
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Accelerating network security tools using DPDK infrastructure

Filip Biľ

Ing. Tomáš Čejka, Ph.D.

Informatics

Computer Security and Information technology

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

Study modern technologies for high-speed network traffic monitoring and other security

applications. Additionally, focus on Data Plane Development Kit (DPDK).

Study state-of-the-art applications that support DPDK to receive network packets at high-

speed, such as ipfixprobe (flow exporter) [1] or Suricata (Intrusion Detection System) [2].

Design a software infrastructure based on DPDK that will filter (using Access Control Lists

- ACL in DPDK) and distribute packets among a set of worker servers at full speed.

The aim is to distribute data load among multiple servers that run a performance-

demanding security application so that the results would not be disrupted due to the

data splitting, as it was discussed in the paper [3].

Implement the designed infrastructure including the documentation.

Evaluate the results using virtualized or physical infrastructure in cooperation with the

supervisor.

[1] https://github.com/cesnet/ipfixprobe

[2] https://suricata.io/

[3] T. Čejka and M. Žádník, “Preserving Relations in Parallel Flow Data Processing,” in

Security of Networks and Services in an All-Connected World: 11th International

Conference on Autonomous Infrastructure, Management, and Security, AIMS 2017.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 9 November 2022 in Prague.

Bachelor’s thesis

ACCELERATING
NETWORK SECURITY
TOOLS USING DPDK
INFRASTRUCTURE

Filip Biľ

Faculty of Information Technology
Department of Computer Systems
Supervisor: Ing. Tomáš Čejka, Ph.D.
May 6, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Filip Biľ. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Biľ Filip. Accelerating network security tools using DPDK infrastructure. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of Abbreviations viii

Introduction 1

1 State-of-the-art Works 3
1.1 Libpcap Library . 3
1.2 WinPcap Library . 4
1.3 IPFirewall . 4
1.4 XDP . 5
1.5 PF_RING . 6

2 Design 7
2.1 DPDK Framework . 7

2.1.1 Environment Abstraction Layer (EAL) . 9
2.1.2 Poll Mode Driver (PMD) . 9
2.1.3 Memory and Caching . 10

2.2 Suricata . 11
2.3 ipfixprobe . 12

3 Implementation 13
3.1 Proposed Infrastructure . 13
3.2 Flow Generation . 16
3.3 L2 Pre-filter Module . 18
3.4 L3 Pre-filter Module . 23
3.5 Agent Modules . 24

4 Testing and Evaluation 27

5 Conclusion 33

Content of the attached media 37

iii

List of Figures

1 Generic Load Balancer vs. DPDK Pre-filter Module 2

1.1 XDP Processing . 5
1.2 PF_RING polling . 6

2.1 DPDK Core Components . 8
2.2 Ideal NUMA node allocation . 10
2.3 Suricata history . 11
2.4 Simplified ipfixprobe function diagram . 12

3.1 Proposed infrastructure (single L2 pre-filter module) 14
3.2 Sample infrastructure (L2 prefilter module stack) 15
3.3 L2 prefilter module frame encapsulation . 19
3.4 L2 pre-filter submodules . 20
3.5 Agent integration . 24

4.1 L3 pre-filtering module performance with 100 Gbps flow 31

List of Tables

4.1 L3 pre-filtering module with no ACLs applied . 28
4.2 L3 pre-filtering module with one ACL applied . 29
4.3 L3 pre-filtering module with 16 ACLs applied . 29
4.4 L3 pre-filtering module with 100 Gbps saturated flow 30

List of Code Listings

3.1 generator.py - Scapy traffic generator . 17
3.2 pipeline.c - pipeline_thread_sender() method 21
3.3 source-dpdk.c - Modified ReceiveDPDKLoop() method 26

iv

I would like to express my great gratitude to those who have supported
me throughout the creation of my bachelor thesis. First and fore-
most, I would like to thank my thesis tutor Ing. Tomáš Čejka, Ph.D.
for his guidance, encouragement, ingenious feedback and construc-
tive criticism. Secondly, I would like to thank to my parents for
their invaluable support during my studies at the university. Lastly,
I would like to thank the university that has provided me with the ac-
cess to the knowledge and skills mandatory for shaping the direction
of my studies and consequentially, this thesis.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46 (6) of
the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including
any and all computer programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only,
in any way that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on May 6, 2023 .

vi

Abstract

This thesis explores the problem of high-speed packet flow pre-filtering and processing on OSI
layers 2 and 3 for the network security applications. The Data Plane Development Kit (DPDK)
framework was chosen for the implementation of the proof-of-concept infrastructure. The goal of
this thesis is to design an infrastructure that will solve the problem of preserving packet flows in
the load-balancing between the specific network security applications in the high-speed networks
in order of ∼100GiB with the access control lists (ACL). Using the DPDK infrastructure, desired
speeds were reached with negligible packet drop rates. The results of this thesis enable to further
design high-speed network load-balancers that will preserve the packet flows between the network
security applications, thus helping these applications to more accurately analyze packet flows.
Source codes used for the prefiltering infrastructure can be found as an attachment to this thesis,
together with a sample packet flow generator.

Keywords DPDK, packet flow monitoring, network traffic pre-filtering, Suricata, ipfixprobe

Abstrakt

V tejto práci je skúmaná problematika spracovávania a predfiltrovania vysokorýchlostných sie-
ťových tokov na vrstvách 2 a 3 OSI modelu pre bezpečnostné aplikácie. Pre implementáciu proof-
of-concept infraštruktúry je použitá knižnica Data Plane Development Kit (DPDK). Účelom
tejto práce je navhrnúť infraštruktúru, ktorá bude riešiť problém zachovávania tokov paketov pri
rozkladaní záťaže medzi jednotlivé bezpečnostné aplikácie aj vo vysokorýchlostných sieťach v rá-
doch ∼100GiB s funkčnými filtrovacími pravidlami (ACL). Pomocou tejto DPDK infraštruktúry
boli dosiahnuté požadované rýchlosti so zanedbateľnou drop rate paketov. Výsledky tejto práce
umožňujú navrhnúť vysokorýchlostné sieťové zariadenia na vyvažovanie záťaže, ktoré budú za-
chovávať toky paketov medzi jednotlivé bezpečnostné aplikácie, čím pomôžu daným aplikáciám
pri korektnejšej analýze tokov paketov. V prílohe sú uvedené kompletné zdrojové kódy pre pred-
filtrovaciu infraštruktúru spolu s jednoduchým generátorom sieťových tokov.

Kľúčové slová DPDK, monitorovanie tokov paketov, predfiltrovanie sieťovej premávky, Suri-
cata, ipfixprobe

vii

List of Abbreviations

API Application Programming Interface
CLI Command Line Interface

DPDK Data Plane Development Kit
EAL Environment Abstraction Layer
I/O Input/Output
IPC Inter-Process Communication

Lθ OSI Layer θ
LTS Long Term Stable

MTU Maximum Transmission Unit
NIC Network Interface Card
OS Operating System

PMD Poll Mode Driver
RSS Receive Side Scaling
RTE Run Time Environment
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
WAF Web Application Firewall

viii

Introduction

Internet and its related technologies are undoubtedly one of the inventions that have managed
to shape the world in the 20th and the 21st century. Looking from the human perspective, the
world has never been more interconnected than it is now — people manage to fulfill daily routine
tasks such as shopping, working or searching for information just a few clicks away. That is an
achievement that was unimaginable a century ago. We may argue whether it is a helpful or
dreadful innovation, but it indisputably is something that was ahead of its time.

People have already experienced some of the concrete proofs that have shown us that the
inventors of the internet (previously called ARPANET) did not anticipate its dramatic growth
until 1980s. For instance, the so-called IPv4 address exhaustion problem is one of the examples
where the internet scale showed us that the concepts the internet was built on were insuffi-
cient. Those drawbacks were fixed by resourceful hacks and are now being replaced with new
technologies (such as NAT or IPv6), which is a tedious task to do.

Another great problem that has emerged with the tremendous amount of the users of the
internet is the need for high-speed, high-availability networks. Nowadays, users demand the
instantaneous reactions to their internet requests. This problem pressured the innovators to
create high-speed transfer mediums, such as optical fibre cable, 40 Gbit/s or 100 Gbit/s Ethernet
technology. But as new high-speed mediums were created, a new problem arose. The processing
of the packets (e.g. packet forwarding, filtering or data integrity) hit the bottleneck in the
operating system stack. Packet transfer between NIC and user-space applications, switching
between kernel and user mode and packet in-memory copying are great examples which slow
down the packet processing significantly. This became even a greater problem in network security,
where each packet needed to be processed by multiple security devices (IDS/IPS, firewalls and/or
L3 switches) whilst minimizing the drop rate. The overhead needed for packet inspection and/or
forwarding became so essential that new solutions were mandatory.

One of the solutions is to use specialized hardware acceleration equipment, customized to
fast packet processing or cryptographic operations. The equipment includes but is not limited
to TCP offload engines, I/O acceleration technologies and so on. The main downside is the high
cost and the limited customizability of the devices, which is almost always specific to the device
vendor. On the brink of the millennium software packet processing libraries became favourable, as
they offered the much needed customizability and scalability, providing the companies option to
integrate the libraries in their existing production-ready solutions with the cost close to nothing.
One of the modern packet processing frameworks is the Data Plane Development Kit (DPDK),
used in this thesis.

One of the goals of this thesis is to analyze the capabilities of the DPDK framework and
use this framework to design and develop a scaling infrastructure that can enhance performance
limits of security applications in high-speed networks. Besides effective distribution of network
packets with respect to relations of connections among a cluster of computation nodes, the

1

2 Introduction

infrastructure is capable of high-throughput packet filtering. Therefore, security applications,
more specifically Suricata and ipfixprobe, can be provided by the selected traffic that must be
monitored or analyzed. The high-level overview of the proposed infrastructure is shown in
Figure 1.

Figure 1 Generic Load Balancer vs. DPDK Pre-filter Module

This thesis is divided as follows: The DPDK framework is compared to other existing software
libraries in chapter 1, and further explored in detail in chapter 2. After that, there are technical
details about design and implementation of the proposed infrastructure and integration with
Suricata and ipfixprobe in chapter 3. Finally, we measure and evaluate the results in chapter 4.

Chapter 1

State-of-the-art Works

Before we dive into the DPDK framework, we need to discuss different options available on the
market, as there are plenty of powerful solutions that may be suitable in different scenarios.

1.1 Libpcap Library

The libpcap library was one of the first successful attempts that established the software
packet processing. The library provided low-level interface for programmers to capture the
network traffic, filter and/or forward the packets and ulitmately, process the data carried by the
packets. The well-designed programming interface (pcap_t structure, unified naming convention,
methods designed to achieve complex tasks and much more) was one of the reasons why the
libpcap library became so popular (the history and further information about the libpcap library
can be found in the book [1]).

Another great libpcap’s strength was the fact that it was completely written in C. Most of
the programmers that needed to write time-efficient/real-time code needed to work with low-
level programming language, and C was an excellent choice. There are plenty of remarkable and
popular projects that use libpcap library, namely Wireshark, Nmap, Snort or Suricata.

