
F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Evaluation of Readers’ Reactions to
the Content of Media News

Jakub Ambroz
Study program: Open Informatics
Specialisation Artificial Intelligence and Computer Science
ambrojak@fel.cvut.cz

May 26, 2023
Supervisor: Ing. Radek Mařík, CSc.





BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

499162 Personal ID number:  Ambroz  Jakub Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Evaluation of Readers’ Reactions to the Content of Media News  

Bachelor’s thesis title in Czech: 

Hodnocení reakcí čtenářů na obsah mediálních zpráv  

Guidelines: 

1) Make an review of methods used to search for phrasesthat determine the content of media reports. 
2) Research methods of evaluating the sentiment of a text. 
3) Research methods of visualizing results related to natural language processing. 
4) Choose an appropriate set of methods and implement the corresponding processing chain. 
5) Conduct experiments with both Czech and English texts. Focus on visualization of the results. 
6) Discuss the results and identify critical processing points. 

Bibliography / sources: 

[1] Mitchell, Ryan. 2015. Web Scraping with Python. “O’Reilly Media, Inc.” 
[2] Hapke, Hannes, Cole Howard, and Hobson Lane. 2019. Natural Language Processing in Action. Simon and Schuster. 
[3] Bird, Steven, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python. “O’Reilly Media, Inc.” 
[4] Kubat, Miroslav. 2018. Introduction to Machine Learning. S.L.: Springer International Pu. 

Name and workplace of bachelor’s thesis supervisor: 

Ing. Radek Mařík, CSc.    Department of Telecommunications Engineering  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   26.05.2023 Date of bachelor’s thesis assignment:   21.12.2022 

Assignment valid until:   22.09.2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Tomáš Svoboda, Ph.D. 

Head of department’s signature 
Ing. Radek Mařík, CSc. 

Supervisor’s signature 

III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 





Prohlášení autora práce / Declaration

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, May 26, 2023

.................................................
signed Jakub Ambroz

v



Abstrakt / Abstract

Tato bakalářská práce poskytuje zá-
kladní přehled o extrakci dat z webu
(web scraping), zpracování přirozeného
jazyka (NLP) a analýze sentimentu - se
zaměřením na lexikony sentimentu. Byl
vytvořen soubor dat s články a jejich
komentářovými sekcemi ze stránek www.
seznamzpravy.cz a www.idnes.cz. Z
datasetu jsme vytvořili vektorové repre-
zentace pomocí programu Word2vec.
Úpravou přístupu založeného na slov-
níku (dictionary-based approach) jsme
zkoumali, zda by tyto vektory mohou
být vhodné pro vytváření lexikonů
sentimentu.

Existující lexikon sentimentu byl po-
užit k analýze sentimentu komentářů k
článkům zaměřeným na různá témata.
Nakonec jsme zkoumali, zda by reakce
na tyto komentáře (lajky, dislajky)
mohly být použity k měření sentimentu.

Klíčová slova: Python, Zpracování
přirozeného jazyka, Analýza senti-
mentu, Extrakce dat z webu, Analýza
novinových zpráv, Word2vec, Lexikon
sentimentu, Učení bez učitele, Neuro-
nové sítě

Překlad titulu: Hodnocení reakcí čte-
nářů na obsah mediálních zpráv

This bachelor’s thesis gives a basic
overview of web scraping, natural lan-
guage processing, and sentiment analy-
sis - focusing on sentiment lexicons. A
dataset with articles and their comment
sections from www.seznamzpravy.cz
and www.idnes.cz was created. From
the dataset, we created vector represen-
tations by Word2vec. By adjusting the
dictionary-based approach, we explored
if these vectors could be appropriate for
creating sentiment lexicons.

An existing sentiment lexicon was
used to analyze the sentiment of the
comments on articles focusing on dif-
ferent topics. Finally, we explored if
reactions to these comments (likes,
dislikes) could be used to measure
sentiment.

Keywords: Python, Natural Lan-
guage Processing, Sentiment Anal-
ysis, Web Scraping, News Analysis,
Word2vec, Sentiment Lexicons, Unsu-
pervised Learning, Neural Networks

vi

www.seznamzpravy.cz
www.seznamzpravy.cz
www.idnes.cz
www.seznamzpravy.cz
www.idnes.cz


Contents /

1 Introduction 1

2 Web Scraping 2
2.1 Scraping Static Websites . . . . . 2
2.2 Scraping Dynamic Websites . . . 2

3 Natural Language Processing 3
3.1 Text Tokenization . . . . . . . . 3

3.1.1 Text Normalization . . . . . 3
3.1.2 Stemming . . . . . . . . . . 3
3.1.3 Lemmatization . . . . . . . . 4

3.2 Bag of Words . . . . . . . . . . . 5
3.3 TF-IDF Vectors . . . . . . . . . 5
3.4 Semantic Analysis . . . . . . . . 5

3.4.1 Latent Semantic Analysis . . 6
3.4.2 Linear Discriminant

Analysis . . . . . . . . . . . 6
3.4.3 Latent Dirichlet Allocation . 6

4 Neural Networks and their
Applications in Natural
Language Processing 7

4.1 Perceptron . . . . . . . . . . . . 7
4.2 Feedforward Neural Networks . . 8

4.2.1 Word2vec . . . . . . . . . . . 8
4.3 Convolutional Neural Networks . 9
4.4 Recurrent Neural Networks . . 10

4.4.1 Long Short-Term
Memory Networks . . . . . 11

5 Sentiment Analysis 13
5.1 Levels of Sentiment Analysis . . 13
5.2 Sentiment Lexicons . . . . . . . 13

5.2.1 Creation of Sentiment
Lexicons . . . . . . . . . . 14

6 Implementation and Tools Used 15
6.1 Toolkit Overview . . . . . . . . 15

6.1.1 ZipFile . . . . . . . . . . . 15
6.1.2 Sqlite . . . . . . . . . . . . 15
6.1.3 NLTK, gensim . . . . . . . 15
6.1.4 BS4 . . . . . . . . . . . . . 16
6.1.5 Selenium, Chromedriver . . 16
6.1.6 Polyglot, Maplotlib . . . . 16

6.2 Web Scraping . . . . . . . . . . 16
6.2.1 iDNES.cz . . . . . . . . . . 17
6.2.2 Seznam Zprávy . . . . . . . 17

6.3 Natural Language Processing . 18
6.4 Word2vec . . . . . . . . . . . . 18
6.5 Dataset . . . . . . . . . . . . . 18

7 Experiments and Discussion 19
7.1 Word2vec . . . . . . . . . . . . 19
7.2 Creating Custom Senti-

ment Lexicon . . . . . . . . . . 21
7.3 Comparing Created Lexi-

con with Other Sentiment
Measures . . . . . . . . . . . . 22

7.3.1 VADER and translation . . 22
7.3.2 Polyglot and Sentiment

Lexicons Comparison . . . 23
7.3.3 Distribution of Senti-

ment in Dataset . . . . . . 24
7.3.4 Likes versus Sentiment . . . 25

8 Conclusion 28

References 29

A Glossary 31

B Tables of Word Similarities
with Different Word2vec
Representations 32

C Sentiment Lexicon Cre-
ation Table 35

D Other Figures 36

vii



Tables / Figures

6.1 Size of Dataset Created . . . . . . . . 18
7.1 Word2vec Similarity Experi-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Word2vec Similarity in

Largest Model . . . . . . . . . . . . . . . . . . 20
7.3 Word2Vec Similarity Declen-

sion and Other POS . . . . . . . . . . . 21
7.4 Random Slice of Words

Added to Sentiment Lexicon . . 22
7.5 Random Slice of Translations

of Words in Corpus . . . . . . . . . . . . 23
B.1 Word2Vec Similarity, Differ-

ent Model 1. . . . . . . . . . . . . . . . . . . . . 32
B.2 Word2Vec Similarity, Differ-

ent Model 2. . . . . . . . . . . . . . . . . . . . . 33
B.3 Word2Vec Similarity, Differ-

ent Model 3. . . . . . . . . . . . . . . . . . . . . 33
B.4 Word2Vec Similarity, Differ-

ent Model 4. . . . . . . . . . . . . . . . . . . . . 34
C.5 Base Words for the Creation

of Sentiment Lexicon. . . . . . . . . . . 35

3.1 Declension in Czech Adjec-
tives, Singular, Hard . . . . . . . . . . . . .4

3.2 Declension in Czech Adjec-
tives, Plural, Hard . . . . . . . . . . . . . . .4

3.3 Declension in Czech Adjec-
tives, Singular, Weak. . . . . . . . . . . . .4

3.4 Declension in Czech Adjec-
tives, Plural, Weak . . . . . . . . . . . . . . .4

4.1 Simple Perceptron Model . . . . . . . .7
4.2 Feedforward Neural Network . . . .8
4.3 Pool Layer in CNN. . . . . . . . . . . . . . .9
4.4 Filter in CNN . . . . . . . . . . . . . . . . . . 10
4.5 Recurrent Neural Network

Architectures . . . . . . . . . . . . . . . . . . . 11
7.1 Comparison of Positive Sen-

timent Words . . . . . . . . . . . . . . . . . . . 24
7.2 Comparison of Negative Sen-

timent Words . . . . . . . . . . . . . . . . . . . 24
7.3 Scatter plot of the ratios of

Positive and Negative . . . . . . . . . . 24
7.4 Histogram of Ratios of Neg-

ative Words. . . . . . . . . . . . . . . . . . . . . 25
7.5 Histogram of Ratios of Posi-

tive Words . . . . . . . . . . . . . . . . . . . . . . 25
7.6 Example of iDNES comment . . 26
7.7 Ratio of Positive Reactions

versus Ratio of Positive Words . 26
7.8 Ratio of Negative Reactions

versus Ratio of Negative
Words . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.1 Comparison of positive senti-
ment words absolute . . . . . . . . . . . 36

