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Abstract

This thesis explores the use of Julia pro-
gramming language for the automatic con-
trol of the laboratory model, with the ball
and hoop model to be more specific. The
demonstration will include not only the
design process but also an implementation
on the real laboratory model all using Ju-
lia language with the packages dedicated
to an individual task. The first part is go-
ing to describe the real laboratory model.
In the second part, the modeling of the
system is discussed followed by lineariza-
tion and analysis of the linearized model.
The next part deals with a controller de-
sign followed by an implementation of the
designed controller on a real model. Fi-
nally, the measured results are discussed
in the last part.

Keywords: Julia, control algorithms,
controller design, modeling, simulations

Supervisor: doc. Ing. Zdeněk Hurák,
PhD.

Abstrakt

Tato práce se zabývá využitím jazyku
Julia pro automatické řízení laborator-
ního modelu, konkrétně modelu kuličky
v obruči. V této práci bude představen
nejen proces návrhu řízení, ale také ná-
sledná implementace na reálném labora-
torním modelu vše za použití Julie a jed-
notlivých balíčků. V první části je popsán
reálný laboratorní model. Ve druhé části
je diskutováno modelování laboratorního
modelu s následnou linearizací a analýzou
tohoto lineárního modelu. Další část se
zabývá návrhem regulátorů s následnou
implementací navrženého regulátoru na
reálném modelu. Naměřené výsledky jsou
poté diskutovány.

Klíčová slova: Julia, řídicí algoritmy,
návrh regulátoru, modelování, simulace
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Chapter 1

Introduction

1.1 Objectives

The goal of this thesis is to demonstrate the whole process of designing a
control algorithm using the programming language Julia on a ball and hoop
system. Mainly the process is going to consist of the following:

. construction of a mathematical model. estimation of the parameters of the mathematical model based on mea-
sured experimental data. linearization and linear analysis. designing a proper controller. implementation of the designed controller

Another objective of this thesis is to develop a Julia package for interaction
with the ball and hoop system, providing a simple interface for the end user
to simulate the system and also to design controllers and simulate them
afterward.

There are various tasks to be done with this particular system (for example,
looping a loop, swinging the ball on an outer hoop, etc.). The main task
demonstrated in this thesis will be stabilizing the ball in a stable position.
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1. Introduction .....................................
1.2 Motivation

Julia is a fast, dynamically typed, open-source programming language devel-
oped in 2012. The primary usage purpose for Julia is scientific computations.
However, a handful of people are trying to use Julia for control mainly because
it is open source, unlike Matlab, which is considered a standard for control
and control designing.

These properties mentioned above make Julia an excellent rival for Matlab
in a control community and also suitable for exploring its capabilities for
controlling a real physical system.

1.3 State of the art

Most of the control algorithms are designed in Matlab or Simulink followed
by compilation into a binary executable file that can be run on a certain
machine. Despite Julia being a fast and compiled language, almost no one
tried running a Julia code instead of the binary executable file, except for
one group at Lund University at the Department of Automatic Control. This
group is working on a project that can be found at GitLab1.

1https://gitlab.control.lth.se/labdev/LabConnections.jl
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Chapter 2

Description of the system

The system was developed by Ing. Jiří Zemánek, PhD. and Ing. Martin
Gurtner as a part of the article [5], which demonstrates numerical optimal
control of the system. They also allowed building the same system for anyone
because all the source files can be found at github1.

In Figure 2.2 is depicted the block diagram of the system which consists of
a Raspberry Pi 4B module acting as a central processing unit, a motor driver
with a BLCD motor that communicates with the Raspberry Pi via UART, a
hoop attached to the motor, and a PiCamera module with additional LED
lights.

The Raspberry Pi requests the desired torque of the motor, and the motor
driver responds with information about the position (angle), angular velocity,
and motor current. The PiCamera on the other hand sends a detected position
of the ball with a sampling frequency of 50 Hz. Therefore, the torque will
act as an input to the system and the position of the ball will be an output
of the system regarding the controlling task. It needs to be mentioned that
setting the torque and receiving the detected position of the ball are both
independent. More about communication with the motor driver and ball
detection is discussed at Section 6.3 and Section 6.2.

The torque itself has boundary values of -0.7 Nm and 0.7 Nm, therefore
there is an input saturation as a static nonlinearity.

1Source files for building https://github.com/aa4cc/flying-ball-in-hoop/tree/
3a610f4ad3c1a0d1401ce15c19b1147673f82cc7
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2. Description of the system ...............................

Figure 2.1: Real laboratory model.

Motor driver
& BLDC
motor

Shaft

Plant

UART

PiCamera & lights

Figure 2.2: Block diagram of the laboratory model.
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Chapter 3

Modeling of the system

There exists plenty of methods for modeling dynamical systems such as bond
graphs, Euler-Lagrange equations and so on. The best method suited for
modeling this particular system is going to be a modeling technique based
on Euler-Lagrange equations since expressing an exchange of energy of this
system is hardly describable for utilizing the bond graphs modeling technique.

It is crucial to mention that this system is hybrid, meaning that a system can
be in a configuration, where a dynamic behavior can be expressed by ordinary
differential equations, and can be transitioned to another configuration, where
the dynamic behavior is expressed by other ordinary differential equations.
These transitions, called guards, are in a form of a certain condition. To
change the configuration, the system must meet the guards.

Nevertheless, the main task is to control the ball in a stable position,
therefore, a configuration where the ball is rolling inside the bigger hoop will
be considered and other configurations are going to be omitted.

There exists a certain package for modeling systems in Julia, the Modeling-
Toolkit.jl package [8]. This package is an equation-based package for modeling
a vast majority of systems. Moreover, the ModelingToolkit.jl package has a
standard library package called ModelingToolkitStandardLibrary.jl1 which
allows a user to construct components and blocks for mechanical, electri-
cal, magnetic and thermal systems. The ModelingToolkit.jl package has

1Official documentation https://docs.sciml.ai/ModelingToolkitStandardLibrary/
stable/
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3. Modeling of the system ................................

Figure 3.1: Ball and hoop sketch [9].

also embedded the Symbolics.jl package [4] which will be used to derive the
Euler-Lagrange equations.

3.1 Euler-Lagrange equations

The sketch of the system is in the Figure 3.1. Firstly, a vector of generalized
coordinates q needs to be determined to describe the dynamics of the system
using the Euler-Lagrange formalism. A number of elements of the vector q is
corresponding to a minimum number of variables required to fully describe
the dynamics of the system, therefore, the generalized coordinates need to be
chosen appropriately. Let q =

[
θ ψ

]T
.