There are a few disadvantages when using this library though. First of all, “it doesn’t address
the issue of high-speed packet processing. If the application needs to process the packet data,
it needs to copy its contents. For instance, when using pcap_next_ex() method, the packet
data is not to be freed by the caller, and is not guaranteed to be valid after the next call
to pcap_next_ex(), pcap_next(), pcap_loop(), or pcap_dispatch(); if the code needs it to
remain valid, it must make a copy of it” [2]. Secondly, there is an issue of context switching
— the packets captured by the NIC must traverse the whole operating system network stack
before being processed by the user-space application. This creates an overhead that, as shown
by modern libraries, can be diminished. Another problem with the libpcap library is its limited
platform support. Although it works well on Unix-based environments, new peculiar problems
may occur when operating on Windows/Mac OS. The libpcap library can also be compiled with
the Visual Studio IDE, as mentioned in [3].

Overall, the libpcap library is a versatile tool that can be used as an introduction into packet
processing for programmers. It also offers a better solution to network filtering and forwarding
than the default C socket API. Regardless, it is not the most practical instrument when the
goal is to achieve the biggest performance and network throughput while manipulating network
traffic in order of gigabits per second.

3

4 State-of-the-art Works

1.2 WinPcap Library
WinPcap is a Windows-like alternative to the popular libpcap library created by the Riverbed

Technology. As stated on the official WinPcap library webpage, “it has been recognized as the
industry-standard tool for link-layer network access in Windows environments, allowing appli-
cations to capture and transmit network packets bypassing the protocol stack, and including
kernel-level packet filtering, a network statistics engine and support for remote packet capture”
[4]. The library consists of low-level drivers that behave analogously to Unix libpcap drivers, so
the programmers can access the network stack more easily.

In the similar fashion, WinPcap was used to create Windows versions of the popular projects
like Wireshark, Nmap or Ntop. It is also incorporated in the Windump tool, which provided
a substitute for the tcpdump in the Windows environment. It is well-documented, tested and
reliable library suitable for both the programmer and end user. It implemented the ease-of-
access principle from the libpcap library, packet with sample programs that help developers
understand the use cases more profoundly. It is licensed under BSD open source licence, so it
can be integrated into both amateur-like and production-ready software.

The greatest disadvantage when working with the WinPcap library is its discontinued support.
The last update the library received was on 8th March in 2013 — almost 10 years ago. The update
came with a few bugfixes and added support for Windows 8 and Windows Server 2012. Since
then, there has been no official major or minor development progress in the WinPcap library.
According to the website, “WinPcap, though still available for download (v4.1.3), has not seen
an upgrade in many years and there are no road map/future plans to update the technology” [4].
This may pose not only a performance, but more significantly a security issue, when developing a
production-ready code. The fact that the WinPcap library is open source grants simple access for
attackers to find and exploit possible vulnerabilities in the source code. This introduces security
risk that needs to be considered when integrating the library.

To sum up, WinPcap was a widely-used library, bolstering multiple commonly-used tools
like Wireshark or Nmap on Windows. However, because of its terminated support it is not
recommended for real-world applications, as it may present a security threat to end users. It is
worth mentioning that the library may and should be replaced with its modern alternative —
Npcap, created by the Nmap project founder Gordon Lyon. More information about the Npcap
project can be found on their official website [5].

1.3 IPFirewall
Another mentionable appliance which can be utilized as a packet forwarding and filtering

software is IPFirewall (or ipfw). Included in the FreeBSD as a kernel loadable module, “it is
comprised of several components: the kernel firewall filter rule processor and its integrated packet
accounting facility, the logging facility, NAT, the dummynet(4) traffic shaper, a forward facility,
a bridge facility, and an ipstealth facility” [6].

In short, it is a statefull firewall developed and managed by FreeBSD volunteer staff, con-
figured by end users via the configuration file1 — users may decide whether to work with the
default firewall provided types (consisting of several different operating modes, each protecting
the network, its workstations and eventually the network interfaces in various ways), or set up
custom complex ruleset. Additionally, logging service can be turned on through syslogd(8). All
of these features make ipfw a spot-on utility, which can provide packet filtering and forwarding.

Nevertheless, ipfw does not deal with the concern of high-speed packet processing. It is also
limited by its specific platform (FreeBSD) — there were numerous ports to different operating
systems such as Linux, Windows or Mac OS X — all being replaced by modern alternatives. Also,
ipfw is not a library — programmers cannot use it to modify or integrate the solution in their

1/etc/rc.firewall

XDP 5

code. For the reasons above, the ipfw is generally not considered as practical for implementation
into existing high-speed packet processing solutions.

1.4 XDP

XDP (shortcut for eXpress Data Path) is a programmable, open-source, high-speed network
processing framework for Linux kernel released in 2016. It utilizes eBPF technology, which allows
applications to be encapsulated and executed with a privileged access with high effectiveness.
Its core functionality comes from the ingenious implementation, as it captures the packets from
the NIC RX queues before any allocations of the packet meta-data structures happen. It is
supported by various big companies such as Intel, Microsoft or Mellanox [7].

From a practical perspective, there are few benefits when choosing the XDP framework.
Firstly, it does not require any specialized hardware or any kernel bypassing mechanisms.
Performance-wise, as shown in research [8], XDP is capable to drop around 25.7 mil. and redirect
7.9 mil. of packets from a single RX queue — there are limited number of libraries that offer these
metrics. It is designed to be highly efficient and scalable, making it viable for fast-processing net-
working applications such as network function virtualization (NFV), software-defined networking
(SDN), and packet filtering in firewalls and intrusion detection systems (such as Suricata).

Figure 1.1 XDP Processing (taken from https://www.iovisor.org/technology/xdp)

The key difference between XDP and DPDK is that DPDK, being a user-space library, is
programmed and compiled entirely in C language. Given the fact that XDP is compiled into
eBPF bytecode (therefore making it less performant), DPDK has an upper hand when the
processing speed factor is accounted for. Overall, “XDP is sometimes juxtaposed with DPDK
when both are perfectly fine approaches” [9]. If used properly, it can do almost anything DPDK
can achieve. However, as the DPDK slightly outperforms XDP in the packet processing speed,
the DPDK was chosen.

https://www.iovisor.org/technology/xdp

6 State-of-the-art Works

1.5 PF_RING
Lastly, one of the state-of-the-art libraries that provide the capabilities to process packets in

high-speed networks is PF_Ring. It is a top-shelf project created by the Ntop company, offering
a set of libraries which programmers can integrate into their existing solutions. PF_RING
effectively polls packets via Linux NAPI (new Linux API for networking devices) from the NICs,
intercepting packets at the NIC driver level and processing them directly in the kernel [10].

There are multiple PF_RING products in the PF_RING framework — “Vanilla” PF_RING,
PF_RING ZC (Zero Copy) and PF_RING FT (Flow Table), each with slight differences. Zero
Copy version utilizes modern NIC hardware acceleration features in combination with Linux
NAPI to achieve even higher processing and transmission rate. It minimizes the packet copying
operations between kernel-space and user-space, speeding up the performance in some scenarios
[11]. PF_RING Flow Table fuses the flow table mechanism in its pipeline, providing substantial
performance increase when dealing with the packet flows [12].

Figure 1.2 PF_RING polling (taken from https://www.ntop.org/products/packet-capture/pf_
ring/)

The biggest downsides that play in favor of DPDK are the limited operating system support
and slower packet processing rate. As stated in the previous paragraphs, PF_RING employs
Linux NAPI (therefore it cannot be used in different operating systems), whereas DPDK is
also supported on multiple operating systems like Windows or FreeBSD. Secondly, PF_RING
is generally considered slower than DPDK, because of its architecture — PF_RING is a kernel-
mode packet capturing framework, thus needing to pass the packets somehow to the user-space
applications. This creates the overhead, which DPDK manages to bypass by operating in the
user-space (explained in a greater detail in the next chapter).

For all those reasons, the proof of concept this thesis researches is based on the DPDK
framework. Of course, there are a few advantages when deciding to work with the PF_RING
framework — it is designed to be used with the standard Linux socket programming, hence
having the shallower learning curve for programmers. DPDK also requires specific NIC drivers,
which are mostly not supported by the older models. As always, the choice of the framework
mostly depends on the use case and project specifics, and in certain cases, PF_RING might be
the preferable option.

https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/

Chapter 2

Design

In the previous chapter, we have seen plenty of DPDK alternatives, each and every having its
pros and cons. Now, let’s explore what does the DPDK provide and how can it enhance packet
processing and forwarding in combination with the applications such as Suricata or ipfixprobe.

2.1 DPDK Framework
The Data Plane Development Kit (further referred to only as DPDK) is a robust packet

processing and forwarding set of libraries supported by most of the modern CPUs and NICs.
Created by Intel in 2010, it is considered to be one of the top-notch solutions when developing
any network appliance. It is licensed and distributed as open-source1 software, making it possible
for anyone to integrate it in their current solution.

The DPDK deals with the high-speed packet processing problems almost flawlessly. One of
the challenges the packet processing poses is the data transfer speed bottleneck between the NIC,
CPU(s) and the memory. The DPDK solves this with multiple utilities in its core: NUMA (non-
uniform memory access) awareness, usage of SIMD instructions such as Intel SSE3 instruction set,
lock-free structures in combination with memory and cache prefetching, but most importantly,
the HugePage utilization.

The HugePage concept comes from the Linux kernel. Simply said, it enables the operating
system employment of greater memory pages than the usual 4KiB, therefore reducing the demand
for system resources needed to access page table entries by increasing the TLB hit ratio, both
in 32-bit and 64-bit operating systems. The ideal hugepage size may vary between a few MiBs
up to 1 GiB, depending on the hardware. DPDK also puts hugepages into effect when sharing
memory pools between the primary and secondary DPDK applications, diminishing the data
transition time between processes.

The concept of primary and secondary applications in DPDK was implemented with the
purpose to ease the inter-process communication (IPC) between the different DPDK processes.
Every DPDK standalone application runs as a primary application. The key difference is that
the primary application initializes and manages the shared memory (hugepages) with full permis-
sions, whereas the secondary application can only be “attached” to already existing shared mem-
ory. Everything is handled by the EAL in the method rte_eal_init() present in every DPDK
application. During the creation of the primary process, DPDK saves the virtual addresses of the
hugepages in the OS, current memory channels and so on. The secondary application is then cre-
ated with the exact mapping as the primary application so that all the shared virtual addresses
are valid. The option whether the application will be run as a primary or secondary is specified

1Open Source BSD License

7

8 Design

via the command-line passed by the parameter --proc-type=primary or --proc-type=secondary.
Although there are numerous components in the DPDK framework, there are additional

utilities worth mentioning shipped with the DPDK to help with setting up the environment
or with debugging and testing hardware. For instance, in the latest official DPDK LTS build,
developers may find plenty of detailed example applications such as l2fwd (L2 packet forwarder
and classifier), ip_fragmentation (L3 fragmented packets forwarder and classifier) or a simple
helloworld, which is commonly used to determine whether the DPDK framework works properly.
Along with the DPDK example applications, developers frequently use dpdk-devbind.py script,
which binds the DPDK-compatible drivers with the desired NIC.