D.2 Comparison of negative sen-
timent words absolute . . . . . . . . . 36

D.3 Scatter plot of the ratio
of Positive and Negative,
Ukraine . . . . . . . . . . . . . . . . . . . . . . . . . 37

D.4 Histogram of Ratio of Nega-
tive Words, Ukraine . . . . . . . . . . . . 37

D.5 Histogram of Ratios of Posi-
tive Words, Ukraine . . . . . . . . . . . . 37

D.6 Scatter plot of the ratio of
Positive and Negative, Presi-
dential Elections. . . . . . . . . . . . . . . . 38

viii



D.7 Histogram of Ratios of Neg-
ative Words, Presidential
Elections . . . . . . . . . . . . . . . . . . . . . . . . 38

D.8 Histogram of Ratios of Pos-
itive Words, Presidential
Elections . . . . . . . . . . . . . . . . . . . . . . . . 38

D.9 Scatter plot of the ratios of
Positive and Negative, Uni-
verse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

D.10 Histogram of Ratios of Neg-
ative Words, Universe . . . . . . . . . . 39

D.11 Histogram of Ratios of Posi-
tive Words, Universe . . . . . . . . . . . 39

D.12 Histogram of Positive Reac-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

D.13 Histogram of Negative Reac-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix





Chapter 1
Introduction

Before we could perform any analysis, we first had to get the data. In this case, that will
be news and readers’ reactions to them. We decided to download articles from online
news sites with comment sections. Chapter 2 introduces some technical and theoretical
background necessary for understanding web scraping. However, most of the relevant
information is in 6.2 under implementation. Because in this field, the theory is simple
but practical implementation can be challenging.

Then the data is scraped and extracted from the HTML source code. The following
text is processed. For this, there is a field of NLP (Natural Language Processing).
Chapter 3 describes how to parse natural text into tokens and how to preprocess the
text. It then explains how to represent text with vectors.

We look at how Neural Networks can be used in NLP in Chapter 4. We focus on
how Neural Networks could help us represent words - Word2vec. Particular focus is
given to Sentiment Analysis (Chapter 5), a subfield of NLP. Sentiment Analysis deals
with identifying or extracting natural text’s sentiment (emotion). We explain what
sentiment lexicons are and how to create them.

Chapter 6 describes the tools used and why they were chosen. It also describes the
dataset and how it was created. This dataset is further used in Chapter 7 to analyze
the sentiment of the comments. The dataset is also used to create Word2vec vector
representations of words. Furthermore, the possibility of using this representation for
creating sentiment lexicons is explored.

1



Chapter 2
Web Scraping

Web scraping - also known as screen scraping, data mining, or web harvesting - is a
term referring to downloading and extracting useful data from the web or the internet.
It is also typically used when using a script or program to do the work instead of the
human. Because doing the work manually is too tedious and time-consuming. This
may be caused by the structure or size of the data that one is trying to access. If
there are better options for getting to data desired, for example, public APIs or public
datasets or archives, it may be simpler and faster to use those [Mitchell, 2018, Preface;
Zhao, 2017].

2.1 Scraping Static Websites
Every site is some kind of HTML document. HTML stands for Hyper Text Markup
Language. Hypertext refers to the ability to link other text that can be accessed, e.g.,
www.example.com. Markup means that the text uses some syntax and tags to note
how (color, font, size, etc.) each part should be displayed e.g.,

<tag attribute1="value1" attribute2="value2">''text to scrape''</tag>.

One can get this HTML document by HTTP GET request at a certain URL (e.g., www.
domain_name.xyz/article/abc). For this, one can use urllib2 or selenium libraries in
Python. From this HTML page, to extract the information one wants BeautifulSoup4
is used. BS4 is a Python library specifically for that. But once can use any tool that
has the capacity to read and edit text [HTML - Living Standard , Zhao, 2017].

2.2 Scraping Dynamic Websites
DHTML (Dynamic HTML) pages change how they appear or their content with an-
imations or after some interaction with a user. Many websites today use dynamic
loading using JS (Javascript). That means that a single GET request is not sufficient
for getting the data. Because they are downloaded afterward (for example, when a user
scrolls) using some script and are added to the now modified HTML. For scraping such
websites, Selenium is used. Selenium WebDriver can be used with Python (or other
languages such as Java, JS) and a browser of your choice - Firefox, Edge, Chrome,
Safari, 1 [Mitchell, 2018 pg. 108]

1 https://www.selenium.dev/documentation/webdriver/getting_started/install_drivers/

2

www.example.com
www.domain_name.xyz/article/abc
www.domain_name.xyz/article/abc
https://www.selenium.dev/documentation/webdriver/getting_started/install_drivers/


Chapter 3
Natural Language Processing

Natural Language Processing, commonly shortened to NLP, deals with natural lan-
guages (English, Spanish, Czech, etc.) and how they can be processed by computers.
Natural languages are harder compared to synthetic languages. For example, program-
ming languages were constructed and designed with rules that are always followed, and
the syntax is easily parsed. Natural languages usually have rules, but they are more
complex and have more exceptions. Another issue is high context dependence and un-
certainty, e.g., homonyms. And finally differences between written text and speech or
between formal and informal language [Bird, 2009].

3.1 Text Tokenization
Text tokenization is a process of splitting text into tokens carrying meaning. The most
straight forward way would be to split the text into words. This can be achieved by
splitting the text by white space. But most tokenizer take into account other parts of
setneces - dots, comas, exclamation marks, etc. The tokens can be even smaller. Some
tokenizer split words into roots, prefixes and suffixes. This approach is, hwoever, very
different in each language. [Hobson, 2019].

3.1.1 Text Normalization
Text normalization refers to a multitude of methods that augment the text before the
process of extracting information from it. It may be as simple as case folding - making
all letters the same case. There will be some loss of information (Bush vs bush). A
more complicated approach would be capitalizing only letters at the beginning of the
sentence [Manning, 2008].

Removing accents seems like a good idea in English (cliché and cliche, or naive and
naïve). In languages like Czech, it may change the meaning (“nos”, “noš” meaning
“nouse” and “carry!”) and clump multiple different words into one. However, there are
still people who type in ASCII only. This may be due to habit from earlier more limited
computers (where diacritics were not always avaiable or displayed correctly), avoiding
potential issues that come with different encodings, or because the keyboard layout
without diacritics is better for certain computer tasks (e.g., programming). Removing
all diacritics and accents may improve performance due to this. The words with the
same spelling may have different meanings even before removing diacritics. So removing
diacritics does not introduce a new issue, but it can make it worse. [Manning, 2008].

3.1.2 Stemming
Stemming is a process of removing small parts of a word (for example, endings) and
reducing the word to its root. This seems like a good idea in English, where there
is an ending ’-s’ for verbs in the third person singular in the present tense, ’-s’ for
plural nouns, ’-en’, ’-ing’ and ’-ed’ in verb forms. This is a gross oversimplification. For
example, Porter’s stemmer has much more rules than that.[Hobson, 2019, pg. 58]

3



3. Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.1. Czech Adjectives Singular, Hard Declension [website mojecestina.cz]

Figure 3.2. Czech Adjectives Plural, Hard Declension, [website mojecestina.cz]

Figure 3.3. Czech Adjectives Singular, Weak Declension [website mojecestina.cz]

Figure 3.4. Czech Adjectives Plural, Weak Declension [website mojecestina.cz]

For comparison, these are rules for Czech adjectives1. This is only adjectives. The
tables for nouns or verbs would look similar. Needless to say, developing own stemmer
would be very time-consuming. [Hobson, 2019, pg.59] If there is a need or want to use
a stemmer for Czech, use an existing one, e.g., [Zápotocký, 2012].

3.1.3 Lemmatization
Lemmatization is a special type of normalization that uses not only how the word is
spelled but also it’s meaning. The downside is that it requires information about the
meaning of the words. It has to recognize the similarity in meaning in words with
completely different spelling (synonyms) and separate words similar in spelling and
different in meaning [Hobson, 2019, pg. 60].

Both lemmatization and stemming reduce the vocabulary and increase the ambiguity
of the text. They may be useful for certain use cases with a limited amount of data where
they perform better on information retainment in some cases. But with a sufficient
amount of data, this is not the case. Some authors ([Manning, 2008]) even ignore these
entirely because the improvements are negligible.
1 https://www.mojecestina.cz/article/2009092802-sklonovani-pridavnych-jmen

4

https://www.mojecestina.cz/article/2009092802-sklonovani-pridavnych-jmen


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Bag of Words

3.2 Bag of Words
The term bag of words refers to representing a sentence or text as a collection of words
that are order independent. For each text, we create a vector. This vector is the size
of the number of all words in our entire corpus. And each vector has on position 𝑖: 1 if
the 𝑖-th word is present in the text or 0 if the word is not present. This representation
is very crude because it doesn’t take into account the context or the order of the words.
But thanks to this simple technique, we have a vector representation of text. A huge
mathematical apparatus was already developed for vectors. And now we can use it with
words. These vectors can also serve as an input for Neural Networks or other machine
learning models [Hobson, 2019].

3.3 TF-IDF Vectors
Term Frequency - Inverse Document Frequency is a single number where the Term
Frequency is divided by Document Frequency. TF-IDF is calculated for a term (word
or a few words together) and a document. Term frequency is the number of times
the term occurred in a given document, and Document Frequency is the number of
documents the term occurred in. Both of these numbers are typically logarithmed.
The logarithmization is used because of word frequencies in natural text. What one
will see is that the most common word is two times as likely to occur in a text than the
second most common. Moreover, four times more likely than the fourth most common.
This idea proved useful in accuracy. A nice side effect is that we get rid of the potential
problem of numerical stability that may arise in a large corpus [Hobson, 2019].

