that rallying
would be followed by vulnerability scanning and privilege escalation. This would enable the
botmaster to use more advanced techniques and forms of attacks. As the objective of this thesis
is not to test the most effective DDoS attack (as it depends on the targeted environment) simple
flood attack provided by pybotnet will be enough to demonstrate our findings.

41

Pybotnet evasion techniques
Even if the pybotnet project is only meant for learning and teaching purposes its structure is
close to a botnet that could be used in real attacks. It relies on Telegram Messenger, which
falls into the use of Novel communication techniques in our defined taxonomy. In this category,
Telegram is by far the best choice to use for C&C communication for a number of reasons and
is actively used in botnets.

Telegram is developed and administered by a smaller company than Facebook or other plat-
forms. The best way to dismantle pybotnet would be to take down the group chat used for
passing commands. Unfortunately, multiple sites state, that such chats need to be reported by
multiple accounts to even have a chance for it to be taken down after some time. The attacker
can directly counter such efforts by creating a new command to bind bots to a new chat, thus
periodically shifting C&C communications between different group chats. In conclusion, any
attempt to take the telegram group chat down is not an effective strategy.

The development of Telegram is focused on security and privacy, therefore it uses highly
advanced encryption techniques. For example, its main protocol MTProto uses a combination
of SHA-256 and AES-256. There are two possible layers for encryption. We support two layers
of secure encryption. Server-client encryption is used in Cloud Chats (private and group chats),
and Secret Chats use an additional layer of client-client encryption. Telegram is an open-source
application so there’s little chance of a backdoor or some kind of tracking even from the Telegram
developers. As such any kind of tracking botmaster’s location is almost impossible. Inspection
of telegram communication.

The main ports used by telegram are 80 (HTTP) and default 443 (HTTPS), which are allowed
in almost every firewall and WAF. This denies any attempt to block telegram by ports.

With this surface-level knowledge, we aimed at demonstrating why the use of Telegram brings
pybotnet close to real botnets. The main difference is its unguarded code, which can be easily
inspected pointing security researchers straight to telegram C&C group chat.

Pybotnet classification
As we already mentioned all important aspects of the pybotnet project. The resulting classifica-
tion by Botnet Behaviour (described in Chapter 3) is as follows.

Table 6.1 Classification of Pybotnet botnet

Propagation Passive by Infected media
Rallying Hardcoded information
Command and Conquer Neoteric protocol(MTProto)
Purpose Network service disruption
Topology Centralized Star
Bot evasion techniques Possible security suppression
C&C evasion techniques Anonymization
Botmaster evasion techniques Stepping-stone(Telegram App)
C&C communication techniques Novel communication techniques

42 Model environment design

6.1 Applied countermeasure

To protect against DDoS attacks, we have decided to apply an anti-DDoS script that will enhance
the security of the Linux server hosting the victim’s website. This script not only improves the
server’s performance and capacity to handle heavier traffic, but it also includes measures to defend
against specific types of attacks, such as SYN flood attacks. We have extracted the following
countermeasures from the antiddos-yuki and sysctl-tweaks scripts for better readability.

IP ="/ sbin/iptables -nft"
SPL ="4/s"
SYNPROXY ="22 ,80 ,443"

Enabling syn cookies .
sysctl -w net.ipv4.tcp\ _syncookies =1

Decrease timeout of waiting for TCP flood packets
sysctl -w net. netfilter . nf_conntrack_tcp_timeout_last_ack =20

Decrease timeout for closing connections for better performance .
sysctl -w net. netfilter . nf_conntrack_tcp_timeout_close =5

Increase SYN Backlog value for better performance and resistance .
sysctl -w net.ipv4. tcp_max_syn_backlog =16384

Decrease SYN retries value , better protect against SYN Flood
sysctl -w net.ipv4. tcp_syn_retries =2

#Limit SYN PPS(packets per sec) to mitigate SYN Floods .
"$IP" -t raw -I PREROUTING -p tcp --syn --match hashlimit
--hashlimit -above "$SPL"
--hashlimit -mode srcip --hashlimit -name synflood -j DROP

Redirect suspicious packets to SYNPROXY to mitigate SYN.
"$IP" -I INPUT -p tcp -m multiport --dports " $SYNPROXY " -m conntrack
--ctstate INVALID , UNTRTCP floodED -j SYNPROXY --timestamp --sack -perm