Secondly, the Euler-Lagrange equations

d
dt

(
∂L
∂q̇

)
− ∂L
∂q

+ ∂D

∂q̇
= Q (3.1)

need to be derived, where D denotes a dissipative force, Q denotes vector of
external forces (in this case Q =

[
τ 0

]T
), because the torque τ only acts on

θ, and L denotes a Lagrangian defined as

L(q̇, q, t) = T ∗(q̇, q, t) − V(q, t), (3.2)

6



............................... 3.1. Euler-Lagrange equations

where T ∗ is a kinetic co-energy and V is a potencial energy. The kinetic
co-energy of the ball can be expressed as follows

T ∗ = 1
2mbv

2 + 1
2Ib(φ̇+ θ̇)2 + 1

2Ihθ̇
2, (3.3)

the potential energy can be expressed as follows

V = −mbg(Ro −Rb) cosψ (3.4)

and the dissipative force as

D = 1
2bbφ̇

2 + 1
2bhθ̇

2, (3.5)

where mb is the weight of the ball, v is the translational velocity of the ball,
φ̇ is an angular velocity of the ball, Ib is a moment of inertia of the ball, Ih is
a moment of inertia of the hoop, bb and bh are coefficients of friction of the
ball and the hoop respectively. The only remaining task is to express v and
φ̇ in terms of generalized coordinates θ and ψ. Since φ = s

Rb
= Ro

Rb
(θ − ψ),

the angular velocity of the ball and the translational velocity of the ball are
defined as:

φ̇ = Ro

Rb
(θ̇ − ψ̇) (3.6)

v = −(Ro −Rb)ψ̇ (3.7)

In the following few lines of code, Julia will be used to evaluate the Equation 3.1
instead of a manual differentiating using the ModelingToolkit.jl package.

using ModelingToolkit
@variables t theta(t) psi(t) tau(t)
@parameters Ro Rb mb Ib Ih g bb bh

# Performs derivative of a term with respect to a wrt_var
d(term, wrt_var) = Symbolics.derivative(term, wrt_var)

# Variable definition
d_theta = d(theta, t)
d_psi = d(psi, t)
phi = (Ro / Rb) * (theta - psi)
d_phi = d(phi, t)

v = -(Ro - Rb) * d_psi
T = 0.5 * (mb * vˆ2 + Ib * (d_phi + d_theta)ˆ2 + Ih * d_thetaˆ2)
V = -mb * g * (Ro - Rb) * cos(psi)
D = 0.5 * bb * d_phiˆ2 + 0.5 * bh * d_thetaˆ2

# Lagrangian and Euler-Lagrange equations
L = T - V

7



3. Modeling of the system ................................
eq1 = d(d(L, d_theta), t) - d(L, theta) + d(D, d_theta) ~ tau
eq2 = d(d(L, d_psi), t) - d(L, psi) + d(D, d_psi) ~ 0
eq1 = simplify(eq1)
eq2 = simplify(eq2)

The resulting Euler-Lagrange equations can be written in the following
form:

Mq̈ + Qq̇ + C sinψ + Dτ = 0, (3.8)

where

M =

Ib

(
Ro
Rb

+ 1
)2

+ Ih − IbRo

Rb

(
Ro
Rb

+ 1
)

− IbRo

Rb

(
Ro
Rb

+ 1
)

mb(Ro −Rb)2 + IbR2
o

R2
b

 , (3.9)

Q =

 bbR2
o

R2
b

+ bh − bbR2
o

R2
b

− bbR2
o

R2
b

bbR2
o

R2
b
,

 (3.10)

C =
[

0
gmb(Ro −Rb)

]
, (3.11)

D =
[
−1
0

]
(3.12)

3.2 State equations

For a further procedure, it is useful to convert the Equation 3.1 to a state
space representation in a general form of

ẋ = f(x,u, t) (3.13)

y = g(x,u, t) (3.14)

Julia does not yet offer a conversion from Euler-Lagrange equations to the
state space representation or the ability to express a variable from a certain
expression. Therefore, the conversion must be done manually with the
small help of the Symbolics.jl package. Since the dynamics of the model is
described by two second-order differential equations, the x is going to consist
of 4 elements. The natural choice of x and y will be x =

[
θ θ̇ ψ ψ̇

]T
and

y = ψ.

8



................................... 3.2. State equations

The state space representation can be obtained from Equation 3.8 by
multiplying the whole equation by the inverse of the matrix M . Thus the
state space representation can be written like this:

q̈ = −M−1Q︸ ︷︷ ︸
J

q̇ −M−1C︸ ︷︷ ︸
K

sinψ−M−1D︸ ︷︷ ︸
L

τ (3.15)

The obtained state space representation is described by the following set
of ordinary differential equations.

d
dtθ = θ̇ (3.16)

d
dt θ̇ = J11θ̇ + J12ψ̇ +K1 sinψ + L1τ (3.17)

d
dtψ = ψ̇ (3.18)

d
dt ψ̇ = J21θ̇ + J22ψ̇ +K2 sinψ + L2τ (3.19)

y = ψ (3.20)

In order to create the ball and hoop system in Julia, the user can use a
function called BallAndHoop in the BallAndHoopSystem.jl package which
returns an ODESystem. The user can additionally specify an operating point,
in which a linearization will be performed, as well as a vector of physical
parameters of the system.

The following code shows the function for creating the ball and hoop
system in Julia. It is important to note that the parameters are initialized to
specific values that were obtained as a result of an optimization process. The
optimization process is going to be discussed in the next section.

function ball_and_hoop(; name, OP=zeros(4))
@variables t
# Create input and output structures
@named input = RealInput()
@named output = RealOutput()

# Saturation block
@named saturation = Limiter(y_max=0.7)

# Define state variables and initialize them to the OP
@variables theta(t) = OP[1]
@variables d_theta(t) = OP[2]
@variables psi(t) = OP[3]
@variables d_psi(t) = OP[4]

9



3. Modeling of the system ................................
# Define parameters of the ODEs and initialize them
@parameters L1 = 586.3694971455833 [tunable = true]
@parameters J12 = 0.06769766279210704 [tunable = true]
@parameters J11 = -0.4818896328354544 [tunable = true]
@parameters K1 = -5.119508012862879 [tunable = true]
@parameters J22 = -0.33509889971201284 [tunable = true]
@parameters J21 = -0.0032686776857956444 [tunable = true]
@parameters L2 = 210.1200001949957 [tunable = true]
@parameters K2 = -73.63359905056758 [tunable = true]
dt = Differential(t)

# Vector of states and parameters
states = [theta, d_theta, psi, d_psi]
parameters = [L1, J12, J11, K1, J22, J21, L2, K2]

# State space equations
eqs = [

dt(theta) ~ d_theta
dt(d_theta) ~ J11 * d_theta + K1 * sin(psi) + J12 * d_psi +

L1 * saturation.y
dt(psi) ~ d_psi
dt(d_psi) ~ J21 * d_theta + K2 * sin(psi) + J22 * d_psi +

L2 * saturation.y
output.u ~ psi
saturation.u ~ input.u

]

# Creating ODESystem from equations, independent variables,
# states and parameters
sys = ODESystem(eqs, t, states, parameters; name=name)

# Composing created ODESystem with other ODESystem blocks
compose(sys, [input, output, saturation])

end

3.3 Parameters estimation

Parameter estimation or parameter identification inherently belongs to a
modeling procedure. Having a general description of a system is not enough,
therefore, it is desired to have a particular description of a system for further
analysis and control design.