The logic behind TF and DF is that TF is a really rough but simple measurement
of how important the term is to the document. However the most common words
(pronouns, prepositions, verb be, etc.) would be important for all documents (due to
the distribution outlined above). Dividing by the number of documents the term occurs
in allows us to lower the weight of the most common words significantly and increases
the importance of words that are relatively rare in common text and are thus specific
to the respective document and its topic [Hobson, 2019].

The next step is doing the process described above for every word in the dictionary
- that is, for every word present in our corpus. The result is TF-IDF vector that has
its length equal to the size of the dictionary. This vector could be considered a simple
representation of the meaning or topic of the document. Documents with similar TF-
IDF vectors (that is, vectors that are near each other in vector space) probably have
similar topics. But they can theoretically be about very different things if the text use
homonyms (words spelled the same or similar way but have different meanings) heavily.
Synonyms (words with the same meaning but different spelling) are another problem,
because it could result in vectors far apart for documents with close topics. These
can be partially addressed with text normalization methods described above, such as
stemming and lemmatization [Hobson, 2019].

3.4 Semantic Analysis
Semantic Analysis is a subfield dealing with the meaning of the text. TF-IDF vectors
are not good enough. But there are methods for transforming TF-IDF vectors into
so-called topic vectors or for making them directly from the corpus.

5



3. Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Latent Semantic Analysis

LSA (Latent Semantic Analysis) is based on a well-known technique for reducing di-
mensionality from linear algebra, SVD (Singular Value Decomposition). This technique
decomposes a TF-IDF matrix (made out of TD-IDF vector for each document) into 3
simpler matrices. We get the original TF-IDF matrix by multiplying them. This tech-
nique has many applications not only in computer science but engineering in general.
Therefore there are many implementations with efficient algorithms.

𝑀𝑇 𝐹−𝐼𝐷𝐹 = 𝑈𝑆𝑉 𝑇

From the point of view of semantic analysis, the most important matrix is 𝑈. In the
full (not reduced) form, it has its width and height equal to the number of words in the
dictionary. Individual numbers express correlation between the respective words.
𝑆 is a diagonal matrix called singular. In the case of semantic analysis, these numbers
express how much information is captured in each dimension in the new vector space of
the topic. This can be used in dimensionality reduction, so we drop only the dimensions
with the least information. Therefore we replace the smallest values in 𝑆 with zero.
Reducing as many dimensions as one likes while keeping the information loss as small
as possible.
𝑉 𝑇 is transposed matrix. In this context, it measures the similarity of documents. It
can be used as a control if we have some labels of the documents [Hobson, 2019].

3.4.2 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a simple method that splits the data into two
categories, e.g., spam and ham. LDA is a supervised learning method. Therefore it is
necessary to have already labeled data. The first step is calculating the centroids of
both categories. That means the ’average’ of data with one of the labels. Data here
are the TF-IDF vectors. In the classification phase, the TF-IDF vector of the new
document is calculated. Then it is decided to which of the centroids it is closer. The
new document is then classified as the label of the closest centroid [Hobson, 2019].

3.4.3 Latent Dirichlet Allocation
Latent Dirichlet Allocation (shortened LDA or LDiA to avoid confusion with Linear
Discriminant Analysis) is an alternative to LSA that performs slightly better in some
situations. Unlike LSA which uses simple linear algebra, LDiA uses the assumption
of Dirichlet distribution of words that is closer to reality. Another assumption is that
each document is a linear combination of a certain number of topics. This number is a
hyperparameter that can be optimized in training [Hobson, 2019].

6



Chapter 4
Neural Networks and their Applications in
Natural Language Processing

The possibilities of using Neural Networks (NN) are large and still developing area
in machine learning. What follows is an introduction to the basic mechanism behind
them. This can be used in understanding what types of Neural Networks are useful for
NLP.
Artificial Neural Networks are inspired by the structure of biological neural networks.
These are made out of neurons that are connected to other neurons by synapses. In
biology, the structure of these connections is genuinely complicated. The artificial
kind uses more simple structures that can be more easily computed and represented
mathematically [Kriesel, 2007 ].

4.1 Perceptron
Perceptron is one of the most basic types of artificial neurons. It has 𝑛 inputs. Let the
𝑖-th one be 𝑥𝑖. Next, we use a vector notation for all the inputs ⃗𝑥. Each input will
have some weight 𝑤𝑖. And the last thing is bias. It can be thought of as a weight that
influences the neuron regardless of the values of the input. When we combine it into
one equation, it looks like 𝑓( ⃗𝑥)

𝑓( ⃗𝑥) = ⃗𝑥�⃗� + 𝑏 =
𝑛

∑
𝑖=0

𝑥𝑖𝑤𝑖 + 𝑏

The output of this operation is a number that would serve as an input to the activation.
The neuron does not activate if the activation is not high enough. That means the
number must be higher than a certain threshold 𝑡 in order to activate the neuron. If
it is higher, than the output of the neuron will be one; otherwise, it will be zero. The
activation function 𝑔(𝑥):

𝑔(𝑥) = { 1 for 𝑥 ≥ 𝑝,
0 for 𝑥 < 𝑝

The output of the neuron is 𝑔(𝑓( ⃗𝑥)). There are many alternatives to threshold function,
described above, that can be used as activation functions: the sigmoid function, hyper-
bolic tangent, and ReLU (Rectified Linear Unit). Some can improve the performance
of Neural Network.

Figure 4.1. Perceptron, [Portilla, 2017]

7



4. Neural Networks and their Applications in Natural Language Processing . . . . . . . . . . . . . . . .

4.2 Feedforward Neural Networks
Feedforward is one of the most straightforward architectures NN use. It is composed of
several layers. The first one is called the input layer, next there are several hidden layers
followed by an output layer. The layers are connected in one direction only. There are
no shortcuts to further layers or loops back into a previous one. They are called fully
connected if there are connections for each neuron in one layer into all neurons in the
proceeding layer [Kriesel, 2007 ].

Figure 4.2. Simple Feedforward Neural Network, [Portilla, 2017]

The learning uses a process called backpropagation. It uses differentiation and chain
rule. It backpropagates the differential from output back to input. Afterward the
weights are adjusted accordingly [Kriesel, 2007 ].

4.2.1 Word2vec
Word vector refers to any vector that can be used to represent words. The simplest is
called one-hot encoding. It is an empty vector filled with zeros and only a single one.
This vector has the length of the vocabulary, and the one is in the position respective
to the position of the word in the dictionary.

Word2vec is an unsupervised learning model which tries to get better word vectors.
This should be a vector representation of a word that captures its meaning. And idealy
it also reduces the dimension. Thus the process should turn the one-hot vector into a
dense vector - a vector filled with float numbers.

Because it is unsupervised learning, we need just a lot of data, but the data do
not have to be labeled. However, the creation of this model is very computationally
demanding. Luckily there are publicly available models from Google or Facebook. They
are pre-trained on gigantic amounts of data.1

1 https://github.com/facebookresearch/fastText

8

https://github.com/facebookresearch/fastText


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Convolutional Neural Networks

The basic model (later changed and improved) consists of input, output, and one
hidden layer. There are 2 approaches to what are input and output data. In the
so-called skip-gram approach, the input is one word, and the neural network tries to
predict its surroundings. First step is the training phase. When it finishes, we can get
the desired word vector the weights of the hidden layer. The input is the word to which
the word vector is wanted. The word vector is, therefore, the same size as the hidden
layer. So it can theoretically be as large or small as the application requires because
this number is chosen y humans before starting the training process. Alternatively, it
can be looked at as a hyperparameter to optimize.

The alternative approach is the continuous bag of words in which the model tries to
predict the missing word from words in their surroundings [Hobson, 2019].

4.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are focused on images. However, they can also
be used in NLP. There are three types of layers in this architecture: convolutional,
pooling, and fully connected layer. Fully connected is a simple layer where each neuron
is connected to neurons in adjacent layers. Pooling layers are used to reduce dimension-
ality, and therefore proceeding layers have fewer parameters to optimize. For example,
max-pooling selects and outputs the largest element. This is not done on the entire
input but only on some small window called kernel. For example, a 2 by 2 pixels kernel
slides across the image, 2 pixels at each step. The number of pixels it moves in each
step is called stride. This scales down the image’s dimension to half of the original size
[O’Shea, 2015].

Figure 4.3. Applying a pool layer (average pool) on a simple image represented as a 2D
matrix of integers [Mebsout, 2020]

And the most important is the convolutional layer. It has kernels that slide (or
convolve) over the input. In each step, there is a different part of the image in the kernel.
Afterwards, the scalar product is calculated. The output is known as activation. For
a 2D-image, the output of one of those kernels would be a 2D-activation map. These
would be stacked on top of each other and produce the output of the convolutional
layer. There are hyperparameters to optimize, such as the size of the kernel, stride
(how much the kernel moves in each step), padding (for example, with zeros outside
the original input image) [O’Shea, 2015].

9



4. Neural Networks and their Applications in Natural Language Processing . . . . . . . . . . . . . . . .

Figure 4.4. Applying a filter on a simple image represented as a 2D matrix of integers
[Mebsout, 2020]

This strategy is also useful in NLP when one wants to analyze sentences or documents.
The kernels will move across the words in the document. This allows the net to capture
word order and word proximity. Both of which are important in natural languages.
One issue is that the lengths of the documents are predetermined by the dimensions
of the input layer. Shorter texts must be padded, and longer ones must be truncated
[Hobson, 2019].

The bigger problem is that one can’t use words (or other strings) as inputs for neural
networks. It requires a numerical representation. There are two major approaches:
One-hot encoding and Word2vec. But Word2vec requires data and computational time
to train in order to work. Unlike the simpler one-hot encoding [Hobson, 2019].