Drop SYNs with s-port >1024 to prevent many attack types.
"$IP" -t raw -I PREROUTING -p tcp --syn ! --sport 1024:65535 -j DROP

In Linux kernel version 3.12 and iptables 1.4.21, a new feature called SYNPROXY has been
introduced to iptables. The purpose of SYNPROXY is to verify whether the host that sent
the SYN packet actually establishes a full TCP connection or not. It does this by generating a
SYN-TCP flood packet with a unique sequence number and sending it to the client. If the client
responds with an TCP flood packet that matches the unique sequence number, the connection is
established and traffic is allowed through. By implementing these countermeasures, the server can
effectively handle SYN flood attacks. While the optimal solution would involve multiple load-
balanced firewalls to inspect TCP traffic, this may not be cost-effective for many companies.
Implementing hardening measures such as antiddos scripts is a good starting point that all
companies should consider.

Applied countermeasure 43

6.1.1 TCP handshake flood
The Pybotnet software includes a function called ACK flood, but it is actually a TCP handshake
flood because it initiates a full TCP connection by sending a SYN packet first, rather than just an
ACK packet. This attack is distinct from a SYN flood because it establishes the TCP connection
rather than leaving it incomplete.
In a TCP handshake flood attack, the attacker tries to overwhelm the targeted server by es-
tablishing a large number of regular TCP connections. This is accomplished by initiating a full
TCP handshake communication from random ports on all the bots in the botnet to the hosting
port 80 of the targeted server. The aim is to cause the server to allocate all its resources to these
connections, leading to a DoS.
Attacks are initialized by command:

/dos ACKFlood 10 10.0.0.10 [count of requests] 80

The following code 6.1 shows how pybotnet establishes connection with the host server.
Its steps are as follows:

1. Start ACKFlood function in every thread(their number is defined in the ACKFlood com-
mand). Then do the following COUNT number of times.

2. socket.socket(socket.AF INET, socket.SOCK STREAM) - Creates new socket.

3. s.connect((IPV4, PORT)) - Connects to a remote socket at (IPV4, PORT).

4. s.sendto((random. urandom(random.randint(50, 400))),(IPV4, PORT)) - Sends
random data to (IPV4, PORT).

5. s.close() - Closes the connection.

Code listing 6.1 TCP Flood code

def ACKFlood (IPV4 , PORT , COUNT):
""" ACKFlood : send random data to target ip:port """

for _ in range(COUNT):
try:

s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
s. connect ((IPV4 , PORT))
s. sendto ((random . _urandom (

random . randint (50, 400))) ,(IPV4 , PORT))
s.close ()

except :
pass

44 Model environment design

6.1.2 HTTP GET flood attack
In an HTTP GET flood attack, the attacker sends a large volume of GET requests to the targeted
web server, typically using a botnet to generate a high volume of requests. Each GET request
requires the server to allocate resources, such as CPU cycles, memory, and network bandwidth,
to process the request and return a response. As the volume of GET requests increases, the
server’s resources become exhausted and it may become unable to respond to legitimate user
requests.
Attacks are initialized by command:

/dos GETFlood 10 10.0.0.10 [count of requests] 80

Pybotnet code executes following steps to create the GET flood.

1. Start ACKFlood function in every thread(their number is defined in the GETFlood com-
mand). Then do the following COUNT number of times.

2. create a random IP in fakeip

3. s.connect((IPV4, PORT)) - Connects to a remote socket at (IPV4, PORT).

4. s.sendto((f”GET / HTTP/1.1˚”).encode(”ascii”)),(IPV4, PORT)) - Sends GET
request for / to (IPV4, PORT). Request of ’/’ means requesting a homepage of the webserver.

5. s.sendto((f”Host: fakeip˚˚”).encode(”ascii”),(IPV4, PORT)) - Sends a Host
header, which tells the server, from what website are we requesting the homepage from.
This is done so, that it’s possible to host multiple websites under one IP and is required for
HTTP 1.1 requests.

6. s.close() - Closes the socket file descriptor. Not connection.

Code listing 6.2 HTTP GET Flood code

def GETFlood (IPV4 , PORT , COUNT):
""" send http GET request to target ‘/‘ route """

for _ in range(COUNT):
fakeip = f"{ random . randint (1 ,255)}.