10



................................ 3.3. Parameters estimation

The presented approach of estimation of parameters is an optimization-
based approach. The overall goal is to identify the physical parameters of the
system based on measured data from the experiments. As Figure 2.2 depicts,
the only measured variables are θ, θ̇, ψ with a known input τ . These data
were provided in a .mat file and converted into a HDF5 file.

Firstly, using the packages DiffEqParamEstim.jl 2 with support from
Optimisation.jl [3] and OptimisationOptimJL.jl3, the entries of the matrices
J ,K,L are estimated and then the physical parameters are calculated from
these entries by solving a set of nonlinear equations. Since all the physical
parameters are positive, the problem is formulated as a nonlinear program
(NLP). The popular JuMP.jl [7] package is used here to formulate the NLP,
with the NLopt.jl [6] package providing a variety of solvers.

3.3.1 Estimation of parameters of the equations

The following optimization task can be formulated as follows:

min
J ,K,L

∥g(J ,K,L)∥2, (3.21)

where
g(J ,K,L) = x(J ,K,L)︸ ︷︷ ︸

solution of ODEs

− x̂︸︷︷︸
measured data

. (3.22)

The equations 3.16 - 3.19 show that only the equations 3.17 and 3.19 depends
on the matricies J ,K,L hence the measured data will be considered θ̇ and
ψ̇. Since ψ̇ is not directly measurable, the ψ is going to be considered instead
of ψ̇ because ψ and ψ̇ are tied together and ψ is also measurable.

To evaluate the objective function which is going to be minimized, a
solution of ODEs is required. In other words, the simulation of the system
is mandatory. The user can utilize the function load_hdf5_data to load the
data from experiments.

The structure of the data is the following: the file has groups called ‘ExpN’,
where N is a number of an experiment. In this case, the file has two groups -
‘Exp1’ and ‘Exp2’. Each group has fields that store a sequence of input and
states and also timestamps when these variables were sampled.

2Official documentation https://docs.sciml.ai/DiffEqParamEstim/stable/
3Official documentation https://docs.sciml.ai/Optimization/stable/

optimization_packages/optim/
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3. Modeling of the system ................................
The function below shows how loading a HDF5 file is implemented and it

is available in the BallAndHoop.jl package.

function load_hdf5_data(file::String, experiment::String)
fid = h5open(file, "r")
group = fid[experiment]
timestamps = read(group["Timestamps"])
states = read(group["States"])
input = read(group["Input"])
return timestamps, states, input

end

As stated before, the packages DiffEqParamEstim.jl, Optimization.jl and
OptimizationOptimJL.jl are going to be used for the optimization.

using BallAndHoop, ModelingToolkit, DifferentialEquations
using ModelingToolkitStandardLibrary.Blocks
using DiffEqParamEstim, Optimization, OptimizationOptimJL

The next step is to load the measured data from the experiments and
modify them for future usage.

path = "./Experiments"
experiment = "Exp1" # Choosing experiment no. 1

# Loading measured data from experiment 1
timestamps, states, input_data = load_hdf5_data(path, experiment)

# Choosing appropriate variables
data = states[:,2:3]

After loading the data, an ODESystem representing the ball and hoop
system is initialized. It is required to provide an input to the system from
loaded data via a user-defined function. For this case, a block called TimeVary-
ingFunction from ModelingToolkitStandardLibrary is used. The function will
simply index the loaded input vector based on a current time of a simulation.
Since conversion to an integer is used, it is necessary to tell a solver that it
should treat that function as symbolic. The reason is that a conversion of
a symbolic variable to an integer is not a valid operation, hence the macro
@register_symbolic is used.
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................................ 3.3. Parameters estimation

sampling_freq = 50 # Frequency in Hz

# Providing input values based on a current time of a simulation
u(t) = input_data[Int(floor(sampling_freq*t))+1]
@register_symbolic u(t)

# Creating an instance of the ball and hoop system
@named nonlinear_sys = ball_and_hoop()

# Creating a function block
@named source = TimeVaryingFunction(u)

After doing so, a connection between the system and the source block needs
to be established. The connection of two or more ODESystems is described
in the following lines of code.

# Vector of equations representing certain connections
connections = [

nonlinear_sys.input.u ~ source.output.u
]

# Creating an ODESystem from nonlinear_sys and source
# ODESystems
@named sim_loop = ODESystem(connections, t,

systems=[nonlinear_sys, source])

# Using structural simplify for simplification of the system
sim_loop = structural_simplify(sim_loop)

The penultimate step is creating an ODEProblem which is passed into an
ODE solver and defining an objective function.

# Initial condition from the measured data
init_cond = zeros(4)
init_cond[1:3] = states[1,:]

# Timespan from the measured data
tspan = (timestamps[1], timestamps[end])

# Creating ODEProblem from ODESystem, providing
# an initial condition and a timespan
prob = ODEProblem(sim_loop, init_cond, tspan)
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3. Modeling of the system ................................
loss = L2Loss(timestamps, data')

objective_fun = build_loss_objective(prob, Rosenbrock23(), loss,
Optimization.AutoForwardDiff(), maxiters=1e7,
save_idxs=[2,3])

The build_loss_objective function calls an ODESolver (in this case, Rosen-
brock23, which is a solver for stiff ODEs) and computes an L2 loss given by
an Equation 3.22. The Optimization.AutoForwardDiff tells how gradients are
going to be calculated, and the save_idxs means that only solution at indices
2 and 3 (θ̇ and ψ) are going to be used in the loss function evaluation.

The last step is formulating and solving an optimization problem using
a particular numerical algorithm. Since the parameters of the matrices J ,
K, L were given, these are going to be an initial guess for the numerical
algorithm.

init_params = [586.3695, 0.0677, -0.48, -5.1195, -0.3351,
-0.0034, 210.12, -73.6336]

# Creating an optimization problem
optprob = Optimization.OptimizationProblem(objective_fun,

init_params)

# Solving the optimization problem
optsol = solve(optprob, LBFGS())

The optsol is a minimizer to the optimization problem. All these parameters
are already included in the ball_and_hoop function. During the optimization,
a few things need to be mentioned.

1. Using a standard ODE solver, Tsit5, well known as an ode45 in Matlab,
led to an instability of the optimization. Using a stiff solver solved the
problem.

2. Many numerical optimization algorithms were tested, and the LBFGS
algorithm was the best suited for this task (it converged relatively quickly
and was stable).

14



................................ 3.3. Parameters estimation

3.3.2 Estimation of the physical parameters

Since all the matrix entries were estimated, it is time to extract physical
parameters from them by solving a set of nonlinear equations. Let λ =[
mb Ro Rb Ib Ih bb bh

]T
. The problem that needs to be solved can

be written in the form of h(λ) = 0.