CNNs can be used for the classification of some labeled text. For example, written re-
views and corresponding ratings approved, disapproved; recommend, don’t recommend;
fresh, rotten; rating out of five (or 10) stars [Hobson, 2019].

4.4 Recurrent Neural Networks

First RNNs (Recurrent Neural Networks) were introduced in the 1980s for learning
strings of characters. Development and research of RNNS and their other application
continued in the 1990s. The key feature is using closed-loop connections. There are
different architectures for RNNs. It can be fully connected RNN, where each node is
connected to every other node (even to itself) [Medsker, 2001].

Or much simpler RNNs are modifications of Feedforward NN where certain layers
are giving information (feedback) back to proceeding layers. There are two major ways
of doing this. The vector given to the input layer includes the output of either the
hidden or output layer. The training data is, for example, some strings of characters.
The net gets a character and is taksed with predicting the proceeding character. These
networks can be trained to either predict the next character or to check and control the
correctness of text string [Medsker, 2001].

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Recurrent Neural Networks

Figure 4.5. Two common architectures of Recurrent Neural Networks [Ramos, 2020]

RNNs can learn dependencies from sequential data. That is important in natural
languages, where the data is a sequence of words (or characters). It is important to
know what words came before the current word. The recurrent (loop-back) signal can
also be looked at as a sort of memory for the network. RNNs can take as the input texts
of variable length (unlike CNNs). However, very long ones can cause problems such
as vanishing (or exploding) gradients. This happens because the weights are reused in
each step, and they can multiply the signal into infinity or into zero [Salehinejad, 2018,
Hobson, 2019].

Another issue with RNNs being very deep networks is that they are hard to train
compared to other models. They can, however, improve performance. RNNs mod-
els were an important breakthrough for modeling natural languages as sequences of
characters [Hobson, 2019, Salehinejad, 2018].

4.4.1 Long Short-Term Memory Networks

LSTMs (Long Short-Term Memory Networks) have further improved RNNs because
they can retain the knowledge of long-term dependencies better than a hidden state.
This state refers to the output of the hidden layer that is then passed to the input layer
in the next step in RNNs. LSTMs introduce the memory state for the hidden layer.
This allows it to retain information longer on top of the more recent memory that comes
from the architecture of RNNs, where the output of the hidden layer is added to the
input in the next step [Hobson, 2019, Salehinejad, 2018].

For controlling memory, three gates are used. Forget gate is a simple feedforward
NN. Its output is a vector that determines which values in the memory should be (and
how much) forgotten in the memory vector. This vector has values from 1 (value stays
in memory) to 0 (value is completely zeroed). The modified memory state continues
to thecandidate gate. This one has two separate parts: candidate choice and candidate
values. The first represents how important it is to remember (output values from 0 to
1). And the latter has values from −1 to 1. These vectors are multiplied elementwise
and added to the memory state. That is the second update to the memory. And the

11



4. Neural Networks and their Applications in Natural Language Processing . . . . . . . . . . . . . . . .
last gate - the output gate - uses this memory to modify the output. The output would
otherwise correspond to RNN with the same dimensions. But just before outputting,
it is multiplied elementwise by a mask created from the memory state. Thus, memory
has a crucial influence on the output of the LSTM layer [Hobson, 2019, Salehinejad,
2018].

LSTMs are more resilient toward the issue of vanishing (or exploding) gradients than
RNNs. They, however, require more memory, and they further increase computational
complexity. GRUs (Gated Recurrent Units) can be used instead of LSTMs in order to
decrease memory demands. GRUs also have gating units but without memory cells.
They are better at certain tasks and worse at others compared to LSTMs [Salehinejad,
2018].

12



Chapter 5
Sentiment Analysis

When tasked with analysing opinions of written text, we turn to sentiment analysis
(SA). This field is also known as emotion analysis, opinion extraction, sentiment mining,
and others. Or rather, they are focused on slightly different problems from different
approaches. However, they are all around the same area of problems that consist of
capturing and analysing opinions, sentiments and emotions of people from what they
have written [Liu, 2012 ].

Very little research was done prior to the year 2000. This changed with the rise of the
internet. Suddenly there was a huge amount of text that could be used for sentiment
analysis. Furthermore, this analysis has commercial applications. And thus, there is
a greater financial incentive to improve current methods of SA and develop new ones.
Examples of applications include analysing reviews; social media posts (or blogs) for
opinions on products, people, political parties, companies, etc. The analysis can be
used to predict stock market changes and improve trading strategies. Or internally by
the company to distinguish well-liked products from hated ones [Liu, 2012 ].

5.1 Levels of Sentiment Analysis
The simplest way is to do sentiment analysis at a document level. This takes the entire
document and outputs the measured sentiment. This may be very useful for corpora
where the documents are focused on a single thing. An excellent example are reviews
which only focus on the thing reviewed. However,even here, an issue with entities arises,
e.g., “The video game was really great. But the movie adaptation was terrible”. When
analysed as a whole, it is difficult to tell (even for a human) whether this has positive or
negative sentiment because there are two things with two different sentiments. Another
key piece of information is the domain of the document. If it was a movie review, it
would have a very negative sentiment, but as a video game review it is more positive
[Liu, 2012 ].

A different approach is to use a sentence level analysis. This splits the document
into sentences which are analysed individually. It tries to differentiate sentences that
are objective (describe something, carry factual information) and subjective sentences
that carry opinions and thoughts [Liu, 2012 ].

Aspect level or Entity level tries to solve the issue with multiple things in one sentence,
as in the review example. It tries to extract not only the opinions or sentiments in the
text but also to which entity (i.e., movie, game) this sentiment relates. This is even
more challenging than document or sentence level analysis, and these are already quite
hard problems [Liu, 2012 ]

5.2 Sentiment Lexicons
The most important carriers of meaning are words. Those that carry (positive or
negative) sentiment are called sentiment (or opinion) words. If we focus on those (and

13



5. Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ignore the sentence structure), we can create sentiment lexicons. There are sentiment
words and their respective sentiment in these lexcions. Additionally common phrases
or idioms can also be used as “words” in the lexicon. Sentiment lexicons are a necessary
step in sentiment analysis [Liu, 2012 ??].

However, they are certainly not ideal and have several issues. Firstly the same words
do not necessarily have the same sentiment in different contexts. The difference may be
due to sarcasm or several meanings of the word. Some sentences may have no opinion
words and imply an opinion, e.g., “This car uses ten times more fuel than my previous
one.”. And others may have an opinion word (e.g., nice) and carry no sentiment, e.g.,
“What movies from the last decade are really nice?” [Liu, 2012 ].

5.2.1 Creation of Sentiment Lexicons
There are several general-purpose publicly available lexicons already created. Depend-
ing on the context, this may be sufficient for the desired application. However, certain
domains and contexts are more challenging. Thus creating a domain-specific lexicon
may improve additional steps in SA. And in languages that lack publicly available
lexicons, creating one is the only option [Liu, 2012 ].

The simplest is the manual approach, but its disadvantage is high labor requirement
and time consumption. Its usually used in combination with automated approaches
[Liu, 2012 ].

Dictionary-based approach uses already existing dictionaries for the language. The
dictionary used must contain synonyms (that is common in most dictionaries) and
antonyms. We start with a few words that have known sentiments (good, bad, terrible,
awesome, etc.) predefined manually in the lexicon. Next, their synonyms and antonyms
are added to the lexicon with the corresponding sentiment. For newly discovered words,
we repeat the process until no new words are added.

The final lexicon can be manually inspected, and unfitting words can be removed.
This can also be looked at as traversing a graph where the notes are individual words,
and the edges are connections (synonym, antonym). These edges may have different
weights for synonyms and antonyms. But the absolute weight should be lower than
one. This makes the words separated by many connections (and therefore the most
different from the original set) have lower sentiment values [Liu, 2012 ].

Corpus-based approach is used when adapting an already existing general-purpose
lexicon for a specific domain. It can aslo be used to generate a general-purpose lexicon
with enough data and sufficient diversity in the data. However, for constructing general-
purpose lexicons, the dictionary-based approach is typically better [Liu, 2012 ].

14



Chapter 6
Implementation and Tools Used

We chose to implement everything in Python because of its vast collection of libraries.
Python can be used for scraping the web, extracting text from HTML source code, and
Natural Language Processing. Very little preprocessing of the natural language test
was done after it was extracted from HTML. This is due to the loss of information that
occurs and because all of these processes are harder to do accurately in Czech than in
English. And even in English, there is a trend of using less preprocessing and adding
more data and computational time to allow the model to capture more information.

6.1 Toolkit Overview

6.1.1 ZipFile
Due to the way file systems work, it is difficult for them to have a large number of (even
small) files in a single directory. Easier is to have one large file. And when creating large
datasets (in this case, thousands of articles, each having tens, hundreds, or even (low)
thousands of comments), this may be a problem. Modern operating systems have some
techniques to mitigate this issue, but from personal experience, these are not sufficient.

Folders with thousands of files operate slowly and sometimes even slow down other
tasks. For this reason, we decided to batch the files into larger archives. Tar files are
an inferior alternative because they compress all the files together (better compression
but slower reading and writing). This makes it hard to random access or append new
files. Zip ,on the other hand, compresses the files individually. Therefore, changing,
adding, and deleting files within the archive is easy. Text files are not very large (even
an entire HTML of a website is usually just a few kilobytes). Additionally, we do not
care that much about compression - it can even be turned off for even faster access.
This makes using zip files the best choice.

6.1.2 Sqlite
For managing what links were already scraped and what are yet to be scraped, some
form of database is ideal. Sqlite was chosen because it is free to use, stable, small,
simple, and fast 1. For interacting with it from Python code, sqlite3 library is used.