{ random . randint (1 ,255)}.
{ random . randint (1 ,255)}.
{ random . randint (1 ,255)}"

try:
s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
s. connect ((IPV4 , PORT))
s. sendto (

(f"GET / HTTP /1.1\r\n"). encode ("ascii"),
(IPV4 , PORT)

)
s. sendto (

(f"Host: { fakeip }\r\n\r\n"). encode ("ascii"),
(IPV4 , PORT)

)
s.close ()

except :
pass

Applied countermeasure 45

6.1.3 Measurement methods
As our goal is a showcase of DDoS attacks and DDoS attacks and the effect of applied coun-
termeasures we need to measure metrics on the hosting server. The result of our measurements
should be a decrease in CPU usage after applying chosen countermeasures. We measured the
following metrics.

Traffic statistics - Measured by using the Wireshark application. We will investigate the
incoming traffic and how many packets were blocked.

CPU usage - Measured by Linux sar command, which can measure CPU usage of user and
system.

46 Model environment design

Chapter 7

Measurements of DDoS attacks

7.1 TCP handshake flood - 100 requests
The collected data provides clear evidence that the hosting server was able to effectively handle
the TCP handshake attack consisting of 100 requests per bot. The attack persisted for nearly 6
seconds, with an average packet rate of 19997.6 per second, and only a negligible packet dropping
observed.

During the attack, the highest CPU load observed was approximately 87% for a duration of
about one second, while the average CPU usage was 38.14%. The measured CPU usage remained
within manageable levels, with the system responsible for internet traffic registering an average
usage of 10.38%. Notably, Wireshark accounted for the majority of the CPU usage during the
attack (under User CPU usage).

Figure 7.1 confirms that the host server successfully managed the communication without
significant packet dropping, which with the addition of low CPU average demonstrates the ef-
fectiveness with which the attack was handled.

Table 7.1 TCP flood 100 attack - Statistics of incoming traffic

First packet 2023-04-23 12:51:55
Last packet 2023-04-23 12:52:00
Time span, s 5.830
Packets 116591 (60.8% of all communication)
Average pps 19997.6
Bytes 12453401 (53.2% of all communication)
Average bytes/s 2,135 k
Dropped packets 153 (0.1% of all communication)

Table 7.2 TCP flood 100 attack - Average CPU usage

User - Average CPU 27.76
System - Average CPU 10.38
Used - Average CPU 38.14

47

48 Measurements of DDoS attacks

Wireshark	I/O	Graphs:	syn_100.pcapng

0 1 2 3 4 5
Time	(s)

0

10000

20000

30000

40000

50000

Pa
ck
et
s/
1	s
ec

(Green - incoming TCP packets, Red - blocked packets)

Figure 7.1 TCP flood 100 attack - Graph of incoming traffic

(System - responsible for handling the communication, User - All user applications notably Wireshark)

Figure 7.2 TCP flood 100 attack - Graph of CPU usage

TCP handshake flood - 1000 requests 49

7.2 TCP handshake flood - 1000 requests
In contrast to the 100 request TCP flood, the 1000 request TCP flood resulted in constant high
pressure on the hosting server, with an average CPU usage of 65.74%. The incoming traffic had
an average packet rate of 15934.9, which was lower than the 100 request flood by about 300.
Once again, the pressure on the hosting server was primarily due to Wireshark, which consumed
about 45% of the CPU resources during the attack, with the system adding an average of 21.81%.

We consider this the maximum load that our setup could put on the hosting server using
the TCP handshake flood attack, as an attack with more packets would only prolong the attack
time. Based on our observations during this attack, we concluded that this was the maximum
load that our 22 bots were able to generate using the TCP handshake flood code.

Table 7.3 TCP flood 1000 attack - Statistics of incoming traffic

First packet 2023-04-23 15:11:04
Last packet 2023-04-23 15:12:03
Time span, s 59.512
Packets 948311 (60.5% of all communication)
Average pps 15934.9
Bytes 101805272 (53.0% of all communication)
Average bytes/s 1,710 k
Dropped packets 15520 (1.0% of all communication)

Table 7.4 TCP flood 1000 attack - Average CPU usage

User - Average CPU 43.94
System - Average CPU 21.81
Used - Average CPU 65.74

50 Measurements of DDoS attacks

(Green - incoming TCP packets, Red - blocked packets)

Figure 7.3 TCP flood 1000 attack - Graph of incoming traffic

(System - responsible for handling the communication, User - All user applications notably Wireshark)

Figure 7.4 TCP flood 1000 attack - Graph of CPU usage

GET flood - 100 requests 51

7.3 GET flood - 100 requests
Our analysis of a GET flood attack comprising 100 requests revealed that it placed a heavier load
on the host server compared to a TCP flood attack with 100 requests. During the GET flood
attack, the average system-level CPU usage was 20.99%, whereas it was only 10.38% during the
TCP flood attack. Wireshark CPU usage averaged at 37.79%.