Figure 2.1 DPDK Core Components (taken from http://doc.dpdk.org/guides/prog_guide/
overview.html)

The DPDK scope consists of multiple modules, each providing modern solution for specific
programming task. The most important (and most commonly used by programmers) modules
are shown in the figure 2.1. The modules include, but are not finite to:

rte_eal provides an API between the application and the DPDK core functionalities

rte_mempool handles dynamic memory allocations and deallocations, per-core caching and
memory alignment

rte_ring implements a thread-safe, ring-like structure optimized for bulk procedures in the
DPDK core

rte_mbuf manipulates packet-like structures and its accompanied metadata

rte_timer realizes precise time reference and asynchronous operations in the DPDK core

http://doc.dpdk.org/guides/prog_guide/overview.html
http://doc.dpdk.org/guides/prog_guide/overview.html

DPDK Framework 9

In this thesis, a few core components are used so frequently that deeper understanding is
useful. Therefore, in the next part of this chapter, we discuss an overview of EAL, PMD and
how does the DPDK handle memory efficiently.

2.1.1 Environment Abstraction Layer (EAL)
The Environment Abstraction Layer is a key software library in the DPDK core that

provides fundamental platform for the DPDK user-space applications to interact with the un-
derneath operating system and hardware resources.

The EAL is initialized in the DPDK applications by the function rte_eal_init(). The full
list of the operations done by this method is lengthy, but it can be summed up to a few steps:

CLI parameters — EAL parses the command-line launch parameters to setup specific options
in the DPDK core, such as core affinity, memory and device related options and so on2

Threading — EAL initializes CPU cores affinity and worker threads via the pthread POSIX
API

Memory — EAL tracks and manages allocated hugepages as well as provides interface to
allocate dynamic memory in runtime

Hardware — EAL registers the interrupts from the hardware resources and handles the device
discovery and further configuration

Time — EAL provides an API for the programmers to accurately track time and set up
asynchronous routines

Apart from the initialization phase, EAL is also responsible for certain tasks during the run-
time. For instance, EAL registers and unregisters the IPC between the processes. This is done
by the functions rte_mp_action_register() and rte_mp_action_unregister(), respectively.
The EAL also encapsulates the process metadata, therefore providing the programmers the in-
formation about the current process via the functions rte_eal_process_type(), rte_gettid()
or rte_eal_primary_proc_alive().

There is a slight downside when using EAL as a memory manager — there is no way for
the tools such as Valgrind to determine whether the used hugepages were used correctly, as the
hugepages are not freed by the DPDK application. The configuration of the hugepages is done by
the programmer in the operating system (commonly done by mounting in the /dev/hugepages
directory) and the OS is responsible for cleaning up these resources. The problem occurs when
the DPDK application accesses this allocated memory, as the memory tracking tools do not differ
between the dynamic heap allocations and hugepages. This may result into unpleasant reports
containing non-freed reachable memory blocks equal to the size of the referenced hugepages.
Currently, there is no practical solution to this problem that is effective and feasible in the same
time.

2.1.2 Poll Mode Driver (PMD)
The DPDK Poll Mode Driver is a software implementation of multiple high-performance

virtual upstream drivers that allows programmers to process packets at gigabit speeds. The
performance is boosted due to the fact that the drivers provide user-space API, thus bypassing
the kernel stack completely. The API includes multiple packet receiving and sending methods,
all of which are designed to enhance the performance of NIC. Linux users can test their PMD
NIC integration with the tool testpmd, shipped with the DPDK framework.

2Common CLI parameters can be found in the documentation

10 Design

The core concept of PMD is that it is not just a single common driver implementation for
multiple NICs. The PMD is an abstraction for the set of specific implementations for each
supported NIC (this is the main reason, why many of the old NICs do not support the DPDK
— it is simply because the PMD does not include the driver for that particular NIC).

Nevertheless, with the modern NICs, the PMD can achieve the true spirit of high-speed packet
processing. For instance, as stated in [13], the NVIDIA PMDs are “most advanced NICs on the
market today, enabling multiple offloads in NIC hardware to provide maximum throughput at
the lowest latency” that “reach 200GbE throughput with a single NIC port” and “provide a cost-
effective solution that allows DPDK applications and non-DPDK applications to concurrently
use the NIC.” There is a variety of PMD implementations available for specific vendors, both
for physical and virtual NICs. Some of the well known vendors include Intel igb PMD, Nvidia
PMD, Cisco enic PMD or Microsoft mana PMD.

The PMD is operational in two modes - polling mode (default) and interrupt mode. However,
the latter mode is used for debug and experimental uses only, as it goes against the essence
of kernel bypassing (interrupt mode uses the traditional approach, where the NIC sends the
interrupt to the CPU and the context switches are required to handle the interrupt, which may
result in significant overhead). In the polling mode, the user-space application continuously polls
for the packets, rather than waiting for the interrupt to happen. The polling requires the RX
and TX “queues” that must be set up beforehand, so the received and sent packets can be placed
into their respective queues. Some NICs even support multiple RX and TX queues, so the packet
processing can be optimized with concurrent operations.

2.1.3 Memory and Caching
Efficient memory handling is one of the aspects that when used properly, it can hugely enhance

the overall performance of any program. DPDK user-space applications are not different. There
are few mechanisms integrated into the DPDK core that help programmers write thread-safe yet
quick applications. We have already discussed the concepts of Hugepages in the section 2.1, but
there are also other instruments that developers can utilize.

Figure 2.2 Ideal NUMA node allocation (taken from https://www.dpdk.org/blog/2019/08/21/
memory-in-dpdk-part-1-general-concepts/)

One of the ways DPDK helps programmers with proper memory operations is the imple-

https://www.dpdk.org/blog/2019/08/21/memory-in-dpdk-part-1-general-concepts/
https://www.dpdk.org/blog/2019/08/21/memory-in-dpdk-part-1-general-concepts/

Suricata 11

mentation of NUMA awareness. NUMA (non-uniform memory access) is a problem encountered
when creating programs for multiprocessor systems – the consistency and coherency in the CPU
caches must be taken into account, so the data is not corrupted or flawed in any way. This
however comes with the upcost and overhead, when one CPU tries to access data located in
another CPU’s cache. One could argue that modern OS are built NUMA–aware so that cross–
NUMA accesses are mitigated. This is true in most cases, but the DPDK core was built with
NUMA-aware concepts for almost every operation.

As shown in Figure 2.2, developers can specify allocated NUMA nodes for various com-
ponents. For instance, the parameter socket_id in rte_mempool_create() assures that the
generic memory pool is allocated at the specified NUMA node. The socket_id parameter can be
found in almost every method that creates objects in memory: rte_pktmbuf_pool_create(),
rte_ring_create() and rte_eth_rx_queue_setup() are just a few of many examples. More
detailed introduction into memory operations that DPDK implements can be found in [14].

2.2 Suricata

For the purpose of testing DPDK in network security applications, the Suricata (IDS/IPS)3

was chosen as the best candidate. Created in 2009, Suricata is an open-source network monitoring
solution, capable of inspecting high-volume network traffic. As shown in Figure 2.3, there has
been an significant development throughout last 10 years. There is an integration into multiple
software packet filtering frameworks, such as AF_PACKET or PF_RING. As of April 2023, the
DPDK integration is unfortunately not yet integrated into the official Suricata version, but the
solution is already in the merge request in the Suricata git repository4. In this thesis, we will be
mostly taking advantage of the fact that Suricata is an open-source solution.

Figure 2.3 Suricata history (taken from https://suricata.io/)

There are plenty of handy features Suricata is capable of. For instance, when running in the
IDS mode, “Suricata can log HTTP requests, log and store TLS certificates, extract files from
flows and store them to disk. The full pcap capture support allows an easy analysis. All this
makes Suricata a powerful engine for your Network Security Monitoring (NSM) ecosystem” [15].
There is also an enormous community built around the Suricata that helps with the development
and integration with various 3rd-party applications. Thanks to that the Suricata is able to detect
malicious L7 communication (such as the detection of various C2 channels). There are also
integrations into various data mining tools like Splunk or Kibana, where the data visualisation
and graphics can help network security analysts and CERT/CSIRT teams in their work.

3Suricata can be run both as Intrusion Detection System or Intrusion Prevention System
4https://github.com/lukashino/suricata/tree/bug/5923-dpdk-numa-api-v1

https://suricata.io/

12 Design

2.3 ipfixprobe
IPFIX flow exporter, conveniently called ipfixprobe, is another network monitoring utility

developed by CESNET. The main objective of ipfixprobe is to categorize and group up similar
packet traffic into coherent units called flows. There are a handful of flow categorizing mecha-
nisms, from simple L3 and L4 identifiers classification (source and destination IP addresses, ports,
…) to advanced multi-layer behavioural analysis, utilizing known L4 and L7 protocol finite-state
automata. The openness of the source code in combination with its API provides options for
developers to come up with new flow classifier plugins utilized in ipfixprobe. When creating a
plugin for DPDK, there is a robust script shipped in the official repository that is able to generate
the template for development.

Before the implementation part of this thesis, there was no DPDK integration into ipfixprobe.
As seen in the latter chapters, the collaboration ended fruitfully, as the ipfixprobe can now be
run as a secondary DPDK application reading from the shared rte_ring structure allocated in
the memory by the primary DPDK application. The name of the ring to be read from is simply
passed as RING_NAME in an argument -i 'dpdk-ring;r=<RING_NAME>' when starting up
ipfixprobe.

Figure 2.4 Simplified ipfixprobe function diagram (taken from https://github.com/CESNET/
ipfixprobe)

https://github.com/CESNET/ipfixprobe
https://github.com/CESNET/ipfixprobe

Chapter 3

Implementation

DPDK framework provides a great amount of useful features that programmers can inte-
grate into their environment. In this chapter, proof-of-concept infrastructure is designed and
implemented, with an emphasis on performance of packet processing speed.

3.1 Proposed Infrastructure
The DPDK framework can be integrated into many different network architectures — from

the most simple ones with one router and one switch device, up to the complex hierarchies
divided into Core, Distribution and Access (CDA) layers and network planes. This fact can
be justified simply because with the DPDK framework, programmers can implement fast and
reliable solutions in different OSI layers — starting in the L2 broadcast domain, which splits
bigger networks into smaller, easily manageable units with the MAC/EtherType pre-filtering and
forwarding solutions, and closing with the L7 application solutions as IDS and Web Application
Firewall (WAF), where the traffic inspection is correlated in multiple OSI layers. The DPDK
offers solutions for any and every of the aforementioned use cases.

To introduce and explore the DPDK framework in the high-speed networks, both L2 and
L3 pre-filtering were chosen as the proof-of-concept pre-filtering methods (the small differences
between these infrastructures are described in the section 3.4). The L2 pre-filtering was chosen
based on the following facts:

Standard L2 frame headers include source and destination addresses + EtherType, so simple
static access control lists can be defined for the traffic to be filtered with

The L2 pre-filtering module source code is not as robust as it would be if another OSI layers
were introduced, thus making the filtering parts clear for the reader and further research

No encryption is required in this use case, therefore there is no need for additional hardware
cryptographic modules (which would be necessary as it would otherwise create a bottleneck)

The frames, however, also come with slight disadvantages. First of all, frame headers do
not include much data to differ various packet flows (for instance, there is no way to determine
what application is this flow belonging to), so there is almost no way to implement powerful
ACLs. Additionally, the sample network architecture must1 contain the pre-filtering device in
the same broadcast domain as the monitoring devices (Suricata, ipfixprobe, …). Both of these
inconveniences can be bypassed in the further development of the pre-filtering device so the pre-
filtering device would be operating on more OSI layers, as shown in the L3 pre-filtering example.