6.1.3 NLTK, gensim
Natural Language ToolKit (NLTK) is a Python library that has wide range of tools
for computational linguistics. It also has some beginner-friendly interfaces to several
corpora. However, it is mainly designed for the English language, and for the Czech
language, some things (stemmer, lemmatizer, tagging) are useless. The most useful is
the tokenizer because the punctuation and word separation work almost the same way
in both languages.2

1 https://www.sqlite.org/index.html
2 https://www.nltk.org

15

https://www.sqlite.org/index.html
https://www.nltk.org


6. Implementation and Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Gensim library is designed for NLP tasks. It has several models for unsupervised

document analysis - Word2Vec, FastText, LSA, LDiA. In our case, we will use its
Word2vec model. 3

6.1.4 BS4

Beautiful Soup (BS4) is a Python library for HTML parsing. It can be used both for
finding and changing information in HTML documents. It can do almost anything with
a given HTML file4. However, it has no capabilities for downloading them from the
web. For this, one must use requests or urllib2 libraries.

6.1.5 Selenium, Chromedriver

This tool was first developed for testing the functionality of websites when they are
being developed. It allows for running JS code and interacting with the webpage like
a user - scrolling, clicking, filling in forms, etc. [Selenium Docs]. This gives the ability
to automate almost any repetitive web-based task. It is an ideal candidate for web
scraping anything.

Selenium WebDriver is a simple programming interface that drives the browser
effectively.5 It creates an instance of the browser that is controlled by the program-
mer’s script. This means that the website has to be rendered. This can make it slower
compared to BS4 with requests. Therefore we use it only where these are not sufficient,
and rendering the website in the browser is necessary for the site to function correctly.

6.1.6 Polyglot, Maplotlib

For sentiment analysis, we use polyglot’s sentiment lexicon. Polyglot is a Python
package based on [Chen, 2014]. To visualize the results, we use Python’s matplotlib
library as it is the most common one to use for plotting and has sufficient capabilities
for most types of data.6

6.2 Web Scraping
The most crucial step is a good selection of what news sites are best to scrape. For
machine learning is essential to have huge amounts of data, so it cannot be some obscure
site. Ideally, it would also have big comment sections with a diverse set of readers. And
from a scraping perspective, it would be convenient if the articles and their respective
comment sections have a simple layout that can be scraped and parsed easily.

In Anglospere, comment sections in online news have been slowly disappearing. This
is in part due to spam and the difficulty of moderation 7. They are arguments for 8 or
against 9 this. However, this trend did not arrive (yet?) in Czech media, and there are
several news websites with thriving comment sections under popular articles.

3 https://radimrehurek.com/gensim/intro.html
4 https://beautiful-soup-4.readthedocs.io/en/latest/
5 https://www.selenium.dev/documentation/webdriver/
6 https://matplotlib.org
7 https://www.getfoundquick.com/why-are-comment-sections-disappearing/
8 https://www.theguardian.com/science/brain-flapping/2014/sep/12/comment-sections-toxic-

moderation
9 https://www.techdirt.com/2015/09/23/trend-killing-news-comment-sections-because-you-

just-really-value-conversation-stupidly-continues/

16

https://radimrehurek.com/gensim/intro.html
https://beautiful-soup-4.readthedocs.io/en/latest/
https://www.selenium.dev/documentation/webdriver/
https://matplotlib.org
https://www.getfoundquick.com/why-are-comment-sections-disappearing/
https://www.theguardian.com/science/brain-flapping/2014/sep/12/comment-sections-toxic-moderation
https://www.theguardian.com/science/brain-flapping/2014/sep/12/comment-sections-toxic-moderation
https://www.techdirt.com/2015/09/23/trend-killing-news-comment-sections-because-you-just-really-value-conversation-stupidly-continues/
https://www.techdirt.com/2015/09/23/trend-killing-news-comment-sections-because-you-just-really-value-conversation-stupidly-continues/


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Web Scraping

6.2.1 iDNES.cz
At https://www.idnes.cz, we can find a news site with a simple layout of both
articles and comment sections. The pipeline looks roughly like this. First, we scrape
some individual sites on the domain using requests for downloading. We use Sqlite for
managing what was already scraped.And we use BeautifulSoup4 for extracting links
from the HTML file.

. Download a website from idnes.cz and mark it scraped in the database. Save it into zip file. Find all links to the same domain. Add links to the database. Fetch a new unscraped link from the database. Return to step 1 or stop if a sufficient amount was scraped

The next step is selecting all articles and extracting their headline, opener, and text
using bs4 and saving the extracted part for future use. This severely reduces the
size of the dataset (for example, 2.5GB into 50MB) so it can be easily transferred
elsewhere. A link to the discussion is extracted and saved. And they are scraped and
saved correspondingly to articles. The difference is every comment has its individual
file in zip file. And every comment has its rating saved. The ratings are simple counts
of pluses and minuses given by other users. This can be a signal used further in
sentiment analysis.

6.2.2 Seznam Zprávy
This site (https://www.seznamzpravy.cz/) has a more complex design, but articles
can be scraped with relative ease. The process is very similar to the process outlined
in 6.2.1. The issue comes with the comment section. It is difficult to scrape because
it uses on-demand loading that requires clicking. For this reason, it is necessary to use
Selenium.

One of the first issues comes with cookies, specifically the popup that covers the
screen. For humans, it is easy to click. In Selenium, this is a bit trickier. One has
to locate the button in the HTML source code. Find some way to identify it so it
cannot be mistaken with other elements - ideally id but class can also be sufficient
in certain situations. Next, the element is selected with the method of the Selenium
driver: driver.find_elements(). After that follows a simple call element.click().
And in most cases, this is a completely sufficient approach. In this case, however, the
cookies popup is behind:

#shadow-root (closed)

“The ShadowRoot interface of the Shadow DOM API is the root node of a DOM subtree
that is rendered separately from a document’s main DOM tree.”10. From a scraping
perspective,this is not a big problem because Selenium has methods for accessing these
special types of elements. The real issue is in (closed). This makes the internals
inaccessible to Javascript 11.

Selenium cannot operate within these. It is not a bug but an intentional design
because these should not be accessible for scripts12. In this case, the cookies window
could be removed by deleting the parent element. And the site remained functional.
10 https://developer.mozilla.org/en-US/docs/Web/API/ShadowRoot
11 https://developer.mozilla.org/en-US/docs/Web/API/ShadowRoot/mode
12 https://github.com/SeleniumHQ/selenium/issues/5869#issuecomment-388821755

17

https://www.idnes.cz
https://www.seznamzpravy.cz/
https://developer.mozilla.org/en-US/docs/Web/API/ShadowRoot
https://developer.mozilla.org/en-US/docs/Web/API/ShadowRoot/mode
https://github.com/SeleniumHQ/selenium/issues/5869#issuecomment-388821755


6. Implementation and Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This however, well illustrates the type of issues that can be encountered when webs
craping. Their complexity and difficulty depend on the type of website that is being
scraped.

6.3 Natural Language Processing
Some parts of the source code use samples from [Hobson, 2019] and their examples at
respective GitHub. On some versions of Python and libraries, one may encounter an
error about Mapping not existing. This can be easily solved by rewriting the files of
the respective library. It is necessary to change

from Collections import Mapping

into

from Collections.abc import Mapping

6.4 Word2vec
For constructing the Word2vec representation of the words, we use the gensim library.
It expects the data already split into words. For this, we use a tokenizer from the
NLTK library. It was designed for the English language, but Czech has similar rules for
punctuation, so it works fine. It compares favorably to using a simple tokenizer that
uses only the default string split method in Python.

6.5 Dataset
The contents of the dataset that was created will not be made public due to potential
legal issues. In Table 6.1 we see an overview of the size of the dataset that was used in
further steps. The Size Extracted refers to natural text only without all the HTML
tags present in Size. It is missing in Seznam Zprávy Comments because it was extracted
dynamically to save some hard disk space and to efficiently use the time that would
otherwise be spent waiting.

In the Articles column is the number of articles, and in the bracket is the number
of individual comments. An unfortunate decision was made to give each comment its
own file in the zip archive when extracting iDNES comments. This made the write time
into the archive slow and the file unnecessarily large due to a lot of long filenames.

A Better alternative was used in Seznam Zprávy Comments - saving all comments
from one article into one file. One comment per line format requires replacing any new-
line characters with different white spaces. But that is a negligible loss of information.

Name Articles Size Size Extracted
Seznam Zprávy Articles 6772 3.1 GB 41.6 MB
Seznam Zprávy Comments 1825 (237303) - 42.5 MB
iDNES Articles 12296 3.6 GB 47.7 MB
iDNES Comments 11795 (225797) 1.3 GB 98.3 MB

Table 6.1. The four parts of the dataset. The number in brackets refers to the number of
individual comments.

18

https://github.com/totalgood/nlpia


Chapter 7
Experiments and Discussion

7.1 Word2vec
This section was inspired by [Wójcik, 2019] which uses vector representation of words
(word2vec). It clusters all these vectors into two groups. Afterwards, it looks at the
words closest to centroids (the centers of the clusters). One group has more positive
and the other has more negative sentiment. The weight of the sentiment of each word
depends on the distance from the closest centroid (closer ones have more sentiment).

The advantage of this approach is that it requires no labeling of the words or docu-
ments. It only needs enough textual data. But the disadvantage is that it is not precise
nor accurate [Wójcik, 2019]. As there is no solid justification for why the distance would
depend more on sentiment than other characteristics. For example it, could separate
the clusters into verbs and not-verbs.