Other differences were also observed. For example, the average packets per second (pps) for
the TCP flood attack was 15934.9, which was significantly higher than the pps of 2836.9 for the
GET flood attack. It is worth noting that the GET flood attack lasted four times longer than
the TCP flood attack. With an average CPU close to 60%, it is possible that using 37 bots could
potentially result in a short-term DoS effect.

Table 7.5 GET flood 100 attack - Statistics of incoming traffic

First packet 2023-04-23 15:05:28
Last packet 2023-04-23 15:05:43
Time span, s 14.805
HTTP - Packets 21000 (33.9% of all communication)
HTTP - Average pps 1418.4
HTTP - Bytes 1875655 (5.8% of all communication)
HTTP - Average bytes/s 126 k
TCP - Packets 42000 (67.7% of all communication)
TCP - Average pps 2836.9
TCP - Bytes 3597655 (11.1% of all communication)
TCP - Average bytes/s 243 k
Dropped packets 315 (0.5% of all communication)

Table 7.6 GET flood 100 attack - Average CPU usage

User - Average CPU 37.79
System - Average CPU 20.99
Used - Average CPU 58.77

52 Measurements of DDoS attacks

(Green - incoming TCP packets, Violet - incoming HTTP packets, Red - blocked packets)

Figure 7.5 GET flood 100 attack - Graph of incoming traffic

(System - responsible for handling the communication, User - All user applications notably Wireshark)

Figure 7.6 GET flood 100 attack - Graph of CPU usage

GET flood - 1000 requests 53

7.4 GET flood - 1000 requests
Analysis of GET flood attack consisting of 1000 requests showed new aspects that were not
observed in 100 request attack. The attack lasted for 123.284 seconds, during which the server
received 2153645 TCP packets and 209682 HTTP packets. The average TCP pps for the GET
flood attack was 17468.4. Almost 1000 pps lower than with 100 requests. The system-level CPU
usage during the attack averaged 58.56%, making it the most demanding attack of our testing.
Furthermore, if we focus only on the section where communication was received the average
increases to 78.02% with system average of 35.17.

After analyzing the GET flood attack, we determined that our setup was not capable of
generating a heavier load on the hosting server by increasing the number of requests, as it would
only prolong the attack duration. Our observations during the attack led us to conclude that
the maximum load our 22 bots could produce using the GET flood code had been reached.

Table 7.7 GET flood 1000 attack - Statistics of incoming traffic

First packet 2023-04-23 15:17:36
Last packet 2023-04-23 15:19:39
Time span, s 123.284
HTTP - Packets 209682 (5.6% of all communication)
HTTP - Average pps 1700.8
HTTP - Bytes 18726801 (1.1% of all communication)
HTTP - Average bytes/s 151 k
TCP - Packets 2153645 (57.3% of all communication)
TCP - Average pps 17468.4
TCP - Bytes 147892992 (9.1% of all communication)
TCP - Average bytes/s 1,199 k
Dropped packets 133620 (3.6% of all communication)

Table 7.8 GET flood 1000 attack - Average CPU usage

User - Average CPU 38.81
System - Average CPU 19.76
Used - Average CPU 58.56

Table 7.9 GET flood 1000 attack - Average CPU usage, while receiving communication

User - Average CPU 42.85
System - Average CPU 35.17
Used - Average CPU 78.02

54 Measurements of DDoS attacks

(Green - incoming TCP packets, Violet - incoming HTTP packets, Red - blocked packets)

Figure 7.7 GET flood 1000 attack - Graph of incoming traffic

(System - responsible for handling the communication, User - All user applications notably Wireshark)

Figure 7.8 GET flood 1000 attack - Graph of CPU usage

TCP handshake flood with countermeasures - 100 requests 55

7.5 TCP handshake flood with countermeasures - 100 re-
quests

The difference of TCP handshake flood with 100 requests after applying the countermeasure is
apparent. The attack which previously ended after 5s ended after 20 min, which subsequently
lowered the pps from 19997.6 to 327.8. This was due to the hosting server blocking close to 40%
of incoming TCP traffic compared to only 0.1%.