Since the problem consists of eight equations with seven variables (g is a
well-known constant), the set of equations is overdetermined. Therefore the
solving of a set of nonlinear equations will turn into an optimization problem
defined as:

min
λ

∥h(λ)∥2 (3.23)

s.t. λi > 0, ∀i = 1, 2, . . . , 7, (3.24)

where
h(λ) = γ(λ)︸ ︷︷ ︸

evaluated
matrix
entries

− γ̂︸︷︷︸
estimated

matrix
entries

. (3.25)

As mentioned, the packages JuMP.jl and NLopt.jl will be used for the
optimization. The NLopt.jl package is a wrapper to NLopt library.

using JuMP, NLopt, LinearAlgebra

The JuMP.jl package uses a type called Model to store all necessary
information about an optimization problem. The following few lines of
code show how such a Model can be initialized.

# Initializing the JuMP model with the NLopt optimizer
model = Model(NLopt.Optimizer)

# Setting a numerical algorithm for the optimization
set_optimizer_attribute(model, "algorithm", :LD_LBFGS)

# Defining all the variables of the optimization problem
# with a constraint and initial guess
@variable(model, mb >= 0, start = 60.8e-3)
@variable(model, bh >= 0, start = 0.0075)
@variable(model, bb >= 0, start = 2.5737e-6)
@variable(model, Ro >= 0, start = 0.0957)
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3. Modeling of the system ................................
@variable(model, Rb >= 0, start = 0.0104)
@variable(model, Ih >= 0, start = 0.0015)
@variable(model, Ib >= 0, start = 3.679e-6)

The next step is to define an objective function that is going to be minimized.
In this case, the custom user-defined function will be defined.

function objective(lambda::T...) where {T<:Real}
# Splitting lambda vector
mb = lambda[1]
Ro = lambda[2]
Rb = lambda[3]
Ib = lambda[4]
Ih = lambda[5]
bb = lambda[6]
bh = lambda[7]

# Creating matrices
M = [Ib*(Ro/Rb+1)ˆ2+Ih -Ib*Ro/Rb*(Ro/Rb+1);

-Ib*Ro/Rb*(Ro/Rb+1) mb*(Ro-Rb)ˆ2+Ib*Roˆ2/Rbˆ2]
Q = [bb*Roˆ2/Rbˆ2+bh -bb*Roˆ2/Rbˆ2;

-bb*Roˆ2/Rbˆ2 bb*Roˆ2/Rbˆ2]
C = [0; 9.81*mb*(Ro-Rb)]
D = [-1; 0]

# Computing inverses and loss
try

J = -M \ Q
K = -M \ C
L = -M \ D

gamma = [J[1, 1]; J[1, 2]; J[2, 1]; J[2, 2];
K[1]; K[2]; L[1]; L[2]]

gamma_hat = [-0.48; 0.0677; -0.0034; -0.3351;
-5.1195; -73.6336; 586.3695; 210.12]

loss = norm((gamma .- gamma_hat))ˆ2
return loss

# Returning large number when inverses do not exist
catch e

return Float64(99999999999.0)
end

end
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................................ 3.3. Parameters estimation

Physical parameter Value Units
mb 60.80000008575297 g
Ro 9.570000006211415 cm
Rb 1.0400000535067755 cm
Ib 2.4963218878738077 · 10−6 kg · m2

Ih 0.0015000089046344925 kg · m2

bb 2.5737738382893808 · 10−6 N · s · m−1

bh 0.0074999999947648515 N · s · m−1

Table 3.1: Estimated physical parameters

The objective function evaluates matrices J , K, L based on current value
of λ and then computes squared an L2 norm of function h(λ). The whole
computation is in a try-catch block to prevent singular matrices. If some of
the matrices are singular, the penalization will be performed by returning a
large value of the objective function.

The last step is to pass the objective function to the model and call the
JuMP.optimize! function to start the optimization. Since the objective
function is user-defined, it is required to tell to register it with the register
function in this case. The passed arguments to this function are a model, a
symbol (under which the objective function will be represented, denoted with
a colon symbol), a number of input arguments and the function itself.

# Register a user-defined objective function
register(model, :objective, 7, objective; autodiff=true)

# Defining a objective -> minimizing registered function
@NLobjective(model, Min, objective(mb, Ro, Rb, Ib, Ih, bb, bh))

# Performing an optimization
JuMP.optimize!(model)

The exclamation mark in the JuMP.optimize! function tells that this
function modifies the input argument. For checking the value of a certain
variable, the user can call the function value to display the value of the
variable.

print("Mass of the ball is " * string(value(mb)) * " kg.")

Mass of the ball is 0.06080000008575297 kg.
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3. Modeling of the system ................................
The Table 3.1 shows all physical parameters and their values obtained by

the optimization.

3.4 Simulation of the nonlinear system

The simulation was already performed in the Section 3.3.1, where the simula-
tion was required to optimize the parameters of the state equations. However,
the solution of the state equation to the given input was not visualized.

In this section, the simulation process will be discussed in terms of how to
simulate an ODESystem in Julia, solver choice and comparison and compari-
son of the simulation with the measured experiments.

The simulation of an ODESystem in the Julia process is as follows:

1. Create a TimeVaryingFunction block.
2. Define connections (in this case connect an output of the TimeVarying-

Function block with an input of an ODESystem).
3. From these connections create a new ODESystem.
4. Structural simplification of the ODESystem.
5. Define an initial condition and a timespan of the simulation.
6. Create an ODEProblem from the simplified ODESystem, initial condition

and timespan.
7. Call the solve function with a particular solver.

This process can be for the end user a bit impractical, therefore the Bal-
lAndHoop package comes with the function simulate_system. This function
does all mentioned above. The user passes the following arguments to the
function: an ODESystem that is going to be simulated, a function acting
as an input to the given system, an initial condition, a timespan of the
simulation and a solver. It is important to note that if the input is a vector of
sampled input, the @register_symbolic macro must be used. The code below
demonstrates all steps mentioned above encapsulated into one function that
the user can call.

function simulate_system(sys::ODESystem, f::Any,
init_cond::Vector, tspan::Tuple,
solver::Any)
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........................... 3.4. Simulation of the nonlinear system

@named src = TimeVaryingFunction(f)
connections = [

sys.input.u ~ src.output.u
]
@named sim_loop = ODESystem(connections, Blocks.t,

systems=[src, sys])
sim_loop = structural_simplify(sim_loop)
sim_problem = ODEProblem(sim_loop, init_cond, tspan)
result = solve(sim_problem, solver)
return result

end

For the visualization, the Plots.jl [2] package is going to be used. This
package is by far the most used package for plotting. It provides many
backends such as GR, PlotlyJS, PythonPlot and so on. The default backend
is set to GR and it will be used for plotting. The LaTeXStrings.jl 4 package
is included for passing LaTeX-like syntax as labels and axis titles.