1The reason for this is explained further below

13

14 Implementation

The development for multi-layer pre-filtering mechanism is advised, however, it may create a
slight performance drawback — further research is needed.

The proposed infrastructure is depicted in the figure 3.1. There is no major difference between
the infrastructure used in the L2 and L3 pre-filtering (both pre-filters need to be in the same
broadcast domain as the endpoints with installed agents), therefore L2 pre-filter module is shown
in this chapter as an example. The infrastructure consists of:

Figure 3.1 Proposed infrastructure (single L2 pre-filter module)

L2 Pre-filter Module is a pre-filtering device operating in the OSI layer 2, which filters, sep-
arates and forwards different flows into specified modules

Suricata/ipfixprobe modules (referred to as agents) are endpoint applications responsible
for decapsulating the custom header.

Flow Generator (Optional) is used in development phase to generate stable flow of packets.

A more profound description of how each of the components of the infrastructure work can
be found in the second part of this chapter.

Let’s now discuss the reasoning behind the pre-filtering the data (frames) in figure 3.1. The
high-speed network traffic that needs to be monitored is mirrored (copied) to the proposed
infrastructure. The original flows of packets can come from multiple networking devices with
different periods and load (as with the real traffic, different types of packets, both encrypted and
plaintext, are expected). This behaviour simulates the real-world networks, where the network
traffic generated by the users may vary throughout the day.

The network traffic is monitored by the single L2 Pre-filter. The L2 pre-filtering module is
a core component in the infrastructure that aggregates the frames in the network and, based on
the ACLs, either drops them or marks them (marking is further explained in the section 3.3).
After that, the marked frames are then distributed evenly between the endpoint agent devices
based on the flow they come from. As we operate in the OSI layer 2, the single L2 flow can be
defined as a set of frames with the same source and destination MAC addresses (with the L3
pre-filtering module, we transition from MAC addresses to the IPv4 addresses that define L3
flows). Therefore, when two frames with the same source and destination MAC are received in

Proposed Infrastructure 15

the pre-filtering module, they will be marked and forwarded to the same agent device (assuming
they were not blacklisted in the ACLs).

The marked flows are then received by the agents, where they are stripped off the custom
header and inserted into the network monitor applications such as Suricata or ipfixprobe. As
this process differs from program to program, multiple implementations of the agent modules
exist.

The overall idea is based on the existence of the minimal threshold of malicious data that
needs to be captured in the different network monitoring applications. For instance, the IDS
analyses the network flows and raises alert when one of the rules is matched. The rules commonly
contain a specific threshold parameter, which triggers the alert when reached. This however
creates a problem in large scale networks, where the resources of a single monitoring node are
not sufficient, so the traffic is split between multiple monitoring devices. In general, there is
no flow preservation, thus creating the possibility of splitting the malicious data into multiple
network applications and ultimately not triggering the alert, as no threshold was reached.

In this thesis, the aspect of flow preservation it considered, so even with multiple agents the
frames belonging to the one flow end up in the same agent. This method should eliminate the
problem of traffic splitting in the L2/L3, but the overall reasoning can be also applied to higher
OSI layers. This problem is more thoroughly discussed in the paper [16].

Lastly, the discussion about the multiple pre-filtering devices is in place. In the proposed
infrastructure, the biggest obvious drawback is that the single pre-filtering module may create
a bottleneck in the high-speed networks. As the hardware resources such as memory and CPU
clock speed are limited, there is a reasoning whether to implement multiple pre-filtering modules
into a stack. One of such infrastructures is shown in the figure 3.2, where there are 3 different
L2 pre-filters, each bound to at least 2 agents and each with its custom marking mechanism.

Figure 3.2 Sample infrastructure (L2 prefilter module stack)

There are plenty of combinations of module bindings, which in addition with the different
frame marking mechanisms creates a limitless room for research (with the simplest being one pre-
filtering module and one agent endpoint). Of course, the stacking comes with a few disadvantages:

More complicated implementation of agents, as for each specific marking mechanism there
must be a compliant agent implementation. The different agent implementations will be

16 Implementation

unable to decapsulate the traffic from different prefilters, which may result into chaotic be-
haviour.

The additional overhead of traffic mirroring into multiple prefilters may create a performance
bottleneck on the existing network infrastructure.

The different marking mechanisms may create a never-ending frame loops in some network
topology. Imagine the situation:

1. The L2 prefilters A and B are integrated into network with star/bus topology, thus placing
the prefilters into the same broadcast domain.

2. The prefilter A receives a frame, marks it with its specific header and sends it to the agent
module.

3. The prefilter B receives a marked frame from the prefilter A (as the prefilters monitor
the whole traffic), marks it with its own specific header and sends it further to the agent
module.

4. The prefilter A receives the marked frame from the prefilter B, marks it and continues
encapsulating the frame in the loop with the prefilter B.

As there is no way for the prefilters to determine whether the frame has already been marked
by the other one, they will keep creating malformed frames with numerous custom headers
stacked onto each other, which in result will flood the agent(s) and eventually clog the whole
broadcast domain, resulting into denial of service.

The upkeep cost of multiple prefilters can exceed the cost of upgrading the single prefilter.

There is also a reasoning to integrate multiple pre-filtering mechanisms with the same marking
methods. In this case, there will be no need for multiple agents implementations and no potential
problems with compliance. As this is not in the scope of the research of this thesis, the further
research about the viability of pre-filter stacking is advised.

3.2 Flow Generation
The saturated high-speed packet flow generation is mandatory for the pre-filtering modules

to demonstrate their true power. However, in the testing environment, simulating real network
packet flow is a highly difficult task (which is almost impossible to mimic without the access to
the real-time data). Saturated flow generator is utilized in chapter 4, where the implemented
infrastructure is evaluated more profoundly. For the development purposes however, there is no
need to emulate high loads of saturated network traffic.

The simple packet flow generator can be developed using numerous software libraries such
as Scapy or ntopng. The discussion is in place whether in the L2 pre-filtering, the L2 header
contains sufficient data for categorization to create distinguishable flows, but as this proof-of-
concept architecture filters the frames in the broadcast domain (this infrastructure can be simply2

replicated with switches when the traffic is mirrored to L2 prefilter module), the source and
destination MAC addresses will be sufficient. As this thesis uses the DPDK framework, both
Scapy and custom DPDK flow generating application were used during the development phase.

Scapy can be employed as a python script that periodically sends the packets (these packets
contain only Ethernet II and IPv4 header + null bytes in the payload to satisfy the minimal
Ethernet II frame length) into the network. Sample implementation of such a script called
generator.py is shown in the Code listing 3.1. The generate_flows() method returns an array
of Scapy packet-defining structures with random source and destination MAC/IPv4 addresses.

2Most of the modern switches such as Cisco or MikroTik offer the option of port mirroring

Flow Generation 17

Code listing 3.1 generator.py - Scapy traffic generator

if __name__ == '__main__':

random.seed()
flows = generate_flows(MAX_FLOWS)
print(str(MAX_FLOWS) + " flows generated.")

while True:
try:

for i in range(MAX_FLOWS):
sendp(flows[i], count=40)

flows[random.randint(0,MAX_FLOWS - 1)] = generate_flows(1)[0]
time.sleep(1)

except KeyboardInterrupt:
print("Shutting down.")
break

After that, there is an infinite loop (simple Ctrl-C breaks the loop) in which 40 packets are
constructed and sent via the NIC. After each iteration, one of the flows is replaced with the
new combination of source and destination MAC addresses, effectively creating the randomizing
pattern. The script can be launched simply by executing “python3 ./generator.py” in the
script’s directory.

The script generates a small number of testing packets, therefore providing an excellent
solution when testing the infrastructure with small volume of flows. It is not an effective solution
when a large volume of network traffic is required, as the Scapy module is not optimal for high-
speed packet creation in order of hundreds of gigabytes (for instance, packets originating in the
application do not bypass the OS stack and therefore create a unnecessary delay). Therefore,
for an artificial high-speed frame flows more specific framework is needed — luckily, one of the
frameworks capable of generating a large volume of flows is DPDK.

With DPDK, we can achieve periodic flow generation in our own custom flow generating
application simply by using a few methods DPDK offers. However, the DPDK framework is
really robust, which is impractical for small tasks such as packet generation. In this instance,
L2 frames with randomized payload (16 bytes) are periodically generated. The particular steps
include:

1. Initialize the EAL with correct CLI parameters (such as the amount and affinity of cores, TX
port number or specific debugging options) with rte_eal_init().

2. Allocate the array for newly created frames with rte_pktmbuf_pool_create().

3. Configure and start the NIC and its TX queues/descriptors. This includes the process of
verifying whether the provided port number is correct, reading and configuring custom NIC
configuration, adjusting the number of TX descriptors and setting up the TX queue(s).

4. Periodically fill the allocated memory with newly created frames.

5. Send the created frames using the NIC TX queue with rte_eth_tx_burst()

6. Free up the memory using rte_pktmbuf_free_bulk() so new frames can be created.

The DPDK traffic generating binary is called generator.out. The difference between the
DPDK and Scapy version is mainly in the speed when the large volume of traffic is generated.
During the development, the Scapy implementation was used to test the scalability with multiple

18 Implementation

different flows which is achieved thanks to the random addressing. The DPDK is used mainly
for the higher loads of the frames in a few particular predefined L2 flows specified as arguments
passed to the application. With an underlying random payload after the frame header, which
standard network monitoring applications such as Wireshark may mark as malformed (this is
however an expected behaviour with random bytes instead of a proper layer 3 OSI packet header).

The DPDK traffic generating application can be launched using the CLI command “sudo
./generator.out --no-telemetry -l 0 -- -f <DSTMAC>”. The --no-telemetry and -l 0
parameters are EAL options3, which specify the logging level and CPU core map (in this case,
we suppress most of the debugging logs and assign the CPU core 0 to our DPDK application).
The -f parameter specifies the destination MAC addresses, so up to 10 flows4 can be configured
(the source MAC is always set as the sending NIC’s address).

3.3 L2 Pre-filter Module
The backbone component in the proposed infrastructure is undoubtedly the L2 pre-filter

module, as it performs most of the core functionalities that are necessary in the high-speed flow
monitoring. Before the introduction of the main parts of the L2 pre-filter module, the goals and
main capabilities need to be set. In this case, the main purposes of the L2 pre-filtering module
were:

1. Monitor the high-speed network traffic in the broadcast domain of the pre-filter without the
increased frame drop rate.

2. Filter the blacklisted frames using access control lists based on their source and destination
MAC addresses.

3. Create an efficient method of transferring the processed frames into the network monitoring
applications running at the different endpoint devices in the same broadcast domain.