Although our measurements of CPU usage were incomplete (from 15:39:40 to 15:47:04), we
still consider the data relevant because the incoming connections and the number of dropped
packets remained relatively constant throughout the attack duration. The optimization and
hardening of the hosting server proved effective in countering the TCP handshake flood, with
the average system CPU at 3.45% and the average CPU consumption at 12.77, effectively tripling
the system’s ability to handle the attack.

Table 7.10 TCP flood 100 attack, after hardening - Statistics of incoming traffic

First packet 2023-04-23 15:39:50
Last packet 2023-04-23 15:59:25
Time span, s 1174.780
Packets 385127 (72.5% of all communication)
Average pps 327.8
Bytes 35862744 (46.7% of all communication)
Average bytes/s 30 k
Dropped packets 206277 (38.8% of all communication)

Table 7.11 TCP flood 100 attack, after hardening - Average CPU usage

User - Average CPU 9.32
System - Average CPU 3.45
Used - Average CPU 12.77

56 Measurements of DDoS attacks

(Green - incoming TCP packets, Red - blocked packets)

Figure 7.9 TCP flood 100 attack, after hardening - Graph of incoming traffic

(System - responsible for handling the communication, User - All user applications notably Wireshark)

Figure 7.10 TCP flood 100 attack, after hardening - Graph of CPU usage

GET flood with countermeasures - 100 requests 57

7.6 GET flood with countermeasures - 100 requests
The experiment with GET flood attack with countermeasures shows significant improvements
in terms of reducing the impact on the target server. The attack placed a much lighter load on
the server, with an average of only 286.4 pps compared to 2836.9 pps. Furthermore, the average
system-level CPU usage during the second experiment was only 9.98%, significantly lower than
the 20.99% observed in the first experiment. Even with incomplete CPU data (first four minutes)
we still concluded that the shown effect was enough to demonstrate the effect of hardening. In
terms of dropped packets, the second experiment had a much higher rate of 33.0%, which is due
to the implemented countermeasures dropping packets that were part of the attack traffic. The
impact on the server was still significantly reduced, indicating that the countermeasures were
successful in mitigating the attack.

Table 7.12 GET flood 100 attack, after hardening - Statistics of incoming traffic

First packet 2023-04-23 16:04:10
Last packet 2023-04-23 16:18:23
Time span, s 852.683
HTTP - Packets 209682 (5.6% of all communication)
HTTP - Average pps 12.7
HTTP - Bytes 964023 (1.2% of all communication)
HTTP - Average bytes/s 1,130
TCP - Packets 244332 (69.5% of all communication)
TCP - Average pps 286.4
TCP - Bytes 18635044 (24.1% of all communication)
TCP - Average bytes/s 21 k
Dropped packets 116067 (33.0% of all communication)

Table 7.13 GET flood 100 attack, after hardening - Average CPU usage

User - Average CPU 6.50
System - Average CPU 3.48
Used - Average CPU 9.98

58 Measurements of DDoS attacks

(Green - incoming TCP packets, Violet - incoming HTTP packets, Red - blocked packets)

Figure 7.11 GET flood 100 attack, after hardening - Graph of incoming traffic

(System - responsible for handling the communication, User - All user applications notably Wireshark)

Figure 7.12 GET flood 100 attack, after hardening - Graph of CPU usage

Chapter 8

Conclusion

The aim of this bachelor’s thesis was to provide security researchers with a comprehensive un-
derstanding of DDoS attacks, including their workings, potential countermeasures, and real-life
examples.

In chapter two, a taxonomy of DoS attacks was introduced, followed by an in-depth exami-
nation of botnets in chapter three, which is crucial to understanding the origin of DDoS attacks.
Chapter four presented various countermeasures and categorized them for a better overview.

We then proceeded to explain common DDoS attacks and their corresponding countermea-
sures. By comparing the categorization of individual DDoS attacks, we established several con-
nections, such as the effectiveness of using up-to-date versions of OS and applications to prevent
bug exploitation attacks, and the mitigation of bandwidth attacks by better resource allocation
or freeing up the resources that were last used.

Furthermore, we designed a testing model using the defined botnet taxonomy and constructed
it with the resources provided by our faculty. We utilized the pybotnet program to demonstrate
TCP handshake and HTML flood attacks. After applying countermeasures at our hosting server
and measuring the attacks for the second time, we found them effective against both attacks,
showcasing how our simple attacks can be mitigated.