The default plot looks a bit empty and not so great to the eye, therefore a
variable plot_settings is defined and passed as an argument to all plot calls.
This variable is then passed to all plotting functions followed by a splatting
operator denoted as . . . which unpacks values from a tuple and passes them
as regular arguments.

using Plots, LaTeXStrings

# Setting a font and making a minor grid visible
plot_settings = (

fontfamily="Computer Modern",
minorgrid=true

)

The function simulate_system returns an ODESolution that encapsulates
a vector of timestamps and a vector of vectors of the individual solutions. For
plotting an individual solution, the key argument idxs is passed to indicate
which variables are going to be plotted.

The DifferentialEquations.jl [10] offers plenty of solvers, the most used
are Tsit5 and Rosenbrock23. Both of them have a Matlab equivalent (ode45
and ode23s respectively). The Tsit5 solver is not meant to be used for stiff
equations whereas Rosenbrock23 is meant to be used for stiff equations.

4GitHub repository at https://github.com/JuliaStrings/LaTeXStrings.jl
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3. Modeling of the system ................................
The following few lines demonstrate how to simulate an ODESystem and

visualize the result of the simulation. In the resulting plots, an input signal
to the system will be plotted as well as the measured data from the first
experiment with the simulated results obtained by the two mentioned solvers.

plot(timestamps,input_data,label="",
xguide=L"t \ [\mathrm{s}]",
yguide=L"\tau \ [\mathrm{Nm}]";
plot_settings...)

Figure 3.2: Input from the first experiment.

# Simulation with the Rosenbrock23 solver
sim_res_rb = simulate_system(nonlinear_sys, u, init_cond,

tspan,Rosenbrock23())

# Simulation with the Tsit5 solver
sim_res_tsit = simulate_system(nonlinear_sys, u, init_cond,

tspan, Tsit5())

# Plotting both simulations with the measured data
plot(sim_res_rb, idxs=[1], label="Rosenbrock23",

yguide=L"\theta \ [\mathrm{rad}]",
legend=:bottomleft;
plot_settings...)

plot!(sim_res_tsit, idxs=[1], label="Tsit5",
xguide=L"t \ [\mathrm{s}]")
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........................... 3.4. Simulation of the nonlinear system

Figure 3.4: Angular velocity of the hoop from the first experiment.

plot!(timestamps,states[:,1],label="Measured")

Figure 3.3: Angle of the hoop from the first experiment.

The Figure 3.3 and Figure 3.4 illustrate a significant difference between
using the Tsit5 and Rosenbrock23 solver. This difference will be reflected
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3. Modeling of the system ................................

Figure 3.5: Deflection angle of the ball from the first experiment.

when the simulation is going to be conducted using the input from the second
experiment. Therefore it is not caused by the particular input to the system.

The Figure 3.6 - Figure 3.9 show the performance of both solvers with the
input function provided from the data from the second experiment.

All these simulations show that a proper choice of a solver is mandatory
not only for the optimization in this case but also for the simulation of a
closed-loop nonlinear system with a controller.
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........................... 3.4. Simulation of the nonlinear system

Figure 3.6: Input from the second experiment.

Figure 3.7: Angle of the hoop from the second experiment.
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3. Modeling of the system ................................

Figure 3.8: Angular velocity of the hoop from the second experiment.

Figure 3.9: Deflection angle of the ball from the second experiment.
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Chapter 4

Linearization and linear analysis

Before the design of a controller in Julia will be discussed, it is useful to
linearize a given system in a so-called operating point. This will allow using a
linear state space representation of a system, a transfer function representation
of a system and analysis tools such as frequency response, location of poles
and zeros, and so on.

The package ControlSystems.jl [1] is going to be utilized for linear analysis
and controller design. For convenience, there exists a package called Control-
SystemsMTK 1 which provides an interface between ControlSystems.jl and
ModelingToolkit.jl

4.1 Linearization

ModelingToolkit.jl package is shipped with a function called linearize which
linearizes an ODESystem. However, a better way to linearize a system is
to call the function named_ss with an ODESystem, input and output as
arguments.

This function will perform linearization at the operating point (which can
be set by passing an argument to the function ball_and_hoop) and return a

1Official documentation https://juliacontrol.github.io/ControlSystemsMTK.jl/
dev/
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4. Linearization and linear analysis.............................
NamedStateSpace type.

The named_ss function is going to give certain inputs and outputs strange
names, this can be resolved by calling the ss function on the linearized system
to get rid of the names.

using ControlSystems, ControlSystemsMTK

# Unpacking the input and output from the system
@unpack input, output = nonlinear_sys

# Linearization
lsys = ss(named_ss(nonlinear_sys, [input.u], [output.u]))

ControlSystemsBase.StateSpace{Continuous, Float64}
A =

0.0 1.0 0.0 0.0
0.0 -0.4818896328354544 -5.119508012862879 0.06769766279210704
0.0 0.0 0.0 1.0

-0.0 -0.0032686776857956444 -73.63359905056758 -0.33509889971201284
B =

0.0
586.3694971455833

0.0
210.1200001949957

C =
0.0 0.0 1.0 0.0

D =
0.0

Continuous-time state-space model

4.2 Linear analysis

The list of all analysis tools offered by ControlSystems.jl can be found in the
official documentation with an example of use.

The state space representation is already obtained by the linearization
process. Another way to represent a linear system is by a transfer function
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.................................... 4.2. Linear analysis

or zero-pole-gain representation. The transfer function can be acquired by
calling the tf function.

tf(lsys)

TransferFunction{Continuous, ControlSystemsBase.SisoRational{Float64}}
1.4210854715202004e-14s^3 + 210.12000019499573s^2 + 99.3379968544011s

--------------------------------------------------------------------------
1.0s^4 + 0.8169885325474627s^3 + 73.79530101815311s^2 + 35.46653398922718s

Continuous-time transfer function model

Another useful piece of information is about the location of poles and zeros.
Poles and zeros can be obtained by calling the functions poles and tzeros
respectively. The user can plot the location as well by calling pzmap function.

poles(lsys)

4-element Vector{ComplexF64}:
0.0 + 0.0im

-0.4816611437370447 + 0.0im
-0.167663694405211 + 8.579375019784992im
-0.167663694405211 - 8.579375019784992im

tzeros(lsys)

2-element Vector{Float64}:
-0.4727679267190814
0.0

pzmap(lsys;xguide="Real axis", yguide="Imaginary axis",
markersize=5,markerstrokewidth=3, markeralpha=1,
title="", plot_settings...)
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4. Linearization and linear analysis.............................

Figure 4.1: Location of poles and zeros in the complex plane.

As Figure 4.1 depicts, the system has four poles, two of them are real
and the imaginary ones have a bigger imaginary part compared to the real
part. It can be seen that one pole has the same value as one zero of the
system and they are going to cancel out. This will affect the controllability
or observability of the system which can be computed by taking a full rank
of the controllability and observability matrices obtained by calling ctrb and
obsv respectively.