The high-speed processing of larger volumes of frames is one of the use cases the DPDK
was designed for. As stated in chapter 2, the DPDK uses multiple tricks to amplify the RX
and TX speeds while minimizing the overhead in the operating system. Almost every modern
NIC now supports the promiscuous mode, which effectively causes the NIC to capture every
frame received by the medium (NICs discard the frames by default if the destination address
does not correspond to their MAC address). In DPDK, this behaviour can be invoked by the
rte_eth_promiscuous_enable() method. This method is put into effect right after the hard-
ware initialization part in the pipeline submodule, where the NIC configuration is located.

The frame filtering in the DPDK can be achieved in multiple ways. The most common way
of handling the ACLs in DPDK is to use the designated ACL structures and their corresponding
methods. This method supports hardware optimizations for fast flow filtering, such as Intel
SSE or AVX512X16 vector operations, which enable multicore parallel flow filtering [17]. The
disadvantage that discouraged the use of ACL structures in L2 infrastructure is its complexity
with L2 filtering. In these structures, there are multiple mechanisms built for complex L3 and
L4 ACLs, yet they lack the straightforward solutions for L2 filtering. The L2 filtering integration
using predefined ACL structures in DPDK is unnecessarily obnoxious, therefore another solution
for the L2 pre-filtering was needed to be found.

Instead of DPDK ACLs, simpler yet effective way was chosen for the L2 filtering – the custom
implementation of the ACL structures. As described later, the custom ACL structures in the
ACL submodule provide stable foundation for the L2 pre-filtering module to filter the blacklisted
flows. The ACLs do not use the hardware accelerated operations as the DPDK ACLs do, but in
the order of tens of simple ACLs, this should not create a significant overhead.

3The end of the EAL parameters and the start of the application parameters is denoted by the -- mark
4This behaviour can be changed by modifying the predefined macro in the source header file constraints.h

L2 Pre-filter Module 19

Lastly, an efficient transferring method implementation is mandatory for the fluent pre-filte-
ring mechanism. One possible method of transport is the substitution method, which is based
on the MAC address replacement. In this method, the source address is replaced by the pre-filter
TX NIC MAC address and the destination address is replaced by the agent’s MAC address. The
disadvantage is that the original L2 flow is not preserved – the information about the source and
destination addresses is inevitably lost. This may pose a problem in the L2 broadcast domain
monitoring, as there is no way for the monitoring applications like Suricata and ipfixprobe to
determine the initial addresses. For the reasons above, this thesis does not use the substitution
method.

The proposed method for the transport of processed frames by the L2 pre-filtering module is
the encapsulation method, shown in the Figure 3.3. In this process, whole frame is encapsu-
lated into another valid Ethernet frame header, so it will be properly switched in the broadcast
domain. The default Ethernet header consists of 3 fields – the destination MAC address, the
source MAC address and the EtherType (EtherType is a field in the Ethernet header indicating
expected protocol in the next layer). By prepending the Ethernet header in front of the original
frame we achieve the preservation of the original flow, as no information needs to be modified.
In the new header, the source address is set to the L2 Prefilter MAC address (as this is the
device that performs the encapsulation) and the destination address is set to the designated
agent address (therefore, any L2 switch can forward the frames to the right endpoint device).
The EtherType field is set to the hexadecimal constant 0xF1F0 (this arbitrary constant can be
changed to any non-used EtherType), so the endpoint devices can precisely determine whether
the received frame carries another encapsulated information and thus needs to perform the frame
decapsulating. The frame decapsulating is a trivial process of checking whether the EtherType
was set to the constant 0xF1F0, and if so, the first 14 bytes5 are skipped.

Figure 3.3 L2 prefilter module frame encapsulation

One small issue might arise, when the maximal MTU (Maximal Transmission Unit) frame is
processed by the L2 pre-filter module. The default MTU for the Ethernet II frame is currently
set in the RFC 894 [18] to the 1518 bytes – 1500 bytes of payload + 14 bytes of standard Ethernet
header + 4 bytes of FCS6. When this frame is encapsulated by the L2 pre-filter module, another
14 bytes are prepended to the frame. This creates a potentially invalid Ethernet II frame, which
results into undefined behaviour in most of the state-of-the-art switches. Depending on the

56 bytes of source MAC + 6 bytes of destination MAC + 2 bytes of EtherType = 14 bytes of header
6Frame Check Sequence

20 Implementation

vendor and the product, switches may drop or forward the frame. This problem can be bypassed
by using the Ethernet jumbo frames, which can effectively carry up to 9000 bytes of payload
(even more than 9000 bytes in one frame are possible, as described in [19]).

Let’s now introduce the components (submodules) of the L2 pre-filtering module and their
associated tasks. The core submodules are shown in Figure 3.4

Figure 3.4 L2 pre-filter submodules

Pipeline Submodule is responsible for initializing the hardware resources and the multithread-
ing model. It also interconnects other submodules into one ecosystem.

Configuration Submodule contains structures responsible for handling the custom configu-
ration data. It consists of:

agent configuration, which handles the endpoint agents traffic distribution algorithm and
associated MAC addresses.
port configuration, which manages the NIC RX and TX ports, queues and descriptors.
logical core configuration, which tracks the designated CPU configuration, socket alignment
and threading affinity.

ACL Submodule filters the flows using primitive blacklists for source and destination MAC
addresses specified via the CLI.

Processing Submodule handles frame flow creation, hashing and frame encapsulation

Parsing & Printing Submodules are responsible for CLI arguments parsing and user I/O.

All of these modules altogether provide a robust system that manages to filter the frames
efficiently.

The pipeline submodule is designed with the separation of concerns principle in mind. The
pre-filtering process is separated into three tasks: frame retrieval, frame processing and frame
sending. The frame retrieval task consists of an infinite loop that polls the frames from the
RX queue of the NIC. After the frames are received, the frame processing takes place, where

L2 Pre-filter Module 21

Code listing 3.2 pipeline.c - pipeline_thread_sender() method

while (rte_atomic32_read(&pipe->finished) == 0)
{

cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
tx_pkts = 0;

if(unlikely(diff_tsc > drain_tsc)) {
tx_pkts += rte_eth_tx_buffer_flush(pipe->port_conf ->tx_port,

queue_id,
pipe->tx_pool);

prev_tsc = cur_tsc;
}

rx_pkts = rte_ring_dequeue_burst(pipe->ring_sender ,
(void *) pkts,
BURST_SIZE ,
NULL);

if(likely(rx_pkts != 0))
tx_pkts += rte_eth_tx_burst(pipe->port_conf ->tx_port,

queue_id,
pkts,
rx_pkts);

rte_pktmbuf_free_bulk(pkts, rx_pkts);
rte_atomic64_add(&pipe->sender_seen , rx_pkts);
rte_atomic64_add(&pipe->sender_dropped , rx_pkts - tx_pkts);

}

the frames are classified and processed (encapsulated). After all the frames are processed, the
sending task is initiated, so that all the successfully processed tasks are sent to the designated
agent endpoints. Each of these tasks can be run on different worker threads, therefore maximizing
the efficiency of the CPU and I/O. Small problem that might arise is the question whether an
efficient method exists for thread-safe data passing between the different threads. The DPDK
framework has a beautiful solution — the rte_ring structure implementation contains both
multi-consumer and multi-producer equivalents. Specific implementation is decided during the
initialization of the ring structure via the ring-specific flags. For instance, in the scenario with
one frame retrieval thread and multiple processing threads, the combination (logical OR) of
RING_F_SP_ENQ and RING_F_MC_RTS_DEQ flags7 is used. One of the many instances
where the reading packets from the ring is happening is shown in the Code listing 3.2.

Apart from the variables declaration, this is the concrete implementation of the sender thread
used in the pipeline submodule. The body of the function is encapsulated in the while loop (that
is ended when the SIGSEGV or SIGINT interrupts happen), where the packets are polled from the
shared ring using the rte_ring_dequeue_burst() method. After some of the packets have been
polled (the amount of packets is indicated by the return value of the dequeue method), they are
inserted into the TX queue and ultimately freed (as the TX queue caches the packets locally,
they can be freed immediately after the insertion into the TX queue). There is also a timer set
up that periodically flushes the TX buffer, so the packets are sent even if the threshold for the
flush is not yet reached (the timer makes sure that the packets are sent as soon as possible, even
when small volume of packets is received). The frequency of the timer is based on the CPU ticks
tracked by the TSC register (present on all x86 processors starting from Intel Pentium [20]),

7SP_ENQ — Single Producer Enqueue; MC_RTS_DEQ — Multi-consumer, Relaxed Tail Sync Dequeue

22 Implementation

where the formula is as follows:

drain_tsc =
rte_get_tsc_hz() + uSPERS − 1

uSPERS
∗ 100

and the uSPERS = 106 (uSPERS indicates the amount of microseconds in one second). There
are also thread-safe operations to update the statistics of the pre-filter, namely the number of
the successfully sent packets and the number of all the packets seen in this thread.

The DPDK rte_ring structure provides safe mechanism for the threads to interchange the
data without the need of synchronisation primitives (they are properly implemented in the
rte_ring source code, so the developers need not to worry about the problems that may occur
from the race conditions). The L2 pre-filtering module can therefore be launched in two separate
threading modes: generic and specialized. The generic mode uses every worker thread (every
logical thread apart from the main thread, which handles I/O) in the retrieval, processing and
sending phase. During the development, it was documented that the RX retrieval functions do
not provide thread-safe mechanisms for frame receiving from the same RX queue. There is no
mention about this behaviour in the DPDK official documentation, but by experimenting, users
may experience undefined behaviour. In the pipeline submodule, the spinlocks are used to solve
the race condition between the worker threads – the number of worker threads generic mode
starts up can be deduced from the equation:

worker_threads = min(num_rx_queues;num_tx_queues)

This implementation is based on the fact that the DPDK indexes the available NIC queues
as [0; max], where the max is stored in the rte_eth_dev_info structure (fields max_rx_queues
and max_tx_queues respectively).

The specialized mode uses the separation of concerns approach in the worker threads dis-
tribution. One worker thread is designated for the frame retrieval from the queue 0 (which is
always present in NIC) and one worker thread is designated for the packet sending, also from the
queue 0. Every other worker thread is set for the packet processing, as this task is considered to
be the computationally harder than the packet RX/TX. With the correct implementation, this
approach employs effectively every core without the need for any thread-safe signalization (apart
from the rte_ring structure setup). The utilization of the pipeline-like model in combination
with the DPDK zero-copy mechanism creates a balanced approach with even load distribution
between the worker threads.

Lastly, the flow hashing mechanism is used to further accelerate the processing speed. The
DPDK provides the hash table interface via the rte_hash structure. During the initialization
of hash table, programmers can tweak multiple options to their specific needs. For example, the
proposed infrastructure modifies the generic field extra_flag, in which it sets up the property for
concurrency mechanisms. Generally, there are plenty of optional features that DPDK hash table
offers, such as specifying the used hash function (the default is set to Cuckoo hashing algorithm).
As stated in the official documentation [21], one of the proper use cases for which the DPDK
hash tables were designed for is flow classification. This is exactly what the hash table is used for
in the L2 pre-filtering module — it enables the high-speed packet classification, so the designated
agent endpoint address can be determined quickly. The key is set to be the combination of the
MAC addresses (IPv4 addresses in the L3 pre-filtering module) and the data is the MAC address
of the designated agent endpoint. The designated agent can be determined by the load-balancing
algorithm, which in this thesis was set to be a simple round-robin algorithm.