In conclusion, our experiment was successful in achieving the goals of this thesis. There is
still room for improvement and further research. For instance, more attacks can be classified
and tested, different countermeasures closely studied and implemented, and the effects of smaller
DDoS attacks, which are difficult to test in larger environments, can be explored. Nevertheless, we
achieved a solid testbed for botnets, limited of course by the lab resources and while maintaining
fair behavior towards the FIT CVUT network infrastructure.

59

60 Conclusion

Bibliography

1. Cybersecurity glossary of terms [online]. Skillsoft, 2023-05 [visited on 2023-02-14]. Available
from: https://www.globalknowledge.com/ca-en/topics/cybersecurity/glossary-
of-terms/.

2. Committee on National Security Systems (CNSS) Glossary [online]. Committee on National
Security Systems, 2015-04 [visited on 2023-05-09]. Available from: https://rmf.org/wp-
content/uploads/2017/10/CNSSI-4009.pdf.

3. ESLAHI, Meisam; SALLEH, Rosli; ANUAR, Nor Badrul. Bots and botnets: An overview
of characteristics, detection and challenges. In: 2012 IEEE International Conference on
Control System, Computing and Engineering [online]. 2012, pp. 349–354. Available from
doi: 10.1109/ICCSCE.2012.6487169.

4. RAMANAUSKAITE, Simona; CENYS, Antanas. Taxonomy of DOS attacks and their coun-
termeasures. Open Computer Science [online]. 2011, vol. 1, no. 3, pp. 355–366. Available
from doi: 10.2478/s13537-011-0024-y.

5. KHATTAK, Sheharbano; RAMAY, Naurin Rasheed; KHAN, Kamran Riaz; SYED, Affan
A.; KHAYAM, Syed Ali. A Taxonomy of Botnet Behavior, Detection, and Defense. IEEE
Communications Surveys & Tutorials [online]. 2014, vol. 16, no. 2, pp. 898–924. Available
from doi: 10.1109/SURV.2013.091213.00134.

6. Attack signature [online]. Kaspersky Lab, 2023 [visited on 2023-05-09]. Available from:
https://encyclopedia.kaspersky.com/glossary/attack-signature/.

7. GRIGORIK, Ilya. Networking 101: Transport Layer Security (TLS) - high performance
browser networking (o’reilly) [online]. O’Reilly, 2017 [visited on 2023-05-09]. Available from:
https://hpbn.co/transport-layer-security-tls/.

8. What happens in a tls handshake? [Online]. Cloudflare, 2023 [visited on 2023-05-09]. Avail-
able from: https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-
handshake/.

9. Land attacks: Imperva [online]. 2023. [visited on 2023-05-09]. Available from: https://www.
imperva.com/learn/ddos/land-attacks/.

10. DDoS definitions: Ddos dictionary: Activereach [online]. 2023. [visited on 2023-05-09]. Avail-
able from: https://activereach.net/resources/ddos- knowledge- centre/ddos-
dictionary/.

11. What is an ACK flood ddos attack? - cloudflare [online]. Cloudflare, 2023 [visited on 2023-
05-09]. Available from: https://www.cloudflare.com/learning/ddos/what-is-an-
ack-flood/.

61

https://www.globalknowledge.com/ca-en/topics/cybersecurity/glossary-of-terms/
https://www.globalknowledge.com/ca-en/topics/cybersecurity/glossary-of-terms/
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://doi.org/10.1109/ICCSCE.2012.6487169
https://doi.org/10.2478/s13537-011-0024-y
https://doi.org/10.1109/SURV.2013.091213.00134
https://encyclopedia.kaspersky.com/glossary/attack-signature/
https://hpbn.co/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.imperva.com/learn/ddos/land-attacks/
https://www.imperva.com/learn/ddos/land-attacks/
https://activereach.net/resources/ddos-knowledge-centre/ddos-dictionary/
https://activereach.net/resources/ddos-knowledge-centre/ddos-dictionary/
https://www.cloudflare.com/learning/ddos/what-is-an-ack-flood/
https://www.cloudflare.com/learning/ddos/what-is-an-ack-flood/

62 Bibliography

12. What is TCP null attack?: Knowledge base ddos-guard [online]. 2023. [visited on 2023-05-
09]. Available from: https://ddos- guard.net/en/terminology/attack_type/tcp-
null-attack.

13. All TCP flags flood (sometimes referred to as Xmas Flood): Mazebolt knowledge base [on-
line]. 2022. [visited on 2023-05-09]. Available from: https://kb.mazebolt.com/knowledgebase/
all-tcp-flags-flood-xmas-flood/.