# Checking controllability and observability
println(rank(ctrb(lsys)) == 4)
println(rank(obsv(lsys)) == 4)

true
false

The last functionality that is going to be demonstrated in the time domain
is plotting a step response and extracting values like rise time, settling time
and so on. The step response is obtained by the step function and the result
is passed to the function stepinfo.
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.................................... 4.2. Linear analysis

step_response = step(lsys)
plot(stepinfo(step_response);

yguide=L"\psi \ [\mathrm{rad}]",
xguide=L"t \ [\mathrm{s}]",
plot_settings...)

Figure 4.2: Step response of the system.

It is also important to know, how the system behaves in the frequency
domain. For analysis in the frequency domain, the bodeplot, nyquistplot and
margin can be utilized.

# Setting y axis units to dB
setPlotScale("dB")
bodeplot(lsys;xguide=L"\omega \ [\mathrm{rad/s}]", label="",

yguide=[L"A \ [\mathrm{dB}]" L"\varphi \ [°]"],
plot_settings...)

# Plotting line at -3 dB and bandwidth frequency
plot!([-3],color=:red, width=0.1,

label="", seriestype="hline")
plot!([19.25],color=:red, width=0.1,

label="", seriestype="vline")
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4. Linearization and linear analysis.............................

Figure 4.3: Bode plot of the system.

nyquistplot(lsys, unit_circle=true; xguide="Real axis",
yguide="Imaginary axis", title="", label="",
xlims=[-3,3], plot_settings...)

Figure 4.4: Nyquist diagram of the system.
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........................... 4.3. Simulation of the linearized model

From the Figure 4.3 can be analyzed the bandwidth of the system, in this
scenario the bandwidth ωb ≈ 19.5 rad/s.

The last thing to analyze is the gain and phase margins. The margin
function returns a tuple of matrices of the frequency at which is gain margin
occurs, the value of the gain margin and these values for the phase margins
as well.

wgm, gm, wpm, pm = margin(lsys)

Gain margin is Inf at NaN rad/s.
Phase margin is 1.570004618148971° at 16.845711769073052 rad/s.

4.3 Simulation of the linearized model

For the simulation of the linear model, the simulate_system is going to be used.
However, the function accepts an ODESystem type, not a StateSpace type.
The ControlSystemsMTK offers not only a conversion from an ODESystem to
StateSpace but also a conversion from a StateSpace type to an ODESystem
type by simply passing a variable of type StateSpace as an argument to the
ODESystem function.

@named linear_sys = ODESystem(lsys)
sol1 = simulate_system(linear_sys, u, init_cond, tspan,

Rosenbrock23())
sol2 = simulate_system(nonlinear_sys, u, init_cond, tspan,

Rosenbrock23())
plot(sol1, idxs=[3],label="Linear system",

yguide = L"\psi \ [\mathrm{rad}]";plot_settings...)
plot!(sol2, idxs=[3],label="Nonlinear system",

xguide = L"t \ [\mathrm{s}]")
plot!(timestamps,states[:,3],label="Measured")
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4. Linearization and linear analysis.............................

Figure 4.6: Comparison of the deflection angle of the ball for nonlinear and
linear systems with the measured data from the second experiment.

Figure 4.5: Comparison of the deflection angle of the ball for nonlinear and
linear systems with the measured data from the first experiment.
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Chapter 5

Controller design

This chapter will discuss and demonstrate the design of controllers using the
ControlSystems.jl package. While ControlSystems.jl is not the sole package
dedicated to control design, there is another package called RobustAndOpti-
malControl.jl 1 that specializes in designing advanced controllers.

The Figure 5.1 illustrates a general scheme of a controller and a system
in a negative feedback loop with input and output disturbances. Since the
reference is set to zero and the input disturbance is not going to affect the
system, the general scheme can be reduced as it is depicted in the Figure 5.2.

The output disturbance do is going to act as an impulse change of the
deflection angle of the ball inside the bigger hoop. When designing a controller,
a few conditions need to be met. Mainly that the bandwidth in Hz of the
negative feedback loop should be at least 10-30 times bigger than the sampling
frequency of the camera (50 Hz).

The ControlSystems.jl package offers plenty of methods for designing a
controller. The most useful ones are listed below.

. laglink(a, M) – creates a phase lagging transfer function in the form of
C(s) = s+a

s+a/M

1Official documentation https://juliacontrol.github.io/
RobustAndOptimalControl.jl/dev/
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5. Controller design ...................................

G(s)C(s)r
-
e

di

u

do
y

Figure 5.1: General negative feedback loop.

G(s)C(s)
-
e u

do
y

Figure 5.2: Reduced negative feedback loop.

. leadlink(b, N, K) – creates a phase leading transfer function in the form
of C(s) = KN s+b

s+bN. loopshapingPI (G, ω, ϕl, rl) – creates a PI controller based on the loop
shaping design method. loopshapingPID(G, ω, Mt, ϕt) – creates a PID controller based on the
loop shaping design method. lqr(G, Q, R) – creates an optimal gain matrix K for a state feedback,
that minimizes the cost function

∫ ∞
0 (xT Qx + uT Ru)dt. pid(kp, Ti, Td) – creates a PID controller in the form of

C(s) = kp (1 + 1/(Tis) + Tds). place(A, B, p) – creates a gain matrix K such that A − BK has an
eigenvalues defined by the vector p. placePI (G, ω0, ζ) – creates a PI controller such that the negative feedback
loop has the characteristic polynomial in the form of s2 + 2ω0ζs+ ω2

0

5.1 Design via loop shaping method

The presented design method is going to be via loop shaping using the
loopshapingPID method since frequency domain design is in this case far
easier than for example computing a desired location of the poles of the
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............................ 5.2. Design of the lead compensator

negative feedback loop.

The designing process was iterative, meaning that the parameters ω, Mt

and ϕt were changed based on the time and frequency response of the negative
feedback loop. To be more precise, the time response is going to be an impulse
response regarding the Figure 5.2.

The loopshapingPID returns not only a PID controller but also a PID
controller with a filtered derivative to prevent an improper transfer function
for converting it into a state space representation.

After a few iterations of the controller design, the resulting PID controller
with a filtered derivative is in the form of the following transfer function:

omega = 10
Mt = 1.25
phi_t = 50
C,kp,ki,kd,_,Cf_pid = loopshapingPID(lsys,omega,Mt,phi_t)

TransferFunction{Continuous, ControlSystemsBase.SisoRational{Float64}}
0.0026901298082487772s^2 + 0.010720638072209578s + 0.16425557639727875
----------------------------------------------------------------------

0.0010236067274141814s^2 + 0.03906614150888865s

Continuous-time transfer function model

The filtered derivative part of the controller was slightly modified for better
filtering of the higher frequencies.