It is possible to use hashing even more efficiently in some specific scenarios. Assuming that
the RX NIC supports the RSS, the DPDK offers methods on using the hash computed by NIC
instead of computing custom hashes for the hash table. With proper hardware, this method may
accelerate the frame processing task even further.

L3 Pre-filter Module 23

3.4 L3 Pre-filter Module
As stated in the previous section, the L2 pre-filtering module has its drawbacks. For instance,

it is limited to monitoring the broadcast domain of the network it is currently deployed in. This
limitation was effectively removed by modifying the pre-filtering module to create the flows from
the IPv4 header, instead of the Ethernet II header. The internal structure of the submodules is
exactly the same as in the L2 pre-filtering module. The only differences are as follows:

The flows are generated using the source and destination IPv4 addresses. The main change
is that it enables the traffic monitoring even from the different networks, as the source and
destination addresses are not changed in transit by default (of course, there are numerous
malicious networking attacks such as IPv4 spoofing). One of the use cases may be the use in
high-speed transit networks, described later in the section.

The frames with different EtherType than 0x0800 (IPv4) are dropped during the processing
task, as the flows require the IPv4 addresses for the hashing mechanism. This behaviour may
sound strict, but it was decided to be the best effort/speed implementation for this use case.
Other implementations may include the IPv6 extension for the IPv6 protocol support, either
with the custom hash table (one for IPv4 and one for IPv6) or with the same hash table and
IPv4 address translation (the IPv4 address would be translated to the IPv6 address space
based on the algorithm described in [22]).

The ACLs used in the L3 pre-filtering module are much more robust than in L2 pre-filtering
module, mostly due to the fact that the DPDK offers native ACL structures and macros
such as rte_acl_ctx and RTE_ACL_RULE_DEF(). The ACLs use dynamic structures and
variety of techniques to accelerate the packet filtering, such as ACL categories, rule templates
and ACL memory alignment. The ACLs are managed by the ACL context (rte_acl_ctx
structure), that needs to be ”built” each time the ACL rules are updated. This does not pose
a problem in the proposed infrastructure, as the ACL rules are defined once via the startup
CLI arguments. The complexity of the ACLs allow the users to further specify the filtered
hosts in the A.B.C.D/MM notation (the mask is in the CIDR notation). For example, to
filter traffic from a single host with the IP address 1.2.3.4, the pre-filter is launched with the
”-T 1.2.3.4/32” CLI argument.

The versatility of the L2 pre-filtering module code led to the easy implementation of the
L3 pre-filtering module. The reusability of the structures and processes is obvious from the
similarities found in the source code. With enough time and resources, it is possible to completely
integrate both of the solutions into one complex solution, where the desired OSI layer would be
specified.

In conclusion, both of the L2 and L3 pre-filtering modules have their advantages and disad-
vantages. There is difference between their functionality that is reflected in their use cases. The
topology of the monitored network is a significant factor that affects the desired choice. L2 pre-
filtering module is useful when the users want to monitor specific broadcast domain, such as one
VLAN subnet, in which the L2 addresses could be straightforwardly correlated to the endpoints.
On the other hand, L3 pre-filtering module can be used in the transit networks where there is a
high-speed transport medium between two routers. In this topology, the L3 pre-filtering module
could sniff the packets and forward them to the desired agent(s). This would not be possible
with the L2 pre-filter, as the source and the destination MAC addresses would belong to the two
routers at the ends of the high-speed medium. However, with the IPv4 addresses correlation in
the L3 pre-filtering module, it is possible to pre-filter the traffic for the monitoring appliances,
such as Suricata and ipfixprobe.

24 Implementation

3.5 Agent Modules
To achieve fast transport of the packets from the pre-filtering mechanism to the network

security applications, an encapsulation process happens on the pre-filtering module. However, as
the encapsulated packets do not form traditional frames (the encapsulation creates an L2 tunnel
between the pre-filter and endpoint device), they must be decapsulated on the endpoint device
before the network security application processes them. The difficulty of this task consists of
two main problems:

The RX and decapsulation process must be at least as rapid as the TX speed of the pre-
filtering device. If these requirements are not met, the bottleneck is expected to be created
at the endpoint device.

After the decapsulation process, an efficient way to pass packet data to the network security
applications must exist. As there are numerous of third-party applications, an integration
into each of the designated applications must exist (as seen later in this chapter, there are
two main ways of integrating the DPDK framework with third-party applications).

The problem of rapid RX and decapsulation process can be solved by creating an agent
application, running at the same endpoint as the network security application. The sole purpose
of an agent application is to form another side of the L2 tunnel with the pre-filtering device. This
however may pose a problem, as a universal implementation of agent module is impossible, simply
due to the different source codes and APIs of the network security applications. Instead of this,
customized agent modules are used for every network security application. The agent module
can be integrated into an existing solution by two methods: standalone agent and agent
plugin. The core difference of these two solutions is in the amount of running applications on
the endpoint device, as shown in Figure 3.5.

Figure 3.5 Agent integration - red flow contains marked packets, blue flow is after decapsulation

When creating a standalone agent application, one of the applications (agent module or
network security application)8 is started as a primary DPDK process, while the other one is

8The decision depends mainly on the developers, as there is no real benefit in running the application as
primary

Agent Modules 25

started as a secondary process. This way, the EAL is initialized only once and the memory
structures are shared between the processes. As with almost every memory structure in DPDK
(rte_pktmbuf, rte_hash, …), corresponding lookup method exists, so the secondary application
can find the structure by its name allocated by the primary application.

In this proof-of-concept infrastructure, the transport of the decapsulated packets for the
ipfixprobe application is realised via the shared rte_ring structure. When launching the agent
module, you can specify the ring name with the parameter -r <NAME>. The agent module was
set to be launched as a primary DPDK application, therefore after the launch a ring structure
is created in the shared memory. After the ring is created in the memory, ipfixprobe can be
launched as an secondary application with the input interface set to be the DPDK ring structure
via the CLI parameters -i 'dpdk-ring;r=<NAME>;e= --proc-type=secondary'.

When both standalone applications are operational, encapsulated packets received by the RX
NIC interface bound with the DPDK driver undergo the following process:

DPDK Agent Module

1. Packet burst is received in the RX queue of the NIC by the method rte_eth_rx_burst().
2. Each packet is validated – the EtherType field in the L2 is checked to determine, whether

the received packet contains encapsulated payload. If this is not the case, the packet is
dropped, as it does not belong to the DPDK interface.

3. All of the valid packets have first 14 bytes of the L2 header removed by the method
rte_pktmbuf_adj().

4. Trimmed packets are then inserted into the shared rte_ring structure allocated by the
agent through the method rte_ring_enqueue().

ipfixprobe

5. Burst of packets is received from the shared rte_ring structure with the name specified
in the CLI argument by the method rte_ring_dequeue_burst().

6. Packets are parsed by the ipfixprobe method parse_packet().
7. Packets are processed by the ipfixprobe kernel.

By using the shared DPDK rte_ring structure, there is a minimal number of copy operations
necessary when passing the packet data between the two applications — it only requires a single
32-bit Compare-and-Swap operation and is also optimized for the bulk operations to reduce the
cache miss rate (more about the DPDK ring structure can be found in the documentation [23]).

The standalone agent integration requires a development of a standalone application, which
can be tedious and unnecessary in some use cases. Sometimes it is more convenient to change a
few lines of a source code of a third-party application, rather than developing a brand new agent
module. This option is shown in the bottom part of Figure 3.5, where the whole process takes
place in the enhanced version of the network security application. The retrieval of the marked
packets and the adjacent decapsulation is in the code supplied by the DPDK developer, and
the decapsulated packets are then forwarded to the application’s kernel via the API. Depending
on the difficulty of the process integration into existing application ecosystem, the creation of
a DPDK agent plugin may be a preferable choice over the development of a standalone DPDK
application.

The integration of a DPDK interface into Suricata is an upgrade of a recent proof-of-concept
implementation. As proved in the thesis [24], the DPDK framework can significantly improve the
overall performance of the Suricata AF_PACKET interface. For example, the DPDK interface with
8 NIC queues and no Suricata ACLs has a drop rate of only around 2% with a throughput of
40 Gbps. Without the DPDK integration, the drop rate of an AF_PACKET interface is much higher
with a substantial 23%. This performance improvement is even more remarkable when 16 worker

26 Implementation

Code listing 3.3 source-dpdk.c - Modified ReceiveDPDKLoop() method

if(rte_pktmbuf_mtod(p->dpdk_v.mbuf, struct rte_ether_hdr *)->ether_type
== rte_be_to_cpu_16(0xf1f0)) {
PacketSetData(p,

rte_pktmbuf_mtod(p->dpdk_v.mbuf, uint8_t *) + 14,
rte_pktmbuf_pkt_len(p->dpdk_v.mbuf) - 14);

} else {
PacketSetData(p,

rte_pktmbuf_mtod(p->dpdk_v.mbuf, uint8_t *),
rte_pktmbuf_pkt_len(p->dpdk_v.mbuf));

}

threads (8 physical CPU cores and 8 hyperthreaded cores) are employed with 16 queues. “In
DPDK, 16 queues allow better data reception and thus handle speed of 40 Gbps with practically
zero packet loss.”

Since Suricata version 7.0.0-beta1, an initial support for DPDK framework exists in both IDS
and IPS mode [25]. This integration supports the standard methods for packet RX via the DPDK
framework. For this thesis, a modification of the existing DPDK code in Suricata is necessary –
the packets retrieved by the NIC queues need to be decapsulated before they are processed by
the Suricata kernel. This slight modification must not interfere with other non-marked packets,
as it would disrupt the network traffic received from other sources. The changes made to the
Suricata code are shown in the Code listing 3.3. This specific code is a modified version of a
standard DPDK retrieval loop of ReceiveDPDKLoop() method located in the source-dpdk.c file.
As the packets are received by the RX NIC queue, the EtherType field is checked to determine
whether the frame header contains an encapsulated payload. If this is the case, first 14 bytes are
trimmed from the packet, so that only the original headers and payload exist. Otherwise, the
packet is simply forwarded to the Suricata kernel unchanged. This is a deliberate behaviour as
we want to receive not only the marked packets but also the generic traffic flow (this behaviour
can be simply changed in the else clause of the code, where the packet would be dropped).

In this thesis, the Suricata and ipfixprobe applications were chosen intentionally to show the
difference in the DPDK integration into various network security applications. Depending on
the resources and the application source code, developers can choose if they want to create a
standalone agent application or to use a simple DPDK agent plugin.

Chapter 4

Testing and Evaluation

In chapter 3, a DPDK-based infrastructure and its particular implementation were introduced
for scaling security applications. Let’s discuss the efficiency and resource utilization of the
proposed infrastructure in the defined tests and evaluate the result dataset.