14. What is a UDP flood ddos attack? — Akamai [online]. Akamai, 2023 [visited on 2023-05-09].
Available from: https://www.akamai.com/glossary/what-is-udp-flood-ddos-attack.

15. what is transport layer security? [Online]. Cloudflare, 2023 [visited on 2023-05-09]. Available
from: https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/.

16. RADWARE. SSL-based DDoS attacks [online]. 2016. [visited on 2023-05-09]. Available from:
https://www.radware.com/security/ddos-threats-attacks/ddos-attack-types/
ssl-based-ddos-attacks/.

17. HTTP flood ddos attack [online]. Cloudflare, 2023 [visited on 2023-05-09]. Available from:
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/.

18. What is an open service FTP vulnerability, what is the risk and how can you mitigate
that risk? [Online]. Skyway West, 2021 [visited on 2023-05-09]. Available from: https :
//www.skywaywest.com/2021/05/what-is-an-open-service-ftp-vulnerability-
what-is-the-risk-and-how-to-mitigate-it/.

19. EL-MOUSSA, Fadi; MUDHAR, Parmindher; JONES, Andy. Overview of SIP attacks and
countermeasures. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering [online]. 2010, pp. 82–91. Available from doi: 10.
1007/978-3-642-11530-1_10.

20. BENCSATH, Boldizsar; RONAI, Miklos Aurel. Empirical analysis of denial of service attack
against SMTP servers. 2007 International Symposium on Collaborative Technologies and
Systems [online]. 2007 [visited on 2023-05-09]. Available from doi: 10.1109/cts.2007.
4621740.

21. DNS flood DDoS attack [online]. Cloudflare, 2023 [visited on 2023-05-09]. Available from:
https://www.cloudflare.com/learning/ddos/dns-flood-ddos-attack/.

22. DNS amplification attack [online]. Cloudflare, 2023 [visited on 2023-05-09]. Available from:
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/.

23. OKTA. What is a teardrop attack? definition, damage & defense [online]. Okta, 2023 [visited
on 2023-05-09]. Available from: https : / / www . okta . com / identity - 101 / teardrop -
attack/.

24. WALLARM. What is a teardrop attack? definition, examples, prevention [online]. 2023.
[visited on 2023-05-09]. Available from: https://www.wallarm.com/what/teardrop-
attack-what-is-it.

25. [Online]. Cisco Systems, 2005 [visited on 2023-05-09]. Available from: https : / / www .
pentics.net/denial- of- service/smurf/980513_dos/sld009.htm. May 1998 pre-
sentation at SANS 1998, from personal notes of an attendee.

26. What is an IP/ICMP fragmentation ddos attack? [Online]. 2023. [visited on 2023-05-09].
Available from: https://www.netscout.com/what-is-ddos/ip-icmp-fragmentation.

27. What is an IP fragmentation attack? [Online]. 2023. [visited on 2023-05-09]. Available from:
https://nordvpn.com/blog/ip-fragmentation-attack/.

28. What is a Smurf attack? [Online]. 2023. [visited on 2023-05-09]. Available from: https:
//www.cloudflare.com/learning/ddos/smurf-ddos-attack/.

https://ddos-guard.net/en/terminology/attack_type/tcp-null-attack
https://ddos-guard.net/en/terminology/attack_type/tcp-null-attack
https://kb.mazebolt.com/knowledgebase/all-tcp-flags-flood-xmas-flood/
https://kb.mazebolt.com/knowledgebase/all-tcp-flags-flood-xmas-flood/
https://www.akamai.com/glossary/what-is-udp-flood-ddos-attack
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.radware.com/security/ddos-threats-attacks/ddos-attack-types/ssl-based-ddos-attacks/
https://www.radware.com/security/ddos-threats-attacks/ddos-attack-types/ssl-based-ddos-attacks/
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.skywaywest.com/2021/05/what-is-an-open-service-ftp-vulnerability-what-is-the-risk-and-how-to-mitigate-it/
https://www.skywaywest.com/2021/05/what-is-an-open-service-ftp-vulnerability-what-is-the-risk-and-how-to-mitigate-it/
https://www.skywaywest.com/2021/05/what-is-an-open-service-ftp-vulnerability-what-is-the-risk-and-how-to-mitigate-it/
https://doi.org/10.1007/978-3-642-11530-1_10
https://doi.org/10.1007/978-3-642-11530-1_10
https://doi.org/10.1109/cts.2007.4621740
https://doi.org/10.1109/cts.2007.4621740
https://www.cloudflare.com/learning/ddos/dns-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://www.okta.com/identity-101/teardrop-attack/
https://www.okta.com/identity-101/teardrop-attack/
https://www.wallarm.com/what/teardrop-attack-what-is-it
https://www.wallarm.com/what/teardrop-attack-what-is-it
https://www.pentics.net/denial-of-service/smurf/980513_dos/sld009.htm
https://www.pentics.net/denial-of-service/smurf/980513_dos/sld009.htm
https://www.netscout.com/what-is-ddos/ip-icmp-fragmentation
https://nordvpn.com/blog/ip-fragmentation-attack/
https://www.cloudflare.com/learning/ddos/smurf-ddos-attack/
https://www.cloudflare.com/learning/ddos/smurf-ddos-attack/