5.2 Design of the lead compensator

In this section, the lead compensator will be designed. This type of compen-
sator was chosen because it will add up a phase lead to increase the phase
margin.

For this, the leadlinkat function is going to be used since it is more user-
friendly for lead compensator design than leadlink function.
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5. Controller design ...................................
C_lead = leadlinkat(80, 5)

TransferFunction{Continuous, ControlSystemsBase.SisoRational{Float64}}
0.02795084971874737s + 1.0
---------------------------
0.005590169943749474s + 1.0

Continuous-time transfer function model

5.3 Analysis and simulation of a negative feedback
loop

Before an analysis of the negative feedback loop, it is required to determine the
transfer function of the negative feedback loop because functions mentioned
in the Section 4.2 cannot accept an ODESystem type as an argument unlike
the function simulate_feedback_loop in the BallAndHoop.jl package.

From the Figure 5.2 can be seen that the transfer function from the input
do to the output y can be written as follows:

Gcl(s) = 1
1 + C(s)G(s) (5.1)

In the frequency domain, the control engineer is often interested not only
in the frequency response of a certain transfer function but in the ‘main four’
transfer functions, namely sensitivity and complementary sensitivity transfer
function, the transfer function of the measurement noise to control signal
and the transfer function of the load disturbance to the measurement signal.
These can be plotted using the gangoffourplot function.

setPlotScale("log10")
gangoffourplot(lsys,Cf_pid;label="",plot_settings...)
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....................5.3. Analysis and simulation of a negative feedback loop

Figure 5.3: Main four transfer functions of the negative feedback loop for the
PID controller.

gangoffourplot(lsys,C_lead;label="",plot_settings...)

Figure 5.4: Main four transfer functions of the negative feedback loop for the
lead compensator.

As mentioned above, for the time domain simulation, the function simu-
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5. Controller design ...................................
late_feedback_loop is going to be utilized. The arguments to this function
are pretty much the same as the arguments for the simulate_system function
except that simulate_feedback_loop requires also a controller converted to
the ODESystem type.

Firstly, the output disturbance function is going to be defined. That
function will act as an impulse of a certain amplitude which is going to
displace the deflection angle of the ball inside the bigger hoop.

# Amplitude of the impulse in radians
amp = 0.4

# Output disturbance function definition
d_o = (t) -> amp*(t<=0.02)

The output disturbance function only checks if the current time of the
simulation is less than 0.02 s (this is the sampling period of the camera) and
multiplies that value by the amplitude. The comparison, when the time of
the simulation is at zero, is not appropriate because the solver will most likely
skip the exact timestamp. Therefore the sampling period of the camera has
been taken into the output disturbance function.

@named PIDcontroller = ODESystem(Cf_pid)
@named leadcontroller = ODESystem(C_lead)
res_n_pid = simulate_feedback_loop(PIDcontroller,

nonlinear_sys, d_o, [], (0,1.5), Rosenbrock23())
res_l_pid = simulate_feedback_loop(PIDcontroller,

linear_sys, d_o, [], (0,1.5), Rosenbrock23())
res_n_lead = simulate_feedback_loop(leadcontroller,

nonlinear_sys, d_o, [], (0,1.5), Rosenbrock23())
res_l_lead = simulate_feedback_loop(leadcontroller,

linear_sys, d_o, [], (0,1.5), Rosenbrock23())
plot(res_n_pid, vars=[-PIDcontroller.input.u],

yguide=L"\psi \ [\mathrm{rad}]",
label="Nonlinear system with PID"; plot_settings...)

plot!(res_l_pid, vars=[-PIDcontroller.input.u],
yguide=L"\psi \ [\mathrm{rad}]",xguide=L"t \ [\mathrm{s}]",
label="Linear system with PID";plot_settings...)

plot!(res_n_lead, vars=[-leadcontroller.input.u],
yguide=L"\psi \ [\mathrm{rad}]",xguide=L"t \ [\mathrm{s}]",
label="Nonlinear system with lead";plot_settings...)

plot!(res_l_lead, vars=[-leadcontroller.input.u],
yguide=L"\psi \ [\mathrm{rad}]",xguide=L"t \ [\mathrm{s}]",
label="Linear system with lead";plot_settings...)
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....................5.3. Analysis and simulation of a negative feedback loop

Figure 5.5: Deflection angle of the ball in the negative feedback loop.

The reason why the key argument idxs is not used here is that the output y
is not a part of the solution of the ODEs. But since e = −y, the output can be
accessed by passing a key argument vars and specifying which variable is going
to be plotted. In this case the variable of the controller -controller.input.u is
passed into the plotting function.
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Chapter 6

Rapid prototyping of the control algorithms
on the laboratory model

In this chapter, the rapid prototyping in Julia will be demonstrated as
well as demonstrating multiprocessing computations in Julia. It needs to
be mentioned that even though Julia is just-in-time-compiled, there is a
possibility to compile code written in Julia into a binary file or convert
a controller designed in the ControlSystems.jl package to a C code for a
microcontroller. These possibilities are in the development and testing stage
and are not yet fully reliable.

6.1 Structure of the control algorithm

The main goal was to get up and running multiple Julia processes that will
communicate with each other. The idea behind this was that the main process
will spawn three other processes, the first one will be for the communication
with the BLDC motor driver over the UART, the second one will act as a
controller and the third one will be for the ball detection.

For this task the package Distributed.jl needs to be loaded. This package
is a part of the standard library in Julia and provides a special type called
RemoteChannel which is a media for communicating between individual
processes. In this case, the third process will send a detected position of the
ball to the second process, the second process will compute a desired torque
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6. Rapid prototyping of the control algorithms on the laboratory model.............

Main process

UART handling

Ball detection

Controller

pid = 1

pid = 2

pid = 3

pid = 4

chn43
chn23

chn32

Figure 6.1: Multiprocessing structure of the control algorithm.

and send it to the first process and the first process will respond to the second
one with the information about motor’s position, speed and current.

6.2 Ball detection

The ball detection was already implemented in Python using OpenCV, Numpy
and PiCamera modules. This could be possibly done in Julia with the package
Images.jl but there would be a problem in obtaining a frame from the camera
without the PiCamera Python module. Therefore the ball detection was not
implemented in Julia and loaded and used using the PyCall.jl package that
allows running any Python code in Julia.

The process of detection is rather straightforward. The user will choose
the color of the ball in the config.json_sample file (only red, green and blue
colors are allowed). Then the image is captured by the camera and converted
to grayscale by choosing an appropriate channel (R, G, B) and clipping the
values to a range from 0 to 255, then the additional mask is applied and
finally, thresholding is applied after all of this.

Obtaining an image processed like described above allows to compute the
center of the ball using image moments. The deflection angle can be computed
from the position by the following formula:
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.....................................6.3. Motor driver

Figure 6.2: Image from the PiCamera.

Figure 6.3: Result of the detection of the ball.