Firstly, let’s look at the results evaluation with a small number of packets. This test was
conducted to determine whether the L3 pre-filtering module is working correctly in both generic
and specialized mode. The following use cases were tested:

1. Table 4.1 – L3 pre-filtering module with no ACLs (full forwarding)

2. Table 4.2 – L3 pre-filtering module with one ACL

3. Table 4.3 – L3 pre-filtering module with 16 ACLs (maximum of ACLs currently available)

This use cases were chosen so both the pre-filtering and forwarding parts of the L3 pre-filtering
module were tested. Testing with different subnets was not mandatory, but it further proves the
correctness of the L3 pre-filtering module functionality. In all of the use cases, the infrastructure
consisted of:

Single custom Scapy packet generator tester.py (modified version of a generator.py introduced
in section 3.2)

OS: Ubuntu 22.04 Jammy (virtualized)
CPU: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz
vCPU cores used: 1
RAM: 1 GiB
NIC: 1x DPDK-complaint e1000 (+ 1 used for SSH)

Single L3 pre-filtering module

OS: Ubuntu 22.04 Jammy (virtualized)
CPU: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz
vCPU cores used: 4 (1 RX, 1TX, 1 processing and 1 CLI)
RAM: 4 GiB
NIC: 2x DPDK-complaint e1000 (+ 1 used for SSH)

27

28 Testing and Evaluation

Single endpoint with ipfixprobe and its associated agent

OS: Ubuntu 22.04 Jammy (virtualized)
CPU: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz
vCPU cores used: 2
RAM: 2 GiB
NIC: 1x DPDK-complaint e1000 (+ 1 used for SSH)

To make the packet dataset universal, in all of the use cases tested, the source address of
the packets belonged in the subnet 10.0.0.0/28 (IP addresses ranging from 10.0.0.1 up to
10.0.0.14) and the destination address was constantly set to be 10.0.1.1. All of the tests use
the Scapy generator in combination with tcpreplay to generate a stable 105 pps stream1 of 512 B
L3 packets (plus headers). The total number of bytes generated in the timespan of 10 seconds is
therefore equal to:

105 pps ∗ 10 s ∗ (14B L2 + 20B L3 + 512B payload) = 106 pkts ∗ 574B = 574MB

Table 4.1 L3 pre-filtering module with no ACLs applied

Pre-filter Mode Specialized Mode Generic Mode
Total Packets Generated 104 5 ∗ 104 105 104 5 ∗ 104 105

Received pkts 10,000 50,000 100,000 10,000 50,000 100,000
Processed pkts 10,000 50,000 100,000 10,000 50,000 100,000
Sent pkts 10,000 50,000 100,000 10,000 50,000 100,000
Agent received pkts 10,000 49,384 97,855 10,000 49,929 99,584
ipfixprobe pkts 10,000 49,384 97,855 10,000 49,929 99,584
Pre-filtering drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Transfer drop rate 0.00% 1.23% 2.10% 0.00% 0.14% 0.41%
Agent drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

As shown in Table 4.1, with no ACLs included, the performance of the L3 pre-filtering module
is terrific. The drop rate of a sole L3 pre-filtering module is 0% when small amounts of data
are received. The same goes for the intercommunication between the DPDK agent module
and the ipfixprobe running as a secondary application. Packet drop rate was experienced only
in the transfer between the virtual machines – this drop rate varied between the runs, which
may indicate that the measurements on the virtual machines are not stable for this metric (the
transport medium is heavily dependent on the hypervisor machine, which may drop some packets
even though DPDK applications can handle the load). This can be correlated with the increased
drop rate of packets when using multi-threaded (specialized) mode of the L3 pre-filtering module,
where the transfer drop rate is at 2.1% for 105 packets.

In Table 4.2, results are shown from the measurements where one sample ACL is applied
in the L3 pre-filtering module. There is no significant drop in the performance metrics evident
from the data. However, it was observed that the transfer drop rate had increased for both
generic and specialized mode when testing 10s run (flow rate was approximately 460 Kbps) —
the drop rate for specialized mode had risen to 6.87% (≈ 450% increase from no ACLs) and for
the generic mode to 1.39% (≈ 240% increase from no ACLs). This may be due to the virtualized
infrastructure, as the drop rate varied in the different runs the same way as in the no ACLs
testing. Nonetheless, the pre-filtering drop rate and the agent drop rate stood still at 0.00%,
meaning that the L3 pre-filtering infrastructure is capable of handling higher bandwidth even

29

Table 4.2 L3 pre-filtering module with one ACL applied

Pre-filter Mode Specialized Mode Generic Mode
Total Packets Generated 104 5 ∗ 104 105 104 5 ∗ 104 105

Received pkts 10,000 50,000 100,000 10,000 50,000 100,000
Processed pkts 10,000 50,000 100,000 10,000 50,000 100,000
Sent pkts 10,000 50,000 100,000 10,000 50,000 100,000
Agent received pkts 10,000 49,464 93,163 10,000 49,878 98,605
ipfixprobe pkts 10,000 49,464 93,163 10,000 49,878 98,605
Pre-filtering drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Transfer drop rate 0.00% 1.07% 6.87% 0.00% 0.24% 1.39%
Agent drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

with a single ACL applied. Furthermore, the desired ACL was successfully applied, as the filtered
packets did not show up in the ipfixprobe application.

For the last test with a smaller bandwidth speed, the highest number of ACLs that the
L3 pre-filtering module supports were applied. The ACLs applied were chosen deliberately to
preserve some addresses from the original flow, so the ipfixprobe would still receive a fraction of
generated packets. The filtered addresses were chosen accordingly:

The addresses from range 10.0.0.3 up to 10.0.0.7 were filtered using separate ACLs like
“-F 10.0.0.3/32”

The addresses from the subnet 10.0.0.8/28 were filtered altogether with one ACL.

5 ACLs that filter the IP addresses from the network 192.168.0.0/16 were chosen randomly
to provide more realistic results.

5 ACLs that filter the IP addresses to the network 172.16.0.0/12 were chosen randomly to
provide more realistic results.

The generator was set to always generate 1
5 packets in each of the flows 10.0.0.1 −→ 10.0.1.1

and 10.0.0.2 −→ 10.0.1.1. Other 4
5 packets were generated from the random filtered flows to

generate a load at filtering submodule. Because of this behaviour, sent pkts row contains the
amount of non-filtered, sent packets.

Table 4.3 L3 pre-filtering module with 16 ACLs applied

Pre-filter Mode Specialized Mode Generic Mode
Total Packets Generated 104 5 ∗ 104 105 104 5 ∗ 104 105

Received pkts 10,000 50,000 100,000 10,000 50,000 100,000
Processed pkts 10,000 50,000 100,000 10,000 50,000 100,000
Sent pkts 2,000 10,000 20,000 2,000 10,000 20,000
Agent received pkts 2,000 10,000 20,000 2,000 10,000 20,000
ipfixprobe pkts 2,000 10,000 20,000 2,000 10,000 20,000
Pre-filtering drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Transfer drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Agent drop rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

From Table 4.3 we can see that the filtering submodule fluently and correctly handles the task
using one worker vCPU core with 0% drop rate. Only the desired packets reached the ipfixprobe

1pps stands for packets per second

30 Testing and Evaluation

agent, proving that the ACLs work precisely (in fact, the filtered packets did not even reach the
TX queue of the NIC). This is an indicator that the DPDK ACLs are being used efficiently, even
at lower speeds. This fact supports the statement that the DPDK framework is a viable choice
not only for high-speed networks, but also for networks with lower bandwidths.

In this second half of the chapter, the true nature of DPDK is explored — the efficiency in
the high-speed networks. For this thesis, the testing was done in collaboration with CESNET
association, which supplied the infrastructure necessary for high-speed network testing. The
specifications of the infrastructure used in the testing are following:

High-speed traffic generator Spirent TestCenter — robust solution capable of generating data
ranging from the L2 to L7 with 100 Gb/s

Single L3 pre-filtering module

OS: Oracle Linux 8
CPU: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
vCPU cores used: 64
RAM: 186 GiB + 31 GiB swap
NIC: Customized FPGA Card

Two use cases were tested: the amount of processed packets with no ACLs applied to de-
termine the throughput and forwarding part of the L3 pre-filtering module, and the amount of
processed packets with one inbound and one outbound ACL to test the filtering part (there is
also listed the amount of filtered packets by the ACLs). For both of these tests a saturated
100 Gbps packet stream was supplied as a source of packets. The specialized mode was used
for this use case, as it does not make sense to test the results on one processing thread. The
measurements were taken for different packet lengths, ranging between 64 and 1024 bytes. All
of the packets contained the L2, L3 (IPv4) and L4 (UDP) header with payload. The results are
shown in Table 4.4.

Table 4.4 L3 pre-filtering module with 100 Gbps saturated flow

Packet length Processed pkts (no ACL) Processed pkts (2 ACLs) Filtered pkts
64 B 17,607,242 12,617,598 44,635
128 B 15,481,715 14,187,004 49,690
256 B 13,413,720 13,582,721 50,471
512 B 11,575,206 12,694,365 61,117
1024 B 10,358,616 10,935,624 58,204

From the statistics in the aforementioned table, we can determine the throughput of the NIC
by using the formula

throughput (Gbps) = pkts ∗ size ∗ 8

time ∗ 109

which for the pre-filtering without the ACLs equals

17607242 ∗ 64 ∗ 8

10 ∗ 109
= 0.901 Gbps

15481715 ∗ 128 ∗ 8

10 ∗ 109
= 1.585 Gbps

13413720 ∗ 256 ∗ 8

10 ∗ 109
= 2.747 Gbps

31

11575206 ∗ 512 ∗ 8

10 ∗ 109
= 4.741 Gbps

10358616 ∗ 1024 ∗ 8

10 ∗ 109
= 8.486 Gbps

and for the pre-filtering with ACLs applied equals

12617598 ∗ 64 ∗ 8

10 ∗ 109
= 0.646 Gbps

14187004 ∗ 128 ∗ 8

10 ∗ 109
= 1.453 Gbps

13582721 ∗ 256 ∗ 8

10 ∗ 109
= 2.782 Gbps

12694365 ∗ 512 ∗ 8

10 ∗ 109
= 5.200 Gbps

10935624 ∗ 1024 ∗ 8

10 ∗ 109
= 8.958 Gbps

These results are also nicely summed up in Figure 4.1.

Figure 4.1 L3 pre-filtering module performance with 100 Gbps flow

From the measurements we can see that the L3 pre-filtering module performs better with the
packets of size closer to MTU. This is an expected behaviour, as there is more data (L2 and L3
headers) to be processed when receiving smaller packets than there is in the longer ones. The
crucial fact in this tests is that all of these measurements were taken using only 1 RX and 1 TX
queue. As the NIC supports the RSS2, NIC’s throughput scales additively with the amount of
RX and TX queues used. We can therefore safely assume that the full throughput of the NIC
with 8 RX and TX queues for packets of size 1024 B is then equal to 8.958∗8 = 71.664 ≈ 72Gbps.
As the packet size rises to the MTU size, so does the throughput of the L3 pre-filtering module,
which ultimately converges to 100 Gbps. This proves that the DPDK framework utilizes the
NICs at their full potential.

2Receive Side Scaling

32 Testing and Evaluation

Lastly, the agent processing speed can be further increased by running multiple instances of
the agent application on the endpoint. The ipfixprobe application supports multiple input sources
and therefore can manage multiple DPDK ring structures, created by the agent application(s).
There is however a slight issue with this reasoning – only one of the agent applications can run
as a primary DPDK application, as the EAL can not be initiated and freed multiple times at
the same time. This limitation can be bypassed by using the EAL arguments when launching
the agent applications. Even better solution is to use one agent application that will scale the
DPDK ring structures regarding to the desired amount of NICs.