Bibliography 63

29. APACHE SOFTWARE FOUNDATION. Apache HTTP Server [online]. 2023. Version 2.4.57.
Available also from: https://httpd.apache.org.

30. SAMAN NEZAFAT. pybotnet [online]. 2023. Version 2.2.3. Available also from: https:
//github.com/onionj/pybotnet.

https://httpd.apache.org
https://github.com/onionj/pybotnet
https://github.com/onionj/pybotnet

64 Bibliography

Content of the attached media

sar data.zip.................................CPU usage data measured by sar command
tcp 100.txt ... sar - tcp flood, 100 requests
tcp 1000.txt ... sar - tcp flood, 1000 requests
tcp 100 countermeasure.txt sar - tcp flood, 100 requests with countermeasure
get 100.txt.....................................sar - HTTP GET flood, 100 requests
get 1000.txt...................................sar - HTTP GET flood, 1000 requests
get 100 countermeasure.txtsar - HTTP GET flood, 100 requests with countermeasure

wireshark data.zip Network communication data measured by wireshark
tcp 100.pcapng....................................wireshark - tcp flood, 100 requests
tcp 1000.pcapng..................................wireshark - tcp flood, 1000 requests
tcp 100 countermeasure.pcapng..............wireshark - tcp flood, 100 requests with
countermeasure
get 100.pcapng...........................wireshark - HTTP GET flood, 100 requests
get 1000.pcapng.........................wireshark - HTTP GET flood, 1000 requests
get 100 countermeasure.pcapng wireshark - HTTP GET flood, 100 requests with
countermeasure

FITthesis latex.zip zip file containing all LaTex files to generate this thesis

65

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Introduction to DDoS and DoS problematics
	Dangers of Denial of Service
	Introduction to botnets

	Taxonomy of DoS
	Classification by exploited vulnerabilities
	Classification by controlled machines number
	Classification by DoS effect achieving method
	Classification by victims type
	Classification by rate dynamic
	Final word on taxonomy of DoS

	Taxonomy of Botnet Behavior
	Propagation
	Rallying
	Command and Conquer
	Purpose
	Topology
	Evasion
	Final word on Botnets

	DoS Countermeasures
	Classification by countermeasure phase
	Prevention
	Detection
	Mitigation
	Response

	Classification by deployed location
	Classification by cooperation degree

	DDoS attack examples
	DDoS attacks over TCP
	SYN Flood
	ACK Flood
	TCP Semantic Floods
	UDP Flood

	SSL/TLS Flood attack
	HTTP/HTTPS Flood
	FTP Flood
	SIP (VoIP) Flooding
	SMTP DDoS
	DDoS attacks on DNS
	DNS Flood
	DNS reflection/amplification DDoS

	Fragmentation DDoS attacks
	TCP fragmentation attacks(Teardrop)
	Tiny fragment attack
	UDP and ICMP fragmentation attacks

	DDoS with broadcast amplification
	Smurf
	Fraggle
	Papasmurf

	Final word on DDoS attack examples

	Model environment design
	Network structure
	Apache HTTP Server
	Pybotnet

	Applied countermeasure
	TCP handshake flood
	HTTP GET flood attack
	Measurement methods

	Measurements of DDoS attacks
	TCP handshake flood - 100 requests
	TCP handshake flood - 1000 requests
	GET flood - 100 requests
	GET flood - 1000 requests
	TCP handshake flood with countermeasures - 100 requests
	GET flood with countermeasures - 100 requests

	Conclusion
	Content of the attached media