The first experiments used only some parts of the collected dataset to create word
vectors. Then we looked at words (adjectives) that carry sentiment (good, nice, awe-
some, bad, terrible, awful). Afterwards, we looked at the words most similar to them
(smallest distance between vectors); see 7.1 for first five words.

dobrý můj špatný pěkný slušný nápad
1.0 0.8625 0.8466 0.8099 0.8058 0.8044
dobré těžké důležité nutné vhodné špatné
1.0 0.8545 0.7891 0.765 0.7638 0.7502
dobrá hezká skvělá pěkná krásná taková
1.0 0.8863 0.8583 0.8534 0.8313 0.823
hezké pěkné svinstvo. těžké. zavádějící, pěkné,
1.0 0.8922 0.857 0.8515 0.8392 0.8354
super super, blbost pěkná liga. ok,
1.0 0.8083 0.7454 0.7129 0.7114 0.7074
špatné důvody silné skutečné rozumné hezké
1.0 0.8137 0.807 0.806 0.7977 0.7965
strašné zřejmé. zbytečné. hrozné. šílené trapné
1.0 0.8695 0.8679 0.8638 0.8625 0.8562
hrozný strašnej Hřib krásný slušnej nádherný
1.0 0.8883 0.8828 0.8821 0.8818 0.8798

Table 7.1. 5 Most similar words in Word2vec model made from only comments from only
www.idnes.cz with length 200

These results show that similar words are usually the same part of speech (adjectives)
or are used together in common phrases (“dobrý nápad” or “pěkné svinstvo”). However,

19

www.idnes.cz


7. Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a lot of the words are close in meaning. And this could hopefully be used in sentiment
lexicon generation similar toDictionary-based generation (see 5.2.1). The difference
would be that instead of prelabeled connections in dictionary (synonyms, antonyms),
it would use connections found without supervision by looking for most similar vectors
in word2vec representation.

Further experiments with different parts of the dataset and different parameters were
done. Unsurprisingly the more data was used and the more diverse it was (articles and
comments), the better the representation looked, e.g., 7.2. Some of the others can be
seen in Appendix B.

dobrý špatný skvělý hezký těžký výborný
1.0 0.792 0.7898 0.7548 0.7449 0.734
dobré správné důležité špatné skvělé rozumné
1.0 0.7161 0.7004 0.695 0.6778 0.6532
dobrá skvělá špatná zajímavá pěkná důležitá
1.0 0.8196 0.8015 0.7739 0.7571 0.7417
hezké pěkné skvělé fajn příjemné zábavné
1.0 0.8475 0.7558 0.7519 0.7438 0.7203
super fajn parádní perfektní pecka bezva
1.0 0.7494 0.6965 0.6638 0.6499 0.6423
špatné správné dobré nepříjemné rozumné složité
1.0 0.7091 0.695 0.6554 0.6459 0.6429
strašné hrozné úžasné šílené děsivé marné
1.0 0.7868 0.7218 0.7217 0.7172 0.6988
hrozný strašný neskutečný dobrej blbý vtipný
1.0 0.7946 0.7334 0.7228 0.7151 0.7003

Table 7.2. 5 Most similar words in Word2vec model made from both comments and articles
from both www.seznamzpravy.cz and www.idnes.cz with length 200

This is an improvement. However, the table is severely lacking declensions (3.1) and
other parts of speech like adverbs. And the biggest issue is that there are still words
with exactly opposite meanings (‘good’ - ‘dobrý’; ‘bad’ - ‘špatný’). Which is not that
surprising because they are used similarly. However, it is difficult to deal with when
trying to create a sentiment lexicon from these relations.

Next, we look at different declensions (‘dobrých’,dobří‘’,‘dobrými’ are all translated
as good) and different parts of speech. Instead of adjectives (‘good’ - ‘dobrý’; ‘bad’ -
‘špatný’) we use adverbs (‘well’ - ‘dobře’; ‘badly’ - ‘špatně’). In Table 7.3, we see that
the most similar words to declined adjectives are typically declined in the same form.
And that adverbs also have adverbs close to them instead of other parts of speech.

Another issue can be noticed. Some words that appear to have no relation are listed
as similar. The reason may be that they are very rare words. And thus, there are very
few contexts in which they appear in the dataset. This issue is, however, negligible
because these words are very rare. Therefore they have statistically very little influence
on the measured sentiment of a long text (e.g., an article) or multiple short texts (e.g.,
comments on an article).

20

www.seznamzpravy.cz
www.idnes.cz


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Creating Custom Sentiment Lexicon

dobrých špatných úspěšných skvělých zajímavých odlišných
1.0 0.7401 0.7264 0.7044 0.7039 0.703
dobří silní chytří hloupí špatní takoví
1.0 0.8528 0.84 0.8352 0.8312 0.8259
dobrými původními vybranými cizími notebookem klukama
1.0 0.6973 0.6873 0.6841 0.6784 0.6728
špatnou podobnou dobrou zajímavou jistou těžkou
1.0 0.7534 0.745 0.7229 0.7039 0.6955
špatně dobře blbě správně špatné obráceně
1.0 0.6553 0.6398 0.5618 0.5341 0.5299
dobře špatně skvěle hezky slušně lépe
1.0 0.6553 0.6388 0.584 0.5714 0.5484
hroznými radama krabicemi písečným Seznámí kvantovou
1.0 0.6709 0.6642 0.6635 0.6612 0.6612

Table 7.3. Adjectives Declensions, Adverbs, 5 Most similar words in Word2vec model made
from both comments and articles from both www.seznamzpravy.cz and www.idnes.cz

with length 200

7.2 Creating Custom Sentiment Lexicon

In section 5.2.1, we described a dictionary-based approach for creating sentiment lex-
icons. This requires some dictionary with synonyms and antonyms. We decided to
adapt this approach to data that have no labels. First, we created a short (cca 25) list
of positive and negative words, see Table C.5. This includes some adverbs, adjectives,
and their declined forms.

Afterward, we added words that were closest to them in word vector representation.
Their sentiment is a product of the sentiment of the original word (1 positive, −1
negative) and similarity (1 - identical, 0 - least similar word possible). We repeat this
process for newly added words. This is repeated a predefined number of steps or until
a certain limit of the sentiment value is reached. These hyperparameters can be further
optimized.

When creating the sentiment lexicon for this case, the minimal similarity of the word
in order to be considered is 0.78. The absolute sentiment value cannot be lower than
0.5. And the words must be reached within 4 steps. With hyperparameters set as
described, we create a lexicon with 63 negative words and 283 positive words. The
negative words seem more precise even if there are fewer in number. As can be seen in
a random slice of the lexicon in Table 7.4.

21

www.seznamzpravy.cz
www.idnes.cz


7. Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hloupí 0.8351936936378479 nácek -0.6510593286438748
špatní 0.8312200903892517 exot -0.6502488769822783
takoví 0.8258762955665588 ubožák -0.633749006781585
pracovití 0.8197283744812012 chlapík -0.6324555639875804
skvělí 0.8151135444641113 kašpar -0.6286448012458017
šikovní 0.8002576231956482 psychopat -0.6277053543282918
spokojení 0.7989729046821594 buran -0.626571123618124
neschopní 0.7932671308517456 šmejd -0.6464964859506495
úspěšní 0.7898635864257812 gauner -0.6260299209316145
líní 0.7857365608215332 neuvěřitelně -0.5633571806819127
nemocní 0.7827789187431335 parazit -0.510118376605857
blbí 0.7820891737937927 narcis -0.5103853842711382
slabí 0.7809988856315613 klaun -0.5265567455240019
krásná 0.7980693578720093 nacista -0.5137524240229452
výborně 0.8387442231178284 udavač -0.5102098096754933
zajímavá 0.6541010589807996 papaláš -0.5099974623679102
výborná 0.6530309216136096 ožrala -0.508373308152948
horšímu 0.6832842449469823 komediant -0.5171368901037915
lepšímu. 0.6548449585454001 zmetek -0.5123328541837703

Table 7.4. Random slice of words that were added to the sentiment lexicon

7.3 Comparing Created Lexicon with Other Sentiment
Measures

7.3.1 VADER and translation

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a tool for analysing
sentiment described in [Hutto, 2014]. It uses more than just sentiment lexicons. It was
designed to handle text from social media and is free to use. 1

This makes it seem like an ideal tool to compare with our simple sentiment lexicon.
But the issue is that it is designed for English texts only. This is the issue of most
publicly available tools for sentiment analysis.

One solution is to use machine translation on comments collected in the dataset.
This is certainly not ideal, as information would be lost in translation, and some things
would be translated incorrectly. We have tried translating using several Python libraries
(translate, Translators, googletrans, dl-trans), but none of them was capable of
translating the entire dataset due to its size. And all of the public APIs of online
translators limit the amount (and size) of responses.

The second option was to translate only the words present in the corpus and then
replace these when evaluating sentiment in a different language. This would make any
more advanced analysis than a simple count of positive (and negative) words inappli-
cable because the word order can be very different in Czech and English.

We used translate - Python library that uses Google Translate as a backend. Even
this proved to be too long, and only part of the vocabulary was translated. Given the
poor quality of what was translated (see 7.5), we decided not to continue in this direc-
tion. The translated text would be too littered with incorrect (or weird) translations.

1 https://vadersentiment.readthedocs.io/en/latest/

22

https://vadersentiment.readthedocs.io/en/latest/


. . . . . . . . . . . . . . . . . . . . . 7.3 Comparing Created Lexicon with Other Sentiment Measures

Czech English
než The total
ani ani
podle Sort by
ještě yet.
až Euro up to
jsme tied up
být Could
bylo I
toho its
jeho his
pak then
tím Tím

Table 7.5. Random Slice of Translations of Words in Corpus by translate

7.3.2 Polyglot and Sentiment Lexicons Comparison

One of the few publicly available sentiment lexicons with support of the Czech language
is in polyglot. It is a Python library that implements [Chen, 2014]. To compare our
sentiment lexicon created above with this a simple measure was used. We took an entire
comment section and looked at the word distribution. The ratio of postive (negative)
words to all words was used.

In the positive words (see 7.1), these two measures do not seem to be correlated.
This distribution can probably be explained by the fact that our lexicon does not have
exhaustive list of positive words. So most texts end up having very few sentiment words
in general, and the data is squished near the x-axis.