Chapter 5

Conclusion

The goal of this thesis was to design a concrete proof-of-concept infrastructure using the
DPDK framework that would pre-filter the packet flows between the network security applications
evenly while preserving the packet flows. The infrastructure should also handle the network traffic
correctly even in the high-speed networks.

The study was conducted whether the DPDK framework is a viable choice for this thesis.
Plenty of software libraries that handle packet processing and filtering were found, but none of
them fit the assignment of the thesis better than DPDK. As for the facts provided in the earlier
parts of this thesis, the DPDK offers a handy solution when high-speed network applications
need to be developed.

The proof-of-concept infrastructure was designed to filter L2 or L3 traffic using the access
control lists. The infrastructure consists of the pre-filtering module, which processes the packet
flows, filters the traffic and ultimately encapsulates them and sends them to the designated
endpoints. Depending on the network security application, different agent modules receive the
encapsulated packets, process them and forward them to the designated application. In this
thesis, both ipfixprobe and Suricata were chosen as examples for network security applications.

The proposed infrastructure was tested in two different use cases, both using the ipfixprobe
as an endpoint network security application. The small data throughput use case was tested
to determine the correctness of the filtering and forwarding module with small flow rate. The
testing of this use case was successful, as there seems to be no problem with both generic and
specialized mode of the L3 pre-filtering module. The processing drop rate of the L3 pre-filtering
module and the agent module were both 0%, proving that the DPDK framework does not cause
halting problems with small data. In the second use case, the tests were conducted on the
L3 pre-filtering module with and without the ACLs when 100 Gbps needed to be processed for
10 seconds. The tests with high-speed networks showed that the single NIC queue implementation
can handle ∼ 10Gbps. By using all NIC queues, it is achievable to get to desired speeds in order
of 100Gbps.

Due to the limited scope of the thesis, sample proof-of-concept infrastructure was imple-
mented, leaving room for a potential improvement of both the pre-filtering module and the
agent module. For instance, in the aforementioned pre-filtering module’s implementation, only
one of the potentially many available RX and TX queues are used (the specific number of queues
depend on the NIC). The RSS hashing functions could also be used to decrease the load on the
processing threads by using already calculated hashes from the RSS in the flow classification.
Additionally, in high-end CPUs where more worker threads are available, this creates a room for
experimenting with various combinations with multiple frame retrieving, processing and sending
worker threads. The overall performance and distribution is expected to be even better than the
standard pipeline approach used in this thesis, but further research is required.

33

34 Conclusion

In summary, all of the goals set for this thesis were achieved, with no result being inconclusive.
The proposed proof-of-concept infrastructure proved that the DPDK framework is a feasible
solution for flow-preserving, load-balancing applications.

Bibliography

1. BEALE, Jay; FOSTER, James C.; POSLUNS, Jeffrey; CASWELL, Brian. Snort Intrusion
Detection 2.0. Rockland, MA: Syngress, 2003. isbn 1-931836-74-4.

2. PCAP_NEXT_EX(3PCAP) MAN PAGE [online]. 2022. [visited on 2023-03-03]. Available
from: https://www.tcpdump.org/manpages/pcap_next_ex.3pcap.html.

3. Building libpcap on Windows with Visual Studio [online]. 2021. [visited on 2023-03-31].
Available from: https://github.com/the-tcpdump-group/libpcap/blob/master/doc/
README.Win32.md.

4. WinPcap Official Website [online]. 2018. [visited on 2023-03-03]. Available from: https:
//www.winpcap.org/default.htm.

5. Npcap Official Website [online]. 2021. [visited on 2023-03-03]. Available from: https://
npcap.com/.

6. FreeBSD Documentation, Chapter 32. Firewalls [online]. 2023. [visited on 2023-03-04]. Avail-
able from: https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-
ipfw.

7. BPF Features by Linux Kernel Version [online]. 2023. [visited on 2023-03-12]. Available from:
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp.

8. XDP benchmark baseline [online]. 2023. [visited on 2023-03-12]. Available from: https:
//github.com/tohojo/xdp-paper/blob/master/benchmarks/bench01_baseline.org#
initial-data-from-jespers-runs.

9. XDP Packet Processing Overview [online]. 2023. [visited on 2023-03-12]. Available from:
https://www.iovisor.org/technology/xdp.

10. PF_RING™ [online]. 2023. [visited on 2023-03-17]. Available from: https://www.ntop.
org/products/packet-capture/pf_ring/.

11. PF_RING ZC (Zero Copy) [online]. 2023. [visited on 2023-03-17]. Available from: https:
//www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/.

12. PF_RING FT (Flow Table) [online]. 2023. [visited on 2023-03-17]. Available from: https:
//www.ntop.org/products/packet-capture/pf_ring/pf_ring-ft-flow-table/.

13. NVIDIA PMDs [online]. 2023. [visited on 2023-03-31]. Available from: https://developer.
nvidia.com/networking/dpdk.

14. Memory in DPDK, Part 1: General Concepts [online]. 2023. [visited on 2023-03-31]. Avail-
able from: https://www.dpdk.org/blog/2019/08/21/memory- in- dpdk- part- 1-
general-concepts/.

35

https://www.tcpdump.org/manpages/pcap_next_ex.3pcap.html
https://github.com/the-tcpdump-group/libpcap/blob/master/doc/README.Win32.md
https://github.com/the-tcpdump-group/libpcap/blob/master/doc/README.Win32.md
https://www.winpcap.org/default.htm
https://www.winpcap.org/default.htm
https://npcap.com/
https://npcap.com/
https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-ipfw
https://docs.freebsd.org/en/books/handbook/firewalls/#firewalls-ipfw
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://github.com/tohojo/xdp-paper/blob/master/benchmarks/bench01_baseline.org#initial-data-from-jespers-runs
https://github.com/tohojo/xdp-paper/blob/master/benchmarks/bench01_baseline.org#initial-data-from-jespers-runs
https://github.com/tohojo/xdp-paper/blob/master/benchmarks/bench01_baseline.org#initial-data-from-jespers-runs
https://www.iovisor.org/technology/xdp
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-ft-flow-table/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-ft-flow-table/
https://developer.nvidia.com/networking/dpdk
https://developer.nvidia.com/networking/dpdk
https://www.dpdk.org/blog/2019/08/21/memory-in-dpdk-part-1-general-concepts/
https://www.dpdk.org/blog/2019/08/21/memory-in-dpdk-part-1-general-concepts/

36 Bibliography

15. Suricata Features - Official Website [online]. 2023. [visited on 2023-04-01]. Available from:
https://suricata.io/features/.

16. ČEJKA, Tomáš; ŽÁDNÍK, Martin. Preserving Relations in Parallel Flow Data Processing.
In: Autonomous Infrastructure, Management and Security. 2017.

17. Packet Classification and Access Control - DPDK Programmer’s Guide. In: [online]. 2015
[visited on 2023-04-13]. Available from: https://doc.dpdk.org/guides/prog_guide/
packet_classif_access_ctrl.html.

18. RFC 894 - A Standard for the Transmission of IP Datagrams over Ethernet Networks. In:
[online]. 1984 [visited on 2023-04-08]. Available from: https://www.rfc-editor.org/rfc/
rfc894.

19. Ethernet Jumbo Frames. 2009-11. Tech. rep. Ethernet Alliance. Available also from: http:
//www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-
Frames-v0-1.pdf.

20. WIKIPEDIA CONTRIBUTORS. Time Stamp Counter — Wikipedia, The Free Encyclo-
pedia. 2023. Available also from: https://en.wikipedia.org/w/index.php?title=Time_
Stamp_Counter&oldid=1137210613. [Online; accessed 19-April-2023].

21. PAGH, Rasmus. Cuckoo Hashing for Undergraduates. 2006. Tech. rep. IT University of
Copenhagen. Available also from: https://www.itu.dk/people/pagh/papers/cuckoo-
undergrad.pdf.

22. RFC 7915 - IP/ICMP Translation Algorithm. In: [online]. 2016 [visited on 2023-04-08].
Available from: https://www.rfc-editor.org/rfc/rfc7915.

23. Ring Library - DPDK Programmer’s Guide. In: [online]. 2018 [visited on 2023-04-21]. Avail-
able from: https://doc.dpdk.org/guides/prog_guide/ring_lib.html.

24. ŠIŠMIŠ, Lukáš. Optimization of the Suricata IDS/IPS. Brno, 2021. MA thesis. Brno Univer-
sity of Technology, Faculty of Information Technology, Department of Computer Systems
(DCSY).

25. ChangeLog - Suricata git repository maintained by the OISF. In: [online]. 2022 [visited
on 2023-04-22]. Available from: https://github.com/OISF/suricata/blob/master/
ChangeLog.

https://suricata.io/features/
https://doc.dpdk.org/guides/prog_guide/packet_classif_access_ctrl.html
https://doc.dpdk.org/guides/prog_guide/packet_classif_access_ctrl.html
https://www.rfc-editor.org/rfc/rfc894
https://www.rfc-editor.org/rfc/rfc894
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
https://en.wikipedia.org/w/index.php?title=Time_Stamp_Counter&oldid=1137210613
https://en.wikipedia.org/w/index.php?title=Time_Stamp_Counter&oldid=1137210613
https://www.itu.dk/people/pagh/papers/cuckoo-undergrad.pdf
https://www.itu.dk/people/pagh/papers/cuckoo-undergrad.pdf
https://www.rfc-editor.org/rfc/rfc7915
https://doc.dpdk.org/guides/prog_guide/ring_lib.html
https://github.com/OISF/suricata/blob/master/ChangeLog
https://github.com/OISF/suricata/blob/master/ChangeLog

Content of the attached media

bi-bap/...Git repository folder
README.md....................................Brief description about the media content
agent-ipfixprobe/ Folder with ipfixprobe application and its associated agent

src/
Makefile
dpdk-setup.sh....................Script used to set up DPDK environment on VMs

agent-Suricata/............Folder with Suricata modified files (Suricata not included)
suricata/
dpdk-setup.sh....................Script used to set up DPDK environment on VMs

generator/...............................Folder with packet generator application files
src/
Makefile
dpdk-setup.sh....................Script used to set up DPDK environment on VMs
generator.py
tester.py

l2filter/..........................Folder with L2 Pre-filtering Module application files
src/
Makefile
dpdk-setup.sh....................Script used to set up DPDK environment on VMs

l3filter/..........................Folder with L3 Pre-filtering Module application files
src/
Makefile
Doxyfile
dpdk-setup.sh....................Script used to set up DPDK environment on VMs

text/..Thesis PDF and LATEX source files
thesis.pdf..This document

37

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	State-of-the-art Works
	Libpcap Library
	WinPcap Library
	IPFirewall
	XDP
	PF_RING

	Design
	DPDK Framework
	Environment Abstraction Layer (EAL)
	Poll Mode Driver (PMD)
	Memory and Caching

	Suricata
	ipfixprobe

	Implementation
	Proposed Infrastructure
	Flow Generation
	L2 Pre-filter Module
	L3 Pre-filter Module
	Agent Modules

	Testing and Evaluation
	Conclusion
	Content of the attached media