ψ = arctan (cx − x, y − cy), (6.1)

where cx and cy are the coordinates of the center of the picture.

6.3 Motor driver

The Raspberry Pi communicates over the UART with the BLDC motor
driver which is implemented on the STM32 chip as well as a BLDC motor
controller. The transmitted and received frames have a specific structure.
The transmitted frame consists of 8 bytes and the received frame consists of
20 bytes.
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Clipping Masking Thresholding

Figure 6.4: Process of the ball detection.

Transmitted frame structure:

. 1st byte = Sync sequence 0xFF. 2nd byte = Length of the data part + 4 (in bytes). 3rd byte = 0x21. 4th - 7th byte = Torque in Nm (float format). 8th byte = End sequence 0x00

Received frame structure:

. 1st byte = Sync sequence 0xFF. 2nd byte = Length of the first data part + 4 (in bytes). 3rd byte = 0x70. 4th - 7th byte = Angular velocity of the motor (float format). 8th - 11th byte = Position of the motor (float format). 12th byte = End sequence 0x00. 13th byte = Sync sequence 0xFF. 14th byte = Length of the second data part + 4 (in bytes). 15th byte = 0x71. 16th - 19th byte = Current of the motor (float format). 20th byte = End sequence 0x00

As a part of the BallAndHoop.jl package, the UART wrapper is imple-
mented using the LibSerialPort.jl1 package. The implementation can be
found at gitlab2.

1Official documentation https://juliaio.github.io/LibSerialPort.jl/stable/
2Source code for the BallAndHoop.jl package https://gitlab.fel.cvut.cz/aa4cc/

j4c/ball-and-hoop
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............................ 6.4. Implementation of the controller

Figure 6.5: Communication protocol of the motor driver

6.4 Implementation of the controller

The last part discussed in this chapter is the implementation of the designed
controller. Since the controller will run on the Raspberry Pi, the continuous-
time controller needs to be converted to a discrete-time controller. This can
be accomplished by using a c2d function in the ControlSystems.jl package.

# Discretizing the controller with the sampling period
# 0.02 s using the Tustin transformation
C_pid_discrete = c2d(Cf_pid, 0.02, :tustin)

TransferFunction{Discrete{Float64}, ControlSystemsBase.SisoRational{Float64}}
1.9895532268941687z^2 - 3.781042887492248z + 1.837946360416423
--------------------------------------------------------------

1.0z^2 - 1.4475426500133597z + 0.4475426500133597

Sample Time: 0.02 (seconds)
Discrete-time transfer function model

C_lead_discrete = c2d(C_lead, 0.02, :tustin)

TransferFunction{Discrete{Float64}, ControlSystemsBase.SisoRational{Float64}}
2.4342806945451483z - 1.1514210418177229
----------------------------------------

1.0z + 0.28285965272742575

Sample Time: 0.02 (seconds)
Discrete-time transfer function model

The resulting transfer functions can be converted into recurrent compu-
tational algorithms using the inverse Z transform. The formulas for the
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6. Rapid prototyping of the control algorithms on the laboratory model.............
computational algorithms after taking the inverse Z transform for the PID
controller and lead compensator are

u[n] =1.9895532268941687e[n] − 3.781042887492248e[n− 1]
+ 1.837946360416423e[n− 2] + 1.4475426500133597u[n− 1]
− 0.4475426500133597u[n− 2],

(6.2)

for the PID controller and

u[n] =2.4342806945451483e[n] − 1.1514210418177229e[n− 1]
− 0.28285965272742575u[n− 1],

(6.3)

for the lead compensator.

The recurrent formulas can be easily implemented in Julia as in other
programming languages.
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Chapter 7

Experimental results

During the testing of the designed controllers, a few limitations were reached.
The first limitation was that running 4 processes on the Raspberry Pi with
the Python script for ball detection was computationally intensive. The
maximum number of processes that were able to run was three.

The distribution of the processes with the communication depicted in the
Figure 6.1 was executed on a personal computer without a problem. The
processes were able to send data according to the Figure 6.1. However, when
the same code was executed on the Raspberry Pi, the transmission of the
data was not executed. It was most likely due to a lack of computational
power to execute all the processes.

This fact led to a change in the whole structure of the control algorithm to
only one process which then executes the following procedure.

1. Detect the position of the ball from the camera.
2. Compute the difference between the reference and the measured position.
3. Based on that difference compute the appropriate torque acting on the

system.
4. Send the computed torque via UART and read the response of the BLDC

motor driver.
5. Sleep for 0.02 s.

After rewriting the control algorithm and running it again, the BLDC
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7. Experimental results..................................

Figure 7.1: Measured deflection angle of the ball with the PID controller.

motor started to increase its speed up to a certain value. This behavior was
not supposed to happen. But when the speed of the motor settles at some
value, the deflection angle was approximately set to zero. This happened due
to the fact, that the control algorithm does not regulate the speed as well as
the deflection angle of the ball.

The solve this problem, full-state feedback needs to be designed. However,
since not all the states are directly measurable, some kind of estimator needs
to be designed as well. One possible solution is mentioned in the paper from
Ing. Jiří Zemánek, PhD. and Ing. Martin Gurtner [5], simply using a Kalman
filter to estimate the last state and then designing a full-state feedback should
solve this problem.

The figures below show the measured deflection angle of the ball, the
angular velocity of the BLDC motor and the torque acting on the system.
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Figure 7.2: Measured angular velocity of the BLDC motor with the PID
controller.

Figure 7.3: Measured torque with the PID controller.
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Chapter 8

Conclusions and future work

This thesis fully demonstrates the process of developing control algorithms
in Julia, starting from the modeling of the system, identification of the
physical parameters of the model, followed by the linearization and controller
design, and ending with the implementation of the control algorithm and
demonstration of the achieved results.

The main objective has been achieved, and the package for interacting with
the ball and hoop system that provides a simple interface for the end user for
simulation of the system and also for the controller design was developed.

The realization of the control algorithm was successful, however, the results
did not turn out how they were supposed to turn out. For more precise
control, a more advanced controller needs to be developed, for example, using
a Kalman filter with full-state feedback obtained by the LQR.

One of the future improvements is to include a hybrid description of the
model in the BallAndHoop.jl package. During the work on this thesis, a
pull request has been made for the ControlSystems.jl package and it was
successfully merged into the main branch1.

Julia on its own is feasible for controlling a real device, however, it depends
on the complexity of the system and designed algorithm. In this case, the
multiple-processes approach was not suitable at all, unlike the single-process

1The merged PR can be found at https://github.com/JuliaControl/ControlSystems.
jl/pull/804
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8. Conclusions and future work ..............................
approach. During testing of the lead compensator, the BLDC motor started
to transmit invalid frames and the motor stopped its rotation after a couple of
seconds. Therefore the measured data from that experiment is not presented.
The controller design in Julia on the other hand was a pleasant experience,
however, sometimes the precompilation of the packages lasted way too long.
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