If we were to compare the absolute counts of positive and negative words, some
relation can be seen (D.2), especially for positive words D.1. However, this is caused
by long texts simply having more words (of all sentiments). Both of these measures
are dependent on the length of the text. Therefore, the correlation is mostly caused by
this. As we do not see a similar relationship in relative counts.

23



7. Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 7.1. Comparison of ratios of positive sentiment words in Polyglot (x-axis) and our

lexicon (y-axis)

Figure 7.2. Comparison of percantage of negative sentiment words in Polyglot (x-axis) and
our lexicon (y-axis)

7.3.3 Distribution of Sentiment in Dataset

Now we look at our dataset through the lens of polyglot sentiment analysis. In Figure
7.3 we see that there are many articles with comment sections that have more positive
comments than negative ones. However, most of the data clusters towards more negative
than positive.

Figure 7.3. Ratios of positive words (x-axis) vs ratios of negative word (y-axis)

24



. . . . . . . . . . . . . . . . . . . . . 7.3 Comparing Created Lexicon with Other Sentiment Measures

Figure 7.4. Histogram of ratios of negative words

Figure 7.5. Histogram of ratios of positive words

This can also be seen in histograms (Figures 7.5, 7.4). Where most sections are
located in the 0% to 2% bins for positive words. On the other hand, negative words
have much more even distribution. This is not surprising as most news are somewhat
related to politics. And these discussions can get pretty heated. Another reason may be
that people head to comment when they want to discuss the article, and this happens
more when there is something they do not like or disagree with.

These distributions are different for different topics. Politically charged topics such as
‘Ukraine’ or ‘Presidential Elections’ tend to have the distribution skewed toward more
negative words. See Figures D.3, D.6. Topics that are more neutral (for example articles
about advances in science) have distribution skewed towards less negative words, see
Figure D.9 for topic ‘Universe’.

7.3.4 Likes versus Sentiment

As we have seen above, sentiment analysis with unlabeled data is difficult. In the case
of analysing reviews, one can use the rating(positive, negative; recommend, do not
recommend) as a class. This makes it a supervised problem, and other methods can be
used, such as NN, for classification as they are described in 4.3.

25



7. Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 7.6. Example of iDNES comment

In our case, we do not have a label associated with the comment. We have only other
commentators’ reactions to the comment (e.g., 7.6). In iDNES, these are simple likes
and dislikes. To see whether they are related to the sentiment, we use ratios again.
We divide the number of positive (negative) reactions by the total number of reactions.
To see if there is any relation to sentiment, we use once again the ratios of positive
(negative) words to all words.

Figure 7.7. Scatter plot of the ratio of positive reactions (x-axis) versus ratio of positive
words (y-axis)

26



. . . . . . . . . . . . . . . . . . . . . 7.3 Comparing Created Lexicon with Other Sentiment Measures

Figure 7.8. Scatter plot of the ratio of negative reactions (x-axis) versus ratio of negative
words (y-axis)

We plot them together in Figures 7.7, 7.8. Note these weird horizontal and vertical
lines are common fractions ( 1

2 , 1
3 , 2

3 , etc.) that are over-represented in the dataset as most
comments do not get much attention (both likes and dislikes). From these images, it
is apparent that there is very little to no relation between these two measures. The
densities in the areas are not surprising given the histograms D.12, D.13.

This is the expected result because the likes capture sentiment to the comment. And
sentiment words capture the sentiment of the comment. This can also be seen in the
example comment (Figure 7.6), where the comment expresses negative sentiment of the
article. Other commenters agree (have positive sentiment towards the opinion) and
upvote the comment and create a dichotomy between negative sentiment and positive
rating.

27



Chapter 8
Conclusion

In the Implementation Chapter (6), we have looked at word vectors created by
Word2vec. Most similar vectors appear to have similar meanings or are used in similar
contexts (declined in the same form, are used next to each other). When creating these
vectors, we optimized hyperparameters and used more (and more diverse) data. Next,
we tried to select the best representation, where similar vectors have similar meanings.

Then we adapted the dictionary-based approach for creating sentiment lexicons de-
scribed in 5.2.1. Instead of using antonyms and synonyms, we used the distance to
other vectors in word vector representation. We started with a list of a few positive
(26) and a list of a few negative (25) words. We looked for similar word vectors and
added them to these lists. By repeating for a few steps, we had a sentiment lexicon
bigger than the original one - 283 positive and 63 negative words.

Afterwards, we compared this created lexicon to an already existing sentiment lexicon
in the Python package polyglot. The clear winner was polyglot lexicon. Mainly
because our custom lexicon still had way too few words. The performance of our model
could be improved by extending the starting lists, but this would make it more labour
intensive and closer to the manual approach. Thus we conclude that this approach is
worse than the normal dictionary-based approach. However, when no dictionary with
synonyms and antonyms is available, this may help speed up the otherwise manual
approach.

In section 7.3.3, we analyzed how the sentiment is distributed. Showed that different
topics have different distributions of positive and negative words present in comments.
For example, more divisive topics (like politics) have more negative words than neutral
topics (like science).

We saw that unsupervised learning did not work well for sentiment analysis and
sentiment lexicon creation. Therefore as the last thing, we looked at if the reactions
(likes, dislikes) to comments could be used as labels, thus changing this into a super-
vised problem. However, we reasoned and showed that there does not seem to be a
relationship between how positive are the reactions to the comment and how positive
is the comment itself.

28



References
The HTML syntax.

https://html.spec.whatwg.org/multipage/syntax.html. Accessed: 20.01.2023.
Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with python.

Sebastopol, CA: O’Reilly Media, 2009. ISBN 978-0-596-51649-9.
Yanqing Chen, and Steven Skiena. Building Sentiment Lexicons for All Major Lan-

guages. In: Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association
for Computational Linguistics, 2014. 383–389.
https://aclanthology.org/P14-2063.

Lane Hobson, Howard Cole, and Hapke Hannes. Natural Language Processing in Action.
New York, NY: Manning Publications, 2019. ISBN 9781617294631.

C. Hutto, and Eric Gilbert. VADER: A Parsimonious Rule-Based Model for Sentiment
Analysis of Social Media Text. Proceedings of the International AAAI Conference
on Web and Social Media. 2014, 8 (1), 216-225. DOI 10.1609/icwsm.v8i1.14550.

David Kriesel. A Brief Introduction to Neural Networks . 2007 . available at
http://www.dkriesel.com .

Bing Liu. Sentiment Analysis and Opinion Mining. Morgan & Claypool, 2012 .
Christopher D Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to

Information Retrieval. Cambridge, England: Cambridge University Press, 2008.
Ismail Mebsout. Convolutional Neural Networks’ mathematics — towardsdata-

science.com.
https://towardsdatascience.com/convolutional-neural-networks-mathematics-
1beb3e6447c0. 2020. Accessed 24-May-2023.

Larry R Medsker, and LC Jain. Recurrent neural networks. Design and Applications.
2001, 5 64–67.

Ryan Mitchell. Web Scraping with Python, 2e. Sebastopol, CA: O’Reilly Media, 2018.
ISBN 978-1-491-98557-1.

Jose Portilla. A Beginner’s Guide to Neural Networks in Python.
https://www.springboard.com/blog/data-science/beginners-guide-neural-
network-in-python-scikit-learn-0-18/. 2017. Accessed: 24.05.2023.

Keiron O’Shea, and Ryan Nash. An Introduction to Convolutional Neural Networks.
2015.

Raúl Ramos, and Julián Arias. Fundamentos de Deep Learning — rramosp.github.io,
5.1 Recurrent Neural Networks;.
https://rramosp.github.io/2021.deeplearning/content/U5.01%20-%20Recurrent%
20Neural%20Networks.html. 2020. Accessed 24-May-2023.

Hojjat Salehinejad, Julianne Baarbe, Sharan Sankar, Joseph Barfett, Errol Colak, and
Shahrokh Valaee. Recent Advances in Recurrent Neural Networks. CoRR. 2018,
abs/1801.01078

29

https://html.spec.whatwg.org/multipage/syntax.html
https://aclanthology.org/P14-2063
http://dx.doi.org/10.1609/icwsm.v8i1.14550
http://www.dkriesel.com 
https://towardsdatascience.com/convolutional-neural-networks-mathematics-1beb3e6447c0
https://towardsdatascience.com/convolutional-neural-networks-mathematics-1beb3e6447c0
https://www.springboard.com/blog/data-science/beginners-guide-neural-network-in-python-scikit-learn-0-18/
https://www.springboard.com/blog/data-science/beginners-guide-neural-network-in-python-scikit-learn-0-18/
https://rramosp.github.io/2021.deeplearning/content/U5.01%20-%20Recurrent%20Neural%20Networks.html
https://rramosp.github.io/2021.deeplearning/content/U5.01%20-%20Recurrent%20Neural%20Networks.html


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selenium Docs.

https://www.selenium.dev/documentation/. Accessed: 04.05.2023.
Skloňování přídavných jmen, mojecestina.cz.

https://www.mojecestina.cz/article/2009092802-sklonovani-pridavnych-jmen.
Accessed 24-May-2023.

Rafał Wójcik. Unsupervised Sentiment Analysis.
https://towardsdatascience.com/unsupervised-sentiment-analysis-a38bf190648
3. 2019. Accessed 25-May-2023.

Bo Zhao. Web Scraping. In: 2017. 1-3. ISBN 978-3-319-32001-4.
Petr Zápotocký. Stemmer pro češtinu. 2012.

http://hdl.handle.net/11025/5537.

30

https://www.selenium.dev/documentation/
https://www.mojecestina.cz/article/2009092802-sklonovani-pridavnych-jmen
https://towardsdatascience.com/unsupervised-sentiment-analysis-a38bf1906483
https://towardsdatascience.com/unsupervised-sentiment-analysis-a38bf1906483
http://hdl.handle.net/11025/5537


Appendix A
Glossary

AI . Artificial Intelligence
ANN . Artificial Neural Networks
BOW . Bag of Words
BS4 . Beautiful Soup 4
CNN . Convolutional Neural Networks
CSS . Cascading Style Sheets
DF . Document Frequency
DHMTL . Dynamic HTML
DOM . Document Object Model
HTML . HyperText Markup Language
IDF . Inverse Document Frequency
JS . JavaScript
LDA . Linear Discriminant Analysis, in other sources it can aslo refer to Latent

Dirichlet Allocation
LDiA . Latent Dirichlet Allocation
LSA . Latent Semantic Analysis
LSTM . Long Short Term Memory
ML . Machine Learning
NLP . Natural Language Processing
NLTK . Natural Language ToolKit
NN . Neural Networks
POS . Part of Speech
RNN . Recurrent Neural Networks
TF . Term Frequency
TF-IDF . Term Frequency - Inverse Document Frequency
VADER . Valence Aware Dictionary and sEntiment Reasoner

31



Appendix B
Tables ofWord Similarities with DifferentWord2vec
Representations

dobrý skvělý špatný výborný hezký slušný
1.0 0.8483 0.8408 0.7885 0.7772 0.7766
dobré správné rozumné důležité špatné těžké
1.0 0.7371 0.7324 0.7265 0.7198 0.7175
dobrá špatná skvělá pěkná zajímavá důležitá
1.0 0.8589 0.8388 0.8132 0.8022 0.7686
hezké pěkné skvělé příjemné fajn krásné
1.0 0.88 0.8073 0.7898 0.7884 0.7551
super fajn parádní perfektní skvělá pěkná
1.0 0.735 0.7156 0.6627 0.6542 0.652
špatné správné dobré rozumné nepříjemné hloupé
1.0 0.7683 0.7198 0.7128 0.6962 0.6932
strašné hrozné marné úžasné děsivé směšné
1.0 0.8282 0.7747 0.7713 0.768 0.735
hrozný strašný neskutečný neuvěřitelný děs dobrej
1.0 0.7989 0.7714 0.7423 0.7281 0.7266

Table B.1. 5 Most similar words in Word2vec model made from both comments and articles
from both www.seznamzpravy.cz and www.idnes.cz with length 100

32

www.seznamzpravy.cz
www.idnes.cz


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dobrý můj jasný správný náš jediný
1.0 0.8185 0.8142 0.7816 0.7712 0.7658
dobré důležité těžké správné jednoduché složité
1.0 0.8164 0.8093 0.7495 0.7257 0.7236
dobrá špatná zajímavá složitá citlivá správná
1.0 0.8377 0.8085 0.7822 0.7702 0.7679
hezké zašifrované všanc fajn vzdělanější iluze
1.0 0.8099 0.8056 0.7775 0.7707 0.7641
super smutné vázán mrtvý fascinující rozený
1.0 0.7979 0.7939 0.7924 0.7767 0.7721
špatné zkrátka nebezpečné správné složité špatně
1.0 0.7293 0.7187 0.7145 0.7041 0.7038
strašné neuvěřitelné fajn hezké zašifrované přehnané
1.0 0.7916 0.7683 0.762 0.7587 0.7585
hrozný beton Jacinto Zrušili Čaroděj interaktivního
1.0 0.8318 0.8194 0.8184 0.8115 0.8087

Table B.2. 5 Most similar words in Word2vec model made from only articles from only
www.seznamzpravy.cz with length 200

dobrý skvělý můj takový tohle tenhle
1.0 0.8827 0.8259 0.8193 0.8102 0.8089
dobré důležité špatné správné těžké složité
1.0 0.8467 0.8335 0.8235 0.8059 0.7914
dobrá špatná obrovská taková správná důležitá
1.0 0.8771 0.8624 0.8594 0.854 0.8505
hezké fajn příjemné krásné pěkné neuvěřitelně
1.0 0.8462 0.845 0.8368 0.8313 0.8302
super fajn hodný úžasné strašné skvělá
1.0 0.8641 0.8179 0.8146 0.8127 0.8046
špatné dobré těžké správné takové složité
1.0 0.8335 0.8094 0.7936 0.7868 0.7865
strašné pravidlem úžasná šťastné hrozné smutné
1.0 0.8561 0.8505 0.8409 0.8388 0.8377
hrozný sebestředný skvostně šílený tvůj bezúdržbový
1.0 0.7961 0.7843 0.7819 0.7814 0.7807

Table B.3. 5 Most similar words in Word2vec model made from only articles from only
www.idnes.cz with length 200

33

www.seznamzpravy.cz
www.idnes.cz


B Tables of Word Similarities with Different Word2vec Representations . . . . . . . . . . . . . . . . . .

dobrý skvělý špatný můj silný tenhle
1.0 0.8603 0.8334 0.783 0.7811 0.7792
dobré důležité správné těžké složité špatné
1.0 0.7911 0.7763 0.7592 0.7206 0.7121
dobrá špatná zajímavá skvělá důležitá obrovská
1.0 0.8602 0.8519 0.8136 0.8118 0.8114
hezké fajn příjemné krásné skvělé úžasné
1.0 0.8564 0.841 0.8038 0.7983 0.7925
super fajn hezké neskutečně hrozné zábava
1.0 0.8081 0.7456 0.7393 0.7348 0.7343
špatné nepříjemné správné složité výjimečné nebezpečné
1.0 0.7549 0.7527 0.7469 0.7372 0.7295
strašné hrozné smutné náhoda šílené nepochybné
1.0 0.7997 0.7855 0.7808 0.7745 0.772
hrozný starostlivý hlupák střízliví blbý vegetariánem
1.0 0.7835 0.7809 0.7783 0.7765 0.7696

Table B.4. 5 Most similar words in Word2vec model made from only articles and both
sources, with vector of size 100

34



Appendix C
Sentiment Lexicon Creation Table

dobrý 1.0 špatný -1.0
dobrá 1.0 špatně -1.0
dobré 1.0 špatná -1.0
dobrými 1.0 špatné -1.0
dobrého 1.0 špatnými -1.0
dobrému 1.0 špatnou -1.0
dobrém 1.0 hrozně -1.0
dobrým 1.0 hrozné -1.0
dobrou 1.0 ošklivé -1.0
skvělý 1.0 špatným -1.0
úžasný 1.0 příšerný -1.0
perfektní 1.0 špatných -1.0
výborný 1.0 mizerný -1.0
příjemný 1.0 hnusně -1.0
hezký 1.0 hnusné -1.0
dobří 1.0 odporné -1.0
chytrý 1.0 odporný -1.0
úžasná 1.0 odporná -1.0
krásné 1.0 hnus -1.0
vynikající 1.0 odpad -1.0
skvělými 1.0 blb -1.0
dobře 1.0 idiot -1.0
skvěle 1.0 zlý -1.0
pěkně 1.0 zlé -1.0
krásnou 1.0 zlá -1.0
super 1.0

Table C.5. All words that were used as the base sentiment.

35



Appendix D
Other Figures

Figure D.1. Comparison of absolute counts of positive sentiment words in Polyglot (x-axis)
and our lexicon(y-axis)

Figure D.2. Comparison of absolute counts of negative sentiment words in Polyglot (x-axis)
and our lexicon(y-axis)

36



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure D.3. Ratio of positive words (x-axis) vs ratio of negative word (y-axis), topic “Ukra-
jina”

Figure D.4. Histogram of rations of negative words, topic “Ukrajina”

Figure D.5. Histogram of ratios of positive words, topic “Ukrajina”

37



D Other Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure D.6. Ratio of positive words (x-axis) vs ratio of negative word (y-axis), topic “Prezi-
dentské volby”

Figure D.7. Histogram of rations of negative words, topic “Prezidentské volby”

Figure D.8. Histogram of rations of positive words, topic “Prezidentské volby”

38



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure D.9. Ratios of positive words (x-axis) vs ratio of negative word (y-axis), topic “Ves-
mír”

Figure D.10. Histogram of ratios of negative words, topic “Vesmír”

Figure D.11. Histogram of ratios of positive words, topic “Vesmír”

39



D Other Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure D.12. Hisogram of positive reactions.

Figure D.13. Hisogram of negative reactions.

40


	TITLE
	Specification
	Prohlášení autora práce/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Web Scraping
	Scraping Static Websites
	Scraping Dynamic Websites

	Natural Language Processing
	Text Tokenization
	Text Normalization
	Stemming
	Lemmatization

	Bag of Words
	TF-IDF Vectors
	Semantic Analysis
	Latent Semantic Analysis
	Linear Discriminant Analysis
	Latent Dirichlet Allocation


	Neural Networks and their Applications in Natural Language Processing
	Perceptron
	Feedforward Neural Networks
	Word2vec

	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory Networks


	Sentiment Analysis
	Levels of Sentiment Analysis
	Sentiment Lexicons
	Creation of Sentiment Lexicons


	Implementation and Tools Used
	Toolkit Overview
	ZipFile
	Sqlite
	NLTK, gensim
	BS4
	Selenium, Chromedriver
	Polyglot, Maplotlib

	Web Scraping
	iDNES.cz
	Seznam Zprávy

	Natural Language Processing
	Word2vec
	Dataset

	Experiments and Discussion
	Word2vec
	Creating Custom Sentiment Lexicon
	Comparing Created Lexicon with Other Sentiment Measures
	VADER and translation
	Polyglot and Sentiment Lexicons Comparison
	Distribution of Sentiment in Dataset
	Likes versus Sentiment


	Conclusion
	References
	Glossary
	Tables of Word Similarities with Different Word2vec Representations
	Sentiment Lexicon Creation Table
	Other Figures

